Algebra I Vocabulary Cards Table of Contents

Expressions and Operations

Natural Numbers Whole Numbers Integers **Rational Numbers Irrational Numbers Real Numbers Order of Operations Expression** Variable Coefficient Term **Exponential Form Negative Exponent Zero Exponent Product of Powers Property Power of a Power Property Power of a Product Property Quotient of Powers Property** Power of a Quotient Property Polynomial **Degree of Polynomial** Leading Coefficient Add Polynomials (group like terms) Add Polynomials (align like terms) Subtract Polynomials (group like terms) Subtract Polynomials (align like terms) **Multiply Polynomials Multiply Binomials** Multiply Binomials (model) Multiply Binomials (graphic organizer) Multiply Binomials (squaring a binomial) Multiply Binomials (sum and difference) Factors of a Monomial Factoring (greatest common factor) Factoring (perfect square trinomials) Factoring (difference of squares) **Difference of Squares (model) Prime Polynomial Square Root** Cube Root nth Root

Product Property of Radicals Quotient Property of Radicals Zero Product Property Solutions or Roots Zeros x-Intercepts

Equations and Inequalities

Coordinate Plane Linear Equation Linear Equation (standard form) Literal Equation Vertical Line Horizontal Line **Quadratic Equation** Quadratic Equation (solve by factoring) Quadratic Equation (solve by graphing) Quadratic Equation (number of solutions) **Identity Property of Addition Inverse Property of Addition Commutative Property of Addition** Associative Property of Addition **Identity Property of Multiplication Inverse Property of Multiplication Commutative Property of Multiplication** Associative Property of Multiplication **Distributive Property** Distributive Property (model) **Multiplicative Property of Zero** Substitution Property **Reflexive Property of Equality** Symmetric Property of Equality **Transitive Property of Equality** Inequality Graph of an Inequality **Transitive Property for Inequality** Addition/Subtraction Property of Inequality **Multiplication Property of Inequality Division Property of Inequality** Linear Equation (slope intercept form) Linear Equation (point-slope form) Slope **Slope Formula**

Slopes of Lines Mathematical Notation System of Linear Equations (graphing) System of Linear Equations (substitution) System of Linear Equations (elimination) System of Linear Equations (number of solutions) Graphing Linear Inequalities System of Linear Inequalities Dependent and Independent Variable Dependent and Independent Variable (application) Graph of a Quadratic Equation Quadratic Formula

Relations and Functions

- Relations (examples) Functions (examples) Function (definition) Domain Range Function Notation Parent Functions
 - Linear, Quadratic
- **Transformations of Parent Functions**
 - Translation
 - Reflection
 - Dilation

Linear Function (transformational graphing)

- Translation
- Dilation (m>0)
- Dilation/reflection (m<0)

Quadratic Function (transformational graphing)

- Vertical translation
- Dilation (a>0)
- Dilation/reflection (a<0)
- Horizontal translation

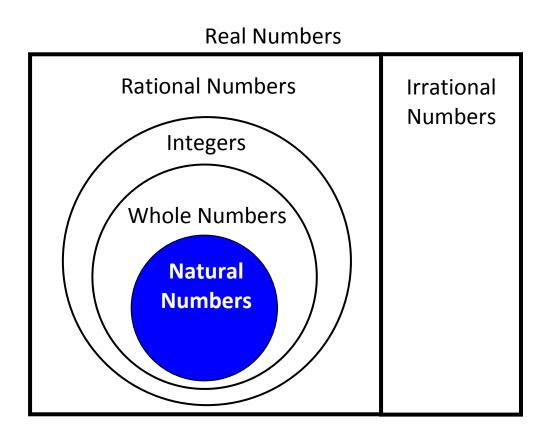
Arithmetic Sequence Geometric Sequence

Statistics

Statistics Notation Mean Median Mode Box Plot Standard Deviation (definition) Scatterplot Positive Correlation Negative Correlation No Correlation Curve of Best Fit (linear/quadratic) Outlier Data (graphic)

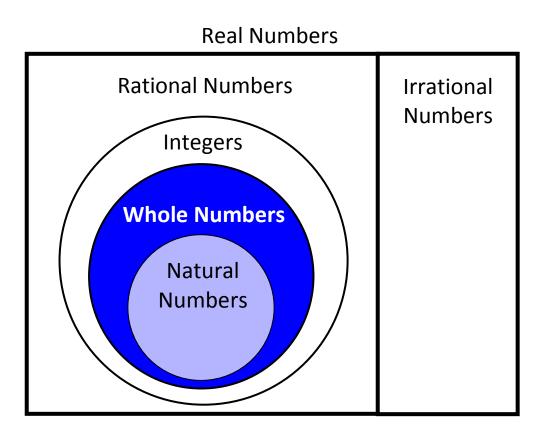
Natural Numbers

The set of numbers 1, 2, 3, 4...



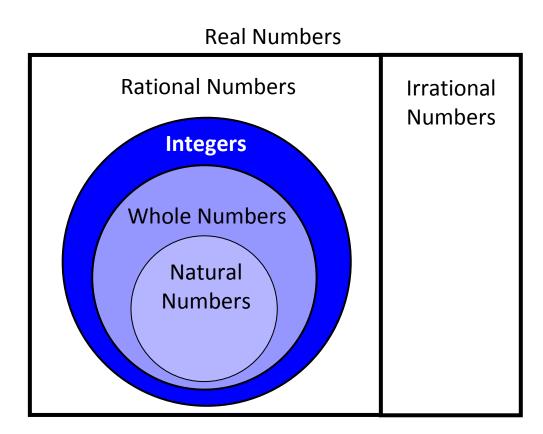
Whole Numbers

The set of numbers 0, 1, 2, 3, 4...

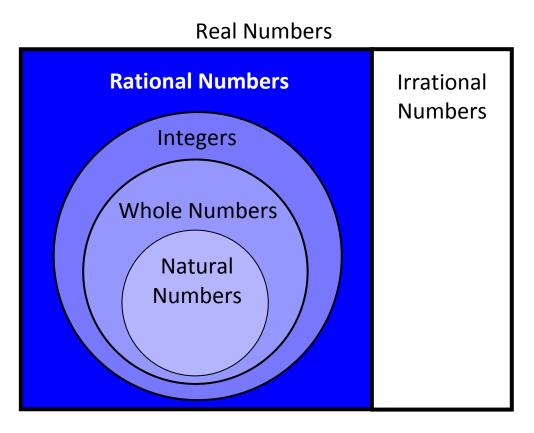


Integers

The set of numbers ...-3, -2, -1, 0, 1, 2, 3...



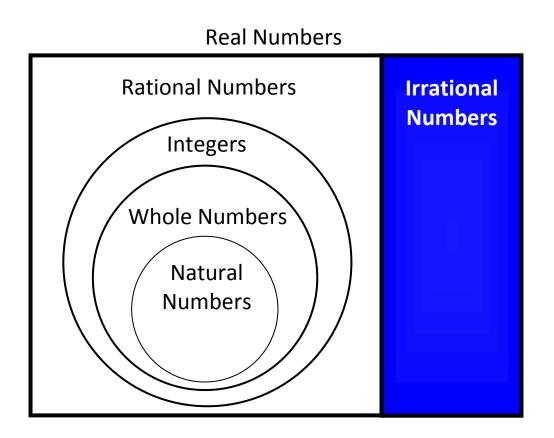
Rational Numbers



The set of all numbers that can be written as the ratio of two integers with a non-zero denominator

$$2\frac{3}{5}$$
, -5, 0.3, $\sqrt{16}$, $\frac{13}{7}$

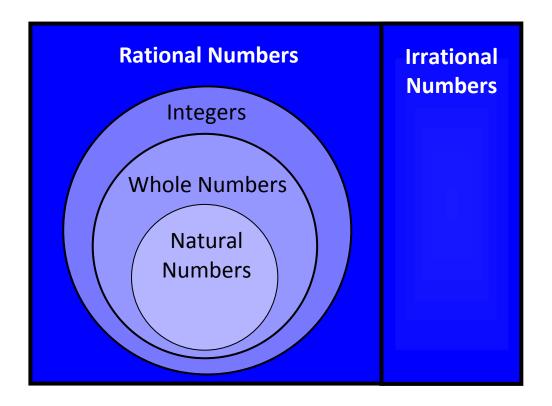
Irrational Numbers



The set of all numbers that cannot be expressed as the ratio of integers

$\sqrt{7}$, π , -0.2322322232223...

Real Numbers



The set of all rational and irrational numbers

Order of Operations

Grouping Symbols	() {} [] absolute value fraction bar
Exponents	an
Multiplication	Left to Right
Division	
Addition	Left to Right
Subtraction	J

Expression

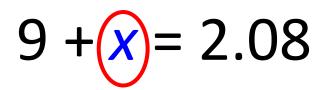
-√26

3⁴ + 2*m*

 $3(y+3.9)^2-\frac{8}{9}$

Variable

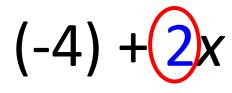
 $2(y) + \sqrt{3}$

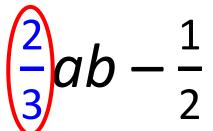


d = 7**c** - 5

 $(A) = \pi (r)^2$

Coefficient

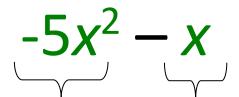




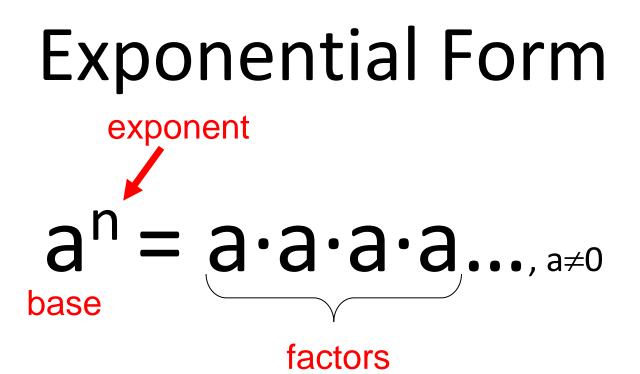
Term

3x + 2y - 8

3 terms



 $\frac{2}{3}ab$

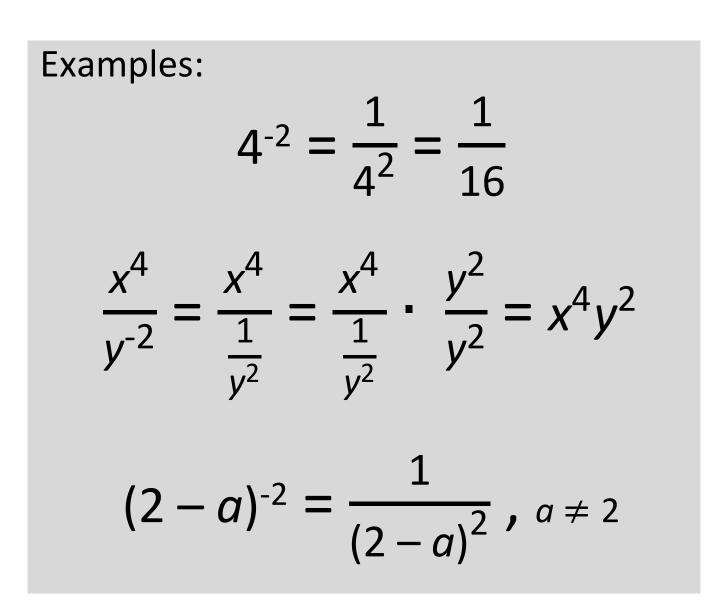


Examples:

