

| NEW JERSEY CENTER
 FOR TEACHING \& LEARNING |
| :---: | :---: |
| Algebra I |
| Polynomials |
| 2015-11-02 |
| www.njct.org |

Table of Contents

Definitions of Monomials, Polynomials and Degrees
Adding and Subtracting Polynomials
Multiplying a Polynomial by a Monomial
Multiplying a Polynomial by a Polynomial
Special Binomial Products
Solving Equations

- Factors and GCF

Factoring out GCF's

- Factoring Using Special Patterns

Identifying \& Factoring $\mathbf{x}^{2}+\mathrm{bx}+\mathrm{c}$

- Factoring Trinomials $a x^{2}+b x+c$
- Factoring 4 Term Polynomials
- Mixed Factoring
- Solving Equations by Factoring

Slide 3 / 216

Definitions of Monomials, Polynomials and Degrees

Return to
Table of
Contents

Monomial

A monomial is a one-term expressionformed by a number, a variable, or theproduct of numbers and variables. Examples of monomials.

$$
4 x \quad 28
$$

$81 y^{4} z$

$m n^{3}$

We usually write the variables in exponential form - exponents must be whole numbers.

Monomials

Drag the following terms into the correct sorting box. If yousort correctly, the term will be visible. If you sort incorrectly, the term will disappear.

A polynomial is an expression that contains one or more monomials. Examples of polynomials....
$5 a^{2}$
$8 x^{3+x^{2}}$

$$
\frac{r t}{6}+\frac{a^{4} b}{15} \quad 4 c-m n^{3}
$$

Polynomials

What polynomials DO have:
One or more terms made up of...

Numbers
Variables raised to wholenumber exponents
Products of numbers and variables

What polynomials DON'T have:

- Square roots of variables
- Negative exponents
- Fractional exponents
- Variables in the denominators of any fractions

Slide 8 / 216

Polynomials

What is the exponent of the variable in the expression $5 x$?

What is the exponent of the variable in the expression 5 ?

Slide 9 / 216
Degrees of Monomials
The degree of a monomial is the sum of the exponents of its
variables. The degree of a nonzero constant such as 5 or 12 is 0 .
The constant 0 has no degree.
Examples:

1) The degree of $3 x$ is?
2) The degree of - $6 \times 3 y$ is?
3) The degree of 9 is?

The degree of a monomial is the sum of the exponents of its variables. The degree of a nonzero constant such as 5 or 12 is 0 . The constant 0 has no degree.

Examples:

1) The degree of $3 x$ is?
2) The degree of $-6 x 3 y$ is?
\qquad
\qquad
\qquad

\qquad
\qquad

1 What is the degree of x^{2} ?
OA 0
OB 1
○C 2
OD 3

2 What is the degree of $m n$?
OA 0
OB 1
○С 2
OD 3

3 What is the degree of 3 ?
OA 0
OB 1
OC 2
OD 3

Slide 14 / 216
4 What is the degree of $7 t^{8}$?

Degrees of Polynomials

The degree of a polynomial is the same as that of the term with the greatest degree.

Example:
Find degree of the polynomial $4 x^{3} y^{2}-6 x y^{2}+x y$.
$4 x^{3} y^{2}$ has a degree of 5,
$-6 x y^{2}$ has a degree of 3 ,
$x y$ has a degree of 2 .
The highest degree is 5 , so the degree of the polynomial is 5 .
Slide 15 / 216

1) 3
2) $12 c^{3}$
3) $a b$
4) $8 s^{4} t$
5) $2-7 n$
6) $h^{4}-8 t$
7) $s^{3}+2 v^{2} y^{2}-1$

5 What is the degree of the following polynomial:

$$
a^{2} b^{2}+c^{4} d-x^{2} y
$$

OA 3
OB 4
○C 5
OD 6
Slide 17 / 216 \square (\square (\square -

Slide 18 / 216
6 What is the degree of the following polynomial:

$$
a^{3} b^{3}+c^{4} d-x^{3} y^{2}
$$

OA 3
OB 4
OC 5
OD 6

Adding and Subtracting Polynomials

Return to
Table of
Contents

Standard Form

A polynomial is in standard form when all of the terms are in order from highest degree to the lowest degree.
Standard form is commonly accepted way to write polynomials.

Example: $\quad 9 x^{7}-8 x^{5}+1.4 x^{4}-3 x^{2}+2 x-1$ is in standard form

Drag each term to put the following equation into standard form:
$67-11 x^{4}-21 x^{9}-9 x^{4}-x^{8}+2 x^{3}-x$

Vocabulary

Monomials with the same variables and the same power are like terms.

The number in front of each term is cedeffidment the term. If there is no variable in the term, the term is calbersthenet term

Like Terms	Unlike Terms
$4 x$ and $-12 x$	-3b and 3a
$x^{3} y$ and $4 x^{3} y$	$6 a^{2} \mathrm{~b}$ and -2 a

Slide 21 / 216

Like Terms

Like terms can be combined by adding the coefficients, but keeping the variables the same. WHY?
$3 x+5 x$ means 3 times a number x added to 5 times the same number x.

So altogether, we have 8 times the number x.
What we are really doing is the distributive property of multiplication over addition in reverse:

$$
3 x+5 x=(3+5) x=8 x
$$

One big mistake students often make is
to multiply the
variables:
$3 x+5 x=8 x$

Like Terms

Combine these like terms using the indicated operation.

$$
\begin{aligned}
& 4 x+3 x \\
& 5 a^{2}-2 a^{2} \\
& 7 x y+8 x y-5 x y \\
& 2 x^{2} y+3 x y^{2}
\end{aligned}
$$

7 Simplify $7 y+5 y$
OA $12 y^{2}$
OB $12 y$
OC $2 y^{2}$
OD $2 y$
Slide 24 / 216

8 Simplify $5 y-7 y$

OA $\quad-2 y^{2}$
OB $-2 y$
OC $2 y^{2}$
OD $2 y$
(OA

9 Simplify $5 x^{2} y+4 x y^{2}-3 x^{2} y$
OA $2 x^{2} y+4 x y^{2}$
OB $5 x^{2} y+4 x y^{2}-3 x^{2} y$
OC $5 x^{2} y+x y^{2}$
OD $6 x^{2} y$

Add Polynomials

Slide 27 / 216

To add polynomials, combine the like terms from each polynomial.

