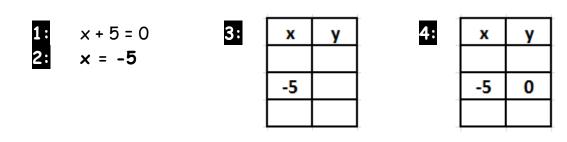
Algebra 2 Cheat Sheets!

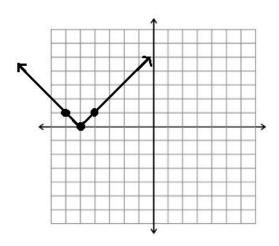


Graphing ABsolute value equations (cheat Sheet)

Steps:
set inside = to zero.
solve for x.
create a table with the found x value in the middle.
Plug x back into the equation to find y. (This is the vertex coordinate.)
choose 2 more x values, one on either side of the x you found.
Find y values.
Graph 3 points.

<u>Example:</u> Graph y = |x + 5| (Absolute Value)

6:



- H	

x	У
-6	
-5	0
-4	

x	у
-6	1
-5	0
-4	1

7: Plot and connect.

Graphing Quadratics (cheat sheet)

<u>Steps:</u>

1: set inside = to zero.

2: solve for x.

3: create a table with the found x value in the middle.*

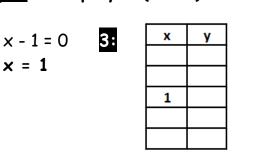
4: Plug x back into the equation to find y. (This is the vertex coordinate.)

5: choose 2 more x values, one on either side of the x you found.

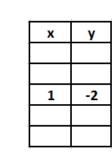
6: Find y values.

7: Choose 1 more x value and find its y value.

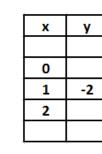
8: Plot all 4 points.


9: Use symmetry to find a 5th point.

*Note here that our table has more than 3 rows. This is because quadratics, unlike absolute value equations, do not grow linearly in each direction.

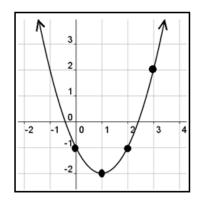

4:

Example: Graph $y = (x - 1)^2 - 2$ (Quadratic)

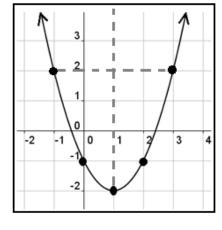


7:

8:



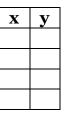
5:


6:

x	У
0	-1
1	-2
2	-1

x	У
0	-1
1	-2
2	-1
3	2

9:



Graphing Radicals (square roots) cheat sheet

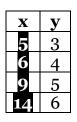
Perfect squares: 0 1 4

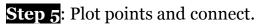
Example: Graph $y = \sqrt{x-5} + 3$ (radical)

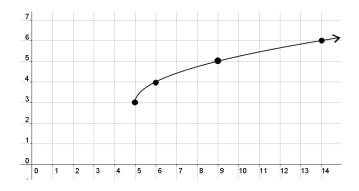
Step 1: Make a table:

