Algebra and Functions

Part 1: Empation of a Line

AS Level		A-Level
Pt I: Equation of a Line	Pt. 2: Circles	Pt 3: Parametric and Cartesian Equations

1. Find in the form $y=m x+c$, the equation of the straight line passing through the pair of co-ordinates $\left(-\frac{1}{2},-2\right)$ and $(2,8)$.
2. The straight line l passes through the points $\mathrm{A}(-6,8)$ and $\mathrm{B}(3,2)$.
a. Find an equation of the line l
b. Show that the points C $(9,-2)$ lies on l.
3. The straight line 1_{1} passes through the points $\mathrm{P}(-2,1)$ and $\mathrm{Q}(4,-1)$.
a. Find the equation of l_{1} in thr form $\mathrm{a} x+\mathrm{b} y+c=0$, where a, b, and c are integers.

The straight line l_{2} passes through the points $\mathrm{R}(2,4)$ and through the mid-point PQ.
b. Find the equation of 1_{2} in the form $y=m x+c$.
4. The straight line p has the equation $3 x-4 y+8=0$.

The straight line q is parallel to p and passes through the point with coordinates $(8,5)$.
a. Find the equation of q in the form $y=m x+c$.

The straight line r is perpendicular to p and passes through the point with coordinates $(-4,6)$.
b. Find the equation of r in the form $a x+b y+c=0$, where a, b and c are integers.
c. Find the coordinates of the point where lines q and r intersect.
5. The vertices of a triangle are the points $A(5,4), B(-5,8)$ and $C(1,11)$.
a. Find the equation of the straight line passing through A and B, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
b. Find the coordinates of the point M, the mid-point of $A C$.
c. Show that $O M$ is perpendicular to $A B$, where O is the origin.
6. The diagram shows the straight line l with equation $x+2 y-20=0$ and the straight line m which is perpendicular to l and passes through the origin O.

a. Find the coordinates of the points A and B where l meets the x-axis and y-axis respectively.

Given that l and m intersect at the point C,
b. find the ratio of the area of triangle $O A C$ to the area of triangle $O B C$.
7. The vertices of a triangle are the points $P(3, c), Q(9,2)$ and $R(3 c, 11)$ where c is a constant.

Given that $\angle P Q R=90^{\circ}$
a. Find the value of c
b. Show that the length of $P Q$ is $k \sqrt{10}$, where k is an integer to be found
c. Find the area of triangle $P Q R$.

Mark Scheme

1.

Gradient $=\frac{8+2}{2+0.5}=4$	M1
$y-8=4(x-2)$	M1
$y=4 x$	M1

2a.

Gradient $=\frac{2-8}{3+6}=-\frac{2}{3}$	M1
$y-8=-\frac{2}{3}(x+6)$	M1
$2 x+3 y-12=0$	M1

2b.

$2(9)+3(-2)-12=0$	M1
Therefore, C lies on C.	M1

3a.

Gradient $=\frac{-1-1}{4+2}=-\frac{1}{3}$	M1
$y-1=-\frac{1}{3}(x+2)$	M1
$3 y-3=-x-2$	M1
$x+3 y-1=0$	M

3 b .

Mid-point of $\mathrm{PQ}=\left(\frac{-2+4}{2}, \frac{1-1}{2}\right)=(1,0)$	M1
Gradient of $\mathrm{l}_{2}=\frac{0-4}{1-2}=4$	M1
$y=4(x-1)$ $y=4 x-4$	M1

4 a .

$\mathrm{p} \rightarrow y=\frac{3}{4} x=2$	M1
gradient $=\frac{3}{4}$	M1
$y-5=\frac{3}{4}(x-8)$	M
$y=\frac{3}{4} x-1$	

4 b .

Perpendicular gradient $=-\frac{4}{3}$	M1
$y-6=-\frac{4}{3}(x+4)$	M1
$3 y-18=-4 x-16$	M1
$4 x+3 y-2=0$	

4c.

$\mathrm{q} \rightarrow 3 x-4 y-4=0 \rightarrow 9 x-12 y-12=0$	M1
$\mathrm{r} \rightarrow 16 x+12 y-8=0$	M1
Adding, $25 x-20=0$	M1
$x=\frac{4}{5}$	M1
$y=\frac{3(0.8)-4}{4}=-\frac{2}{5}$	and
Co-oridnates $=\left(\frac{4}{5},-\frac{2}{5}\right)$	Maths

5a.

Gradient $=\frac{8-4}{-5-5}=-\frac{2}{5}$	M1
$y-4=-\frac{2}{5}(x-5)$	
$5 y-20=-2 x+10$	M1
$2 x+5 y-30=0$	

$5 b$.
Midpoint $=\left(\frac{5+1}{2}, \frac{4+11}{2}\right)=(3,3.5)$
5c.