To add vertically, first line up the like terms and then add.
Examples:
$\left(3 x^{2}+5 x-12\right)+\left(5 x^{2}-7 x+3\right) \quad\left(3 x^{4}-5 x\right)+\left(7 x^{4}+5 x^{2}-14 x\right)$
line up the like terms line up the like terms $3 x^{2}+5 x-12$
(+) $5 x^{2}-7 x+3$
$3 x \quad 4 \quad-5 x$
(+) $7 x^{4}+5 x^{2}-14 x$
click
${ }^{10}$ click
Slide 26 / 216

Add Polynomials

We can also add polynomials horizontally. $\left(3 x^{2}+12 x-5\right)+\left(5 x^{2}-7 x-9\right)$

Use the communitive and associative properties to group like terms.

$$
\left(3 z+5 x^{2}\right)+(12 x+-7 x)+(-5+-9)
$$

$8 x+5 x-14$

10 Add $(4 x+1)+(5 x+8)$
OA $9 x+9$
OB $9 x^{2}+9$
○C $9 x+8$
OD $9 x+7$

Slide 29 / 216

\qquad

Slide 32 / 216

Subtract Polynomials

To subtract polynomials, subtract the coefficients of like terms.

Example:
$-3 x-4 x=-7 x$
$13 y-(-9 y)=22 y$
$6 x y-13 x y=-7 x y$

Subtract Polynomials

We can subtract polynomials vertically
To subtract a polynomial, change the subtraction to adding -1. Distribute the -1 and then follow the rules for adding polynomials $\left(3 x^{2}+4 x-5\right)-\left(5 x^{2}-6 x+3\right)$
$\left(3 x^{2}+4 x-5\right)+(-1)\left(5 x^{2}-6 x+3\right)$
$\left(3 x^{2}+4 x-5\right)+\left(-5 x^{2}+6 x-3\right)$
$3 x^{2}+4 x-5$
(+) $-5 x^{2}-6 x+3$
click

Subtract Polynomials

We can subtract polynomials vertically
Example:

$$
\left(4 x^{3}-3 x-5\right)-\left(2 x^{3}+4 x^{2}-7\right)
$$

$\left(4 x^{3}-3 x-5\right)+(-1)\left(2 x^{3}+4 x^{2}-7\right)$
$\left(4 x^{3}-3 x-5\right)+\left(-2 x^{3}-4 x^{2}+7\right)$
$4 x^{3} \quad-3 x-5$
(+) $-2 x^{3}-4 x^{2}+7$
click

Subtract Polynomials

We can also subtract polynomials horizontally.
$\left(3 x^{2}+12 x-5\right)-\left(5 x^{2}-7 x-9\right)$
Change the subtraction to adding a negative one and distribute the negative one.
$\left(3 x^{2}+12 x-5\right)+(-1)\left(5 x^{2}-7 x-9\right)$
$\left(3 x^{2}+12 x-5\right)+\left(-5 x^{2}+7 x+9\right)$
Use the communitive and associative
properties to group like terms.
$\left(3 x^{2}+-5 x^{2}\right)+(12 x+7 x)+(-5+9)$
click
\qquad

\square

Summary

When we add polynomials, we are adding the terms of the first to the terms of the second, and each of these sums is a new term of the same degree. Each new term consists of a constant times variables raised to whole number powers, so the sum is in fact a polynomial.

Therefore, we say that the set of polynomials is "closed under addition".
Since subtraction is just adding the opposite, the set of polynomials is also closed under subtraction.

Is the sum or difference of two polynomials always a polynomial?

Multiplying a Polynomial by a Monomial

\qquad

Multiplying Polynomials

Find the total area of the rectangles.

$3 x\left(2 x^{2}+5 x+4\right)=3 x\left(2 x^{2}\right)+3 x(5 x)+3 x(4)=6 x^{3}+15 x^{2}+12 x$ square units

Multiplying Polynomials

To multiply a polynomial by a monomial, you use thedistributive property together with the laws of exponents for multiplication.

Example:
Slide 48 / 216

$$
\begin{aligned}
& -2 x\left(5 x^{2}-6 x+8\right) \\
& (-2 x)\left(5 x^{2}\right)+(-2 x)(-6 x)+(-2 x)(8) \\
& -10 x^{3}+12 x^{2}-16 x
\end{aligned}
$$

Multiplying Polynomials

Let's Try It! Multiply to simplify.

1. $-x\left(2 x^{3}-4 x^{2}+7 x\right)$
2. $4 x^{2}\left(5 x^{2}-6 x-3\right)$
3. $3 x y\left(4 x^{3} y^{2}-5 x^{2} y^{3}+8 x y^{4}\right)$

21 What is the area of the rectangle shown?
A $x^{4}+3 x^{2}+4 x^{2}$
B $2 x^{2}+2 x^{3}+4 x^{2}$
$x^{2}+2 x+4$
OC $x^{4}+2 x^{3}+4 x^{2}$
OD $2 x^{4}+2 x^{3}+4 x^{2}$

22 Multiply $2 x\left(3 x^{2}+4 x-6\right)$
OA $\quad 6 x^{2}+8 x-12$
OB $6 x^{2}+8 x^{2}-12$
OC $6 x^{2}+8 x^{2}-12 x$
OD $6 x^{3}+8 x^{2}-12 x$

23 Multiply $-3 x^{4}\left(5 x y-2 x y^{3}\right)$
OA $-15 x^{4} y+6 x^{4} y^{3}$
OB $-15 x^{5} y+6 x^{5} y^{3}$
OC $-15 x^{5} y-6 x^{5} y^{3}$
OD $-15 x^{4} y-6 x^{4} y^{3}$

$$
00-15 x y-0 x y
$$

24 Find the area of a triangle $(A=1 / 2 \mathrm{bh})$ with a base of 4 x and a height of $2 x-8$. (All answers are in square units.)

