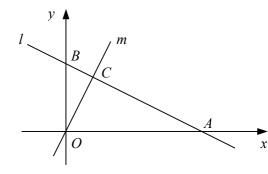
Algebra and	Functions			
Part 1	; Equation	Of	3	Line


AS Level Pt 1: Equation of a Line

Pt. 2: Circles

A-Level Pt 3: Parametric and Cartesian Equations

1. Find in the form $y = mx + c$, the equation of the straight line passing through the pair of co-ordinates $(-\frac{1}{2}, -2)$ and $(2, 8)$.	(3)
 2. The straight line <i>l</i> passes through the points A (-6, 8) and B (3, 2). a. Find an equation of the line <i>l</i> b. Show that the points C (9, -2) lies on <i>l</i>. 	(3) (2)
3. The straight line l_1 passes through the points P(-2, 1) and Q(4, -1). a. Find the equation of l_1 in thr form $ax + by + c = 0$, where <i>a</i> , <i>b</i> , and <i>c</i> are integers. The straight line l_2 passes through the points R (2, 4) and through the mid-point PQ. b. Find the equation of l_2 in the form $y = mx + c$.	(3) (3)
4. The straight line <i>p</i> has the equation $3x - 4y + 8 = 0$. The straight line <i>q</i> is parallel to <i>p</i> and passes through the point with coordinates (8, 5). a. Find the equation of <i>q</i> in the form $y = mx + c$. The straight line <i>r</i> is perpendicular to <i>p</i> and passes through the point with coordinates (-4, 6). b. Find the equation of <i>r</i> in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers. c. Find the coordinates of the point where lines <i>q</i> and <i>r</i> intersect.	(2) (3) (4)
 5. The vertices of a triangle are the points A (5, 4), B (-5, 8) and C (1, 11). a. Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers. b. Find the coordinates of the point M, the mid-point of AC. c. Show that OM is perpendicular to AB, where O is the origin. 	(2) (1) (2)
6. The diagram shows the straight line <i>l</i> with equation $x + 2y - 20 = 0$ and the straight line <i>m</i> which is normal disulate <i>l</i> and reasons through the arisin Q .	

which is perpendicular to l and passes through the origin O.

a. Find the coordinates of the points A and B where l meets the x-axis and *y*-axis respectively.

(2) Given that *l* and *m* intersect at the point *C*, b. find the ratio of the area of triangle *OAC* to the area of triangle *OBC*. (5)

7. The vertices of a triangle are the points P(3, c), Q(9, 2) and R(3c, 11) where c is a constant.

- Given that $\angle PQR = 90^{\circ}$ a. Find the value of *c* (5) b. Show that the length of PQ is $k\sqrt{10}$, where k is an integer to be found (3) (4)
- c. Find the area of triangle PQR.

Mark Scheme

1.	
Gradient = $\frac{8+2}{2+0.5} = 4$	M1
y - 8 = 4(x - 2)	M1
y = 4x	M1

2a	•

24.	
Gradient $=\frac{2-8}{3+6} = -\frac{2}{3}$	M1
$y-8 = -\frac{2}{3}(x+6)$	M1
2x + 3y - 12 = 0	M1

2b.

2(9) + 3(-2) - 12 = 0	M1
Therefore, C lies on C.	M1

3a.

Gradient $=\frac{-1-1}{4+2} = -\frac{1}{3}$	M1
$y - 1 = -\frac{1}{3}(x + 2)$ 3y - 3 = -x - 2	M1
x + 3y - 1 = 0	M1

<u>3b.</u>

Mid-point of PQ = $(\frac{-2+4}{2}, \frac{1-1}{2}) = (1, 0)$	M1
Gradient of $l_2 = \frac{0-4}{1-2} = 4$	M1
y = 4(x - 1) y = 4x - 4	M1

4a.

$p \rightarrow y = \frac{3}{4}x = 2$ gradient = $\frac{3}{4}$	M1
$y - 5 = \frac{3}{4}(x - 8)$ $y = \frac{3}{4}x - 1$	M1

4b.

