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A monomial is a one-term expression formed by a 
number, a variable, or the product of numbers and 
variables. Examples of monomials....

81y 4z

17x2

4x 28
mn3

rt
6

32,457

We usually write the variables in exponential form - exponents 
must be whole numbers.

Monomial
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a + b -5
5x + 7

x2 (5 + 7y)
6+5rs

7x 3y 5 - 4

Monomials
Drag the following terms into the correct sorting box.  If you sort 
correctly, the term will be visible.  If you sort incorrectly, the term will 
disappear.

48x2yz3 4(5a 2bc 2)

t
16 -12

15xy4

7
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A polynomial  is an expression that contains one or more 
monomials. Examples of polynomials....

5a2

8x3 +x2
c2 +d

8a3-2b2

4c-mn 3rt
6

a4b
15+

7+b+c 2+4d 3

Polynomials
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What polynomials DON'T have: 

· Square roots of variables

· Negative exponents

· Fractional exponents

· Variables in the 
denominators of any fractions

What polynomials DO have:

One or more terms made up 
of...

· Numbers

· Variables raised to whole-
number exponents

· Products of numbers and 
variables

Polynomials
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What is the exponent of the variable in the expression 5x?

What is the exponent of the variable in the expression 5?

Polynomials
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Degrees of Monomials
The degree of a monomial is the sum of the exponents of its 
variables. The degree of a nonzero constant such as 5 or 12 is 0. 
The constant 0 has no degree.

Examples:

1) The degree of 3x is?    

2) The degree of -6x3y is?     

3) The degree of 9 is?
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1 What is the degree of x2 ?

A 0

B 1

C 2

D 3
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2 What is the degree of mn ?

A 0

B 1

C 2

D 3

  

Slide 12 / 216

  

  

  

  

  

  

  



3 What is the degree of 3 ?

A 0

B 1

C 2

D 3
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4 What is the degree of 7t8 ?
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Degrees of Polynomials

The degree of a polynomial is the same as that of the term 
with the greatest degree.

Example:
Find degree of the polynomial 4x 3y2 - 6xy2 + xy.
  
 4x3y2  has a degree of 5,  
  -6xy2  has a degree of 3, 
 xy has a degree of 2. 
 
The highest degree is 5, so the degree of the polynomial is 5.
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Find the degree of each polynomial

1) 3

2) 12c3

3) ab

4) 8s4t

5) 2 - 7n

6) h4 - 8t

7) s3 + 2v2y2 - 1
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5 What is the degree of the following polynomial:

      a2b2 + c4d - x2y

A 3

B 4

C 5

D 6
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6 What is the degree of the following polynomial:

      a3b3 + c4d - x3y2

A 3

B 4

C 5

D 6
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Adding and Subtracting 
Polynomials
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Standard Form
A polynomial is in standard form when all of the terms are in order 

from highest degree to the lowest degree.
Standard form is commonly accepted way to write polynomials.

Example:    9x7 - 8x5 + 1.4x4 - 3x2 +2x - 1 is in standard form.                                 

Drag each term to put the following equation into standard form:

-11x4 + 2x3- x8- 9x4-21x9 - x67
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Monomials with the same variables and the same 
power are like terms.

The number in front of each term is called the coefficient of the term.  If there is no 
variable in the term, the term is called the constant term.

     Like Terms     Unlike Terms
                  4x  and -12x             -3b  and  3a
                  x3y and 4x3y             6a2b and -2ab2

Vocabulary
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Like terms can be combined by adding the coefficients, 
but keeping the variables the same. WHY?

3x + 5x means 3 times a number x added to 5 times the 
same number x.  

So altogether, we have 8 times the number x.  

What we are really doing is the distributive property of 
multiplication over addition in reverse:

      3x + 5x = (3+5)x = 8x

One big mistake 
students often make is 

to multiply the 
variables:

3x + 5x = 8x2

Like Terms
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Combine these like terms using the indicated operation.

Like Terms
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7 Simplify

A

B

C

D
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8 Simplify

A

B

C

D
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9 Simplify

A

B

C

D
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To add polynomials, combine the like terms from each 
polynomial.

To add vertically, first line up the like terms and then add.
               
