Multiple Choice

1) Write the set in set-builder notation.

- 2) Find the additive and multiplicative inverse of $\frac{7}{11}$. A additive inverse: $\frac{4}{11}$; C additive inverse: $-\frac{7}{11}$; multiplicative inverse: 0 multiplicative inverse: $\frac{11}{7}$; B additive inverse: $-\frac{11}{7}$; D additive inverse: $\frac{11}{7}$; multiplicative inverse: $-\frac{7}{11}$; multiplicative inverse: $-\frac{7}{11}$;
- 3) Identify the property demonstrated by the equation 6 + 12 = 18. A Commutative Property B Closure Property C Distributive Property D Associative Property
- 4) Simplify $\frac{\sqrt{6}}{\sqrt{13}}$ by rationalizing the denominator. 6 6 $\sqrt{78}$ $\sqrt{6}$

$$A\frac{0}{13} \quad B\frac{0}{\sqrt{78}} \quad C\frac{\sqrt{76}}{13} \quad D\frac{\sqrt{6}}{13}$$

- 5) Simplify the expression $a^2 7a 7b + 5a^2$. $_{A}5a^2 - 7a - 7b = 6a^2 - 7a - 7b = c - a^2 - 7b = b - 2a^2 - 7b$
- 6) Simplify the expression $(-1)^{-2}(-3)^{0}$. A 0 B-1 C 1 D-3
- 7) Simplify the expression $(-2a)^4(a^2b)^6$. Assume all variables are nonzero. $A-16a^{16}b^6 B 16a^{16}b^6 C-16a^{48}b^6 D 16a^{48}b^6$
- 8) Simplify the expression $\frac{7.29 \times 10^{-10}}{2.24 \times 10^{1}}$. Write the answer in scientific notation. A 3.25×10^{-11} B 3.25×10^{-9} C 3.25×10^{-10} D 3.25×10^{11}

9) The commercial jet that travels from Miami to New York averages about 300 mi/h. The air distance from Miami to New York is 1092 miles. Write a function to represent the distance *d* remaining on the trip *t* hours after takeoff.

Ad = 300t + 1092 Bd = 1092t + 300 Cd = 300 - 1092t Dd = 1092 - 300t

10) Determine whether the data set could represent a linear function.

x	f(x)
0	-1
1	2
2	5
3	8

A The data set is constant. B Cannot be determined C No, the data set does not represent a linear function. D Yes, the data set could represent a linear function.

11) Graph the line with slope -1 that passes through (3, 3).

18)In slope-intercept form, write the equation of the line that contains the points in the table.

x						
у	-3	1	5	9	13	
Ay = 2	х+1 в	y = x + 1	2 cy=	2 <i>x</i> – 1	D <i>Y</i> = −2	r – 2

14) Determine if x = -2 is vertical or horizontal. Then graph.

15) Solve $\frac{2}{3}(4x-y) < 2$ for y. Graph the solution.

- 16) Let g(x) be the transformation, vertical translation 5 units down, of f(x) = 3x + 9. Write the rule for g(x). A g(x) = 3x + 4 B g(x) = 5x + 9 C g(x) = 3x + 9 D g(x) = 3x - 5
- 17) Solve the inequality |10 + 5x| > 10 and graph the solution set.

19) Anchorage, Alaska and Augusta, Georgia have very different average temperatures. This is a table of the average monthly temperature in each city. Make a scatter plot for the temperature data, identify the correlation, and then sketch a line of best fit and find its equation.

Average Temperatures (°F)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Anchorage	15	19	26	26	47	54	58	56	48	35	21	16
Augusta	44	47	56	63	71	78	81	80	75	64	55	47

21) Classify the system $\begin{cases} 7x - 8y = -1 \\ 35x - 40y = -8 \end{cases}$, and determine the number of solutions.

A This system is inconsistent. It has infinitely many solutions. B This system is consistent. It has infinitely many solutions. C This system is inconsistent. It has no solutions. D This system is consistent. It has one solution.