$2 \cdot 2 \cdot 2 = 2^3 = 8$ $n \cdot n \cdot n \cdot n = n^4$ $3 \cdot 3 \cdot 3 \cdot x \cdot x = 3^3 x^2 = 27x^2$

Negative Exponent

$$a^{-n}=\frac{1}{a^n}, a\neq 0$$



Zero Exponent

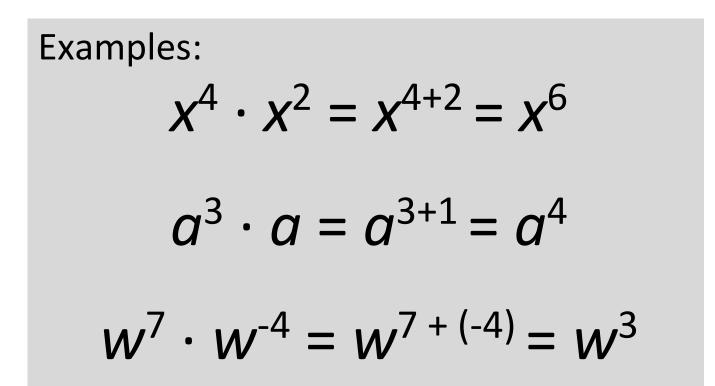
 $a^0 = 1, a \neq 0$

Examples:

 $(-5)^{0} = 1$ $(3x + 2)^{0} = 1$ $(x^{2}y^{-5}z^{8})^{0} = 1$ $4m^{0} = 4 \cdot 1 = 4$

Product of Powers Property

$a^m \cdot a^n = a^{m+n}$



Power of a Power Property

$$(a^m)^n = a^{m \cdot n}$$

Examples:

$$(y^4)^2 = y^{4 \cdot 2} = y^8$$

 $(g^2)^{-3} = g^{2 \cdot (-3)} = g^{-6} = \frac{1}{g^6}$

Power of a Product Property

$$(ab)^m = a^m \cdot b^m$$

Examples:

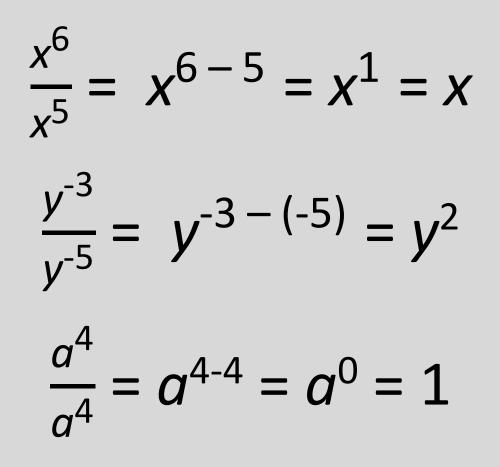
$$(-3ab)^2 = (-3)^2 \cdot a^2 \cdot b^2 = 9a^2b^2$$

$$\frac{-1}{(2x)^3} = \frac{-1}{2^3 \cdot x^3} = \frac{-1}{8x^3}$$

Quotient of Powers Property

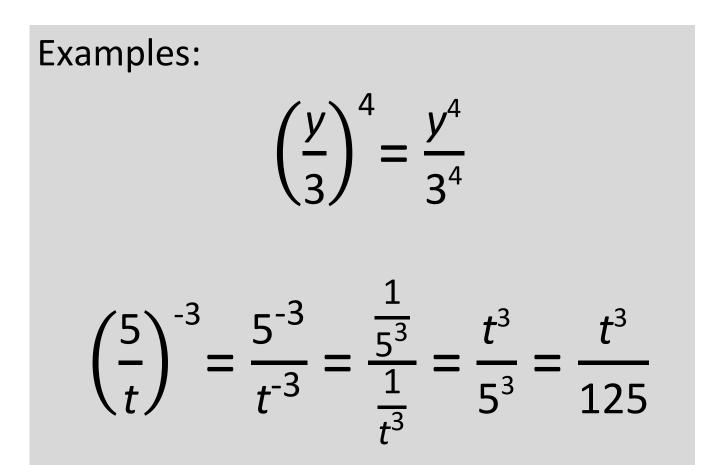
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$

Examples:



Power of Quotient Property

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b\neq 0$$



Polynomial

Example	Name	Terms
7 6x	monomial	1 term
$3t - 1$ $12xy^3 + 5x^4y$	binomial	2 terms
$2x^2 + 3x - 7$	trinomial	3 terms

Nonexample	Reason	
$5m^{n}-8$	variable	
511~ - 0	exponent	
n ⁻³ +9	negative	
<i>II~ + 3</i>	exponent	

Degree of a Polynomial

The largest exponent or the largest sum of exponents of a term within a polynomial

Example:	Term	Degree
$6a^3 + 3a^2b^3 - 21$	6 <i>a</i> ³	3
	$3a^2b^3$	5
	-21	0
Degree of polynomial:		5

Leading Coefficient

The coefficient of the first term of a polynomial written in descending order of exponents

Examples: $7a^3 - 2a^2 + 8a - 1$ $-3n^3 + 7n^2 - 4n + 10$ 16t - 1

Add Polynomials

Combine <u>like</u> terms.

Example:

$$(2g^2 + 6g - 4) + (g^2 - g)$$

$$= 2g^2 + 6g - 4 + g^2 - g$$

(Group like terms and add.)

$$= (2g2 + g2) + (6g - g) - 4$$
$$= 3g2 + 5g - 4$$

Add Polynomials

Combine <u>like</u> terms.

Example:

$$(2g^3 + 6g^2 - 4) + (g^3 - g - 3)$$

(Align like terms and add.)

 $2g^{3} + 6g^{2} - 4$ + $g^{3} - g - 3$ $3g^{3} + 6g^{2} - g - 7$

Subtract Polynomials

Add the inverse.

Example: $(4x^{2} + 5) - (-2x^{2} + 4x - 7)$ (Add the inverse.) $= (4x^{2} + 5) + (2x^{2} - 4x + 7)$ $= 4x^{2} + 5 + 2x^{2} - 4x + 7$ (Group like terms and add.) $= (4x^{2} + 2x^{2}) - 4x + (5 + 7)$ $= 6x^{2} - 4x + 12$

Subtract Polynomials

Add the inverse.

Example:

$$(4x^2 + 5) - (-2x^2 + 4x - 7)$$

(Align like terms then add the inverse and add the like terms.)

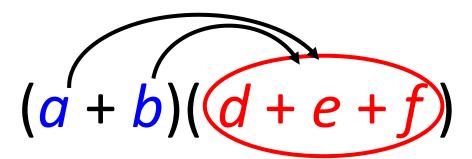
$$4x^{2} + 5 \qquad 4x^{2} + 5$$

-(-2x² + 4x - 7) $\rightarrow + 2x^{2} - 4x + 7$
 $6x^{2} - 4x + 12$

Multiply Polynomials

Apply the distributive property.

(a + b)(d + e + f)



= a(d + e + f) + b(d + e + f)

= ad + ae + af + bd + be + bf

Multiply Binomials

Apply the distributive property.

$$(a + b)(c + d) =$$

 $a(c + d) + b(c + d) =$
 $ac + ad + bc + bd$

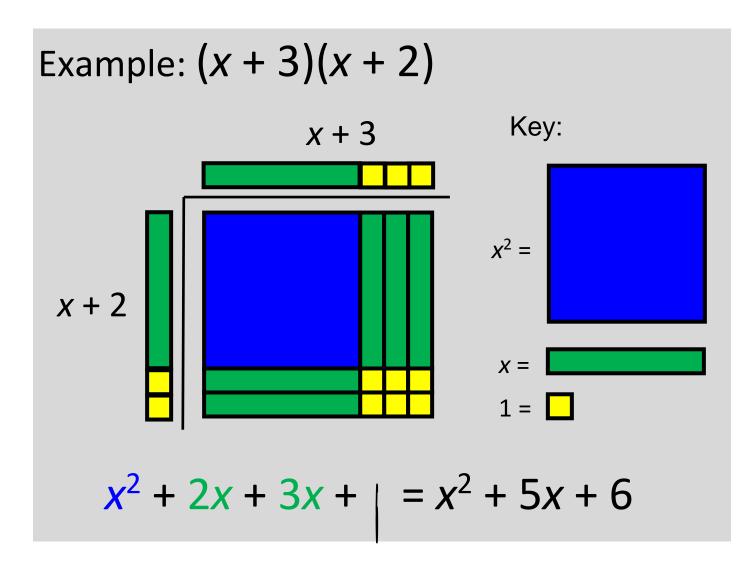
Example: (x + 3)(x + 2)

$$= x(x + 2) + 3(x + 2)$$

= x² + 2x + 3x + 6
= x² + 5x + 6

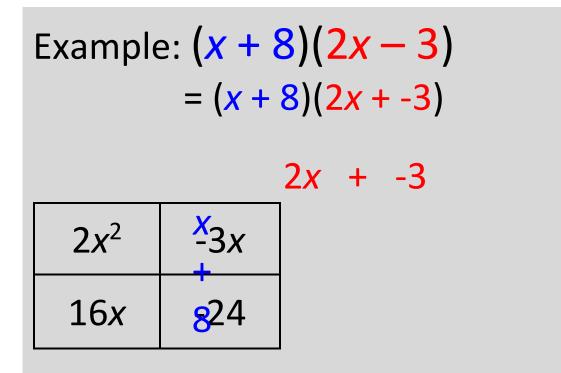
Multiply Binomials

Apply the distributive property.



Multiply Binomials

Apply the distributive property.



