Algebra I Vocabulary Cards Table of Contents

Expressions and Operations
Natural Numbers
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Real Numbers
Order of Operations
Expression
Variable
Coefficient
Term
Exponential Form
Negative Exponent
Zero Exponent
Product of Powers Property
Power of a Power Property
Power of a Product Property
Quotient of Powers Property
Power of a Quotient Property
Polynomial
Degree of Polynomial
Leading Coefficient
Add Polynomials (group like terms)
Add Polynomials (align like terms)
Subtract Polynomials (group like terms)
Subtract Polynomials (align like terms)
Multiply Polynomials
Multiply Binomials
Multiply Binomials (model)
Multiply Binomials (graphic organizer)
Multiply Binomials (squaring a binomial)
Multiply Binomials (sum and difference)
Factors of a Monomial
Factoring (greatest common factor)
Factoring (perfect square trinomials)
Factoring (difference of squares)
Difference of Squares (model)
Prime Polynomial
Square Root
Cube Root
$n^{\text {th }}$ Root

Product Property of Radicals
Quotient Property of Radicals
Zero Product Property
Solutions or Roots
Zeros
x-Intercepts

Equations and Inequalities

Coordinate Plane
Linear Equation
Linear Equation (standard form)
Literal Equation
Vertical Line
Horizontal Line
Quadratic Equation
Quadratic Equation (solve by factoring)
Quadratic Equation (solve by graphing)
Quadratic Equation (number of solutions)
Identity Property of Addition
Inverse Property of Addition
Commutative Property of Addition
Associative Property of Addition
Identity Property of Multiplication
Inverse Property of Multiplication
Commutative Property of Multiplication
Associative Property of Multiplication
Distributive Property
Distributive Property (model)
Multiplicative Property of Zero
Substitution Property
Reflexive Property of Equality
Symmetric Property of Equality
Transitive Property of Equality
Inequality
Graph of an Inequality
Transitive Property for Inequality
Addition/Subtraction Property of Inequality
Multiplication Property of Inequality
Division Property of Inequality
Linear Equation (slope intercept form)
Linear Equation (point-slope form)
Slope
Slope Formula

Slopes of Lines
Curve of Best Fit (linear/quadratic)
Mathematical Notation
System of Linear Equations (graphing)
System of Linear Equations (substitution)
System of Linear Equations (elimination)
System of Linear Equations (number of solutions)
Graphing Linear Inequalities
System of Linear Inequalities
Dependent and Independent Variable
Dependent and Independent Variable (application)
Graph of a Quadratic Equation
Quadratic Formula

Relations and Functions

Relations (examples)
Functions (examples)
Function (definition)
Domain
Range
Function Notation
Parent Functions

- Linear, Quadratic

Transformations of Parent Functions

- Translation
- Reflection
- Dilation

Linear Function (transformational graphing)

- Translation
- Dilation ($\mathrm{m}>0$)
- Dilation/reflection (m<0)

Quadratic Function (transformational graphing)

- Vertical translation
- Dilation ($\mathrm{a}>0$)
- Dilation/reflection (a<0)
- Horizontal translation

Arithmetic Sequence
Geometric Sequence

Statistics

Statistics Notation
Mean
Median
Mode
Box Plot
Standard Deviation (definition)
Scatterplot
Positive Correlation
Negative Correlation
No Correlation

Natural Numbers

The set of numbers
 1, 2, 3, 4...

Real Numbers
Rational Numbers

Whole Numbers

The set of numbers

$$
0,1,2,3,4 \ldots
$$

$$
\begin{gathered}
\text { Integers } \\
\text { The set of numbers } \\
\ldots-3,-2,-1,0,1,2,3 \ldots
\end{gathered}
$$

Real Numbers

Rational Numbers	Irrational Numbers
Integers	
Whole Numbers Numbers	

Rational Numbers

Real Numbers

Rational Numbers	Irrational Numbers

The set of all numbers that can be

 written as the ratio of two integers with a non-zero denominator$$
2 \frac{3}{5}, \quad-5, \quad 0.3, \quad \sqrt{16}, \quad \frac{13}{7}
$$

Irrational Numbers

Real Numbers

The set of all numbers that cannot be expressed as the ratio of integers
 $\sqrt{7}, \pi,-0.23223222322223 \ldots$

Real Numbers

The set of all rational and irrational numbers

Order of Operations

Grouping	(1 Sl Symbols
Exponents	a^{n} labsolute valuel fraction bar
Multiplication Division	$\xrightarrow[\text { Left to Right }]{ }$

Expression

x $-\sqrt{26}$

$$
3^{4}+2 m
$$

$$
3(y+3.9)^{2}-\frac{8}{9}
$$

Variable

$$
\begin{gathered}
2(y)+\sqrt{3}) \\
9+(X)=2.08
\end{gathered}
$$

$$
\text { (d) }=7 \text { (c) }-5
$$

$$
\text { (A) }=\pi(r)^{2}
$$

Coefficient

$$
(-4)+2 x
$$

$$
-7 y^{2}
$$

$$
\frac{2}{3} a b-\frac{1}{2}
$$

$$
\pi r^{2}
$$

Term

3 terms

2 terms

Examples:

$$
\begin{gathered}
2 \cdot 2 \cdot 2=2^{3}=8 \\
n \cdot n \cdot n \cdot n=n^{4} \\
3 \cdot 3 \cdot 3 \cdot x \cdot x=3^{3} x^{2}=27 x^{2}
\end{gathered}
$$

