Aldebra 2: Midterm Final Review

Multiple Choice

1) Write the set in set-builder notation.

А $[-4,2)$ в $\{x \mid-4<x<2\}$ С $\{x \mid-4 \leq x<2\}$ D $[-4,2]$
2) Find the additive and multiplicative inverse of ${ }_{11}^{7}$.
A additive inverse: ${ }_{11}$;
C additive inverse: $-{ }_{11}^{7}$;
multiplicative inverse: 0
multiplicative inverse: ${ }_{7}^{11}$
$\begin{aligned} \text { B } & \text { additive inverse: }-{ }_{7}^{11} ; \\ & \text { multiplicative inverse: }{ }_{7}^{11}\end{aligned}$
D additive inverse: ${ }_{7}{ }^{11}$;
multiplicative inverse: $-{ }_{11}^{7}$
3) Identify the property demonstrated by the equation $6+12=18$.

A Commutative Property в Closure Property c Distributive Property D Associative Property
4) Simplify $\frac{\sqrt{6}}{\sqrt{13}}$ by rationalizing the denominator.

А $\frac{6}{13} \quad$ в $\frac{6}{\sqrt{78}} \quad$ с $\frac{\sqrt{78}}{13} \quad$ D $\frac{\sqrt{6}}{13}$
5) Simplify the expression $a^{2}-7 a-7 b+5 a^{2}$.

А $5 a^{2}-7 a-7 b$ в $6 a^{2}-7 a-7 b$ с $-a^{2}-7 b$ р $-2 a^{2}-7 b$
6) Simplify the expression $(-1)^{-2}(-3)^{0}$.

A0 B-1 C1 D-3
7) Simplify the expression $(-2 a)^{4}\left(a^{2} b\right)^{6}$. Assume all variables are nonzero.

А $-16 a^{16} b^{6} \quad$ в $16 a^{16} b^{6} \quad$ С $-16 a^{48} b^{6} \quad$ D $16 a^{48} b^{6}$
8) Simplify the expression $\frac{7.29 \times 10^{-10}}{2.24 \times 10^{1}}$. Write the answer in scientific notation.

А 3.25×10^{-11} в 3.25×10^{-9} С 3.25×10^{-10} D 3.25×10^{11}
9) The commercial jet that travels from Miami to New York averages about $300 \mathrm{mi} / \mathrm{h}$. The air distance from Miami to New York is 1092 miles. Write a function to represent the distance d remaining on the trip t hours after takeoff.
$\mathrm{A} d=300 t+1092 \quad$ в $d=1092 t+300 \quad \mathrm{C} d=300-1092 t \quad \mathrm{D} d=1092-300 t$
10) Determine whether the data set could represent a linear function.

\boldsymbol{x}	$\boldsymbol{f (x)}$
0	-1
1	2
2	5
3	8

A The data set is constant. B Cannot be determined cNo, the data set does not represent a linear function. D Yes, the data set could represent a linear function.
11) Graph the line with slope -1 that passes through $(3,3)$.
A

B

C

D

Aldebra 2: Midterm Final Review

12) Find the intercepts of $4 x-4 y=-16$, and graph the line.

A x-intercept: $-{ }_{4}^{11}, y$-intercept: ${ }_{4}^{19}$

B
x-intercept: $-4, y$-intercept: ${ }_{4}^{19}$

C x-intercept: $-{ }_{4}^{11}, y$-intercept: 4

D x-intercept: $-4, y$-intercept: 4

18)In slope-intercept form, write the equation of the line that contains the points in the table.

\boldsymbol{x}	-2	0	2	4	6
\boldsymbol{y}	-3	1	5	9	13

$$
\text { А } y=2 x+1 \quad \text { в } y=x+2 \quad \text { С } y=2 x-1 \quad \text { D } y=-x-2
$$

Aldebra 2: Midterm Final Review

13)Write the function $-5 x-10 y=20$ in slope-intercept form. Then graph the function.
A $y=-\frac{1}{2} x-2$
C $y=-\frac{1}{2} x-2$

B $y=-\frac{1}{2} x-2$

D $y=-\frac{1}{2} x-2$

14) Determine if $x=-2$ is vertical or horizontal. Then graph.
A The line is horizontal.

C The line is horizontal.