Perpendicular gradient = $-\frac{4}{3}$	M1
$y - 6 = -\frac{4}{3}(x + 4)$ 3y - 18 = -4x - 16	M1
4x + 3y - 2 = 0	M1

4c.	
$q \rightarrow 3x - 4y - 4 = 0 \rightarrow 9x - 12y - 12 = 0$	M1
$\mathbf{r} \to 16x + 12y - 8 = 0$	M1
Adding, $25x - 20 = 0$	
$x = \frac{4}{5}$	M1
$y = \frac{3(0.8) - 4}{4} = -\frac{2}{5}$	
Co-oridnates = $\left(\frac{4}{5}, -\frac{2}{5}\right)$	M1
	149 Maths

5a.	
Gradient = $\frac{8-4}{-5-5} = -\frac{2}{5}$	M1
$y - 4 = -\frac{2}{5}(x - 5)$	
5y - 20 = -2x + 10 2x + 5y - 30 = 0	M1
2x + 5y - 30 = 0	

5b.

Midpoint = $\left(\frac{5+1}{2}, \frac{4+11}{2}\right) = (3, 3.5)$	M1
--	----

5c.

Gradient of OM = $3.5 \div 3 = \frac{5}{2}$	M1
Gradient OM x Gradient $AB = \frac{5}{2}x - \frac{2}{5} = -1$ Therefore, OM is perpendicular to AB.	M1

6a.

At A, $y = 0, x = 20 \rightarrow A(20, 0)$	M1
At B, $x = 0, y = 10 \rightarrow B(0, 10)$	M1

<u>6</u>b.

$1 \rightarrow y = 10 - 0.5x$	M1
Gradient of $1 = -0.5$	IVII
Gradient of $m = 2$	M1
Equation of line m: $y = 2x$	IVII
At C, $10 - 0.5x = 2x$	
x = 4	M1
Therefore, $C = (4,8)$	
Area of $\triangle OAC$: area of $\triangle OBC$	M1
0.5 x 20 x 8 : 0.5 x 10 x 4	IVII
4:1	M1

7a.

74.	
Gradient of PQ = $\frac{2-c}{9-3} = \frac{2-c}{6}$	M1
Gradient of QR = $\frac{11-2}{3c-9} = \frac{3}{c-3}$	M1
$\angle PQR = 90^{\circ}$, therefore PQ is perpendicular to QR	
$\frac{2-c}{2} \times \frac{3}{2} = -1$	
6 c-3	
3(2-c) = -6 (c-3) 3c = 12	
c = 4	

7b.	
$PQ^2 = 6^2 + 2^2 = 40$	M1
$PQ = \sqrt{40} = 2\sqrt{10}$ k = 2	M1

7c.

$QR = \sqrt{3^2 + 9^2} = \sqrt{90} = 3\sqrt{10}$	M1
Area = $\frac{1}{2} \times PQ \times QR = 30$	M1