Negative Exponent

$$
a^{-n}=\frac{1}{a^{n}}, a \neq 0
$$

Examples:

$$
\begin{gathered}
4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} \\
\frac{x^{4}}{y^{-2}}=\frac{x^{4}}{\frac{1}{y^{2}}}=\frac{x^{4}}{\frac{1}{y^{2}}} \cdot \frac{y^{2}}{y^{2}}=x^{4} y^{2} \\
(2-a)^{-2}=\frac{1}{(2-a)^{2}}, a \neq 2
\end{gathered}
$$

Zero Exponent

$$
a^{0}=1, a \neq 0
$$

Examples:

$$
\begin{gathered}
(-5)^{0}=1 \\
(3 x+2)^{0}=1 \\
\left(x^{2} y^{-5} z^{8}\right)^{0}=1 \\
4 m^{0}=4 \cdot 1=4
\end{gathered}
$$

Product of Powers

$$
\begin{aligned}
& \text { Property } \\
& a^{m} \cdot a^{n}=a^{m+n}
\end{aligned}
$$

Examples:

$$
\begin{gathered}
x^{4} \cdot x^{2}=x^{4+2}=x^{6} \\
a^{3} \cdot a=a^{3+1}=a^{4} \\
w^{7} \cdot w^{-4}=w^{7+(-4)}=w^{3}
\end{gathered}
$$

Power of a Power

Property

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

Examples:

$$
\begin{gathered}
\left(y^{4}\right)^{2}=y^{4 \cdot 2}=y^{8} \\
\left(g^{2}\right)^{-3}=g^{2 \cdot(-3)}=g^{-6}=\frac{1}{g^{6}}
\end{gathered}
$$

Power of a Product

Property

$$
(a b)^{m}=a^{m} \cdot b^{m}
$$

Examples:

$$
\begin{gathered}
(-3 a b)^{2}=(-3)^{2} \cdot a^{2} \cdot b^{2}=9 a^{2} b^{2} \\
\frac{-1}{(2 x)^{3}}=\frac{-1}{2^{3} \cdot x^{3}}=\frac{-1}{8 x^{3}}
\end{gathered}
$$

Quotient of Powers

Property

a^{m}

$$
\frac{a^{n}}{a^{n}}=a^{m-n}, a \neq 0
$$

Examples:

$$
\begin{aligned}
& \frac{x^{6}}{x^{5}}=x^{6-5}=x^{1}=x \\
& \frac{y^{-3}}{y^{-5}}=y^{-3-(-5)}=y^{2} \\
& \frac{a^{4}}{a^{4}}=a^{4-4}=a^{0}=1
\end{aligned}
$$

Power of Quotient

Property

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0
$$

Examples:

$$
\begin{gathered}
\left(\frac{y}{3}\right)^{4}=\frac{y^{4}}{3^{4}} \\
\left(\frac{5}{t}\right)^{-3}=\frac{5^{-3}}{t^{-3}}=\frac{\frac{1}{5^{3}}}{\frac{1}{t^{3}}}=\frac{t^{3}}{5^{3}}=\frac{t^{3}}{125}
\end{gathered}
$$

Polynomial

Example	Name	Terms			
7 $6 x$	monomial	1 term			
$3 t-1$ $12 x y^{3}+5 x^{4} y$	binomial	2 terms			
$2 x^{2}+3 x-7$	trinomial	3 terms		Nonexample	Reason
:---:	:---:				
$5 m^{n}-8$	variable exponent				
$n^{-3}+9$	negative exponent				

Degree of a Polynomial

The largest exponent or the

 largest sum of exponents of a term within a polynomial
Example:

$6 a^{3}+3 a^{2} b^{3}-21$

Term	Degree
$6 a^{3}$	3
$3 a^{2} b^{3}$	5
-21	0

Degree of polynomial:
5

Leading Coefficient

The coefficient of the first term of

 a polynomial written in descending order of exponentsExamples:

$$
\begin{gathered}
7 a^{3}-2 a^{2}+8 a-1 \\
-3 n^{3}+7 n^{2}-4 n+10 \\
16 t-1
\end{gathered}
$$

Add Polynomials

Combine like terms.

Example:

$$
\begin{aligned}
& \left(2 g^{2}+6 g-4\right)+\left(g^{2}-g\right) \\
= & 2 g^{2}+6 g-4+g^{2}-g \\
& (\text { Group like terms and add.) } \\
= & \left(2 g^{2}+g^{2}\right)+(6 g-g)-4 \\
= & 3 g^{2}+5 g-4
\end{aligned}
$$

Add Polynomials

Combine like terms.

Example:

$$
\begin{gathered}
\left(2 g^{3}+6 g^{2}-4\right)+\left(g^{3}-g-3\right) \\
\text { (Align like terms and add.) } \\
2 g^{3}+6 g^{2}-4 \\
+g^{3}-g-3 \\
3 g^{3}+6 g^{2}-g-7
\end{gathered}
$$

Subtract
 Polynomials
 Add the inverse.