Aldebra 2: Midterm Final Review

B The line is vertical.

D The line is vertical.

15) Solve $\frac{2}{3}(4 x-y)<2$ for y. Graph the solution.

Aldebra 2: Midterm Final Review

16) Let $g(x)$ be the transformation, vertical translation 5 units down, of $f(x)=3 x+9$. Write the rule for $g(x)$. $\mathrm{A} g(x)=3 x+4 \quad \mathrm{~B} g(x)=5 x+9 \quad \mathrm{Cg}(x)=3 x+9 \quad \mathrm{D} g(x)=3 x-5$
17) Solve the inequality $|10+5 x|>10$ and graph the solution set.
A $(0, \infty)$

B $(-\infty, \infty)$

C $(-4,0)$

D $(-\infty,-4) \cup(0, \infty)$

18) Anchorage, Alaska and Augusta, Georgia have very different average temperatures. This is a table of the average monthly temperature in each city. Make a scatter plot for the temperature data, identify the correlation, and then sketch a line of best fit and find its equation.

Average Temperatures (${ }^{\circ} \mathrm{F}$)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Anchorage	15	19	26	26	47	54	58	56	48	35	21	16
Augusta	44	47	56	63	71	78	81	80	75	64	55	47

Aldebra 2: Midterm Final Review

$$
y=0.825 x+40.1
$$

20) Translate $f(x)=|x|$ so that the vertex is at $(-3,2)$. Then graph.
A $g(x)=|x-3|-2$

C $g(x)=|x-2|-3$

B $g(x)=|x+2|+3$

D $g(x)=|x+3|+2$

Aldebra 2: Midterm Final Review

21) Classify the system $\left\{\begin{array}{l}7 x-8 y=-1 \\ 35 x-40 y=-8\end{array}\right.$, and determine the number of solutions.

A This system is inconsistent. It has infinitely many solutions. B This system is consistent. It has infinitely many solutions. C This system is inconsistent. It has no solutions. D This system is consistent. It has one solution.
22) Two snow resorts offer private lessons to their customers. Big Time Ski Mountain charges $\$ 5$ per hour plus $\$ 50$ insurance. Powder Hills charges $\$ 10$ per hour plus $\$ 30$ insurance. For what number of hours is the cost of lessons the same for each resort?
A 3 hours в 4 hours с 5 hours d 6 hours
23) A shop makes tables and chairs. Each table takes 8 hours to assemble and 2 hours to finish. Each chair takes 3 hours to assemble and 1 hour to finish. The assemblers can work for at most 200 hours each week, and the finishers can work for at most 60 hours each week. The shop wants to make as many tables and chairs as possible. Write the constraints for the problem, and graph the feasible region. Let t be the number of tables and c be the number of chairs.

Aldebra 2: Midterm Final Review

B

D

24) Graph the linear equation $6 x-5 y+10 z=30$ in three-dimensional space.
A

B

C

D

Algebra 2: Midterm Final Review

25) Graph the inequality $5(5 x-4 y)<3(2+8 x)-17 y$.

Aldebra 2: Midterm Final Review

26) Graph the system of inequalities $\left\{\begin{array}{l}y<-3 x+2 \\ y \geq 4 x-1\end{array}\right.$.
A
B

27) Which point gives the minimum value of $P=3 x-2 y$ in the feasible region shown?

$$
\text { А } S(4,1) \quad \text { в } R(1,4) \quad \text { С } T(2,0) \quad \text { д } U(0,1)
$$

11

Aldebra 2: Midterm Final Review

28) Use substitution to determine if $(0,2)$ is an element of the solution set for the system of equations.
$\left\{\begin{array}{l}x+3 y=6 \\ -x+y=8\end{array}\right.$
$\mathrm{A}(0,2)$ is not a solution of the system. B $(0,2)$ is a solution of the system.
29) Use elimination to solve the system $\left\{\begin{array}{l}-3 x+5 y=10 \\ 7 x-5 y=-10\end{array}\right.$. A $(2,0) \quad$ в $(10,8) \quad С(-5,-1) \quad$ D $(0,2)$
30) Classify the system $\left\{\begin{aligned} 3 x-3 y+3 z & =0 \\ 5 x+y-6 z & =-17 \\ 6 x-6 y+9 z & =3\end{aligned}\right.$ as consistent or inconsistent, and determine the number of solutions.
A Consistent. Infinitely many solutions. B Consistent. One solution. C Inconsistent. No solutions. D Inconsistent. Infinitely many solutions.
31) Evaluate $3 B-2 C$, if possible.

