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RING THEORY

General Ring Theory

1. Give an example of each of the following.

(a) An irreducible polynomial of degree 3 in Z3[x].

(b) A polynomial in Z[x] that is not irreducible in Z[x] but is irreducible in Q[x].

(c) A non-commutative ring of characteristic p, p a prime.

(d) A ring with exactly 6 invertible elements.

(e) An infinite non-commutative ring with only finitely many ideals.

(f) An infinite non-commutative ring with non-zero characteristic.

(g) An integral domain which is not a unique factorization domain.

(h) A unique factorization domain that is not a principal ideal domain.

(i) A principal ideal domain that is not a Euclidean domain.

(j) A Euclidean domain other than the ring of integers or a field.

(k) A finite non-commutative ring.

(l) A commutative ring with a sequence {Pn}∞n=1 of prime ideals such that Pn is properly
contained in Pn+1 for all n.

(m) A non-zero prime ideal of a commutative ring that is not a maximal ideal.

(n) An irreducible element of a commutative ring that is not a prime element.

(o) An irreducible element of an integral domain that is not a prime element.

(p) A commutative ring that has exactly one maximal ideal and is not a field.

(q) A non-commutative ring with exactly two maximal ideals.

2. (a) How many units does the ring Z/60Z have? Explain your answer.

(b) How many ideals does the ring Z/60Z have? Explain your answer.

3. How many ideals does the ring Z/90Z have? Explain your answer.

4. Denote the set of invertible elements of the ring Zn by Un.
Answer the following for n = 18, n = 20, n = 24.

(a) List all the elements of Un.

(b) Is Un a cyclic group under multiplication? Justify your answer.

5. Find all positive integers n having the property that the group of units of Z/nZ is an elemen-
tary abelian 2-group.

6. Let U(R) denote the group of units of a ring R. Prove that if m divides n, then the natural
ring homomorphism Zn → Zm maps U(Zn) onto U(Zm).
Give an example that shows that U(R) does not have to map onto U(S) under a surjective
ring homomorphism R→ S.

7. If p is a prime satisfying p ≡ 1 (mod 4), then p is a sum of two squares.

8. If ( ··) denotes the Legendre symbol, prove Euler’s Criterion: if p is a prime and a is any

integer relatively prime to p, then a(p−1)/2 ≡
(
a

p

)
(mod p).
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9. Let R1 and R2 be commutative rings with identities and let R = R1 × R2. Show that every
ideal I of R is of the form I = I1 × I2 with Ii an ideal of Ri for i = 1, 2.

10. Show that a non-zero ring R in which x2 = x for all x ∈ R is of characteristic 2 and is
commutative.

11. Let R be a finite commutative ring with more than one element and no zero-divisors. Show
that R is a field.

12. Determine for which integers n the ring Z/nZ is a direct sum of fields. Prove your answer.

13. Let R be a subring of a field F such that for each x in F either x ∈ R or x−1 ∈ R. Prove
that if I and J are two ideals of R, then either I ⊆ J or J ⊆ I.

14. The Jacobson Radical J(R) of a ring R is defined to be the intersection of all maximal ideals
of R.
Let R be a commutative ring with 1 and let x ∈ R. Show that x ∈ J(R) if and only if 1− xy
is a unit for all y in R.

15. Let R be any ring with identity, and n any positive integer. If Mn(R) denotes the ring of
n × n matrices with entries in R, prove that Mn(I) is an ideal of Mn(R) whenever I is an
ideal of R, and that every ideal of Mn(R) has this form.

16. Let m, n be positive integers such that m divides n. Then the natural map ϕ : Zn → Zm

given by a + (n) 7→ a + (m) is a surjective ring homomorphism. If Un, Um are the units of
Zn and Zm, respectively, show that ϕ : Un → Um is a surjective group homomorphism.

17. Let R be a ring with ideals A and B. Let R/A × R/B be the ring with coordinate-wise
addition and multiplication. Show the following.