Example:

$$
\left(4 x^{2}+5\right)-\left(-2 x^{2}+4 x-7\right)
$$

(Add the inverse.)

$$
\begin{aligned}
& =\left(4 x^{2}+5\right)+\left(2 x^{2}-4 x+7\right) \\
& =4 x^{2}+5+2 x^{2}-4 x+7
\end{aligned}
$$

(Group like terms and add.)

$$
\begin{aligned}
& =\left(4 x^{2}+2 x^{2}\right)-4 x+(5+7) \\
& =6 x^{2}-4 x+12
\end{aligned}
$$

Subtract Polynomials
 Add the inverse.

Example:

$$
\left(4 x^{2}+5\right)-\left(-2 x^{2}+4 x-7\right)
$$

(Align like terms then add the inverse and add the like terms.)

$$
\begin{gathered}
4 x^{2}+5 \\
-\left(-2 x^{2}+4 x-7\right) \\
\hline
\end{gathered} \begin{gathered}
4 x^{2}+5 \\
+\frac{2 x^{2}-4 x+7}{6 x^{2}-4 x+12}
\end{gathered}
$$

Multiply
 Polynomials

Apply the distributive property.

$$
\begin{aligned}
& (a+b)(d+e+f) \\
& (a+b)(d+e+f) \\
= & a(d+e+f)+b(d+e+f) \\
= & a d+a e+a f+b d+b e+b f
\end{aligned}
$$

Multiply Binomials

Apply the distributive property.

$$
\begin{gathered}
(a+b)(c+d)= \\
a(c+d)+b(c+d)= \\
a c+a d+b c+b d
\end{gathered}
$$

Example: $(x+3)(x+2)$

$$
\begin{aligned}
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Multiply Binomials

Apply the distributive property.

Example: $(x+3)(x+2)$

$x+3$
Key:

$$
x^{2}+2 x+3 x+1=x^{2}+5 x+6
$$

Multiply Binomials

Apply the distributive property.

$$
\begin{aligned}
& \text { Example: } \begin{array}{l}
(x+8)(2 x-3) \\
\\
=(x+8)(2 x+-3) \\
\begin{array}{|l|l|}
\hline 2 x^{2} & \begin{array}{l}
x_{3} \\
\hline
\end{array} \\
\hline 16 x+-3 x \\
\hline & 824 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\\
\hline
\end{array}
\end{aligned}
$$

$2 x^{2}+16 x+-3 x+-24=2 x^{2}+13 x-24$

Multiply Binomials:

 Squaring a Binomial$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
Examples:

$$
\begin{gathered}
(3 m+n)^{2}=9 m^{2}+2(3 m)(n)+n^{2} \\
=9 m^{2}+6 m n+n^{2} \\
(y-5)^{2}=y^{2}-2(5)(y)+25 \\
=y^{2}-10 y+25
\end{gathered}
$$

Multiply Binomials: Sum and Difference
 $$
(a+b)(a-b)=a^{2}-b^{2}
$$

Examples:

$$
\begin{aligned}
(2 b+5)(2 b-5) & =4 b^{2}-25 \\
(7-w)(7+w) & =49+7 w-7 w-w^{2} \\
& =49-w^{2}
\end{aligned}
$$

Factors of a Monomial

The numbers) and/or variables) that are multiplied together to form a monomial

Examples:	Factors	Expanded Form
$5 b^{2}$	$5 \cdot b^{2}$	$5 \cdot b \cdot b$
$6 x^{2} y$	$6 \cdot x^{2} \cdot y$	$2 \cdot 3 \cdot x \cdot x \cdot y$
$\frac{-5 p^{2} q^{3}}{2}$	$\frac{-5}{2} \cdot p^{2} \cdot q^{3}$	$\frac{1}{2} \cdot(-5) \cdot p \cdot p \cdot q \cdot q \cdot q$

Factoring: Greatest Common Factor

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

$$
\begin{aligned}
& \text { Example: } \quad 20 a^{4}+8 a \\
& \text { (2) (2) } 5 \cdot(a) \cdot a \cdot a \cdot a+(2) \cdot(2) \cdot 2 \cdot \text { (a) }
\end{aligned}
$$ common factors

$$
\mathrm{GCF}=\overbrace{2 \cdot 2 \cdot a}=4 a
$$

$$
20 a^{4}+8 a=4 a\left(5 a^{3}+2\right)
$$

Factoring: Perfect

 Square Trinomial

 Square Trinomial}

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
x^{2}+6 x+9 & =x^{2}+2 \cdot 3 \cdot x+3^{2} \\
& =(x+3)^{2} \\
4 x^{2}-20 x+25 & =(2 x)^{2}-2 \cdot 2 x \cdot 5+5^{2} \\
& =(2 x-5)^{2}
\end{aligned}
$$