OA $8 x^{2}-32$

- B $6 x^{2}-32 x$

OC $3 x^{2}-16 x$
OD $4 x^{2}-16 x$

25 Rewrite the expression

$$
-3 a(a+b-5)+4(-2 a+2 b)+b(a+3 b-7)
$$

to find the coefficients of each term. Enter the coefficients into the appropriate boxes.

Slide 54 / 216

From PARCC EOY sample test calculator \#9

Multiplying a Polynomial by a Polynomial

Return to Table of Contents

26 Find the area of the rectangle in two different ways.

Multiply Polynomials

To multiply a polynomial by a polynomial, you multiply each ternøf the first polynomial by each term of the second. Then, add like terms.

Example 1:

$$
(2 x+4 y)(3 x+2 y)
$$

Example 2:

$$
(x+3)(x 2+2 x+4)
$$

FOIL Method

The FOIL Method is a shortcut that can be used to remember how multiply two binomials. To multiply two binomials, find the sum of the products of the....

First terms of each binomial
Outer terms - the terms on the outsides
Inner Terms- the terms on the inside
Last Terms of each binomial
$(a+b)(c+d)=$
ac +
ad +
bc +
bd

Remember - FOIL is just a mnemonic to help you remember the steps for binomials. What you are really doing is multiplying each term in the first binomial by each term in the second.

Multiply Polynomials

Try it!Find each product.

1) $(x-4)(x-3)$
2) $(x+2)(3 x-8)$

Multiply Polynomials

Try it! Find each product.
3) $(2 x-3 y)(4 x+5 y)$
4) $(3 x-6)\left(x^{2}-2 x\right)$

27 What is the total area of the rectangles shown?

OA $8 x^{2}+20$

- B $8 x^{2}+10 x+20$

OC $8 x^{2}+16 x+20$
OD $8 x^{2}+26 x+20$

Slide 62 / 216
28 Multiply: $(x+3)(7 x+2)$
คA $7 x^{2}+27 x+6$
OB $7 x^{2}+23 x+6$
() $7 x^{2}+21 x+6$

OD $7 x^{2}+13 x+6$

29 Multiply: $(2 x+3)(-3 x-4)$
○A $-6 x^{2}-17 x-12$
OB $-6 x^{2}+17 x-12$
OC $-6 x^{2}-17 x+12$
OD $-6 x^{2}+17 x+12$
Slide 63 / 216

30 Multiply: $(x-2)\left(5 x^{2}+3 x-1\right)$
OA $5 x^{3}-13 x^{2}-7 x+2$
B $5 x^{3}-10 x^{2}+7 x+2$
○С $5 x^{3}-7 x^{2}-7 x+2$
OD $5 x^{3}+7 x^{2}+7 x+2$

31 Multiply: $\left(x^{2}-5\right)\left(x^{2}+3\right)$
OA $x^{2}-2 x^{2}-15$
OB $\quad x^{4}-2 x^{2}-15$
○C $x^{2}-2 x-15$
OD $x^{4}-2 x-15$

32 Find the area of a square with a side of $x^{2}-2 x$

$$
\begin{array}{ll}
\text { OA } & x^{4}-4 x^{2} \\
\text { OB } & x^{4}+4 x^{2} \\
\text { OC } & x^{4}-2 x^{3}+4 x^{2} \\
\text { OD } & x^{4}-4 x^{3}+4 x^{2}
\end{array}
$$

(1)

Slide 67 / 216

34 Find the total area of the rectangles. students type their answers here

Slide 68 / 216
\qquad \square \square
\qquad
\qquad
\qquad $\xrightarrow{ }$

Slide 69 / 216

Special Binomial Products

Square of a Sum

$(a+b)^{2}$
$=(a+b)(a+b)$
$=a^{2}+a b+a b+b^{2}$
$=a^{2}+2 a b+b^{2}$

Notice that there are two of the term ab!

Square of a Difference

$(a-b)^{2}$

$=(a-b)(a-b)$
$=a^{2}-a b-a b+B^{3}$
$=a^{2}-2 a b+b^{2}$

Notice that there are two of the term -ab!

Product of a Sum and a Difference

$(a+b)(a-b)$		a
$=a^{2}-a b+a b+-b^{2}$	a	a^{2}
$=a^{2}-b^{2}$	$-a b$	
	$+b+a b$	$-b^{2}$

This time, the $+\mathbf{a b}$ and the $-\mathbf{a b}$ add up to 0 , and so the middle term drops out.

Special Products

Try It! Find each product.

1) $(3 p+9)^{2}$
2) $(6-p)^{p}$
3) $(2 x-3)(2 x+3)$

Fill in the missing pieces

$$
\begin{aligned}
& (3 \mathrm{x}-5 \mathrm{y})^{2}=\square \mathrm{x}^{2}+\square \mathrm{xy}+\square \mathrm{y}^{2} \\
& \mathbf{(\square \mathrm { x } + \square \mathrm { y }) ^ { 2 } = \mathbf { 9 } \mathrm { x } ^ { 2 } + \square \mathrm { x } \mathrm { y } + \mathbf { 3 6 } \mathrm { y } ^ { 2 }} \\
& \mathbf{(\square \mathrm { x } + \square \mathrm { y }) ^ { 2 } = 1 2 1 \mathrm { x } ^ { 2 } - \mathbf { 6 } \mathbf { x } \mathrm { y } + \square \mathrm { y } ^ { 2 }} \\
& \mathbf{(1 2 x - \square \mathrm { y }) (\square \mathrm { x } + 9 \mathrm { y }) = \square \mathrm { x } ^ { 2 } - \square \mathrm { y } ^ { 2 }}
\end{aligned}
$$

$37(x-5)^{2}$
OA $x^{2}+25$
OB $\quad x^{2}+10 x+25$
OC $x^{2}-10 x+25$
OD $x^{2}-25$
$38(x-6)(x+6)$
A $x^{2}-12 x-36$
OB $x^{2}+36$
OC $x^{2}+12 x-36$
OD $x^{2}-36$