Examples:
(3x2 +5x -12) + (5x 2 -7x +3)         (3x 4 -5x) + (7x4 +5x2 -14x)

     line up the like terms            line up the like terms     
         3x2 + 5x - 12                             3x 4         - 5x
    (+) 5x2  - 7x +   3                        (+) 7x4  + 5x2 - 14x         
             8x2 - 2x  -   9                           10x 4 + 5x2  - 19xclick click

Add Polynomials
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               We can also add polynomials horizontally.
           (3x2 + 12x - 5) + (5x2 - 7x - 9)

              Use the communitive and associative         
                     properties to group like terms.

              (3x2 + 5x2) + (12x + -7x) + (-5 + -9)

                    8x2 + 5x - 14
 

Add Polynomials
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10 Add 

A

B

C

D
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To subtract polynomials, subtract the coefficients of 
like terms.

Example:
                -3x - 4x = -7x

                13y - (-9y) = 22y

                6xy - 13xy = -7xy

Subtract Polynomials
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We can subtract polynomials vertically .

To subtract a polynomial, change the subtraction to 
adding -1. Distribute the -1 and then follow the rules 

for adding polynomials
(3x2 +4x -5) - (5x 2 -6x +3)

(3x2+4x-5) +(-1) (5x2-6x+3)
(3x2+4x-5) + (-5x 2+6x-3)

          3x 2 + 4x - 5 
    (+) -5x2 - 6x + 3  

                               -2x 2 +10x - 8                   

Subtract Polynomials

click
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We can subtract polynomials vertically .

  Example: 
(4x3 -3x -5) - (2x3 +4x2 -7)

(4x3 -3x -5) +(-1)(2x3 +4x2 -7)
(4x3 -3x -5) + (-2x 3 -4x2 +7)

                      4x 3         - 3x - 5
                  (+) -2x3 - 4x2       + 7
                   2x3 - 4x2 - 3x + 2

Subtract Polynomials

click
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We can also subtract polynomials horizontally.
(3x2 + 12x - 5) - (5x 2 - 7x - 9)

Change the subtraction to adding a negative one and 
distribute the negative one.

(3x2 + 12x - 5) +(-1)(5x 2 - 7x - 9)
(3x2 + 12x - 5) + (-5x 2 + 7x + 9)

Use the communitive and associative         
  properties to group like terms.
(3x2 +-5x2) + (12x +7x) + (-5 +9)

-2x2 + 19x + 4

Subtract Polynomials

click
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Is the sum or difference of two polynomials always a polynomial? 

When we add polynomials, we are adding the terms of 
the first to the terms of the second, and each of these 
sums is a new term of the same degree.  Each new term 
consists of a constant times variables raised to whole 
number powers, so the sum is in fact a polynomial.  

Therefore, we say that the set of polynomials is "closed 
under addition".  

Since subtraction is just adding the opposite, the set of 
polynomials is also closed under subtraction.  

Summary
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Multiplying a Polynomial
by a Monomial
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Find the total area of the rectangles.

square units

Multiplying Polynomials
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To multiply a polynomial by a monomial, you use the distributive 
property together with the laws of exponents for multiplication.

Example:    

 -2x(5x2 - 6x + 8)

 (-2x)(5x2) + (-2x)(-6x) + (-2x)(8)

 -10x3 + 12x2 -16x

Multiplying Polynomials
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Let's Try It! Multiply to simplify.

1.  -x(2x3 - 4x2 + 7x) 

2. 4x2(5x2 - 6x - 3)

3. 3xy(4x3y2 - 5x2y3 + 8xy4)

Multiplying Polynomials
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21 What is the area of the rectangle shown?

A

B

C

D

x2
x2  + 2x + 4
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22  Multiply 

A 6x2 + 8x - 12 

B 6x2 + 8x2 - 12 

C 6x2 + 8x2 - 12x 

D 6x3 + 8x2 - 12x 
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23  Multiply 

A

B

C

D
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24 Find the area of a triangle (A=1/2bh) with a base of 4x 
and a height of  2x - 8.  (All answers are in square 
units.)