Factoring: Difference

of Two Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Examples:

$$
\begin{aligned}
x^{2}-49=x^{2}-7^{2} & =(x+7)(x-7) \\
4-n^{2}=2^{2}-n^{2} & =(2-n)(2+n) \\
9 x^{2}-25 y^{2} & =(3 x)^{2}-(5 y)^{2} \\
& =(3 x+5 y)(3 x-5 y)
\end{aligned}
$$

Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Prime Polynomial

Cannot be factored into a product of lesser degree polynomial factors

Example
r
$3 t+9$
$x^{2}+1$
$5 y^{2}-4 y+3$

Nonexample Factors

$x^{2}-4$	$(x+2)(x-2)$
$3 x^{2}-3 x+6$	$3(x+1)(x-2)$
x^{3}	$x \cdot x^{2}$

Square Root

Simply square root expressions.
Examples:

$$
\begin{gathered}
\sqrt{9 x^{2}}=\sqrt{3^{2} \cdot x^{2}}=\sqrt{(3 x)^{2}}=3 x \\
-\sqrt{(x-3)^{2}}=-(x-3)=-x+3
\end{gathered}
$$

Squaring a number and taking a square root are inverse operations.

Cube Root

Simplify cube root expressions.

Examples:

$$
\begin{gathered}
\sqrt[3]{64}=\sqrt[3]{4^{3}}=4 \\
\sqrt[3]{-27}=\sqrt[3]{(-3)^{3}}=-3 \\
\sqrt[3]{x^{3}}=x
\end{gathered}
$$

Cubing a number and taking a cube root are inverse operations.

$n^{\text {th }}$ Root

index
radical symbol
radicand or argument

Examples:

$$
\begin{aligned}
& \sqrt[5]{64}=\sqrt[5]{4^{3}}=4^{\frac{3}{5}} \\
& \sqrt[6]{729 x^{9} y^{6}}=3 x^{\frac{3}{2}} y
\end{aligned}
$$

Product Property of Radicals

The square root of a product equals the product of the square roots of the factors.

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
a \geq 0 \text { and } b \geq 0
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\sqrt{4 x}=\sqrt{4} \cdot \sqrt{x}=2 \sqrt{x} \\
\sqrt{5 a^{3}}=\sqrt{5} \cdot \sqrt{a^{3}}=a \sqrt{5 a} \\
\sqrt[3]{16}=\sqrt[3]{8 \cdot 2}=\sqrt[3]{8} \cdot \sqrt[3]{2}=2 \sqrt[3]{2}
\end{gathered}
$$

Quotient Property of Radicals

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

$$
\begin{aligned}
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\
& a \geq 0 \text { and } b>0
\end{aligned}
$$

Example:
$\sqrt{\frac{5}{y^{2}}}=\frac{\sqrt{5}}{\sqrt{y^{2}}}=\frac{\sqrt{5}}{y}, y \neq 0$

$$
\begin{gathered}
\text { Zero Product } \\
\text { Property } \\
\text { If } a b=0 \text {, } \\
\text { then } a=0 \text { or } b=0 \text {. }
\end{gathered}
$$

Example:

$$
\begin{gathered}
(x+3)(x-4)=0 \\
(x+3)=0 \text { or }(x-4)=0 \\
x=-3 \text { or } x=4
\end{gathered}
$$

The solutions are -3 and 4, also called roots of the equation.

Solutions or Roots

$$
x^{2}+2 x=3
$$

Solve using the zero product property.

$$
\begin{gathered}
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0 \\
x+3=0 \text { or } x-1=0 \\
x=-3 \text { or } x=1
\end{gathered}
$$

The solutions or roots of the polynomial equation are -3 and 1.

Zeros

The zeros of a function $f(x)$ are the values of x where the function is equal to zero.

$$
\begin{gathered}
f(x)=x^{2}+2 x-3 \\
\text { Find } f(x)=0 \\
0=x^{2}+2 x-3 \\
0=(x+3)(x-1) \\
x=-3 \text { or } x=1
\end{gathered}
$$

The zeros are -3 and 1
 located at ($-3,0$) and (1,0).

The zeros of a function are also the solutions or roots of the related equation.

x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where $f(x)=0$.

$$
\begin{gathered}
f(x)=x^{2}+2 x-3 \\
0=(x+3)(x-1) \\
0=x+3 \text { or } 0=x-1 \\
x=-3 \text { or } x=1
\end{gathered}
$$

The zeros are -3 and 1 .
The x-intercepts are:

- -3 or ($-3,0$)
- 1 or (1,0)

Coordinate Plane

ordered pair (x,y) (abscissa, ordinate)

Linear Equation

 $A x+B y=C$(A, B and C are integers; A and B cannot both equal zero.)

Example:

$-2 x+y=-3$

The graph of the linear equation is a straight line and represents all solutions (x, y) of the equation.

Linear Equation:

Standard Form

$$
A x+B y=C
$$

(A, B, and C are integers;
 A and B cannot both equal zero.)

Examples:

$$
\begin{gathered}
4 x+5 y=-24 \\
x-6 y=9
\end{gathered}
$$

Literal Equation

A formula or equation which consists primarily of variables

Examples:

$$
\begin{gathered}
a x+b=c \\
A=\frac{1}{2} b h \\
V=l w h \\
F=\frac{9}{5} C+32 \\
A=\pi r^{2}
\end{gathered}
$$

Vertical Line

$$
x=\mathrm{a}
$$

(where a can be any real number)

Example:
 $x=-4$

Vertical lines have an undefined slope.

