

Slide 1 / 216

Click on the topic to go to that section Definitions of Monomials, Polynomials and Degrees Adding and Subtracting Polynomials	Slide 3 / 216
 Multiplying a Polynomial by a Monomial Multiplying a Polynomial by a Polynomial Special Binomial Products Solving Equations Factors and GCF 	
 Factoring out GCF's Factoring Using Special Patterns 	
 Identifying & Factoring x²+ bx + c 	
 Factoring Trinomials ax² + bx + c Factoring 4 Term Polynomials 	
 Mixed Factoring Solving Equations by Factoring 	

Definitions of Monomials, Polynomials and Degrees

Return to Table of Contents

	Slide 5 / 216
s	

Polynomials

A polynomial is an expression that contains one or more monomials. Examples of polynomials....

$5a^{2} \xrightarrow{7}_{6} c^{2} \cdot d$ $5a^{2} \xrightarrow{7}_{6} c^{2} \cdot d$ $8a^{3} \cdot 2b^{2}$ $8x^{3} \cdot x^{2} \frac{rt}{6} + \frac{a^{4}b}{15} 4c - mn^{3}$

of...

Numbers

variables

number exponents

Slide 8 / 216 Polynomials What polynomials DO have: What polynomials DON'T have: One or more terms made up · Square roots of variables · Negative exponents · Fractional exponents · Variables raised to whole-· Variables in the denominators of any fractions · Products of numbers and

Slide 9 / 216 **Polynomials** What is the exponent of the variable in the expression 5x? What is the exponent of the variable in the expression 5?

Degrees of Monomials	Slide 10 / 216
The <u>degree</u> of a monomial is the sum of the exponents of its variables. The degree of a nonzero constant such as 5 or 12 is 0. The constant 0 has no degree.	
Examples:	
1) The degree of 3x is?	
2) The degree of -6x3y is?	
3) The degree of 9 is?	

1 What is the degree of x^2 ?	Slide 11 / 216
⊖ A 0	
⊙в 1	
OC 2	
QD 3	

2 What is the degree of <i>mn</i> ?	Slide 12 / 216
0 A ()	
QB 1	
QC 2	
○ D 3	

3 What is the degree of 3?	Slide 13 / 216
○ A 0	
QВ 1	
QC 2	
QD 3	

Degrees of Polynomials	Slide 15 / 216
The degree of a polynomial is the same as that of the term with the greatest degree.	
Example: Find degree of the polynomial 4x ³ y ² - 6xy ² + xy.	
4x ³ y ² has a degree of 5, -6xy ² has a degree of 3, xy has a degree of 2.	
The highest degree is 5, so the degree of the polynomial is 5.	

Find the degree of each polynomial	Slide 16 / 216
1) 3	
2) 12c ³	
3) ab	
4) 8s⁴t	
5) 2 - 7n	
6) h ⁴ - 8t	
7) s ³ + 2v ² y ² - 1	

5 What is the degree of the following polynomial:	Slide 17 / 216
$a^2b^2 + c^4d - x^2y$	
QA 3	
QB 4	
QC 5	
QD 6	

6 What is the degree of the following polynomial:	Slide 18 / 216
$a^{3}b^{3} + c^{4}d - x^{3}y^{2}$	
QA 3	
ОВ 4	
QC 5	
QD 6	

Slide 19 / 216

Adding and Subtracting Polynomials

Return to Table of Contents

Standard Form

A polynomial is in standard form when all of the terms are in order from highest degree to the lowest degree. Standard form is commonly accepted way to write polynomials.

Example: $9x^7 - 8x^5 + 1.4x^4 - 3x^2 + 2x - 1$ is in standard form.

Drag each term to put the following equation into standard form:

67 $-11x^4$ $-21x^9$ $-9x^4$ $-x^8$ $+2x^3$ -x

Vocabulary	Slide 21 / 216
Monomials with the same variables and the same power are <u>like terms</u> . The number in front of each term is cadedid theod the term. If there is no variable in the term, the term is cadedid term <u>Like Terms</u> 4x and -12x -3b and 3a x ³ y and 4x ³ y 6a ² b and -2ab ²	

Slide 20 / 216

7 Simplify $7y + 5y$	Slide 24 / 216
$\begin{array}{c} \bigcirc A 12y^2 \\ \bigcirc B 12y \end{array}$	
$\begin{array}{c} \bigcirc C 2y^2 \\ \bigcirc D 2y \end{array}$	

