0617AI Common Core State Standards

1 To keep track of his profits, the owner of a carnival booth decided to model his ticket sales on a graph. He found that his profits only declined when he sold between 10 and 40 tickets. Which graph could represent his profits?

1)
Number of Tickets Sold

2)

2 The formula for the surface area of a right rectangular prism is $A=2 l w+2 h w+2 l h$, where l, w, and h represent the length, width, and height, respectively. Which term of this formula is not dependent on the height?

1) A
2) $2 l w$
3) $2 h w$
4) $2 l \mathrm{~h}$

3 Which graph represents $y=\sqrt{x-2}$?

4 A student plotted the data from a sleep study as shown in the graph below.

The student used the equation of the line $y=-0.09 x+9.24$ to model the data. What does the rate of change represent in terms of these data?

1) The average number of hours of sleep per day increases 0.09 hour per year of age.
2) The average number of hours of sleep per day decreases 0.09 hour per year of age.
3) The average number of hours of sleep per day increases 9.24 hours per year of age.
4) The average number of hours of sleep per day decreases 9.24 hours per year of age.

5 Lynn, Jude, and Anne were given the function $f(x)=-2 x^{2}+32$, and they were asked to find $f(3)$. Lynn's answer was 14, Jude's answer was 4, and Anne's answer was ± 4. Who is correct?

1) Lynn, only
2) Jude, only
3) Anne, only
4) Both Lynn and Jude

6 Which expression is equivalent to $16 x^{4}-64$?

1) $\left(4 x^{2}-8\right)^{2}$
2) $\left(8 x^{2}-32\right)^{2}$
3) $\left(4 x^{2}+8\right)\left(4 x^{2}-8\right)$
4) $\left(8 x^{2}+32\right)\left(8 x^{2}-32\right)$

7 Vinny collects population data, $P(h)$, about a specific strain of bacteria over time in hours, h, as shown in the graph below.

Which equation represents the graph of $P(h)$?

1) $P(h)=4(2)^{h}$
2) $P(h)=\frac{46}{5} h+\frac{6}{5}$
3) $P(h)=3 h^{2}+0.2 h+4.2$
4) $P(h)=\frac{2}{3} h^{3}-h^{2}+3 h+4$

8 What is the solution to the system of equations below?

$$
\begin{gathered}
y=2 x+8 \\
3(-2 x+y)=12
\end{gathered}
$$

1) no solution
2) infinite solutions
3) $(-1,6)$
4) $\left(\frac{1}{2}, 9\right)$

9 A mapping is shown in the diagram below.

This mapping is

1) a function, because Feb has two outputs, 28 and 29
2) a function, because two inputs, Jan and Mar, result in the output 31
3) not a function, because Feb has two outputs, 28 and 29
4) not a function, because two inputs, Jan and Mar, result in the output 31

10 Which polynomial function has zeros at $-3,0$, and 4 ?

1) $f(x)=(x+3)\left(x^{2}+4\right)$
2) $f(x)=\left(x^{2}-3\right)(x-4)$
3) $f(x)=x(x+3)(x-4)$
4) $f(x)=x(x-3)(x+4)$

11 Jordan works for a landscape company during his summer vacation. He is paid $\$ 12$ per hour for mowing lawns and $\$ 14$ per hour for planting gardens. He can work a maximum of 40 hours per week, and would like to earn at least $\$ 250$ this week. If m represents the number of hours mowing lawns and g represents the number of hours planting gardens, which system of inequalities could be used to represent the given conditions?

1) $m+g \leq 40$

$$
12 m+14 g \geq 250
$$

2) $m+g \geq 40$

$$
12 m+14 g \leq 250
$$

3) $m+g \leq 40$

$$
12 m+14 g \leq 250
$$

4) $m+g \geq 40$
$12 m+14 g \geq 250$

12 Anne invested \$1000 in an account with a 1.3% annual interest rate. She made no deposits or withdrawals on the account for 2 years. If interest was compounded annually, which equation represents the balance in the account after the 2 years?

