

Slide 3 / 179
Table of Contents

Working with Rational Expressions
Joint and Inverse Variation
Simplifying Rational Expressions
Multiplying Rational Expressions
Dividing Rational Expressions
Adding and Subtracting Rational Expressions
Solving Rational Equations
Applications of Rational Equations
Graphing Rational Functions

Slide 5 / 179

click on a topic to go to that section

Algebra II
Rational Expressions \& Equations

2015-08-15
www.njctl.org

Slide 4 / 179

Working with Rational Expressions

Goals and Objectives

- Students will simplify rational expressions, as well as be able to add, subtract, multiply, and divide rational expressions.
- Students will solve rational equations and use them in applications.
- Students will graph rational functions and identify their holes, vertical asymptotes, and horizontal asymptotes.

What is a rational expression?

Slide 6 / 179

Return to
Table of Contents

A rational expression is the ratio of two polynomials. It is written as a fraction with polynomial expressions in the numerator and denominator.

Why do we need this?

-

Rational expressions are often used to simplify expressions with long polynomials in both the numerator and denominator.

Since it is more efficient to work with simple problems and situations, knowing how to simplify rational expressions makes looking at graphs and other problems easier.

Rational expressions and equations are often used to model more complex equations in fields such as science and engineering. Rational expressions are applicable in working with forces and fields in physics and aerodynamics.

Slide 9 / 179

Inverse and Joint Variation

Slide 11 / 179
 Slide 12 / 179

Variation

Variation describes the relationship between variables.

There are three types of variation:
direct,
inverse and
joint variation.
Each type describes a different relationship.

Return to
Table of Contents

With Inverse variation, when one element increases, the other element decreases. Or, vice versa, when one element decreases, the other element increases.

Examples:

As you pull on a rubber band to make it longer, the width of the band gets smaller.

As you increase your amount of spending, you decrease the amount of money available to you.

As you increase your altitude by hiking up a mountain, you will feel a decrease in the temperature.

1 If y varies inversely with x, and $y=10$ when $x=-4$, find y when $x=8$.

2 If y varies inversely with x, and $y=3$ when $x=15$, find y when $\mathrm{x}=5$.

Slide 21 / 179

3 If y varies jointly with x and z, and $y=6$ when $x=3$ and $z=9$, find y when $x=5$ and $z=4$.

Slide 22 / 179

4 If y varies jointly with x and z, and $y=3$ when $x=4$ and $z=6$, find y when $x=6$ and $z=8$.

Slide 23 / 179

Slide 24 / 179
Simplifying Rational Expressions

Simplifying Rationals

A rational expression is an expression that can be written in the form $\frac{\text { polynomial }}{\text { polynomial }}$, where a variable is in the denominator.

The domain of a rational expression is all real numbers excluding those that would make the denominator 0 . (This is very important when solving rational equations.)

For example, in the expression $\frac{3}{x^{2}-4}, 2$ and -2 are restricted from the domain.

Slide 27 / 179

Slide 28 / 179

Simplifying Rationals

Remember to use properties of exponents and/or factoring to simplify the rational expressions.

$\frac{3 a^{4} b^{7}}{6 a^{8} b^{5}}$	$\frac{\left(2 x y^{3}\right)^{3}}{4 x^{2} y^{7}}$	$\frac{x^{2}-16}{x^{2}-6 x+8}$

Slide 29 / 179
6 Simplify $\frac{\left(4 x^{2} y^{3}\right)^{2}}{24 x^{3} y^{3}}$

OA $\frac{x y^{3}}{3} \quad$ OB $\frac{2 x y^{3}}{3} \quad$ OC $\frac{2 y^{3}}{3 x} \quad$ OD $\frac{y^{3}}{3}$

5 Simplify $\frac{12 x^{4} y^{10}}{24 x^{5} y^{9}}$

○A $\frac{2 y}{x} \quad$ ○B $\frac{1}{2} \quad$ OC $\frac{y}{2 x} \quad$ OD $2 x y$