A

B

C

D

  

Slide 53 / 216

  

  

  

  

  

  

  

25 Rewrite the expression 

-3a(a + b - 5) + 4(-2a + 2b) + b(a + 3b - 7) 

to find the coefficients of each term. Enter the coefficients 
into the appropriate boxes.

     a2 +             b2 +             ab +             a +             b

 Students type their answers here

From PARCC EOY sample test calculator #9
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Multiplying a Polynomial
by a Polynomial
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26 Find the area of the rectangle in two different ways.

5 8
2

6
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To multiply a polynomial by a polynomial, you multiply each term of the 
first polynomial by each term of the second. Then, add like terms.

Example 1:
 

Example 2: 

(2x + 4y)(3x + 2y)

(x + 3)(x2 + 2x + 4)

Multiply Polynomials
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The FOIL Method is a shortcut that can be used to remember how 
multiply two binomials. To multiply two binomials, find the sum of 
the products of the....

First terms of each binomial     

Outer terms - the terms on the outsides

Inner Terms - the terms on the inside      

Last Terms of each binomial

(a + b)(c + d) = 
ac +

ad +

bc +

bd

Remember - FOIL is just a mnemonic to help you remember the 
steps for binomials.  What you are really doing is multiplying each 
term in the first binomial by each term in the second.  

FOIL Method
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Try it! Find each product.

1) (x - 4)(x - 3)

2) (x + 2)(3x - 8)

Multiply Polynomials
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3) (2x - 3y)(4x + 5y)

4) (3x - 6)(x2 - 2x)

Try it! Find each product.
Multiply Polynomials
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27 What is the total area of the rectangles shown?

A

B

C

D

4x 5

2x

4
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28  Multiply: 

A

B

C

D
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29  Multiply: 

A

B

C

D
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30  Multiply:

A

B

C

D
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31  Multiply:

A

B

C

D
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32 Find the area of a square with a side of

A

B

C

D
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34 Find the total area of the rectangles.
 Students type their answers here

2x 4
x

3
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Special Binomial Products
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 (a + b)2 
 = (a + b)(a + b)
 = a2 + ab + ab + b2

= a2 + 2ab + b2

a

a

b

b

ab

ab b2

a2

Notice that there are two of the 
term ab!

Square of a Sum
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 (a - b)2 
  = (a - b)(a - b)
 = a2 - ab - ab + b2
 = a2 - 2ab  + b2

a

a

- b

- b

- ab

- ab  + b2

a2

Notice that there are two of the 
term -ab!

Square of a Difference
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    Product of a Sum and a Difference
 
(a + b)(a - b)

 = a2 - ab + ab  + -b2     

 = a2 - b2

a

a

+ b

- b

- ab

+ ab  - b2

a2

This time, the + ab and the - ab add up to 0, 
and so the middle term drops out.  
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Try It!  Find each product.

1) (3p + 9)2   

2) (6 - p)2    

3) (2x - 3)(2x + 3)      

Special Products
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Fill in the missing pieces 

(3x - 5y)2 =       x2 +      xy  +       y2

(       x +       y)2 =   9x2 +      xy  +  36y2

(       x +       y)2 =   121x2 -  66xy  +         y2

( 12x -       y)(      x + 9y) =       x2 -       y2
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37 (x - 5)2 

A x2 + 25 

B x2 + 10x + 25 

C x2 - 10x + 25 

D x2 - 25 
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38

A

B

C

D
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39 What is the area of a square with sides 2x + 4?

A

B

C

D
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40

A

B

C

D
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Solving Equations 
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Given the following equation, what conclusion(s) can be drawn?

ab = 0

Since the product is 0, one of the factors, a or b, must be 0.

Zero Product Property
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If ab = 0, then either a = 0 or b = 0.

Think about it:  if 3x = 0, then what is x?

Zero Product Property
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What about this?  (x - 4)(x + 3) = 0

Since (x - 4) is being multiplied by (x + 3), then each binomial is a 
FACTOR of the left side of the equation.  

Since the product is 0, one of the factors must be 0.  
Therefore, either x - 4 = 0 or x + 3 = 0.  

  x  -  4  =  0      or         x  +  3  =  0
 + 4  + 4  - 3  - 3

        x  =  4        or              x  = -3

Zero Product Property
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Therefore, our solution set is {-3, 4}.  To verify the results, 
substitute each solution back into the original equation.