- 22) Two snow resorts offer private lessons to their customers. Big Time Ski Mountain charges \$5 per hour plus \$50 insurance. Powder Hills charges \$10 per hour plus \$30 insurance. For what number of hours is the cost of lessons the same for each resort?A 3 hours B 4 hours C 5 hours D 6 hours
- 23) A shop makes tables and chairs. Each table takes 8 hours to assemble and 2 hours to finish. Each chair takes 3 hours to assemble and 1 hour to finish. The assemblers can work for at most 200 hours each week, and the finishers can work for at most 60 hours each week. The shop wants to make as many tables and chairs as possible. Write the constraints for the problem, and graph the feasible region. Let *t* be the number of tables and *c* be the number of chairs.

24) Graph the linear equation 6x - 5y + 10z = 30 in three-dimensional space.

- 26) Graph the system of inequalities $\begin{cases} y < -3x + 2 \\ y \ge 4x 1 \end{cases}$
- 27) Which point gives the minimum value of P = 3x 2y in the feasible region shown?

28) Use substitution to determine if (0, 2) is an element of the solution set for the system of equations. $\int x + 3y = 6$ $\left|-x+y=8\right|$

A (0, 2) is not a solution of the system. B (0, 2) is a solution of the system.

29) Use elimination to solve the system $\begin{cases} -3x + 5y = 10\\ 7x - 5y = -10 \end{cases}$. A(2,0) B(10,8) C(-5,-1) D(0,2)

30) Classify the system $\begin{cases} 3x - 3y + 3z = 0\\ 5x + y - 6z = -17 \text{ as consistent or inconsistent, and determine the number of}\\ 6x - 6y + 9z = 3 \end{cases}$

solutions.

A Consistent. Infinitely many solutions. B Consistent. One solution. C Inconsistent. No solutions. D Inconsistent. Infinitely many solutions.

31) Evaluate 3B - 2C, if possible.

$$B = \begin{bmatrix} 2 & 7 \\ 8 & -6 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \\ 4 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 0 & -2 \\ -8 & 4 \end{bmatrix}$$
B Not possible C
$$\begin{bmatrix} 6 & 19 \\ 16 & -14 \end{bmatrix}$$
D
$$\begin{bmatrix} 6 & 21 \\ 24 & -18 \end{bmatrix}$$

- 32) Tell whether the product of $P_{8\times 5}$ and $Q_{5\times 7}$ is defined. If so, give the dimensions of PQ. A defined; 8×7 B undefined C defined; 5×5 D defined; 7×8
- 33) Find the product *AB*, if possible. $\begin{bmatrix} 2 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 9 \\ 2 & 3 \\ -3 & 0 \end{bmatrix} B = \begin{bmatrix} 9 & 0 & -4 \\ 2 & 6 & 4 \end{bmatrix}$$

$$A \begin{bmatrix} 45 & 24 & -27 \\ 54 & 18 & 0 \\ 24 & 4 & 12 \end{bmatrix} B \begin{bmatrix} 39 & 81 \\ 6 & 36 \end{bmatrix} C \text{ Not possible } D \begin{bmatrix} 45 & 54 & 24 \\ 24 & 18 & 4 \\ -27 & 0 & 12 \end{bmatrix}$$

(-15, -5)