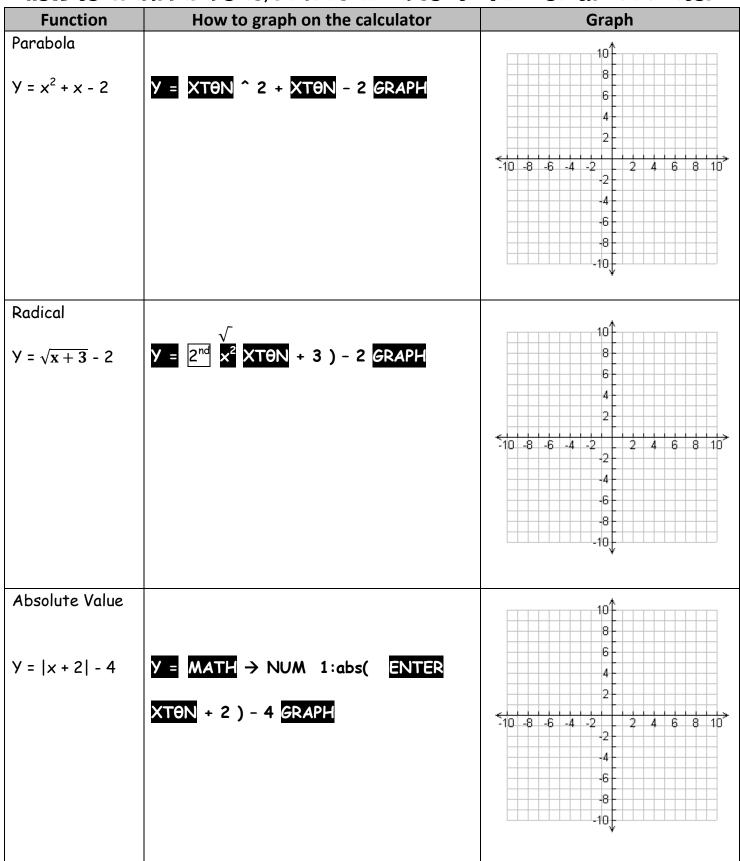
Step 2: Set "inside" (x - 5) expression equal to each **Perfect square** number above....

x-5=0 x-5=1 x-5=4 x-5=9

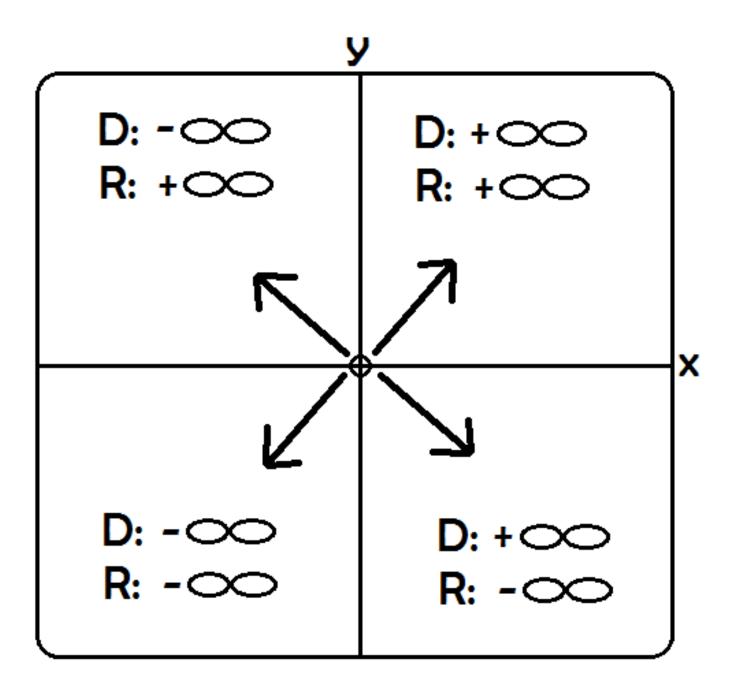

... and solve for each x.


x = 5 x = 6 x = 9 x = 14


Step 3: Fill in your table with the x values you just found:


X	У
5	
6	
9	
14	

Step 4: Find the y values (plug back in).