$$
\begin{array}{ll}
B=\left[\begin{array}{cc}
2 & 7 \\
8 & -6
\end{array}\right] & C=\left[\begin{array}{cc}
0 & 1 \\
4 & -2
\end{array}\right] \\
\text { A }\left[\begin{array}{cc}
0 & -2 \\
-8 & 4
\end{array}\right] \text { B Not possible } & \text { C }\left[\begin{array}{cc}
6 & 19 \\
16 & -14
\end{array}\right]
\end{array} \quad \text { D }\left[\begin{array}{cc}
6 & 21 \\
24 & -18
\end{array}\right] ~ \$
$$

32) Tell whether the product of $P_{8 \times 5}$ and $Q_{5 \times 7}$ is defined. If so, give the dimensions of $P Q$. A defined; 8×7 в undefined cdefined; 5×5 Ddefined; 7×8
33) Find the product $A B$, if possible.

$$
A=\left[\begin{array}{cc}
3 & 9 \\
2 & 3 \\
-3 & 0
\end{array}\right] B=\left[\begin{array}{ccc}
9 & 0 & -4 \\
2 & 6 & 4
\end{array}\right]
$$

A $\left[\begin{array}{ccc}45 & 24 & -27 \\ 54 & 18 & 0 \\ 24 & 4 & 12\end{array}\right]$ в $\left[\begin{array}{cc}39 & 81 \\ 6 & 36\end{array}\right]$ C Not possible \quad D $\left[\begin{array}{ccc}45 & 54 & 24 \\ 24 & 18 & 4 \\ -27 & 0 & 12\end{array}\right]$
34) Evaluate $\left[\begin{array}{cc}5 & -2 \\ 1 & 1\end{array}\right]^{2}$, if possible.

А $\left[\begin{array}{cc}25 & 4 \\ 1 & 1\end{array}\right]$ в $\left[\begin{array}{cc}10 & -4 \\ 2 & 2\end{array}\right]$ С $\left[\begin{array}{cc}23 & -12 \\ 6 & -1\end{array}\right] \quad$ D Not possible
35) Find the determinant of the matrix $\left[\begin{array}{cc}4 & -2 \\ 5 & 0\end{array}\right]$. A-10 в 10 с 20 D-8
36) Find the determinant of $A=\left[\begin{array}{ccc}2 & -2 & 5 \\ 7 & 10 & -1 \\ 1 & -2 & 0\end{array}\right]$. A 122 в -122 С $320 \quad$ D-50
37) Find the inverse of the matrix $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right]$, if it is defined. A $\left[\begin{array}{cc}\frac{5}{7} & \frac{-4}{7} \\ \frac{-2}{7} & \frac{3}{7}\end{array}\right]$ В $\left[\begin{array}{cc}\frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{5}\end{array}\right]$ С $\left[\begin{array}{ll}\frac{3}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{5}{7}\end{array}\right]$ D $\left[\begin{array}{cc}5 & -4 \\ -2 & 3\end{array}\right]$
38) Write the matrix equation for the system $\left\{\begin{array}{l}3 x+2 y=-10 \\ -7 x-5 y=-5\end{array}\right.$, and solve.
A $\left[\begin{array}{cc}3 & 2 \\ -7 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-10 \\ -5\end{array}\right] ;$
C $\left[\begin{array}{cc}3 & 2 \\ -7 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-10 \\ -5\end{array}\right] ;$
в $\left[\begin{array}{cc}(-60,85) \\ -7 & 2 \\ -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-10 \\ -5\end{array}\right]$;
D $\left[\begin{array}{cc}(-20,-45) \\ -7 & 2 \\ -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-10 \\ -5\end{array}\right]$;
(-40, -55)
$(-15,-5)$
39) Graph $f(x)=x^{2}+3 x-3$.

A

B

C

D

Aldebra 2: Midterm Final Review

40) Using the graph of $f(x)=x^{2}$ as a guide, describe the transformations, and then graph the function $g(x)=(x+6)^{2}+7$.
A $g(x)$ is $f(x)$ translated 7 units left and 6 units up.