Slide 80 / 216
39 What is the area of a square with sides $2 x+4$?
A A $4 x^{2}+16$
OB $4 x^{2}-16$
OC $4 x^{2}+8 x+16$
OD $4 x^{2}+16 x+16$

$$
\begin{aligned}
& 40 \quad\left(3 x+y^{2}\right)^{2} \\
& \text { OA } 9 x^{2}+6 x y^{2}+y^{4} \\
& \text { OB } 6 x^{2}+3 x y^{2}+y^{4} \\
& \text { OC } 9 x^{2}+y^{4} \\
& \text { OD } 6 x^{2}+y^{4}
\end{aligned}
$$

Solving Equations

Return to

Table of
Contents

Zero Product Property

Given the following equation, what conclusion(s) can be drawn?

$$
a b=0
$$

Since the product is 0 , one of the factors, a or b, must be 0 .

Zero Product Property

If $a b=0$, then either $a=0$ or $b=0$.

Think about it: if $3 x=0$, then what is x ?

Zero Product Property

What about this? $\quad(x-4)(x+3)=0$
Since $(x-4)$ is being multiplied by $(x+3)$, then each binomial is a FACTOR of the left side of the equation.

Since the product is 0 , one of the factors must be 0 .
Therefore, either $x-4=0$ or $x+3=0$.

$$
\begin{aligned}
x-4=0 \\
+4+4
\end{aligned} \quad \text { or } \quad \text { or } \quad \begin{array}{r}
x+3=0 \\
x=4-3-3
\end{array}
$$

Zero Product Property

Therefore, our solution set is $\{-3,4\}$. To verify the results, substitute each solution back into the original equation.

To check $x=-3: \quad(x-4)(x+3)=0$
$(-3-4)(-3+3)=0$
$(-7)(0)=0$
$0=0$

To check $x=4: \quad(x-4)(x+3)=0$
$(4-4)(4+3)=0$ (0)(7) $=0$

Solve

What if you were given the following equation?

$$
(x-6)(x+4)=0
$$

Slide 86 / 216

Slide 87 / 216

41 Solve $(a+3)(a-6)=0$.
OA $\{3,6\}$
OB $\{-3,-6\}$
OC $\{-3,6\}$
OD $\{3,-6\}$

Slide 89 / 216
42 Solve $(a-2)(a-4)=0$.
OA $\{2,4\}$
OB $\{-2,-4\}$
OC $\{-2,4\}$
OD $\{2,-4\}$

```
43 Solve (2a-8)(a+1)=0.
    OA {-1,-16}
    OB {-1, 16}
    OC {-1,4}
    OD {-1,-4}
```


Factors
 and Greatest Common Factors

Return to
Table of
Contents

GCF

What is the greatest common factor (GCF) of 10 and $15 ?$

Number Bank	
1	11
2	12
3	13
4	14
5	15
6	16
7	17
8	18
9	19
10	20

GCF
What is the greatest common factor (GCF) of 12 and $18 ?$

Number Bank	
1	11
2	12
3	13
4	14
5	15
6	16
7	17
8	18
9	19
10	20

have in common

44 What is the GCF of 12 and 15 ?

Slide 95 / 216
45 What is the GCF of 24 and 48 ?

Slide 96 / 216
46 What is the GCF of 72 and 54 ?

47 What is the GCF of 28,56 and 42 ?

GCF

Variables also have a GCF.

The GCF of variables is the variable(s) that is in each term raised to the least exponent given.

Slide 98 / 216

Example: Find the GCF

x^{2} and x^{3}	r^{4}, r^{5} and r^{8}
$x^{3} y^{2}$ and $x^{2} y^{3}$	$20 x^{2} y^{2} z^{5}$ and $15 x^{4} y^{4} z^{4}$

48 What is the GCF of x^{8} and x^{9} ?
OA x^{8}
OB x^{9}
○C x
OD 1
Slide 99 / 216
\qquad

Slide 101 / 216

Factoring

Factoring a number means to find other numbers you can multiply to get the number.
$48=6 \times 8$, so 6 and 8 are both factors of 48 .

Factoring a polynomial means to find other polynomials that can be multiplied to get the original polynomial
$(y+1)(y-4)=y^{2}-3 y-4$, so $y+1$, and $y-4$ are factors of $y^{2}-3 y-4$.

Factoring

Example:

Factor $10 x^{2}-30 x$
We might notice quickly that both terms have 10 as a factor, so we could have $10\left(x^{2}-3 x\right)$.

But both terms also have x as a factor. So the greatest common factor of both terms is $10 x$.

$$
10 x^{2}-30 x=10 x(x-3)
$$

The left side of the equation is in expanded form, and the right side is in factored form.

Slide 104 / 216
\qquad
\qquad \square \square
\qquad
\qquad
\qquad Slide 105 / 216

Factoring

The first step in factoring is to look for the greatest monomial factor. If there is a greatest monomial factor other than 1, use the distributive property in reverse to rewrite the given polynomial as the product of this greatest monomial factor and a polynomial.

Example Factor

$$
6 x^{4}-15 x^{3}+3 x^{2}
$$

$$
\text { Factoring }
$$

Factor:
$4 m^{3} n-7 m^{2} n^{2}$
$100 x^{5}-20 x^{3}+30 x-50$
$\frac{1}{2} x^{2}-\frac{1}{2} x$

Slide 107 / 216

Factoring

Sometimes we can factor a polynomial that is not in simplest form but has a common binomial factor.

Consider this problem:
$y(y-3)+7(y-3)$

In this case, y-3 is the common factor.

If we divide out the $\mathrm{y}-3$'s we get:
$(y-3)(y(y-3)+7(x-3))=(y-3)(y+7)$
Slide 108 / 216

	Factoring
Factor each polynomial:	
$a\left(z^{2}+5\right)-\left(z^{2}+5\right)$	
$3 x(x+y)+4 y(x+y)$	
$7 m n(x-y)-2(x+y)$	

Factor each polynomial: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factoring

Slide 110 / 216

In working with common binomial factors, look for factors that are opposites of each other.