Horizontal Line

$$
y=c
$$

(where c can be any real number)

Example:

$y=6$

Horizontal lines have a slope of 0 .

Quadratic Equation

$$
a x^{2}+\underset{\substack{b \\ a \neq 0}}{b x+c}=0
$$

Example: $x^{2}-6 x+8=0$

Solve by factoring
Solve by graphing
Graph the related
function $f(x)=x^{2}-6 x+8$.

Solutions to the equation are 2 and 4; the x-coordinates where the curve crosses the x-axis.

Quadratic Equation

$$
a x^{2}+\underset{\substack{a \\ a \neq 0}}{b x+c}=0
$$

Example solved by factoring:

$x^{2}-6 x+8=0$	Quadratic equation
$(x-2)(x-4)=0$	Factor
$(x-2)=0$ or $(x-4)=0$	Set factors equal to 0
$x=2$ or $x=4$	Solve for x

Solutions to the equation are 2 and 4.

Quadratic Equation
 $$
a x^{2}+b x+c=0
$$
 $$
a \neq 0
$$

Example solved by graphing:

$$
x^{2}-6 x+8=0
$$

Graph the related function $f(x)=x^{2}-6 x+8$.

Solutions to the equation are the x-coordinates (2 and 4) of the points where the curve crosses the x-axis.

Quadratic Equation: Number of Real Solutions

$a x^{2}+b x+c=0, a \neq 0$

Examples	Graphs	Number of Rea Solutions/Roots
$x^{2}-x=3$	1	2
$x^{2}+16=8 x$		1 distinct root with a multiplicity of two
$2 x^{2}-2 x+3=0$	$\sqrt{3}$	0

Identity Property of Addition

$$
a+0=0+a=a
$$

Examples:

$$
\begin{gathered}
3.8+0=3.8 \\
6 x+0=6 x \\
0+(-7+r)=-7+r
\end{gathered}
$$

Zero is the additive identity.

Inverse Property of Addition

$$
a+(-a)=(-a)+a=0
$$

Examples:

$$
\begin{gathered}
4+(-4)=0 \\
0=(-9.5)+9.5 \\
x+(-x)=0 \\
0=3 y+(-3 y)
\end{gathered}
$$

Commutative

Property of
 Addition

$$
a+b=b+a
$$

Examples:

$$
\begin{aligned}
2.76+3 & =3+2.76 \\
x+5 & =5+x \\
(a+5)-7 & =(5+a)-7 \\
11+(b-4) & =(b-4)+11
\end{aligned}
$$

Associative

Property of
 Addition

$$
(a+b)+c=a+(b+c)
$$

Examples:

$$
\begin{aligned}
& \left(5+\frac{3}{5}\right)+\frac{1}{10}=5+\left(\frac{3}{5}+\frac{1}{10}\right) \\
& 3 x+(2 x+6 y)=(3 x+2 x)+6 y
\end{aligned}
$$

Identity Property of

Multiplication

$$
a \cdot 1=1 \cdot a=a
$$

Examples:

$$
\begin{gathered}
3.8(1)=3.8 \\
6 x \cdot 1=6 x \\
1(-7)=-7
\end{gathered}
$$

One is the multiplicative identity.

Inverse Property of Multiplication
 $$
a \cdot \frac{1}{a}=\frac{1}{\substack{a \\ a \neq 0}} \cdot a=1
$$

Examples:

$$
\begin{gathered}
7 \cdot \frac{1}{7}=1 \\
\frac{5}{x} \cdot \frac{x}{5}=1, x \neq 0 \\
\frac{-1}{3} \cdot(-3 p)=1 p=p
\end{gathered}
$$

The multiplicative inverse of a is $\frac{1}{a}$.

Commutative Property of Multiplication
 $$
a b=b a
$$

Examples:

$$
\begin{aligned}
(-8)\left(\frac{2}{3}\right) & =\left(\frac{2}{3}\right)(-8) \\
y \cdot 9 & =9 \cdot y \\
4(2 x \cdot 3) & =4(3 \cdot 2 x) \\
8+5 x & =8+x \cdot 5
\end{aligned}
$$

$$
\begin{gathered}
\text { Associative } \\
\text { Property of } \\
\text { Multiplication } \\
(a b) c=a(b c)
\end{gathered}
$$

Examples:

$$
\begin{gathered}
(1 \cdot 8) \cdot 3 \frac{3}{4}=1 \cdot\left(8 \cdot 3 \frac{3}{4}\right) \\
(3 x) x=3(x \cdot x)
\end{gathered}
$$

Distributive

Property

$a(b+c)=a b+a c$

Examples:

$$
\begin{gathered}
5\left(y-\frac{1}{3}\right)=(5 \cdot y)-\left(5 \cdot \frac{1}{3}\right) \\
2 \cdot x+2 \cdot 5=2(x+5) \\
3.1 a+(1)(a)=(3.1+1) a
\end{gathered}
$$

Distributive

Property

$$
4(y+2)=4 y+4(2)
$$

4

$$
4(y+2)
$$

$$
\begin{aligned}
& \text { Multiplicative } \\
& \text { Property of Zero } \\
& a \cdot 0=0 \text { or } 0 \cdot a=0
\end{aligned}
$$

Examples:

$$
\begin{gathered}
8_{3}^{\frac{2}{3}} \cdot 0=0 \\
0 \cdot(-13 y-4)=0
\end{gathered}
$$

Substitution

Property

If $a=b$, then b can replace a in a given equation or inequality.