How to Graph ParaBolas, radicals and absolute value on the Calculator

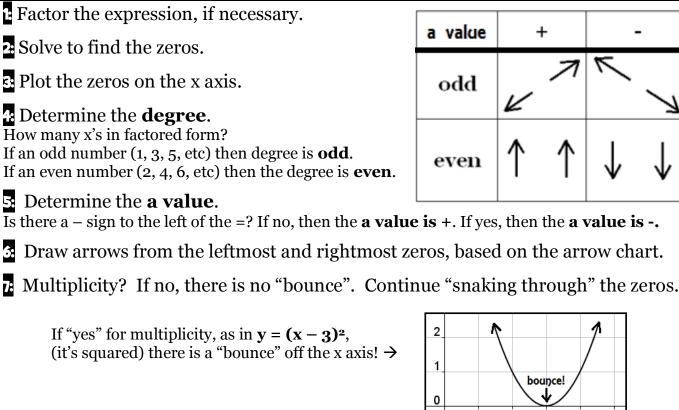
where *bo*main and Range are Infinite

How to Factor "no GCF" Trinomials $y = Ax^2 + Bx + C$

					_		
	Steps:				Exami	PIE: 8	$3x^{2} + 10x + 3$
5	Step 1: Ide	entify A, B and	ł C:			A = 8	B = 10 C = 3
<u>Step 2:</u> Multiply AC. This is your Magic Number:					(8)(3) = <mark>24</mark>		
<u>Step 3:</u> Factor your Magic Number (ignoring any – signs for now):				24 1 • 24			
<u>-</u>	Step 4a: Follow the flowchart:			1			2 • 12 3 • 8
	C is	-	F		-		4 • 6
	B is	+	-	+	-		
		both Magic Number factors are +	both Magic Number factors are -	the bigger Magic Number factor is +	the bigger Magic Number factor is -		
<u>Step 4b:</u> Add + ar	-	to each pair i	n your Magic	Number facto	r list, according t	o the chart.	
<u>Step 5:</u> Question: "Which factor pair adds to get your B ?" +4 ● +6			+4 • +6				
Step 6: Rewrite your trinomial, replacing B with the numbers you boxed: $8x^2 + 4x + 6x + 3x^2$							
$\frac{\text{Step 7:}}{\text{Add ().}}$			² + 4x) + (6x + 3)				

<u>Step 8:</u> Factor each ():

hint: Your two () should always be the same. If one is + and one is -, it's because one of your factors from step 6 was -. Usually your first () will be the correct one. To check, distribute backwards to see if you get back to step 6. If not, switch the sign in the 2^{nd} ().

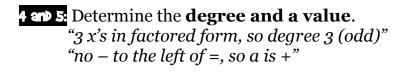

<u>Step 9:</u> Rewrite to finish. One () is the stuff on the inside. **One () is the stuff on the outside**.

You're done! You factored a trinomial!

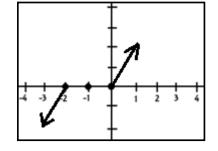
(2x + 1)(4x + 3)

4x(2x + 1) + 3(2x + 1)

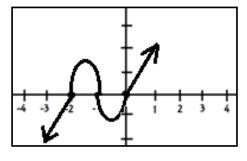
Steps to graphing complicated-looking polynomial functions ike y = x(x + 2)(x + 1)

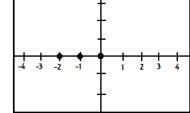

Example: Graph $y = x^3 + 3x^2 + 2x$

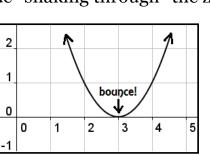
• Factor the expression.


2 Solve to find the zeros.

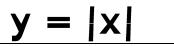
 $y = x(x^2 + 3x + 2)$ y = x(x + 2)(x + 1)


x = 0, x = -2, x = -1


Draw arrows from left and right zeros.



No multiplicity, so "snake through" the zeros.



3 Plot the zeros on the x axis.

Patterns for Graphing

 $\mathbf{y} = \mathbf{x}^2$

 $y = x^{3}$

 $\mathbf{y} = \sqrt{\mathbf{x}}$

"inside" = opposite/x shift outside = same/y shift

Example	Vertex
$\mathbf{y} = \mathbf{x} $	(0, 0)
y = x + 3	(-3, 0)
y = x + 2	(0, 2)
y = x + 3 + 2	(-3, 2)
$y = x^2$	(0, 0)
$y = (x + 3)^2$	(-3, 0)
$y = x^2 + 2$	(0, 2)
$y = (x + 3)^2 + 2$	(-3, 2)
$y = x^3$	(0, 0)
$y = (x + 3)^3$	(-3, 0)
$y = x^2 + 2$	(0, 2)
$y = (x + 3)^3 + 2$	(-3, 2)
$y = \sqrt{x}$	(0, 0)
$\mathbf{y} = \sqrt{\mathbf{x} + 3}$	(-3, 0)
$y = \sqrt{x} + 2$	(0, 2)
$\mathbf{y} = \sqrt{\mathbf{x} + 3} + 2$	(-3, 2)

It's easy!