 $2x^2 + 16x + -3x + -24 = 2x^2 + 13x - 24$

Multiply Binomials: Squaring a Binomial

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

Examples:

$$(3m + n)^2 = 9m^2 + 2(3m)(n) + n^2$$

= $9m^2 + 6mn + n^2$

$$(y-5)^2 = y^2 - 2(5)(y) + 25$$

= $y^2 - 10y + 25$

Multiply Binomials: Sum and Difference

 $(a + b)(a - b) = a^2 - b^2$

Examples: $(2b + 5)(2b - 5) = 4b^2 - 25$ $(7 - w)(7 + w) = 49 + 7w - 7w - w^2$ $= 49 - w^2$

Factors of a Monomial

The number(s) and/or variable(s) that are multiplied together to form a monomial

Examples:	Factors	Expanded Form	
5 <i>b</i> ²	5 ⋅ <i>b</i> ²	5 ∙ <i>b</i> ∙ <i>b</i>	
6 <i>x</i> ² <i>y</i>	6 ∙ <i>x</i> ² ∙ <i>y</i>	2·3·x·x·y	
$\frac{-5p^2q^3}{2}$	$\frac{-5}{2} \cdot p^2 \cdot q^3$	$\frac{1}{2} \cdot (-5) \cdot p \cdot p \cdot q \cdot q \cdot q$	

Factoring: Greatest Common Factor

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

Example: $20a^4 + 8a$ (2) (2) $\cdot 5 \cdot a \cdot a \cdot a \cdot a + 2 \cdot 2 \cdot 2 \cdot a$ common factors GCF = $2 \cdot 2 \cdot a = 4a$ $20a^4 + 8a = 4a(5a^3 + 2)$

Factoring: Perfect Square Trinomials

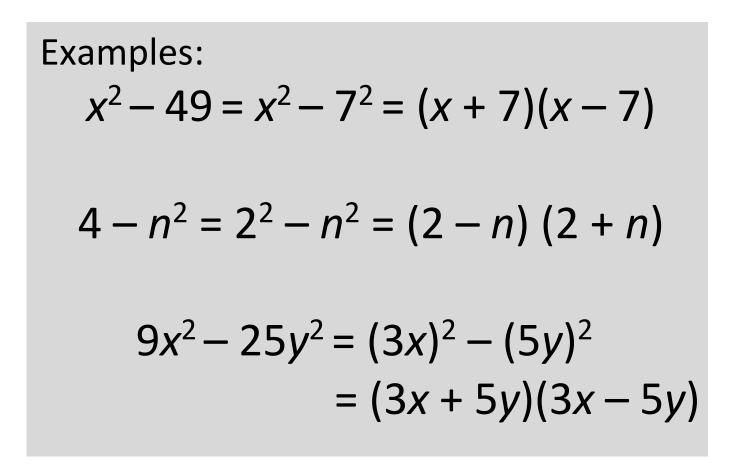
$$a^{2}$$
 + 2 ab + b^{2} = $(a + b)^{2}$
 a^{2} - 2 ab + b^{2} = $(a - b)^{2}$

Examples: $x^{2} + 6x + 9 = x^{2} + 2 \cdot 3 \cdot x + 3^{2}$ $= (x + 3)^{2}$

$4x^{2} - 20x + 25 = (2x)^{2} - 2 \cdot 2x \cdot 5 + 5^{2}$ $= (2x - 5)^{2}$

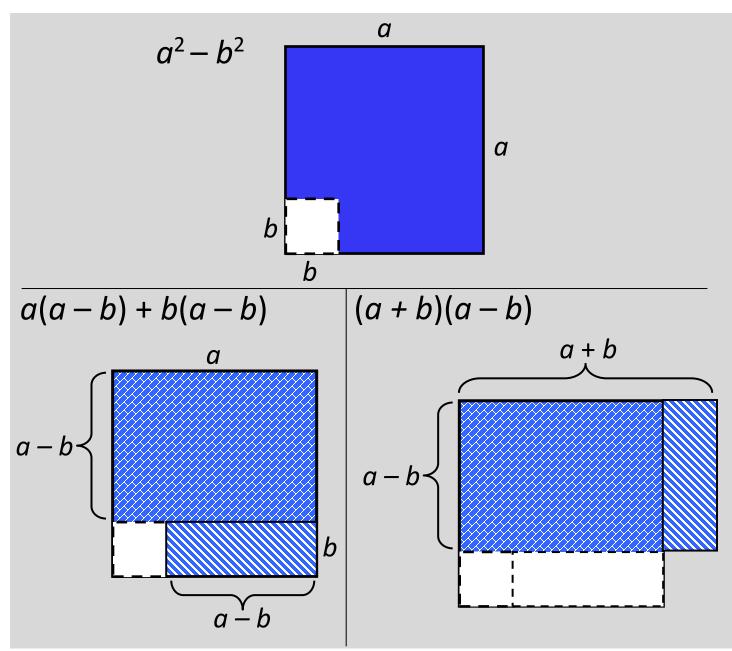
Factoring: Difference of Two Squares

 $a^2 - b^2 = (a + b)(a - b)$



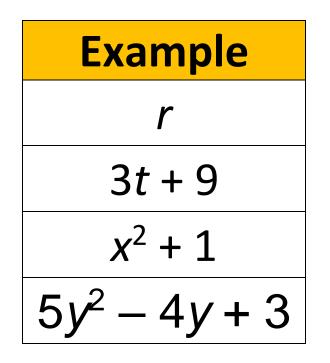
Difference of Squares

$$a^2 - b^2 = (a + b)(a - b)$$

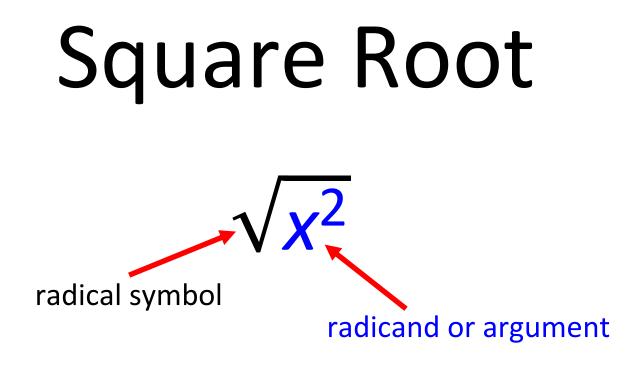


Prime Polynomial

Cannot be factored into a product of lesser degree polynomial factors



Nonexample	Factors
$x^2 - 4$	(x + 2)(x - 2)
$3x^2 - 3x + 6$	3(x + 1)(x - 2)
X ³	$x \cdot x^2$



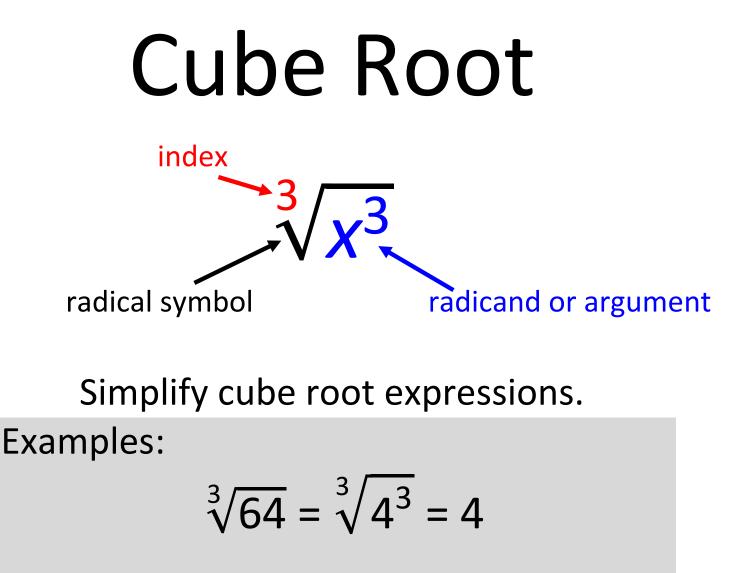
Simply square root expressions. Examples:

$$\sqrt{9x^2} = \sqrt{3^2 \cdot x^2} = \sqrt{(3x)^2} = 3x$$

$$-\sqrt{(x-3)^2} = -(x-3) = -x+3$$

Squaring a number and taking a square root are inverse operations.

Algebra I Vocabulary Cards

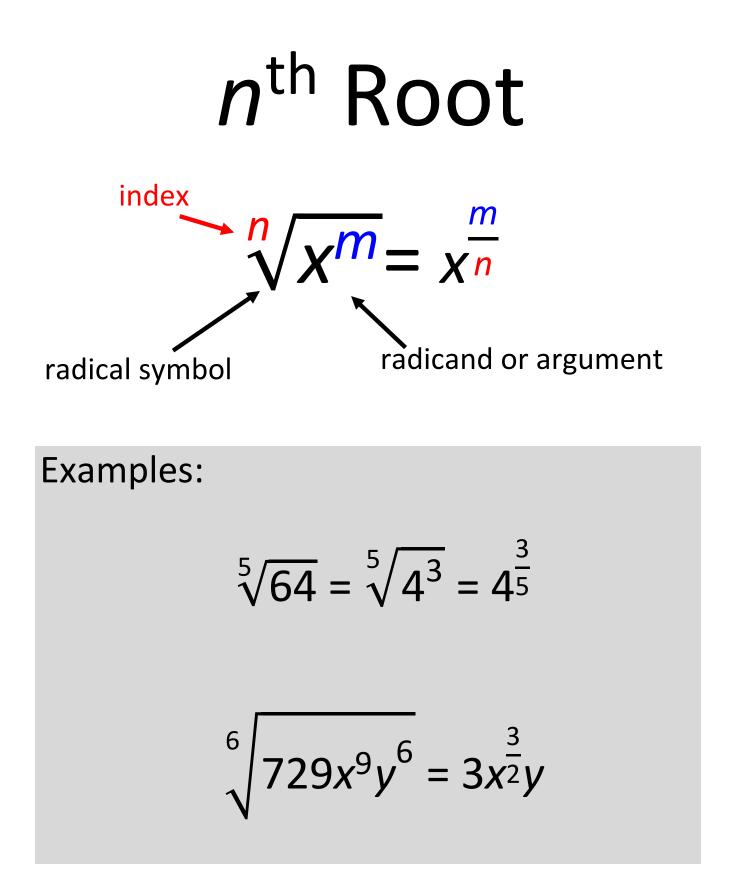


$$\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$$

 $\sqrt[3]{x^3} = x$

Cubing a number and taking a cube root are inverse operations.

Algebra I Vocabulary Cards



Product Property of Radicals

The square root of a product equals the product of the square roots of the factors.

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

 $a \ge 0$ and $b \ge 0$

Examples:

$$\sqrt{4x} = \sqrt{4} \cdot \sqrt{x} = 2\sqrt{x}$$
$$\sqrt{5a^3} = \sqrt{5} \cdot \sqrt{a^3} = a\sqrt{5a}$$
$$\sqrt[3]{16} = \sqrt[3]{8 \cdot 2} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$$

Quotient Property of Radicals

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

 $a \ge 0$ and b > 0

Example: $\sqrt{5} \sqrt{5} \sqrt{7}$

$$\sqrt{\frac{5}{y^2}} = \frac{\sqrt{5}}{\sqrt{y^2}} = \frac{\sqrt{5}}{y}, \ y \neq 0$$

Zero Product
Property
If
$$ab = 0$$
,
then $a = 0$ or $b = 0$.
Example:
 $(x + 3)(x - 4) = 0$
 $(x + 3) = 0$ or $(x - 4) = 0$
 $x = -3$ or $x = 4$

The solutions are -3 and 4, also called roots of the equation.

Solutions or Roots

 $x^2 + 2x = 3$

Solve using the zero product property.

$$x^{2} + 2x - 3 = 0$$

(x + 3)(x - 1) = 0
x + 3 = 0 or x - 1 = 0
x = -3 or x = 1

The solutions or roots of the polynomial equation are -3 and 1.

Zeros

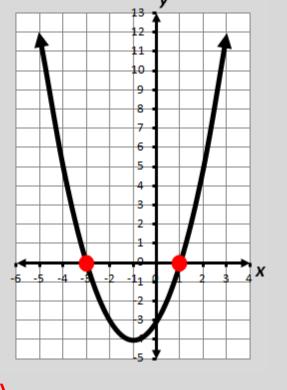
The zeros of a function f(x) are the values of x where the function is equal to zero.

 $f(x) = x^2 + 2x - 3$ Find f(x) = 0.

$$0 = x^{2} + 2x - 3$$

$$0 = (x + 3)(x - 1)$$

$$x = -3 \text{ or } x = 1$$



The zeros are -3 and 1 located at (-3,0) and (1,0).