C $g(x)$ is $f(x)$ translated 6 units right and 7 units down.

B $g(x)$ is $f(x)$ translated 6 units left and 7 units up.

D $g(x)$ is $f(x)$ translated 7 units right and 6 units down.

41) The parent function $f(x)=x^{2}$ is reflected across the x-axis, vertically stretched by a factor of 7 , and translated right 8 units to create g. Use the description to write the quadratic function in vertex form. $\mathrm{A} g(x)=7(x-8)^{2} \quad$ в $g(x)=8(x+7)^{2} \quad \mathrm{C} g(x)=-7(x-8)^{2} \quad \mathrm{D} g(x)=-7(x+8)^{2}$
42) Solve the equation $x^{2}=48-2 x$ by completing the square.

A $x=7$ or $x=-7 \quad$ в $x=12$ or $x=-16 \quad$ С $x=6$ or $x=-8 \quad$ D $x=-6$ or $x=8$
43) Write the function $f(x)=3 x^{2}+24 x+52$ in vertex form, and identify its vertex.
A $f(x)=3(x+4)^{2}+4$;
vertex: $(-4,4)$
C $f(x)=(x+8)^{2}+52 ;$
B $f(x)=(x+4)^{2}+4$;
vertex: $(-4,4)$ vertex: $(-8,52)$
D $f(x)=3(x+8)^{2}+52$;
vertex: $(-8,52)$

Aldebra 2: Midterm Final Review

44) Solve the equation $2 x^{2}+72=0$.
$\mathrm{A} X= \pm 6+i \quad$ В $X=6 \pm i \quad$ С $X= \pm 6 \quad \mathrm{D} X= \pm 6 i$
45) Graph the complex number $3+2 i$.

46) Write a quadratic function that fits the points $(0,7),(3,4)$, and $(4,7)$.

А $f(x)=x^{2}+7 x-4 \quad$ в $f(x)=x^{2}+4 x+7 \quad$ с $f(x)=-4 x^{2}+x+7 \quad$ $f(x)=x^{2}-4 x+7$
47) Find the zeros of $f(x)=3 x^{2}-x+2$ by using the Quadratic Formula.

А $x=\frac{1}{6} \pm \frac{23}{6} i \quad$ в $x=\frac{1}{6} \pm \frac{\sqrt{25}}{6} i \quad$ С $x=\frac{1}{2} \pm \frac{\sqrt{23}}{2} i \quad$ D $x=\frac{1}{6} \pm \frac{\sqrt{23}}{6} i$
48) Find the number and type of solutions for $x^{2}+6 x=-9$.

A Cannot determine without graphing. B The equation has one real solution. C The equation has two nonreal complex solutions. D The equation has two real solutions.

Aldebra 2: Midterm Final Review

49) The perimeter of a right triangle is 40 ft , and one of its legs measures 8 ft . Find the length of the other leg and the hypotenuse.
A $15 \mathrm{ft}, 17 \mathrm{ft}$ в $12 \mathrm{ft}, 20 \mathrm{ft}$ с $14 \mathrm{ft}, 18 \mathrm{ft}$ D $13 \mathrm{ft}, 19 \mathrm{ft}$
50) Solve the inequality $x^{2}+3 x-10 \leq-12$ by using algebra.

А $x \leq-2$ or $x \geq-1 \quad$ B $x \leq-5$ or $x \geq 2 \quad$ С $-5 \leq x \leq 2 \quad \mathrm{D}-2 \leq x \leq-1$
51) Graph the complex number $4 i$.
A

B

C

D

52) Find the absolute value $|-7-5 i|$.
$\begin{array}{lllll}\text { А-12 } & \text { в } 2 \sqrt{ } 3 & \text { с } 2 \sqrt{ } 6 & \text { д } \\ 7\end{array}$
53) Add. Write the result in the form $a+b i$.
$(-8-9 i)+(3+7 i)$
А $-1-6 i \quad$ в $-11-16 i \quad$ с $-5-2 i \quad$ D $-17+10 i$