8 Simplify $5y - 7y$	Slide 25 / 216
$\bigcirc A -2y^2$ $\bigcirc B -2y$	
$\bigcirc A -2y^2$ $\bigcirc B -2y$ $\bigcirc C 2y^2$ $\bigcirc D 2y$	

9 Simplify $5x^2y + 4xy^2 - 3x^2y$ $\bigcirc A \quad 2x^2y + 4xy^2$ $\bigcirc B \quad 5x^2y + 4xy^2 - 3x^2y$ $\bigcirc C \quad 5x^2y + xy^2$ $\bigcirc D \quad 6x^2y$ Slide 26 / 216

Add Polynomials	
To add polynomials, combine the like terms from each polynomial.	
To add vertically, first line up the like terms and then add.	
Examples: ′3x² +5x -12) + (5x² -7x +3)	(3x ⁴ -5x) + (7x ⁴ +5x ² -14x)
line up the like terms $3x^2 + 5x - 12$	line up the like terms 3x + 5x
(+) $5x^2 - 7x + 3$ click	(+) $\frac{7x^4 + 5x^2 - 14x}{10}$

Slide 27 / 216	

Slide 32 / 216

Slide 33 / 216

Slide 36 / 216

Subtract Polynomials

We can subtract polynomials vertically

To subtract a polynomial, change the subtraction to adding -1. Distribute the -1 and then follow the rules for adding polynomials $(3x^2 + 4x - 5) - (5x^2 - 6x + 3)$

 $(3x^2+4x-5) + (-1) (5x^2-6x+3)$ $(3x^2+4x-5) + (-5x^2+6x-3)$

> $3x^{2} + 4x - 5$ (+) -5x² - 6x + 3

click

Subtract Polynomials

We can subtract polynomials vertically .

Example:

(4x³-3x -5) - (2x³ +4x² -7)

 $(4x^3 - 3x - 5) + (-1)(2x^3 + 4x^2 - 7)$ $(4x^3 - 3x - 5) + (-2x^3 - 4x^2 + 7)$

 $\begin{array}{r} 4x^{3} & -3x - 5\\ \underline{(+) -2x^{3} - 4x^{2}} & +7 \end{array}$

click

Slide 38 / 216

Subtract Polynomials

We can also subtract polynomials horizontally. $(3x^2 + 12x - 5) - (5x^2 - 7x - 9)$

Change the subtraction to adding a negative one and distribute the negative one. $(3x^2+12x-5)+(-1)(5x^2-7x-9)\\(3x^2+12x-5)+(-5x^2+7x+9)$

Use the communitive and associative properties to group like terms. $(3x^2+5x^2) + (12x+7x) + (-5+9)$

click

Slide 39 / 216

Slide 41 / 216

Slide 42 / 216

Summary

Is the sum or difference of two polynomials always a polynomial?

When we add polynomials, we are adding the terms of the first to the terms of the second, and each of these sums is a new term of the same degree. Each new term consists of a constant times variables raised to whole number powers, so the sum is in fact a polynomial.

Therefore, we say that the set of polynomials is "closed under addition".

Since subtraction is just adding the opposite, the set of polynomials is also closed under subtraction.

Slide 44 / 216

Slide 45 / 216

Multiplying a Polynomial by a Monomial

Return to Table of Contents 01100 107210

Multiplying Polynomials	Slide 48 / 216
To multiply a polynomial by a monomial, you use the distributive property together with the laws of exponents for multiplication.	
Example:	
$-2x(5x^2 - 6x + 8)$	
$(-2x)(5x^2) + (-2x)(-6x) + (-2x)(8)$	
$-10x^3 + 12x^2 - 16x$	

23 Multiply $-3x^4(5xy-2xy^3)$	Slide 52 / 216
$\bigcirc A -15x^4y + 6x^4y^3$ $\bigcirc B -15x^5y + 6x^5y^3$	
$\bigcirc C -15x^5y - 6x^5y^3$ $\bigcirc D -15x^4y - 6x^4y^3$	

24 Find the area of a triangle $(A=1/_2bh)$ with a base of 4x
and a height of 2x - 8. (All answers are in square
units.)

- $\bigcirc A \quad 8x^2 32$
- **QB** $6x^2 32x$
- $\bigcirc c \quad 3x^2 16x$
- $\bigcirc D = 4x^2 16x$

