Algebra 2 (Tier 3) Unit Plan

Unit 1: Linear Equations and Inequalities

2015-2016

ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS

Algebra 2 Unit 1 **Contents**

Unit Overview	2
Calendar	
Scope and Sequence	5
Lesson Analysis	6
Ideal Math Block	
Multiple Representation &	25
Unit Authentic Assessment	
PARCC Sample Assessment Items	
Unit Assessment Question Bank	Error! Bookmark not defined.
Additional Resources	Error! Bookmark not defined.
Student Resources	Error! Bookmark not defined.
Appendix A – Abbreviations and Acronyms	Error! Bookmark not defined.
Appendix B - Clarifications	Error! Bookmark not defined.

Unit Overview

Unit 1: Linear Equations and Inequalities

Essential Questions

- What is the difference between linear functions and linear equations?
- What are different representations of linear functions?
- How can different representations help us to solve linear equations and inequalities?
- How do we graph linear equations and inequalities?
- How can we better communicate to improve our problem solving skills?

Enduring Understandings

This unit builds student understanding of the connection between linear functions and linear equations and inequalities that can be used to represent and solve problems. In addition, your students will learn about strategies for effective communication.

Common Core State Standards

Topic 13: Solving Linear Equations

Algebra

- A.CED.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- 2) A.CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- 3) A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- 4) A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V=IR to highlight resistance R.
- 5) A.REI.1: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
- 6) A.REI.3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
- 7) A.REI.10: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane often forming a curve (which could be a line).
- 8) A.REI.11: Explain why the x-coordinates of the points where the graph of the equations y = f(x) an y = g(x) intersect are the solution of the equation f(x)=g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Topic 14: Problem Solving with Slope Triangles

Algebra

9) A.CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Functions

10) F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is

increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

11) F.IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

12) F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Topic 15: Solving Linear Inequalities

Number and Quantity

13) N.Q.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Algebra

- 14) A.CED.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- 15) A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- 16) A.REI.3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
- 17) A.REI.12: Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Algebra 2 Unit 1 **Calendar**

	September 2015						
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
		1	2	3	4	5	
6	7	8 First Day of School- Getting to know you and Algebra 1 review	9Getting to know you and Algebra 1 review	10 Getting to know you and Algebra 1 review	11 Getting to know you and Algebra 1 review	12	
13	14 Agile Minds topic 13	15 Agile Minds topic 13	16 Agile Minds topic 13	17 Agile Minds topic 13	18 Agile Minds topic 13	19	
20	21 Agile Minds topic 13	22 Agile Minds topic 13	23 Agile Minds topic 13	24 Agile Minds topic 14	25 Agile Minds topic 14	26	
27	28 Agile Minds topic 14	29 Agile Minds topic 15	30 Agile Minds topic 15				

October 2015						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3
				Agile Minds topic 15	Agile Minds topic 15	
4	5	6	7	8	9	10
	Agile Minds topic 15					
11	12	13	14	15	16	17
	No School	Unit 1 Flexible Day				

Algebra 2 Unit 1 Scope and Sequence

Overview				
Lesson	Торіс	Suggesting Pacing and Dates		
1	13.1 – The Connection Between Linear Functions and Linear Equations	1 day		
2	13.2 – Solving Equations with Tables	1 day		
3	13.3 – Solving Equations with Graphs	1 day		
4	13.4 – Solving One- step Equations	1 day		
5	13.5 – Solving Two- step Equations	1 day		
6	13.6 – Solving Multi-step Equations	1 day		
7	13.7 – How Many Solutions?	1 day		
8	13.8 – Rearranging Formulas	1 day		
9	14.1 – Slope of a Line	1 day		
10	14.2 – Slope Triangles and Linear Equations	1 day		
11	14.3 – Communicating While Problem Solving	1 day		
12	15.1 – Inequalities on a Number Line	1 day		
13	15.2 – Introduction to Solving Linear Inequalities	1 day		
14	15.3 – Solve Linear Inequalities using tables and graphs	1 day		
15	15.4 – Solving Inequalities with Algebraic Operations	1 day		
16	15.5 – Inequalities in a Plane	1 day		
17	15.6 – Compound Inequalities in the Plane	1 day		
18	15.7 – End of Unit Assessment	1 day		

Lesson Analysis

Lesson 1: 13.1 – The Connection Between Linear Functions and Linear Equations

Objective

• Using multiple methods including tables, graphing, and algebra SWBAT work in _______ to create and analyze methods of solving linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: Graphic solutions, solve graphically, tabular solution, solving analytically, solving algebraically, function rule, equation, input, output