The zeros of a function are also the solutions or roots of the related equation.

x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where f(x) = 0.

$$f(x) = x^{2} + 2x - 3$$

$$0 = (x + 3)(x - 1)$$

$$0 = x + 3 \text{ or } 0 = x - 1$$

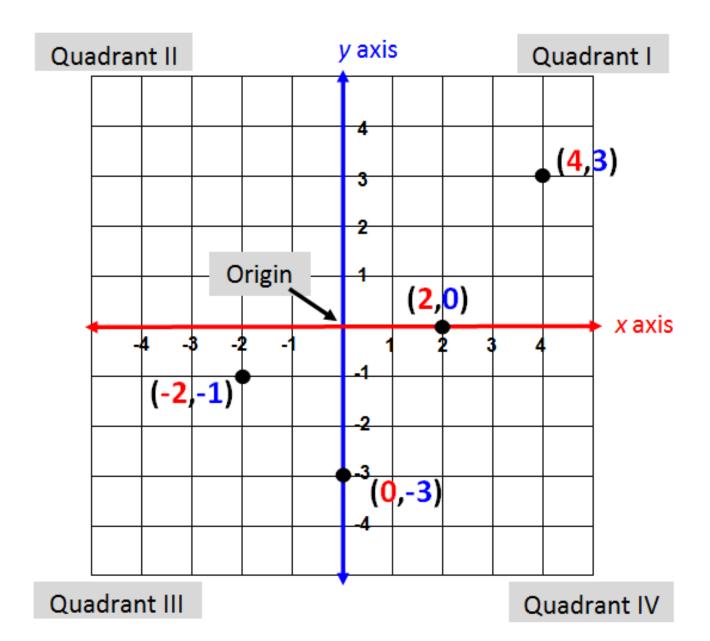
$$x = -3 \text{ or } x = 1$$

The zeros are -3 and 1.
The *x*-intercepts are:

$$-3 \text{ or } (-3,0)$$

$$\bullet 1 \text{ or } (1,0)$$

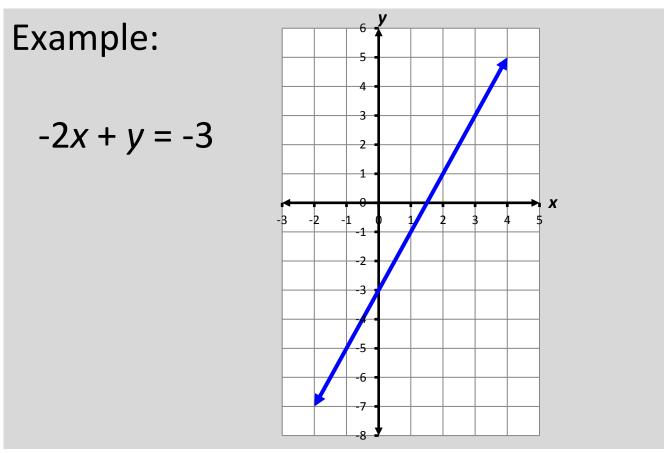
Coordinate Plane



ordered pair (x,y) (abscissa, ordinate)

Linear Equation Ax + By = C(A, B and C are integers; A and B cannot both

equal zero.)



The graph of the linear equation is a straight line and represents all solutions (*x*, *y*) of the equation.

Linear Equation: Standard Form

Ax + By = C

(A, B, and C are integers; A and B cannot both equal zero.)

Examples:

$$4x + 5y = -24$$

 $x - 6y = 9$

Literal Equation

A formula or equation which consists primarily of variables

Examples: ax + b = c $A = \frac{1}{2}bh$ V = lwh $F = \frac{9}{5}C + 32$ $A = \pi r^2$

Vertical Line

x = a

(where a can be any real number)



Vertical lines have an undefined slope.

Horizontal Line y = c(where c can be any real number) **Example:** y = 63 2 X -k -þ \$ 2

Horizontal lines have a slope of 0.

Quadratic Equation $ax^{2} + bx + c = 0$ $a \neq 0$ Example: $x^2 - 6x + 8 = 0$ Solve by factoring Solve by graphing Graph the related function $f(x) = x^2 - 6x + 8$. $x^2 - 6x + 8 = 0$ (x-2)(x-4) = 0(x-2) = 0 or (x-4) = 0x = 2 or x = 43 2 X

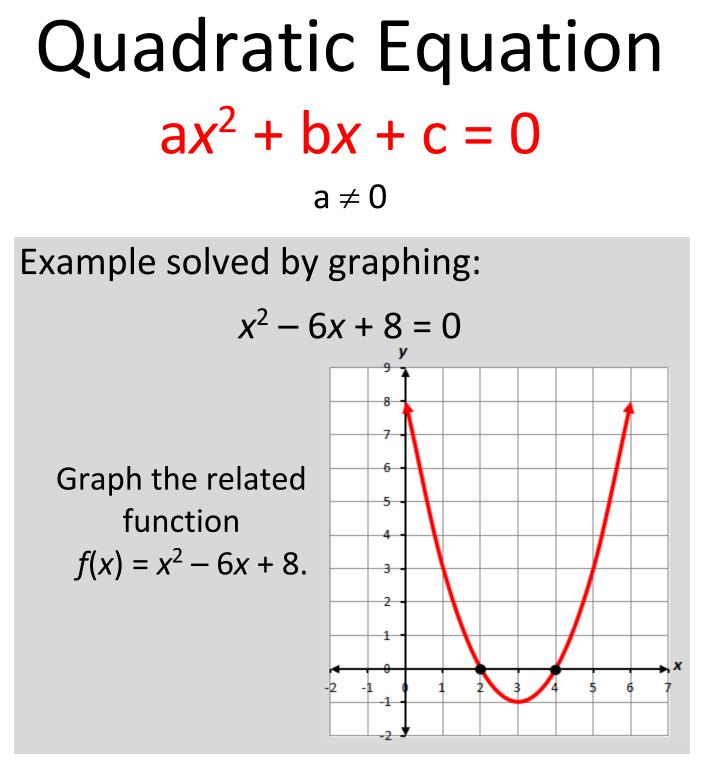
Solutions to the equation are 2 and 4; the *x*-coordinates where the curve crosses the x-axis.

Quadratic Equation $ax^{2} + bx + c = 0$ $a \neq 0$

Example solved by factoring:

$x^2 - 6x + 8 = 0$	Quadratic equation
(x-2)(x-4) = 0	Factor
(x-2) = 0 or (x-4) = 0	Set factors equal to 0
<i>x</i> = 2 or <i>x</i> = 4	Solve for x

Solutions to the equation are 2 and 4.



Solutions to the equation are the *x*-coordinates (2 and 4) of the points where the curve crosses the x-axis.

Quadratic Equation: Number of Real Solutions

$ax^2 + bx + c = 0, a \neq 0$			
Examples	Graphs	Number of Real Solutions/Roots	
$x^2 - x = 3$	x	2	
$x^2 + 16 = 8x$	10 V 9 9 65 5 4 4 3 2 2 1 2 1 2 1 2 1 2 3 4 5 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 distinct root with a multiplicity of two	
$2x^2 - 2x + 3 = 0$		0	

$ax^2 + bx + c = 0$, $a \neq 0$

Identity Property of Addition

a + 0 = 0 + a = a

Examples:

- 3.8 + 0 = 3.8
 - 6x + 0 = 6x
- 0 + (-7 + r) = -7 + r

Zero is the additive identity.

Inverse Property of Addition

a + (-a) = (-a) + a = 0

Examples:

4 + (-4) = 0 0 = (-9.5) + 9.5 x + (-x) = 00 = 3y + (-3y)

Commutative Property of Addition

a + b = b + a

Examples: 2.76 + 3 = 3 + 2.76 x + 5 = 5 + x (a + 5) - 7 = (5 + a) - 711 + (b - 4) = (b - 4) + 11

Associative Property of Addition

(a + b) + c = a + (b + c)

Examples:

$$\left(5 + \frac{3}{5}\right) + \frac{1}{10} = 5 + \left(\frac{3}{5} + \frac{1}{10}\right)$$
$$3x + (2x + 6y) = (3x + 2x) + 6y$$

Identity Property of Multiplication

$a \cdot 1 = 1 \cdot a = a$

Examples:

- 3.8 (1) = 3.8
 - $6x \cdot \mathbf{1} = 6x$
 - 1(-7) = -7

One is the multiplicative identity.

Inverse Property of Multiplication

$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$

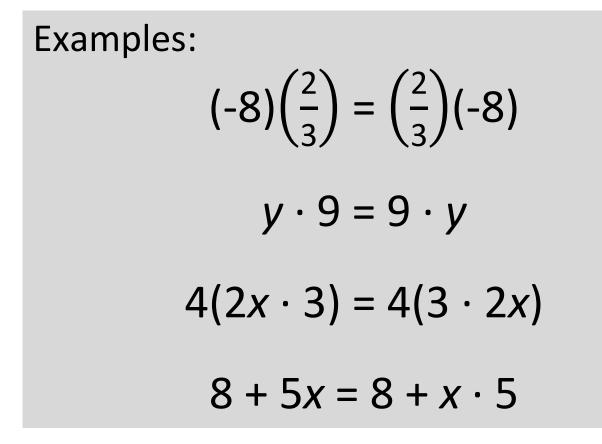
Examples:

$$7 \cdot \frac{1}{7} = 1$$
$$\frac{5}{x} \cdot \frac{x}{5} = 1, x \neq 0$$
$$\frac{-1}{3} \cdot (-3p) = 1p = p$$

The multiplicative inverse of a is $\frac{1}{a}$.

Commutative Property of Multiplication

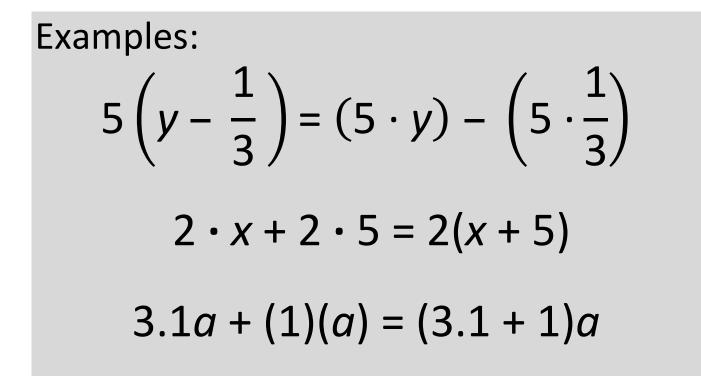
ab = ba



Associative Property of Multiplication (ab)c = a(bc)

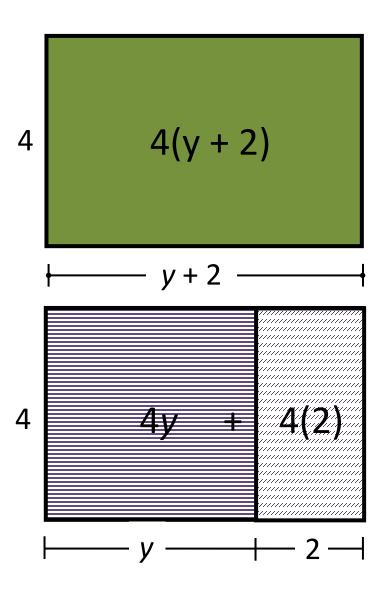
Examples: $(1 \cdot 8) \cdot 3\frac{3}{4} = 1 \cdot (8 \cdot 3\frac{3}{4})$ $(3x)x = 3(x \cdot x)$

Distributive Property a(b + c) = ab + ac



Distributive Property

4(y + 2) = 4y + 4(2)



Multiplicative Property of Zero

 $a \cdot 0 = 0 \text{ or } 0 \cdot a = 0$

Examples:

$$8\frac{2}{3} \cdot 0 = 0$$

 $0 \cdot (-13y - 4) = 0$

Substitution Property

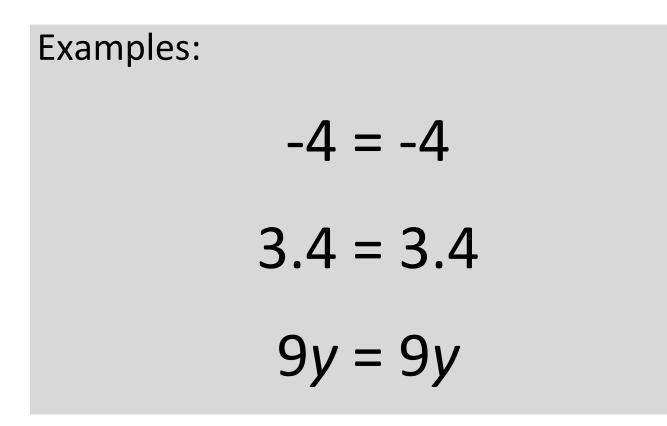
If *a* = *b*, then *b* can replace *a* in a given equation or inequality.

