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Working with Rational 
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Goals and Objectives

· Students will simplify rational expressions, as 
well as be able to add, subtract, multiply, and 
divide rational expressions.  

· Students will solve rational equations and use 
them in applications. 

· Students will graph rational functions and 
identify their holes, vertical asymptotes, and 
horizontal asymptotes.
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What is a rational expression?

A rational expression is the ratio of two polynomials.  It is 
written as a fraction with polynomial expressions in the 

numerator and denominator.
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Why do we need this?

Rational expressions are often used to simplify expressions 
with long polynomials in both the numerator and denominator.  

Since it is more efficient to work with simple problems and 
situations, knowing how to simplify rational expressions makes 

looking at graphs and other problems easier.  

Rational expressions and equations are often used to model 
more complex equations in fields such as science and 

engineering.  Rational expressions are applicable in working 
with forces and fields in physics and aerodynamics.  
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Inverse and 
Joint Variation
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Variation describes the relationship between variables. 

There are three types of variation:  

     direct, 

     inverse and 

     joint variation.

Each type describes a different relationship.

Variation
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Inverse Variation
With Inverse variation, when one element increases, the other 

element decreases.  Or, vice versa, when one element 
decreases, the other element increases.  

As you increase 
your altitude by 
hiking up a 
mountain, you 
will feel a 
decrease in the 
temperature.

Examples:

As you pull on a 
rubber band to 
make it longer, 
the width of the 
band gets 
smaller.

As you increase 
your amount of 
spending, you 
decrease the 
amount of money  
available to you.

page2svg
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Joint Variation
Joint variation is the same as direct variation, but is used when two or 

more elements affect what another element does.  If one or both 
elements increase, the other element increases.  Or, vice versa, when 
one or both elements decrease, the other element also decreases.  

As you either 
decrease the speed 
you drive or 
decrease the time 
you drive, you will 
decrease the 
distance you cover. 

Examples:

As you increase 
the radius and/
or the height of 
a cone, you 
increase the 
volume.

As you increase 
the length or 
width of your 
backyard fence, 
you increase the 
area of your 
backyard.   
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Using more mathematical vocabulary... 

Inverse variation:  The temperature of the air varies 
inversely with the altitude.

written as:  

Joint variation:  The volume of a cone varies jointly 
with the square of its radius and its height.

written as:  

Variation
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Notice that in each of these variations there is an additional 
number whose value does not change: 

This number is called the constant of variation and 
is denoted by k.

Variation
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Steps to solving a variation problem:

 1)  Determine an equation based on each type of variation.

   Inverse: y = k/x

   Joint: y = kxz

 2)  Find the constant of variation (k) 

 3)  Rewrite the equation substituting a value for k.

 4)  Use the final equation to find the missing value.

Variation
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Example:  

If y varies inversely with x, and y  = 10 when x = 4, find x when y = 80.

Variation
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Example: The volume of a square pyramid varies jointly with the 
area of the base (s2) and the height.  If the volume is 75 when 
the base side is 5 and the height is 9, find the volume when the 
height is 12 and the base side is 4.

Variation
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1 If y varies inversely with x, and y = 10 
when x = -4, find y when x = 8. 
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2 If y varies inversely with x, and y = 3 when x = 15, 

find y when x = 5.
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3 If y varies jointly with x and z, and y = 6 when 
x = 3 and z = 9, find y when x = 5 and z = 4.
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4 If y varies jointly with x and z, and y = 3 when x = 4 and       
z = 6, find y when x = 6 and z = 8.
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Simplifying Rational Expressions
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A rational expression is an expression that can 
be written in the form                , where a variable 
is in the denominator.

The domain of a rational expression is all real numbers 
excluding those that would make the denominator 0.  (This 
is very important when solving rational equations.)

For example, in the expression             , 2 and -2 are 
restricted from the domain.

Simplifying Rationals

page2svg
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Remember to use properties of exponents and/or 
factoring to simplify the rational expressions.

