AlGeBra 2 Cheat Sheets!

 (Shhhhhh....)
Graphing ABsolute value equations (cheat Sheet)

Steps:
1: set inside = to zero.
2: solve for x.
3: create a table with the found x value in the middle.
4: Plug x back into the equation to find y. (This is the vertex coordinate.)
choose 2 more x values, one on either side of the x you found.
Find y values.
Graph 3 points.

Example: Graph $y=|x+5| \quad$ (Absolute Value)

3:

x	y
-5	

4:

x	y
-5	0

x	y
-6	
-5	0
-4	

6: | x | y |
| :---: | :---: |
| -6 | 1 |
| -5 | 0 |
| -4 | 1 |

7: Plot and connect.

Graphinc quabratics (cheat Sheet)

Steps:

1: set inside = to zero.
2: solve for x.
3: create a table with the found x value in the middle.*
4: Plug x back into the equation to find y. (This is the vertex coordinate.)
5: choose 2 more x values, one on either side of the x you found.
6: Find y values.
Choose 1 more x value and find its y value.
8: Plot all 4 points.
9: Use symmetry to find a $5^{\text {th }}$ point.
*Note here that our table has more than 3 rows. This is because quadratics, unlike absolute value equations, do not grow linearly in each direction.
Example: Graph $y=(x-1)^{2}-2 \quad$ (Quadratic)

6: \begin{tabular}{|c|c|}
\hlinex \& y

\hline \&

\hline 0 \& -1

\hline 1 \& -2

\hline 2 \& -1

\hline \&

\hline

\quad

\hlinex \& y

\hline \&

\hline 0 \& -1

\hline 1 \& -2

\hline 2 \& -1

\hline 3 \& 2

\hline
\end{tabular}

9:

8:

Graphing Repicals (square roots) cheat Sheet

perfect squares: $0 \quad 1 \quad 49$

Example: Graph $y=\sqrt{x-5}+3 \quad$ (radical)
Step 1: Make a table:

\mathbf{x}	\mathbf{y}

Step 2: Set "inside" $(\mathbf{x}-\mathbf{5})$ expression equal to each perfect souare number above....
$\mathrm{x}-5=0$
$\mathrm{x}-5=\mathbf{1}$
$x-5=4$
$x-5=9$
... and solve for each x .

$$
\begin{array}{clll}
x=5 & x=6 & x=\mathbf{9} & x=14
\end{array}
$$

Step 3: Fill in your table with the x values you just found:

x	y
5	
6	
$\mathbf{9}$	
14	

Step 4: Find the y values (plug back in).
Step 5: Plot points and connect.

x	y
$\mathbf{5}$	3
$\mathbf{6}$	4
$\mathbf{9}$	5
$\mathbf{1 4}$	6

HOW to Graph ParaBolas, rabicals and absolute value on the calculator

Function	How to graph on the calculator	Graph
Parabola $y=x^{2}+x-2$	$Y=$ XTEN ${ }^{\text {a }} 2+$ XTEN - 2 GRAPH	
Radical $y=\sqrt{x+3}-2$	$\left.y=2^{n d} \frac{\sqrt{2}}{x^{2}} \times \text { XTEN }+3\right)-2 \text { GRAPH }$	
Absolute Value $y=\|x+2\|-4$	$Y=$ MATH \rightarrow NUM 1:abs(ENTER XTON + 2)-4 GRAPH	

Where Domain and Rance are infinite

StePs:

ExamPle:

$8 x^{2}+10 x+3$

$$
A=8 \quad B=10 \quad C=3
$$

Step 2:
Multiply AC. This is your Magic Number:
$(8)(3)=24$

Step 3:
Factor your Magic Number (ignoring any - signs for now):

Step 4a: Follow the flowchart:

C is ...	+		-	
B is ...	+	-	+	-
	both Magic Number factors are +	both Magic Number factors are -	the bigger Magic Number factor is +	the bigger Magic Number factor is -

Step 4b:
Add + and - signs to each pair in your Magic Number factor list, according to the chart.