(a) The map R→ R/A×R/B given by r 7→ (r +A, r +B) is a ring homomorphism.

(b) The homomorphism in part (a) is surjective if and only if A+B = R.

18. Let m and n be relatively prime integers.

(a) Show that if c and d are any integers, then there is an integer x such that x ≡ c (mod m)
and x ≡ d (mod n).

(b) Show that Zmn and Zm × Zn are isomorphic as rings.

19. Let R be a commutative ring with 1 and let I and J be ideals of R such that I + J = R.
Show that I · J = I ∩ J .

20. [NEW]
Give an example of a commutative ring R and ideals I and J in which I · J 6= I ∩ J .
Also, prove that if I + J = R then necessarily I · J = I ∩ J .

21. Let R be a commutative ring with 1 and let I and J be ideals of R such that I + J = R.
Show that R/(I ∩ J) ∼= R/I ⊕R/J .

22. Let R be a commutative ring with identity and let I1, I2, . . . , In be pairwise co-maximal ideals

of R (i.e., Ii + Ij = R if i 6= j). Show that Ii +
⋂
j 6=i

Ij = R for all i.
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23. Let R be a commutative ring, not necessarily with identity, and assume there is some fixed
positive integer n such that nr = 0 for all r ∈ R. Prove that R embeds in a ring S with
identity so that R is an ideal of S and S/R ∼= Z/nZ.

24. Let R be a ring with identity 1 and a, b ∈ R such that ab = 1. Denote X = {x ∈ R | ax = 1}.
Show the following.

(a) If x ∈ X, then b+ (1− xa) ∈ X.

(b) If ϕ : X → X is the mapping given by ϕ(x) = b+ (1− xa), then ϕ is one-to-one.

(c) If X has more than one element, then X is an infinite set.

25. Let R be a commutative ring with identity and define U2(R) =

{[
a b
0 c

]
| a, b, c ∈ R

}
.

Prove that every R-automorphism of U2(R) is inner.

26. Let R be the field of real numbers and let F be the set of all 2 × 2 matrices of the form[
a b

−3b a

]
, where a, b ∈ R. Show that F is a field under the usual matrix operations.

27. Let R be the ring of all 2×2 matrices of the form

[
a b
−b a

]
where a and b are real numbers.

Prove that R is isomorphic to C, the field of complex numbers.

28. Let p be a prime and let R be the ring of all 2 × 2 matrices of the form

[
a b
pb a

]
, where

a, b ∈ Z. Prove that R is isomorphic to Z[
√
p].

29. Let p be a prime and Fp the set of all 2× 2 matrices of the form

[
a b
−b a

]
, where a, b ∈ Zp.

(a) Show that Fp is a commutative ring with identity.

(b) Show that F7 is a field.

(c) Show that F13 is not a field.

30. Let I ⊆ J be right ideals of a ring R such that J/I ∼= R as right R-modules. Prove that there
exists a right ideal K such that I ∩K = (0) and I +K = J .

31. A ring R is called simple if R2 6= 0 and 0 and R are its only ideals. Show that the center of
a simple ring is 0 or a field.

32. Give an example of a field F and a one-to-one ring homomorphism ϕ : F → F which is not
onto. Verify your example.

33. Let D be an integral domain and let D[x1, x2, . . . , xn] be the polynomial ring over D in the n
indeterminates x1, x2, . . . , xn. Let

V =


xn−11 · · · x21 x1 1

xn−12 · · · x22 x2 1
...

...
...

...
xn−1n · · · x2n xn 1

 .
Prove that the determinant of V is

∏
16i<j6n

(xi − xj).
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34. Let R = C[0, 1] be the set of all continuous real-valued functions on [0, 1]. Define addition
and multiplication on R as follows. For f, g ∈ R and x ∈ [0, 1],

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

(a) Show that R with these operations is a commutative ring with identity.

(b) Find the units of R.

(c) If f ∈ R and f2 = f , then f = 0R or f = 1R.

