

PEMDAS = Parentheses, Exponents, Multiplication/Division, Add/Subtract from left to right.

A. Simplify each expression using appropriate Order of Operations.

1. $1 \bullet 5-6 \div 2+3^{2}$
2. $125 \div[5(2+3)]$
3. $4+2(10-4 \cdot 6)$
4. $3(2+7)^{2} \div 5$
5. $12(20-17)-3 \cdot 6$
6. $3^{2} \div 3+2^{2} \cdot 7-20 \div 5$

Solving Equations

The five steps to solving an equation are:

\checkmark	Get rid of parentheses
\checkmark	Simplify the left side and the right side of the equation as much as possible, i.e. combine any and all like terms
\checkmark	Get the variable term on just one side
\checkmark	Get the variable term by itself
\checkmark	Solve for the variable

B. Solve for the variable in each problem.
7. $5(3 x-2)=35$
8. $\frac{1}{3}(6 x+24)-20=-\frac{1}{4}(12 x-72)$
9. $5 r-2(2 r+8)=16$
10. $13-(2 c+2)=2(c+2)+3 c$
11. $\frac{1}{4}(8 y+4)-17=-\frac{1}{2}(4 y-8)$
12. $12-3(x-5)=21$

Solving Proportions

Remember:

- Use Cross Productions to write and equation
- Solve the equation

Examples

1. $\frac{6}{t+4}=\frac{42}{77}$
$42(t+4)=6(77)$
$42 t+168=462$
$42 t=294$
$t=7$
2. $\frac{11}{w}=\frac{33}{w+24}$
$33 w=11(w+24)$
$33 w=11 w+264$
$22 \mathrm{w}=264$
$\mathrm{w}=12$
C. Solve the following:
3. $\frac{a}{9 a-2}=\frac{1}{8}$
4. $\frac{24}{5 z+4}=\frac{4}{z-1}$
5. $\frac{x-8}{-2}=\frac{11-4 x}{11}$

Answer the following:

16. A recipe that yields 12 buttermilk biscuits calls for 2 cups of flour. How much flour is needed to make 30 biscuits?
17. It took 7.2 minutes to upload 8 digital pictures from your computer to a website. At this rate, how long will it take to upload 20 pictures?

Solving Inequalities

Symbol	Meaning	Equation or Inequality	Graph
$=$	equals	$x=3$	
$<$	is less than	$x<3$	
\leq	is less than or equal to	$x \leq 3$	
$>$	is greater than	$x>3$	
\geq	is greater than or equal to	$x \geq 3$	

Examples:

$2 x+1 \leq 5$
$2 x \leq 4$
Subtract 1 from each side
$-4 y<18$ Divide each side by 2
$x \leq 2$

$\frac{-4 y}{-4}>\frac{18}{-4}$
Divide by -4 and change < to >
y > -4.5
Simplify

D. Solve and graph the following inequalities.
18. $3 f-4<2 f+5$

19. $5(1-x) \geq 4(3-x)$

20. $12-\frac{3}{2} \mathrm{c}<0$

Graphs and Equations of Lines

Slope-Intercept Form

$y=m x+b$, where $m=$ slope and $b=y$-intercept

Graphing Equations in Slope-Intercept Form

1. Write the equation in slope-intercept form for y
2. Find the y-intercept and use it to plot the point where the line crosses the y-axis.
3. Find the slope and use it to plot at least two more points on the line.
4. Draw a line through the points.

Writing the Equation: Given the Slope and ay - intercept
Example: Write an equation of the line that passes through $(0,4)$ and has a slope of -5 . (These can also be given on a graph)
Step 1: \quad Substitute -5 for m. $y=-5 x+b$

Step 2: Substitute 4 for b (since it is the y-intercept) $y=-5 x+4$

Point-Slope Form

$y-y_{1}=m\left(x-x_{1}\right)$ where $m=$ slope and $\left(x_{1}, y_{1}\right)$ is the point.

Graphing Equations in Slope-Intercept Form

1. Plot the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
2. Find the slope and use it to plot a second point on the line.
3. Draw a line through the two points.

Writing the Equation: Given a point and a slope
Example: Write an equation of the line that passes through the point $(2,5)$ and has a slope of 4. (These can also taken from a graph)
Substitute 2 for $\mathrm{x}_{1}, 5$ for y_{1}, and 4 for $\mathrm{x} \quad \mathrm{y}-5=4(\mathrm{x}-2)$

Given Two Points
Step 1: \quad Find the slope of the line using the two points and the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Step 2: Choose either point and follow the steps above depending on the form you are asked to use.

