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What Is Statistics? 

Statistics is the science of learning from data, and of 

measuring, controlling, and communicating uncertainty; 

and it thereby provides the navigation essential for 

controlling the course of scientific and societal advances 

(Davidian, M. and Louis, T. A., 10.1126/science.1218685).  

Statisticians apply statistical thinking and methods to a wide 

variety of scientific, social, and business endeavors in such 

areas as astronomy, biology, education, economics, 

engineering, genetics, marketing, medicine, psychology, 

public health, sports, among many. "The best thing about 

being a statistician is that you get to play in everyone else's 

backyard."  

Many economic, social, political, and military decisions 

cannot be made without statistical techniques, such as the 

design of experiments to gain federal approval of a newly 

manufactured drug.  

Job Characteristics 

 Use data to solve problems in a wide variety of fields 

 Apply mathematical and statistical knowledge to social, 

economic, medical, political, and ecological problems 

 Work individually and/or as part of an interdisciplinary 

team 



 Travel to consult with other professionals or attend 

conferences, seminars, and continuing education 

activities 

 Advance the frontiers of statistics, mathematics, and 

probability through education and research 

 

The Word statistics have been derived from Latin word 

“Status” or the Italian word “Statista”, meaning of these 

words is “Political State” or a Government. Shakespeare 

used a word Statist is his drama Hamlet (1602). In the past, 

the statistics was used by rulers. The application of statistics 

was very limited but rulers and kings needed information 

about lands, agriculture, commerce, population of their 

states to assess their military potential, their wealth, taxation 

and other aspects of government. 

 

Gottfried Achenwall used the word statistic at a German 

University in 1749 which means that political science of 

different countries. In 1771 W. Hooper (Englishman) used the 

word statistics in his translation of Elements of Universal 

Erudition written by Baron B.F Bieford, in his book statistics 

has been defined as the science that teaches us what is the 

political arrangement of all the modern states of the known 

world. There is a big gap between the old statistics and the 

modern statistics, but old statistics also used as a part of the 

present statistics. 

 



During the 18th century the English writer have used the 

word statistics in their works, so statistics has developed 

gradually during last few centuries. A lot of work has been 

done in the end of the nineteenth century. 

 

At the beginning of the 20th century, William S Gosset was 

developed the methods for decision making based on small 

set of data. During the 20th century several statistician are 

active in developing new methods, theories and 

application of statistics. Now these days the availability of 

electronics computers is certainly a major factor in the 

modern development of statistics. 

The history of algebra began in ancient Egypt and Babylon, 

where people learned to solve linear (ax = b) and quadratic 

(ax2 + bx = c) equations, as well as indeterminate 

equations such as x2 + y2 = z2, whereby several unknowns 

are involved. The ancient Babylonians solved 

arbitrary quadratic equations by essentially the same 

procedures taught today. They also could solve some 

indeterminate equations. 

 

The Alexandrian mathematicians Hero of Alexandria 

and Diophantus continued the traditions of Egypt 

and Babylon, but Diophantus's book Arithmetica is on a 

much higher level and gives many surprising solutions to 

difficult indeterminate equations. This ancient knowledge of 

solutions of equations in turn found a home early in the 
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Islamic world, where it was known as the "science of 

restoration and balancing." (The Arabic word for 

restoration, al-jabru, is the root of the word algebra.) In the 

9th century, the Arab mathematician al-Khwarizmi wrote 

one of the first Arabic algebras, a systematic exposé of the 

basic theory of equations, with both examples and proofs. 

By the end of the 9th century, the Egyptian mathematician 

Abu Kamil had stated and proved the basic laws and 

identities of algebra and solved such complicated problems 

as finding x, y, and zsuch that x + y + z = 10, x2 + y2 = z2, 

and xz = y2. 

 

Ancient civilizations wrote out algebraic expressions using 

only occasional abbreviations, but by medieval times 

Islamic mathematicians were able to talk about arbitrarily 

high powers of the unknown x, and work out the basic 

algebra of polynomials (without yet using modern 

symbolism). This included the ability to multiply, divide, and 

find square roots of polynomials as well as a knowledge of 

the binomial theorem. The Persian mathematician, 

astronomer, and poet Omar Khayyam showed how to 

express roots of cubic equations by line segments obtained 

by intersecting conic sections, but he could not find a 

formula for the roots. A Latin translation of Al-

Khwarizmi's Algebra appeared in the 12th century. In the 

early 13th century, the great Italian mathematician 

Leonardo Fibonacci achieved a close approximation to the 

solution of the cubic equation x3+ 2x2 + cx = d. 
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Because Fibonacci had traveled in Islamic lands, he 

probably used an Arabic method of successive 

approximations. 