Algebra 2: Midterm Final Review

54) Multiply $3 i(4-2 i)$. Write the result in the form $a+b i$. А $6-12 i$ в $-6+12 i$ с-6-12i \quad $6+12 i$
55) Rewrite the polynomial $x^{2}-6+7 x^{4}-8 x^{3}+6 x^{5}-16 x$ in standard form. Then, identify the leading coefficient, degree, and number of terms. Name the polynomial.
A $6 x^{5}+7 x^{4}+x^{3}-8 x^{2}-16 x-6$
leading coefficient: 6; degree: 5; number of terms: 6; name: quintic polynomial
B $-6-16 x+x^{2}+7 x^{3}-8 x^{4}+6 x^{5}$
leading coefficient: -6 ; degree: 0 ; number of terms: 6 ; name: quintic polynomial
C $-6-16 x+x^{2}-8 x^{3}+7 x^{4}+6 x^{5}$
leading coefficient: -6 ; degree: 0 ; number of terms: 6 ; name: quintic polynomial
D $6 x^{5}+7 x^{4}-8 x^{3}+x^{2}-16 x-6$
leading coefficient: 6 ; degree: 5 ; number of terms: 6 ; name: quintic polynomial
56) Find the product $-2 r^{5}\left(-r^{4} s^{5}+4 s^{2}\right)$.
$\mathrm{A}-3 r^{9} s^{5}+2 r^{5} s^{2} \quad$ в $2 r^{20}-8 \quad$ С $2 r^{9} s^{5}-8 r^{5} s^{2} \quad \mathrm{D}-2 r^{10} s^{6}-2 r^{6} s^{3}$
57) Find the product $(3 x-4 y)^{3}$.

А $27 x^{3}+108 x^{2} y+144 x y^{2}+64 y^{3}$ в $27 x^{3}+64 y^{3}$ с $27 x^{3}-64 y^{3}$ д $27 x^{3}-108 x^{2} y+144 x y^{2}-64 y^{3}$
58) Use Pascal's Triangle to expand the expression $(6 x-3)^{4}$.

А $1296 x^{4}-1944 x^{3}+972 x^{2}-162 x+81$ в $1296 x^{4}-2592 x^{3}+1944 x^{2}-648 x+81$
с $1296 x^{4}-648 x^{3}+324 x^{2}-162 x+81$ D $104976 x^{4}-23328 x^{3}+1944 x^{2}-72 x-3$
59) Divide by using synthetic division.
$\left(6 x^{2}-9 x+8\right) \div(x-2)$
А $6 x+3+\frac{14}{x-2} \quad$ в $6 x-21+\frac{50}{x-2} \quad$ С $6 x-6+\frac{5}{x-2} \quad$ D $12 x-18+\frac{8}{x-2}$
60) Use synthetic substitution to evaluate the polynomial $P(x)=x^{3}-4 x^{2}+2 x-9$ for $x=4$.
$\mathrm{A} P(4)=-65 \quad$ в $P(4)=-1 \quad$ С $P(4)=145 \quad$ D $P(4)=-145$
61) Graph the function $f(x)=x^{3}+5 x^{2}+8 x+4$.
A

B

C

D

62) Add. Write your answer in standard form.
$\left(2 b^{5}-b\right)+\left(b^{5}+8 b-1\right)$
А $3 b^{5}+7 b-1 \quad$ в $3 b^{10}+7 b^{2}-1 \quad$ с $2 b^{5}+8 b-1 \quad$ р $3 b^{5}+7 b$
63) For $h(x)=2 x^{2}+6 x-9$ and $k(x)=3 x^{2}-8 x+8$, find $h(x)-2 k(x)$.
$\mathrm{A}-4 x^{2}+22 x-25$ в $-4 x^{2}-14 x+17 \quad$ с $-4 x^{2}+14 x-17$ D $-4 x^{2}-22 x+25$
64) Determine whether the binomial $(x-4)$ is a factor of the polynomial $P(x)=5 x^{3}-20 x^{2}-5 x+20$. A $(x-4)$ is not a factor of the polynomial $P(x)=5 x^{3}-20 x^{2}-5 x+20 . \quad$ в $(x-4)$ is a factor of the polynomial $P(x)=5 x^{3}-20 x^{2}-5 x+20$. c Cannot determine.
65) Factor $x^{3}+5 x^{2}-9 x-45$.
$\mathrm{A}(x-5)\left(x^{2}+9\right) \quad$ в $(x-5)(x-3)(x+3) \quad$ С $(x+5)(x-3)(x+3) \quad \mathrm{D}(x+5)\left(x^{2}+9\right)$

