

EOC Review

Algebra I

1. $1 \cdot 5 - 6 \div 2 + 3^2$	3. $4 + 2(10 - 4 \cdot 6)$	5. 12(20 − 17) − 3 • 6
2. 125 ÷ [5(2 + 3)]	4. $3(2+7)^2 \div 5$	6. $3^2 \div 3 + 2^2 \bullet 7 - 20 \div 5$
	Solving Equations	
•	quation as much as possible, i.e. combine any and all like	terms
	teps to solving an equation are: rid of parentheses	Solving Equations teps to solving an equation are: rid of parentheses blify the left side and the right side of the equation as much as possible, i.e. combine any and all like the variable term on just one side the variable term by itself

8. $\frac{1}{3}(6x+24)-20 = -\frac{1}{4}(12x-72)$ 10. 13-(2c+2) = 2(c+2)+3c 12. 12-3(x-5) = 21

Solving	Proportions
---------	-------------

Remember: • Use Cross Productions to write and equation			
Solve the equation			
Examples 1. $\frac{6}{t+4} = \frac{42}{77}$ 42(t+4) = 6(77) 42t + 168 = 462 42t = 294 t = 7	2.	$\frac{11}{w} = \frac{33}{w+24}$ $33w = 11(w+24)$ $33w = 11w+264$ $22w = 264$ $w = 12$	
C. Solve the following:			
13. $\frac{a}{9a-2} = \frac{1}{8}$	14. $\frac{24}{5z+4} = \frac{4}{z-1}$		15. $\frac{x-8}{-2} = \frac{11-4x}{11}$

Answer the following:

- **16.** A recipe that yields 12 buttermilk biscuits calls for 2 cups of flour. How much flour is needed to make 30 biscuits?
- 17. It took 7.2 minutes to upload 8 digital pictures from your computer to a website. At this rate, how long will it take to upload 20 pictures?

Solving Inequalities Symbol Meaning **Equation or Inequality** Graph equals x = 3 _ 3 5 is less than x < 3 < 2 3 5 is less than or equal to \leq $x \le 3$ 5 > is greater than x > 3 2 4 5 \geq is greater than or equal to $x \ge 3$ 2 3 4 5 Examples: $2x + 1 \le 5$ -4v < 18 $\frac{-4y}{-4} > \frac{18}{-4}$ 2x ≤ 4 Subtract 1 from each side Divide by -4 and change < to > y > -4.5 x ≤ 2 Divide each side by 2 Simplify -4 2 -5-3 0 1 3 5 -2 Solve and graph the following inequalities. D. 18. 3f - 4 < 2f + 519. $5(1-x) \ge 4(3-x)$ 20. $12 - \frac{3}{2}c < 0$ **Graphs and Equations of Lines** Slope–Intercept Form y = mx + b, where m = slope and b = y-intercept Graphing Equations in Slope-Intercept Form Write the equation in slope-intercept form for y 1.

- 2. Find the y-intercept and use it to plot the point where the line crosses the y-axis.
- 3. Find the slope and use it to plot at least two more points on the line.
- 4. Draw a line through the points.

Writing the Equation: Given the Slope and a y - intercept

Example: Write an equation of the line that passes through (0, 4) and has a slope of -5. (These can also be given on a graph)

Step 1: Substitute – 5 for m.

Step 2: Substitute 4 for b (since it is the y-intercept)