(x - 4)(x + 3) = 0
(-3 - 4)(-3 + 3) = 0

(-7)(0) = 0
0 = 0

To check x = -3:

(x - 4)(x + 3) = 0
(4 - 4)(4 + 3) = 0

(0)(7) = 0
0 = 0

To check x = 4:

Zero Product Property

  

Slide 86 / 216

  

  

  

  

  

  

  

What if you were given the following equation?  

           (x - 6)(x + 4) = 0

Solve
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41 Solve (a + 3)(a - 6) = 0. 

A {3 , 6}

B {-3 , -6}

C {-3 , 6}

D {3 , -6}
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42 Solve (a - 2)(a - 4) = 0. 

A {2 , 4}

B {-2 , -4}

C {-2 , 4}

D {2 , -4}
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43 Solve (2a - 8)(a + 1) = 0. 

A {-1 , -16}

B {-1 , 16}

C {-1 , 4}

D {-1 , -4}
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Factors
and

Greatest Common Factors
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1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

Number 
BankFactors of 10 Factors of 15

Factors
Unique
to 15

Factors
Unique 

to 10

Factors 10 and 
15

have in common

What is the greatest common factor (GCF) of 10 and 15?
GCF
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1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

Number 
BankFactors of 12 Factors of 18

Factors
Unique
to 18

Factors
Unique 

to 12

Factors 12 and 
18

have in common

What is the greatest common factor (GCF) of 12 and 18?
GCF
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44  What is the GCF of 12 and 15?
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45  What is the GCF of 24 and 48?
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46  What is the GCF of 72 and 54?
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47  What is the GCF of 28, 56 and 42?
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Variables also have a GCF.

The GCF of variables is the variable(s) that is in each term 
raised to the least exponent given.

Example: Find the GCF

x2 and x3      r4, r5 and r8

x3y2 and x2y3           20x2y2z5 and 15x4y4z4

GCF
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48  What is the GCF of

A

B

C

D

and ?
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Factoring out GCFs
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Factoring a number means to find other numbers you can 
multiply to get the number.  

48 = 6 × 8, so 6 and 8 are both factors of 48.  

Factoring a polynomial means to find other polynomials 
that can be multiplied to get the original polynomial.  

(y + 1)(y - 4) = y2 - 3y - 4, so y + 1, and y - 4 are factors of y2 - 3y - 4.

Factoring
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Example:  

Factor 10x2 - 30x

We might notice quickly that both terms have 10 as a factor, 
so we could have 10(x2 - 3x).

But both terms also have x as a factor.  So the greatest 
common factor of both terms is 10x.

      10x2 - 30x = 10x (x - 3)

The left side of the equation is in expanded form, and the 
right side is in factored form. 

Factoring
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The first step in factoring  is to look for the greatest monomial 
factor.  If there is a greatest monomial factor other than 1, use 
the distributive property in reverse to rewrite the given 
polynomial as the product of this greatest monomial factor and a 
polynomial.

Example  Factor 

 6x4 - 15x 3 + 3x 2

Factoring
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Factor:
 4m3n - 7m 2n2

100x 5 - 20x 3 + 30x - 50

   x 2 -    x1
2

1
2

Factoring
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Sometimes we can  factor a polynomial that is not in simplest form 
but has a common binomial factor.

Consider this problem:

y(y - 3) + 7(y - 3)

In this case, y - 3 is the common factor.

If we divide out the  y - 3's we get:

(y - 3) (                                  ) = (y - 3)(y + 7) y(y - 3) + 7(y - 3)

Factoring
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Factor each polynomial:

a(z2 + 5) - (z2 + 5)

3x(x + y) + 4y(x + y)

7mn(x - y) - 2(x + y) 

Factoring
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In working with common binomial factors, look for factors that are 
opposites of each other. 

For example: (x - y) = - (y - x) because

x - y = x + (-y) = -y + x = -1(y - x)

so x - y and y - x are opposites or additive inverses of each other.

You can check this by adding them together:  x - y + y - x = 0!   