 

Early in the 16th century, the Italian 

mathematicians Scipione del Ferro, Niccolò Tartaglia, 

and Gerolamo Cardano solved the general cubic 

equation in terms of the constants appearing in the 

equation. Cardano's pupil, Ludovico Ferrari, soon found an 

exact solution to equations of the fourth degree 

(see quartic equation), and as a result, mathematicians for 

the next several centuries tried to find a formula for the roots 

of equations of degree five, or higher. Early in the 19th 

century, however, the Norwegian mathematician Niels 

Abel and the French mathematician Evariste Galois proved 

that no such formula exists. 

 

An important development in algebra in the 16th century 

was the introduction of symbols for the unknown and for 

algebraic powers and operations. As a result of this 

development, Book III of La géometrie (1637), written by the 

French philosopher and mathematician René Descartes, 

looks much like a modern algebra text. Descartes's most 

significant contribution to mathematics, however, was his 

discovery of analytic geometry, which reduces the solution 

of geometric problems to the solution of algebraic ones. His 

geometry text also contained the essentials of a course on 

the theory of equations, including his so-called rule of 
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signs for counting the number of what Descartes called the 

"true" (positive) and "false" (negative) roots of an equation. 

Work continued through the 18th century on the theory of 

equations, but not until 1799 was the proof published, by the 

German mathematician Carl Friedrich Gauss, showing that 

every polynomial equation has at least one root in the 

complex plane (see  Number: Complex Numbers). 

 

By the time of Gauss, algebra had entered its modern 

phase. Attention shifted from solving polynomial 

equations to studying the structure of abstract 

mathematical systems whose axioms were based on the 

behavior of mathematical objects, such as complex 

numbers, that mathematicians encountered when studying 

polynomial equations. Two examples of such systems 

are algebraic groups (see  Group) and quaternions, which 

share some of the properties of number systems but also 

depart from them in important ways. Groups began as 

systems of permutations and combinations of roots of 

polynomials, but they became one of the chief unifying 

concepts of 19th-century mathematics. Important 

contributions to their study were made by the French 

mathematicians Galois and Augustin Cauchy, the British 

mathematician Arthur Cayley, and the Norwegian 

mathematicians Niels Abel and Sophus 

Lie. Quaternions were discovered by British mathematician 

and astronomer William Rowan Hamilton, who extended the 

arithmetic of complex numbers to quaternions while 
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complex numbers are of the form a + bi, quaternions are of 

the form a + bi + cj + dk. 

 

Immediately after Hamilton's discovery, the German 

mathematician Hermann Grassmann began investigating 

vectors. Despite its abstract character, American physicist J. 

W. Gibbs recognized in vector algebra a system of great 

utility for physicists, just as Hamilton had recognized the 

usefulness of quaternions. The widespread influence of this 

abstract approach led George Boole to write The Laws of 

Thought (1854), an algebraic treatment of basic logic. Since 

that time, modern algebra—also called abstract algebra—

has continued to develop. Important new results have been 

discovered, and the subject has found applications in all 

branches of mathematics and in many of the sciences as 

well. 

The Algebra of Real Numbers 

 

      

  

 

 

Algebra begins with a systematic study of the operations and rules 

of arithmetic. The operations of addition, subtraction, multiplication 

and division serves as a basis for all arithmetic calculations. In order 

to achieve generality, letters of the alphabets are used in algebra 
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to represent numbers. A letter such as  or can stand for a 

particular number (known or unknown), or it can stand for 

any number at all. A letter that represents an arbitrary number is 

called a variable. 

The sum, difference, product and quotient of 

two numbers,  and , can be written as , , and . 

In algebra, the notation  for the product of  and  is not often 

used because of the possible confusion of the letter  with the 

multiplication sign . The preferred notation is  or simply . 

Similarly, the notation  is usually avoided in favor of the 

fraction  or . 

Algebraic notation (the shorthand of mathematics) is designed to 

clarify ideas and simplify calculation by permitting us to write 

expressions compactly and efficiently. For 

instance,  can written simply as . The use of 

exponents provides an economy of notation for products; for 

instance,  can be written simply as  and  as . In 

general, if  is positive integer,  means  ( times) and 

means . 

In using the exponential notation , we refer to  as 

abase and  as the exponent, or the power to which the base is 

raised. When the exponent is negative, we must assume that the 

base is nonzero to avoid zero in the denominator. By writing 

as equal sign ( ) between two algebraic expressions, we obtain 

an equation, or formula, stating that two expressions represents the 
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same number. Using equations and formulas, we can express 

mathematical facts in compact, easily remembered 

forms. Formulas are used to express relationships among various 

quantities in such fields as geometry, physics, engineering, statistics, 

geology, business, medicine, economics, and the life sciences. 

Calculating the numerical value expressed by a formula when 

particular numbers are assigned to letters is known as evaluation. 

Example 1 : 

(a) Write a formula for the volume of a cube that has edges of 

the length  units. 

(b) Evaluate  when centimeters. 

Solution: 

(a) cubic centimeters. 

(b) When  centimeters,  cubic 

centimeters. 