Simplifying Rationals

Slide 28 / 179

5 Simplify

A B C D
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6 Simplify

A B C D

Slide 30 / 179

7 Simplify

A B C D
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Multiplying Rational Expressions
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Multiply
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10 Simplify

A

B

C

D
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Dividing Rational Expressions
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14 Simplify

A

B

C

D
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15 Simplify

A

B

C

D
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18 Simplify

A

B

C

D
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Adding and Subtracting
Rational Expressions
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Table of 
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Just as in multiplication and division, when adding or 
subtracting rationals, use the same rules as  basic fractions.

Recall:  When adding and subtracting fractions, you MUST use 
common denominators.

Adding and Subtracting Rational Expressions
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To add and subtract rational expressions they must have common 
denominators.  Identify the LCD and rewrite the rational expressions with 
the same denominator.

Example:
No common denominator.

x2 is the least common denominator.(LCD)

Multiply by an expression equal to 1.
(Multiply numerator and denominator by the same quantity.)

Then Add.

Simplify if possible.

Adding and Subtracting Rational Expressions
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Step 1:  Find LCD

Step  2:  Multiply each term by an expression equal   
  to 1 to obtain LCD for each term.

Step  3:  Add or subtract numerators

Step  4:   Simplify

Adding and Subtracting Rational Expressions
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Example

LCD = (x + 2)(x - 2)

Solve:

Step 1:  

Step 2:  

Step 3:  

Step 4:  
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Example
Solve:

Step 1:  

Step 2:  

Step 3:  

Step 4:  

The 
denominators 
are additive 

inverses.
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Example Continued

Remember:  you can always check results by substituting values 
for the variables, being sure to avoid values for which the 
expression is undefined.

Click
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Find the LCDs for the following.  Describe any restrictions on the variables.

Common Denominator
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23 Simplify

A

B

C

D
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24 Simplify

A

B

C

D
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25 Simplify

A

B

C

D
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Find an equivalent rational expression in lowest terms, and identify 
the value(s) of the variables that must be excluded to prevent 
division by zero. 
 

Division by Zero

Derived from( (
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Determine whether or not the rational expressions below are 
equivalent for                                  . Explain how you know.

Equivalent Expressions

Derived from( (
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Adding and Subtracting Rationals Problem is from:

Click for link for commentary 
and solution.
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Solving Rational Equations
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Step 1:  Find LCD

Step  2:  Multiply EACH TERM by LCD

Step  3: Simplify

Step  4:  Solve

Step  5:  Check for Extraneous Solutions

Solving Rational Equations
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Example Continued

Step 5:  

Explanation 

When the solution of h = 2 is substituted into the original equation, it 
creates two undefined terms:

This means that h = 2 is an extraneous solution and the rational 
equation has no solution.

http://www.illustrativemathematics.org/illustrations/825
http://www.illustrativemathematics.org/illustrations/825
page2svg
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Example:  Remember to find LCD and check all solutions.

Solving Rational Equations
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27 Use Steps 1 - 4 to solve for x:

A    -9

B    9

C   24

D   30
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28 Is the solution to the previous question valid when 
substituted into the original equation?

A Yes, the solution is valid.

B No, the solution creates a false mathematical 
statement and is therefore an extraneous solution.

C No, the solution creates an undefined term(s) and is 
therefore an extraneous solution.

A
ns

w
er
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29 Use Steps 1 - 4 to solve for m:

A   -12

B    -5

C    5

D   12
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30 Is the solution to the previous question valid when 
substituted into the original equation?

A Yes, the solution is valid.

B No, the solution creates a false mathematical 
statement and is therefore an extraneous solution.

C No, the solution creates an undefined term(s) and is 
therefore an extraneous solution.
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31 Use Steps 1 - 4 to solve for x:  
(Choose all that apply)

A -3 

B -2 

C 5 

D 7 
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C No, one of the solutions creates an undefined 
term(s) and is therefore an extraneous solution.

32 Are the solutions to the previous question valid when 
substituted into the original equation?

A Yes, both solutions are valid.

B
No, both of the solutions create a false 
mathematical statement and are therefore 
extraneous solutions.
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34 Is the solution to the previous question valid when 
substituted into the original equation?

A Yes, the solution is valid.

B No, the solution creates a false mathematical 
statement and is therefore an extraneous solution.