Examples:

Given	Given	Substitution
$r=9$	$3 r=27$	$3(9)=27$
$b=5 a$	$24<b+8$	$24<5 a+8$
$y=2 x+1$	$2 y=3 x-2$	$2(2 x+1)=3 x-2$

Reflexive Property

$$
\begin{gathered}
\text { of Equality } \\
a=a \\
a \text { is any real number }
\end{gathered}
$$

Examples:

$$
\begin{gathered}
-4=-4 \\
3.4=3.4 \\
9 y=9 y
\end{gathered}
$$

Symmetric Property

of Equality

$$
\text { If } a=b \text {, then } b=a \text {. }
$$

Examples:

$$
\begin{gathered}
\text { If } 12=r \text {, then } r=12 \\
\text { If }-14=z+9, \text { then } z+9=-14 \\
\text { If } 2.7+y=x, \text { then } x=2.7+y
\end{gathered}
$$

Transitive Property

of Equality

$$
\begin{gathered}
\text { If } a=b \text { and } b=c, \\
\text { then } a=c .
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\text { If } 4 x=2 y \text { and } 2 y=16, \\
\text { then } 4 x=16 \\
\text { If } x=y-1 \text { and } y-1=-3, \\
\text { then } x=-3
\end{gathered}
$$

Inequality

An algebraic sentence comparing two quantities

Symbol	Meaning
$<$	less than
\leq	less than or equal to
$>$	greater than
\geq	greater than or equal to
\neq	not equal to

Examples:

$$
\begin{gathered}
-10.5>-9.9-1.2 \\
8>3 t+2 \\
x-5 y \geq-12 \\
r \neq 3
\end{gathered}
$$

Graph of an Inequality

Symbol	Examples	Graph
$<\mathrm{Or}>$	$x<3$	$\stackrel{4}{4} \stackrel{1}{4}$
\leq or \geq	$-3 \geq y$	
\neq	$t \neq-2$	

Transitive Property

of Inequality

If	Then
$a<b$ and $b<c$	$a<c$
$a>b$ and $b>c$	$a>c$

Examples:

$$
\begin{gathered}
\text { If } 4 x<2 y \text { and } 2 y<16 \\
\text { then } 4 x<16 \\
\text { If } x>y-1 \text { and } y-1>3 \\
\text { then } x>3
\end{gathered}
$$

Addition/Subtraction

$$
\begin{aligned}
& \text { Property of } \\
& \text { Inequality }
\end{aligned}
$$

If	Then
$a>b$	$a+c>b+c$
$a \geq b$	$a+c \geq b+c$
$a<b$	$a+c<b+c$
$a \leq b$	$a+c \leq b+c$

Example:

$$
\begin{gathered}
d-1.9 \geq-8.7 \\
d-1.9+1.9 \geq-8.7+1.9 \\
d \geq-6.8
\end{gathered}
$$

Multiplication
 Property of
 Inequality

If	Case	Then
$a<b$	$c>0$, positive	$\mathrm{ac}<b c$
$a>b$	$c>0$, positive	$a c>b c$
$a<b$	$c<0$, negative	$a c>b c$
$a>b$	$c<0$, negative	$a c<b c$

Example: if $c=-2$

$$
5>-3
$$

$$
\begin{gathered}
5(-2)<-3(-2) \\
-10<6
\end{gathered}
$$

Division Property of

Inequality

If	Case	Then
$\mathrm{a}<\mathrm{b}$	$\mathrm{c}>0$, positive	$\frac{a}{c}<\frac{b}{c}$
$\mathrm{a}>\mathrm{b}$	$\mathrm{c}>0$, positive	$\frac{a}{c}>\frac{b}{c}$
$\mathrm{a}<\mathrm{b}$	$\mathrm{c}<0$, negative	$\frac{a}{c}>\frac{b}{c}$
$\mathrm{a}>\mathrm{b}$	$\mathrm{c}<0$, negative	$\frac{a}{c}<\frac{b}{c}$

Example: if $\mathrm{c}=-4$

$$
\begin{aligned}
& -90 \geq-4 t \\
& \frac{-90}{-4} \leq \frac{-4 t}{-4} \\
& 22.5 \leq t
\end{aligned}
$$

Linear Equation:

Slope-Intercept Form $y=m x+b$
 (slope is m and y -intercept is b)

Example: $y=\frac{-4}{3} x+5$

$$
\begin{aligned}
& m=\frac{-4}{3} \\
& b=5
\end{aligned}
$$

 \title{
Linear Equation:
 \title{

Linear Equation:

 Point-Slope Form

 Point-Slope Form
 $$
y-y_{1}=m\left(x-x_{1}\right)
$$

}
where m is the slope and $\left(x_{1}, y_{1}\right)$ is the point

Example:

Write an equation for the line that passes through the point $(-4,1)$ and has a slope of 2.

$$
\begin{gathered}
y-1=2(x--4) \\
y-1=2(x+4) \\
y=2 x+9
\end{gathered}
$$

Slope

A number that represents the rate of change in y for a unit change in x

$$
\begin{aligned}
& \text { Slope }=\frac{2}{3}
\end{aligned}
$$

The slope indicates the steepness of a line.