34) Evaluate
$$\begin{bmatrix} 5 & -2 \\ 1 & 1 \end{bmatrix}^2$$
, if possible.
A $\begin{bmatrix} 25 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 & -4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 23 & -12 \\ 6 & -1 \end{bmatrix} = D$ Not possible
35) Find the determinant of the matrix $\begin{bmatrix} 4 & -2 \\ 5 & 0 \end{bmatrix}$.
A-10 B 10 C 20 D-8
36) Find the determinant of $A = \begin{bmatrix} 2 & -2 & 5 \\ 7 & 10 & -1 \\ 1 & -2 & 0 \end{bmatrix}$.
A 122 B-122 C 320 D-50
37) Find the inverse of the matrix $A = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}$, if it is defined.
A $\begin{bmatrix} \frac{5}{7} & \frac{4}{7} \\ \frac{-2}{7} & \frac{3}{7} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{5}{7} \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -2 & 3 \end{bmatrix}$
38) Write the matrix equation for the system $\begin{cases} 3x + 2y = -10 \\ -7x - 5y = -5 \end{cases}$, and solve.
A $\begin{bmatrix} 3 & 2 \\ -7 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$; $\begin{bmatrix} 0 & -23 \\ 27 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$; $\begin{bmatrix} -20, -45 \\ 27 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$; $\begin{bmatrix} -20, -45 \\ 27 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$;

13

(-40, -55)

40) Using the graph of $f(x) = x^2$ as a guide, describe the transformations, and then graph the function $g(x) = (x + 6)^2 + 7$.

С

- A g(x) is f(x) translated 7 units left and 6 units up.
- g(x) is f(x) translated 6 units right and 7 units down.

^B g(x) is f(x) translated 6 units left and 7 units up.

^D g(x) is f(x) translated 7 units right and 6 units down.

- 41) The parent function $f(x) = x^2$ is reflected across the *x*-axis, vertically stretched by a factor of 7, and translated right 8 units to create *g*. Use the description to write the quadratic function in vertex form. $Ag(x) = 7(x-8)^2$ $Bg(x) = 8(x+7)^2$ $Cg(x) = -7(x-8)^2$ $Dg(x) = -7(x+8)^2$
- 42) Solve the equation $x^2 = 48 2x$ by completing the square. A x = 7 or x = -7 B x = 12 or x = -16 C x = 6 or x = -8 D x = -6 or x = 8
- 43) Write the function $f(x) = 3x^2 + 24x + 52$ in vertex form, and identify its vertex.

^A $f(x) = 3(x+4)^2 + 4;$	^C $f(x) = (x+8)^2 + 52;$
vertex: (-4, 4)	vertex: (-8, 52)
^B $f(x) = (x+4)^2 + 4;$	^D $f(x) = 3(x+8)^2 + 52;$
vertex: (-4, 4)	vertex: (-8, 52)
15	

44) Solve the equation $2x^2 + 72 = 0$. $Ax = \pm 6 + i$ $Bx = 6 \pm i$ $Cx = \pm 6$ $Dx = \pm 6i$

45) Graph the complex number 3 + 2i.

- 46) Write a quadratic function that fits the points (0, 7), (3, 4), and (4, 7). A $f(x) = x^2 + 7x - 4$ B $f(x) = x^2 + 4x + 7$ C $f(x) = -4x^2 + x + 7$ D $f(x) = x^2 - 4x + 7$
- 47) Find the zeros of $f(x) = 3x^2 x + 2$ by using the Quadratic Formula. $Ax = \frac{1}{6} \pm \frac{23}{6}i \quad Bx = \frac{1}{6} \pm \frac{\sqrt{25}}{6}i \quad Cx = \frac{1}{2} \pm \frac{\sqrt{23}}{2}i \quad Dx = \frac{1}{6} \pm \frac{\sqrt{23}}{6}i$
- 48) Find the number and type of solutions for $x^2 + 6x = -9$. A Cannot determine without graphing. B The equation has one real solution. C The equation has two nonreal complex solutions. D The equation has two real solutions.

- 49) The perimeter of a right triangle is 40 ft, and one of its legs measures 8 ft. Find the length of the other leg and the hypotenuse.A 15 ft, 17 ft B 12 ft, 20 ft C 14 ft, 18 ft D 13 ft, 19 ft
- 50) Solve the inequality $x^2 + 3x 10 \le -12$ by using algebra. A $x \le -2$ or $x \ge -1$ B $x \le -5$ or $x \ge 2$ C $-5 \le x \le 2$ D $-2 \le x \le -1$
- 51) Graph the complex number 4*i*.