Standard Form

$a x+b y=c$ where a is a positive, and a and b are whole numbers

Graphing in Standard Form: Find the x and y - intercepts and graph the line that contains them.

Writing the Equation: Write the equation using slope-intercept or point-slope form, then rearrange to standard form
Example: Write the equation of the line that passes through the point $(4,5)$ and has a slope of $1 / 2$.

Step 1:	Write in Point-Slope Form	$y-5=1 / 2(x-4)$
Step 2:	Distribute	$y-5=1 / 2 x-3$
Step 3:	Subtract $1 / 2 x$ and add 5	$-1 / 2 x+y=2$
Step 4:	Multiply by -2 to make a a positive, whole number	$x-2 y=-4$

E. Find the slope of the line containing each pair of points.
21. $(5,0)$ and $(6,8)$
22. $(4,-3)$ and $(6,-4)$
23. $(-2,-4)$ and $(-9,-7)$
F. Find the slope of each line
24. $y=7$
25. $\mathrm{x}=-4$
26. $2 x+y=15$
27. $x-2 y=7$
G. Find the equation of the line with the given slope through the given point. Write the answer in slope-intercept form.
28. $m=4 ;(3,2)$
29. $m=-2 ;(4,7)$
30. $m=-\frac{4}{3} ;(3,-1)$
H. Write an equation of the line that passes through the given point and is parallel to the given line.
31. $(-1,3) ; y=2 x+2$
32. $(1,7) ;-6 x+y=-1$
33. $(-10,0) ;-y+3 x=16$
I. Write an equation of the line that passes through the given point and is perpendicular to the given line.
34. $(3,-3) ; y=x+5$
35. $(8,-1) ; 4 y+2 x=12$
36. $(5,1) ; y=5 x-2$
K. Write the equation of the line in slope-intercept form.
39. The line containing $(3,1)$ and $(4,8)$
40. The line containing $(3,3)$ and $(-6,9)$
41. The line with slope $\frac{4}{5}$ and
containing ($-1,7$)

Graph the following equations. Graph three points and label the line with its equation.

42. $y-3=2(x-1)$

43. $y-5=\frac{2}{3}(x-2)$

44. $y-4=-3(x-5)$

45. $y+2=-5(x-3)$

46. $y=2 x-3$
M. Slope-Intercept Form

47. $y=\frac{1}{2} x-5$

48. $y-3=-\frac{1}{2}(x+2)$

49. $y-1=\frac{4}{3}(x+6)$

50. $\mathrm{y}=-\frac{2}{3} \mathrm{x}+4$
51. $y=-\frac{5}{2} x+4$

52. $y=-4 x-1$

53. $4 x+2 y=8$

54. $x-3 y=6$

55. $4 x+6 y=12$

56. $2 x-3 y=12$

57. $2 x-y=4$

58. $x+y=5$

Systems of Linear Equations
Substitution Method: Use when an equation is solved for one variables ($\mathrm{y}=\ldots$ or $\mathrm{x}=\ldots$...)
Solve: $\left\{\begin{array}{l}y=5-2 x \\ 5 x-6 y=21\end{array} \quad\right.$ Solution: Substitute $5-2 x$ for y.

$5 x-6(5-2 x)=21$		
$5 x-30+12 x=21$		
$17 x-30=21$		
$17 x=51$ $x=3$	Then substitute 3 for $x:$	$y=5-2(3)$
$y=-1$		

Solve each system by substitution.
60. $\left\{\begin{array}{l}x=y+3 \\ 2 x-y=5\end{array}+\quad\right.$ 61. $\left\{\begin{array}{l}4 x-7 y=10 \\ y=x-7\end{array}\right.$ 62. $\left\{\begin{array}{l}x=16-4 y \\ 3 x+4 y=8\end{array}\right.$

Elimination Method: Use addition when the coefficients of a variable are opposites. Use subtraction when the coefficients are the same.
Example 1-Solve: $\left\{\begin{array}{l}3 x+4 y=9 \\ -3 x-2 y=-3\end{array} \quad \begin{array}{rl}\text { Solution: } & \begin{array}{c}3 x+4 y=9 \\ \frac{(+)}{-3 x-2 y}=-3\end{array} \\ \text { ADD } & -2 y=6 \\ y & =-3\end{array}\right.$