- Difficulty understanding the real life applications of each variable
- Misunderstanding the difference between an equation and function rule

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 13.1,	1 day	Staying Sharp
 Function rules can be 	 Writing a function rule from a 	Student activity		13.1
used to represent real	given set of data or situation	book,		
life data/situations		Problem/equation/so		
 Every function rule has 	New	lution cards		
a set of input and	 Analyzing four different 			
output values	methods to solve a linear			
New	equation (graphically, using a			
 Different methods can 	table, algebraically, and			
be used to solve linear	"undoing")			
equations	 Matching equations with 			
	solutions found using graphs,			
	tables, and algebraic procedures			

Lesson 2: 13.2 – Solving Equations with Tables

Objective

• Using given linear functions SWBAT work in ______ to create and analyze tables in order to solve linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: input, output, delta-table function

- Difficulty seeing an equation as two linear functions
- Switching up x and y values on a given table

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 13.2,	1 day	Staying Sharp
 An x/y table is one way to represent a linear function A table has input (x) values and output (y) values 	 Identifying a function rule from a given table Analyzing a linear equation from a given table <i>New</i> Solving a linear equation using a 	student activity book		13.2
New	table			
 A solution can be found from a table by looking for the x-value that matches the given y- value A graphing calculator can be used to create and use tables to solve linear equations 	 Locating a function's table on a graphing calculator Solving linear equations using the table function on the graphing calculator 			

Lesson 3: 13.3 – Solving Equations with Graphs

Objective

Using given linear functions SWBAT work in _______ to create and analyze graphs in order to solve linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: x-coordinates, y-coordinates, intersection point

- Having difficulty seeing an equation as two linear function
- Graphing difficulties
- Difficulty understanding how to find and/or identify a point of intersection on a graph

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 13.3,	1 day	Staying Sharp
 <i>Review</i> A graph is another way to represent a linear function A graph has an x-axis and y-axis to help represent the input and output values of a function <i>New</i> A solution can be found on a coordinate plane by looking for the intersection point between the two sides of the given equation A graphing calculator 	 Review Identifying a function rule from a coordinate grid Analyzing a linear equation on a coordinate grid Solving a linear equation on a coordinate grid Solving linear equations using the graphing function on a graphing calculator Analyze advantages and disadvantages is using two methods to solve linear equations 	Agile Minds 13.3, Student activity book	1 day	Staying Sharp 13.3
can help to graph a function and find a				
solution to an equation				

Lesson 4: 13.4 – Solving One-Step Equations

Objective

• Using inverse operations SWBAT work in ______ to solve one step linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: inverse operations, balance scale, zero pairs

Common Misconceptions:

• Mixing up inverse operations

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 13.4,	1 day	Staying Sharp
 There is always multiple 	 Compare solving equations with 	Student activity		13.4
ways to solve an	tables and graphs	book, algebra tiles,		
equation	New	Equation/solution		
New	 Using inverse operation to 	method cards		
 Solving for an equation 	"undo" a given operation			
means finding the x	 Using inverse operations to solve 			
value that makes both	one-step equations			
sides of the equation				
equal				
 When solving an 				
equation you always				
want to keep both sides				
"balanced" by				
performing the same				
operation to both sides				

Lesson 5: 13.5 – Solving Two-Step Equations

Objective

• Using inverse operations SWBAT work in ______ to solve two step linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: inverse operations, balance scale, zero pairs, equivalent expressions

- Misunderstanding or incorrectly using order of operations
- Combining incorrect unlike terms
- Mixing up inverse operations

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 13.5,	1 day	Staying Sharp
 There is always multiple 	 Compare solving equations with 	Student activity		13.5
ways to solve an	tables and graphs	book, algebra tiles,		
equation	New	Student		
New	 An equation is made up of 	whiteboards and		
 Solving equations can 	equivalent expressions separated	markers		
be viewed as "undoing"	by an equal sign			
the order of operations	 Using inverse operations to 			
 Solving for an equation 	"undo" a given operation			
means finding the x	 Using inverse operations to solve 			
value that makes both	two-step equations			
sides of the equation				
equal				
 When solving an 				
equation you always				
want to keep both sides				
"balanced" by				
performing the same				
operation to both sides				

Lesson 6: 13.6 - Solving Multi-step Equations

Objective

• Using inverse operations SWBAT work in ______ to solve multi step linear equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: inverse operations, balance scale, zero pairs, equivalent expressions, distributive property, algebraic properties

