Publications

Inclúdes 96 Elash Cards!

Table of Contents

Operations with Real Numbers
Operations with Real Numbers 4
Patterns 5
Adding Real Numbers 7
Subtracting Real Numbers 9
Multiplying Real Numbers 11
Dividing Real Numbers 12
Order of Operations 13
Real-Number Operations with Absolute Value 16
Variables and Equations
Substitution 17
Combining Like Terms 19
Solving One-Step Equations 21
Solving Basic Equations 23
Solving Equations with
Variables on Both Sides 26
Problem Solving 27
Solving Inequalities with
Multiple Operations 29
Solving Inequalities with Variables on Both Sides 30
Practice Solving Inequalities 31
Polynomials
Adding and Subtracting
Polynomials. 33
Raising Exponents to a Power 34
Multiplying Exponents 35
Dividing Exponents 36
Negative Exponents 37
Products of Polynomials 38
Multiplying Binomials 40
Squaring Binomials 41
Area and Perimeter 42
FactoringFactoring Monomialsfrom Polynomials43
Factoring Trinomials of the
Form $x^{2}+b x+c$ 44
Factoring Trinomials of the Form $a x^{2}+b x+c$ 46
Factoring Trinomials in Quadratic Form 48
Factoring Difference of Two Squares 49
Factoring Perfect Square Trinomials 50
Factoring the Sum or Difference of Two Cubes 51
Solving Equations by Factoring... 52
Problem Solving 53
Rational Expressions
Dividing Monomials 55
Simplifying Rational Expressions. 56
Dividing Polynomials 57
Dividing Polynomials by Synthetic Division 59
Multiplying Rational Expressions... 60
Dividing Rational Expressions 61
Adding and Subtracting Rational Expressions 62
Solving Fractional Equations 63
Ratios and Proportions
Proportions 64
Problem Solving with Proportions 65
Graphing
Graphing Ordered Pairs 67
Plotting Points 69
Graphing Ordered Pairs 70
Graphing Linear Equations 71
Slope-Intercept Form 73
X - and Y-Intercepts 76
X - and Y-Intercepts
Writing an Equation of a Line 77
Graphing Linear Inequalities 79
Solving Systems of LinearEquations by Graphing .82
Solving Systems of Linear
Equations by Addition Method.. 85
Solving Systems of Linear
Equations by Multiplicationwith Addition Method86
Solving Systems of Linear Equations by Substitution 87
Radicals
Simplifying Radicals 88
Multiplying Radicals 90
Dividing Radicals 91
Adding and Subtracting Radical Expressions 92
Solving Equations by Taking Square Roots. 93
Factoring
Solving Quadratic Equationsby Factoring94
Solving Equations by Taking Square Roots. 95
Solving Quadratic Equations by Taking Square Roots 96
Logical Reasoning
and Application
Probability Experiment- Directional Page 97
Probability Experiment. 98
Answer Key 104

Operations with Real Numbers

Operations with Real Numbers

Integers are $\ldots-5,-4,-3,-2,-1,0,1,2,3,4,5 \ldots$
There is a set of three dots before and after the list of integers. This means that the numbers continue, and there is no largest or smallest integer.

Looking at a number line, the integers to the right of zero are positive integers and the integers to the left of zero are negative integers. Zero is neither a positive integer nor a negative integer.

Natural numbers are all positive integers.
$1,2,3,4,5 \ldots$
Whole numbers are comprised of zero and all of the positive integers.

$$
0,1,2,3,4,5 \ldots
$$

Variables are letters of the alphabet that represent a number in mathematics. For example, in the problem $5 x=15, x$ is the variable.

The quotient of two integers is a rational number. A rational number can be written as $\frac{t}{x}$, in the case that t and x are integers and x is not equal to zero $(x \neq 0)$. When a rational number is written this way, it is called a fraction.

It is important to note that every integer is a rational number. A decimal number, such as 12.6 , is also considered a rational number. All rational numbers can be written as repeating or terminating decimals.

An irrational number is a number whose decimal expansion does not terminate and never repeats. For example $\pi=3.141592604 \ldots$

Real numbers are made up of rational numbers and irrational numbers.

Name \qquad
\qquad

Operations with Real Numbers

Patterns

The French mathematician Blaise Pascal developed a triangular pattern to describe the coefficients for the expansion of $(a+b)^{n}$, for consecutive values of n in rows. This pattern is referred to as Pascal's triangle.

In the triangular formation below, note that $(a+b)^{0}=1$ and $(a+b)^{1}=a+b$.