Bring Maths

Par	rt 2; Circ		String V	
	AS L Pt 1: Equation of a Line	.evel Pt. 2: Circles	A-Level Pt 3: Parametric and Cartesian Equations	
1. Find the c	coordinates of the cente a	nd the radius of the	circles $9x^2 + 9y^2 + 6x - 24y + 8 = 0$	(3
2. Find whe	ther the (7, -3) lies inside	or outside the circle	$e x^2 + y^2 + 10x - 4y = 140$	(3
3. Find the e	equation of the normal to	the circle with equa	attion $x^2 + y^2 + 4x = 13$ at the point (-1, 4).	(3
	with equaton $y = 1 - x$ integration of the chord AB, givi		h equation $x^2 + y^2 + 6x + 2y = 27$ at the points <i>h</i> he form $k\sqrt{2}$	A and B.
				(3
	e C has centre $(3, -2)$ and	radius 5.		
	wn an equation of C in ca	rtesian form.		(1
The line $y =$	wn an equation of C in ca 2x - 3 intersects C at the t $AB = 4\sqrt{5}$.	rtesian form.		(1 (5
The line $y =$ b. Show that 6. The circle	$2x - 3$ intersects C at the t $AB = 4\sqrt{5}$. e C touches the y-axis at t	rtesian form. e points A and B . the point A (0, 3) and	d passes through the point B (2, 7).	(5
The line $y =$ b. Show that 6. The circle a. Find an ed b. Find an ed	= $2x - 3$ intersects <i>C</i> at the t $AB = 4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> .	rtesian form. e points A and B . the point A (0, 3) and lar bisector of AB .		(5 (4 (3
The line $y =$ b. Show that b. The circle a. Find an eq b. Find an eq	$= 2x - 3$ intersects <i>C</i> at the t $AB = 4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu	rtesian form. e points A and B . the point A (0, 3) and lar bisector of AB .		(5 (4 (3
The line $y =$ 5. Show that 6. The circle a. Find an eac b. Find an eac c. Show that 7. The circle a. Find the c	= $2x - 3$ intersects <i>C</i> at the t $AB = 4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> ha e <i>C</i> has equation $x^2 + y^2 - c$	rtesian form. e points A and B. the point A (0, 3) and lar bisector of AB. as equation $3x - 4y + 3x $	+22 = 0.	
The line $y =$ 5. Show that 6. The circle a. Find an ed b. Find an ed c. Show that 7. The circle a. Find the c The point <i>P</i> b. Find the 1	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> has e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of has coordinates (3, 5) an largest and smallest value	rtesian form. e points A and B. the point A (0, 3) and lar bisector of AB. as equation $3x - 4y + 3x + 4y + 12 = 0$. of C and the radius of d the point Q lies or es of the length PQ,	+ 22 = 0. of C. n C. giving your answers in the form $k\sqrt{2}$.	(5 (4 (3 (4 (2 (3
The line $y =$ 5. Show that 6. The circle a. Find an ed b. Find an ed c. Show that 7. The circle a. Find the c The point <i>P</i> b. Find the 1	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> has e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of has coordinates (3, 5) an largest and smallest value	rtesian form. e points A and B. the point A (0, 3) and lar bisector of AB. as equation $3x - 4y + 3x + 4y + 12 = 0$. of C and the radius of d the point Q lies or es of the length PQ,	+ 22 = 0.	(5 (4 (3 (4 (2 (3
The line $y =$ 5. Show that 6. The circle a. Find an eac b. Find an eac c. Show that 7. The circle a. Find the circle a. Find the circle b. Find the 1 c. Find the 1 c. Find the 1 c. Find the 1 c. Find the 1	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> has e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of has coordinates (3, 5) an largest and smallest value	rtesian form. e points A and B. the point A (0, 3) and and a bisector of AB. as equation $3x - 4y + 12 = 0$. of C and the radius of d the point Q lies or es of the length PQ, significant figures w -2ay = 0, where a in	the form $k\sqrt{2}$. b) C c) C c) C c) C c) C c) $k\sqrt{2}$ c) $k\sqrt$	(5 (4 (3 (4 (2 (3) (2