(d) If n is a positive integer and f ∈ R is such that fn = 0R, then f = 0R.

35. Let S be the ring of all bounded, continuous functions f : R→ R, where R is the set of real
numbers. Let I be the set of functions f in S such that f(t)→ 0 as |t| → ∞.

(a) Show that I is an ideal of S.

(b) Suppose x ∈ S is such that there is an i ∈ I with ix = x. Show that x(t) = 0 for all
sufficiently large |t|.

36. Let Q be the field of rational numbers and D = {a+ b
√

2 | a, b ∈ Q}.
(a) Show that D is a subring of the field of real numbers.

(b) Show that D is a principal ideal domain.

(c) Show that
√

3 is not an element of D.

37. Show that if p is a prime such that p ≡ 1 (mod 4), then x2 + 1 is not irreducible in Zp[x].

38. Show that if p is a prime such that p ≡ 3 (mod 4), then x2 + 1 is irreducible in Zp[x].

39. Show that if p is a prime such that p ≡ 1 (mod 6), then x3 + 1 splits in Zp[x].

Prime, Maximal, and Primary Ideals

40. Let R be a non-zero commutative ring with 1. Show that an ideal M of R is maximal if and
only if R/M is a field.

41. Let R be a commutative ring with 1. Show that an ideal P of R is prime if and only if R/P
is an integral domain.

42. (a) Let R be a commutative ring with 1. Show that if M is a maximal ideal of R then M
is a prime ideal of R.

(b) Give an example of a non-zero prime ideal in a ring R that is not a maximal ideal.

43. Let R be a non-zero ring with identity. Show that every proper ideal of R is contained in a
maximal ideal.

44. Let R be a commutative ring with 1 and P a prime ideal of R. Show that if I and J are
ideals of R such that I ∩ J ⊆ P and J 6⊆ P , then I ⊆ P .

45. Let M1 6= M2 be two maximal ideals in the commutative ring R and let I = M1 ∩M2. Prove
that R/I is isomorphic to the direct sum of two fields.
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46. Let R be a non-zero commutative ring with 1. Show that if I is an ideal of R such that 1 + a
is a unit in R for all a ∈ I, then I is contained in every maximal ideal of R.

47. Let R be a commutative ring with identity. Suppose R contains an idempotent element a
other than 0 or 1. Show that every prime ideal in R contains an idempotent element other
than 0 or 1. (An element a ∈ R is idempotent if a2 = a.)

48. Let R be a commutative ring with 1.

(a) Prove that (x) is a prime ideal in R[x] if and only if R is an integral domain.

(b) Prove that (x) is a maximal ideal in R[x] if and only if R is a field.

49. Find all values of a in Z3 such that the quotient ring

Z3[x]/(x3 + x2 + ax+ 1)

is a field. Justify your answer.

50. Find all values of a in Z5 such that the quotient ring

Z5[x]/(x3 + 2x2 + ax+ 3)

is a field. Justify your answer.

51. Let R be a commutative ring with identity and let U be maximal among non-finitely generated
ideals of R. Prove U is a prime ideal.

52. Let R be a commutative ring with identity and let U be maximal among non-principal ideals
of R. Prove U is a prime ideal.

53. Let R be a non-zero commutative ring with 1 and S a multiplicative subset of R not con-
taining 0. Show that if P is maximal in the set of ideals of R not intersecting S, then P is a
prime ideal.

54. Prove that the set of nilpotent elements of a commutative ring R is contained in the inter-
section of all prime ideals of R.

55. [NEW]
Let R be a ring in which there are no non-zero nilpotent elements. Prove that every idempo-
tent is central.

56. Let R be a non-zero commutative ring with 1.

(a) Let S be a multiplicative subset of R not containing 0 and let P be maximal in the set
of ideals of R not intersecting S. Show that P is a prime ideal.

(b) Show that the set of nilpotent elements of R is the intersection of all prime ideals.

57. Let R be a commutative ring with identity and let x ∈ R be a non-nilpotent element. Prove
that there exists a prime ideal P of R such that x 6∈ P .