Example 2: 

A certain type of living cell divides every hour. Starting with one 

such cell in a culture, the number of of cells present at the end 

of  hours is given by the formula . Find thenumber of cells in 

the culture after  hours. 

Solution: 

Substituting  in the formula , we find that 

 cel 

Overview and history of algebra 

Did you realize that the word "algebra" comes from Arabic 

(just like "algorithm" and "al jazeera" and "Aladdin")? And 
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what is so great about algebra anyway? This tutorial doesn't 

explore algebra so much as it introduces the history and 

ideas that underpin it. 

Variables and expressions 

Wait, why are we using letters in math? How can an 'x' 

represent a number? What number is it? I must figure this 

out!!! Yes, you must. This tutorial is great if you're just 

beginning to delve into the world of algebraic variables and 

expressions. 

Manipulating expressions 

Using the combined powers of Chuck Norris and polar bears 

(which are much less powerful than Mr. Norris) to better 

understand what expressions represent and how we can 

manipulate them. Great tutorial if you want to understand 

that expressions are just a way to express things! 

Getting Started with Statistics Concepts  

 

In this introduction, we will briefly discuss those elementary 

statistical concepts that provide the necessary foundations 

for more specialized expertise in any area of statistical data 

analysis. The selected topics illustrate the basic assumptions 

of most statistical methods and/or have been 

demonstrated in research to be necessary components of 

our general understanding of the "quantitative nature" of 

reality (Nisbett, et al., 1987). We will focus mostly on the 
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functional aspects of the concepts discussed and the 

presentation will be very short. Further information on each 

of the concepts can be found in statistical textbooks. 

Recommended introductory textbooks are: Kachigan 

(1986), and Runyon and Haber (1976); for a more advanced 

discussion of elementary theory and assumptions of 

statistics, see the classic books by Hays (1988), and Kendall 

and Stuart (1979). 

 

  

 

◾What are Variables? 

◾Correlational vs. Experimental Research 

◾Dependent vs. Independent Variables 

◾Measurement Scales 

◾Relations between Variables 

◾Why Relations between Variables are Important 

◾Two Basic Features of Every Relation between Variables 

◾What is "Statistical Significance" (p-value) 

◾How to Determine that a Result is "Really" Significant 

◾Statistical Significance and the Number of Analyses 

Performed 



◾Strength vs. Reliability of a Relation between Variables 

◾Why Stronger Relations between Variables are More 

Significant 

   ◾Why Significance of a Relation between Variables 

Depends on the Size of the Sample 

◾Example: Baby Boys to Baby Girls Ratio 

◾Why Small Relations can be Proven Significant Only in 

Large Samples 

◾Can "No Relation" be a Significant Result? 

◾How to Measure the Magnitude (Strength) of Relations 

between Variables 

◾Common "General Format" of Most Statistical Tests 

◾How the "Level of Statistical Significance" is Calculated 

◾Why the "Normal distribution" is Important 

◾Illustration of How the Normal Distribution is Used in 

Statistical Reasoning (Induction) 

◾Are All Test Statistics Normally Distributed? 

◾How Do We Know the Consequences of Violating the 

Normality Assumption? 

  

 

 



What are Variables? 

 

Variables are things that we measure, control, or 

manipulate in research. They differ in many respects, most 

notably in the role they are given in our research and in the 

type of measures that can be applied to them. 

 

Correlational vs. Experimental Research 

 

Most empirical research belongs clearly to one of these two 

general categories. In correlational research, we do not (or 

at least try not to) influence any variables but only measure 

them and look for relations (correlations) between some set 

of variables, such as blood pressure and cholesterol level. In 

experimental research, we manipulate some variables and 

then measure the effects of this manipulation on other 

variables. For example, a researcher might artificially 

increase blood pressure and then record cholesterol level. 

Data analysis in experimental research also comes down to 

calculating "correlations" between variables, specifically, 

those manipulated and those affected by the 

manipulation. However, experimental data may potentially 

provide qualitatively better information: only experimental 

data can conclusively demonstrate causal relations 

between variables. For example, if we found that whenever 

we change variable A then variable B changes, then we 



can conclude that "A influences B." Data from correlational 

research can only be "interpreted" in causal terms based on 

some theories that we have, but correlational data cannot 

conclusively prove causality. 

 

 

 

To index  

 

 

 

Dependent vs. Independent Variables 

 

Independent variables are those that are manipulated 

whereas dependent variables are only measured or 

registered. This distinction appears terminologically 

confusing to many because, as some students say, "all 

variables depend on something." However, once you get 

used to this distinction, it becomes indispensable. The terms 

dependent and independent variable apply mostly to 

experimental research where some variables are 

manipulated, and in this sense they are "independent" from 

the initial reaction patterns, features, intentions, etc. of the 

subjects. Some other variables are expected to be 



"dependent" on the manipulation or experimental 

conditions. That is to say, they depend on "what the subject 

will do" in response. Somewhat contrary to the nature of this 

distinction, these terms are also used in studies where we do 

not literally manipulate independent variables, but only 

assign subjects to "experimental groups" based on some 

pre-existing properties of the subjects. For example, if in an 

experiment, males are compared to females regarding their 

white cell count (WCC), Gender could be called the 

independent variable and WCC the dependent variable. 

