Name

Sec 5.1 "Writing Linear Equations in Slope-Intercept Form"

*Recall that slope intercept form looks like y = mx + b, where m = slope and b = y=intercept

1) <u>Writing an equation when given the slope and the y-intercept:</u> Not too difficult ... Just PLUG IN the values for m and b into the equation!

 $\underline{\text{Ex 1}}$: Write the equation of the line where slope is -2 and y-intercept is 4.

Ex 2: Write the equation of the line where slope is $\frac{1}{2}$ and y-intercept is -1.

2) Writing an equation when given a graph:

- a) Find the y-intercept
- b) Find another exact point the line passes through
- c) Use the two points to find the slope
- d) Write the equation in slope-intercept form

<u>Ex 4</u>:

a) y-intercept (b) =

b) Another point:

c) Slope (m) =

d) Equation:

3) Writing Equations of CONSTANT FUNCTIONS

*These are Horizontal and Vertical Lines!

Remember... HORIZONTAL LINES cross the y-axis, and the equation looks like y = #

VERTICAL LINES cross the x-axis, and the equation looks like x = #

Ex 5: Write the equation of the horizontal line that passes through the point (-3,7)

Ex 6: Write the equation of the vertical line that passes through the point (-3, 7)

<u>Ex 7</u>: Write the equations of the Horizontal and Vertical lines that pass through the point (5, -1)

<u>Ex 8:</u>

You borrow \$50 from your brother. To repay the loan, you pay him \$10 per week. Write a linear equation to model the situation.

<u>Ex 9</u>:

John Deere rents out riding lawn mowers for a flat fee of \$45 plus an additional \$10 per day. Write an equation expressing the total cost.

Sec 5.2 "Writing Linear Equations Given the Slope and a Point"

To write linear equations when given the <u>slope</u> and a <u>point</u>, follow these steps:

- 1) Use the equation y = mx + b
- 2) Substitute in the values for y, m, and x.
- 3) Solve for b
- 4) Use m and b to write the linear equation

<u>Ex 1</u>:

Write an equation for the line that passes through (-1,4) and has a slope of 3.

<u>Ex 2</u>:

Write an equation for the line that passes through (2,5) and has a slope of -1.

<u>Ex 3</u>:

Write an equation for the line with an x-intercept of 5 and a slope of -3.

Writing Equations of Parallel Lines:

*Recall that *parallel* lines have the *same* slope!

<u>Ex 4</u>:

Write an equation of a line parallel to y = -1/2x + 3 and that passes through the point (-2,1).

Sec 5.3 "Writing Equations of Perpendicular Lines"

Writing Equations of Perpendicular Lines:

Non-vertical lines are PERPENDICULAR if and only if their slopes are **OPPOSITE RECIPROCALS**

<u>Ex 1</u>:

Given line 1 and line 2 are PERPENDICULAR:

SLOPE of Line 1	SLOPE of Line 2
-2/3	
2	
-1	
1/5	

Ex 2 & Ex 3: Are the following lines perpendicular? Explain why or why not.

Ex 2: y = -3x + 2 and y = 3x + 5**Ex 3:** $y = -4/5 \ x - 8$ and $y = 5/4 \ x + 1$

<u>Ex 4</u>:

Write an equation of the line perpendicular to y = -3x + 2 and through the point (2,3).

Writing Equations of Parallel Lines:

*Remember that parallel lines have the SAME SLOPE!

<u>Ex 5</u>:

Write the equation of the line PARALLEL to y = 2x - 8 and through the point (-3,5)

Sec 5.5 "Point-Slope Form of a Linear Equation"

Point-Slope Form: $y - y_1 = m(x - x_1)$

When to use point-slope form:

- When you are given the slope (m) and a point on the line (x₁, y₁) *(x₁, y₁) is the given point
- 2) When you are given two points on a line
 *First find the slope, then use either of the two points as (x₁, y₁)

*Note:

Point-slope form is an INTERMEDIATE equation ONLY.... meaning you <u>do not leave it in Point-Slope Form</u> ...ALWAYS rearrange the equation into y = mx + b

Steps:

- 1) Find the slope if you are given 2 points (sometimes the slope will be given)
- 2) Plug in the values for x₁, y₁, and m into the equation
- 3) Rearrange into slope-intercept form

<u>Ex 1</u>:

Find the point-slope form of the equation of the line passing through (2, -1) with slope of m = 3.

<u>Ex 3</u>: Write the equation of the line using point-slope form

Sec 5.6 "The Standard Form of a Linear Equation"

Standard Form of a Linear Equation: Ax + By = C

*Variables are on the left, and the constant term is on the right
*A, B, and C are INTEGERS, and A and B cannot both be zero (One or the other can be, but not both at the same time)
*A must be POSITIVE

<u>Ex 1</u>:

Write 4x + 7 = 3y in standard form.

<u>Ex 3</u>:

Write an equation for the line in standard form that passes through (-8, 3) and has a slope of m = 2.

Use point-slope form first!

Change to standard form...

<u>Ex 4:</u> Write an equation for the line in standard form that passes through (-3, -3) and (7, 2).

<u>Ex 5</u>: Write an equation in standard form of the horizontal line and vertical line.

<u>Ex 6</u>: Write an equation in standard form of the horizontal line and vertical line that pass through the point (3, -5).

Summary of Equations of Lines:

Name of Equation:	Equation Looks Like:
Slope-Intercept Form	y = mx + b
Point-Slope Form	$y - y_1 = m(x - x_1)$
Standard Form	Ax + By = C
	(A, B, and C are INTEGERS
	A is positive)
Vertical Line	x = #
	(slope is undefined)
Horizontal Line	y = #
	(slope = 0)

Best-Fitting Line: The "best" line that fits all of the data

Correlation: Indicates how well a particular set of data can be approximated by a straight line

Three Ty	pes of	Correlation	
----------	--------	-------------	--

1) Positive Correlation When the points on a scatter plot can be approximated by a line with slope	
2) <u>Negative Correlation</u> When the points on a scatter plot can be approximated by a line with a slope	
3) <u>Relatively No Correlation</u> When points on a scatter plot be be be	
<u>Steps for finding a "Best-Fitting" Line</u> : 1)Plot the data points on graph paper	
2)Using a, draw a best-fit through t	he data points
3)Find points on your line that you can identify the (not necessarily any of the data points you plotted)	coordinates of
4)Using the two coordinate points, do the 3-step process • Find $\mathbf{m} = (\mathbf{y_1}-\mathbf{y_2})/(\mathbf{x_1}-\mathbf{x_2})$ • Use form $\mathbf{y} - \mathbf{y_1} = \mathbf{m}(\mathbf{x} - \mathbf{x_1})$ • Rearrange into for	
Example Graph the following coordinates and draw a best-fit line. Then write an equation that represents the data.	10 ¹

X	1	1.5	2	5	4	3	6	3	4
		7							