Slope Formula

The ratio of vertical change to horizontal change

slope $=\mathrm{m}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slopes of Lines

Line p
has a positive slope.

Line n
has a negative slope.

Mathematical Notation

Set Builder Notation	Read	Other Notation
$\{x \mid 0<x \leq 3\}$	The set of all x such that x is greater than or equal to 0 and x is less than 3.	$0<x \leq 3$
$\{y: y \geq-5\}$	The set of all y such that y is greater than or equal to -5.	$y \geq-5$
$[-5, \infty)$		

System of Linear

Equations

Solve by graphing:

$$
\left\{\begin{array}{l}
-x+2 y=3 \\
2 x+y=4
\end{array}\right.
$$

The solution,
$(1,2)$, is the
only ordered pair that satisfies both equations
(the point of intersection).

System of Linear

Equations

Solve by substitution:

$$
\left\{\begin{array}{l}
x+4 y=17 \\
y=x-2
\end{array}\right.
$$

Substitute $x-2$ for y in the first equation.

$$
\begin{gathered}
x+4(x-2)=17 \\
x=5
\end{gathered}
$$

Now substitute 5 for x in the second equation.

$$
\begin{gathered}
y=5-2 \\
y=3
\end{gathered}
$$

The solution to the linear system is $(5,3)$, the ordered pair that satisfies both equations.

System of Linear

Equations

Solve by elimination:

$$
\left\{\begin{array}{c}
-5 x-6 y=8 \\
5 x+2 y=4
\end{array}\right.
$$

Add or subtract the equations to eliminate one variable.

$$
\begin{aligned}
-5 x-6 y & =8 \\
+5 x+2 y & =4 \\
\hline-4 y & =12 \\
y & =-3
\end{aligned}
$$

Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.

$$
\begin{array}{r}
-5 x-6(-3)=8 \\
x=2
\end{array}
$$

The solution to the linear system is $(2,-3)$, the ordered pair that satisfies both equations.

System of Linear

Equations

Identifying the Number of Solutions

Number of Solutions	Slopes and y-intercepts	One
Solution		

Graphing Linear Inequalities

Example
 Graph

$y \leq x+2$

$y>-x-1$

System of Linear Inequalities

Solve by graphing:

$$
\left\{\begin{array}{l}
y>x-3 \\
y \leq-2 x+3
\end{array}\right.
$$

The solution region contains all ordered pairs that are solutions to both inequalities in the system.
$(-1,1)$ is one solution to the system located in the solution region.

Dependent and Independent Variable

x, independent variable (input values or domain set)

Example:

$$
y=2 x+7
$$

y, dependent variable
 (output values or range set)

Dependent and Independent Variable

Determine the distance a car will travel going 55 mph .

$$
d=55 h
$$

Graph of a Quadratic

Equation

$$
y=a x^{2}+b x+c
$$

Example:

$$
y=x^{2}+2 x-3
$$

line of symmetry

The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.

Quadratic Formula

Used to find the solutions to any quadratic equation of the form, $y=a x^{2}+b x+c$

$$
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

Relations

Representations of relationships

Example 1

$$
\{(0,4),(0,3),(0,2),(0,1)\}
$$

Example 3

Functions

Representations of functions

x	y
3	2
2	4
0	2
-1	2

Example 2

Function

A relationship between two quantities in which every input corresponds to exactly one output

A relation is a function if and only if each element in the domain is paired with a unique element of the range.

Domain

A set of input values of a relation

Examples:

The domain of $g(x)$ is $\{-2,-1,0,1\}$.

The domain of $f(x)$ is all real numbers.

Range

A set of output values of a relation

Examples:

The range of $\mathrm{g}(\mathrm{x})$ is $\{0,1,2,3\}$.

The range of $f(x)$ is all real numbers greater than or equal to zero.

Function Notation

 $f(x)$$f(x)$ is read

"the value of f at x " or " f of x "

Example:

$$
\begin{aligned}
& f(x)=-3 x+5, \text { find } f(2) . \\
& f(2)=-3(2)+5 \\
& f(2)=-6
\end{aligned}
$$

Letters other than f can be used to name functions, e.g., $g(x)$ and $h(x)$

Parent Functions

Linear
$f(x)=x$

Quadratic
$f(x)=x^{2}$

Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

	$g(x)=f(x)+k$ is the graph of $f(x)$ translated vertically -	\boldsymbol{k} units up when $\boldsymbol{k} \boldsymbol{>} \mathbf{0}$.
		k units down when $k<0$.
$\begin{aligned} & \overline{\text { Q }} \\ & \boldsymbol{\sim} \end{aligned}$	$g(x)=f(x-h)$ is the graph of $f(x)$ translated horizontally -	h units right when $h>0$.
		h units left when $h<0$.