Use multiplication when you have neither same or opposite coefficients
Example 2 - Solve:

$$
\left\{\begin{array}{l}
5 x-2 y=-19 \\
2 x+3 y=0
\end{array}\right.
$$

Solution:
$3(5 x-2 y=-19)$ $2(2 x+3 y=x)$
$\overrightarrow{A D}$

$$
\begin{aligned}
& \begin{array}{l}
15 x-6 y=-57 \\
(+) \quad 4 x+6 y=0 \\
19 x \quad=-57
\end{array} \text { Then substitute }-3 \text { for } x:
\end{aligned}
$$

$$
2(-3)+3 y=0
$$

$$
3 y=6
$$

$$
x=2
$$

Solve each system by elimination.

63. $\left\{\begin{array}{l}-5 x-6 y=8 \\ 5 x+2 y=4\end{array}\right.$
64. $\left\{\begin{array}{l}x+y=1 \\ -2 x+y=4\end{array}\right.$
65. $\left\{\begin{array}{l}12 x-7 y=-2 \\ -8 x+11 y=14\end{array}\right.$
66. $\left\{\begin{array}{l}6 x-4 y=14 \\ -3 x+4 y=1\end{array}\right.$
67. $\left\{\begin{array}{l}7 x+3 y=-12 \\ 2 x+5 y=38\end{array}\right.$
68. $\left\{\begin{array}{l}7 x-6 y=-1 \\ 5 x-4 y=1\end{array}\right.$

Graphing Method: Graph 2 or more equations on the same coordinate plane

- \quad Scenario 1 - Intersecting lines (1 solution - point of intersection)
- Scenario 2 - Parallel Lines (no solution)
- \quad Scenario 3 - Coinciding Lines (Infinitely Many Solutions \{IMS\})

One Solution

-Consistent \& Independent
-Different Slopes
-Lines Intersect

No Solution

-Inconsistent
-Same Slope
-Lines Parallel

Infinitely Many Solutions

-Consistent \& Dependent
-Same Slope
-Same y-intercept
-Lines Coincide (Collinear)

Solve each system by graphing.
69. $\left\{\begin{array}{l}y=2 x+3 \\ y=2 x-2\end{array}\right.$
70. $\left\{\begin{array}{l}y=-x+4 \\ y=2 x-8\end{array}\right.$
71. $\left\{\begin{array}{l}y=2 x-4 \\ -6 x+3 y=-12\end{array}\right.$

Systems of Inequalities

Remember:

- < or > Graph with a dotted line
- $\quad \leq$ or \geq Graph with a solid line
- $\quad<$ or \leq Shade below the line (shade left of a vertical line
- $\quad>$ or \geq Shade above the line (shade right of a vertical line
- \quad Solutions are where the shaded regions overlap or on a solid boundary line

$$
\left\{\begin{array}{l}
y-\frac{1}{2} x \leq 3 \\
x<-1
\end{array}\right.
$$

$\left\{\begin{array}{l}y<\frac{1}{2} x-1 \\ y \geq-3 x+2\end{array}\right.$

$\left\{\begin{array}{l}y>-x+2 \\ y \leq-x+5\end{array}\right.$

Graph each system of inequalities.

72. $\left\{\begin{array}{l}y<-2 x+3 \\ y \geq 4\end{array}\right.$

73. $\left\{\begin{array}{l}y \geq 2 x+1 \\ y<-x+4\end{array}\right.$

74. $\left\{\begin{array}{l}x>3 \\ y>x\end{array}\right.$

Domain: Set of values of the independent variable (x) for which a function is defined (Can also be seen as input or cause)
Range: Set of y values of a function (dependent variable, output, $\mathrm{f}(\mathrm{x})$, or effect)

Examples: Find the domain and range for each of the following.

1. $(3,2),(5,6),(2,-4),(-3,5),(7,2)$

Ans: \quad Domain: $\{-3,2,3,5,7\}$
Range: $\{-4,2,5,6\}$
**Written Least to Greatest, No Repeats!
2.

Ans:
Domain: $-3<x \leq 1$
Range: $-3 \leq y<2$
**Remember (1) Open dots means not included (< or >), (2)
Closed dots mean includes (\leq or \geq)
3.

Ans: Domain: $x=$ All Real Numbers (ARN)
Range: $y \geq 0$
**Remember that arrows mean continues on infinitely in that direction.
4.

Ans: \quad Domain: $\{-2,-1,0,1,2\}$ Range: $\{0,1,4\}$
P. Give the domain and range for the following:
75.