 

 

 

To index  

 

 

 

Measurement Scales 

 

Variables differ in how well they can be measured, i.e., in 

how much measurable information their measurement 

scale can provide. There is obviously some measurement 

error involved in every measurement, which determines the 

amount of information that we can obtain. Another factor 



that determines the amount of information that can be 

provided by a variable is its type of measurement scale. 

Specifically, variables are classified as (a) nominal, (b) 

ordinal, (c) interval, or (d) ratio. 

1.Nominal variables allow for only qualitative classification. 

That is, they can be measured only in terms of whether the 

individual items belong to some distinctively different 

categories, but we cannot quantify or even rank order 

those categories. For example, all we can say is that two 

individuals are different in terms of variable A (e.g., they are 

of different race), but we cannot say which one "has more" 

of the quality represented by the variable. Typical examples 

of nominal variables are gender, race, color, city, etc. 

   

2.Ordinal variables allow us to rank order the items we 

measure in terms of which has less and which has more of 

the quality represented by the variable, but still they do not 

allow us to say "how much more." A typical example of an 

ordinal variable is the socioeconomic status of families. For 

example, we know that upper-middle is higher than middle 

but we cannot say that it is, for example, 18% higher. Also, 

this very distinction between nominal, ordinal, and interval 

scales itself represents a good example of an ordinal 

variable. For example, we can say that nominal 

measurement provides less information than ordinal 

measurement, but we cannot say "how much less" or how 



this difference compares to the difference between ordinal 

and interval scales. 

   

3.Interval variables allow us not only to rank order the items 

that are measured, but also to quantify and compare the 

sizes of differences between them. For example, 

temperature, as measured in degrees Fahrenheit or Celsius, 

constitutes an interval scale. We can say that a 

temperature of 40 degrees is higher than a temperature of 

30 degrees, and that an increase from 20 to 40 degrees is 

twice as much as an increase from 30 to 40 degrees. 

   

4.Ratio variables are very similar to interval variables; in 

addition to all the properties of interval variables, they 

feature an identifiable absolute zero point, thus, they allow 

for statements such as x is two times more than y. Typical 

examples of ratio scales are measures of time or space. For 

example, as the Kelvin temperature scale is a ratio scale, 

not only can we say that a temperature of 200 degrees is 

higher than one of 100 degrees, we can correctly state that 

it is twice as high. Interval scales do not have the ratio 

property. Most statistical data analysis procedures do not 

distinguish between the interval and ratio properties of the 

measurement scales. 

 

 



 

 

To index 

  

 

 

 

Relations between Variables 

 

Regardless of their type, two or more variables are related if, 

in a sample of observations, the values of those variables 

are distributed in a consistent manner. In other words, 

variables are related if their values systematically 

correspond to each other for these observations. For 

example, Gender and WCC would be considered to be 

related if most males had high WCC and most females low 

WCC, or vice versa; Height is related to Weight because, 

typically, tall individuals are heavier than short ones; IQ is 

related to the Number of Errors in a test if people with higher 

IQ's make fewer errors. 

 

 

 



To index  

 

 

 

Why Relations between Variables are Important 

 

Generally speaking, the ultimate goal of every research or 

scientific analysis is to find relations between variables. The 

philosophy of science teaches us that there is no other way 

of representing "meaning" except in terms of relations 

between some quantities or qualities; either way involves 

relations between variables. Thus, the advancement of 

science must always involve finding new relations between 

variables. Correlational research involves measuring such 

relations in the most straightforward manner. However, 

experimental research is not any different in this respect. For 

example, the above mentioned experiment comparing 

WCC in males and females can be described as looking for 

a correlation between two variables: Gender and WCC. 

Statistics does nothing else but help us evaluate relations 

between variables. Actually, all of the hundreds of 

procedures that are described in this online textbook can 

be interpreted in terms of evaluating various kinds of inter-

variable relations. 

 



 

 

To index  

 

 

 

Two Basic Features of Every Relation between Variables 

 

The two most elementary formal properties of every relation 

between variables are the relation's (a) magnitude (or "size") 

and (b) its reliability (or "truthfulness"). 

1.Magnitude (or "size"). The magnitude is much easier to 

understand and measure than the reliability. For example, if 

every male in our sample was found to have a higher WCC 

than any female in the sample, we could say that the 

magnitude of the relation between the two variables 

(Gender and WCC) is very high in our sample. In other 

words, we could predict one based on the other (at least 

among the members of our sample). 