- Difficulty identifying like terms
- Incorrectly using distributive property
- Thinking they are wrong if they solve an equation in a different way
- Misunderstanding or incorrectly using order of operations

Concepts	Skills	Material/	Currente d De sin e	Assessment Check Deint
What students will know	What students will be able to do	Resource	Suggested Pacing	Assessment Check Point
Review	Review	Agile Minds	1 day	Staying Sharp 13.6
• There is always multiple	 Compare solving equations with 	13.6, student		
ways to solve an	tables and graphs	activity book		
equation	 Identify inverse operations to 			
 Solving equations 	"undo" a given operation			
involves using algebraic	New			
properties	 Identifying which algebraic 			
New	properties are being used in			
• Solving for an equation	each step of solving an equation			
means finding the x	 Using inverse operations to 			
value that makes both	solve multi-step equations with			
sides of the equation	variables on both sides			
equal	 Using distributive property 			
 When solving an 	when there are parenthesis			
equation you always				
want to keep both sides				
"balanced" by				
performing the same				
operation to both sides				

Lesson 7: 13.7 – How Many Solutions?

Objective

• Using multiple methods including tables, graphing, and algebra SWBAT work in _______ to analyze methods of solving linear equations with no solutions and infinite solutions for at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 7: Look for and make use of structure

Vocabulary: no solutions, infinite solutions, empty set,

- The meaning of x=0 is different from "no solution"
- Understanding that an equation with infinite solutions means the equations are equivalent to each other

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 13.7,	1 day	Staying Sharp
 There is always multiple 	 Using inverse operations to 	Student activity		13.7
ways to solve an	solve multi-step equations with	book, guided		
equation	variables on both sides	assessment, student		
 Solving equations 	New	computers or		
involves using algebraic	 Solving equations with no 	computer lab		
properties	solutions or infinite solutions			
New	 Identifying what the equations 			
 Some equations do not 	with no solutions and infinite			
have just one solution	solutions looks like on a graph			
 Some equations have 	and with algebra tiles			
no solutions or an				
infinite set of solutions				

Lesson 8: 13.8 – Rearranging Formulas

Objective

• Using equality and identify properties of algebra SWBAT work in ______ to analyze methods of solving literal equations with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: solutions, algebraic properties, formulas, slope

- Difficulty solving equations with multiple variables
- Incorrectly identifying which variables are known and which need to still be solved for

Concepts What students will know	Skills What students will be able to do	Material/ Resource	Suggested Pacing	Assessment Check Point
Concepts What students will know Review • Solving equations involves using algebraic properties • Formulas are commonly used equations New • You can rearrange any formula to get the unknown variable by itself • Rearranging formulas	Skills What students will be able to do Review Identifying which algebraic properties are being used in each step of solving an equation Using inverse operations to solve multi- step equations with variables on both sides New Rearrange formulas to get the unknown variable by itself Solving for the unknown variable after the equation has been rearranged	Material/ Resource Agile Minds 13.8, student activity book	Suggested Pacing 1 day	Assessment Check Point Staying Sharp 13.8
 Fourcarrent angle any formula to get the unknown variable by itself Rearranging formulas can make using them easier 	 Rearrange formulas to get the unknown variable by itself Solving for the unknown variable after the equation has been rearranged 			

Lesson 9: 14.1 – Slope of a Line

Objective

• Using slope triangles SWBAT work in ______ to find slope of a given line, write equations in slope-intercept form, and graph a line given its slope for at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: slope, y-intercept, slope triangles, slope-intercept form

- Graphing difficulties
- Switching up values for y-intercept and slope when written in an equation
- Forgetting negative signs when dealing with a negative slope

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 14.1,	1 day	Staying Sharp
 Solving equations and 	Identifying which algebraic	Student activity		14.1
inequalities involves	properties are being used in each	unit 5 mid-unit		
properties	inequality	assessment		
 Different methods can 	 Using inverse operations to solve 			
be used to solve linear equations	multi-step equations with variables on both sides			
 Function rules can be 	New			
used to represent real	 Using slope triangles to 			
life situations or sets of data	understand what slope is			
New	of a line			
• Slope is the	 Write an equation in slope- 			
"steepness" of a graph,	intercept form			
it is the rate of change	 Graph lines with given slopes 			
and v values of the line.				
,				

Lesson 10: 14.2 – Slope Triangles and Linear Equations

Objective

• Using effective communication strategies SWBAT work in _______ to write equations of lines with given information with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: slope, y-intercept