Examples:			
Given	Given	Substitution	
<i>r</i> = 9	3 r = 27	3(<mark>9</mark>) = 27	
b = 5a	24 < <mark>b</mark> + 8	24 < <mark>5a</mark> + 8	
y = 2x + 1	2y = 3x - 2	2(2x + 1) = 3x - 2	

Reflexive Property of Equality

a = a

a is any real number



Symmetric Property of Equality

If a = b, then b = a.

Examples:

If 12 = r, then r = 12. If -14 = z + 9, then z + 9 = -14. If 2.7 + y = x, then x = 2.7 + y.

Transitive Property of Equality

If a = b and b = c, then a = c.

Examples:

If 4x = 2y and 2y = 16, then 4x = 16.

If x = y - 1 and y - 1 = -3, then x = -3.

Inequality

An algebraic sentence comparing two quantities

Symbol	Meaning	
<	less than	
≤	less than or equal to	
>	greater than	
2	greater than or equal to	
≠	not equal to	

Examples:

-10.5 > -9.9 - 1.28 > 3t + 2 $x - 5y \ge -12$ $r \ne 3$

Graph of an Inequality

Symbol	Examples	Graph
< or >	<i>x</i> < 3	-1 0 1 2 3 4 5
≤or≥	-3≥y	
¥	<i>t</i> ≠ -2	← + + + ⊕ + + → -6 -5 -4 -3 -2 -1 0

Transitive Property of Inequality

lf	Then
<i>a</i> < <i>b</i> and <i>b</i> < <i>c</i>	<i>a</i> < <i>c</i>
a > b and $b > c$	<i>a</i> > <i>c</i>

Examples:

If 4x < 2y and 2y < 16, then 4x < 16.

If x > y − 1 and y − 1 > 3,
 then x > 3.

Addition/Subtraction Property of Inequality

lf	Then
a > b	a + c > b + c
$a \geq b$	$a + c \ge b + c$
a < b	a + c < b + c
$a \leq b$	$a + c \leq b + c$

Example:

$d - 1.9 \ge -8.7$ $d - 1.9 + 1.9 \ge -8.7 + 1.9$ $d \ge -6.8$

Multiplication Property of Inequality

If	Case	Then
a < b	<i>c</i> > 0, positive	ac < bc
a > b	<i>c</i> > 0, positive	ac > bc
a < b	<i>c</i> < 0, negative	a <mark>c ></mark> bc
a > b	<i>c</i> < 0, negative	a <mark>c < bc</mark>

Example: if
$$c = -2$$

 $5 > -3$
 $5(-2) < -3(-2)$
 $-10 < 6$

Division Property of Inequality

If	Case	Then
a < b	c > 0, positive	$\frac{a}{c} < \frac{b}{c}$
a > b	c > 0, positive	$\frac{a}{c} > \frac{b}{c}$
a < b	c < 0, negative	$\frac{a}{c} > \frac{b}{c}$
a > b	c < 0, negative	$\frac{a}{c} < \frac{b}{c}$

Example: if
$$c = -4$$

$$-90 \ge -4t$$
$$\frac{-90}{-4} \le \frac{-4t}{-4}$$
$$22.5 \le t$$

Linear Equation: Slope-Intercept Form

 $y = \mathbf{m}x + \mathbf{b}$

(slope is m and y-intercept is b)

Example: $y = \frac{-4}{3}x + 5$ $m = \frac{-4}{3}$ b = 5

Linear Equation: Point-Slope Form

 $y - y_1 = \mathbf{m}(x - x_1)$

where m is the slope and (x_1, y_1) is the point

Example:

Write an equation for the line that

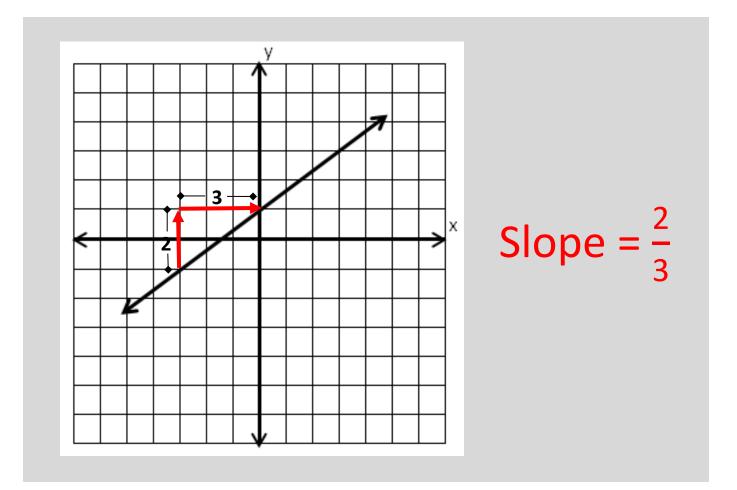
passes through the point (-4,1) and has a slope of 2.

$$y - 1 = 2(x - -4)$$

 $y - 1 = 2(x + 4)$
 $y = 2x + 9$

Slope

A number that represents the rate of change in y for a unit change in x

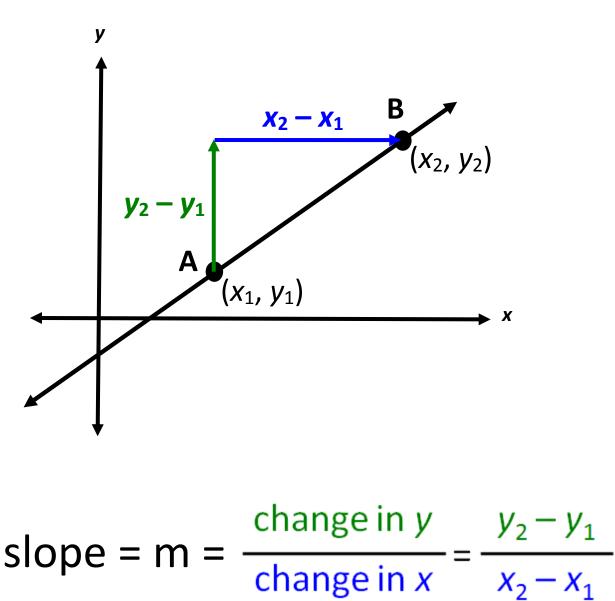


The slope indicates the steepness of a line.

Algebra I Vocabulary Cards

Slope Formula

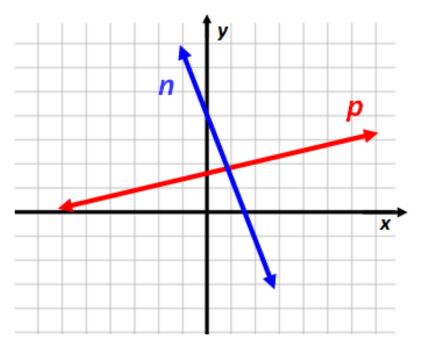
The ratio of vertical change to horizontal change



Slopes of Lines

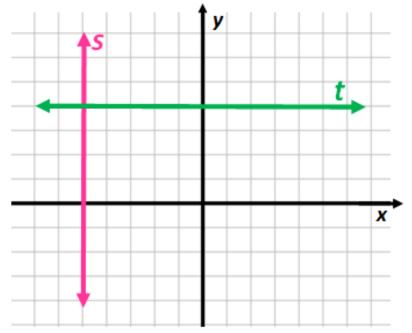
Line *p* has a positive slope.

Line *n* has a negative slope.



Vertical line s has an undefined slope.

Horizontal line *t* has a zero slope.



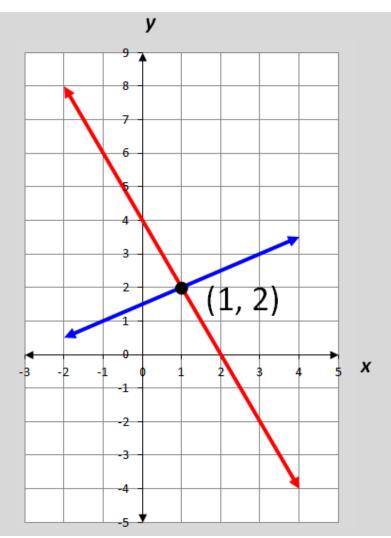
Mathematical Notation

Set Builder Notation	Read	Other Notation
${x \mid 0 < x \le 3}$	The set of all <i>x</i> such that <i>x</i> is greater than or equal to 0 and <i>x</i> is less than 3.	0 < <i>x</i> ≤ 3 (0, 3]
{ <i>y</i> : <i>y</i> ≥ -5}	The set of all y such that y is greater than or equal to -5.	<i>y</i> ≥ -5 [-5, ∞)

System of Linear Equations

Solve by graphing: $\begin{cases}
-x + 2y = 3 \\
2x + y = 4
\end{cases}$

The solution, (1, 2), is the only ordered pair that satisfies both equations (the point of intersection).



System of Linear Equations

Solve by substitution: $\begin{cases} x + 4y = 17 \\ y = x - 2 \end{cases}$

Substitute x – 2 for y in the first equation. x + 4(x - 2) = 17x = 5

Now substitute 5 for x in the second equation.

y = 5 - 2 y = 3

The solution to the linear system is (5, 3), the ordered pair that satisfies both equations.

System of Linear Equations Solve by elimination: $\begin{cases} -5x - 6y = 8\\ 5x + 2y = 4 \end{cases}$

Add or subtract the equations to eliminate one variable.