Part A. Fill in the blanks in Pascal's triangle to extend the pattern.

$n=0$
$n=1$
1
1
$n=2$
12
1
$n=3$
$n=4$
$n=5$
$n=6$
$n=7$
$n=8$
$n=9$
$n=10$

Part B. Use Pascal's triangle to find the coefficients of the expansion $(a+b)$.

1. $(a+b)^{3}=$ \qquad $a^{3}+$ \qquad $a^{2} b+$ \qquad $a b^{2}+$ \qquad
2. $(a+b)^{6}=$ \qquad $a^{5} b+$ \qquad $a^{3} b^{3}+\ldots a^{2} b^{4}+$ \qquad $a b^{5}+$ \qquad
3. $(a+b)^{4}=$ \qquad $a^{3} b+$ \qquad $a^{2} b^{2}+$ \qquad $a b^{3}+$ \qquad
4. $(a+b)^{7}=$ \qquad $a^{7}+$ \qquad $a^{6} b+$ \qquad $a^{5} b^{2}+$ \qquad $a^{4} b^{3}+$ \qquad $a^{3} b^{4}+$ \qquad $a^{2} b^{5}+$ $a b^{6}+$ \qquad
\qquad

Operations with Real Numbers

Patterns

Carefully study the patterns of numbers to complete each pattern.

1. $130,120,110,100$, \qquad , \qquad
\qquad
2. $20,200,2,000,20,000$, \qquad
\qquad ,
3. $3,6,7,14,15,30,31$, \qquad , , \qquad
4. $1,4,9,16,25$, \qquad , \qquad
\qquad
\qquad
5. $1,6,5,10,9,14,13$, \qquad , \qquad
6. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}$, \qquad , \longrightarrow \longrightarrow
7. $17,15,25,23,33,31$, \qquad , \qquad
\qquad
8. 7, 21, 63, 189, \qquad ,,
9. $800,80,8,0.8,0.08$, \qquad , , \qquad

Challenge!
The following is a special pattern called the Fibonacci sequence. See if you can discover and complete this interesting pattern.
$1,1,2,3,5,8,13$, \qquad
\qquad
\qquad
\qquad

Operations with Real Numbers

Adding Real Numbers

$$
-7+6=-1
$$

Add.

1. $2.7+(-4.8)=$
2. $1.45+2.65+(-9.43)=$
3. $-55+(-8)+(-4)+54=$
4. $3.54+4.27+7.43=$
5. $10+7+(-7)+(-10)=$
6. $16+21+(-3)+7=$
7. $10+7+(-16)+9+(-30)=$
8. $5.8+8.4=$
9. $2.76+(-6.56)+(-9.72)=$
10. $8+(-7)=$
11. $2 \frac{3}{5}+4 \frac{3}{7}=$
12. $-8 \frac{3}{5}+3 \frac{3}{7}=$
13. $3 \frac{5}{8}+\left(-1 \frac{2}{3}\right)+2=$
14. $-5 \frac{3}{4}+\left(-2 \frac{3}{4}\right)+8=$
15. $7.3+(3.9)=$
16. $-21+12+(-1)+(-17)=$
17. $7.867+(-5.329)=$
18. $-2 \frac{3}{5}+\left(-5 \frac{3}{7}\right)+3=$
19. $3+12+(-13)+36=$
20. $-3 \frac{1}{6}+\left(-9-\frac{3}{12}\right)+6=$

Operations with Real Numbers

Adding Real Numbers

$$
-6+3=-3
$$

Add.

1. $2 \frac{3}{5}+\left(-3 \frac{2}{5}\right)+-6=$
2. $21+9+(-6)+7=$
3. $12+(-9)+17=$
4. $2.54+-5.87+-32.65=$
5. $1+-5+(-5)+1=$
6. $21+3+(-13)+22=$
7. $3+(-3)+4+(-5)=$
8. $3.3+(-3.4)+5.5=$
9. $3.6+(-2.5)+-5.5=$
10. $-0.6+(-0.56)+3=$
11. $2+5+-3=$
12. $4.524+7.342=$
13. $-7 \frac{2}{4}+2 \frac{3}{4}=$
14. $34+(-13)+18+0+34=$
15. $8.43+(-10.98)+(-3.23)=$
16. $2.54+(-5.21)+(-6.34)=$
17. $-2 \frac{1}{3}+\left(-5 \frac{7}{10}\right)+(-7)=$
18. $-1 \frac{2}{3}+\left(-3 \frac{3}{5}\right)+4=$
19. $2 \frac{1}{2}+6 \frac{1}{2}=$
20. $4 \frac{3}{5}+\left(-3 \frac{2}{5}\right)+(-8)=$

Operations with Real Numbers

Subtracting Real Numbers

$$
10-(-4)=10+4=14
$$

Subtract.