Slide 30 / 179

7 Simplify $\frac{x^{2}+2 x-15}{x^{2}-10 x+21}$

○A $12 x-2$ ○B $\frac{x+5}{x-7}$ ○C $\frac{x+5}{x+7}$ ○D $-12 x+2$
\square

Multiplying Rational Expressions

Dividing Rational Expressions

Return to Table of Content	
Slide 45 / 179	Slide 46 / 179
14 Simplify $\frac{7}{m^{2}} \div \frac{14}{m}=$	15 Simplify $\frac{y-4}{9} \div \frac{4-y}{3}=$
$\text { OA } \frac{98}{m^{3}} \quad \text { OC } \frac{1}{2 m}$	$\text { A } \frac{y-4}{3(y-4)} \bigcirc \mathbf{C} \frac{y^{2}-16}{27}$
$\text { OB } \frac{m}{2} \quad \text { OD } \frac{m^{3}}{98}$	$\text { B }-\frac{1}{3}$ OD $\frac{1}{3}$

$\begin{array}{ll} 18 \text { Simplify } \frac{\frac{e^{2}-f^{2}}{e f}}{\frac{e-f}{e}}= \\ & \text { A } \frac{f}{e-f} \\ O_{\mathbf{B}} \frac{e+f}{e} & \text { OD } \frac{e+f}{f} \end{array}$	Adding and Subtracting Rational Expressions
Slide $51 / 179$	Slide 52 / 179
Adding and Subtracting Rational Expressions	
Just as in multiplication and division, when adding or subtracting rationals, use the same rules as basic fractions. Recall: When adding and subtracting fractions, you MUST use common denominators.	

Diser

Example Continued

Click

Remember: you can always check results by substituting values for the variables, being sure to avoid values for which the expression is undefined.

Slide 63 / 179
n

Slide 65 / 179

23 Simplify $\frac{3}{h-2}+\frac{1}{h+2}$

A $\frac{4 h+4}{(h-2)(h+2)} \circ \mathbf{C} \frac{4 h}{(h-2)(h+2)}$

- $\frac{2}{h-2}$

D $\frac{4 h-4}{(h-2)(h+2)}$

24 Simplify $\frac{4}{t^{2}-25}-\frac{3}{t+5}$	25 Simplify $\frac{2}{s^{2}-36}+\frac{7}{s^{2}+2 s-24}$
$\circ \mathbf{A} \frac{-3 t+19}{(t-5)(t+5)} \quad \circ \mathbf{C} \frac{-3 t-1}{(t-5)(t+5)}$	$\bigcirc \mathrm{A} \frac{9 s+34}{(s-6)(s+6)(s-4)} \circ \mathbf{C} \frac{9 s+10}{(s-6)(s+6)(s-4)}$
B $\frac{-3 t-11}{(t-5)(t+5)}$ D $\frac{-3 t+9}{(t-5)(t+5)}$	B $\frac{9 s-50}{(s-6)(s+6)(s-4)} \bigcirc \mathbf{D} \frac{9 s-10}{(s-6)(s+6)(s-4)}$
Slide 69 / 179	Slide 70 / 179
	Division by Zero Find an equivalent rational expression in lowest terms, and identify the value(s) of the variables that must be excluded to prevent division by zero. $\frac{x^{2}-7 x+12}{6-5 x+x^{2}}$

Equivalent Expressions

Determine whether or not the rational expressions below are equivalent for $x \neq-1, x \neq-2, x \neq 3$. Explain how you know.
$\frac{x+4}{(x+2)(x-3)} \quad \frac{x^{2}+5 x+4}{(x+1)(x+2)(x-3)}$

Adding and Subtracting Rationals \quad| Problem is from: |
| :--- |
| Illustrativ Mathematics |
| Illustrations |
| and solution. |

a. What is the combined fuel economy for the 2012 Volkswagen Jetta? Give your answer to three significant
digits.
b. For most conventional cars, the highway fuel economy is 10 mpg higher than the city fuel economy. If we set
the city fuel economy to be x mpg for such a car, what is the combined fuel economy in terms of x ? Write
your answer as a single rational function, $a(x) / b(x)$.
c. Rewrite your answer from (b) in the form of $q(x)+\frac{r(x)}{b(x)}$ where $q(x), r(x)$ and $b(x)$ are polynomials and
the degree of $r(x)$ is less than the degree of $b(x)$.
d. Use your answer in (c) to conclude that if the city fuel economy, x, is large, then the combined fuel economy
is approximately $x+5$.