Multiply Polynomials	Slide 57 / 216
To multiply a polynomial by a polynomial, you multiply each ternof the first polynomial by each term of the second. Then, add like terms.	
Example 1: (2x + 4y)(3x + 2y)	
Example 2:	
(x + 3)(x2 + 2x + 4)	

FOIL Method		Slide 58 / 216
The FOIL Method is a shortcut that can be u multiply two binomials. To multiply two binor the products of the (a		
First terms of each binomial Outer terms - the terms on the outsides Inner Terms- the terms on the inside Last Terms of each binomial	ac + ad + bc + bd	
<i>Remember</i> - FOIL is just a mnemonic to help you remember the steps for binomials. What you are really doing is multiplying each term in the first binomial by each term in the second.		

Multiply Polynomials Try it!Find each product.	Slide 59 / 216
1) (x - 4)(x - 3)	
2) (x + 2)(3x - 8)	

Multiply Polynomials Try it!Find each product.	Slide 60 / 216
3) (2x - 3y)(4x + 5y)	
4) (3x - 6)(x ² - 2x)	

29 Multiply: $(2x+3)(-3x-4)$	Slide 63 / 216
$\bigcirc A = -6x^2 - 17x - 12$ $\bigcirc B = -6x^2 + 17x - 12$	
$\bigcirc C -6x^2 - 17x + 12$ $\bigcirc D -6x^2 + 17x + 12$	

31 Multiply: $(x^2-5)(x^2+3)$ $\bigcirc A \quad x^2 - 2x^2 - 15$ $\bigcirc B \quad x^4 - 2x^2 - 15$ $\bigcirc C \quad x^2 - 2x - 15$ $\bigcirc D \quad x^4 - 2x - 15$ Slide 65 / 216

Slide 68 / 216

	Slide 72 / 216
Special Binomial Products	
Return to	
Table of Contents	

39 What is the area of a square with sides 2x + 4?	Slide 80 / 216
$\bigcirc A \ 4x^2 + 16$	
\bigcirc B 4 x^2 -16	
\bigcirc C $4x^2 + 8x + 16$	
\bigcirc D 4 x^2 +16 x +16	

40 $(3x+y^2)^2$	Slide 81 / 216
40 $(3x + y^2)^2$ $\bigcirc A 9x^2 + 6xy^2 + y^4$ $\bigcirc B 6x^2 + 3xy^2 + y^4$	
$\bigcirc C 9x^2 + y^4$ $\bigcirc D 6x^2 + y^4$	

	Slide 82 / 216
Solving Equations	
Return to Table of Contents	

Zero Product Property

Given the following equation, what conclusion(s) can be drawn?

ab = 0

Since the product is 0, one of the factors, a or b, must be 0.

Slide 83 / 216		

Zero	Produc	t Property
------	--------	------------

If ab = 0, then either a = 0 or b = 0.

Think about it: if 3x = 0, then what is x?

Slide 84 / 216

Zero Product Property

What about this? (x - 4)(x + 3) = 0

Since (x - 4) is being multiplied by (x + 3), then each binomial is a FACTOR of the left side of the equation.

Since the product is 0, one of the factors must be 0. Therefore, either x - 4 = 0 or x + 3 = 0.

x - 4 = 0	or	x + 3 = 0
+4 +4		- 3 - 3
x = 4	or	x = -3

Zero	Prod	luct	Prop	erty

Therefore, our solution set is $\{-3, 4\}$. To verify the results, substitute each solution back into the original equation.

To check x = -3: (x - 4)(x + 3) = 0(-3 - 4)(-3 + 3) = 0(-7)(0) = 00 = 0

To check x = 4: (x - 4)(x + 3) = 0(4 - 4)(4 + 3) = 0(0)(7) = 00 = 0

1
Slide 86 / 216

Solve	Slide 87 / 216
What if you were given the following equation?	
(x - 6)(x + 4) = 0	