   

2.Reliability (or "truthfulness"). The reliability of a relation is a 

much less intuitive concept, but still extremely important. It 

pertains to the "representativeness" of the result found in our 



specific sample for the entire population. In other words, it 

says how probable it is that a similar relation would be found 

if the experiment was replicated with other samples drawn 

from the same population. Remember that we are almost 

never "ultimately" interested only in what is going on in our 

sample; we are interested in the sample only to the extent it 

can provide information about the population. If our study 

meets some specific criteria (to be mentioned later), then 

the reliability of a relation between variables observed in 

our sample can be quantitatively estimated and 

represented using a standard measure (technically called 

p-value or statistical significance level, see the next 

paragraph). 

 

 

What is "Statistical Significance" (p-value)? 

 

The statistical significance of a result is the probability that 

the observed relationship (e.g., between variables) or a 

difference (e.g., between means) in a sample occurred by 

pure chance ("luck of the draw"), and that in the population 

from which the sample was drawn, no such relationship or 

differences exist. Using less technical terms, we could say 

that the statistical significance of a result tells us something 

about the degree to which the result is "true" (in the sense of 

being "representative of the population"). 



 

More technically, the value of the p-value represents a 

decreasing index of the reliability of a result (see Brownlee, 

1960). The higher the p-value, the less we can believe that 

the observed relation between variables in the sample is a 

reliable indicator of the relation between the respective 

variables in the population. Specifically, the p-value 

represents the probability of error that is involved in 

accepting our observed result as valid, that is, as 

"representative of the population." For example, a p-value 

of .05 (i.e.,1/20) indicates that there is a 5% probability that 

the relation between the variables found in our sample is a 

"fluke." In other words, assuming that in the population there 

was no relation between those variables whatsoever, and 

we were repeating experiments such as ours one after 

another, we could expect that approximately in every 20 

replications of the experiment there would be one in which 

the relation between the variables in question would be 

equal or stronger than in ours. (Note that this is not the same 

as saying that, given that there IS a relationship between 

the variables, we can expect to replicate the results 5% of 

the time or 95% of the time; when there is a relationship 

between the variables in the population, the probability of 

replicating the study and finding that relationship is related 

to the statistical power of the design. See also, Power 

Analysis). In many areas of research, the p-value of .05 is 

customarily treated as a "border-line acceptable" error 

level. 



 

How to Determine that a Result is "Really" Significant 

 

There is no way to avoid arbitrariness in the final decision as 

to what level of significance will be treated as really 

"significant." That is, the selection of some level of 

significance, up to which the results will be rejected as 

invalid, is arbitrary. In practice, the final decision usually 

depends on whether the outcome was predicted a priori or 

only found post hoc in the course of many analyses and 

comparisons performed on the data set, on the total 

amount of consistent supportive evidence in the entire data 

set, and on "traditions" existing in the particular area of 

research. Typically, in many sciences, results that yield p .05 

are considered borderline statistically significant, but 

remember that this level of significance still involves a pretty 

high probability of error (5%). Results that are significant at 

the p  .01 level are commonly considered statistically 

significant, and p  .005 or p  .001 levels are often called 

"highly" significant. But remember that these classifications 

represent nothing else but arbitrary conventions that are 

only informally based on general research experience. 

 

 

 



To index  

 

 

 

Statistical Significance and the Number of Analyses 

Performed 

 

Needless to say, the more analyses you perform on a data 

set, the more results will meet "by chance" the conventional 

significance level. For example, if you calculate correlations 

between ten variables (i.e., 45 different correlation 

coefficients), then you should expect to find by chance that 

about two (i.e., one in every 20) correlation coefficients are 

significant at the p  .05 level, even if the values of the 

variables were totally random and those variables do not 

correlate in the population. Some statistical methods that 

involve many comparisons and, thus, a good chance for 

such errors include some "correction" or adjustment for the 

total number of comparisons. However, many statistical 

methods (especially simple exploratory data analyses) do 

not offer any straightforward remedies to this problem. 

Therefore, it is up to the researcher to carefully evaluate the 

reliability of unexpected findings. Many examples in this 

online textbook offer specific advice on how to do this; 

relevant information can also be found in most research 

methods textbooks. 
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Strength vs. Reliability of a Relation between Variables 

 

We said before that strength and reliability are two different 

features of relationships between variables. However, they 

are not totally independent. In general, in a sample of a 

particular size, the larger the magnitude of the relation 

between variables, the more reliable the relation (see the 

next paragraph). 
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Why Stronger Relations between Variables are More 

Significant 

 

Assuming that there is no relation between the respective 

variables in the population, the most likely outcome would 

be also finding no relation between these variables in the 

research sample. Thus, the stronger the relation found in the 

sample, the less likely it is that there is no corresponding 

relation in the population. As you see, the magnitude and 

significance of a relation appear to be closely related, and 

we could calculate the significance from the magnitude 

and vice-versa; however, this is true only if the sample size is 

kept constant, because the relation of a given strength 

could be either highly significant or not significant at all, 

depending on the sample size (see the next paragraph). 
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Why Significance of a Relation between Variables Depends 

on the Size of the Sample 

 

If there are very few observations, then there are also 

respectively few possible combinations of the values of the 

variables and, thus, the probability of obtaining by chance 

a combination of those values indicative of a strong relation 

is relatively high. 