For example: $\quad(x-y)=-(y-x)$ because
$x-y=x+(-y)=-y+x=-1(y-x)$
so $\mathrm{x}-\mathrm{y}$ and $\mathrm{y}-\mathrm{x}$ are opposites or additive inverses of each other
You can check this by adding them together: $x-y+y-x=0$!

Additive Inverse

Name the additive inverse of each binomial:
$3 x-1$
$5 a+3 b$
$x+y$
$4 x-6 y$

Prove that each pair are additive inverses by adding them together - what do you get?

52 True or False: $y-7=-7-y$
OTrue
O False

53 True or False: $8-d=-1(d+8)$
O True
OFalse
Slide 113 / 216

54 True or False: The additive inverse of $8 \mathrm{c}-\mathrm{h}$ is $-8 \mathrm{c}+\mathrm{h}$.

O True
OFalse
Slide 114 / 216

55 True or False: $-\mathrm{a}-\mathrm{b}$ and $\mathrm{a}+\mathrm{b}$ are opposites.
OTrue
O False

Opposites

Slide 116 / 216

In working with common binomial factors, look for factors that are opposites of each other.

Example 3 Factor the polynomial.

$$
n(n-3)-7(3-n)
$$

Rewrite $3-n$ as $-1(n-3) \quad n(n-3)-7(-1)(n-3)$

Simplify $\quad n(n-3)+7(n-3)$

Factor $\quad(n-3)(n+7)$

Factor the polynomial.

56 If possible, Factor $7 r+14 s$
○А $\quad 7 r(1+2 s)$
○B $7 s(r+2)$
○C $7(r+2 s)$
OD Already Simplified

Slide 118 / 216
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

57 If possible, Factor $10 a^{3}-35 a^{2}+12$

- A $2 a\left(5 a^{2}-7 a+6\right)$

OB $5 a\left(2 a^{2}-7 a+2\right)$
OC $2\left(5 a^{3}-7 a^{2}+6\right)$
OD Already Simplified

58 If possible, Factor $z(z-1)+2(z-1)$
A $(z-1)(z+2)$
○ $\mathrm{B}(z-1)(z-2)$
○ $(z+1)(z-2)$
OD Already Simplified

59 If possible, Factor $9(1-x)-x(x-1)$
○A $(x-1)(x-9)$
OB $(1-x)(9+x)$
○C $(x-9)(x-1)$
OD Already Simplified

Factoring Using Special Patterns

Return to
Table of
Contents

Special Patterns in Multiplying

When we were multiplying polynomials we had special patterns.

Square of Sums
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
Difference of Sums
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
Product of a Sum and a Difference $(a+b)(a-b)=a^{2}-b^{2}$
If we learn to recognize these squares and products we can use them to help us factor.

Perfect Square Trinomials

The Square of a Sum and the Square of a difference have products that are called Perfect Square Trinomials.

How to Recognize a Perfect Square Trinomial:

$$
\begin{aligned}
& (\square+\square)^{2}=\square^{2}+2 \square \square+\square^{2} \\
& (\square-\square)^{2}=\square^{2}-2 \square \square+\square^{2}
\end{aligned}
$$

Fill in the blanks with any monomial (or any expression!!) Try it!!

Perfect Square Trinomials

Slide 125 / 216
$x^{2}+10 x+25 \quad t^{2}+2 t+1$
$b^{2}-8 b+16 \quad x^{2}-18 x y+81 y^{2}$
$h^{2}+12 h+36$
$c^{4}-6 c^{2}+9$

What do these trinomials have in common? What patterns do you see?

Perfect Square Trinomials

Complete these perfect square equations:

$$
\begin{aligned}
& (x+\ldots)^{2}=x^{2}+\ldots+25 \\
& (x-\ldots)^{2}=x^{2}-\ldots+49 \\
& (x-10)^{2}=x^{2}+\ldots+\ldots \\
& (2 x+\ldots)^{2}=x^{2}+\ldots+81
\end{aligned}
$$

Perfect Square Trinomials Is the trinomial a perfect square? Drag the Perfect Square $16-24 j+3 j^{2}$ $9-6 y+y^{2}$ $x^{2}+10 x+25$ $4 c^{2}+6 c+9$ $d^{2}-8 d-16$ $b^{2}-2 b+1$ $4 h^{2}+20 h+5$ $4 m^{2}+24 m n+36 n^{2}$ 	

7

Slide 128 / 216

60 Factor $x^{2}+4 x+4$
A $(x+2)^{2}$
OB $(x-2)^{2}$
OC $(x+4)^{2}$
OD Not a perfect
Square
Trinomial

61 Factor $x^{2}-10 x+100$
OA $(x+10)^{2}$
OB $(x-10)^{2}$
OC $(x-5)^{2}$
OD Not a perfect
Square
Trinomial

62 Factor $16 x^{2}-40 x+25$
A $\quad(4 x+5)^{2}$
OB $\quad(4 x-5)^{2}$
OC $(8 x-5)^{2}$
OD Not a perfect
Square
Trinomial
Slide 131 / 216

Difference of Squares Binomials

The product of a sum and difference of two monomials has a product called a Difference of Squares.

How to Recognize a Difference of Squares Binomial:

What happens to the middle term?