41 Solve (a + 3)(a - 6) = 0.	Slide 88 / 216
○ A {3,6}	
○B {-3,-6}	
OC {-3,6}	
○ D {3, -6}	

42 Solve (a - 2)(a - 4) = 0.	Slide 89 / 216
○A {2,4}	
○B {-2 , -4}	
○C {-2, 4}	
○ D {2,-4}	

43 Solve (2a - 8)(a + 1) = 0.	Slide 90 / 216
○A {-1 , -16}	
○ B {-1, 16}	
○ C {-1 , 4}	
○ D {-1 , -4}	

Slide 91 / 216

]	Slide 92 / 216

44 What is the GCF of 12 and 15?	Slide 94 / 216

45 What is the GCF of 24 and 48?	Slide 95 / 216

47 What is the GCF of 28, 56 and 42?	Slide 97 / 216

48 What is the GCF of x^8 and x^9 ?	Slide 99 / 216
$\bigcirc A x^8$	
$\bigcirc B x^9$	
\bigcirc C x	
QD 1	

Slide 101 / 216

Slide 102 / 216

	Slide 103 / 216
Eastering out CCEs	
Factoring out GCFs	
Return to Table of	
Contents	

Factoring	Slide 104 / 216
Factoring a number means to find other numbers you can multiply to get the number.	
$48 = 6 \times 8$, so 6 and 8 are both factors of 48.	
Factoring a polynomial means to find other polynomials that can be multiplied to get the original polynomial.	
$(y + 1)(y - 4) = y^2 - 3y - 4$, so $y + 1$, and $y - 4$ are factors of $y^2 - 3y - 4$.	

Factoring	Slide 105 / 216
Example:	
Factor 10x ² - 30x	
We might notice quickly that both terms have 10 as a factor, so we could have $10(x^2 - 3x)$.	
But both terms also have x as a factor. So the greatest common factor of both terms is 10x.	
$10x^2 - 30x = 10x (x - 3)$	
The left side of the equation is in <u>expanded form</u> , and the right side is in <u>factored form</u> .	

Factoring	Slide 106 / 216
The first step in factoring is to look for the <u>greatest monomial</u> <u>factor</u> . If there is a greatest monomial factor other than 1, use the distributive property in reverse to rewrite the given polynomial as the product of this greatest monomial factor and a polynomial. Example Factor $6x^4 - 15x^3 + 3x^2$	

Factoring	Slide 107 / 216
Factor: 4m³n - 7m ²n²	
100x ⁵ - 20x ³ + 30x - 50	
$\frac{1}{2}x^2 - \frac{1}{2}x$	

Factoring	Slide 109 / 216
Factor each polynomial:	
$a(z^2 + 5) - (z^2 + 5)$	
3x(x + y) + 4y(x + y)	
7mn(x - y) - 2(x + y)	

Factoring

In working with common binomial factors, look for factors that are opposites of each other.

For example: (x - y) = -(y - x) because

x - y = x + (-y) = -y + x = -1(y - x)

so x - y and y - x are opposites or additive inverses of each other.

You can check this by adding them together: x - y + y - x = 0!

Slide 110 / 216

52 True or False: y - 7 = - 7 - y	Slide 112 / 216
○ True○ False	

53 True or False: 8 - d = -1(d + 8)	Slide 113 / 216
○ True○ False	

54 True or False: The additive inverse of 8c - h is -8c + h.	Slide 114 / 216
◯ True	
○ False	

55 True or False: -a - b and a + b are opposites.	Slide 115 / 216
◯ True ◯ False	

Орроз	ites	Slide 116 / 216
In working with common binomial factors, look for factors that are opposites of each other.		
xample 3 Factor the polynomial		
n(n - 3) - 7(3 - n)		
Rewrite 3 - n as -1(n - 3)	n(n - 3) - 7(-1)(n - 3)	
Simplify	n(n - 3) + 7(n - 3)	
Factor	(n - 3)(n + 7)	

Factor the polynomial.	Slide 117 / 216
p(h - 1) + 4(1 - h)	

57 If possible, Factor $10a^3 - 35a^2 + 12$ $\bigcirc A \quad 2a(5a^2 - 7a + 6)$ $\bigcirc B \quad 5a(2a^2 - 7a + 2)$ $\bigcirc C \quad 2(5a^3 - 7a^2 + 6)$ $\bigcirc D$ Already Simplified Slide 119 / 216

58 If possible, Factor z(z-1)+2(z-1) $\bigcirc A (z-1)(z+2)$ $\bigcirc B (z-1)(z-2)$ $\bigcirc C (z+1)(z-2)$ $\bigcirc D$ Already Simplified Slide 120 / 216

Special Patterns	s in Multiplying
When we were multiplying polynom special patterns.	ials we had
Square of Sums	$\left(a+b\right)^2 = a^2 + 2ab + b^2$
Difference of Sums	$\left(a-b\right)^2 = a^2 - 2ab + b^2$
Product of a Sum and a Difference	$(a+b)(a-b)=a^2-b^2$
If we learn to recognize these squar use them to help us factor.	res and products we can

C	ß	Ч	\sim	4	23	/	2	4	6
С	Ш	u	e	- 1	23	/	2	1	0

Perfect Square Trinomials Examples:	Slide 125 / 216
$x^2 + 10x + 25$ $t^2 + 2t + 1$	
$b^2 - 8b + 16$ $x^2 - 18xy + 81y^2$	
$h^2 + 12h + 36$ $c^4 - 6c^2 + 9$	
What do these trinomials have in common? What patterns do you see?	