- 52) Find the absolute value |-7-5i|. A-12 B 2 $\sqrt{3}$ C 2 $\sqrt{6}$ D $\sqrt{74}$
- 53) Add. Write the result in the form a + bi. (-8 - 9i) + (3 + 7i)A - 1 - 6i B - 11 - 16i C - 5 - 2i D - 17 + 10i

- 54) Multiply 3i(4-2i). Write the result in the form a + bi. A 6-12i B -6+12i C -6-12i D 6+12i
- 55) Rewrite the polynomial $x^2 6 + 7x^4 8x^3 + 6x^5 16x$ in standard form. Then, identify the leading coefficient, degree, and number of terms. Name the polynomial.
 - ^A $6x^5 + 7x^4 + x^3 8x^2 16x 6$ leading coefficient: 6; degree: 5; number of terms: 6; name: quintic polynomial ^B $-6 - 16x + x^2 + 7x^3 - 8x^4 + 6x^5$
 - leading coefficient: -6; degree: 0; number of terms: 6; name: quintic polynomial C -6 - 16x + x² - 8x³ + 7x⁴ + 6x⁵
 - leading coefficient: -6; degree: 0; number of terms: 6; name: quintic polynomial $6x^5 + 7x^4 - 8x^3 + x^2 - 16x - 6$

leading coefficient: 6; degree: 5; number of terms: 6; name: quintic polynomial

- 56) Find the product $-2r^{5}(-r^{4}s^{5}+4s^{2})$. $A-3r^{9}s^{5}+2r^{5}s^{2}$ $B 2r^{20}-8$ $C 2r^{9}s^{5}-8r^{5}s^{2}$ $D-2r^{10}s^{6}-2r^{6}s^{3}$
- 57) Find the product $(3x 4y)^3$. A $27x^3 + 108x^2y + 144xy^2 + 64y^3$ B $27x^3 + 64y^3$ C $27x^3 - 64y^3$ D $27x^3 - 108x^2y + 144xy^2 - 64y^3$
- 58) Use Pascal's Triangle to expand the expression $(6x 3)^4$. A 1296 $x^4 - 1944x^3 + 972x^2 - 162x + 81$ B 1296 $x^4 - 2592x^3 + 1944x^2 - 648x + 81$ C 1296 $x^4 - 648x^3 + 324x^2 - 162x + 81$ D 104976 $x^4 - 23328x^3 + 1944x^2 - 72x - 3$
- 59) Divide by using synthetic division. $(6x^2 - 9x + 8) \div (x - 2)$ $A 6x + 3 + \frac{14}{x-2} = B 6x - 21 + \frac{50}{x-2} = C 6x - 6 + \frac{5}{x-2} = D 12x - 18 + \frac{8}{x-2}$
- 60) Use synthetic substitution to evaluate the polynomial $P(x) = x^3 4x^2 + 2x 9$ for x = 4. $_A P(4) = -65 _{B} P(4) = -1 _{C} P(4) = 145 _{D} P(4) = -145$
- 61) Graph the function $f(x) = x^3 + 5x^2 + 8x + 4$.

- 62) Add. Write your answer in standard form. $(2b^5 - b) + (b^5 + 8b - 1)$ $A 3b^5 + 7b - 1$ $B 3b^{10} + 7b^2 - 1$ $C 2b^5 + 8b - 1$ $D 3b^5 + 7b$
- 63) For $h(x) = 2x^2 + 6x 9$ and $k(x) = 3x^2 8x + 8$, find h(x) 2k(x). $A - 4x^2 + 22x - 25$ $B - 4x^2 - 14x + 17$ $C - 4x^2 + 14x - 17$ $D - 4x^2 - 22x + 25$
- 64) Determine whether the binomial (x 4) is a factor of the polynomial $P(x) = 5x^3 20x^2 5x + 20$. A (x - 4) is not a factor of the polynomial $P(x) = 5x^3 - 20x^2 - 5x + 20$. B (x - 4) is a factor of the polynomial $P(x) = 5x^3 - 20x^2 - 5x + 20$. Cannot determine.
- 65) Factor $x^3 + 5x^2 9x 45$. A $(x-5)(x^2+9)$ B (x-5)(x-3)(x+3) C (x+5)(x-3)(x+3) D $(x+5)(x^2+9)$