 

Consider the following illustration. If we are interested in two 

variables (Gender: male/female and WCC: high/low), and 

there are only four subjects in our sample (two males and 

two females), then the probability that we will find, purely by 

chance, a 100% relation between the two variables can be 

as high as one-eighth. Specifically, there is a one-in-eight 

chance that both males will have a high WCC and both 

females a low WCC, or vice versa. 

 

Now consider the probability of obtaining such a perfect 

match by chance if our sample consisted of 100 subjects; 

the probability of obtaining such an outcome by chance 

would be practically zero. 

 

Let's look at a more general example. Imagine a theoretical 

population in which the average value of WCC in males 



and females is exactly the same. Needless to say, if we start 

replicating a simple experiment by drawing pairs of samples 

(of males and females) of a particular size from this 

population and calculating the difference between the 

average WCC in each pair of samples, most of the 

experiments will yield results close to 0. However, from time 

to time, a pair of samples will be drawn where the 

difference between males and females will be quite 

different from 0. How often will it happen? The smaller the 

sample size in each experiment, the more likely it is that we 

will obtain such erroneous results, which in this case would 

be results indicative of the existence of a relation between 

Gender and WCC obtained from a population in which 

such a relation does not exist. 
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Example: Baby Boys to Baby Girls Ratio 

 



Consider this example from research on statistical reasoning 

(Nisbett, et al., 1987). There are two hospitals: in the first one, 

120 babies are born every day; in the other, only 12. On 

average, the ratio of baby boys to baby girls born every 

day in each hospital is 50/50. However, one day, in one of 

those hospitals, twice as many baby girls were born as baby 

boys. In which hospital was it more likely to happen? The 

answer is obvious for a statistician, but as research shows, 

not so obvious for a lay person: it is much more likely to 

happen in the small hospital. The reason for this is that 

technically speaking, the probability of a random deviation 

of a particular size (from the population mean), decreases 

with the increase in the sample size. 
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Why Small Relations Can be Proven Significant Only in Large 

Samples 

 



The examples in the previous paragraphs indicate that if a 

relationship between variables in question is "objectively" 

(i.e., in the population) small, then there is no way to identify 

such a relation in a study unless the research sample is 

correspondingly large. Even if our sample is in fact "perfectly 

representative," the effect will not be statistically significant if 

the sample is small. Analogously, if a relation in question is 

"objectively" very large, then it can be found to be highly 

significant even in a study based on a very small sample. 

 

Consider this additional illustration. If a coin is slightly 

asymmetrical and, when tossed, is somewhat more likely to 

produce heads than tails (e.g., 60% vs. 40%), then ten tosses 

would not be sufficient to convince anyone that the coin is 

asymmetrical even if the outcome obtained (six heads and 

four tails) was perfectly representative of the bias of the 

coin. However, is it so that 10 tosses is not enough to prove 

anything? No; if the effect in question were large enough, 

then ten tosses could be quite enough. For instance, 

imagine now that the coin is so asymmetrical that no matter 

how you toss it, the outcome will be heads. If you tossed 

such a coin ten times and each toss produced heads, most 

people would consider it sufficient evidence that something 

is wrong with the coin. In other words, it would be 

considered convincing evidence that in the theoretical 

population of an infinite number of tosses of this coin, there 

would be more heads than tails. Thus, if a relation is large, 



then it can be found to be significant even in a small 

sample. 
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Can "No Relation" be a Significant Result? 

 

The smaller the relation between variables, the larger the 

sample size that is necessary to prove it significant. For 

example, imagine how many tosses would be necessary to 

prove that a coin is asymmetrical if its bias were only 

.000001%! Thus, the necessary minimum sample size 

increases as the magnitude of the effect to be 

demonstrated decreases. When the magnitude of the 

effect approaches 0, the necessary sample size to 

conclusively prove it approaches infinity. That is to say, if 

there is almost no relation between two variables, then the 

sample size must be almost equal to the population size, 

which is assumed to be infinitely large. Statistical 

significance represents the probability that a similar 



outcome would be obtained if we tested the entire 

population. Thus, everything that would be found after 

testing the entire population would be, by definition, 

significant at the highest possible level, and this also 

includes all "no relation" results. 
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How to Measure the Magnitude (Strength) of Relations 

between Variables 

 

There are very many measures of the magnitude of 

relationships between variables that have been developed 

by statisticians; the choice of a specific measure in given 

circumstances depends on the number of variables 

involved, measurement scales used, nature of the relations, 

etc. Almost all of them, however, follow one general 

principle: they attempt to somehow evaluate the observed 

relation by comparing it to the "maximum imaginable 

relation" between those specific variables. 



