\qquad
Unit \#2: Sequences \& Exponential Functions Lesson \#3: Recursive Formulas

Period
Date

Ex \#1: Consider the sequence $5,8,11,14,17 \ldots$

- What is the pattern of the sequence? \qquad
- Is the sequence arithmetic or geometric?
- What is the next number in the sequence?
- What is an explicit formula for the sequence? \qquad
Another formula that can be used to describe the pattern is

But what does A_{n+1} even mean? Let's look back at the pattern...
5
$8=5+3$
$11=8+3$
$14=11+3$
$17=14+3$
What we call the $5^{\text {th }}$ term? \qquad
How do we find the $5^{\text {th }}$ term if we know the $4^{\text {th }}$ term? \qquad
How do we write that? \qquad
How do we find the $6^{\text {th }}$ term if we know the $5^{\text {th }}$ term? \qquad
How do we write that? \qquad
How do we find the $(\mathrm{n}+1)^{\text {th }}$ term if we know the $\mathrm{n}^{\text {th }}$ term? \qquad
How do we write that?
The statement $A_{n+1}=A_{n}+3$ is a \qquad formula. A recursive formula relates a \qquad in the sequence to preceding \qquad or \qquad of the sequence.

NOTE: You may see the same sequence written as $\mathrm{A}(\mathrm{n}+1)=\mathrm{A}(\mathrm{n})+3$. It means the EXACT SAME THING!!!

Ex \#2: Find the first five terms of the sequence defined by

$$
A_{n+1}=A_{n}-3 \text { where } A_{1}=5
$$

Ex \#3: Find the first five terms of the sequence defined by

$$
A_{n+1}=3 A_{n} \text { where } A_{1}=5
$$

Ex \#4: Find the first five terms of the sequence defined by

$$
f(\mathrm{n}+1)=2 f(\mathrm{n})-3 \text { where } f(1)=5
$$

Ex \#5: Find the first five terms of the sequence defined by

$$
A_{n+1}=3 A_{n}+4 \text { where } A(1)=1
$$

Ex \#6: Consider the sequence given by the formula

$$
A_{n}=A_{n-1}-5 \text { where } A_{1}=12
$$

The first five terms of the sequence are \qquad
An explicit formula for the sequence would be
\qquad
\qquad
\qquad

Ex \#6: A sequence of blocks is shown in the diagram below.

This sequence can be defined by the recursive function $a_{1}=1$ and $a_{n}=a_{n-1}+n$ Assuming the pattern continues, how many blocks will there be when $n=7$?

1) 13
2) 21
3) 28
4) 36

Ex \#7: In 2014, the cost to mail a letter was 49\$ for up to one ounce. Every additional ounce cost 21d. Which recursive function could be used to determine the cost of a 3 -ounce letter, in cents?

1) $a_{1}=49 ; a_{n}=a_{n-1}+21$
2) $a_{1}=0 ; a_{n}=49 a_{n-1}+21$
3) $a_{1}=21 ; a_{n}=a_{n-1}+49$
4) $\mathrm{a}_{1}=0: \mathrm{a}_{\mathrm{n}}=21 \mathrm{a}_{\mathrm{n}-1}+49$

Ex \#8: Which recursively defined function represents the sequence $3,7,15,31, \ldots$?

1) $f(1)=3, f(n+1)=2^{f(n)}+3$
2) $f(1)=3, f(n+1)=2^{f(n)}-1$
3) $f(1)=3, f(n+1)=2 f(n)+1$
4) $f(1)=3, f(n+1)=3 f(n)-2$

Try these...

1.) $45,41,37,33 \ldots$

- What is the pattern for this sequence?
- Is this sequence arithmetic or geometric? \qquad
- Is there a common difference or a common ratio?
- What is the first term? \qquad
- What is the common difference/ratio? \qquad
- The explicit formula for this sequence is: \qquad
- The recursive formula for this sequence is: \qquad
- What is the $15^{\text {th }}$ term of the sequence? \qquad
2.) $28,33,38,43, \ldots$
- What is the pattern for this sequence?
- Is this sequence arithmetic or geometric? \qquad
- Is there a common difference or a common ratio?
- What is the first term? \qquad
- What is the common difference/ratio? \qquad
- The explicit formula for this sequence is: \qquad
- The recursive formula for this sequence is: \qquad
- What is the $22^{\text {nd }}$ term of the sequence? \qquad
3.) $1,3,9,27 \ldots$
- What is the pattern for this sequence?
- Is this sequence arithmetic or geometric? \qquad
- Is there a common difference or a common ratio?
- What is the first term? \qquad
- What is the common difference/ratio? \qquad
- The explicit formula for this sequence is: \qquad
- The recursive formula for this sequence is: \qquad
- What is the $8^{\text {th }}$ term of the sequence? \qquad
4.) $320,160,80, \ldots$
- What is the pattern for this sequence? \qquad
- Is this sequence arithmetic or geometric?
- Is there a common difference or a common ratio?
- What is the first term? \qquad
- What is the common difference/ratio? \qquad
- The explicit formula for this sequence is: \qquad
- The recursive formula for this sequence is:
- What is the $9^{\text {th }}$ term of the sequence? \qquad
5.) $7,19,31,43, \ldots$
- What is the pattern for this sequence?
- Is this sequence arithmetic or geometric? \qquad
- Is there a common difference or a common ratio? \qquad
- What is the first term? \qquad
- What is the common difference/ratio? \qquad
- The explicit formula for this sequence is: \qquad
- The recursive formula for this sequence is:
- What is the $57^{\text {th }}$ term of the sequence? \qquad