Fill in the blanks with any monomial (or any expression!!) Try it!!
Slide 132 / 216

Difference of Squares

Examples:

$$
\begin{array}{ll}
x^{2}-16 & 16 b^{2}-16 \\
d^{2}-100 & 4 c^{2}-1 \\
j^{2}-49 & j^{4}-16
\end{array}
$$

\square

Factoring a Difference of Squares

Once a binomial is determined to be a Difference of Squares, it factors following the pattern:
$\left(\begin{array}{ll}\text { sq rt of } & -\begin{array}{c}\text { sq rt of } \\ 1^{\text {st }} \text { term }\end{array} \\ 2^{\text {nd }} \text { term }\end{array}\right)\left(\begin{array}{l}\text { sq rt of } \\ 1^{\text {st }} \text { term }\end{array} \quad \begin{array}{l}\text { sq rt of } \\ 2^{\text {nd }} \text { term }\end{array}\right)$
Factor each of the following:
$x^{2}-25$
$9-y^{2}$
$4 m^{2}-36 n^{2}$
$y^{4}-1$

63 Factor $x^{2}-9$
○ A $(x-3)(x-3)$
○B $\quad(x-3)(x+3)$
○ C $\quad(x+3)(x+3)$
OD Not a Difference of Squares

Slide 136 / 216
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad这

Slide 137 / 216
64 Factor $100-4 h^{2}$
OA $(10-2 h)(10+2 h)$
OB $(50-2 h)(50+2 h)$
OC $(10-2 h)(10-2 h)$
OD Not a Difference
of Squares

65 Factor $x^{2}+9$
○ A $\quad(x-3)(x-3)$
○ $\quad(x-3)(x+3)$
OC $(x+3)(x+3)$
OD Not a Difference of Squares

Slide 138 / 216

66 Factor using Difference of Squares: $4 y^{2}-6$
OA $(2 y-3)(2 y-3)$
OB $(2 y-3)(2 y+3)$
○С $(2 y+3)(2 y+3)$
OD Not a Difference of Squares

Classifying Polynomials

Polynomials can be classified by the number of terms. The table below summarizes these classifications.

Number of terms	Name	Examples
$\mathbf{1}$	Monomial	10
		$-5 x$
$\mathbf{2}$	Binomial	$-5 x^{3}$ $8 x^{3} y^{2}-4$
$\mathbf{3}$	Trinomial	$7 x^{2}+5 x-2$
$a+b+c$		
$\mathbf{3}$	No special name	$11 x^{3}+9 x^{2}-\frac{1}{2} x+\frac{2}{3}$

Classifying Polynomials

Polynomials can be desribed based on something called their "degree".
For a polynomial with one variable, the degree is the largest exponent of the variable

Classifying Polynomials

Polynomials can also be classified by degree. The table below summarizes these classifications

Degree	Type	Examples
$\mathbf{0}$	Constant	10
		$\frac{1}{3}$
$\mathbf{1}$	Linear	$-5 x$
$\mathbf{2}$	Quadratic	$8 x^{2}-5 x+3$
$\mathbf{3}$	Cubic	$7 x^{3}+5 x-2$
$\mathbf{4}$	Quartic	$11 x^{4}+9 x^{2}-\frac{1}{2} x+\frac{2}{3}$

Classifying Polynomials

Classify each polynomial based on the number of terms and its degree.

68 Choose all of the descriptions that apply to:

$$
-4 x^{2}+9
$$

\square A Quadratic
\square B Linear
\square C Constant
$\square D$ Trinomial
$\square E \quad$ Binomial
\square F Monomial

70 Choose all of the descriptions that apply to:

$$
5 x^{2}+x+2 x
$$

A Quadratic
\square B Linear
\square C Constant
\square D Trinomial
$\square E \quad$ Binomial
\square F Monomial

71 Choose all of the descriptions that apply to:
2
\square A Quadratic
\square B Linear
\square C Constant
\square D Trinomial
\square E Binomial
$\square \mathrm{F} \quad$ Monomial

Simplify

RECALL ... What did we do?? Look for a pattern!!
Slide 150 / 216
Multiply:

$(x+3)(x+4)$
$(x+3)(x-4)$
$(x-3)(x+4)$
$(x-3)(x-4)$

What is the same and what is different about each product?
What patterns do you see? What generalizations can be made
about multiplication of binomials?
Work in your groups to make a list and then share with the class.
Make up your own example like the one above. Do your
generalizations hold up?
$(x+3)(x+4)$
$(x+3)(x-4)$
$(x-3)(x+4)$
$(x-3)(x-4)$

What is the same and what is different about each product? What patterns do you see? What generalizations can be made about multiplication of binomials?

Work in your groups to make a list and then share with the class.
Make up your own example like the one above. Do your
generalizations hold up?

Slide 152 / 216

Slide 153 / 216

Examples:	Factor
$x^{2}-4 x+3$	
$x^{2}+7 x+10$	
$x^{2}-12 x+20$	

$x^{2}-4 x+3$
$x^{2}+7 x+10$
$x^{2}-12 x+20$

72 What kind of signs will the factors of 12 have, given the following equation?

$$
x^{2}-8 x+12
$$

Slide 156 / 216

OA Both positive

OB Both Negative
OC Bigger factor positive, the other negative
OD The bigger factor negative, the other positive

73 The factors of 12 will have what kind of signs given th\# following equation?

$$
x^{2}+13 x+12
$$

OA Both positive
OB Both negative
OC Bigger factor positive, the other negative
OD The bigger factor negative, the other positive

74 Factor $x^{2}-7 x+12$
A $\quad(x+12)(x+1)$
B $\quad(x+6)(x+2)$
○C $\quad(x+4)(x+3)$
OD $(x-12)(x-1)$
OE $\quad(x-6)(x-1)$
OF $\quad(x-4)(x-3)$
Slide 158 / 216

75 Factor $x^{2}+8 x+12$
OA $\quad(x+12)(x+1)$
○B $\quad(x+6)(x+2)$
OC $\quad(x+4)(x+3)$
OD $(x-12)(x-1)$
OE $\quad(x-6)(x-1)$
OF $\quad(x-4)(x-3)$

76 Factor $x^{2}+13 x+12$
A $\quad(x+12)(x+1)$
OB $\quad(x+6)(x+2)$
OC $\quad(x+4)(x+3)$
OD $(x-12)(x-1)$
OE $\quad(x-6)(x-1)$
OF $\quad(x-4)(x-3)$

Slide 160 / 216
\qquad

77 Factor $x^{2}-8 x+12$
OA $\quad(x+12)(x+1)$
B $\quad(x+6)(x+2)$
OC $\quad(x+4)(x+3)$
OD $\quad(x-12)(x-1)$
OE $\quad(x-6)(x-2)$
OF $\quad(x-4)(x-3)$