Gradient of $\mathrm{OM}=3.5 \div 3=\frac{5}{2}$	M1
Gradient $\mathrm{OM} \times$ Gradient $\mathrm{AB}=\frac{5}{2} \mathrm{x}-\frac{2}{5}=-1$ Therefore, OM is perpendicular to AB.	M1

6a.

At $\mathrm{A}, y=0, x=20 \rightarrow \mathrm{~A}(20,0)$	M1
At $\mathrm{B}, x=0, y=10 \rightarrow \mathrm{~B}(0,10)$	M1

6 b.
$\left.\begin{array}{|l|c|}\hline 1 \rightarrow y=10-0.5 x & \text { M1 } \\ \text { Gradient of } 1=-0.5 & \text { M1 } \\ \hline \text { Gradient of } \mathrm{m}=2 \\ \text { Equation of line } \mathrm{m}: ~ & y=2 x\end{array}\right)$

7a.

Gradient of $\mathrm{PQ}=\frac{2-c}{9-3}=\frac{2-c}{6}$	M1
Gradient of $\mathrm{QR}=\frac{11-2}{3 c-9}=\frac{3}{c-3}$	M1
$\angle \mathrm{PQR}=90^{\circ}$, therefore PQ is perpendicular to QR	
$\frac{2-c}{6} \times \frac{3}{c-3}=-1$	
$3(2-\mathrm{c})=-6(\mathrm{c}-3)$	
$3 \mathrm{c}=12$	$\mathrm{c}=4$

7 b.

$\mathrm{PQ}{ }^{2}=6^{2}+2^{2}=40$	M1
$\mathrm{PQ}=\sqrt{40}=2 \sqrt{10}$	M1
$\mathrm{k}=2$	

7 c.

$\mathrm{QR}=\sqrt{3^{2}+9^{2}}=\sqrt{90}=3 \sqrt{10}$	M1
Area $=1 / 2 \times \mathrm{PQ} \times \mathrm{QR}=30$	M1

Algehra and Functions

Part 2; Circles

AS Level	
Pt 1: Equation of a Line	Pt. 2: Circles
Pt 3: Parametric and Cartesian Equations	

1. Find the coordinates of the cente and the radius of the circles $9 x^{2}+9 y^{2}+6 x-24 y+8=0$
2. Find whether the $(7,-3)$ lies inside or outside the circle $x^{2}+y^{2}+10 x-4 y=140$
3. Find the equation of the normal to the circle with equation $x^{2}+y^{2}+4 x=13$ at the point $(-1,4)$.
4. The line with equaton $y=1-x$ intersects the circle with equation $x^{2}+y^{2}+6 x+2 y=27$ at the points A and B .

Find the length of the chord AB , giving your answer in the form $k \sqrt{2}$
5. The circle C has centre $(3,-2)$ and radius 5 .
a. Write down an equation of C in cartesian form.

The line $y=2 x-3$ intersects C at the points A and B.
b. Show that $A B=4 \sqrt{5}$.
6. The circle C touches the y-axis at the point $A(0,3)$ and passes through the point $B(2,7)$.
a. Find an equation of the perpendicular bisector of $A B$.
b. Find an equation for C.
c. Show that the tangent to C at B has equation $3 x-4 y+22=0$.
7. The circle C has equation $x^{2}+y^{2}-8 x+4 y+12=0$.
a. Find the coordinates of the centre of C and the radius of C.

The point P has coordinates $(3,5)$ and the point Q lies on C.
b. Find the largest and smallest values of the length $P Q$, giving your answers in the form $k \sqrt{2}$.
c. Find the length of $P Q$ correct to 3 significant figures when the line $P Q$ is a tangent to C.
8. Circle C_{1} has the equation $x^{2}+y^{2}-2 a y=0$, where a is a positive constant.
a. Find the coordinates of the centre and the radius of C_{1}.

Circle C_{2} has the equation $x^{2}+y^{2}-2 b x=0$, where b is a constant and $b>a$.
b. Sketch C_{1} and C_{2} on the same diagram.
9. The circle C has equation $x^{2}+y^{2}-8 x-16 y+72=0$.
a. Find the coordinates of the centre and the radius of C.
b. Find the distance of the centre of C from the origin in the form $k \sqrt{5}$.

The point A lies on C and the tangent to C at A passes through the origin O.
c. Show that $O A=6 \sqrt{2}$.

Mark Scheme

1.

$x^{2}+y^{2}+\frac{2}{3} x-\frac{8}{3} y+\frac{8}{9}=0$	M1
$\left(x+\frac{1}{3}\right)^{2}-\frac{1}{9}+\left(y-\frac{4}{3}\right)^{2}-\frac{16}{9}+\frac{8}{9}=0$	M1
$\left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2}=1$	
Centre $\left(-\frac{1}{3}, 0\right)$	M1
Radius 1	

2.