1) $A=1000(1-0.013)^{2}$
2) $A=1000(1+0.013)^{2}$
3) $A=1000(1-1.3)^{2}$
4) $A=1000(1+1.3)^{2}$

13 Which value would be a solution for x in the inequality $47-4 x<7$?

1) -13
2) -10
3) 10
4) 11

14 Bella recorded data and used her graphing calculator to find the equation for the line of best fit. She then used the correlation coefficient to determine the strength of the linear fit. Which correlation coefficient represents the strongest linear relationship?

1) 0.9
2) 0.5
3) -0.3
4) -0.8

15 The heights, in inches, of 12 students are listed below.

61,67,72,62,65,59,60,79,60,61,64,63
Which statement best describes the spread of these data?

1) The set of data is evenly spread.
2) The median of the data is 59.5 .
3) The set of data is skewed because 59 is the only value below 60 .
4) 79 is an outlier, which would affect the standard deviation of these data.

16 The graph of a quadratic function is shown below.

An equation that represents the function could be

1) $q(x)=\frac{1}{2}(x+15)^{2}-25$
2) $q(x)=-\frac{1}{2}(x+15)^{2}-25$
3) $q(x)=\frac{1}{2}(x-15)^{2}+25$
4) $q(x)=-\frac{1}{2}(x-15)^{2}+25$

17 Which statement is true about the quadratic functions $g(x)$, shown in the table below, and $f(x)=(x-3)^{2}+2$?

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
0	4
1	-1
2	-4
3	-5
4	-4
5	-1
6	4

1) They have the same vertex.
2) They have the same zeros.
3) They have the same axis of symmetry.
4) They intersect at two points.

18 Given the function $f(n)$ defined by the following:

$$
\begin{aligned}
& f(1)=2 \\
& f(n)=-5 f(n-1)+2
\end{aligned}
$$

Which set could represent the range of the function?

1) $\{2,4,6,8, \ldots\}$
2) $\{2,-8,42,-208, \ldots\}$
3) $\{-8,-42,-208,1042, \ldots\}$
4) $\{-10,50,-250,1250, \ldots\}$

19 An equation is given below.

$$
4(x-7)=0.3(x+2)+2.11
$$

The solution to the equation is

1) 8.3
2) 8.7
3) 3
4) -3

20 A construction worker needs to move $120 \mathrm{ft}^{3}$ of dirt by using a wheelbarrow. One wheelbarrow load holds $8 \mathrm{ft}^{3}$ of dirt and each load takes him 10 minutes to complete. One correct way to figure out the number of hours he would need to complete this job is

1) $\frac{120 \mathrm{ft}^{3}}{1} \bullet \frac{10 \mathrm{~min}}{1 \text { load }} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \bullet \frac{1 \text { load }}{8 \mathrm{ft}^{3}}$
2) $\frac{120 \mathrm{ft}^{3}}{1} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \bullet \frac{8 \mathrm{ft}^{3}}{10 \mathrm{~min}} \bullet \frac{1}{1 \text { load }}$
3) $\frac{120 \mathrm{ft}^{3}}{1} \bullet \frac{1 \text { load }}{10 \mathrm{~min}} \bullet \frac{8 \mathrm{ft}^{3}}{1 \text { load }} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
4) $\frac{120 \mathrm{ft}^{3}}{1} \bullet \frac{1 \text { load }}{8 \mathrm{ft}^{3}} \bullet \frac{10 \mathrm{~min}}{1 \text { load }} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$

21 One characteristic of all linear functions is that they change by

1) equal factors over equal intervals
2) unequal factors over equal intervals
3) equal differences over equal intervals
4) unequal differences over equal intervals

22 What are the solutions to the equation $x^{2}-8 x=10$?

1) $4 \pm \sqrt{10}$
2) $4 \pm \sqrt{26}$
3) $-4 \pm \sqrt{10}$
4) $-4 \pm \sqrt{26}$

23 The formula for blood flow rate is given by $F=\frac{p_{1}-p_{2}}{r}$, where F is the flow rate, p_{1} the initial pressure, p_{2} the final pressure, and r the resistance created by blood vessel size. Which formula can not be derived from the given formula?