- Switching up values for y-intercept and slope when written in an equation
- Forgetting negative signs when dealing with a negative slope

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 14.2,	1 day	Staying Sharp
• Slope is the "steepness"	 Using slope triangles to 	Student activity		14.2
of a graph, it is the rate	understand what slope is	book, giving and		
of change between your	 Identify the y-intercept and 	getting cards		
x values and y values of	slope of a line			
the line.	 Graph lines with given slopes 			
New	New			
Effective	 Being effective "givers" and 			
communication	"getters" of information			
strategies make giving	 Writing equations given slopes 			
and receiving	and y-intercepts			
information easier and				
more useful				

Lesson 11: 14.3 – Communicating While Problem Solving

Objective

• Using knowledge of linear equations SWBAT work in ______ to explore the connection between linear equations and linear inequalities with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 3: Construct viable arguments and critique the reasoning of others
- MP 7: Look for and make use of structure

Vocabulary: givers, getters

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 14.3,	1 day	Staying Sharp
Using context clues is an important problem	 Identify points on a graph to answer questions about given functions 	Student activity book		14.3
• Effective	New			
communication makes problem solving easier and more effective	 Solving algebra problems that require good problem solving strategies and effective 			
New	communication			
 Being good "givers" and "getters" of information can make us stronger 				
problem solvers				

Lesson 12: 15.1 – Inequalities On a Number Line

Objective

• Using a number line SWBAT work in ______ to find solutions to one variable linear inequalities with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: Inequalities, number line, compound inequalities

- Confusion about a graph that is represented on a number line and not just on a coordinate plane
- Incorrect use of inequality symbols while graphing on a number line
- Incorrectly showing the direction of the graph on a number line

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Review Agile Minds 15.1,		Staying Sharp
 Number lines can be 	• Identify what numbers would be	Student activity		15.1
used to represent a set	included in a set of numbers	book,		
of numbers	represented by an inequality	Inequalities on a		
New	New	number line card sort		
 Number lines can be 	 Using number lines to depict 			
used to represent sets	inequalities			
of numbers shown by	 Match inequalities to given 			
inequalities	number line graphs			

Lesson 13: 15.2 – Introduction to Solving Linear Inequalities

Objective

• Using knowledge of linear equations SWBAT work in ______ to compare linear equations and linear inequalities with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 7: Look for and make use of structure
- MP 8: Look for and express regularity in repeated reasoning

Vocabulary: Linear inequalities, solution sets

Common Misconceptions:

• Providing only one solution rather than a solution set

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 15.2,	1 day	Staying Sharp
 You can use a variety of 	 Solving linear equations using 	Student activity		15.2
methods to solve	four different methods	book,		
equations by	New	Chart paper and		
 A solution for an 	 Identifying solution sets to a 	makers		
inequality includes a	given inequality that would make			
solution set not just one	the inequality true			
solution	 Identify how to use the same 			
New	methods for solving equations to			
 Inequalities and 	solve inequalities			
equations can be solved				
using the same methods				
 Solving inequalities can 				
be thought of as finding				
all possible input values				
that make the inequality				
true.				

Lesson 14: 15.3 – Solving Linear Inequalities using Tables and Graphs

Objective

• Using tables and graphs SWBAT work in ______ to solve one variable linear inequalities with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: linear inequalities, solution set

- Identifying the same solution for inequalities as you would for an equation
- Difficulties visually seeing on the graph the solution set of an inequality
- Mixing up inequality symbols (i.e. < means greater than and > means less than)

Concepts What students will know	Skills What students will be able to de	Material/	Suggested Pacing	Assessment Check Point
Review	Review	Agile Minds 15.3.	1 day	Staving Sharp
 Graphing calculators can be used to find solutions for linear equations using the graph and tables functions New Solution sets of an inequality will change depending on the inequality symbol even if the equation itself is the same Although using these methods for solving inequalities is similar to suing it to solve equations it is not the same in terms of identifying the correct solution 	 Using tables and graphs to solve linear equations Analyzing what the variables represent when using graphs and tables New Using tables and graphs to solve linear inequalities Determine solution sets of an inequality when using table and graph functions of a graphing calculator Compare the two methods the solving inequalities 	student activity book		15.3

Lesson 15: 15.4 – Solving Inequalities with Algebraic Operations

Objective

• Using inverse operations SWBAT work in ______ to solve linear inequalities algebraically with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 6: Attend to precision
- MP 7: Look for and make use of structure