y = -5x + b <mark>y = -5x + 4</mark>

Point-Slo	ne Form					
	•	ere m = slope and (x_1, y_1) is	the point.			
		in Slope-Intercept Form				
	the point (
		and use it to plot a second	ooint on the line			
	-	ough the two points.	built off the line.			
5. Diav	wanne th	ough the two points.				
Writing th	e Equatior	n: Given a point and a slope				
Example:	Write an	equation of the line that pa	sses through the point (2, 5) an	d has a slope of 4. (T	hese can also taken f	rom a graph)
	Substitut	e 2 for x_1 , 5 for y_1 , and 4 for	x <mark>y – 5 = 4(x -2)</mark>			
Given Two	o Points			$V_2 = $	V1	
	Step 1:	Find the slope of the line	using the two points and the fo	mula $m = \frac{72}{72}$	<u>/1</u>	
	Step 2:		ollow the steps above dependi	~2	^1	
Standard	Form					
ax + by = c	c where a i	s a <i>positive</i> , and a and b are	whole numbers.			
Graphing i	in Standard	d Form: Find the x and $y - i$	ntercepts and graph the line th	at contains them.		
Writing th	e Equation	n: Write the equation usin	ng slope-intercept or point-slop	e form, then rearrang	ge to standard form.	
Example:	Write the	e equation of the line that p	asses through the point (4, 5) a	nd has a slope of ½.		
	Step 1:	Write in Point-Slope Form	1	y − 5 = ½ (x	<-4)	
	Step 2:	Distribute		$\gamma - 5 = \frac{1}{2} x$	-3	
	Step 3:	Subtract ½ x and add 5		- ½ x + y = 2	2	
	Step 4:	Multiply by -2 to make a	a positive, whole number	<mark>x – 2y = -4</mark>		
E.		slope of the line containing D) and (6, 8)		3) and (6, -4)		23. (-2, -4) and (-9, -7)
F.	Find the 24. y = 7	slope of each line 7	25. x = -4		26. 2x + y = 15	27. x – 2y = 7
G.	Find the (28. m =		e given slope through the give 29. m :	en point. Write the a = -2; (4, 7)	ınswer in <i>slope-interc</i>	cept form. 30. $m = -\frac{4}{3}$; (3, -1)
н.		equation of the line that p 3); y = 2x +2	asses through the given point a	and is parallel to the ; -6x + y = -1	given line.	33. (-10, 0); -y + 3x = 16
	51. (-1,	5,,,, = = 2,, = 2	52. (1,7)	, ,, , - 1		55. (10, 0), y · 5A - 10

I.Write an equation of the line that passes through the given point and is perpendicular to the given line.34.(3, -3); y = x + 535.(8, -1); 4y + 2x = 12

36. (5, 1); y = 5x − 2

J. Write the equation of the line in point-slope form.
37. The line containing (-3, -2) and (5, 2)

38. The horizontal line passing through (2, 5)

- K. Write the equation of the line in slope-intercept form.
 - 39. The line containing (3, 1) and (4, 8)
- 40. The line containing (3, 3) and (-6, 9)
- 41. The line with slope $\frac{4}{5}$ and containing (-1, 7)

Graph the following equations. Graph three points and label the line with its equation.

Solve each system by elimination.

62	$\begin{cases} -5x - 6y = 8\\ 5x + 2y = 4 \end{cases}$	65	$\int x + y = 1$		$\int 12x - 7y = -2$
63. <	5x+2y=4	65. š	$\left(-2x+y=4\right)$	67. j	$\left(-8x+11y=14\right)$

64.
$$\begin{cases} 6x - 4y = 14 \\ -3x + 4y = 1 \end{cases}$$
66.
$$\begin{cases} 7x + 3y = -12 \\ 2x + 5y = 38 \end{cases}$$
68.
$$\begin{cases} 7x - 6y = -1 \\ 5x - 4y = 1 \end{cases}$$

Graphing Method: Graph 2 or more equations on the same coordinate plane

- Scenario 1 Intersecting lines (1 solution point of intersection)
- Scenario 2 Parallel Lines (no solution)
- Scenario 3 Coinciding Lines (Infinitely Many Solutions {IMS})

Solve each system by graphing.