Slide 128 / 216

60 Factor $x^2 + 4x + 4$	Slide 129 / 216
$\bigcirc A (x+2)^2$ $\bigcirc B (x-2)^2$	
$\bigcirc C (x+4)^2$ $\bigcirc D$ Not a perfect Square Trinomial	

61 Factor $x^2 - 10x + 100$	Slide 130 / 216
$\bigcirc A (x+10)^{2} \\ \bigcirc B (x-10)^{2} \\ \bigcirc C (x-5)^{2} \\ \end{cases}$	
 C (x-3) D Not a perfect Square Trinomial 	

Slide 132 / 216

Difference o	of Squares	Slide 133 / 216
Examples:		
$x^2 - 16$	$16b^2 - 16$	
$d^2 - 100$	$4c^2 - 1$	
$j^2 - 49$	$j^4 - 16$	

63 Factor $x^2 - 9$		Slide 136 / 216
$\bigcirc A (x-3)(x-3) \\ \bigcirc B (x-3)(x+3) \\ \bigcirc C (x+3)(x+3) \\ \end{vmatrix}$		
○ D Not a Difference of Squares	ence	

	$\operatorname{ctor} x^2 + 9$	Slide 138 / 216
ОA	(x-3)(x-3)	
ОВ	(x-3)(x+3)	
OC	(x+3)(x+3)	
ΟD	Not a Difference	
	of Squares	

		Slide 141 / 216
Identifying & Factoring: x ² + bx + c		
	Return to Table of Contents	

Classifying Polynomials

Polynomials can be classified by the number of terms. The table below summarizes these classifications.

Number of terms	Name	Examples
1	Monomial	$10 \\ -5x \\ -5x^3$
2	Binomial	$10 + x$ $8x^3y^2 - 4$
3	Trinomial	$7x^2 + 5x - 2$ $a + b + c$
> 3	No special name	$11x^3 + 9x^2 - \frac{1}{2}x + \frac{2}{3}$

"degree".

Slide 143 / 216 **Classifying Polynomials** Polynomials can be desribed based on something called their For a polynomial with one variable, the degree is the largest exponent of the variable. , the degree of this polynomial is 7 $3x^7 - 5x^4 + 8x - 1$

-		lassified by degree. Th nese classifications.
Degree	Туре	Examples
0	Constant	10
		$\frac{1}{3}$
		3
1	Linear	-5x
		-5x + 4
2	Quadratic	$8x^2 - 5x + 3$
3	Cubic	$7x^3 + 5x - 2$
4	Quartic	$11x^4 + 9x^2 - \frac{1}{2}x + \frac{2}{3}$

70 Choose all of the descriptions that apply to: $5x^2 + x + 2x$	Slide 148 / 216
A Quadratic	
□B Linear	
C Constant	
D Trinomial	
□E Binomial	
□ F Monomial	

	Slide 151 / 216
Multiply:	
(x + 3)(x + 4)	
(x +3)(x - 4)	
(x - 3)(x + 4)	
(x - 3)(x - 4)	
What is the same and what is different about each product? What patterns do you see? What generalizations can be made about multiplication of binomials?	
Work in your groups to make a list and then share with the class. Make up your own example like the one above. Do your generalizations hold up?	