Solving Rational Equations

Slide 75 / 179

Solving Rational Equations

Step 1: Find LCD

Step 2: Multiply EACH TERM by LCD

Step 3: Simplify

Step 4: Solve

Step 5: Check for Extraneous Solutions

Slide 77 / 179

Slide 78 / 179

Example Continued

$\frac{1}{2+2}+\frac{1}{2-2}=\frac{4}{2^{2}-4}$
$\frac{1}{4}+\frac{1}{0} \neq \frac{4}{0}$
Explanation
When the solution of $h=2$ is substituted into the original equation, it creates two undefined terms:

$$
\frac{1}{0} \quad \frac{4}{0}
$$

This means that $h=2$ is an extraneous solution and the rational equation has no solution.
(1)

Slide 81 / 179

Solving Rational Equations

Example: Remember to find LCD and check al\$olutions.

$$
\frac{3}{x}-\frac{2}{3 x}=\frac{-7}{3 x^{2}-6 x}
$$

Slide 82 / 179

27 Use Steps 1 - 4 to solve for x :

$$
\frac{4}{x}+\frac{3}{7}=\frac{1}{7 x}
$$

A -9
C 24

B 9
D 30

Slide 84 / 179

28 Is the solution to the previous question valid when substituted into the original equation?

A Yes, the solution is valid.
O_{B} No, the solution creates a false mathematical statement and is therefore an extraneous solution.

OC No, the solution creates an undefined term(s) and is therefore an extraneous solution.
A -12
C 5

B -5
D 12

30 Is the solution to the previous question valid when substituted into the original equation?
O_{A} Yes, the solution is valid.
O_{B} No, the solution creates a false mathematical statement and is therefore an extraneous solution.

OC No, the solution creates an undefined term(s) and is therefore an extraneous solution.

31 Use Steps 1-4 to solve for x :
(Choose all that apply)

$$
\frac{-3}{x^{2}-5 x+6}-\frac{2}{x^{2}-9}=-\frac{1}{x-2}
$$

\square A -3B -2

Slide 87 / 179

Slide 88 / 179

32 Are the solutions to the previous question valid when substituted into the original equation?
O_{A} Yes, both solutions are valid.

No, both of the solutions create a false
OB mathematical statement and are therefore extraneous solutions.

Oc
No, one of the solutions creates an undefined term(s) and is therefore an extraneous solution.

Slide 89 / 179

Slide 90 / 179

34 Is the solution to the previous question valid when substituted into the original equation?

OA Yes, the solution is valid.

OB
No, the solution creates a false mathematical statement and is therefore an extraneous solution.

OC No, the solution creates an undefined term(s) and is therefore an extraneous solution.

35 What is the solution of the equation

$$
\frac{2 m^{2}+3 m-5}{m^{2}+4 m-5}=4
$$

Basketball Problem is from: \square Illustrative Mathematics Illustrations Click for link for commentary and solution.	Basketball Problem is from: Illustrative Mathematics Illustrations Click for link for commentary and solution.
Chase and his brother like to play basketball. About a month ago they decided to keep track of how many games they have each won. As of today, Chase has won 18 out of the 30 games against his brother. a) How many games would Chase have to win in a row in order to have a 75% winning record? b) How many games would Chase have to win in a row in order to have a 90% winning record?	Chase and his brother like to play basketball. About a month ago they decided to keep track of how many games they have each won. As of today, Chase has won 18 out of the 30 games against his brother. c) Is Chase able to reach a 100% winning record? Explain why or why not. d) Suppose that after reaching a winning record of 90% in part (b), Chase had a losing streak. How many games in a row would Chase have to lose in order to drop down to a winning record below 55\% again?
Slide 93 / 179	Slide 94 / 179
Applications of Rational Equations	Applications Rational equations can be used to solve a variety of problems in real-world situations. We will see how to use rational equations in multi-rate work problems, and distance-speed-time problems.
Slide 95 / 179	Slide 96 / 179
Applications Here's a video showing the use of a rational equation to solve a simple multi-rate work problem: click here This is the problem described in the video: Tom can wash a car in 45 minutes. Jerry can wash the same car in 30 minutes. How long will it take to wash the car if they work together?	Applications To solve the problem, the instructor used the fact that the amount of work completed is equal to the rate of work multiplied by the time spent working: $W=r t$ This formula might also be used as $t=\frac{W}{r}$ or $r=\frac{W}{t}$ depending upon which quantity is unknown.