66) Identify all of the real roots of $4x^4 + 31x^3 - 4x^2 - 89x + 22 = 0$. A-2 and $\frac{1}{4}$ B-2, $\frac{1}{4}$, $-3 + 2\sqrt{5}$, $-3 - 2\sqrt{5}$ C±1, $\pm \frac{1}{2}$, $\pm \frac{1}{4}$, ± 2 , ± 11 , $\pm \frac{11}{2}$, $\pm \frac{11}{4}$ D-2, $\frac{1}{4}$, $3 + 2\sqrt{5}$, $3 - 2\sqrt{5}$

67) Write the simplest polynomial function with the zeros 2 - i, $\sqrt{5}$, and -2. A $P(x) = x^5 - 2x^4 - 8x^3 + 20x^2 + 15x - 50 = 0$ B $P(x) = x^5 - 2x^4 - 10x^3 + 16x^2 + 25x - 30 = 0$ C $P(x) = x^5 - 2x^4 - 8x^3 - 20x^2 - 65x - 50 = 0$ D $P(x) = x^6 - 4x^5 - 4x^4 + 36x^3 - 25x^2 - 80x + 100 = 0$

Algebra 2 Midterm Review Answer Section

MULTIPLE CHOICE

1)	ANS:	С	REF:	Page 9	OBJ:	1-1.3 Translating Between Methods of Set Notation
2)	ANS:			Page 14		1-2.1 Finding Inverses
3)	ANS:	В		Page 15		1-2.2 Identifying Properties of Real Numbers
4)	ANS:	С		Page 23		1-3.3 Rationalizing the Denominator
	ANS:	В		Page 28		1-4.3 Simplifying Expressions
6)	ANS:	С		Page 35		1-5.2 Simplifying Expressions with Negative
	Expon	ents		C		
7)	ANS:	В	REF:	Page 36		
	OBJ:	1-5.3 Using Pr	ropertie	es of Exponents	to Sim	plify Expressions
8)	ANS:			Page 36		
			-	-	-	cientific Notation
	ANS:		REF:	Page 53		1-7.3 Application
10)	ANS:	D	REF:	Page 105	OBJ:	2-3.1 Recognizing Linear Functions
11)	ANS:	А	REF:	Page 106	OBJ:	2-3.2 Graphing Lines Using Slope and a Point
	ANS:		REF:	Page 106		2-3.3 Graphing Lines Using the Intercepts
	ANS:			Page 117		2-4.3 Writing Equations of Lines
	ANS:			Page 107		2-3.4 Graphing Functions in Slope-Intercept Form
	ANS:			Page 108		2-3.5 Graphing Vertical and Horizontal Lines
	ANS:			Page 127		2-5.4 Solving and Graphing Linear Inequalities
	ANS:			Page 134	OBJ:	2-6.1 Translating and Reflecting Linear Functions
17)	ANS:			Page 152		
	OBJ:	2-8.3 Solving	Absolu	ite-Value Inequ	alities v	with Disjunctions
19)	ANS:	А	REF:	Page 142	OBJ:	2-7.1 Application
20)	ANS:	D	REF:	Page 159	OBJ:	2-9.2 Translations of an Absolute-Value Function
21)	ANS:	С	REF:	Page 184	OBJ:	3-1.3 Classifying Linear Systems
22)	ANS:	В	REF:	Page 185	OBJ:	3-1.4 Application
23)	ANS:	А	REF:	Page 205	OBJ:	3-4.1 Graphing a Feasible Region
24)	ANS:	В	REF:	Page 215	OBJ:	3-5.2 Graphing Linear Equations in Three Dimensions
	ANS:					
26)	ANS:	А	REF:	Page 199	OBJ:	3-3.1 Graphing Systems of Inequalities
	ANS:					
28)	ANS:	А	REF:	Page 182		3-1.1 Verifying Solutions of Linear Systems
29)	ANS:	D	REF:	Page 191	OBJ:	3-2.2 Solving Linear Systems by Elimination
30)	ANS:			Page 223		
		•			-	Iany Solutions or No Solution
31)	ANS:			Page 248		4-1.4 Simplifying Matrix Expressions
32)	ANS:			Page 253	OBJ:	4-2.1 Identifying Matrix Products
33)	ANS:			Page 254	OBJ:	4-2.2 Finding the Matrix Product
34)	ANS:			Page 256		4-2.4 Finding Powers of Square Matrices
35)	ANS:			Page 270	OBJ:	4-4.1 Finding the Determinant of a 2 x 2 Matrix
36)	ANS:	В	REF:	Page 272	OBJ:	4-4.3 Finding the Determinant of a 3 x 3 Matrix
		21				