1) $p_{1}=F r+p_{2}$
2) $p_{2}=p_{1}-F r$
3) $r=F\left(p_{2}-p_{1}\right)$
4) $r=\frac{p_{1}-p_{2}}{F}$

24 Morgan throws a ball up into the air. The height of the ball above the ground, in feet, is modeled by the function $h(t)=-16 t^{2}+24 t$, where t represents the time, in seconds, since the ball was thrown. What is the appropriate domain for this situation?

1) $0 \leq t \leq 1.5$
2) $0 \leq t \leq 9$
3) $0 \leq h(t) \leq 1.5$
4) $0 \leq h(t) \leq 9$

25 Express in simplest form:

$$
\left(3 x^{2}+4 x-8\right)-\left(-2 x^{2}+4 x+2\right)
$$

26 Graph the function $f(x)=-x^{2}-6 x$ on the set of axes below.

State the coordinates of the vertex of the graph.

27 State whether $7-\sqrt{2}$ is rational or irrational. Explain your answer.

28 The value, $v(t)$, of a car depreciates according to the function $v(t)=P(.85)^{t}$, where P is the purchase price of the car and t is the time, in years, since the car was purchased. State the percent that the value of the car decreases by each year. Justify your answer.

29 A survey of 100 students was taken. It was found that 60 students watched sports, and 34 of these students did not like pop music. Of the students who did not watch sports, 70% liked pop music. Complete the two-way frequency table.

	Watch Sports	Don't Watch Sports	Total
Like Pop			
Don't Like Pop			
Total			

30 Graph the inequality $y+4<-2(x-4)$ on the set of axes below.

31 If $f(x)=x^{2}$ and $g(x)=x$, determine the value(s) of x that satisfy the equation $f(x)=g(x)$.

32 Describe the effect that each transformation below has on the function $f(x)=|x|$, where $a>0$.
$g(x)=|x-a|$
$h(x)=|x|-a$

33 The function $r(x)$ is defined by the expression $x^{2}+3 x-18$. Use factoring to determine the zeros of $r(x)$. Explain what the zeros represent on the graph of $r(x)$.

34 The graph below models Craig's trip to visit his friend in another state. In the course of his travels, he encountered both highway and city driving.

Based on the graph, during which interval did Craig most likely drive in the city? Explain your reasoning. Explain what might have happened in the interval between B and C. Determine Craig's average speed, to the nearest tenth of a mile per hour, for his entire trip.

35 Given: $g(x)=2 x^{2}+3 x+10$

$$
k(x)=2 x+16
$$

Solve the equation $g(x)=2 k(x)$ algebraically for x, to the nearest tenth. Explain why you chose the method you used to solve this quadratic equation.

36 Michael has $\$ 10$ in his savings account. Option 1 will add $\$ 100$ to his account each week. Option 2 will double the amount in his account at the end of each week. Write a function in terms of x to model each option of saving. Michael wants to have at least $\$ 700$ in his account at the end of 7 weeks to buy a mountain bike. Determine which option(s) will enable him to reach his goal. Justify your answer.

37 Central High School had five members on their swim team in 2010. Over the next several years, the team increased by an average of 10 members per year. The same school had 35 members in their chorus in 2010. The chorus saw an increase of 5 members per year. Write a system of equations to model this situation, where x represents the number of years since 2010. Graph this system of equations on the set of axes below.

Explain in detail what each coordinate of the point of intersection of these equations means in the context of this problem.