58. Let R be a commutative ring with identity and let S be the set of all elements of R that are
not zero-divisors. Show that there is a prime ideal P such that P ∩ S is empty. (Hint: Use
Zorn’s Lemma.)
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59. Let R be a commutative ring with identity and let C be a chain of prime ideals of R. Show
that

⋃
P∈C P and

⋂
P∈C P are prime ideals of R.

60. Let R be a commutative ring and P a prime ideal of R. Show that there is a prime ideal
P0 ⊆ P that does not properly contain any prime ideal.

61. Let R be a commutative ring with 1 such that for every x in R there is an integer n > 1
(depending on x) such that xn = x. Show that every prime ideal of R is maximal.

62. Let R be a commutative ring with 1 in which every ideal is a prime ideal. Prove that R is a
field. (Hint: For a 6= 0 consider the ideals (a) and (a2).)

63. Let D be a principal ideal domain. Prove that every nonzero prime ideal of D is a maximal
ideal.

64. Show that if R is a finite commutative ring with identity, then every prime ideal of R is a
maximal ideal.

65. Let R = C[0, 1] be the ring of all continuous real-valued functions on [0, 1], with addition and
multiplication defined as follows. For f, g ∈ R and x ∈ [0, 1],

(f + g)(x) = f(x) + g(x)
(fg)(x) = f(x)g(x).

Prove that if M is a maximal ideal of R, then there is a real number x0 ∈ [0, 1] such that
M = {f ∈ R | f(x0) = 0}.

66. Let R be a commutative ring with identity, and let P ⊂ Q be prime ideals of R. Prove that
there exist prime ideals P ∗,Q∗ satisfying P ⊆ P ∗ ⊂ Q∗ ⊆ Q, such that there are no prime
ideals strictly between P ∗ and Q∗. HINT: Fix x ∈ Q− P and show that there exists a prime
ideal P ∗ containing P , contained in Q and maximal with respect to not containing x.

67. Let R be a commutative ring with 1. An ideal I of R is called a primary ideal if I 6= R and
for all x, y ∈ R with xy ∈ I, either x ∈ I or yn ∈ I for some integer n > 1.

(a) Show that an ideal I of R is primary if and only if R/I 6= 0 and every zero-divisor in
R/I is nilpotent.

(b) Show that if I is a primary ideal of R then the radical Rad(I) of I is a prime ideal.
(Recall that Rad(I) = {x ∈ R | xn ∈ I for some n}.)

Commutative Rings

68. Let R be a commutative ring with identity. Show that R is an integral domain if and only
if R is a subring of a field.

69. Let R be a commutative ring with identity. Show that if x and y are nilpotent elements of R
then x+ y is nilpotent and the set of all nilpotent elements is an ideal in R.

70. Let R be a commutative ring with identity. An ideal I of R is irreducible if it cannot be
expressed as the intersection of two ideals of R neither of which is contained in the other.
Show the following.

(a) If P is a prime ideal then P is irreducible.

(b) If x is a non-zero element of R, then there is an ideal Ix, maximal with respect to the
property that x 6∈ Ix, and Ix is irreducible.

(c) If every irreducible ideal of R is a prime ideal, then 0 is the only nilpotent element of R.
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71. Let R be a commutative ring with 1 and let I be an ideal of R satisfying I2 = {0}. Show that
if a+ I ∈ R/I is an idempotent element of R/I, then the coset a+ I contains an idempotent
element of R.

72. Let R be a commutative ring with identity that has exactly one prime ideal P . Prove the
following.

(a) R/P is a field.

(b) R is isomorphic to RP , the ring of quotients of R with respect to the multiplicative set
R− P = {s ∈ R | s 6∈ P}.

73. Let R be a commutative ring with identity and σ : R→ R a ring automorphism.

(a) Show that F = {r ∈ R | σ(r) = r} is a subring of R and the identity of R is in F .