Example: Applications Underground pipes can fill a swimming pool in 4 hours. A regular garden hose can fill the pool in 16 hours. If both are used at the same time, how long will it take to fill the pool?				
The unknown quantity is time, or t. Discuss the table entries for use in this solution.				
rate time work				
pipes	$\frac{1}{4}$	t	$\frac{1}{4} t$	
hose	$\overline{16}$	t	$\frac{1}{16} t$	
Slide 99 / 179				
Example: Applications Working alone, Tony's dad can complete the yard work in 3 hours. If Tony helps his dad, the yard work takes 2 hours. How long would it take Tony working alone to complete the yard work? The unknown is the number of hours for Tony working alone. Discuss the table entries for use in this solution. Then write an equation and solve.				
rate		time	work	
Dad	$\frac{1}{3}$	2	$\frac{2}{3}$	
Tony	$\frac{1}{x}$	2	$\frac{2}{x}$	

Example (continued):

	rate	time	work
pipes	$\frac{1}{4}$	t	$\frac{1}{4} t$
hose	$\frac{1}{16}$	t	$\frac{1}{16} t$

The total amount of work by the pipes and the hose should equal 1 job completed.

$$
\begin{array}{ll}
\frac{1}{4} t+\frac{1}{16} t=1 & \\
16 \cdot \frac{1}{4} t+16 \cdot \frac{1}{16} t=16 \cdot 1 & \text { With the pipes and hose } \\
4 t+t=16 & \text { working together, the pool } \\
5 t=16 & \text { will be filled in } 3.2 \text { hours. } \\
t=3.2 &
\end{array}
$$

Slide 100 / 179

36 James can paint the office by himself in 7 hours. Manny paints the office in 10 hours. How long will it take them to paint the office working together?

Slide 101 / 179

37 Working together, it takes Sam, Jenna, and Francisco 2 hours to clean one house. When Sam is working alone, he can clean the house in 6 hours. When Jenna works alone, she can clean the house in 4 hours. Determine how long it would take Francisco to clean the house on his own.

38 Allison can complete a sales route by herself in 5 hours. Working with an associate, she completes the route in 3 hours. How long would it take her associate to complete the route by himself?

OA 8 hours
OB 6.5 hours
OC 7.5 hours
OD 5 hours

Applications

Another application of rational equations is solving distance-speed-time problems. Recall that distance traveled is equal to the speed (rate) multiplied by the time.

$$
D=r t
$$

This formula may also be used as $r=\frac{D}{t}$
or $t=\frac{D}{r}$ depending upon which quantity is unknown.

Slide 105 / 179

Slide 106 / 179

Slide 107 / 179

39 James can jog twice as fast as he can walk. He was able to jog the first 9 miles to his grandmother's house, but then he tired and walked the remaining 1.5 miles. If the total trip took 2 hours, then what was his average jogging speed?

Slide 108 / 179

40 A passenger car averages 16 miles per hour faster than a bus. If the bus travels $\mathbf{5 6}$ miles in the same time it takes the passenger car to travel 84 miles, then what is the speed of each?
(Hint: use r for the smaller unknown speed)

44 Find the vertical asymptotes of the following function:

$$
g(x)=\frac{x^{2}}{x^{3}-2 x}
$$

(Choose all that apply.)$\square \mathbf{E} \quad x=\sqrt{2}$$x=-2 \quad \square \mathrm{~F} \quad x=2$C $x=-\sqrt{2}$$x=3$
$x=$no vertical discontinuities

Slide 123 / 179

46 Discuss the discontinuities of:

$$
h(x)=\frac{x}{x-1}
$$

Slide 125 / 179

48 Discuss the discontinuities of:

$$
y=\frac{x-3}{x^{2}-9}
$$

Slide 126 / 179

45 Find the vertical asymptotes of the following function:

$$
f(x)=\frac{x^{2}+7 x+12}{(x-2)\left(x^{2}+x-12\right)}
$$

(Choose all that apply.)