0617AI Common Core State Standards
Answer Section

```
    1 ANS: 3 PTS: 2 REF: 061701ai NAT: F.IF.B.4
    TOP: Relating Graphs to Events
    2 ANS: 2 PTS: 2 REF: 061702ai NAT: A.SSE.A.1
    TOP: Dependent and Independent Variables
    3 ANS: 4 PTS: 2 REF: 061703ai NAT: F.IF.C.7
    TOP: Graphing Root Functions KEY: bimodalgraph
    4 ANS:2 PTS: 2 REF: 061704ai NAT: S.ID.C.7
    TOP: Modeling Linear Functions
    5 ANS: 1
    f(3)=-2(3)}\mp@subsup{)}{}{2}+32=-18+32=1
    PTS: 2 REF: 061705ai NAT: F.IF.A.2 TOP: Functional Notation
6 ANS: 3 PTS: 2 REF: 061706ai NAT: A.SSE.A.2
    TOP: Factoring the Difference of Perfect Squares
    7 ANS: 1 PTS: 2
    TOP: Families of Functions
8 ANS: 1
    3(-2x+2x+8)=12
        24}=1
PTS: 2 REF: 061708ai NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: substitution
9 ANS: 3 PTS: 2 REF: 061709ai NAT: F.IF.A. 1
TOP: Defining Functions KEY: ordered pairs
10 ANS: 3 PTS: 2 REF: 061710ai NAT: A.APR.B. 3
TOP: Zeros of Polynomials
11 ANS: 1 PTS: 2 REF: 061711ai NAT: A.CED.A. 3
TOP: Modeling Systems of Linear Inequalities
12 ANS: 2 PTS: 2 REF: 061712ai NAT: F.BF.A. 1
TOP: Modeling Exponential Functions KEY: AI
13 ANS: 4
\(47-4 x<7\)
\(-4 x<-40\)
\(x>10\)
PTS: 2 REF: 061713ai NAT: A.REI.B. 3 TOP: Interpreting Solutions
14 ANS: 1 PTS: 2 REF: 061714ai NAT: S.ID.C. 8
TOP: Correlation Coefficient
```

15 ANS: 4
(1) The box plot indicates the data is not evenly spread. (2) The median is 62.5 . (3) The data is skewed because the mean does not equal the median. (4) an outlier is greater than $Q 3+1.5 \cdot I R Q=66+1.5(66-60.5)=74.25$.

PTS: 2 REF: 061715ai NAT: S.ID.A. 3 TOP: Central Tendency and Dispersion
16 ANS: 4
Vertex $(15,25)$, point $(10,12.5) \quad 12.5=a(10-15)^{2}+25$

$$
\begin{aligned}
-12.5 & =25 a \\
-\frac{1}{2} & =a
\end{aligned}
$$

PTS: 2 REF: 061716ai NAT: F.IF.B. 4 TOP: Graphing Quadratic Functions
KEY: no context
17 ANS: 3
$x=3$
PTS: 2 REF: 061717ai NAT: F.IF.C. 9 TOP: Comparing Functions
KEY: AI
18 ANS: 2
$f(1)=2 ; f(2)=-5(2)+2=-8 ; f(3)=-5(-8)+2=42 ; f(4)=-5(42)+2=-208$
PTS: 2 REF: 061718ai NAT: F.IF.A. 3 TOP: Sequences
KEY: term
19 ANS: 1

$$
\begin{aligned}
4(x-7) & =0.3(x+2)+2.11 \\
4 x-28 & =0.3 x+0.6+2.11 \\
3.7 x-28 & =2.71 \\
3.7 x & =30.71 \\
x & =8.3
\end{aligned}
$$

PTS: 2 REF: 061719ai NAT: A.REI.B. 3 TOP: Solving Linear Equations
KEY: decimals
20 ANS: 4 PTS: 2 REF: 061720ai NAT: N.Q.A. 1
TOP: Conversions KEY: dimensional analysis
21 ANS: 3 PTS: 2 REF: 061721ai NAT: F.LE.A. 1
TOP: Families of Functions