Domain: \qquad

Range: \qquad
78.

Domain: \qquad
Range: \qquad
76.

Domain: \qquad
Range: \qquad

Domain: \qquad
Range: \qquad
77.

Domain: \qquad

Range: \qquad
80.

x	y
-2	-4
-2	4
-1	2
1	2
0	0

Domain: \qquad
Range: \qquad

$$
a^{0}=1 \quad \text { Example: } \quad 5^{0}=1 \quad a^{m} \bullet a^{n}=a^{m+n} \quad \text { Example: } x^{2} \cdot x^{4}=x^{2+4}=x^{6}
$$

$$
\begin{array}{rlr}
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { Example: } \frac{b^{7}}{b^{3}}=b^{7-3}=b^{4} & \left(a^{m}\right)^{n}=a^{m(n)} \quad \text { Example: }\left(y^{3}\right)^{4}=y^{3(4)}=y^{12} \\
a^{-m}=\frac{1}{a^{m}} \quad \text { Example: } 6^{-2}=\frac{1}{6^{2}}=\frac{1}{36}
\end{array}
$$

Q．Simplify each expression．
81．$\left(\frac{2}{3}\right)^{-2}$
86．$\left(5 a^{2} b^{3}\right)\left(a^{-2} b\right)$
90．$\left(a^{2}\right)^{3}$
87．$\left(-2 a b^{5}\right)\left(-4 a b^{-3}\right)$
91．$(5 a)^{2}$
82．$\left(\frac{5}{3}\right)^{-3}$
88．$x^{3} \cdot x^{6}$
92．$c \bullet c^{5} \bullet c^{2}$
83．$x^{-1} \bullet x^{-2}$
89．$\left(2 a^{4}\right)\left(5 a^{3}\right)$
93．$\left(-2 x y^{2}\right)\left(-3 x^{2} y\right)$
84．$a \bullet a^{-1}$

Multiplying Polynomials

Monomial x Polynomial

$$
3 c^{3}\left(8 c^{4}-c^{2}-3 c+5\right)=24 c^{7}-3 c^{5}-9 c^{4}+15 c^{3}
$$

Distribute bymultiplying $3 c^{3}$ byevery term inside the（）

Binomial x Binomial

$$
\begin{aligned}
& (2 x-4)(3 x+5)=\underset{\substack{\text { First } \\
\text { terms }}}{6 x^{2}}+\underset{\begin{array}{c}
\text { Outer } \\
\text { terms }
\end{array}}{10 x}-12 x-\underset{\substack{\text { Inner } \\
\text { terms }}}{120}-20=\underbrace{\text { terms }}_{\text {combine like terms }} ⿺ 辶 x^{2}-2 x-20
\end{aligned}
$$

Binomial x Polynomial－Use Punnett Squres

Ex：$(2 x-4)\left(2 x^{2}+5 x+2\right)$

The answer is：

$$
4 x^{3}+2 x^{2}-16 x-8
$$

96. $(6 x+5)(2 x-1)$
97. $-5 b^{3}\left(4 b^{5}-2 b^{3}+b-11\right)$
98. $(2 x+1)(x+4)$
99. $(x-4)(x+4)$
100. $(6 x+5 y)^{2}$

Examples:

1) $a^{2}-b^{2}=(a+b)(a-b)$

Ex: $a^{2}-16=(a+4)(a-4) ; 25 a^{2}-36 x^{6}=\left(5 a+6 x^{3}\right)\left(5 a-6 x^{3}\right)$
2) $a^{2}+2 a b+b^{2}=(a+b)^{2}$
$\mathrm{Ex}: k^{2}+10 k+25=(k+5)(k+5)=(k+5)^{2}$
3) $a^{2}-2 a b+b^{2}=(a-b)^{2}$
4) $a x^{2}+b x+c$
$a x^{2}-b x+c$
$a x^{2}+b x-c$
$a x^{2}-b x-c$

$$
k^{2} \& 25 \text { are perfect squares } \& 10 \mathrm{k}=2(1 \mathrm{k} * 5)
$$