69. $\begin{cases} y = 2x + 3 \\ y = 2x - 2 \end{cases}$	70. $\begin{cases} y = -x + 4\\ y = 2x - 8 \end{cases}$	71. $\begin{cases} y = 2x - 4 \\ -6x + 3y = -12 \end{cases}$

Systems of Inequalities

Remember:

- < or > Graph with a dotted line
- \leq or \geq Graph with a solid line
- < or \leq Shade below the line (shade left of a vertical line
- > or ≥ Shade above the line (shade right of a vertical line
- Solutions are where the shaded regions overlap or on a solid boundary line

Graph each system of inequalities.

									x
\square									

73.
$$\begin{cases} y \ge 2x+1\\ y < -x+4 \end{cases}$$

-1

x

 $\begin{cases} y > -x+2 \\ y \le -x+5 \end{cases}$

Domain and Range

$$a^{0} = 1 \quad \text{Example:} \quad 5^{0} = 1 \qquad a^{m} \bullet a^{n} = a^{m+n} \quad \text{Example:} \quad x^{2} \bullet x^{4} = x^{2+4} = x^{6}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} \quad \text{Example:} \quad \frac{b^{7}}{b^{3}} = b^{7-3} = b^{4} \qquad (a^{m})^{n} = a^{m(n)} \quad \text{Example:} \quad (y^{3})^{4} = y^{3(4)} = y^{12}$$

$$a^{-m} = \frac{1}{a^{m}} \quad \text{Example:} \quad 6^{-2} = \frac{1}{6^{2}} = \frac{1}{36}$$

Q. Simplify each expression.

81.
$$\left(\frac{2}{3}\right)^{-2}$$

82. $\left(\frac{5}{3}\right)^{-3}$
83. $x^{-1} \cdot x^{-2}$
84. $a \cdot a^{-1}$
85. $(x^2)^{-2}$
86. $(5a^2b^3)(a^{-2}b)$
87. $(-2ab^5)(-4ab^{-3})$
88. $x^3 \cdot x^6$
89. $(2a^4)(5a^3)$
90. $(a^2)^3$
91. $(5a)^2$
92. $c \cdot c^5 \cdot c^2$
93. $(-2xy^2)(-3x^2y)$

Multiplying Polynomials

Monomial x Polynomial

$$\underbrace{3c^{3}(8c^{4}-c^{2}-3c+5)}_{=24c^{7}-3c^{5}-9c^{4}+15c^{3}}$$

Distribute by multiplying $3c^3$ by every term inside the ()

Binomial x Binomial

$$(2x-4)(3x+5) = 6x^{2} + 10x - 12x - 20 = 6x^{2} - 2x - 20$$
First Outer Inner last combine like terms
$$(3x-4)^{2} = (3x-4)(3x-4) = 9x^{2} - 12x - 12x + 16 = 9x^{2} - 24x + 16$$
First Outer Inner last combine like terms
Binomial x Polynomial - Use Punnett Squres
$$2x^{2} \quad 5x \quad 2$$

95. (2x + 1)(x + 4)

97. (x – 4)(x + 4)

99. $(6x + 5y)^2$

Factoring Polynomials

Examples	:	
1)	$a^2-b^2=(a+b)(a-b)$	EX: $a^2 - 16 = (a+4)(a-4); 25a^2 - 36x^6 = (5a+6x^3)(5a-6x^3)$
2)	$a^2 + 2ab + b^2 = \left(a + b\right)^2$	EX: $k^{2} + 10k + 25 = (k+5)(k+5) = (k+5)^{2}$
3)	$a^2 - 2ab + b^2 = (a - b)^2$	k^2 & 25 are perfect squares & 10k = 2(1k*5) EX: $4x^2 - 12x + 9 = (2x - 3)(2x - 3) = (2x - 3)^2$
4)	$ax^2 + bx + c$	$4x^2$ & 9 are perfect squares & 12x = 2(2x*3) EX: $x^2 + 6x + 8 = (x+4)(x+2)$ since 4 + 2 = 6 and 4 * 2 = 8
	$ax^2 - bx + c$	$x^2 - 8x + 15 = (x - 3)(x - 5)$ since -3 + -5 = -8 and -3 * -5 = 15
	$ax^2 + bx - c$	$a^{2} + 12a - 45 = (a + 15)(a - 3)$ since 15 + -3 = 12 and 15 * -3 = -45
	ax^2-bx-c	$y^{2} - y - 12 = (y + 3)(y - 4)$ since 3 + -4 = -1 and 3 * -4 = -12