22 ANS: 2
$x^{2}-8 x+16=10+16$

$$
\begin{aligned}
(x-4)^{2} & =26 \\
x-4 & = \pm \sqrt{26} \\
x & =4 \pm \sqrt{26}
\end{aligned}
$$

PTS: 2 REF: 061722ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: completing the square
23 ANS: 3 PTS: 2
REF: 061723ai NAT: A.CED.A. 4
TOP: Transforming Formulas
24 ANS: 1
$0=-16 t^{2}+24 t$
$0=-8 t(2 t-3)$
$t=0, \frac{3}{2}$
PTS: 2 REF: 061724ai NAT: F.IF.B. 4 TOP: Graphing Quadratic Functions
KEY: context
25 ANS:
$5 x^{2}-10$
PTS: 2 REF: 061725ai NAT: A.APR.A. 1 TOP: Operations with Polynomials
KEY: subtraction
26 ANS:

PTS: 2
REF: 061726ai
NAT: F.IF.B. 4
TOP: Graphing Quadratic Functions
KEY: no context
27 ANS:
$7-\sqrt{2}$ is irrational because it can not be written as the ratio of two integers.
PTS: 2 REF: 061727ai NAT: N.RN.B. 3 TOP: Operations with Radicals
KEY: classify
28 ANS:
$1-0.85=0.15=15 \%$ To find the rate of change of an equation in the form $y=a b^{x}$, subtract b from 1.
PTS: 2 REF: 061728ai NAT: F.LE.B. 5 TOP: Modeling Exponential Functions

29 ANS:

	Watch Sports	Don'twatch Sports	Total
Like Pop	26	28	54
Don't Like Pop	34	12	46
Total	60	40	100

PTS: 2 REF: 061729ai NAT: S.ID.B. 5 TOP: Frequency Tables
KEY: two-way
ANS:

PTS: 2 REF: 061730ai NAT: A.REI.D. 12 TOP: Graphing Linear Inequalities
31 ANS:

$$
\begin{aligned}
x^{2} & =x \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x & =0,1
\end{aligned}
$$

PTS: 2 REF: 061731ai NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
KEY: AI
32 ANS:
$g(x)$ is $f(x)$ shifted right by $a, h(x)$ is $f(x)$ shifted down by a.
PTS: 2 REF: 061732ai NAT: F.BF.B. 3 TOP: Graphing Absolute Value Functions
33 ANS:

$$
\begin{aligned}
x^{2}+3 x-18 & =0 \quad \text { The zeros are the } x \text {-intercepts of } r(x) . \\
(x+6)(x-3) & =0 \\
x & =-6,3
\end{aligned}
$$

PTS: 4
REF: 061733ai
NAT: A.SSE.B. 3
TOP: Solving Quadratics
34 ANS:
$D-E$, because his speed was slower. Craig may have stayed at a rest stop during $B-C . \frac{230-0}{7-0} \approx 32.9$
PTS: 4
REF: 061734ai
NAT: F.IF.B. 4
TOP: Relating Graphs to Events

35 ANS:
$2 x^{2}+3 x+10=4 x+32 x=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(-22)}}{2(2)} \approx-3.1,3.6$. Quadratic formula, because the answer must be $2 x^{2}-x-22=0$
to the nearest tenth.
PTS: 4 REF: 061735ai NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
KEY: AI
36 ANS:
$f(x)=10+100 x, g(x)=10(2)^{x} ;$ both, since $f(7)=10+100(7)=710$ and $g(7)=10(2)^{7}=1280$
PTS: 4
REF: 061736ai NAT: F.LE.A. 3 TOP: Families of Functions
37 ANS:
$y=10 x+5$
 In 2016, the swim team and chorus will each have 65 members.
$y=5 x+35$
PTS: 6
REF: 061737ai
NAT: A.REI.C. 6
TOP: Graphing Linear Systems