(b) Show that if σ2 is the identity map on R, then each element of R is the root of a monic
polynomial of degree two in F [x].

74. Let R be a commutative ring with identity that has exactly three ideals, {0}, I, and R.

(a) Show that if a 6∈ I, then a is a unit of R.

(b) Show that if a, b ∈ I then ab = 0.

75. Let R be a commutative ring with 1. Show that if u is a unit in R and n is nilpotent, then
u+ n is a unit.

76. Let R be a commutative ring with identity. Suppose that for every a ∈ R, either a or 1 − a
is invertible. Prove that N = {a ∈ R | a is not invertible} is an ideal of R.

77. Let R be a commutative ring in which any two ideals are comparable (that is, either I ⊆ J
or J ⊆ I). Prove that every finitely generated ideal of R is principal.

78. Let R be a commutative ring with 1. Show that the sum of any two principal ideals of R is
principal if and only if every finitely generated ideal of R is principal.

79. Let R be an integral domain. Show that if all prime ideals of R are principal, then R is a
Principal Ideal Domain.

80. Let R be a commutative ring with identity such that not every ideal is a principal ideal.

(a) Show that there is an ideal I maximal with respect to the property that I is not a
principal ideal.

(b) If I is the ideal of part (a), show that R/I is a principal ideal ring.

81. Recall that if R ⊆ S is an inclusion of commutative rings (with the same identity) then an
element s ∈ S is integral over R if s satisfies some monic polynomial with coefficients in R.
Prove the equivalence of the following statements.
(i) s is integral over R.
(ii) R[s] is finitely generated as an R-module.
(iii) There exists a faithful R[s] module which is finitely generated as an R-module.

82. Recall that if R ⊆ S is an inclusion of commutative rings (with the same identity) then S is an
integral extension of R if every element of S satisfies some monic polynomial with coefficients
in R. Prove that if R ⊆ S ⊆ T are commutative rings with the same identity, then S is
integral over R and T is integral over S if and only if T is integral over R.
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83. Let R ⊆ S be commutative domains with the same identity, and assume that S is an integral
extension of R. Let I be a nonzero ideal of S. Prove that I ∩R is a nonzero ideal of R.

Domains

84. Suppose R is a domain and I and J are ideals of R such that IJ is principal. Show that I
(and by symmetry J) is finitely generated.

[Hint: If IJ = (a), then a =
n∑

i=1

xiyi for some xi ∈ I and yi ∈ J . Show the xi generate I.]

85. Prove that if D is a Euclidean Domain, then D is a Principal Ideal Domain.

86. Show that if p is a prime such that there is an integer b with p = b2 + 4, then Z[
√
p] is not a

unique factorization domain.

87. Show that if p is a prime such that p ≡ 1 (mod 4), then Z[
√
p] is not a unique factorization

domain.

88. Let D = Z(
√

5) = {m + n
√

5 | m,n ∈ Z} — a subring of the field of real numbers and
necessarily an integral domain (you need not show this) — and F = Q(

√
5) its field of

fractions. Show the following:

(a) x2 + x− 1 is irreducible in D[x] but not in F [x].

(b) D is not a unique factorization domain.

89. Let D = Z(
√

21) = {m + n
√

21 | m,n ∈ Z} and F = Q(
√

21), the field of fractions of D.
Show the following:

(a) x2 − x− 5 is irreducible in D[x] but not in F [x].

(b) D is not a unique factorization domain.

90. Let D = Z(
√
−11) = {m+n

√
−11 | m,n ∈ Z} and F = Q(

√
−11) its field of fractions. Show

the following:

(a) x2 − x+ 3 is irreducible in D[x] but not in F [x].

(b) D is not a unique factorization domain.

91. Let D = Z(
√

13) = {m+ n
√

13 | m,n ∈ Z} and F = Q(
√

13) its field of fractions. Show the
following:

(a) x2 + 3x− 1 is irreducible in D[x] but not in F [x].

(b) D is not a unique factorization domain.