Algebra 2: Midterm Final Review

66) Identify all of the real roots of $4 x^{4}+31 x^{3}-4 x^{2}-89 x+22=0$.
$\mathrm{A}-2$ and $\frac{1}{4} \mathrm{~B}-2, \frac{1}{4},-3+2 \sqrt{5},-3-2 \sqrt{5} \mathrm{C} \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 2, \pm 11, \pm \frac{11}{2}, \pm \frac{11}{4}$
$\mathrm{D}-2, \frac{1}{4}, 3+2 \sqrt{5}, 3-2 \sqrt{5}$
67) Write the simplest polynomial function with the zeros $2-i, \sqrt{5}$, and -2 .

$$
\begin{array}{ll}
\text { А } P(x)=x^{5}-2 x^{4}-8 x^{3}+20 x^{2}+15 x-50=0 & \text { в } P(x)=x^{5}-2 x^{4}-10 x^{3}+16 x^{2}+25 x-30=0 \\
\text { с } P(x)=x^{5}-2 x^{4}-8 x^{3}-20 x^{2}-65 x-50=0 & \text { D } P(x)=x^{6}-4 x^{5}-4 x^{4}+36 x^{3}-25 x^{2}-80 x+100=0
\end{array}
$$

Aldebra 2: Midterm Final Review

Algebra 2 Midterm Review
 Answer Section

MULTIPLE CHOICE

1)	ANS: C	REF: Page 9	OBJ: 1-1.3 Translating Between Methods of Set Notation
2)	ANS: C	REF: Page 14	OBJ: 1-2.1 Finding Inverses
3)	ANS: B	REF: Page 15	OBJ: 1-2.2 Identifying Properties of Real Numbers
4)	ANS: C	REF: Page 23	OBJ: 1-3.3 Rationalizing the Denominator
5)	ANS: B	REF: Page 28	OBJ: 1-4.3 Simplifying Expressions
6)	ANS: C Exponents	REF: Page 35	OBJ: 1-5.2 Simplifying Expressions with Negative
OBJ: 1-5.3 Using Properties of Exponents to Simplify Expressions			
8)	ANS: A OBJ: 1-5	REF: Page 36	ving Scientific Notation
9)	ANS: D	REF: Page 53	OBJ: 1-7.3 Application
10)	ANS: D	REF: Page 105	OBJ: 2-3.1 Recognizing Linear Functions
11)	ANS: A	REF: Page 106	OBJ: 2-3.2 Graphing Lines Using Slope and a Point
12)	ANS: D	REF: Page 106	OBJ: 2-3.3 Graphing Lines Using the Intercepts
18)	ANS: A	REF: Page 117	OBJ: 2-4.3 Writing Equations of Lines
13)	ANS: D	REF: Page 107	OBJ: 2-3.4 Graphing Functions in Slope-Intercept Form
14)	ANS: B	REF: Page 108	OBJ: 2-3.5 Graphing Vertical and Horizontal Lines
15)	ANS: A	REF: Page 127	OBJ: 2-5.4 Solving and Graphing Linear Inequalities
16)	ANS: A	REF: Page 134	OBJ: 2-6.1 Translating and Reflecting Linear Functions
17)	ANS: D	REF: Page 152	
OBJ: 2-8.3 Solving Absolute-Value Inequalities with Disjunctions			
19)	ANS: A	REF: Page 142	OBJ: 2-7.1 Application
20)	ANS: D	REF: Page 159	OBJ: 2-9.2 Translations of an Absolute-Value Function
21)	ANS: C	REF: Page 184	OBJ: 3-1.3 Classifying Linear Systems
22)	ANS: B	REF: Page 185	OBJ: 3-1.4 Application
23)	ANS: A	REF: Page 205	OBJ: 3-4.1 Graphing a Feasible Region
24)	ANS: B	REF: Page 215	OBJ: 3-5.2 Graphing Linear Equations in Three Dimensions
25)	ANS: A		
26)	ANS: A	REF: Page 199	OBJ: 3-3.1 Graphing Systems of Inequalities
27)	ANS: B		
28)	ANS: A	REF: Page 182	OBJ: 3-1.1 Verifying Solutions of Linear Systems
29)	ANS: D	REF: Page 191	OBJ: 3-2.2 Solving Linear Systems by Elimination
30)	ANS: B	REF: Page 223	
OBJ: 3-6.3 Classifying Systems with Infinitely Many Solutions or No Solution			
31)	ANS: C	REF: Page 248	OBJ: 4-1.4 Simplifying Matrix Expressions
32)	ANS: A	REF: Page 253	OBJ: 4-2.1 Identifying Matrix Products
33)	ANS: D	REF: Page 254	OBJ: 4-2.2 Finding the Matrix Product
34)	ANS: C	REF: Page 256	OBJ: 4-2.4 Finding Powers of Square Matrices
35)	ANS: B	REF: Page 270	OBJ: 4-4.1 Finding the Determinant of a 2×2 Matrix
36)	ANS: B	REF: Page 272	OBJ: 4-4.3 Finding the Determinant of a 3×3 Matrix
21			