 

Technically speaking, a common way to perform such 

evaluations is to look at how differentiated the values are of 

the variables, and then calculate what part of this "overall 

available differentiation" is accounted for by instances 

when that differentiation is "common" in the two (or more) 

variables in question. Speaking less technically, we 

compare "what is common in those variables" to "what 

potentially could have been common if the variables were 

perfectly related." 

 

Let's consider a simple illustration. Let's say that in our 

sample, the average index of WCC is 100 in males and 102 

in females. Thus, we could say that on average, the 

deviation of each individual score from the grand mean 

(101) contains a component due to the gender of the 

subject; the size of this component is 1. That value, in a 

sense, represents some measure of relation between 

Gender and WCC. However, this value is a very poor 

measure because it does not tell us how relatively large this 

component is given the "overall differentiation" of WCC 

scores. Consider two extreme possibilities: 

1.If all WCC scores of males were equal exactly to 100 and 

those of females equal to 102, then all deviations from the 

grand mean in our sample would be entirely accounted for 

by gender. We would say that in our sample, Gender is 

perfectly correlated with WCC, that is, 100% of the observed 



differences between subjects regarding their WCC is 

accounted for by their gender. 

   

2.If WCC scores were in the range of 0-1000, the same 

difference (of 2) between the average WCC of males and 

females found in the study would account for such a small 

part of the overall differentiation of scores that most likely it 

would be considered negligible. For example, one more 

subject taken into account could change, or even reverse 

the direction of the difference. Therefore, every good 

measure of relations between variables must take into 

account the overall differentiation of individual scores in the 

sample and evaluate the relation in terms of (relatively) how 

much of this differentiation is accounted for by the relation 

in question. 
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Common "General Format" of Most Statistical Tests 

 

Because the ultimate goal of most statistical tests is to 

evaluate relations between variables, most statistical tests 

follow the general format that was explained in the previous 

paragraph. Technically speaking, they represent a ratio of 

some measure of the differentiation common in the 

variables in question to the overall differentiation of those 

variables. For example, they represent a ratio of the part of 

the overall differentiation of the WCC scores that can be 

accounted for by gender to the overall differentiation of the 

WCC scores. This ratio is usually called a ratio of explained 

variation to total variation. In statistics, the term explained 

variation does not necessarily imply that we "conceptually 

understand" it. It is used only to denote the common 

variation in the variables in question, that is, the part of 

variation in one variable that is "explained" by the specific 

values of the other variable, and vice versa. 
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How the "Level of Statistical Significance" is Calculated 

 

Let's assume that we have already calculated a measure of 

a relation between two variables (as explained above). The 

next question is "how significant is this relation?" For example, 

is 40% of the explained variance between the two variables 

enough to consider the relation significant? The answer is "it 

depends." 

 

Specifically, the significance depends mostly on the sample 

size. As explained before, in very large samples, even very 

small relations between variables will be significant, whereas 

in very small samples even very large relations cannot be 

considered reliable (significant). Thus, in order to determine 

the level of statistical significance, we need a function that 

represents the relationship between "magnitude" and 

"significance" of relations between two variables, 

depending on the sample size. The function we need would 

tell us exactly "how likely it is to obtain a relation of a given 

magnitude (or larger) from a sample of a given size, 

assuming that there is no such relation between those 

variables in the population." In other words, that function 

would give us the significance (p) level, and it would tell us 

the probability of error involved in rejecting the idea that 



the relation in question does not exist in the population. This 

"alternative" hypothesis (that there is no relation in the 

population) is usually called the null hypothesis. It would be 

ideal if the probability function was linear and, for example, 

only had different slopes for different sample sizes. 

Unfortunately, the function is more complex and is not 

always exactly the same; however, in most cases we know 

its shape and can use it to determine the significance levels 

for our findings in samples of a particular size. Most of these 

functions are related to a general type of function, which is 

called normal. 
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Why the "Normal Distribution" is Important 

 

The "normal distribution" is important because in most cases, 

it well approximates the function that was introduced in the 

previous paragraph (for a detailed illustration, see Are All 

Test Statistics Normally Distributed?). The distribution of many 



test statistics is normal or follows some form that can be 

derived from the normal distribution. In this sense, 

philosophically speaking, the normal distribution represents 

one of the empirically verified elementary "truths about the 

general nature of reality," and its status can be compared 

to the one of fundamental laws of natural sciences. The 

exact shape of the normal distribution (the characteristic 

"bell curve") is defined by a function that has only two 

parameters: mean and standard deviation. 