Factoring
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Name the additive inverse of each binomial: 

3x - 1

5a + 3b

x + y

4x - 6y

Prove that each pair are additive inverses by adding them 
together - what do you get?

Additive Inverse
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52  True or False:  y - 7 = - 7 - y

True

False
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53  True or False:  8 - d = -1( d + 8)

True

False
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54  True or False:  The additive inverse of 8c - h is 
-8c + h.

True

False
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55  True or False:  -a - b and a + b are opposites. 

True

False
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In working with common binomial factors, look for factors that 
are opposites of each other. 

Example 3 Factor the polynomial.

 n(n - 3) - 7(3 - n)

Rewrite 3 - n as -1(n - 3)        n(n - 3) - 7(-1)(n - 3)

Simplify             n(n - 3) + 7(n - 3)

Factor         (n - 3)(n + 7)

Opposites
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Factor the polynomial.

p(h - 1) + 4(1 - h)
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56  If possible, Factor

A

B

C

D Already Simplified 
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57  If possible, Factor

A

B

C

D Already Simplified 
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58  If possible, Factor

A

B

C

D Already Simplified 
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59  If possible, Factor

A

B

C

D Already Simplified 
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Factoring Using
Special Patterns

Return to
Table of
Contents
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When we were multiplying polynomials we had 
special patterns.

Square of  Sums

Difference of Sums

Product of a Sum and a Difference

If we learn to recognize these squares and products we can 
use them to help us factor. 

Special Patterns in Multiplying

  

Slide 123 / 216

  

  

  

  

  

  

  

page80svg


The Square of a Sum and the Square of a difference have 
products that are called Perfect Square Trinomials.

How to Recognize a Perfect Square Trinomial:

(    +    )2 =    2 +2       +    2

(     -    )2 =    2 - 2       +    2
Fill in the blanks with any monomial (or any expression!!)  Try 

it!!

Perfect Square Trinomials
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Perfect Square Trinomials

What do these trinomials have in common?  
What patterns do you see? 

2

Examples:
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Complete these perfect square equations: 

(x + ___)2 = x2 + ____ + 25

(2x + ___)2 = __x2 + ____ + 81

(x - 10)2 = x2 + ____ + ____

(x - ___)2 = x2 - ____ + 49

Perfect Square Trinomials
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Is the trinomial a perfect square?

Drag the Perfect Square 
Trinomials into the Box.

Only Perfect Square 
Trinomials 

will remain visible.

Perfect Square Trinomials
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60  Factor

A

B

C

D Not a perfect 
Square 
Trinomial 
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61  Factor

A

B

C

D Not a perfect 
Square 
Trinomial 
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62  Factor

A

B

C

D Not a perfect 
Square 
Trinomial 
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Difference of Squares Binomials

The product of a sum and difference of two monomials has a product 
called a Difference of Squares.

How to Recognize a Difference of Squares Binomial:

(    +    )(    -    )=    2 -     2

Fill in the blanks with any monomial (or any expression!!) Try it!!

What happens to the middle term?

  

Slide 132 / 216

  

  

  

  

  

  

  



Difference of Squares
Examples:
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Once a binomial is determined to be a Difference of Squares, it 
factors following the pattern:

Factor each of the following: 

sq rt of 
1st term

sq rt of 
2nd term(     -     ) sq rt of 

1st term
sq rt of 
2nd term(     +     )

x2 - 25 

9 - y2

4m2 - 36n2

y4 - 1

Factoring a Difference of Squares
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63  Factor

A

B

C

D Not a Difference 
of Squares
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64  Factor

A

B

C

D Not a Difference 
of Squares
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65  Factor

A

B

C

D Not a Difference 
of Squares
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66  Factor using Difference of Squares:

A

B

C

D Not a Difference 
of Squares
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Identifying 
& Factoring:
x2 + bx + c

Return to
Table of
Contents
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Polynomials can be classified by the number of terms. The 
table below summarizes these classifications. 

Classifying Polynomials
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Polynomials can be desribed based on something called their 
"degree".  

For a polynomial with one variable, the degree is the largest 
exponent of the variable. 