Vocabulary: algebraic operations, algebraic properties

- Misunderstanding when it is necessary to change direction of the inequality (either changing it with addition or subtraction or forgetting to change it for multiplication and division)
- Difficulties understanding that you can use algebraic properties just as you would when solving equations

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 15.4,	1 day	Staying Sharp
 The same algebraic 	 Identifying algebraic properties 	Student activity		15.4
properties used to solve	used when solving equations	book, student		
equations apply to	New	whiteboards		
solving inequalities	 Using algebraic properties to 			
New	solve inequalities			
 The only difference 	 Correctly solve for inequalities 			
between solving	with negative coefficients			
equations vs.	 Check solutions to make sure the 			
inequalities is when you	inequality was solved correctly			
have a negative				
coefficient				
 There are two methods 				
to dealing with a				
negative coefficient				

Lesson 16: 15.5 – Inequalities in a Plane

Objective

• Using a coordinate plane SWBAT work in _______to explore and graph linear inequalities with two variables with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 5: Use appropriate tools strategically
- MP 7: Look for and make use of structure

Vocabulary: solution set, coordinates

- Confusing skills for graphing inequalities on a number line with graphing inequalities on a coordinate plane
- Not using context clues in the problem to help understand the solution set and what points should be included

Concepts	Skills	Material/	Suggested	Assessment Check
What students will know	What students will be able to do	Resource	Pacing	Point
Review	Review	Agile Minds 15.5,	1 day	Staying Sharp
 Solution sets are sets of 	 Locate coordinate pair solutions 	Student activity		15.5
all coordinate points	to compound inequalities	book, computer lab		
that make an inequality	New			
true	 Determine solution regions for 			
New	inequalities on a coordinate			
 Coordinate plans can 	plane			
be used to identify and	 Graph linear inequalities on a 			
show solutions sets for	coordinate plane			
inequalities	 Show a solution set on a 			
 Understanding context 	coordinate plan			
of the given problem is				
a tool to help identify				
solution sets				

Lesson 17: 15.6 – Compound Inequalities in the Plane

Objective

• Using SWBAT work in ______ to explore compound inequalities with at least 80% efficiency on the staying sharp wrap up activity.

Focused Mathematical Practices

- MP 1: Make sense of problems and persevere in solving them
- MP 2: Reason abstractly and quantitatively
- MP 7: Look for and make use of structure

Vocabulary: solution set, compound inequalities

- Confusing skills for graphing inequalities on a number line with graphing inequalities on a coordinate plane
- Not using context clues in the problem to help understand the solution set and what points should be included
- Incorrectly graphing inequalities with negative coefficients

Concepts	Skills	Material/	Suggested	Assessment
What students will know	What students will be able to do	Resource	Pacing	Check Point
Review	Review	Agile Minds 15.6,	1 day	Staying Sharp
 Solution sets are sets of 	 Locate coordinate pair solutions 	Student activity		15.6
all coordinate points	to compound inequalities	book		
that make an inequality	• Graph compound inequalities on			
true	a number line			
New	New			
 Coordinate plans can be used to identify and show solutions sets for compound inequalities Understanding context of the given problem is a tool to help identify solution sets 	 Determine solution regions for compound inequalities on a coordinate plane Graph compound inequalities on a coordinate plane Show a solution set on a coordinate plan 			

The following outline is the department approved ideal math block for grades 9-12.

- 1) Do Now (7-10 min)
 - a. Serves as review from last class' or of prerequisite material
 - b. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 2) Starter/Launch (5 min)
 - a. Designed to introduce the lesson
 - b. Uses concrete or pictorial examples
 - c. Attempts to bridge the gap between grade level deficits and rigorous, on grade level content
 - d. Provides multiple entry points so that it is accessible by all students and quickly scaffolds up
- 3) Mini-Lesson (15-20 min)
 - a. Design varies based on content
 - b. May include an investigative approach, direct instruction approach, whole class discussion led approach, etc.
 - c. Includes CFU's
 - d. Anticipates misconceptions and addresses common mistakes
- 4) Class Activity (25-30 min)
 - a. Design varies based on content
 - b. May include partner work, group work/project, experiments, investigations, game based activities, etc.
- 5) Independent Practice (7-10 min)
 - a. Provides students an opportunity to work/think independently
- 6) Closure (5-10 min)
 - a. Connects lesson/activities to big ideas
 - b. Allows students to reflect and summarize what they have learned
 - c. May occur after the activity or independent practice depending on the content and objective
- 7) DOL (5 min)
 - a. Exit slip