 

A characteristic property of the normal distribution is that 

68% of all of its observations fall within a range of ±1 

standard deviation from the mean, and a range of ±2 

standard deviations includes 95% of the scores. In other 

words, in a normal distribution, observations that have a 

standardized value of less than -2 or more than +2 have a 

relative frequency of 5% or less. (Standardized value means 

that a value is expressed in terms of its difference from the 

mean, divided by the standard deviation.) If you have 

access to STATISTICA, you can explore the exact values of 

probability associated with different values in the normal 

distribution using the interactive Probability Calculator tool; 

for example, if you enter the Z value (i.e., standardized 

value) of 4, the associated probability computed by 

STATISTICA will be less than .0001, because in the normal 

distribution almost all observations (i.e., more than 99.99%) 

fall within the range of ±4 standard deviations. The 



animation below shows the tail area associated with other Z 

values. 
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Illustration of How the Normal Distribution is Used in Statistical 

Reasoning (Induction) 

 

Recall the example discussed above, where pairs of 

samples of males and females were drawn from a 

population in which the average value of WCC in males 

and females was exactly the same. Although the most likely 

outcome of such experiments (one pair of samples per 

experiment) was that the difference between the average 

WCC in males and females in each pair is close to zero, 

from time to time, a pair of samples will be drawn where the 

difference between males and females is quite different 



from 0. How often does it happen? If the sample size is large 

enough, the results of such replications are "normally 

distributed" (this important principle is explained and 

illustrated in the next paragraph) and, thus, knowing the 

shape of the normal curve, we can precisely calculate the 

probability of obtaining "by chance" outcomes representing 

various levels of deviation from the hypothetical population 

mean of 0. If such a calculated probability is so low that it 

meets the previously accepted criterion of statistical 

significance, then we have only one choice: conclude that 

our result gives a better approximation of what is going on in 

the population than the "null hypothesis" (remember that 

the null hypothesis was considered only for "technical 

reasons" as a benchmark against which our empirical result 

was evaluated). Note that this entire reasoning is based on 

the assumption that the shape of the distribution of those 

"replications" (technically, the "sampling distribution") is 

normal. This assumption is discussed in the next paragraph. 
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Are All Test Statistics Normally Distributed? 

 

Not all, but most of them are either based on the normal 

distribution directly or on distributions that are related to and 

can be derived from normal, such as t, F, or Chi-square. 

Typically, these tests require that the variables analyzed are 

themselves normally distributed in the population, that is, 

they meet the so-called "normality assumption." Many 

observed variables actually are normally distributed, which 

is another reason why the normal distribution represents a 

"general feature" of empirical reality. The problem may 

occur when we try to use a normal distribution-based test to 

analyze data from variables that are themselves not 

normally distributed (see tests of normality in 

Nonparametrics or ANOVA/MANOVA). In such cases, we 

have two general choices. First, we can use some 

alternative "nonparametric" test (or so-called "distribution-

free test" see, Nonparametrics); but this is often inconvenient 

because such tests are typically less powerful and less 

flexible in terms of types of conclusions that they can 

provide. Alternatively, in many cases we can still use the 

normal distribution-based test if we only make sure that the 

size of our samples is large enough. The latter option is 

based on an extremely important principle that is largely 

responsible for the popularity of tests that are based on the 

normal function. Namely, as the sample size increases, the 

shape of the sampling distribution (i.e., distribution of a 



statistic from the sample; this term was first used by Fisher, 

1928a) approaches normal shape, even if the distribution of 

the variable in question is not normal. This principle is 

illustrated in the following animation showing a series of 

sampling distributions (created with gradually increasing 

sample sizes of: 2, 5, 10, 15, and 30) using a variable that is 

clearly non-normal in the population, that is, the distribution 

of its values is clearly skewed. 

 

 

 

However, as the sample size (of samples used to create the 

sampling distribution of the mean) increases, the shape of 

the sampling distribution becomes normal. Note that for 

n=30, the shape of that distribution is "almost" perfectly 

normal (see the close match of the fit). This principle is 

called the central limit theorem (this term was first used by 

Pólya, 1920; German, "Zentraler Grenzwertsatz"). 
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How Do We Know the Consequences of Violating the 

Normality Assumption? 

 

Although many of the statements made in the preceding 

paragraphs can be proven mathematically, some of them 

do not have theoretical proof and can be demonstrated 

only empirically, via so-called Monte-Carlo experiments. In 

these experiments, large numbers of samples are generated 

by a computer following predesigned specifications, and 

the results from such samples are analyzed using a variety of 

tests. This way we can empirically evaluate the type and 

magnitude of errors or biases to which we are exposed 

when certain theoretical assumptions of the tests we are 

using are not met by our data. Specifically, Monte-Carlo 

studies were used extensively with normal distribution-based 

tests to determine how sensitive they are to violations of the 

assumption of normal distribution of the analyzed variables 

in the population. The general conclusion from these studies 

is that the consequences of such violations are less severe 

than previously thought. Although these conclusions should 

not entirely discourage anyone from being concerned 

about the normality assumption, they have increased the 

overall popularity of the distribution-dependent statistical 

tests in all areas of research. 