Step 5:

Question: "Which factor pair adds to get your B?"

Step 6:

Rewrite your trinomial, replacing B with the numbers you boxed:

$8 x^{2}+4 x+6 x+3$

Step 7:
Add ().

$$
\left(8 x^{2}+4 x\right)+(6 x+3)
$$

Step 8:

Factor each ():

$$
4 x(2 x+1)+3(2 x+1)
$$

hint: Your two () should always be the same. If one is + and one is -, it's because one of your factors from step 6 was -. Usually your first () will be the correct one. To check, distribute backwards to see if you get back to step 6. If not, switch the sign in the $2^{\text {nd }}()$.

Step 9:

Rewrite to finish.
One () is the stuff on the inside.
One () is the stuff on the outside.

$$
(2 x+1)(4 x+3)
$$

Factor the expression, if necessary.
Solve to find the zeros.
Blot the zeros on the x axis.
Aetermine the degree.
How many x's in factored form?
If an odd number ($1,3,5$, etc) then degree is odd.
If an even number ($2,4,6$, etc) then the degree is even.
Determine the a value.

a value	+		-	
odd		\nearrow	\checkmark	
even	\uparrow	\uparrow		

Is there $\mathrm{a}-$ sign to the left of the $=$? If no, then the a value is + . If yes, then the a value is -.
Draw arrows from the leftmost and rightmost zeros, based on the arrow chart.
Multiplicity? If no, there is no "bounce". Continue "snaking through" the zeros.
If "yes" for multiplicity, as in $\mathbf{y}=(\mathbf{x}-\mathbf{3})^{2}$,
(it's squared) there is a "bounce" off the x axis! \rightarrow

Example: Graph $\mathbf{y}=\mathbf{x}^{\mathbf{3}}+\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{2 x}$

Factor the expression.

$$
\begin{aligned}
& y=x\left(x^{2}+3 x+2\right) \\
& y=x(x+2)(x+1)
\end{aligned}
$$

Plot the zeros on the x axis.

88

Draw arrows from left and right zeros.

B
No multiplicity, so "snake through" the zeros.

Patterns for GraPhing

$y=|x|$
$y=x^{2}$
$y=x^{3}$
$y=\sqrt{x}$
"inside" = opposite/x shift
outside = same/y shift

Example	Vertex
$y=\|x\|$	$(0,0)$
$y=\|x+3\|$	$(-3,0)$
$y=\|x\|+2$	$(0,2)$
$y=\|x+3\|+2$	$(-3,2)$
$y=x^{2}$	$(0,0)$
$y=(x+3)^{2}$	$(-3,0)$
$y=x^{2}+2$	$(0,2)$
$y=(x+3)^{2}+2$	$(-3,2)$
$y=x^{3}$	$(0,0)$
$y=(x+3)^{3}$	$(-3,0)$
$y=x^{2}+2$	$(0,2)$
$y=(x+3)^{3}+2$	$(-3,2)$
$y=\sqrt{x}$	$(0,0)$
$y=\sqrt{x+3}$	$(-3,0)$
$y=\sqrt{x}+2$	$(0,2)$
$y=\sqrt{x+3}+2$	$(-3,2)$

It's easy!

Logarithm Facts
Remember, LOG on the calculator is "Log base 10" ($\log _{10}$)