3x7 - 5x4 + 8x - 1

the degree of this polynomial is 7

Classifying Polynomials
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Polynomials can also be classified by degree.  The 
table below summarizes these classifications. 

Classifying Polynomials
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Quadratic

Linear

Constant

Trinomial

Binomial

Monomial

Cubic

Classify each polynomial based on the number of terms and its degree.

Classifying Polynomials
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68   Choose all of the descriptions that apply to:

A Quadratic

B Linear

C Constant

D Trinomial

E Binomial

F Monomial
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70   Choose all of the descriptions that apply to:

A Quadratic

B Linear

C Constant

D Trinomial

E Binomial

F Monomial
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71   Choose all of the descriptions that apply to:

A Quadratic

B Linear

C Constant

D Trinomial

E Binomial

F Monomial
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1) (x + 2)(x + 3) = _________________________

2) (x - 4)(x - 1) = _________________________

3) (x + 1)(x - 5) = ________________________

4) (x + 6)(x - 2) = ________________________

RECALL …  What did we do?? Look for a pattern!!

x2 - 5x + 4
x2 - 4x - 5

x2 + 4x - 12

Slide each 
polynomial from the 
circle to the correct 

expression.

 x2 + 5x + 6

Answer
Bank

Simplify
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Multiply: 

(x + 3)(x +4)

(x +3)(x - 4)

(x - 3)(x + 4)

(x - 3)(x - 4)

What is the same and what is different about each product?  
What patterns do you see?  What generalizations can be made 
about multiplication of binomials? 

Work in your groups to make a list and then share with the class.  
Make up your own example like the one above.  Do your 
generalizations hold up?  
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Examples:
Factor
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Examples:
Factor
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72 What kind of signs will the factors of 12 have, given the 
following equation?

A Both positive

B Both Negative

C Bigger factor positive, the other negative

D The bigger factor negative, the other positive
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73 The factors of 12 will have what kind of signs given the                    
following equation?

A Both positive

B Both negative

C Bigger factor positive, the other negative

D The bigger factor negative, the other positive
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74  Factor

A (x + 12)(x + 1)

B (x + 6)(x + 2)

C (x + 4)(x + 3)

D (x - 12)(x - 1)

E (x - 6)(x - 1)

F (x - 4)(x - 3)
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75  Factor

A (x + 12)(x + 1)

B (x + 6)(x + 2)

C (x + 4)(x + 3)

D (x - 12)(x - 1)

E (x - 6)(x - 1)

F (x - 4)(x - 3)
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76  Factor

A (x + 12)(x + 1)

B (x + 6)(x + 2)

C (x + 4)(x + 3)

D (x - 12)(x - 1)

E (x - 6)(x - 1)

F (x - 4)(x - 3)
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77  Factor

A (x + 12)(x + 1)

B (x + 6)(x + 2)

C (x + 4)(x + 3)

D (x - 12)(x - 1)

E (x - 6)(x - 2)

F (x - 4)(x - 3)
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Examples

Factor
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Examples

Factor
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78  The factors of -12 will have what kind of signs given the 
following equation?

A Both positive

B Both negative

C Bigger factor positive, the other negative

D The bigger factor negative, the other positive
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79  The factors of -12 will have what kind of signs given the 
following equation?

A Both positive

B Both negative

C Bigger factor positive, the other negative

D The bigger factor negative, the other positive
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80  Factor

A (x + 12)(x - 1)

B (x + 6)(x - 2)

C (x + 4)(x - 3)

D (x - 12)(x + 1)

E (x - 6)(x + 1)

F (x - 4)(x + 3)
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81  Factor

A (x + 12)(x - 1)

B (x + 6)(x - 2)

C (x + 4)(x - 3)

D (x - 12)(x + 1)

E (x - 6)(x + 1)

F unable to 
factor using 
this method
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Mixed Practice
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83  Factor the following

A (x - 2)(x - 4)

B (x + 2)(x + 4)

C (x - 2)(x +4)

D (x + 2)(x - 4)
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84  Factor the following

A (x - 3)(x - 5)

B (x + 3)(x + 5)

C (x - 3)(x +5)

D (x + 3)(x - 5)
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85  Factor the following

A (x - 3)(x - 4)

B (x + 3)(x + 4)

C (x +2)(x +6)

D (x + 1)(x+12)
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86  Factor the following

A (x - 2)(x - 5)

B (x + 2)(x + 5)

C (x - 2)(x +5)

D (x + 2)(x - 5)
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Factoring Trinomials:
ax2 + bx + c

Return to
Table of
Contents
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How to factor a trinomial of the form ax² + bx + c.