Logarithm Facts

Remember, LOG on the calculator is "Log base 10" (Log₁₀)

Fact	Example
$b^{x} = Y \rightarrow Log_{b}Y = x$	$2^3 = 8 \rightarrow \text{Log}_2 8 = 3$
$LogY = Log_{10}Y$	$Log1000 = Log_{10}1000$
$Log_{x}Y = LogY \div LogX$	$Log_2 16 = Log 16 \div Log 2$
Log(XY) = Log X + Log Y	$Log_{3}(5\bullet 3) = Log_{3}5 + Log_{3}3$
Log(X/Y) = Log X - Log Y	$Log_{3}(15/3) = Log_{3}15 - Log_{3}3$
$Log_bY^{\times} = \chi Log_bY$	$Log_2(4^3) = 3 \bullet Log_2 4$
$ln \rightarrow Log_e$	ln3 = Log _e 3

Quadratic Word Problems $y = -16t^2 + vt + h$

v = initial upward velocity

h = initial height

Keyw o r⊅s	Meaning	Graphing Calculator Buttons
"How long is it in the air?" "How long until it hits the Ground?"	Find the zeros (roots) By: •Factoring, •Graphing or •Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	-Zero Function- 2 nd , <u>TRACE</u> , 2:Zero
"How long until it reaches maximum height?"	Find x at the vertex. (axis of symmetry) $x = -\frac{b}{2a}$	-Max Function- 2 nD , TRACE, 4:Maximum
"What is its maximum heiGht?"	Find y at the vertex.	-Max Function- 2 nD , TRACE, 4:Maximum
"How high is it after x seconds?"	Find the y COOrdinate (heiGht) at the Given x COOrdinate (time).	-Value Function- 2 nd , TRACE, 1:Value, type in
	(Plug the given x Back into the equation to find y)	Given x value

common Graphing Calculator Situations

Problem	Solution	
I get "ERR:INVALID DIM 1: Quit" when I try to graph something.	Y = ↑ Plot1 ENTER (should be Plot1, not black)	
SEE THE GRAPH'S ORIGIN I can't see the origin. The origin is off center. The graph is too small. The graph is too zoomed out. The graph is too zoomed in. Where am I?	ZOOM 6:ZStandard	
SEE TO THE RIGHT OR LEFT I need to see a part of the graph that is out of the window.	WINDOW Change: Xmin= Xmax= Ymin= Ymax= to fit what you want to see. NOTE: Be sure your Xmax and Ymax are greater than your Xmin and Ymin. You'll get an error if they are not.	
Y-INTERCEPT?	TABLE 2 nd GRAPH Look for where x = 0	
FIND THE VERTEX (MINIMUM) What is the lowest point on the graph?	Adjust window to see min point. CALC 2 nd TRACE 3:minimum Left Bound? Arrow left of the min point ENTER Right Bound? Arrow right of the min point ENTER Guess? ENTER	

FIND THE VERTEX (MAXIMUM) What is the highest point on the graph?	Adjust window to see max point. CALC 2 nd TRACE 4:maximum Left Bound? Arrow left of the max point ENTER Right Bound? Arrow right of the max point ENTER Guess? ENTER
X-INTERCEPTS? ZEROS? Where does the graph cross the x axis? What are the zeros? What are the roots?	Adjust window to see one or both x-intercepts. CALC 2 nd TRACE 2:zero Left Bound? Arrow left of one x-intercept ENTER Right Bound? Arrow right of same x-intercept ENTER Guess? ENTER Repeat for other x-intercept(s).
SOLUTION? INTERSECTION? Where do 2 lines intersect? What is the solution to this system of equations?	CALC 2 nd TRACE 5:intersect First curve? Arrow left of intersection ENTER Right Bound? Arrow right of intersection ENTER Guess? ENTER
DOMAIN What is the domain?	Look at the graph, read and record x values from left to right.
RANGE What is the range?	If there is a maximum point: (-∞, maximum point y value] If there is a minimum point: [minimum point y value, ∞)