-5x - 6y = 8+ 5x + 2y = 4-4y = 12y = -3

Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.

$$-5x - 6(-3) = 8$$

 $x = 2$

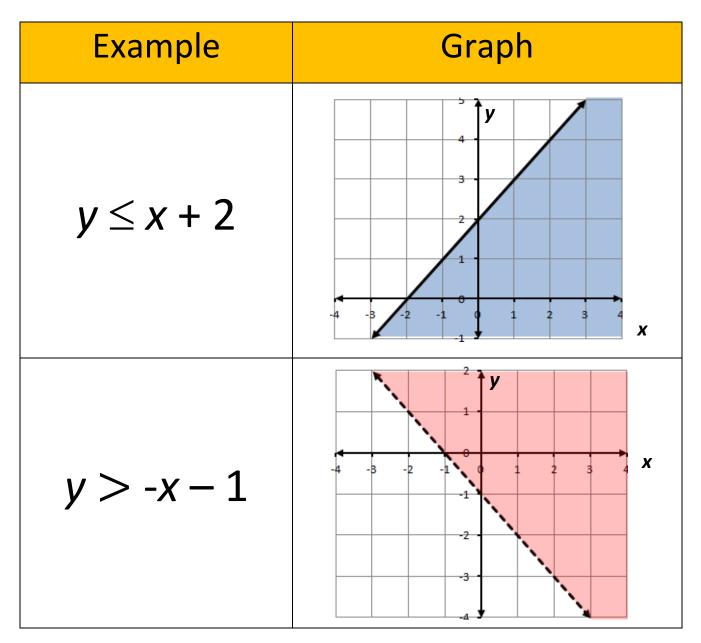
The solution to the linear system is (2,-3), the ordered pair that satisfies both equations.

System of Linear Equations

Identifying the Number of Solutions

Number of Solutions	Slopes and y-intercepts	Graph
One solution	Different slopes	
No solution	Same slope and different y- intercepts	y y x x
Infinitely many solutions	Same slope and same y- intercepts	

Graphing Linear Inequalities

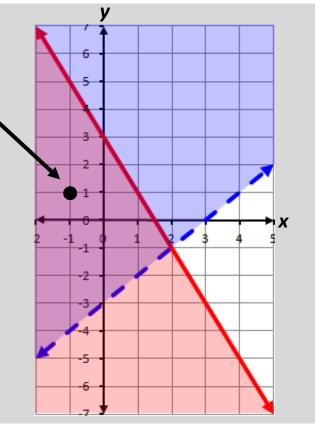


System of Linear Inequalities

Solve by graphing: $\begin{cases} y > x - 3 \\ y \le -2x + 3 \end{cases}$

The solution region contains all ordered pairs that are solutions to both inequalities in the system.

(-1,1) is <u>one</u> solution to the system located in the solution region.



Dependent and Independent Variable

x, independent variable(input values or domain set)

Example:

y = 2x + 7

y, dependent variable(output values or range set)

Dependent and Independent Variable

Determine the distance a car will travel going 55 mph.

d = 55**h**

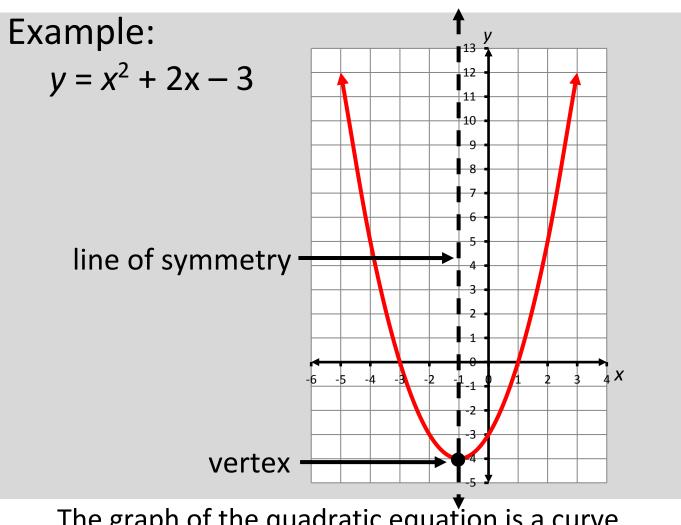
independent

h	d
0	0
1	55
2	110
3	165

dependent

Graph of a Quadratic Equation $y = ax^2 + bx + c$

 $a \neq 0$



The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.

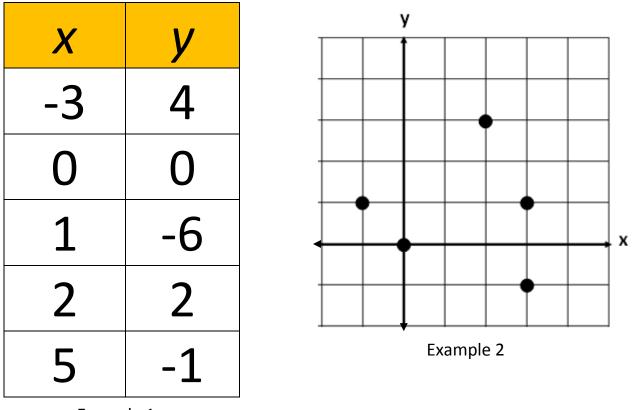
Quadratic Formula

Used to find the solutions to any quadratic equation of the form, $y = ax^2 + bx + c$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Relations

Representations of relationships



Example 1

$\{(0,4), (0,3), (0,2), (0,1)\}$

Example 3

Functions

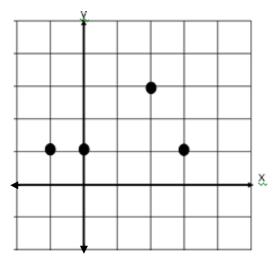
Representations of functions

X	у
3	2
2	4
0	2
-1	2

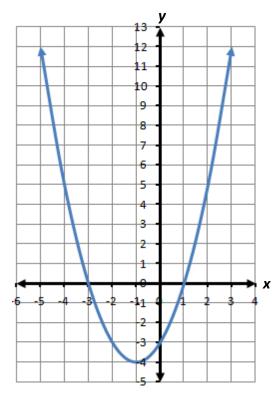
Example 1

$\{(-3,4), (0,3), (1,2), (4,6)\}$

Example 3



Example 2

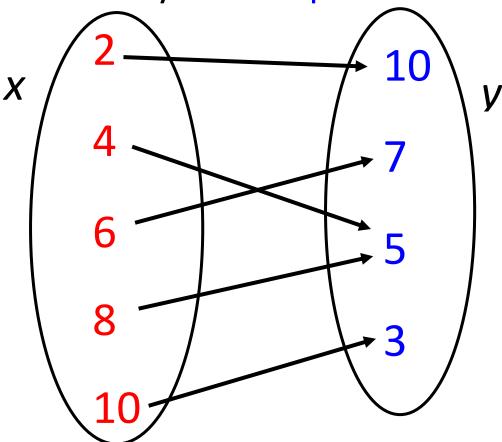


Example 4

Function

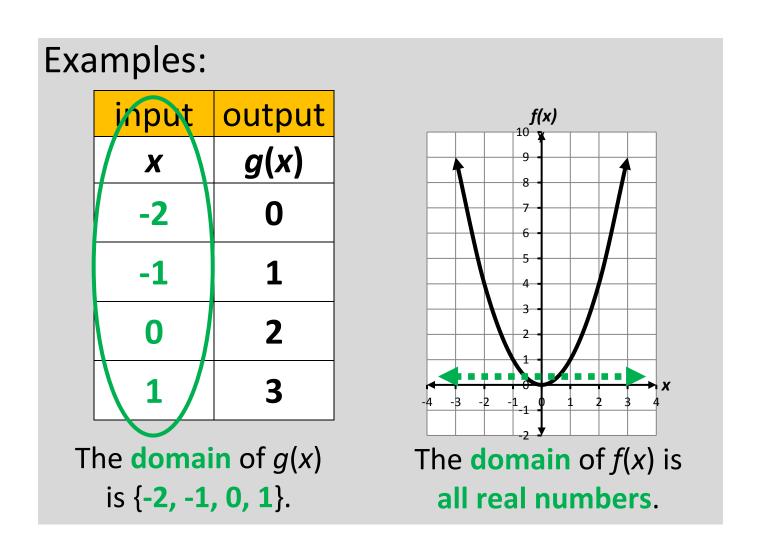
A relationship between two quantities in which every input corresponds to

exactly one output



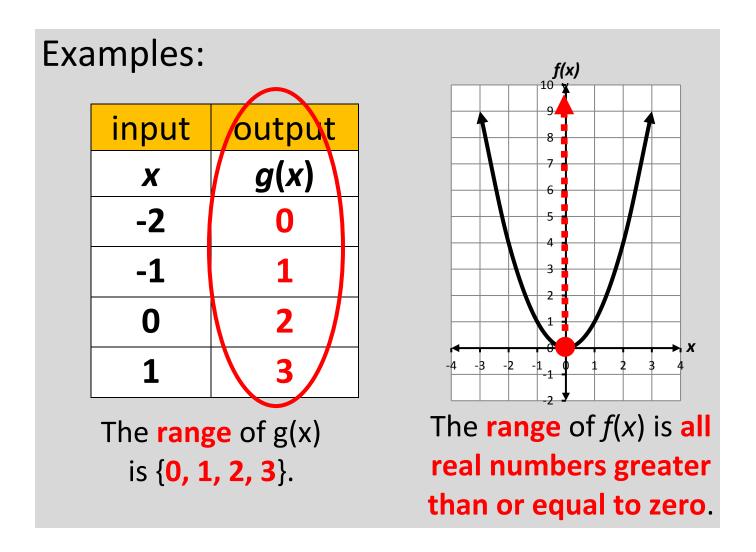
A relation is a function if and only if each element in the domain is paired with a unique element of the range.

Domain A set of input values of a relation



Range

A set of output values of a relation



Function Notation f(x)

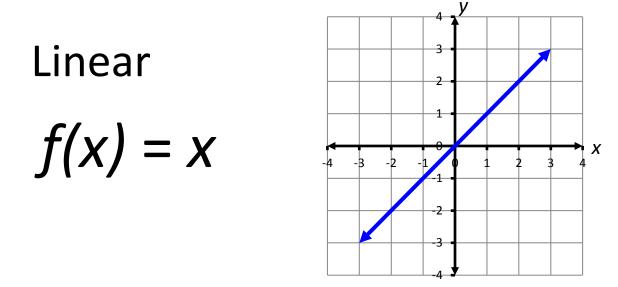
f(x) is read "the value of f at x" or "f of x"

Example:

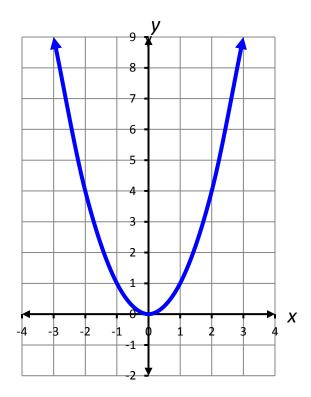
$$f(x) = -3x + 5$$
, find $f(2)$.
 $f(2) = -3(2) + 5$
 $f(2) = -6$

Letters other than f can be used to name functions, e.g., g(x) and h(x)

Parent Functions



Quadratic $f(x) = x^2$



Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

ns	g(x) = f(x) + k is the graph of	<i>k</i> units up when <i>k</i> > 0.
atio	f(x) translated vertically –	k units down when k < 0 .
nsl	<pre>g(x) = f(x - h) is the graph of f(x) translated horizontally -</pre>	<i>h</i> units right when <i>h</i> > 0.
Tra		<i>h</i> units left when <i>h</i> < 0.

Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

	g(x) = -<u>f(</u>x) is the graph of <i>f</i> (x) —	reflected over the x-axis .
Reflec	g(x) = <u>f(</u>-x) is the graph of <i>f</i> (x) —	reflected over the y-axis .

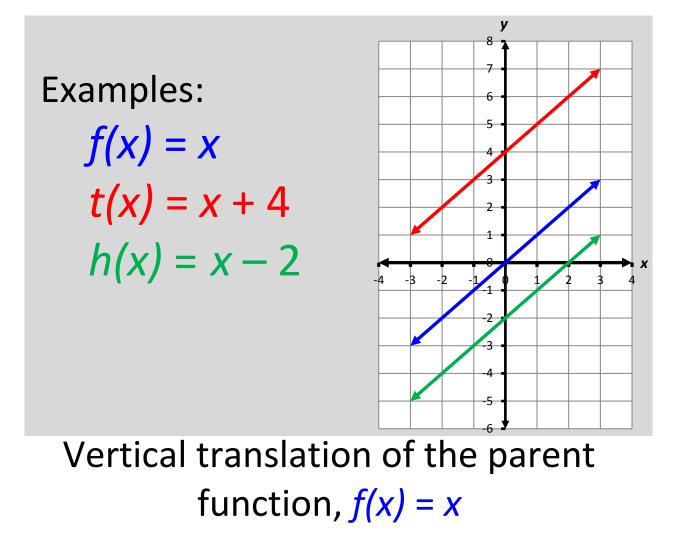
Transformations of Parent Functions

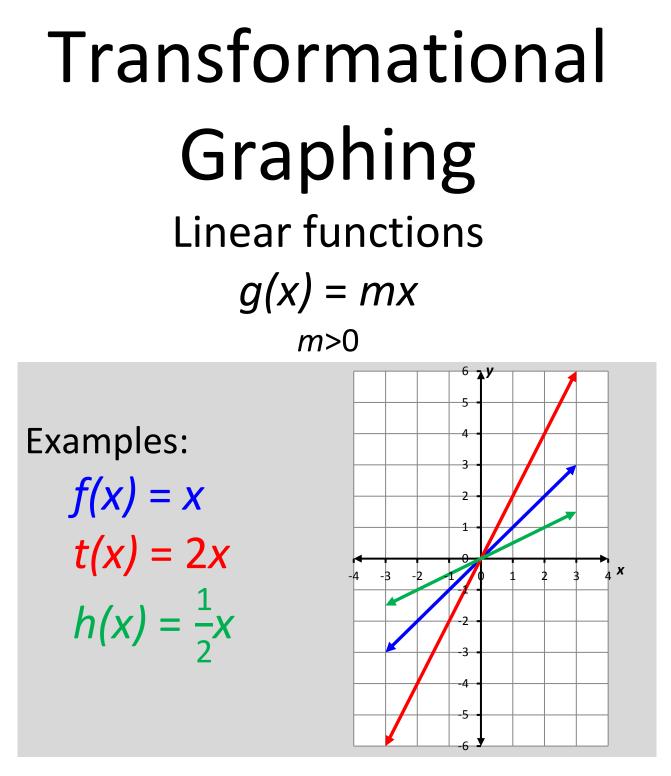
Parent functions can be transformed to create other members in a family of graphs.

Dilations	g(x) = a ⋅ f(x) is the graph of <i>f</i> (x) –	vertical dilation (stretch) if a > 1 .
		vertical dilation (compression) if 0 < <i>a</i> < 1 .
	g(x) = f(ax) is the graph of <i>f</i> (x) –	horizontal dilation (compression) if a > 1 .
		horizontal dilation (stretch) if 0 < <i>a</i> < 1 .

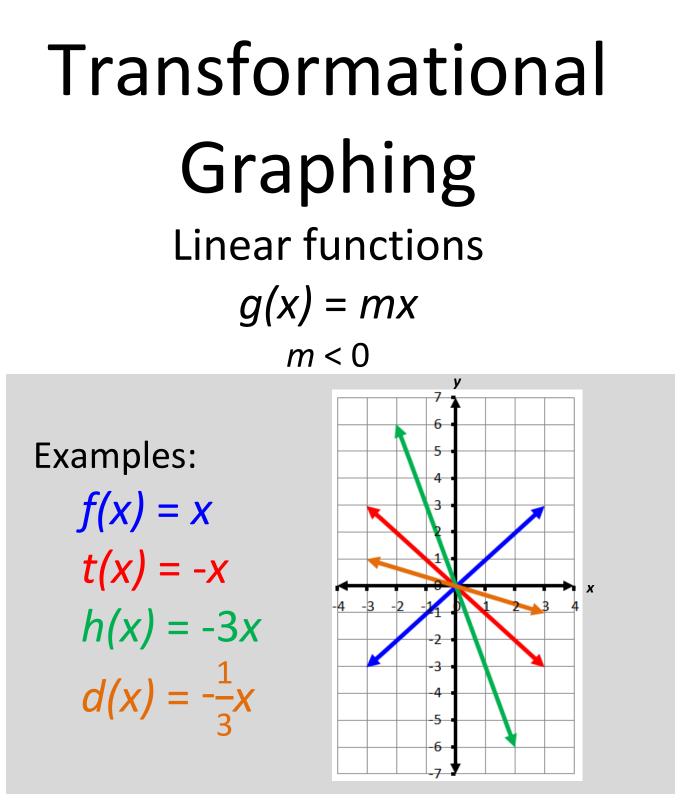
Transformational Graphing

Linear functions g(x) = x + b



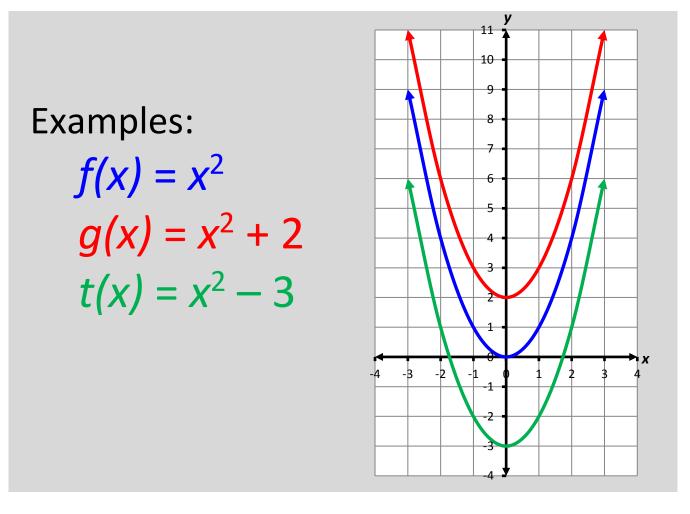


Vertical dilation (stretch or compression) of the parent function, f(x) = x

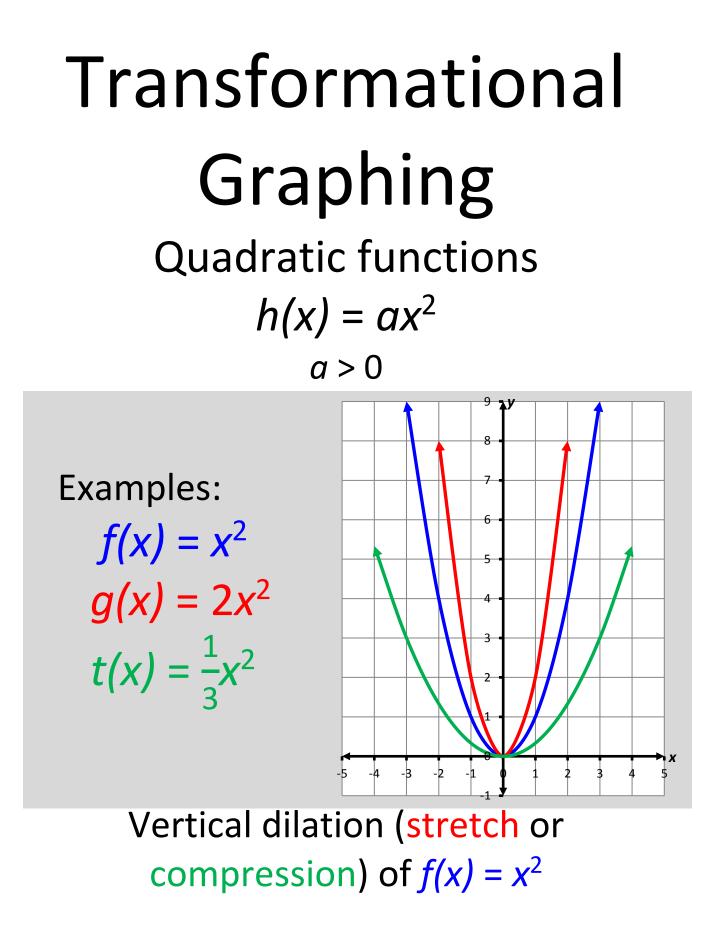


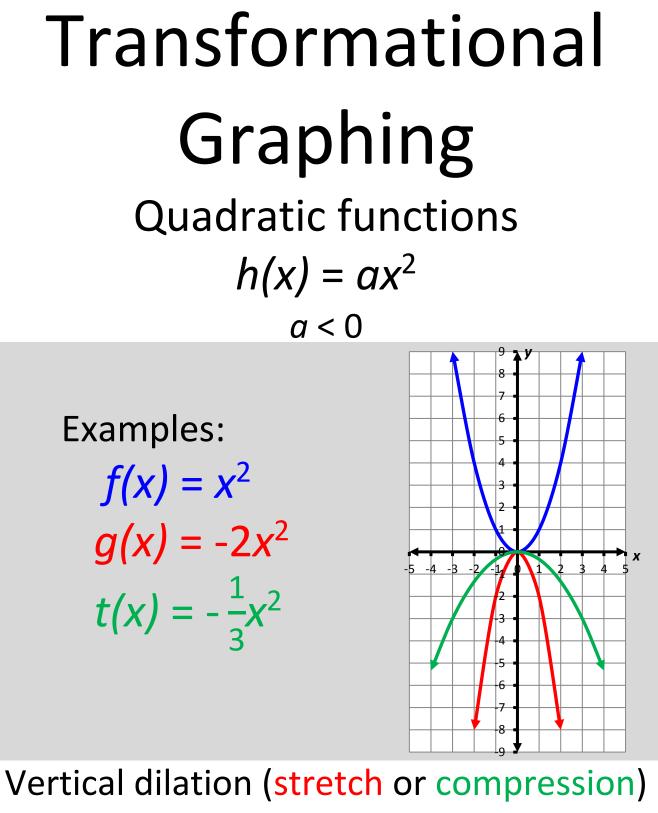
Vertical dilation (stretch or compression) with a reflection of f(x) = x