Example: Factor 2d² + 15d + 18

First, find ac:  2 ∙ 18 = 36

Now find two integers whose product is ac and whose sum is 
equal to b or 15.

1, 36
2, 18
3, 12

1 + 36 = 37
2 + 18 = 20
3 + 12 = 15

Factors of 36 Sum = 15?

a does not = 1
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  Split the middle term, 15d, into 3d + 12d:  2d² + 3d + 12d + 18

 

   Factor the first two terms and the last two terms:
                  d(2d + 3) + 6(2d + 3)
 
   Factor out the common binomial     (2d + 3)(d + 6)

Remember to check by multiplying!

2d² + 15d + 18

ac = 36, b = 15

Our numbers:  3 and 12

first 2 terms last 2 terms

a does not = 1
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Factor.  15x² - 13x + 2

ac = 30, but b = -13
Since ac is positive, and b is negative we need
to find two negative factors of 30 that add up to -13

Factors of 30 Sum = -13?

-1, -30
-2, -15
-3, -10
-5, -6

-1 + -30 = -31
-2 + -15 = -17
-3 + -10 = -13
-5 + -6 = -11

a does not = 1
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15x² - 13x + 2

ac = 30, b = -13

Our numbers:  -3 and -10

a does not = 1
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Factor.  2b2 - b - 10

a = 2 , c = -10, and b = -1
Since ac is negative, and b is negative we need
to find two factors with opposite signs whose product is -20 and 
that add up to -1.  Since b is negative, larger factor of -20 
must be negative.

Factors of -20 Sum = -1?

a does not = 1
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Factor   

6y² - 13y - 5

a does not = 1
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Berry Method to Factor
Step 1:  Calculate ac.  

Step 2:  Find a pair of numbers m and n, whose product is  ac, 
and whose sum is b.  

Step 3:  Create the product (ax + m)(ax + n). 

Step 4:  From each binomial in step 3, factor out and discard any 
common factor. The result is your factored form. 

Example:  4x2 - 19x + 12  ac = 48, b = -19

          m = -3, n = -16

(4x - 3)(4x - 16)  Factor 4 out of 4x - 16 and toss it!

   (4x - 3)(x - 4)  THE ANSWER!
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A polynomial that cannot be factored as a product of two 
polynomials is called a prime polynomial .

How can you tell if a polynomial is prime? Discuss with your table. 

If there are no two integers whose product is ac and whose sum is b.  

Prime Polynomial

click to reveal
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87  Factor

A

B

C

D Prime Polynomial
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88  Factor

A

B

C

D Prime Polynomial
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89  Factor

A

B

C

D Prime Polynomial
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Factoring 4 Term
Polynomials

Return to
Table of
Contents
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Polynomials with four terms like ab - 4b + 6a - 24, can sometimes 
be factored by grouping terms of the polynomials.

Example 1:  

ab - 4b + 6a - 24

(ab - 4b) + (6a - 24)  Group terms into binomials that can   
        be factored using the distributive    
        property
 
b(a - 4) + 6(a - 4)    Factor the GCF

(a - 4) (b + 6)      

4 Terms
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Example

6xy + 8x - 21y - 28 

4 Terms
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What are the relationships among the following: 

Some are equivalent, some are opposites, some are not 
related at all.  Mix and match by dragging pairs for each 
category:

Equivalent        Opposites          Not related

x - 3x + 3 -x - 3-x + 3 3 - x 3 + x
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You must be able to recognize additive inverses!!!
(3 - a and a - 3 are additive inverses because their sum is equal to zero.)  
Remember 3 - a  = -1(a - 3).