$\square \mathbf{A}$	$x=-6$	$\square \mathrm{E}$	$x=2$
\square B	$x=-4$	$\square \mathrm{F}$	$x=3$
$\square \mathrm{C}$	$x=-3$	$\square \mathbf{G}$	$x=4$
\square D	$x=-2$	$\square \mathrm{H}$	$x=6$

$\square B \quad x=-4 \quad \square F \quad x=3$$x=-2$$x=6$

Slide 124 / 179

47 Discuss the discontinuities of:

$$
g(x)=\frac{x+2}{(x-3)(x+2)}
$$

Notation for Holes

The point discontinuities (holes) in the graph of a rational function should be given as an ordered pair.

Once the x-value of the hole is found, substitute for x in the simplified rational expression to obtain the y-value.

Example

Find the holes in the graph of the following rational function:

$$
g(x)=\frac{x+2}{(x-3)(x+2)}
$$

Common factor of numerator and denominator:

$$
x+2=0
$$

Hole at $x=-2$

Simplified expression: $\quad \frac{1}{(x-3)}$

Evaluate for $x=-2: \quad \frac{1}{(-2-3)}=-\frac{1}{5}$

The hole of this function is at $(-2,-1 / 5)$

Slide 129 / 179

Slide 130 / 179

49 Identify the hole(s) of the following function:
(Choose all that apply.)

$$
h(x)=\frac{x}{x-1}
$$

$\square \mathrm{A}(1,1)$
$\square в(-1,1)$
$\square C(1,0)$
\square D no holes exist

Slide 131 / 179
Slide 132 / 179
(21

Step 2: Horizontal Asymptotes

The horizontal asymptote of a rational function is determined by comparing the degree of the numerator to the degree of the denominator.

The horizontal asymptote provides guidance for the graph's behavior as x-values become very large or very small. In other words, as x approaches ∞ or as x approaches $-\infty$.

Example

Think of a cup of boiling water left on a table teool. If you graph the temperature for a period of time, what would be considered the horizontal asymptote and why?

Horizontal Asymptote $=$ Room T emperature
The limiting factor is the room temperature. The water is not able to cool below room temperature, so the graph will have a horizontal asymptote.

Slide 135 / 179

Degree

Recall from Algebra I

The degree of a polynomial is the term containing the variable raised to the highest exponent.

Remember: A constant has a degree of 0 . A variable with no exponent has a degree of 1 .

For Example:

What is the degree of the polynomial $-6 x 3+2 x$?
First Term is $-6 x 3: x$ has a power of 3 , so the degree is 3

Second Term is $2 x$: x has a power of 1 , so the degree is 1

The degree of the polynomial is 3 .

Slide 137 / 179

Horizontal Asymptotes

Try these: Decide if the following functions have horizontal asymptotes. If so, find the equation of the asymptote.
a. $y=\frac{x^{4}}{x^{2}-7}$
b. $y=\frac{1}{x^{3}+2 x-7}$

Slide 141 / 179

Slide 142 / 179

Slide 143 / 179

Step 3: Intercepts

x-intercepts

The x-intercept(s) occur when $y=0$, or where the numerator equals zero.

Set the numerator equal to zero and solve to find the x-intercepts.

Intercepts should be named as ordered pairs.
Remember, if this value makes the denominator zero as well, there is a point discontinuity (a hole)

Slide 144 / 179

Intercepts

y-intercepts

The y-intercepts occur where x is equal to zero.

Substitute zero for all x 's and solve to find the y-intercepts.

Intercepts should be named as ordered pairs.