C No, the solution creates an undefined term(s) and is 
therefore an extraneous solution.
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35 What is the solution of the equation

From PARCC sample test

http://parcc.pearson.com/practice-tests/math/
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Chase and his brother like to play basketball. About a month ago they 
decided to keep track of how many games they have each won. As of 
today, Chase has won 18 out of the 30 games against his brother. 

a) How many games would Chase have to win in a row in order to have 
a 75% winning record?

b) How many games would Chase have to win in a row in order to have 
a 90% winning record?

Problem is from:

Click for link for commentary 
and solution.

Basketball
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Chase and his brother like to play basketball. About a month ago they 
decided to keep track of how many games they have each won. As of 
today, Chase has won 18 out of the 30 games against his brother. 

c) Is Chase able to reach a 100% winning record? Explain why or why 
not.

d) Suppose that after reaching a winning record of 90% in part (b), 
Chase had a losing streak. How many games in a row would Chase 
have to lose in order to drop down to a winning record below 55% 
again?

Problem is from:

Click for link for commentary 
and solution.

Basketball
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Applications of  
Rational

Equations
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Table of 
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Rational equations can be used to solve a variety of problems 
in real-world situations.  

We will see how to use rational equations in multi-rate work 
problems, and distance-speed-time problems.

Applications
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Here’s a video showing the use of a rational equation to solve a 
simple multi-rate work problem:

This is the problem described in the video:

Tom can wash a car in 45 minutes.  Jerry can wash the same 
car in 30 minutes.  How long will it take to wash the car if 
they work together?                  

click here

Applications
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To solve the problem, the instructor used the fact that the amount of 
work completed is equal to the rate of work multiplied by the time 
spent working:  

This formula might also be used as

or               depending upon which quantity is unknown.                   

Applications

http://www.illustrativemathematics.org/illustrations/702
http://www.illustrativemathematics.org/illustrations/702
http://www.illustrativemathematics.org/illustrations/702
http://www.illustrativemathematics.org/illustrations/702
page2svg
http://njc.tl/18a
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The unknown quantity is time, or t.  Discuss the table entries for use in 
this solution.

Underground pipes can fill a swimming pool in 4 hours.  A regular 
garden hose can fill the pool in 16 hours.  If both are used at the 
same time, how long will it take to fill the pool?

rate time work
pipes t

hose t

Example:
Applications
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rate time work
pipes t

hose t

Example (continued):

The total amount of work by the pipes and the hose should equal 1 job 
completed.

With the pipes and hose 
working together, the pool 
will be filled in 3.2 hours.
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Working alone, Tony’s dad can complete the yard work in 3 
hours. If Tony helps his dad, the yard work takes 2 hours. How 
long would it take Tony working alone to complete the yard 
work?

The unknown is the number of hours for Tony working alone.  
Discuss the table entries for use in this solution.  Then write an 
equation and solve.

rate time work
Dad 2

Tony 2

Example:
A

ns
w

er
Applications
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36 James can paint the office by himself in 7 hours. 
Manny paints the office in 10 hours. How long will 
it take them to paint the office working together?
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37 Working together, it takes Sam, Jenna, and 
Francisco 2 hours to clean one house.  When 
Sam is working alone, he can clean the house 
in 6 hours.  When Jenna works alone, she can 
clean the house in 4 hours.  Determine how 
long it would take Francisco to clean the 
house on his own.
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38 Allison can complete a sales route by herself in 5 
hours. Working with an associate, she completes 
the route in 3 hours. How long would it take her 
associate to complete the route by himself?

A 8 hours

B 6.5 hours

C 7.5 hours

D 5 hours
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Another application of rational equations is solving distance-
speed-time problems.  Recall that distance traveled is equal to the 
speed (rate) multiplied by the time.

This formula may also be used as
or             depending upon which quantity is unknown.   

Applications
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39 James can jog twice as fast as he can walk. He was 
able to jog the first 9 miles to his grandmother’s 
house, but then he tired and walked the remaining 
1.5 miles. If the total trip took 2 hours, then what was 
his average jogging speed?

A 3 mph

B 4.5 mph

C 2.5 hours

D 3 hours
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40 A passenger car averages 16 miles per hour faster 
than a bus. If the bus travels 56 miles in the same 
time it takes the passenger car to travel 84 miles, 
then what is the speed of each?