Slide 161 / 216

Slide 162 / 216
\qquad

Factor

Examples
$x^{2}-x-20$
$x^{2}+6 x-16$
$x^{2}+4 x-32$

Factor

Slide 164 / 216

	Factor
Examples	
$x^{2}+9 x-36$	
$x^{2}-3 x-18$	
$x^{2}-3 x-10$	

Slide 165 / 216

78 The factors of -12 will have what kind of signs given the following equation?

$$
x^{2}-1 x-12
$$

OA Both positive
OB Both negative
OC Bigger factor positive, the other negative
OD The bigger factor negative, the other positive
\qquad

79 The factors of -12 will have what kind of signs given the following equation? $x^{2}+4 x-12$

OA Both positive
$O B$ Both negative
OC Bigger factor positive, the other negative
OD The bigger factor negative, the other positive

80 Factor $x^{2}+x-12$
OA $\quad(x+12)(x-1)$
OB $\quad(x+6)(x-2)$
OC $\quad(x+4)(x-3)$
OD $\quad(x-12)(x+1)$
OE $(x-6)(x+1)$
OF $\quad(x-4)(x+3)$

81 Factor $x^{2}-5 x-12$
OA $\quad(x+12)(x-1)$
OB $\quad(x+6)(x-2)$
OC $\quad(x+4)(x-3)$
OD $(x-12)(x+1)$
OE $(x-6)(x+1)$
OF unable to this method -

Mixed Practice

Slide 170 / 216

Slide 171 / 216

83 Factor the following $x^{2}+2 x-8$
OA $(x-2)(x-4)$
B $\quad(x+2)(x+4)$
OC $(x-2)(x+4)$
OD $(x+2)(x-4)$

84 Factor the following $x^{2}-8 x+15$
OA $\quad(x-3)(x-5)$
B $\quad(x+3)(x+5)$
C $(x-3)(x+5)$
OD $(x+3)(x-5)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slide 173 / 216

85 Factor the following $x^{2}+7 x+12$
O $\quad(x-3)(x-4)$
B $\quad(x+3)(x+4)$
OC $(x+2)(x+6)$
OD $\quad(x+1)(x+12)$
Slide 174 / 216

86 Factor the following $x^{2}-3 x-10$
O $\quad(x-2)(x-5)$
B $\quad(x+2)(x+5)$
OC $(x-2)(x+5)$
OD $(x+2)(x-5)$

Factoring Trinomials:	
$\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}$	
	Return to Table of Contents

Slide 176 / 216

a does not $=1$

How to factor a trinomial of the form $a x^{2}+b x+c$.
Example: Factor $2 d^{2}+15 d+18$
First, find ac: $2 \cdot 18=36$
Now find two integers whose product is ac and whose sum is equal to bor 15.

Factors of 36	Sum = 15?
1,36	$1+36=37$
2,18	$2+18=20$
3,12	$3+12=15$

a does not =1

$2 d^{2}+15 d+18$

$a c=36, b=15$
Our numbers: 3 and 12

Split the middle term, 15 d , into $3 \mathrm{~d}+12 \mathrm{~d}: \quad 2 d^{2}+3 d+12 d+18$

$$
\text { first } 2 \text { terms last } 2 \text { terms }
$$

Factor the first two terms and the last two terms:
$d(2 d+3)+6(2 d+3)$
Factor out the common binomial
$(2 d+3)(d+6)$
Remember to check by multiplying!

a does not $=1$

Factor. $15 x^{2}-13 x+2$
$a c=30$, but $b=-13$
Since $a c$ is positive, and b is negative we need
to find two negative factors of 30 that add up to -13

Factors of 30	Sum $=-13 ?$
$-1,-30$	$-1+-30=-31$
$-2,-15$	$-2+-15=-17$
$-3,-10$	$-3+-10=-13$
$-5,-6$	$-5+-6=-11$

a does not $=1$

$15 x^{2}-13 x+2$
$a c=30, b=-13$
Our numbers: -3 and -10

Berry Method to Factor

Step 1: Calculate ac.
Step 2: Find a pair of numbers m and n, whose product is ac, and whose sum is b.

Step 3: Create the product $(a x+m)(a x+n)$
Step 4: From each binomial in step 3, factor out and discard any common factor. The result is your factored form.

Example: $4 x^{2}-19 x+12 \quad a c=48, b=-19$

$$
m=-3, n=-16
$$

$(4 x-3)(4 x-16)$ Factor 4 out of $4 x-16$ and toss it! $(4 x-3)(x-4)$ THE ANSWER!
Prime Polynomial
A polynomial that cannot be factored as a product of two
polynomials is called a prime polynomial.
How can you tell if a polynomial is primizerss with your table.
click to reveal

A polynomial that cannot be factored as a product of two polynomials is called a prime polynomial

How can you tell if a polynomial is pribuss with your table.
$u m$ is b.

Slide 185 / 216
87 Factor $3 a^{2}+13 a+4$

○ $\quad(3 a+2)(a+2)$
○B $(3 a+4)(a+1)$
OC $(3 a+1)(a+4)$
OD Prime Polynomial
88 Factor $14 a^{2}-43 a+20$
OA $\quad(7 a-4)(2 a-5)$
OB $\quad(7 a-5)(2 a-4)$
OC $\quad(7 a-10)(2 a-2)$
OD Prime Polynomial

89 Factor $8 a^{2}-10 a-3$
○ $\quad(8 a-6)(a+2)$
О В $\quad(2 a-3)(4 a+1)$
OC $(4 a-3)(2 a+1)$
OD Prime Polynomial

Slide 188 / 216

Factoring 4 Term Polynomials

4 Terms

Polynomials with four terms like $a b-4 b+6 a-24$, can sometimes be factored by grouping terms of the polynomials.