Slide 153 / 216

Examples:	Slide 154 / 216
$x^2 - 4x + 3$	
$x^2 + 7x + 10$	
$x^2 - 12x + 20$	

Factor Examples:	Slide 155 / 216
$x^2 - 9x + 8$	
$x^2 + 8x + 12$	
$x^2 + 7x + 12$	

72 What kind of signs will the factors of 12 have, given the following equation? $x^2 - 8x + 12$		Slide 156 / 216
ОA	Both positive	
ОВ	Both Negative	
ОС	Bigger factor positive, the other negative	
ΟD	The bigger factor negative, the other positive	

73 The factors of 12 will have what kind of signs given the following equation? $x^2 + 13x + 12$	Slide 157 / 216
◯A Both positive	
OB Both negative	
○ C Bigger factor positive, the other negative	
\bigcirc D The bigger factor negative, the other positive	

74 Fa	ctor $x^2 - 7x + 12$	Slide 158 / 216
ОA	(x + 12)(x + 1)	
⊙в	(x + 6)(x + 2)	
ОС	(x + 4)(x + 3)	
ΟD	(x - 12)(x - 1)	
OE	(x - 6)(x - 1)	
OF	(x - 4)(x - 3)	

75 Factor $x^2 + 8x + 12$	Slide 159 / 216
$\bigcirc A (x + 12)(x + 1)$ $\bigcirc B (x + 6)(x + 2)$ $\bigcirc C (x + 4)(x + 3)$ $\bigcirc D (x - 12)(x - 1)$ $\bigcirc E (x - 6)(x - 1)$ $\bigcirc F (x - 4)(x - 3)$	

Slide 163 / 216

Factor	Slide 164 / 216
Examples	
$x^2 - x - 20$	
$x^2 + 6x - 16$	
$x^2 + 4x - 32$	

Factor	Slide 165 / 216
Examples $x^2 + 9x - 36$	
$x^2 - 3x - 18$	
$x^2 - 3x - 10$	

78 The factors of -12 will have what kind of signs given the following equation? $x^2 - 1x - 12$		Slide 166 / 216
ОA	Both positive	
ОВ	Both negative	
ОC	Bigger factor positive, the other negative	
ΟD	The bigger factor negative, the other positive	
		<u></u>

- 79 The factors of -12 will have what kind of signs given the following equation? $x^2 + 4x 12$
 - QA Both positive
 - OB Both negative
 - OC Bigger factor positive, the other negative
 - Q D The bigger factor negative, the other positive

80 Factor $x^2 + x - 12$	Slide 168 / 216
$\bigcirc A (x + 12)(x - 1)$ $\bigcirc B (x + 6)(x - 2)$ $\bigcirc C (x + 4)(x - 3)$ $\bigcirc D (x - 12)(x + 1)$ $\bigcirc E (x - 6)(x + 1)$ $\bigcirc F (x - 4)(x + 3)$	

81 Factor $x^2 - 5x - 12$	Slide 169 / 216
$\bigcirc A (x + 12)(x - 1) \\ \bigcirc B (x + 6)(x - 2) \\ \bigcirc C (x + 4)(x - 3) \\ \bigcirc D (x - 12)(x + 1) \\ \bigcirc E (x - 6)(x + 1) \\ \bigcirc F unable to \\ factor using this method$	

Mixed Practice	Slide 171 / 216

83 Factor the following $x^2 + 2x - 8$	Slide 172 / 216
$\bigcirc A$ (x - 2)(x - 4) $\bigcirc B$ (x + 2)(x + 4)	
$\bigcirc C$ (x - 2)(x + 4) $\bigcirc D$ (x + 2)(x - 4)	

	Slide 173 / 216
84 Factor the following $x^2 - 8x + 15$	Slide 1737 210
○A (x - 3)(x - 5)	
$\bigcirc B (x+3)(x+5)$	
○ C (x - 3)(x +5)	
$\bigcirc D$ (x + 3)(x - 5)	

85 Factor the following $x^2 + 7x + 12$	Slide 174 / 216
○A (x - 3)(x - 4)	
$\bigcirc B (x + 3)(x + 4)$	
○ C (x +2)(x +6)	
○ D (x + 1)(x+12)	

a does not = 1

How to factor a trinomial of the form $ax^2 + bx + c$.

Example: Factor 2d² + 15d + 18

First, find ac: $2 \cdot 18 = 36$

Now find two integers whose product is ac and whose sum is equal to b or 15.