(Hint: use r for the smaller unknown speed)
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Graphing 
Rational

Functions

Return to 
Table of 
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Vocabulary Review
x-intercept:  The point where a graph intersects with the x-axis   
    and the y-value is zero.

y-intercept:  The point where a graph intersects with the y-axis   
    and the x-value is zero.

2

4

6

8

10

-2

-4

-6

-8

-10

2 4 6 8 10-2-4-6-8-10 0

x-intercept

(4, 0)

y-intercept

(0, 6)
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Rational Functions have unique graphs that can be explored using 
properties of the function itself.  Here is a general example of what the 
graph of a rational function can look like:

Graphs
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Point 
Discontinuity

Vertical 
Asymptotes

Horizontal 
Asymptote

Rational Function

Roots

Visual Vocabulary
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Vocabulary
Rational Function:

Roots:   x-intercept(s) of the function;

     x values for which the numerator = 0 

Discontinuities:  x-values for which the function is undefined;
 Infinite discontinuity:  x-values for which only the denominator = 0    
 (vertical asymptote) 
 Point discontinuity: x-values for which the numerator & denominator = 0  
 (hole)

         

Asymptote:  A line that the graph continuously approaches but    
   does not intersect
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Step 1:  Find and graph vertical discontinuities

Step 2:  Find and graph horizontal asymptotes

Step 3:  Find and graph x- and y-intercepts

Step 4:  Use a table to find values between the x- and y-intercepts

Step 5:  Connect the graph 

Graphing a Rational Function

page2svg
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Point 
Discontinuity

(Hole)

Vertical 
Asymptotes

Step 1 Continued

B)  Set remaining denominator   
factors equal to zero and      
solve - Vertical Asymptotes

x + 1 = 0

x = -1

Vertical Asymptote at x = -1

x - 3 = 0

x = 3

Vertical Asymptote at x = 3

Slide 117 / 179 Slide 118 / 179

41 What are the point discontinuities of the following 
function:

(Choose all that apply.)

A x = -3

B x = -2 

C x = -1

D x =  

E x =  

F x = 1 

G x = 2

H x = 3 
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42 What are the point discontinuities of the following 
function:

(Choose all that apply.)

A x = -5 

B x = -3 

C x =  

D x = 0 

E x =  

F x = 3 

G x = 5 

H x = 9
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43 What are the point discontinuities of the following 
function:

(Choose all that apply.)

A x = -5

B x = -3

C x = -2 

D x = 0 

E x = 2

F x = 3 
G x = 5 

H x = 10 
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44 Find the vertical asymptotes of the following 
function:

(Choose all that apply.)

A x = -3 

B x = -2 

C

D x = 0 

E

F x = 2 

G x = 3 

H no vertical discontinuities 
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45 Find the vertical asymptotes of the following 
function:

(Choose all that apply.)

A x = -6 

B x = -4 

C x = -3  

D x = -2 

E x = 2 

F x = 3 

G x = 4 

H x = 6 
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46 Discuss the discontinuities of:
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47 Discuss the discontinuities of: 
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48 Discuss the discontinuities of: 
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Notation for Holes

The point discontinuities (holes) in the graph of a rational 
function should be given as an ordered pair.

Once the x-value of the hole is found, substitute for x in the 
simplified rational expression to obtain the y-value.  
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Example
Find the holes in the graph of the following rational function:

Common factor of numerator and denominator:

x + 2 = 0

Hole at x = -2 

Simplified expression:

Evaluate for x = -2:

The hole of this function is at (-2, -1/5)
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49 Identify the hole(s) of the following function:

(Choose all that apply.)

A (1, 1) 

B (-1, 1) 

C (1, 0) 

D no holes exist 
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The horizontal asymptote of a rational function is determined by 
comparing the degree of the numerator to the degree of the 
denominator.

The horizontal asymptote provides guidance for the graph's behavior 
as x-values become very large or very small.  In other words, as x 
approaches       or as x approaches       . 

 

Step 2:  Horizontal Asymptotes
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Think of a cup of boiling water left on a table to cool.  If you graph the 
temperature for a period of time, what would be considered the 
horizontal asymptote and why?

time

temperature

Horizontal Asymptote = Room T emperature 

The limiting factor is the room temperature.  The water is not able to cool 
below room temperature, so the graph will have a horizontal asymptote.