92. Let D be an integral domain and F a subring of D that is a field. Show that if each element
of D is algebraic over F , then D is a field.

93. Let R be an integral domain containing the subfield F and assume that R is finite dimensional
over F when viewed as a vector space over F . Prove that R is a field.

94. Let D be an integral domain.

(a) For a, b ∈ D define a greatest common divisor of a and b.

(b) For x ∈ D denote (x) = {dx | d ∈ D}. Prove that if (a) + (b) = (d), then d is a greatest
common divisor of a and b.
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95. Let D be a principal ideal domain.

(a) For a, b ∈ D, define a least common multiple of a and b.

(b) Show that d ∈ D is a least common multiple of a and b if and only if (a) ∩ (b) = (d).

96. Let D be a principal ideal domain and let a, b ∈ D.

(a) Show that there is an element d ∈ D that satisfies the properties
i. d|a and d|b and

ii. if e|a and e|b then e|d.

(b) Show that there is an element m ∈ D that satisfies the properties
i. a|m and b|m and

ii. if a|e and b|e then m|e.

97. Let R be a principal ideal domain. Show that if (a) is a nonzero ideal in R, then there are
only finitely many ideals in R containing (a).

98. Let D be a unique factorization domain and F its field of fractions. Prove that if d is an
irreducible element in D, then there is no x ∈ F such that x2 = d.

99. Let D be a Euclidean domain. Prove that every non-zero prime ideal is a maximal ideal.

100. Let π be an irreducible element of a principal ideal domain R. Prove that π is a prime element
(that is, π | ab implies π | a or π | b).

101. Let D with ϕ : D − {0} → N be a Euclidean domain. Suppose ϕ(a + b) 6 max{ϕ(a), ϕ(b)}
for all a, b ∈ D. Prove that D is either a field or isomorphic to a polynomial ring over a field.

102. Let D be an integral domain and F its field of fractions. Show that if g is an isomorphism
of D onto itself, then there is a unique isomorphism h of F onto F such that h(d) = g(d) for
all d in D.

103. Let D be a unique factorization domain such that if p and q are irreducible elements of D,
then p and q are associates. Show that if A and B are ideals of D, then either A ⊆ B or
B ⊆ A.

104. Let D be a unique factorization domain and p a fixed irreducible element of D such that if q
is any irreducible element of D, then q is an associate of p. Show the following.

(a) If d is a nonzero element of D, then d is uniquely expressible in the form upn, where u
is a unit of D and n is a non-negative integer.

(b) D is a Euclidean domain.

105. Prove that Z[
√
−2] = {a+ b

√
−2 | a, b ∈ Z} is a Euclidean domain.

106. Show that the ring Z[i] of Gaussian integers is a Euclidean ring and compute the greatest
common divisor of 5 + i and 13 using the Euclidean algorithm.

Polynomial Rings

107. Show that the polynomial f(x) = x4 + 5x2 + 3x + 2 is irreducible over the field of rational
numbers.
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108. Let D be an integral domain and D[x] the polynomial ring over D. Suppose ϕ : D[x]→ D[x]
is an isomorphism such that ϕ(d) = d for all d ∈ D. Show that ϕ(x) = ax + b for some
a, b ∈ D and that a is a unit of D.

109. Let f(x) = a0 + a1x + · · · + akx
k + · · · + anx

n ∈ Z[x] and p a prime such that p|ai for
i = 1, . . . , k − 1, p - ak, p - an, and p2 - a0. Show that f(x) has an irreducible factor in Z[x]
of degree at least k.

110. Let D be an integral domain and D[x] the polynomial ring over D in the indeterminate x.
Show that if every nonzero prime ideal of D[x] is a maximal ideal, then D is a field.

111. Let R be a commutative ring with 1 and let f(x) ∈ R[x] be nilpotent. Show that the
coefficients of f are nilpotent.

112. Show that if R is an integral domain and f(x) is a unit in the polynomial ring R[x], then
f(x) is in R.

113. Let D be a unique factorization domain and F its field of fractions. Prove that if f(x) is a
monic polynomial in D[x] and α ∈ F is a root of f , then α ∈ D.