1. $9-(-32)=$
2. $-99-(-42)=$
3. $\frac{3}{5}-\frac{7}{8}=$
4. $0-21=$
5. $45-301=$
6. $9.432+4.348-44.938=$
7. $-43-6=$
8. $9-(-2)-8-7=$
9. $35-67-85-21-12=$
10. $18-(-13)=$
11. $-\frac{4}{7}-\frac{1}{3}-\left(\frac{2}{3}\right)=$
12. $8-2.8=$
13. $3.9-4.9=$
14. $-7-(-3)=$
15. $2.19-7.8-8.31=$
16. $-\frac{2}{5}-\frac{3}{4}-\left(-\frac{4}{5}\right)=$
17. $3.434-7.294=$
18. $8-(-14)=$
19. $38-39-(-13)=$
20. $12-7-(-16)-9-(-34)=$
\qquad

Operations with Real Numbers

Subtracting Real Numbers

$$
4-(-5)=4+5=9
$$

Subtract.

1. $-9-(-5)=$
2. $321-(-34)=$
3. $\frac{2}{3}-\frac{4}{5}=$
4. $4-(-8)=$
5. $5.34-9.9-3.65=$
6. $-19-8=$
7. $245-32-(-36)=$
8. $44-35-34-32=$
9. $8-(-5)-7-9=$
10. $43-88-35-21=$
11. $121-45=$
12. $-45-5=$
13. $-\frac{2}{3}-\frac{1}{3}-\left(-\frac{1}{3}\right)=$
14. $-\frac{4}{5}-\frac{1}{2}-\frac{2}{5}=$
15. $4-12.9=$
16. $7-(-33)=$
17. $3.4-7.4=$
18. $2.456-4.345-5.457=$
19. $23-(-21)=$
20. $4.346-0.4537=$
\qquad

Operations with Real Numbers

Multiplying Real Numbers

$$
(-2)(-3)=6
$$

Multiply.

1. $4 \cdot 9=$
2. $-4 \cdot 12=$
3. $\left(-\frac{5}{9}\right)(8.8)=$
4. $(-3)(0)=$
5. $(-3)(-9)=$
6. $6(23)=$
7. $(12)(-3)(4)=$
8. $(-5)(-5)(-5)=$
9. $(5)(2)(-1)=$
10. $(7)(-9)(-12)=$
11. $\left(-\frac{2}{3}\right)(-1.6)=$
12. $-7(-7)=$
13. $(54.2)(-3.55)=$
14. $(2.22)(-1.11)=$
15. $(7.44)(3.2)(4.3)=$
16. $(2.4)(-1.4)=$
17. $\left(-\frac{3}{5}\right)\left(\frac{3}{5}\right)=$
18. $\left(-\frac{4}{5}\right)(2.2)=$
19. $-8 \cdot 12=$
20. $(0)(2)(-213)=$

Name \qquad Date Operations with Real Numbers
Adding Real Numbers
Add.

1. $2.7+(-4.8)=-2.1$	2. $1.45+2.65+(-9.43)=-5.33$
3. $-55+(-8)+(-4)+54=-13$	4. $3.54+4.27+7.43=15.24$
7. $10+7+(-7)+(-10)=0$	6. $16+21+(-3)+7=41$
7. $10+7+(-16)+9+(-30)=-20$	10. $8+(-7)=1$
9. $2.76+(-6.56)+(-9.72)=-13.52$	12. $-8 \frac{3}{5}+3 \frac{3}{7}=-5 \frac{6}{35}$
11. $2 \frac{3}{5}+4 \frac{3}{7}=7 \frac{1}{35}$	14. $-5 \frac{3}{4}+\left(-2 \frac{3}{4}\right)+8=-\frac{1}{2}$
13. $3 \frac{5}{8}+\left(-1 \frac{2}{3}\right)+2=3 \frac{23}{24}$	16. $-21+12+(-1)+(-17)=-27$
15. $7.3+(3.9)=11.2$	18. $-2 \frac{3}{5}+\left(-5 \frac{3}{7}\right)+3=-5 \frac{1}{35}$
17. $7.867+(-5.329)=2.538$	20. $-3 \frac{1}{6}+\left(-9 \frac{3}{12}\right)+6=-6 \frac{5}{12}$

CD-104316•• Carson-Dellosa
7