Factors of 36	Sum = 15?
1, 36	1 + 36 = 37
2, 18	2 + 18 = 20
3, 12	3 + 12 = 15

Slide 177 / 216

a does not = 1

Factor. 15x² - 13x + 2

ac = 30, but b = -13Since ac is positive, and b is negative we need to find two negative factors of 30 that add up to -13

Factors of 30	Sum = -13?
-1, -30	-1 + -30 = -31
-2, -15	-2 + -15 = -17
-3, -10	-3 + -10 = -13
-5, -6	-5 + -6 = -11

Slide 179 / 216

Slide 180 / 216

a does not = 1

15x² - 13x + 2 ac = 30, b = -13 Our numbers: -3 and -10

a does not = 1	Slide 181 / 216
Factor. $2b^2 - b - 10$ a = 2, c = -10, and b = -1 Since ac is negative, and b is negative we need to find two factors with opposite signs whose product is -20 and that add up to -1. Since b is negative, larger factor of -20 must be negative. Factors of -20 Sum = -1?	

a does not = 1	Slide 182 / 216
Factor	
6y² - 13y - 5	

Berry Method to Factor	Slide 183 / 216
1: Calculate ac.	
2: Find a pair of numbers m and n, whose product is ac, whose sum is b.	
3: Create the product (ax + m)(ax + n).	
4: From each binomial in step 3, factor out and discard any non factor. The result is your factored form.	
Example: $4x^2 - 19x + 12$ ac = 48, b = -19 m = -3, n = -16	
(4x - 3)(4x16) Factor 4 out of 4x - 16 and toss it! (4x - 3)(x - 4) THE ANSWER!	

Prime Polynomial	Slide 184 / 216
A polynomial that cannot be factored as a product of two polynomials is called a prime polynomial . How can you tell if a polynomial is p Dire cuss with your table.	
click to reveal um is l).

7 Factor $3a^2 + 13a + 4$	Slide 185 / 216
$\bigcirc A (3a+2)(a+2)$ $\bigcirc B (3a+4)(a+1)$	
\bigcirc C $(3a+1)(a+4)$ \bigcirc D Prime Polynomial	

88 Fa	$\cot 14a^2 - 43a + 20$	
QA	(7a-4)(2a-5)	
ОВ	(7a-5)(2a-4)	
ОС	(7a-10)(2a-2)	
ΟD	Prime Polynomial	

Slide 186 / 216

4 Terms	5
---------	---

Polynomials with four terms like ab - 4b + 6a - 24, can sometimes be factored by grouping terms of the polynomials.

Example 1:

ab - 4b + 6a - 24

(ab - 4b) + (6a - 24) Group terms into binomials that can be factored using the distributive property b(a-4) + 6(a-4) Factor the GCF (a - 4) (b + 6)

Slide 189 / 216

4 Terms	Slide 190 / 216
Example	
6xy + 8x - 21y - 28	

		Slide 191 / 216
What are the relationships among the follow	/ing:	
Some are equivalent, some are opposites, s related at all. Mix and match by dragging p category:		
Equivalent Opposites	Not related	
x + 3 - x + 3 - x - 3 x - 3 3	3 - x 3 + x	

Α	dditive Inverses	Slide 192 / 216
	ngnize additive inverses!!! re inverses because their sum is equal to zero.) 3).	
Example 15x - 3xy + 4y - 20		
$\begin{array}{l} (15x - 3xy) + (4y - 20) \\ 3x(5 - y) + 4(y - 5) \\ 3x(-1)(y - 5) + 4(y - 5) \\ -3x(y - 5) + 4(y - 5) \\ (y - 5) (-3x + 4) \end{array}$	Group Factor GCF Rewrite based on additive inverses Simplify Factor common binomial	
Remember t	o check each problem by using FOIL.	

90 Factor 15ab - 3a + 10b - 2	Slide 193 / 216
$\bigcirc A (5b - 1)(3a + 2) \\ \bigcirc B (5b + 1)(3a + 2) \\ \bigcirc C (5b - 1)(3a - 2) \\ \bigcirc D (5b + 1)(3a - 1) \\ \bigcirc$	

91 Factor 10m ² n - 25mn + 6m - 15	Slide 194 / 216
 ○ A (2m-5)(5mn-3) ○ B (2m-5)(5mn+3) ○ C (2m+5)(5mn-3) ○ D (2m+5)(5mn+3) 	

92 Factor 20ab - 35b - 63 +36a	Slide 195 / 216
○A (4a - 7)(5b - 9)	
○ B (4a - 7)(5b + 9)	
⊖ C (4a + 7)(5b - 9)	
○ D (4a + 7)(5b + 9)	

94 Factor completely: $4cd^2 + 12cd + 8c$	Slide 200 / 216
$\bigcirc A 4c(d+3)(d+2)$ $\bigcirc B 4c(d+2)(d+1)$	
$\bigcirc C (d+3)(4d+2)$ $\bigcirc D 4c(d^2+3d+2)$	

