\qquad

Sec 5.1 "Writing Linear Equations in Slope-Intercept Form"
*Recall that slope intercept form looks like $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, where $\mathbf{m}=$ slope and $\mathbf{b}=\mathbf{y}=$ intercept

1) Writing an equation when given the slope and the y-intercept:

Not too difficult ... Just PLUG IN the values for m and b into the equation!
Ex 1: Write the equation of the line where slope is -2 and y-intercept is 4 .

Ex 2: Write the equation of the line where slope is $1 / 2$ and y-intercept is -1 .
2) Writing an equation when given a graph:
a) Find the y-intercept
b) Find another exact point the line passes through
c) Use the two points to find the slope
d) Write the equation in slope-intercept form

Ex 3:

a) y-intercept $(b)=$
b) Another point:
c) Slope (m) =
d) Equation:

Ex 4:

a) y-intercept $(b)=$
b) Another point:
c) Slope (m) =
d) Equation:

3) Writing Equations of CONSTANT FUNCTIONS

*These are Horizontal and Vertical Lines!

Remember. .

HORIZONTAL LINES cross the y-axis, and the equation looks like $\mathrm{y}=$ \#

VERTICAL LINES cross the x-axis, and the equation looks like $\mathrm{x}=\#$

Ex 5: Write the equation of the horizontal line that passes through the point $(-3,7)$

Ex 6: Write the equation of the vertical line that passes through the point $(-3,7)$

Ex 7: Write the equations of the Horizontal and Vertical lines that pass through the point $(5,-1)$

Ex 8:

You borrow $\$ 50$ from your brother. To repay the loan, you pay him $\$ 10$ per week. Write a linear equation to model the situation.

Ex 9:

John Deere rents out riding lawn mowers for a flat fee of $\$ 45$ plus an additional $\$ 10$ per day. Write an equation expressing the total cost.

Sec 5.2 "Writing Linear Equations Given the Slope and a Point"

To write linear equations when given the slope and a point, follow these steps:

1) Use the equation $y=m x+b$
2) Substitute in the values for y, m, and x.
3) Solve for b
4) Use m and b to write the linear equation

Ex 1:

Write an equation for the line that passes through $(-1,4)$ and has a slope of 3 .

Ex 2:

Write an equation for the line that passes through $(2,5)$ and has a slope of -1 .

Ex 3:
Write an equation for the line with an x-intercept of 5 and a slope of -3 .

Writing Equations of Parallel Lines:
*Recall that parallel lines have the same slope!
Ex 4:
Write an equation of a line parallel to $y=-1 / 2 x+3$ and that passes through the point $(-2,1)$.

Sec 5.3 "Writing Equations of Perpendicular Lines"

Writing Equations of Perpendicular Lines:

Non-vertical lines are PERPENDICULAR if and only if their slopes are OPPOSITE RECIPROCALS
Ex 1:
Given line 1 and line 2 are PERPENDICULAR:

SLOPE of Line 1	SLOPE of Line 2
$-2 / 3$	
2	
-1	
$1 / 5$	

Ex 2 \& Ex 3: Are the following lines perpendicular? Explain why or why not.

Ex 2:

$y=-3 x+2$ and $y=3 x+5$

Ex 3:

$y=-4 / 5 x-8$ and $y=5 / 4 x+1$

Ex 4:

Write an equation of the line perpendicular to $y=-3 x+2$ and through the point $(2,3)$.

Writing Equations of Parallel Lines:

*Remember that parallel lines have the SAME SLOPE!

Ex 5:

Write the equation of the line PARALLEL to $\mathrm{y}=2 \mathrm{x}-8$ and through the point $(-3,5)$

Sec 5.5 "Point-Slope Form of a Linear Equation"

Point-Slope Form: $\quad \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)$

When to use point-slope form:

1) When you are given the slope (m) and a point on the line ($\mathrm{x}_{1}, \mathrm{y}_{1}$)
$*\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is the given point
2) When you are given two points on a line
*First find the slope, then use either of the two points as $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
*Note:
Point-slope form is an INTERMEDIATE equation ONLY....
meaning you do not leave it in Point-Slope Form ...ALWAYS rearrange the equation into $y=m x+b$

Steps:

1) Find the slope if you are given 2 points (sometimes the slope will be given)
2) Plug in the values for x_{1}, y_{1}, and m into the equation
3) Rearrange into slope-intercept form

Ex 1:

Find the point-slope form of the equation of the line passing through $(2,-1)$ with slope of $\mathrm{m}=3$.

Ex 2:

Find the point-slope form of the equation passing through ($-1,-2$) and (3, 4).

Ex 3: Write the equation of the line using point-slope form

Sec 5.6 "The Standard Form of a Linear Equation"

Standard Form of a Linear Equation: $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$
*Variables are on the left, and the constant term is on the right
*A, B, and C are INTEGERS, and A and B cannot both be zero
(One or the other can be, but not both at the same time)
*A must be POSITIVE

Ex 1:

Write $4 x+7=3 y$ in standard form.

Ex 2:

Write $y=\frac{4}{3} x-2$ in standard form.

Ex 3:

Write an equation for the line in standard form that passes through $(-8,3)$ and has a slope of $m=2$.
Use point-slope form first!

Change to standard form...

Ex 4: Write an equation for the line in standard form that passes through $(-3,-3)$ and $(7,2)$.

Ex 5: Write an equation in standard form of the horizontal line and vertical line.

Ex 6: Write an equation in standard form of the horizontal line and vertical line that pass through the point $(3,-5)$.

Summary of Equations of Lines:

Name of Equation:	Equation Looks Like:
Slope-Intercept Form	$\mathrm{y}=\mathrm{mx}+\mathrm{b}$
Point-Slope Form	$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
Standard Form	$\mathrm{Ax}+\mathrm{By}=\mathrm{C}$ Vertical Line (A, B, and C are INTEGERS
A is positive)	

Sec 5.4 "Fitting a Line to Data"

Best-Fitting Line: The "best" line that fits all of the data

Correlation: Indicates how well a particular set of data can be approximated by a straight line

Three Types of Correlation

1) Positive Correlation

When the points on a scatter plot can be approximated by a line with \qquad slope

2) Negative Correlation

When the points on a scatter plot can be approximated by a line with a \qquad slope

3) Relatively No Correlation

When points on a scatter plot \qquad be well approximated by a straight line

Steps for finding a "Best-Fitting" Line:

1)Plot the data points on graph paper
2)Using a \qquad , draw a best-fit \qquad through the data points
3)Find \qquad points on your line that you can identify the \qquad coordinates of (not necessarily any of the data points you plotted)
4)Using the two coordinate points, do the 3 -step process....

- Find \qquad $\mathbf{m}=\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right) /\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$
- Use \qquad - \qquad form $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$ to write an intermediate equation
- Rearrange into \qquad - \qquad form $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

Example

Graph the following coordinates and draw a best-fit line.
Then write an equation that represents the data.

\mathbf{x}	1	1.5	2	5	4	3	6	3	4
\mathbf{y}	4	7	6	7	7	5	10	6	8