Ex: $4 x^{2}-12 x+9=(2 x-3)(2 x-3)=(2 x-3)^{2}$
$4 x^{2} \& 9$ are perfect squares $\& 12 x=2\left(2 x^{*} 3\right)$
EX: $x^{2}+6 x+8=(x+4)(x+2)$ since $4+2=6$ and $4 * 2=8$
$x^{2}-8 x+15=(x-3)(x-5)$ since $-3+-5=-8$ and $-3 *-5=15$
$a^{2}+12 a-45=(a+15)(a-3)$ since $15+-3=12$ and $15 *-3=-45$
$y^{2}-y-12=(y+3)(y-4)$ since $3+-4=-1$ and $3 *-4=-12$
S. Factor each of the following polynomials.
100. $x^{2}+8 x+15$
102. $x^{2}+x-42$
104. $x^{2}-16 x+64$
101. $a^{2}-14 a+48$
103. $x^{2}-7 x-18$
105. $x^{2}-81$

Solving Quadratic Equations

Solve using Square Roots

Problem:	$5 x^{2}-75=0$	Problem	$(x+6)^{2}=21$
Get numbers on one side of equation	$\frac{5 x^{2}}{5}=\frac{75}{5}$	Square root both sides	$\sqrt{(x+6)^{2}}= \pm \sqrt{21}$
Divide by 5	$x^{2}=15$	Square root of $\sqrt{(x+6)^{2}}=(x+6)$ subtract 6 from both sides	$\begin{gathered} x+6= \pm \sqrt{21} \\ -6-6 \end{gathered}$
Square root both sides	$x= \pm \sqrt{15}$	Answer:	$x= \pm \sqrt{21}-6$

T. Solve each quadratic equation using square roots.
106. $x^{2}=121$
107. $3 x^{2}=30$
108. $(x-2)^{2}=49$

Solve using Factoring

Problem	$a^{2}+12 a-45$	
Factor the problem	$(a+15)(a-3)$	
Make each factor equal to zero and solve for "x"	$a+15=0$	and $a-3$
Answer	$-15-15$	+3
	$a=-15$	$a=3$

Solve each quadratic equation using factoring.
109. $x^{2}+7 x=0$
111. $x^{2}+7 x+6=0$
113. $t^{2}=9 t-14$
110. $p^{2}-16 p+48=0$
112. $m^{2}+4 m=21$
114. $2 x^{2}+12 x=-10$

Solve Using Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Put equation in proper format $\left(a x^{2}+b x+c=0\right)$
- Find a, b, and c
- Plug into the formula
- Do the math a little at a time.
- If the discriminate $\left(b^{2}-4 a c\right)$ is positive there are 2 real solutions, if 0 , there is 1 real solution, if negative, then there is NO real solution. Examples

1.

$$
\begin{gathered}
x^{2}-2 x-15=0 \\
a=1, b=-2, c=-15 \\
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-15)}}{2(1)} \\
x=\frac{2 \pm \sqrt{4+60}}{2} \\
x=\frac{2 \pm \sqrt{64}}{2} \\
x=\frac{2 \pm 8}{2} \\
x=\frac{2+8}{2}, x=\frac{2-8}{2} \\
x=5, x=-3
\end{gathered}
$$

2

$$
\begin{gathered}
2 x^{2}+7 x-3=0 \\
a=2, b=7, c=-3 \\
x=\frac{-7 \pm \sqrt{(7)^{2}-4(2)(-3)}}{2(2)} \\
x=\frac{-7 \pm \sqrt{49+24}}{4} \\
x=\frac{-7 \pm \sqrt{73}}{4} \\
x=\frac{-7+\sqrt{73}}{4}, x=\frac{-7-\sqrt{73}}{4} \\
x=.39, x=-3.89
\end{gathered}
$$

117. $2 x^{2}-12 x-1=-7 x+6$

Solve by Graphing

- Rearrange to $y=a x^{2}+b x+c$
- Find a, b, and c
- Find axis of symmetry $x=\frac{-b}{2 a}$
- Plug in the axis of symmetry x-value into the equation and find y which together make the vertex (x, y)
- Make a table using two x-values to the left of the vertex, and two x-values to the right of the vertex.
- Graph all five points and connect with a smooth curved line.
- Solutions to Quadratics are called x-intercepts, zeros, roots, and solutions.
- If the graph does not touch the x-axis, there is no solution.

Example

1. $y=x^{2}-2 x-3$
$a=1, b=-2, c=-3$
$x=\frac{-2(-2)}{2(2)}=1$
$y=(1) 2-2(1)-3=-4$
vertex: $(1,-4)$

Solve by Graphing
118. $y=x^{2}-4 x-5$

119. $y=x^{2}+x+2$

120. $y=x^{2}+16 x+64$

Parent Functions