S. Factor each of the following polynomials. 100. $x^2 + 8x + 15$

102. $x^2 + x - 42$

104. $x^2 - 16x + 64$

101. a² – 14a + 48

103. $x^2 - 7x - 18$

105. $x^2 - 81$

		Solving Quadratic Equations	
Solve using Square Roots			
Problem:	$5x^2 - 75 = 0$	Problem	$\left(x+6\right)^2 = 21$
Get numbers on one side of equation	$\frac{5x^2}{5} = \frac{75}{5}$	Square root both sides	$\sqrt{\left(x+6\right)^2} = \pm \sqrt{21}$
Divide by 5	$x^2 = 15$	Square root of $\sqrt{(x+6)^2} = (x+6)$ subtract 6 from both sides	$x+6=\pm\sqrt{21}$ $-6 -6$
Square root both sides	$x = \pm \sqrt{15}$	Answer:	$x = \pm \sqrt{21} - 6$

Solve using Factoring		
	Problem	$a^2 + 12a - 45$
	Factor the problem	(a+15)(a-3)
Make e	each factor equal to zero and solve for "x"	a + 15 = 0 and $a - 3 = 0$
		-15 -15 +3 +3
	Answer	a = -15 a = 3
Solve each quadratic equation using fac		
109. $x^2 + 7x = 0$	111. $x^2 + 7x + 6 = 0$	113. $t^2 = 9t - 14$
110. $p^2 - 16p + 48 = 0$	112. $m^2 + 4m = 21$	114. $2x^2 + 12x = -10$

Solve Using Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Put equation in proper format $(ax^2 + bx + c = 0)$
- Find a, b, and c
- Plug into the formula
- Do the math a little at a time.
- If the discriminate (b²-4ac) is positive there are 2 real solutions, if 0, there is 1 real solution, if negative, then there is NO real solution.

Examples 1.

$$x^{2} - 2x - 15 = 0$$

$$a = 1, b = -2, c = -15$$

$$x = \frac{2 \pm \sqrt{(-2)^{2} - 4(1)(-15)}}{2(1)}$$

$$x = \frac{2 \pm \sqrt{4 + 60}}{2}$$

$$x = \frac{2 \pm \sqrt{64}}{2}$$

$$x = \frac{2 \pm \sqrt{64}}{2}$$

$$x = \frac{2 \pm 8}{2}$$

$$x = \frac{2 \pm 8}{2}, x = \frac{2 - 8}{2}$$

$$x = 5, x = -3$$

$$x^{2} - \frac{7 \pm \sqrt{73}}{4}, x = \frac{-7 \pm \sqrt{73}}{4}$$

$$x = \frac{-7 \pm \sqrt{73}}{4}, x = \frac{-7 \pm \sqrt{73}}{4}$$

$$x = \frac{-7 \pm \sqrt{73}}{4}, x = \frac{-7 \pm \sqrt{73}}{4}$$

Solve by Graphing

- Rearrange to $y = ax^2 + bx + c$
- Find a, b, and c

$$x = \frac{-b}{2a}$$

- Find axis of symmetry
- Plug in the axis of symmetry x-value into the equation and find y which together make the vertex (x, y)
- Make a table using two x-values to the left of the vertex, and two x-values to the right of the vertex.
- Graph all five points and connect with a smooth curved line.
- Solutions to Quadratics are called x-intercepts, zeros, roots, and solutions.
- If the graph does not touch the x-axis, there is no solution.

Example

Solve by Graphing 118. $y = x^2 - 4x - 5$

119. $y = x^2 + x + 2$

120. $y = x^2 + 16x + 64$

		 	 _	_	_	_	_	_	_	_	_	_	_	_	_		_
							7										
-	H						H		H					H		H	
	H						H		H					H			
_	\vdash	\vdash				-	H	-	\vdash					\vdash	-		
_	H					-	H	-	H					\vdash	-	Н	-
_	\square						H		\square					\square	L_		-
							H										
	H						H		H					H			
-	H	H		H			H		H					H	-	H	
_							H	-							-		
															-		