Example
15x - 3xy + 4y - 20

(15x - 3xy) + (4y - 20)   Group
3x(5 - y) + 4(y - 5)     Factor GCF
3x(-1)(y - 5) + 4(y - 5)   Rewrite based on additive inverses 
-3x(y - 5) + 4(y - 5)    Simplify
(y - 5) (-3x + 4)      Factor common binomial

Remember to check each problem by using FOIL.

Additive Inverses
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90  Factor 15ab - 3a + 10b - 2

A (5b - 1)(3a + 2)

B (5b + 1)(3a + 2)

C (5b - 1)(3a - 2)

D (5b + 1)(3a - 1)
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91  Factor 10m2n - 25mn + 6m - 15

A (2m-5)(5mn-3)

B (2m-5)(5mn+3)

C (2m+5)(5mn-3)

D (2m+5)(5mn+3)
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92  Factor 20ab - 35b - 63 +36a

A (4a - 7)(5b - 9)

B (4a - 7)(5b + 9)

C (4a + 7)(5b - 9)

D (4a + 7)(5b + 9)
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93  Factor a2 - ab + 7b - 7a

A (a - b)(a - 7)

B (a - b)(a + 7)

C (a + b)(a - 7)

D (a + b)(a + 7)
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Mixed Factoring

Return to
Table of
Contents
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Factor the Polynomial

Factor out GCF

2 Terms
3 Terms

4 Terms

Difference
of Squares

Perfect Square
Trinomial

Factor the
Trinomial

Group and Factor
out GCF. Look for a
Common Binomial

Check each factor to see if it can be factored again.
If a polynomial cannot be factored, then it is called prime.

Summary of Factoring

a = 1 a = 1
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94  Factor completely:

A

B

C

D
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95  Factor completely

A

B

C

D prime 
polynomial 
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96  Factor

A

B

C
D prime 

polynomial

  

Slide 202 / 216

  

  

  

  

  

  

  

97  Factor completely 10w2x2 - 100w2x +1000w2

A 10w2(x + 10)2 

B 10w2(x - 10)2  

C 10(wx - 10)2  

D 10w2(x2 -10x +100) 
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98  Factor

A

B

C
D Prime 

Polynomial
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Solving Equations by 
Factoring

Return to
Table of
Contents
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Given the following equation, what conclusion(s) can be drawn?

ab = 0
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Recall ~ Given the following equation, what conclusion(s) can be drawn?

(x - 4)(x + 3) = 0

Since the product is 0, one of the factors must be 0.  
Therefore, either x - 4 = 0 or x + 3 = 0.  

  x  -  4  =  0      or         x  +  3  =  0
 + 4  + 4  - 3  - 3

        x  =  4        or              x  = -3

Therefore, our solution set is {-3, 4}.  To verify the results, substitute each 
solution back into the original equation.

(x - 4)(x + 3) = 0
(-3 - 4)(-3 + 3) = 0

(-7)(0) = 0
0 = 0

To check x = -3: (x - 4)(x + 3) = 0
(4 - 4)(4 + 3) = 0

(0)(7) = 0
0 = 0

To check x = 4:
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What if you were given the following equation?  

How would you solve it?

We can use the Zero Product Property to solve it.  

How can we turn this polynomial into a multiplication problem?   Factor it!  

Factoring yields:           (x - 6)(x + 4) = 0

By the Zero Product Property:
           x - 6 = 0       or       x + 4 = 0

After solving each equation, we arrive at our solution:

        {-4, 6}
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Solve

Recall the Steps for Factoring a Trinomial
1) See if a monomial can be factored out.
2) Need 2 numbers that multiply to the constant
3) and add to the middle number.
4) Write out the factors.

Now... 
1) Set each binomial equal to zero.
2) Solve each binomial for the variable.

Trinomial

click to reveal
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99  Choose all of the solutions to:

A

B

C

D

E

F
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100  Choose all of the solutions to:

A -4 

B -2 

C 0 

D 2 

E 4 

F 16 
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101  Choose all of the solutions to:

A -4 

B -2 

C 0 

D 2 

E 4 

F 16 
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102  A ball is thrown with its height at any time given by
                                   

When does the ball hit the ground?

A -1 seconds

B 0 seconds

C 9 seconds

D 10 seconds

  

Slide 216 / 216

  

  

  

  

  

  

  