The line $y =$ 5. Show that 6. The circle a. Find an ed b. Find an ed c. Show that 7. The circle a. Find the circle a. Find the 1 b. Find the 1 c. Find the 1 c. Find the circle C_1 a. Find the circle C_2 hat b. Circle C_2 hat b. Circle C_2 hat b. Circle C_2 hat c. Circle C_2	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> ha e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of thas coordinates (3, 5) and largest and smallest value length of <i>PQ</i> correct to 3 z^2 has the equation $x^2 + y^2 - z^2$	rtesian form. e points A and B. the point A (0, 3) and a points A and B. the point A (0, 3) and a point a point A (0, 3) and a point A (0, 3) and a point A (0, 3) and A (0, 3) and a point A (0, 3) and A (0, 3) and a point A (0, 3) and A (0,	the form $k\sqrt{2}$. The form $k\sqrt{2}$ is a tangent to C . The s a positive constant.	(5 (4 (3 (4 (2
The line $y =$ 5. Show that 5. The circle 6. Find an ed 7. Find an ed 7. The circle 7. The circle 7. The circle 7. The circle 7. Find the circle 8. Circle C_1 6. Find the circle C_2 has 6. Sketch C_1	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> has e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of thas coordinates (3, 5) and largest and smallest value length of <i>PQ</i> correct to 3 at has the equation $x^2 + y^2 - z^2$	rtesian form. e points A and B. the point A (0, 3) and lar bisector of AB. as equation $3x - 4y + 12 = 0$. of C and the radius of d the point Q lies or es of the length PQ, significant figures w -2ay = 0, where a is and the radius of C1. bx = 0, where b is a gram.	the form $k\sqrt{2}$. The form $k\sqrt{2}$ is a tangent to C . The s a positive constant.	(5 (4 (3 (2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
The line $y =$ b. Show that c. Show that c. Find an ex- c. Find an ex- c. Show that 7. The circle a. Find the circle a. Find the 1 b. Find the 1 c. Find the 1 c. Find the 2 c. Find the 2 c. Find the 2 c. Find the 2 c. Find the 3 c. Find the 4 c. Find the 4 c. Sketch C_1 c. Sketch C_1 c. Sketch C_2 has c. Sketch C_1 c. Find the circle c. Find the 4 c. Sketch C_1 c. Find the 5 c. Sketch C_1 c. Ske	= $2x - 3$ intersects <i>C</i> at the t <i>AB</i> = $4\sqrt{5}$. e <i>C</i> touches the <i>y</i> -axis at t quation of the perpendicu quation for <i>C</i> . at the tangent to <i>C</i> at <i>B</i> ha e <i>C</i> has equation $x^2 + y^2 - z^2$ coordinates of the centre of has coordinates (3, 5) and largest and smallest value length of <i>PQ</i> correct to 3 and has the equation $x^2 + y^2 - 2z^2$ to coordinates of the centre and has the equation $x^2 + y^2 - 2z^2$ as the equation $x^2 + y^2 - 2z^2$ and <i>C</i> ₂ on the same diag	rtesian form. e points A and B. the point A (0, 3) and a points A and B. the point A (0, 3) and a point bisector of AB. as equation $3x - 4y + 4y + 12 = 0$. of C and the radius of d the point Q lies or a point Q lies or a point figures w -2ay = 0, where a in and the radius of C1. bx = 0, where b is a gram. -8x - 16y + 72 = 0. and the radius of C.	+22 = 0. of <i>C</i> . a <i>C</i> . giving your answers in the form $k\sqrt{2}$. when the line <i>PQ</i> is a tangent to <i>C</i> . s a positive constant.	(5 (4 (3 (4 (2 (2 (2