	56 Identify the y-intercept of $f(x)=\frac{x}{x-1}$
Slide 147 / 179	Slide 148 / 179
57 Identify the y-intercept of $f(x)=\frac{x+1}{x-1}$	58 Find the y-intercept of $f(x)=\frac{x+2}{x^{2}-9}$
Slide 149 / 179	Slide 150 / 179
59 What are the y-intercepts for the following function? $f(x)=\frac{x+2}{x^{2}}$ (Choose all that apply.)	60 Find any x-intercept(s) of: $h(x)=\frac{x}{x-1}$
$\square \mathrm{A}(\mathbf{0},-6)$ $\square \mathrm{D}(\mathbf{0}, \mathbf{3})$ $\square \mathrm{B}(\mathbf{0},-\mathbf{3})$ $\square \mathrm{E}(\mathbf{0}, \mathbf{6})$ $\square \mathrm{C}(\mathbf{0}, \mathbf{0})$ $\square \mathrm{F}$ There are no real intercepts	$\square A \quad(-3,0)$ $\square D(\mathbf{1}, 0)$ $\square B(-1,0)$ $\square E(3,0)$ $\square C(0,0)$ $\square F$ There are no real intercepts

61 Find all x-intercept(s) of:

$$
g(x)=\frac{x+2}{(x-3)(x+2)}
$$A (-3, 0)

$\square \mathbf{D}(2,0)$B
$(-2,0)$$\square E(3,0)$$(0,0)$F There are no real intercepts

62 Identify all x-intercept(s) of:

$$
y=\frac{(x-3)\left(x^{2}-4\right)}{\left(x^{2}-9\right)}
$$A (-3, 0)D $(2,0)$B $(-2,0)$E $(3,0)$C $(0,0)$F There are no real intercepts

Slide 153 / 179

63 Choose all x-intercept(s) of :

$$
y=\frac{\left(x^{3}-9 x\right)}{\left(x^{2}-4\right)}
$$$\square$ A (-3, 0)

$\square \mathbf{D}(\mathbf{2}, 0)$B (-2, 0)$\square(3,0)$$(0,0)$F There are no real intercepts

Slide 154 / 179

Step 4: Table

Graphs of rational functions contain curves, and additional points are needed to ensure the shape of the graph.

Once all discontinuities, asymptotes and intercepts are graphed, additional points can be found by creating a table of values.

To create an accurate graph, it is good practice to choose x values near the intercepts and vertical asymptotes.

Slide 155 / 179

Slide 156 / 179

Example Continued

Step 2: Horizontal Asymptotes $\quad f(x)=\frac{x^{2}-x-6}{x^{2}-4}$

Check the degree of numerator and denominator.
Since $\mathrm{n}=\mathrm{m}$, the asymptote is $\quad y=\frac{a}{b}$
The asymptote for this graph is $y=1$

\square

Slide 165 / 179

Graph 1

Now, let's put it all together.

Step 1: Find and graph vertical discontinuities

$$
f(x)=\frac{x+3}{x^{2}+4 x-12}
$$

Slide 166 / 179

Graph 1

Step 2: Find and graph horizontal asymptotes

$$
f(x)=\frac{x+3}{x^{2}+4 x-12}
$$

Slide 167 / 179

Graph 1

Step 3: Find and graph x - and y-intercepts

$$
f(x)=\frac{x+3}{x^{2}+4 x-12}
$$

Slide 168 / 179

Graph 1

Step 4: Use a table to find values between the x - and y-intercepts

$$
f(x)=\frac{x+3}{x^{2}+4 x-12}
$$

Graph 1

Step 5: Connect the graph

$$
f(x)=\frac{x+3}{x^{2}+4 x-12}
$$

Slide 171 / 179

Graph 2

Step 2: Find and graph horizontal asymptotes

$$
f(x)=\frac{3}{x+1}+2
$$

Graph 2

Try another example.
Step 1: Find and graph vertical discontinuities

$$
f(x)=\frac{3}{x+1}+2
$$

Slide 172 / 179

Graph 2

Step 3: Find and graph x - and y-intercepts

$$
f(x)=\frac{3}{x+1}+2
$$

Slide 173 / 179

Graph 2

Step 4: Use a table to find values between the x - and y-intercepts

$$
f(x)=\frac{3}{x+1}+2
$$

Slide 174 / 179

Graph 2

Step 5: Connect the graph

$$
f(x)=\frac{3}{x+1}+2
$$

\square
Slide 179 / 179