Transformations of

 Parent Functions

 Parent Functions}

Parent functions can be transformed to create other members in a family of graphs.

$\begin{aligned} & \text { n } \\ & \frac{1}{0} \end{aligned}$	$g(x)=-f(x)$ is the graph of $f(x)-$	reflected over the \boldsymbol{x}-axis.
$\underset{\sim}{4}$	$g(x)=f(-x)$ is the graph of $f(x)-$	reflected over the y-axis.

Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

	$g(x)=a \cdot f(x)$ is the graph of $f(x)-$	vertical dilation (stretch) if $a>1$.
		vertical dilation (compression) if $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$.
	$g(x)=f(a x)$ is the graph of $f(x)-$	horizontal dilation (compression) if $a>1$.
		horizontal dilation (stretch) if $0<a<1$.

Transformational

Graphing

Linear functions

$$
g(x)=x+b
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=x+4 \\
& h(x)=x-2
\end{aligned}
$$

Vertical translation of the parent function, $f(x)=x$

Transformational

$$
\begin{gathered}
\text { Graphing } \\
\text { Linear functions } \\
\begin{array}{c}
g(x)=m x \\
m>0
\end{array}
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=2 x \\
& h(x)=\frac{1}{2} x
\end{aligned}
$$

Vertical dilation (stretch or compression) of the parent function, $f(x)=x$

Transformational

Graphing

Linear functions

$$
\begin{aligned}
g(x) & =m x \\
m & <0
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=-x \\
& h(x)=-3 x \\
& d(x)=-\frac{1}{3} x
\end{aligned}
$$

Vertical dilation (stretch or compression) with a reflection of $f(x)=x$

Transformational

Graphing
 Quadratic functions
 $$
h(x)=x^{2}+c
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=x^{2}+2 \\
& t(x)=x^{2}-3
\end{aligned}
$$

Vertical translation of $f(x)=x^{2}$

Transformational

$$
\begin{gathered}
\text { Graphing } \\
\text { Quadratic functions } \\
h(x)=a x^{2} \\
a>0
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=2 x^{2} \\
& t(x)=\frac{1}{3} x^{2}
\end{aligned}
$$

Vertical dilation (stretch or compression) of $f(x)=x^{2}$

Transformational

Graphing

Quadratic functions

$$
\begin{gathered}
h(x)=a x^{2} \\
a<0
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=-2 x^{2} \\
& t(x)=-\frac{1}{3} x^{2}
\end{aligned}
$$

Vertical dilation (stretch or compression)
with a reflection of $f(x)=x^{2}$

Transformational

Graphing Quadratic functions

$$
h(x)=(x+c)^{2}
$$

$$
\begin{aligned}
& \text { Examples: } \\
& f(x)=x^{2} \\
& g(x)=(x+2)^{2} \\
& t(x)=(x-3)^{2}
\end{aligned}
$$

Horizontal translation of $f(x)=x^{2}$

Arithmetic

Sequence

A sequence of numbers that has a common difference between every two consecutive terms

Example: $-4,1,6,11,16 \ldots$

The common difference is the slope of the line of best fit.

Geometric

Sequence

A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a constant ratio

Example: $4,2,1,0.5,0.25 \ldots$

Statistics Notation

$\boldsymbol{x}_{\boldsymbol{i}}$	$i^{\text {th }}$ element in a data set
$\boldsymbol{\mu}$	mean of the data set
$\boldsymbol{\sigma}^{\mathbf{2}}$	variance of the data set
$\boldsymbol{\sigma}$	standard deviation of the data set
\boldsymbol{n}	number of elements in the data set

Mean

A measure of central tendency

Example: Find the mean of the given data set.

Data set: $0,2,3,7,8$

Numerical Average

$$
\mu=\frac{0+2+3+7+8}{5}=\frac{20}{5}=4
$$

Median

A measure of central tendency

Examples:

Find the median of the given data sets.

Data set: 6, 7, 8, 9, 9
The median is 8 .

Data set: $5,6,8,9,11,12$

The median is 8.5.

Mode

A measure of central tendency

Examples:

Data Sets	Mode
$3,4,6,6,6,6,10,11,14$	6
$0,3,4,5,6,7,9,10$	none
$5.2,5.2,5.2,5.6,5.8,5.9,6.0$	5.2
$1,1,2,5,6,7,7,9,11,12$	1,7 bimodal

Box Plot

A graphical representation of the five-number summary

Standard Deviation

A measure of the spread of a data set

standard deviation $(\sigma)=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}}$

The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance

Scatterplot

Graphical representation of the relationship between two numerical sets of data

Positive Correlation

In general, a relationship where the dependent (y) values increase as independent values (x) increase

Negative Correlation

In general, a relationship where the dependent (y) values decrease as independent (x) values increase.

No Correlation

No relationship between the dependent (y) values and independent (x) values.

Curve of Best Fit

Calories and Fat Content

Height of a Shot Put

Outlier Data