Aldebra 2: Midterm Final Review

37) ANS: A
38) ANS: A
39) ANS: C
40) ANS: B
41) ANS: C
42) ANS: C

OBJ: 4-5.2 Finding the Inverse of a 2×2 Matrix
OBJ: 4-5.3 Solving Systems Using Inverse Matrices
OBJ: 5-1.1 Graphing Quadratic Functions Using a Table
OBJ: 5-1.2 Translating Quadratic Functions
OBJ: 5-1.4 Writing Transformed Quadratic Functions

OBJ: 5-4.3 Solving a Quadratic Equation by Completing the Square
43) ANS: A REF: Page 344 OBJ: 5-4.4 Writing a Quadratic Function in Vertex Form
44) ANS: D REF: Page 351

OBJ: 5-5.2 Solving a Quadratic Equation with Imaginary Solutions
45) ANS: D REF: Page 382
46) ANS: D REF: Page 375

OBJ: 5-9.1 Graphing Complex Numbers
OBJ: 5-8.2 Writing a Quadratic Function from Data
47) ANS: D REF: Page 357

OBJ: 5-6.2 Quadratic Functions with Complex Zeros
48) ANS: B REF: Page 358

OBJ: 5-6.3 Analyzing Quadratic Equations by Using the Discriminant
49) ANS: A
50) ANS: D REF: Page 368 OBJ: 5-7.3 Solving Quadratic Inequalities Using Algebra
51) ANS: B REF: Page 382 OBJ: 5-9.1 Graphing Complex Numbers
52) ANS: D REF: Page 383

OBJ: 5-9.2 Determining the Absolute Value of Complex Numbers
53) ANS: C REF: Page 383 OBJ: 5-9.3 Adding and Subtracting Complex Numbers
54) ANS: D REF: Page 384 OBJ: 5-9.5 Multiplying Complex Numbers
55) ANS: D REF: Page 407 OBJ: 6-1.2 Classifying Polynomials
56) ANS: C REF: Page 414 OBJ: 6-2.1 Multiplying a Monomial and a Polynomial
57) ANS: DEF: Page 416 OBJ: 6-2.4 Expanding a Power of a Binomial
58) ANS: B REF: Page 417

OBJ: 6-2.5 Using Pascal's Triangle to Expand Binomial Expressions
59) ANS: A REF: Page 423

OBJ: 6-3.2 Using Synthetic Division to Divide by a Linear Binomial
60) ANS: B REF: Page 424 OBJ: 6-3.3 Using Synthetic Substitution
61) ANS: A REF: Page 455 OBJ: 6-7.3 Graphing Polynomial Functions
62) ANS: A REF: Page 407 OBJ: 6-1.3 Adding and Subtracting Polynomials
63) ANS: A
64) ANS: BEF: Page 430 OBJ: 6-4.1 Determining Whether a Linear Binomial is a

Factor
65) ANS: C REF: Page 431 OBJ: 6-4.2 Factoring by Grouping
66) ANS: B REF: Page 441

OBJ: 6-5.4 Identifying All of the Real Roots of a Polynomial Equation
67) ANS: A REF: Page 447 OBJ: 6-6.3 Writing a Polynomial Function with Complex Zeros