95 Factor completely $10a^3 - 35a^2 + 12$	Slide 201 / 216
\bigcirc A $2a(5a^2-7a+6)$	
$\bigcirc B$ 5a(2a ² -7a+2)	
$\bigcirc C \ 2(5a^3-7a^2+6)$	
O D prime polynomial	

96 Factor $4y^2 - 15$	Slide 202 / 216
$\bigcirc A (2y-5)(2y-3)$ $\bigcirc B (2y-5)(2y+3)$ $\bigcirc C (2y+5)(2y+3)$ $\bigcirc D prime \\ polynomial$	

97 Factor completely 10w ² x ² - 100w ² x +1000w ²	Slide 203 / 216
$\bigcirc A = 10w^2(x + 10)^2$	
○ B 10w ² (x - 10) ²	
○ C 10(wx - 10) ²	
$\bigcirc D$ 10w ² (x ² -10x +100)	

98 Factor $4a^2 - 2a - 30$	Slide 204 / 216
$\bigcirc A = 2(2a-5)(a+3)$ $\bigcirc B = 2(2a+5)(a-3)$ $\bigcirc C = 2(2a-3)(a+5)$ $\bigcirc D$ Prime Polynomial	

Slide 206 / 216

Given the following equation, what conclusion(s) can bedrawn?

Recall ~ Given the following equation, what conclusion(s) cathabeen?	Slide 207 / 216
(x - 4)(x + 3) = 0	
Since the product is 0, one of the factors must be 0. Therefore, either - $4 = 0$ or $x + 3 = 0$.	
$\begin{array}{cccc} x - 4 = 0 & \text{or} & x + 3 = 0 \\ \hline +4 & +4 & \\ \hline x = 4 & \text{or} & \hline & x = -3 \end{array}$	
Therefore, our solution set is {-3, 4}. To verify the results, substitute each solution back into the original equation.	
$\frac{\text{To check } x = -3:}{(-3 - 4)(-3 + 3) = 0} \qquad \frac{\text{To check } x = 4:}{(-7)(0) = 0} \qquad (x - 4)(x + 3) = 0$ $(x - 4)(x + 3) = 0$ $(x - 4)(-3 + 3) = 0$ $(x$	
(-3-4)(-3+3)=0 (-7)(0)=0 0=0 (-7)(0)=0 0=0	

	Slide 208 / 216
What if you were given the following equation?	
$x^2 - 2x - 24 = 0$	
How would you solve it?	
We can use the Zero Product Property to solve it.	
How can we turn this polynomial into a multiplication problem? Factor it	
Factoring yields: $(x - 6)(x + 4) = 0$	
By the Zero Product Property: x - 6 = 0 or $x + 4 = 0$	
After solving each equation, we arrive at our solution:	
{-4, 6}	

Trinomial

Recall the Steps for Factoring a Trinomial 1) See if a monomial can be factored out. 2) Need 2 numbers that multiply to the constant 3) and add to the middle number. 4) Write out the factors. Solve $2a^3 - 4a^2 - 30 = 0$ $2a(a^2 - 2a - 15) = 0$ 2a(a-5)(a+3) = 0Now... 1) Set each binomial equal to zero. 2) Solve each binomial for the variable. 2a = 0 a-5 = 0 a+3 = 0click to reveal

Slide 209 / 216

Slide 210 / 216

Slide 211 / 216

99 Choose all of the solutions to: $14a^2 - 43a + 20 = 0$ $\square A = \frac{4}{7}$	Slide 212 / 216
$\square B \frac{2}{5}$	
$\square C \frac{7}{4}$ $\square D \frac{5}{2}$	
$\Box = \frac{2}{2}$ $\Box = -\frac{4}{7}$	
$\Box F -\frac{5}{2}$	

100 Choose all of the solutions to: $g^3 - 16g = 0$	Slide 213 / 216
□A -4	
□B -2	
□D 2	
□E 4	
□F 16	
	1

101 Choose all of the solutions to: $m^2 = 4m$	Slide 214 / 216
□A -4	
□B -2	
D 2	
E 4	
□F 16	

102 A ball is thrown with its height at any time given by	Slide 216 / 216
$h = -16t^2 + 144t + 160$	
When does the ball hit the ground?	
◯A -1 seconds	
○ B 0 seconds	
○ C 9 seconds	
O D 10 seconds	