Fact	Example
$\mathrm{b}^{\mathrm{x}}=\mathrm{Y} \quad \rightarrow \quad \log _{\mathrm{b}} \mathrm{Y}=\mathrm{x}$	$2^{3}=8 \rightarrow \log _{2} 8=3$
$\log Y=\log _{10} Y$	$\operatorname{Log1000}=\log _{10} 1000$
$\log _{x} Y=\log Y \div \log X$	$\log _{2} 16=\log 16 \div \log 2$
$\log (X Y)=\log X+\log Y$	$\log _{3}(5 \cdot 3)=\log _{3} 5+\log _{3} 3$
$\log (X / Y)=\log X-\log Y$	$\log _{3}(15 / 3)=\log _{3} 15-\log _{3} 3$
$\log _{b} Y^{x}=x \log _{b} Y$	$\log _{2}\left(4^{3}\right)=3 \cdot \log _{2} 4$
$\mathrm{In} \rightarrow \mathrm{Log}_{\mathrm{e}}$	$\ln 3=\log _{\mathrm{e}} 3$

RUaDRatic WORD PROBLEMS

$$
y=-16 t^{2}+v t+h
$$

v = initial upward velocity
$\mathrm{h}=$ initial heiGht

Keywords	Meaning	GraPhing calculator Buttons
"HOW IONG is it in the air?" "HOW long until it hits the Ground?"	Find the zeros (roots) By : - Factoring, -GraPhing Or -Quabratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	-zero Function- $2^{n D} \text {, IRACE, 2:zero }$
"HOW IOnG until it reaches maximum height?"	Find x at the vertex. (axis of symmetry) $x=-\frac{b}{2 a}$	-Max Function- $2^{\text {nD }}$, TRACE, 4:Maximum
"What is its maximum heiGht?"	Find y at the vertex.	-Max Function- $2^{\text {nD }}$, IRACE, 4:Maximum
"HOW high is it after x seconDs?"	Find the y coordinate (height) at the Given x coorDinate (time). (PluG the Given \times Back into the equation to find y)	-value Function- $2^{\text {no }}$, ITACE, 1:Value, type in Given x value

common GraPhing calculator Situations

Problem	Solution
I get "ERR:INVALID DIM 1:Quit" when I try to graph something.	$V=\uparrow$ Plot1 ENTER (should be Plot1, not black)
SEE THE GRAPH'S ORIGIN I can't see the origin. The origin is off center. The graph is too small. The graph is too zoomed out. The graph is too zoomed in. Where am I?	ZOOM 6:ZStandard
SEE TO THE RIGHT OR LEFT I need to see a part of the graph that is out of the window.	
V-INTERCEPT?	TABLE $2^{\text {nd }}$ GRAPH Look for where $x=0$
FIND THE VERTEX (MINIMUM) What is the lowest point on the graph?	Adjust window to see min point. $\begin{aligned} & \text { CALC } \\ & 2^{\text {nd }} \text { TRACE 3:minimum } \end{aligned}$ Left Bound? Arrow left of the min point ENTER Right Bound? Arrow right of the min point ENTER Guess? ENTER

FIND THE VERTEX (MAXIMUM) What is the highest point on the graph?	Adjust window to see max point. $2^{\text {nd }} \text { CALC } \text { TRACE 4:maximum }$ Left Bound? Arrow left of the max point ENTER Right Bound? Arrow right of the max point ENTER Guess? ENTER
X-INTERCEPTS? ZEROS? Where does the graph cross the x axis? What are the zeros? What are the roots?	Adjust window to see one or both x-intercepts. $\begin{gathered} \text { CALC } \\ 2^{\text {nd }} \text { TRACE 2:zero } \end{gathered}$ Left Bound? Arrow left of one x-intercept ENTER Right Bound? Arrow right of same x-intercept ENTER Guess? ENTER Repeat for other x-intercept(s).
SOLUTION? INTERSECTION? Where do 2 lines intersect? What is the solution to this system of equations?	CALC $2^{\text {nd }}$ TRACE 5:intersect First curve? Arrow left of intersection ENTER Right Bound? Arrow right of intersection ENTER Guess? ENTER
DOMAIN What is the domain?	Look at the graph, read and record x values from left \dagger to right.
RANGE What is the range?	If there is a maximum point: ($-\infty$, maximum point y value] If there is a minimum point: [minimum point y value, ∞)