Example 1:
$a b-4 b+6 a-24$

$(a b-4 b)+(6 a-24)$	Group terms into binomials that can be factored using the distributive property
$b(a-4)+6(a-4)$	Factor the GCF
$(a-4)(b+6)$	

Return to
Table of
Contents
$(a-4)(b+6)$

4 Terms

Example

$6 x y+8 x-21 y-28$

Slide 191 / 216

What are the relationships among the following:
Some are equivalent, some are opposites, some are not related at all. Mix and match by dragging pairs for each category:
Equivalent Opposites Not related
$\begin{array}{lllll}x+3 & -x+3 & -x-3 & x-3 & 3-x\end{array} \quad 3+x$

90 Factor 15ab-3a + 10b-2
A $(5 b-1)(3 a+2)$
O $\quad(5 b+1)(3 a+2)$
OC (5b-1)(3a-2)
OD $\quad(5 b+1)(3 a-1)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

91 Factor $10 m^{2} n-25 m n+6 m-15$
OA (2m-5)(5mn-3)
OB $(2 m-5)(5 m n+3)$
○C $(2 m+5)(5 m n-3)$
OD $(2 m+5)(5 m n+3)$

Slide 194 / 216
\qquad \square \square 2r
\qquad
\qquad
\qquad

Slide 195 / 216

93 Factor $a^{2}-a b+7 b-7 a$
OA $(a-b)(a-7)$
OB $\quad(a-b)(a+7)$
OC $\quad(a+b)(a-7)$
OD $\quad(a+b)(a+7)$

Slide 197 / 216

Mixed Factoring

Return to
Table of
Contents

Summary of Factoring

Check each factor to see if it can be factored again.
If a polynomial cannot be factored, then it is called prime.

94 Factor completely: $4 c d^{2}+12 c d+8 c$
A $\quad 4 c(d+3)(d+2)$
○В $4 c(d+2)(d+1)$
○ $(d+3)(4 d+2)$
OD $4 c\left(d^{2}+3 d+2\right)$
Slide 200 / 216

95 Factor completely $10 a^{3}-35 a^{2}+12$
A $2 a\left(5 a^{2}-7 a+6\right)$
○B $5 a\left(2 a^{2}-7 a+2\right)$
OC $2\left(5 a^{3}-7 a^{2}+6\right)$
OD prime
polynomial
Slide 201 / 216

OA $(2 y-5)(2 y-3)$
OB $(2 y-5)(2 y+3)$
OC $(2 y+5)(2 y+3)$
OD prime polynomial
97 Factor completely $10 w^{2} x^{2}-100 w^{2} x+1000 w^{2}$
OA $10 w^{2}(x+10)^{2}$
OB $10 w^{2}(x-10)^{2}$
OC $10(w x-10)^{2}$
OD $10 w^{2}\left(x^{2}-10 x+100\right)$

Slide 203 / 216

98 Factor $4 a^{2}-2 a-30$
○ $\quad 2(2 a-5)(a+3)$
○ $\quad 2(2 a+5)(a-3)$
○ $2(2 a-3)(a+5)$
OD Prime
Polynomial
Slide 204 / 216
Solving Equations by

Solving Equations by Factoring

Return to
Table of
Contents

Given the following equation, what conclusion(s) can bedrawn?
$\qquad \mathrm{ab}=0$

Slide 206 / 216

Recall ~ Given the following equation, what conclusion(s) cammaten?

$$
(x-4)(x+3)=0
$$

Since the product is 0 , one of the factors must be 0 .
Therefore, either $-4=0$ orx $+3=0$.

$$
\begin{aligned}
x-4=0 \\
+4+4
\end{aligned} \quad \text { or } \quad x+3=00 \begin{aligned}
& x+3-3 \\
& x=4 \text { or }
\end{aligned} \frac{x=-3}{}
$$

Therefore, our solution set is $\{-3,4\}$. To verify the results, substitute each solution back into the original equation.

$$
\text { To check } \left.x=-3: \begin{array}{rlrl}
(x-4)(x+3) & =0 \\
(-3-4)(-3+3) & =0 & \text { To check } x=4: & (x-4)(x+3)
\end{array}\right)=0
$$

$0=0$
$0=0$
What if you were given the following equation?

$$
x^{2}-2 x-24=0
$$

How would you solve it?
We can use the Zero Product Property to solve it.
How can we turn this polynomial into a multiplication problem? Factor it
Factoring yields: $\quad(x-6)(x+4)=0$
By the Zero Product Property:
$x-6=0 \quad$ or $\quad x+4=0$
After solving each equation, we arrive at our solution:
$\{-4,6\}$

Trinomial

Recall the Steps for Factoring a Trinomial 1) See if a monomial can be factored out.
2) Need 2 numbers that multiply to the constant
3) and add to the middle number.
4) Write out the factors.

$$
\text { Solve } \begin{aligned}
& 2 a^{3}-4 a^{2}-30=0 \\
& \\
& 2 a\left(a^{2}-2 a-15\right)=0 \\
& \\
& 2 a(a-5)(a+3)=0
\end{aligned}
$$

Now..

1) Set each binomial equal to zero.
2) Solve each binomial for the variable.

$$
2 a=0 \quad a-5=0 \quad a+3=0
$$

click to reveal
\square

Slide 209 / 216
\qquad
\qquad
\qquad (
\qquad
\qquad
\qquad

Slide 210 / 216

99 Choose all of the solutions to: $14 a^{2}-43 a+20=0$ \square A $\frac{4}{7}$
 \square B $\frac{2}{5}$
 \square C $\frac{7}{4}$
 \square D $\frac{5}{2}$
 $\square E \quad-\frac{4}{7}$
 \square F - $\frac{5}{2}$

Slide 212 / 216

100 Choose all of the solutions to: $g^{3}-16 g=0$
\square A -4
\square B -2
\square C 0
\square D 2
$\square E \quad 4$
$\square \mathrm{F} \quad 16$

101 Choose all of the solutions to: $m^{2}=4 m$
\square A -4
\square B $\quad-2$
\square С 0
\square D 2
$\square E \quad 4$
$\square F \quad 16$
\square

Slide 215 / 216

102 A ball is thrown with its height at any time given by
$h=-16 t^{2}+144 t+160$
When does the ball hit the ground?
OA -1 seconds
OB 0 seconds
OC 9 seconds
OD 10 seconds
Slide 216 / 216