114. Explain why F = Z3[x]/〈x3 + x2 + 2〉 is a field and find the multiplicative inverse of x2 + 1
in F .

115. (a) Show that x4 + x3 + x2 + x+ 1 is irreducible in Z3[x].

(b) Show that x4 + 1 is not irreducible in Z3[x].

116. Let F [x, y] be the polynomial ring over a field F in two indeterminates x, y. Show that the
ideal generated by {x, y} is not a principal ideal.

117. Let F be a field. Prove that the polynomial ring F [x] is a PID and that F [x, y] is not a PID.

118. Let D be an integral domain and let c be an irreducible element in D. Show that the ideal
(x, c) generated by x and c in the polynomial ring D[x] is not a principal ideal.

119. Show that if R is a commutative ring with 1 that is not a field, then R[x] is not a principal
ideal domain.

120. (a) Let Z
[
1
2

]
=
{

a
2n

∣∣ a, n ∈ Z, n > 0
}

, the smallest subring of Q containing Z and 1
2 .

Let (2x− 1) be the ideal of Z[x] generated by the polynomial 2x− 1.
Show that Z[x]/(2x− 1) ∼= Z

[
1
2

]
.

(b) Find an ideal I of Z[x] such that (2x− 1)  I  Z[x].

Non-commutative Rings

121. Let R be a ring with identity such that the identity map is the only ring automorphism of R.
Prove that the set N of all nilpotent elements of R is an ideal of R.

122. Let p be a prime. A ring S is called a p-ring if the characteristic of S is a power of p. Show
that if R is a ring with identity of finite characteristic, then R is isomorphic to a finite direct
product of p-rings for distinct primes.
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123. If R is any ring with identity, let J(R) denote the Jacobson radical of R. Show that if e is
any idempotent of R, then J(eRe) = eJ(R)e.

124. If n is a positive integer and F is any field, let Mn(F ) denote the ring of n× n matrices with
entries in F . Prove that Mn(F ) is a simple ring. Equivalently, EndF (V ) is a simple ring if V
is a finite dimensional vector space over F .

125. Let R be a ring.

(a) Show that there is a unique smallest (with respect to inclusion) ideal A such that R/A
is a commutative ring.

(b) Give an example of a ring R such that for every proper ideal I, R/I is not commutative.
Verify your example.

(c) For the ring R =

{[
a b
0 c

]
| a, b, c ∈ Z

}
with the usual matrix operations, find the

ideal A of part (a).

126. A ring R is nilpotent-free if an = 0 for a ∈ R and some positive integer n implies a = 0.

(a) Suppose there is an ideal I such that R/I is nilpotent-free. Show there is a unique
smallest (with respect to inclusion) ideal A such that R/A is nilpotent-free.

(b) Give an example of a ring R such that for every proper ideal I, R/I is not nilpotent-free.
Verify your example.

(c) Show that if R is a commutative ring with identity, then there is a proper ideal I of R
such that R/I is nilpotent-free, and find the ideal A of part (a).

Local Rings, Localization, Rings of Fractions

127. Let R be an integral domain. Construct the field of fractions F of R by defining the set F and
the two binary operations, and show that the two operations are well-defined. Show that F
has a multiplicative identity element and that every nonzero element of F has a multiplicative
inverse.

128. A local ring is a commutative ring with 1 that has a unique maximal ideal. Show that a
ring R is local if and only if the set of non-units in R is an ideal.

129. Let R be a commutative ring with 1 6= 0 in which the set of nonunits is closed under addition.
Prove that R is local, i.e., has a unique maximal ideal.

130. Let D be an integral domain and F its field of fractions. Let P be a prime ideal in D and
DP = {ab−1 | a, b ∈ D, b 6∈ P} ⊆ F . Show that DP has a unique maximal ideal.