Transformational Graphing Quadratic functions $h(x) = x^2 + c$

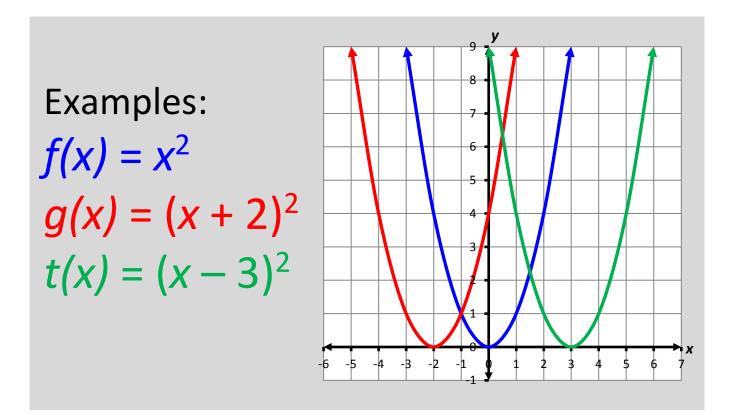


Vertical translation of $f(x) = x^2$





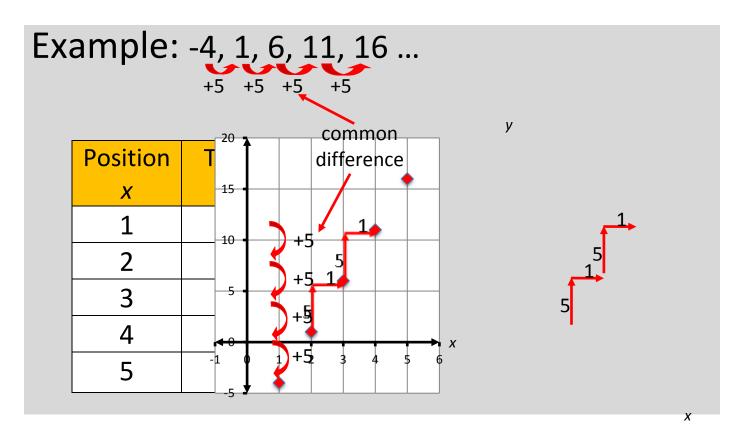
Transformational Graphing Quadratic functions $h(x) = (x + c)^2$



Horizontal translation of $f(x) = x^2$

Arithmetic Sequence

A sequence of numbers that has a common difference between every two consecutive terms

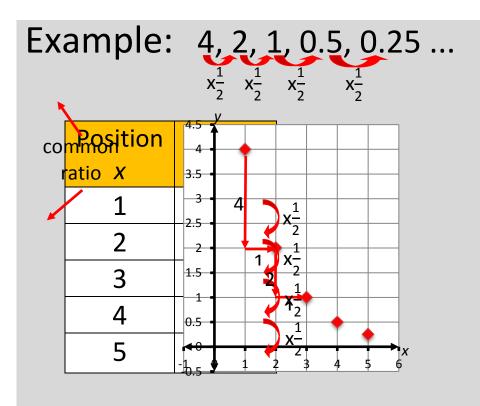


The common difference is the slope of the line of best fit.

Algebra I Vocabulary Cards

Geometric Sequence

A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a constant ratio



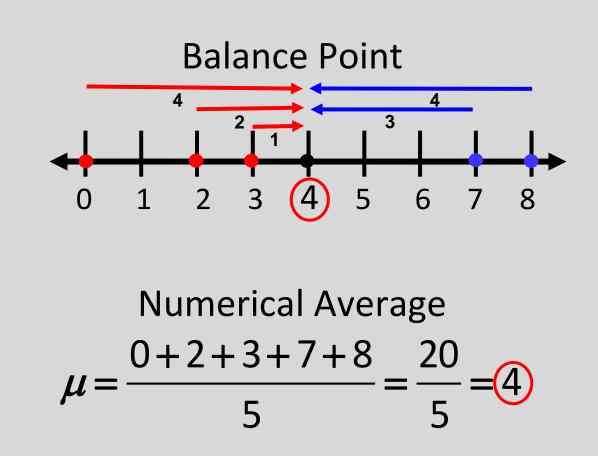
Statistics Notation

xi	i^{th} element in a data set
μ	mean of the data set
σ^2	variance of the data set
σ	standard deviation of the
	data set
n	number of elements in the
	data set

Mean

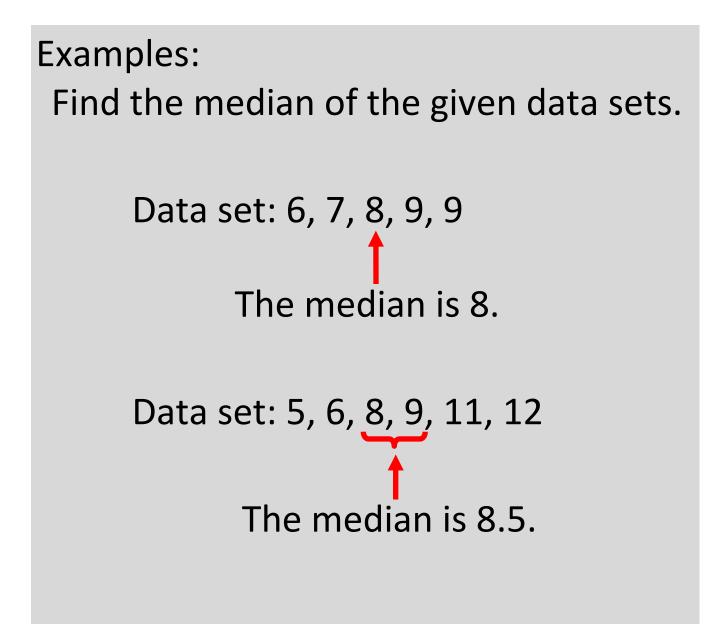
A measure of central tendency

Example: Find the mean of the given data set.



Median

A measure of central tendency



Mode

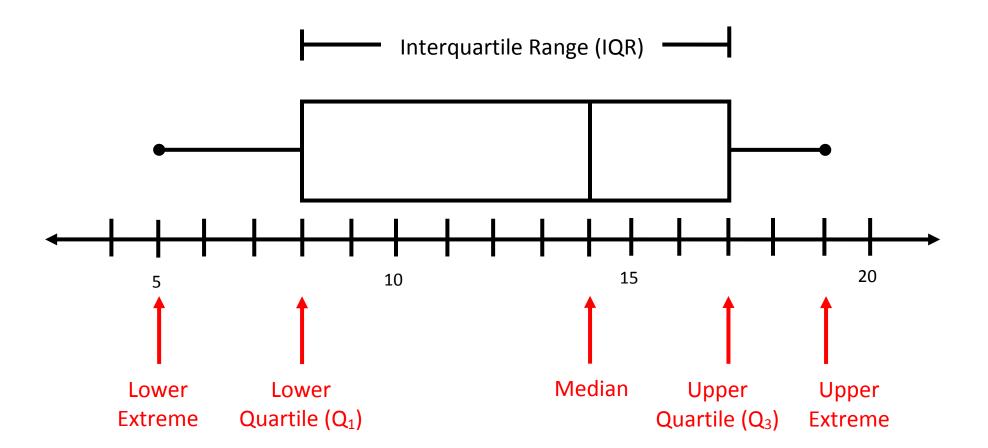
A measure of central tendency

Examples:

Data Sets	Mode
3, 4, <mark>6, 6, 6, 6</mark> , 10, 11, 14	6
0, 3, 4, 5, 6, 7, 9, 10	none
5.2, 5.2, 5.2, 5.6, 5.8, 5.9, 6.0	5.2
1, 1, 2, 5, 6, 7, 7, 9, 11, 12	<mark>1, 7</mark> bimodal

Box Plot

A graphical representation of the five-number summary



Standard Deviation

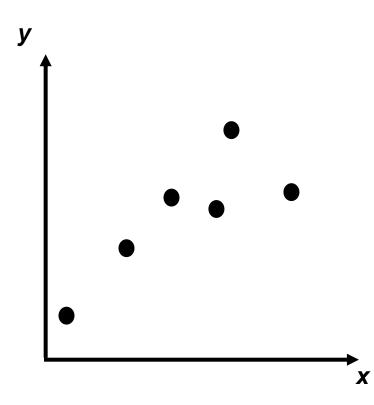
A measure of the spread of a data set

standard deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$

The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance

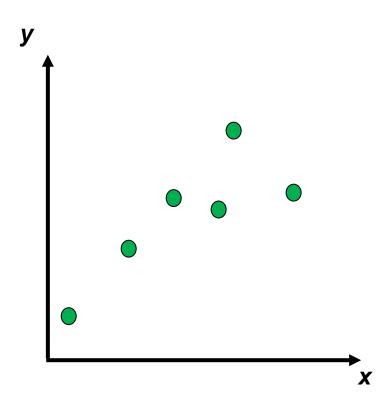
Scatterplot

Graphical representation of the relationship between two numerical sets of data



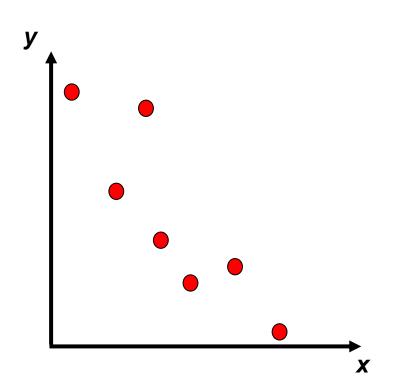
Positive Correlation

In general, a relationship where the dependent (y) values increase as independent values (x) increase



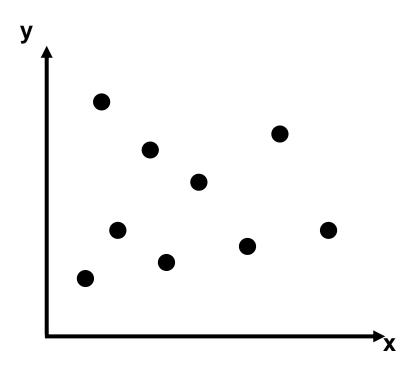
Negative Correlation

In general, a relationship where the dependent (y) values decrease as independent (x) values increase.

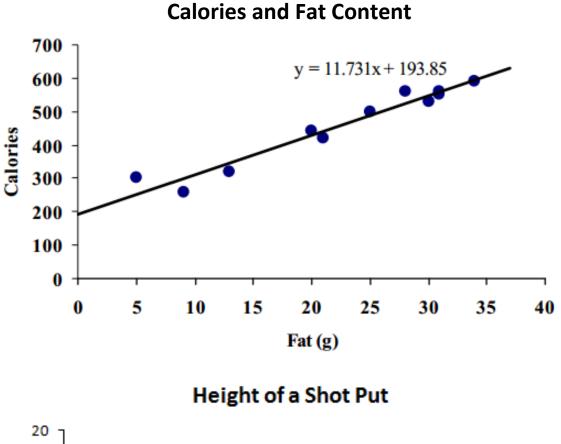


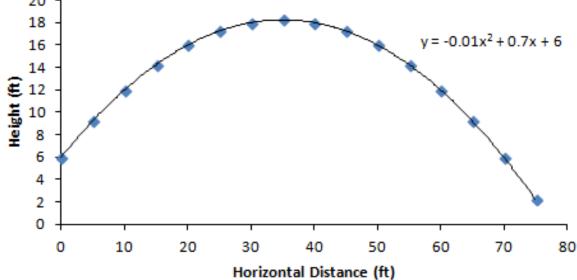
No Correlation

No relationship between the dependent (y) values and independent (x) values.



Curve of Best Fit





Outlier Data