27)	ANG.	•	DEE.	Daga 270	OD I.	4.5.2 Finding the Inverse of a 2 y 2 Matrix
	ANS:			Page 279		4-5.2 Finding the Inverse of a 2 x 2 Matrix
	ANS:			Page 280		4-5.3 Solving Systems Using Inverse Matrices
	ANS:			Page 315		5-1.1 Graphing Quadratic Functions Using a Table
,	ANS:			Page 316		5-1.2 Translating Quadratic Functions
	ANS:			Page 318	OBJ:	5-1.4 Writing Transformed Quadratic Functions
42)	ANS:			Page 343		
		-				pleting the Square
,	ANS:			Page 344	OBJ:	5-4.4 Writing a Quadratic Function in Vertex Form
44)	ANS:			Page 351	· 1 · T	
4.5		-		—		aginary Solutions
	ANS:			Page 382		5-9.1 Graphing Complex Numbers
	ANS:			Page 375		5-8.2 Writing a Quadratic Function from Data
	ANS:			Page 357	OBJ:	5-6.2 Quadratic Functions with Complex Zeros
48)	ANS:			Page 358		
		•	ng Qua	dratic Equation	s by Us	sing the Discriminant
	ANS:					
	ANS:			Page 368		5-7.3 Solving Quadratic Inequalities Using Algebra
	ANS:			Page 382	OBJ:	5-9.1 Graphing Complex Numbers
52)	ANS:			Page 383		
			-			omplex Numbers
	ANS:			Page 383		5-9.3 Adding and Subtracting Complex Numbers
	ANS:			Page 384		5-9.5 Multiplying Complex Numbers
	ANS:			Page 407		6-1.2 Classifying Polynomials
	ANS:			Page 414		6-2.1 Multiplying a Monomial and a Polynomial
	ANS:			Page 416	OBJ:	6-2.4 Expanding a Power of a Binomial
58)	ANS:			Page 417		
		-			pand Bi	nomial Expressions
59)	ANS:			Page 423		
		-				y a Linear Binomial
	ANS:			Page 424		6-3.3 Using Synthetic Substitution
61)	ANS:			Page 455		6-7.3 Graphing Polynomial Functions
62)	ANS:		REF:	Page 407	OBJ:	6-1.3 Adding and Subtracting Polynomials
	ANS:					
64)	ANS:		REF:	Page 430	OBJ:	6-4.1 Determining Whether a Linear Binomial is a
	Factor					
65)	ANS:			Page 431	OBJ:	6-4.2 Factoring by Grouping
66)	ANS:			Page 441	_	
		•	•			Polynomial Equation
67)	ANS:	А	REF:	Page 447	OBJ:	6-6.3 Writing a Polynomial Function with Complex
	Zeros					