Example
Slide 134 / 179
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Degree

The degree of a polynomial is the term containing the variable 
raised to the highest exponent.

Remember: A constant has a degree of 0. A variable with no 
exponent has a degree of 1.

For Example:

What is the degree of the polynomial -6x3 + 2x  ?

First Term is -6x3:  x has a power of 3,  so the degree is 3 

Second Term is 2x:  x has a power of 1, so the degree is 1

The degree of the polynomial is 3.

Recall from Algebra I
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Try these: Decide if the following functions have horizontal 
asymptotes. If so, find the equation of the asymptote.  

a.  b.

Horizontal Asymptotes
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x-intercepts

The x-intercept(s) occur when y = 0, or where the numerator 
equals zero.  

Set the numerator equal to zero and solve to find the x-intercepts.

Intercepts should be named as ordered pairs. 

***Remember, if this value makes the denominator zero 
as well, there is a point discontinuity (a hole)***

Step 3:  Intercepts
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Intercepts

y-intercepts

The y-intercepts occur where x is equal to zero. 

Substitute zero for all x's and solve to find the y-intercepts.

Intercepts should be named as ordered pairs.
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56    Identify the y-intercept of
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57   Identify the y-intercept of
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58   Find the y-intercept of
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59 What are the y-intercepts for the following function?  

(Choose all that apply.)

A (0, -6)
B (0, -3)

C (0, 0)

D (0, 3)

E (0, 6)

F There are no real intercepts
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60 Find any x-intercept(s) of: 

A (-3, 0)

B (-1, 0)

C (0, 0)

D (1, 0)

E (3, 0)

F There are no real intercepts
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61 Find all x-intercept(s) of: 

A (-3, 0)

B (-2, 0)

C    (0, 0)

D (2, 0)

E (3, 0)

F There are no real intercepts
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62 Identify all x-intercept(s) of: 

A (-3, 0)

B (-2, 0)

C    (0, 0)

D (2, 0)

E (3, 0)

F There are no real intercepts
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63 Choose all x-intercept(s) of :

A (-3, 0)

B (-2, 0)

C    (0, 0)

D (2, 0)

E (3, 0)

F There are no real intercepts
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Step 4:  Table

Graphs of rational functions contain curves, and additional 
points are needed to ensure the shape of the graph.

Once all discontinuities, asymptotes and intercepts are graphed, 
additional points can be found by creating a table of values.

To create an accurate graph, it is good practice to choose x-
values near the intercepts and vertical asymptotes.
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Step 2:  Horizontal Asymptotes

Check the degree of numerator and denominator.

Since n = m, the asymptote is  

The asymptote for this graph is y = 1

Example Continued
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Example Continued

Step 4:  Create a table of additional ordered pairs. 

Choose values for x on either side of vertical asymptotes and x-intercepts.
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Step 5:  Connect the points with a smoothe curve.

Example Continued
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Graph Components

Vertical 
Asymptote

Horizontal 
Asymptote

Hole

x-intercept 
(Root)

y-intercept
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64 What is the first step to use when graphing rational 
functions?

A Finding the intercepts

B Finding the horizontal asymptote

C Creating a table of values

D Creating the graph by connecting all previously 
found components

E Finding the discontinuities
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65 The correct notation for a hole in a rational 
function is:

A x = 2

B y = 2

C (2, 5)

D There is no correct notation.
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Now, let's put it all together.  
Graph 1

Step 1:  Find and graph vertical discontinuities
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Graph 1

Step 2:  Find and graph horizontal asymptotes
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Graph 1
Step 3:  Find and graph x- and y-intercepts 
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Graph 1
Step 4:  Use a table to find values between the x- and y-intercepts 
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Graph 1
Step 5:  Connect the graph 
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Try another example.

Graph 2

Step 1:  Find and graph vertical discontinuities
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Graph 2
Step 2:  Find and graph horizontal asymptotes

Slide 172 / 179

Graph 2
Step 3:  Find and graph x- and y-intercepts

Slide 173 / 179

Graph 2

Step 4:  Use a table to find values between the x- and y-intercepts
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Graph 2
Step 5:  Connect the graph 
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