Algebra 2 Unit 1 Multiple Representation

	Slope/Linear change
Concrete	
Pictorial/verbal description	Table Graph $. 96'$ $\frac{! " #"}{$96'}$ $. 96'$ $\frac{96'}{? " $$C"}$ $. 96'$ $2. 96'$ $. 96'$ $2. 96'$ $. 96'$ $2. 96'$ $. 96'$ $2. 96'$
Abstract	Slope between (2, 1) and (4, 3) $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{4 - 2} = \frac{2}{2} = 1$
	Linear Models
Concrete	
Pictorial/verbal description	Table Graph

	Number of pizzas	Cost in dollars	ST I	•
	0	0	a 20	•
	1	7	P .	
	2	14	- <u></u> = 10	
	3	21	ost	
	4	28	0 1 2	3 4
			Number	of pizzas
	Verbal Medium cheese pizzas you order	pizzas cost and the tot	57.00. What is the relationship betwe al cost of your order?	een the number of
Abstract	f(x) = 7x			
Abstract	where x represen	its the numb	er of pizzas and f(x) represents the to	otal cost (in dollars)
			Inequalities	
Multiple				
Representation & Notations	Inequalities	Inte Not	rval Graph (Number l ation	line)
	$3 < x \leq 7$	7 (3	7] 3	7
	$-4 \le x \le$	<u>i [-</u>	4, 1] -4	1
	-8 < x <	< 8 (-	8, 8) -8	-8
	$0 \le x < \frac{1}{2}$	1 ₂ [0,	$\frac{1}{2}$ 0	
	-6 < x <	< 0 (-	6,0)	° > > 0

Algebra 2 Unit 1 Unit Authentic Assessment

The Speeding Ticket Task (Tier 3) Part A:

Name:

The fine for speeding on the highways of most states is a function of the speed of the car. The speeding fine can be determined by a linear equation, where f(m) represents the fine in dollars and m represents the number of miles per hour (mph) the car is EXCEEDING the **70 mph** speed limit.

In *Connecticut*, the speed limit on federal highways is 70 miles per hour (mph). The speeding fine has a flat fee \$40 and plus \$10 for each mph the car is exceeding the speed limit.

- i. Write the rule for *f*(*m*).
- ii. What would your speeding fine be if you were traveling 78 mph? Show all your work or *explain* how you arrived at your answer.

iii.	Suppose you received a speeding ticket for \$200. How fast were you going? Explain how you arrived at your
	answer.

iv. What are the reasonable domain and range for the speeding fine function? Explain your reason.

Domain:

Range:

Part B:

The line on the graph below represents the function of speeding ticket fines in Vermont.

i. Find the slope and y-intercept of the line. What does the slope and y-intercept mean in terms of the context of the speeding ticket fines?

ii. Write a rule in function notation to represent the cost of speeding in Vermont.

Part C:

The speed limit on the **Florida** highway is 65 miles per hour. The cost of the fine is calculated by charging a fixed amount for each mile per hour the violator exceeds the **65 mph limit**, plus a fixed processing fee. The table below shows the fine, f(x), for speeds over the 65 mph limit on Florida highway.

Speed (<i>mph</i> exceeding the 65 <i>mph limit</i>)	5	10	15	20	25
Fine (\$)	60	87.50	115	142.50	170

i. What is the amount charged for each mile per hour the speeder exceeds the speed limit? Show your work.

ii. What is the additional fixed fee for the cost of the fine in Florida? Show your work.

iii. Write a rule for the cost of a speeding fine on a Florida highway.

iv. Jose got a \$126 speeding ticket for speeding on a Florida highway, how fast did he drive? Explain how you can calculate or approximate his speed using at least two 2 different methods.

Extension:

i. Susan was fined for traveling 78 mph. Which state will have the most expensive speeding ticket? Show your work or explain how you arrived at your answer.

The graph of the function f(x) = -1 + 0.5x is shown on the coordinate plane. For what value of x does f(x) = 0?

Use the information provided to answer Part A and Part B for question 18.

A high school is having a talent contest and will give different prizes for the best 5 acts in the show. First place wins the most money, and each place after that wins \$50 less than the previous place.

Part A

Create a model that can be used to determine the total amount of prize money based on the value of the first place prize.

Enter your model in the space provided.

Part B

The talent contest has a total of \$1,000 in prize money. What is the amount of money for **each** of the five prizes? Show your work.

Enter your answers and your work in the space provided.