$(x+5)^{2}-25+(y-2)^{2}-4=140$	M1
$(x+5)^{2}+(y-2)^{2}=169$	M1
Centre $(-5,2)$ Radius 13	M1
Distance to centre $=\sqrt{144+25}=13$ Therefore point is on circle.	

3.

$(x+2)^{2}-4+y^{2}=13$	M1
Therefore, centre $(-2,0)$	M1
Gradient $=\frac{0-4}{-2+1}=4$	M1
Therefore, $y-4=4(x+1)$ $y=4 x+8$	

4.

$x^{2}+(1-x)^{2}+6 x+2(1-x)=27$	M1
$x^{2}+x-12=0$	
$(x+4)(x-3)=0$	M1
$x=-4, y=1--4=5$	
$x=3, y=1-3=-2$	M1
Therefore, $\mathrm{AB}=\sqrt{49+49}=7 \sqrt{2}$	

5a.

$(x-3)^{2}+(y+2)^{2}=25$	M1

$5 b$.

$(x-3)^{2}+[(2 x-3)+2]^{2}=25$	M1
$(x-3)^{2}+(2 x-1)^{2}=25$	M1
$x^{2}-2 x-3=0$	
$(x+1)(x-3)=0$	M1
$x=-1, y=2(-1)-3=-5$	
$x=3, y=2(3)-3=3$	M1
$\mathrm{AB}^{2}=4^{2}+8^{2}=80$	M1
$\mathrm{AB}=\sqrt{80}=4 \sqrt{5}$	

6a.

Midpoint $\mathrm{AB}=\left(\frac{0+2}{2}, \frac{3+7}{2}\right)=(1,5)$	M1
Gradient $\mathrm{AB}=\frac{7-3}{2-0}=2$	M1
Therefore perpendicular gradient $=--\frac{1}{2}$	M1
$y-5=-\frac{1}{2}(x-1)$	or/a
	M1

6 b.
Circle touches y-axis at $(0,3)$
Therefore y-coordordinate of centre $=3$
$3=\frac{11}{2}-\frac{1}{2} x$
$x=5$
Centre (5,3) radius 5 .
$(x-5)^{2}+(y-3)^{2}=25$
6 c.

Gradient of radius $=\frac{7-3}{2-5}=-\frac{4}{3}$	M1
Therefore gradient of tangent $=\frac{3}{4}$	M1
$y-7=\frac{3}{4}(x-2)$ M1 $4 y-28=3 x-6$	M1
$3 x-4 y+22=0$	

7 a.
$\left.\begin{array}{|l|c|}\hline(x-4)^{2}-16+(y+2)^{2}-4+12=0 & \text { M1 } \\ (x-4)^{2}+(y+2)^{2}=8\end{array}\right)$

7 b.

Distance P to centre $=\sqrt{1+49}=\sqrt{50}=5 \sqrt{2}$	M1
Therefore, $\max \mathrm{PQ}=5 \sqrt{2}+2 \sqrt{2}=7 \sqrt{2}$	M1
Minimum $\mathrm{PQ}=5 \sqrt{2}-2 \sqrt{2}=3 \sqrt{2}$	M1

7c.
Tangent perpendicular to radius:

$\mathrm{PQ}^{2}=(5 \sqrt{2})^{2}-(5 \sqrt{2})^{2}=50-8=42$	M1
$\mathrm{PQ}=\sqrt{42}=6.48$	M1

8 a .

$x^{2}+(y-\mathrm{a})^{2}-\mathrm{a}^{2}=0$	M1
$x^{2}+(y-\mathrm{a})^{2}=\mathrm{a}^{2}$	M1
Centre: $(0, \mathrm{a})$	M1
Radius: a	

8 b .

$\mathrm{C}_{2}:(x-\mathrm{b})^{2}-\mathrm{b}^{2}+y^{2}=0$	M1
$(x-\mathrm{b})^{2}+y^{2}=\mathrm{b}^{2}$	
Centre: $(\mathrm{b}, 0)$ Radius: b	M1

9 a.

$(x-4)^{2}-16+(y-8)^{2}-64+72=0$	M1		
$(x-4)^{2}+(y-8)^{2}=8$		\quad	M1
:---			
Centre: $(4,8)$			
Radius: $2 \sqrt{2}$			

$9 b$.

$\sqrt{16+64}=\sqrt{80}$	M1
$=4 \sqrt{5}$	M1

9c.

Tangent perpendicular to radius:	M1
$\mathrm{OA}^{2}=(\sqrt{80})^{2}-(2 \sqrt{2})^{2}=72$	M1
$\mathrm{OA}=\sqrt{72}=6 \sqrt{2}$	M