Mark Scheme

1.	
$x^2 + y^2 + \frac{2}{3}x - \frac{8}{3}y + \frac{8}{9} = 0$	M1
$\left(x+\frac{1}{3}\right)^2 - \frac{1}{9} + \left(y-\frac{4}{3}\right)^2 - \frac{16}{9} + \frac{8}{9} = 0$	M1
$\left(x + \frac{1}{3}\right)^2 + \left(y - \frac{4}{3}\right)^2 = 1$	
Centre $\left(\frac{1}{3}, 0\right)$ Radius 1	M1
Radius 1	

2	
4	•

2.	
$(x+5)^2 - 25 + (y-2)^2 - 4 = 140$	M1
$(x+5)^2 + (y-2)^2 = 169$	
Centre (-5, 2)	M1
Radius 13	
Distance to centre = $\sqrt{144 + 25} = 13$	M1
Therefore point is on circle.	

3.

$(x+2)^2 - 4 + y^2 = 13$ Therefore, centre (-2, 0)	M1
Gradient $=\frac{0-4}{-2+1}=4$	M1
Therefore, $y - 4 = 4(x + 1)$ y = 4x + 8	M1

4.

$x^{2} + (1 - x)^{2} + 6x + 2(1 - x) = 27$	M1
$x^2 + x - 12 = 0$	
(x+4)(x-3)=0	M1
x = -4, y = 14 = 5	1411
x = 3, y = 1 - 3 = -2	
Therefore, AB = $\sqrt{49 + 49} = 7\sqrt{2}$	M1

5a. $(x-3)^2 + (y+2)^2 = 25$ **M1**

<u>5b.</u>

$(x-3)^2 + [(2x-3)+2]^2 = 25$	M1
$(x-3)^2 + (2x-1)^2 = 25$	M1
$x^2 - 2x - 3 = 0$	IVII
(x+1)(x-3) = 0	
x = -1, y = 2(-1) - 3 = -5	M1
x = 3, y = 2(3) - 3 = 3	
$AB^2 = 4^2 + 8^2 = 80$	M1
$AB = \sqrt{80} = 4\sqrt{5}$	M1

6a.

04.		
Midpoint AB = $(\frac{0+2}{2}, \frac{3+7}{2}) = (1, 5)$		M1
Gradient AB = $\frac{7-3}{2-0} = 2$		M1
Therefore perpendicular gradient = $-\frac{1}{2}$	6	M1
$y-5 = -\frac{1}{2}(x-1)$	- Star	M1
	, e, ,	haths

11 1	
y = x	

<u>6b.</u>

Circle touches <i>y</i> -axis at (0, 3)	M1
Therefore y-coordordinate of centre $= 3$	IVII
$3 = \frac{11}{2} - \frac{1}{2}x$	M1
x = 5	IVII
Centre (5, 3) radius 5. $(x-5)^2 + (y-3)^2 = 25$	M1
$(x-5)^2 + (y-3)^2 = 25$	IVII

6c.

Gradient of radius $=\frac{7-3}{2-5} = -\frac{4}{3}$	M1
Therefore gradient of tangent = $\frac{3}{4}$	M1
$y - 7 = \frac{3}{4}(x - 2)$ 4y - 28 = 3x - 6	M1
3x - 4y + 22 = 0	M1

7a.

$(x-4)^2 - 16 + (y+2)^2 - 4 + 12 = 0$	M1
$(x-4)^2 + (y+2)^2 = 8$	IVII
Centre: (4, -2)	M1
Radius: $2\sqrt{2}$	IVII

7b.

Distance P to centre = $\sqrt{1 + 49} = \sqrt{50} = 5\sqrt{2}$	M1
Therefore, max PQ = $5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$	M1
$Minimum PQ = 5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$	M1

7c.

Tangent perpendicular to radius:	M1
$PQ^{2} = (5\sqrt{2})^{2} - (5\sqrt{2})^{2} = 50 - 8 = 42$	IVII
$PQ = \sqrt{42} = 6.48$	M1

8a.

$ \begin{aligned} x^2 + (y-a)^2 - a^2 &= 0 \\ x^2 + (y-a)^2 &= a^2 \end{aligned} $	M1
Centre: (0, a) Radius: a	M1

8b.

00.	
C ₂ : $(x - b)^2 - b^2 + y^2 = 0$ $(x - b)^2 + y^2 = b^2$	M1
Centre: (b, 0)	M1
Radius: b	
C_1 a C_2 C_2 b x	M1
Jelking ,	Matus

9a.	
$ \begin{aligned} & (x-4)^2 - 16 + (y-8)^2 - 64 + 72 = 0 \\ & (x-4)^2 + (y-8)^2 = 8 \end{aligned} $	M1
Centre: $(4, 8)$ Radius: $2\sqrt{2}$	M1

<u>9b.</u>

$\sqrt{16+64} = \sqrt{80}$	M1
$=4\sqrt{5}$	M1

9c.

Tangent perpendicular to radius:	M1
$OA^2 = (\sqrt{80})^2 - (2\sqrt{2})^2 = 72$	M1
$OA = \sqrt{72} = 6\sqrt{2}$	1711