131. Let R be a commutative ring with identity and M a maximal ideal of R. Let RM be the ring
of quotients of R with respect to the multiplicative set R−M = {s ∈ R | s 6∈M}. Show the
following.

(a) MM = {as | a ∈M, s 6∈M} is the unique maximal ideal of RM .

(b) The fields R/M and RM/MM are isomorphic.

132. Let R be an integral domain, S a multiplicative set, and let S−1R = { rs | r ∈ R, s ∈ S}
(contained in the field of fractions of R). Show that if P is a prime ideal of R, then S−1P is
either a prime ideal of S−1R or else equals S−1R.
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133. Let R be a commutative ring with identity and P a prime ideal of R. Let RP be the ring of
quotients of R with respect to the set R − P = {s ∈ R | s 6∈ P}. Show that RP /PP is the
field of fractions of the integral domain R/P .

134. Let D be an integral domain and F its field of fractions. Denote byM the set of all maximal

ideals of D. For M ∈M, let DM = {as | a, s ∈ D, s 6∈M} ⊂ F . Show that
⋂

M∈M
DM = D.

135. Let R be a commutative ring with 1 and D a multiplicative subset of R containing 1. Let J
be an ideal in the ring of fractions D−1R and let

I =
{
a ∈ R

∣∣∣ a
d
∈ J for some d ∈ D

}
.

Show that I is an ideal of R.

136. Let D be a principal ideal domain and let P be a non-zero prime ideal. Show that DP , the
localization of D at P , is a principal ideal domain and has a unique irreducible element, up
to associates.

Chains and Chain Conditions

137. Let R be a commutative ring with identity. Prove that any non-empty set of prime ideals
of R contains maximal and minimal elements.

138. Let R be an integral domain that satisfies the descending chain condition; i.e., whenever
I1 ⊇ I2 ⊇ I3 ⊇ · · · is a descending chain of ideals of R, there exists m ∈ N such that Ik = Im
for all k > m. Prove that R is a field.

139. Let R be a ring satisfying the descending chain condition on right ideals. Prove that if R is
not a division ring, then R contains non-trivial zero divisors.

140. Let R be a commutative ring with 1. We say R satisfies the ascending chain condition if
whenever I1 ⊆ I2 ⊆ I3 ⊆ · · · is an ascending chain of ideals, there is an integer N such that
Ik = IN for all k > N . Show that R satisfies the ascending chain condition if and only if
every ideal of R is finitely generated.

141. Define Noetherian ring and prove that if R is Noetherian, then R[x] is Noetherian.

142. Let R be a commutative Noetherian ring with identity. Prove that there are only finitely
many minimal prime ideals of R.

143. Let R be a commutative Noetherian ring in which every 2-generated ideal is principal. Prove
that R is a Principal Ideal Domain.

144. Let R be a commutative Noetherian ring with identity and let I be an ideal in R. Let
J = Rad(I). Prove that there exists a positive integer n such that jn ∈ I for all j ∈ J .

145. Let R be a commutative Noetherian domain with identity. Prove that every nonzero ideal
of R contains a product of nonzero prime ideals of R.

146. Let R be a ring satisfying the descending chain condition on right ideals. If J(R) denotes the
Jacobson radical of R, prove that J(R) is nilpotent.
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147. Show that if R is a commutative Noetherian ring with identity, then the polynomial ring R[x]
is also Noetherian.

148. Let P be a nonzero prime ideal of the commutative Noetherian domain R. Assume P is
principal. Prove that there does not exist a prime ideal Q satisfying (0) < Q < P .

149. Let R be a commutative Noetherian ring. Prove that every nonzero ideal A of R contains a
product of prime ideals (not necessarily distinct) each of which contains A.

150. Let R be a commutative ring with 1 and let M be an R-module that is not Artinian (Noethe-
rian, of finite composition length). Let I be the set of ideals I of R such that there exists
an R-submodule N of M with the property that N/NI is not Artinian (Noetherian, of finite
composition length, respectively). Show that if A ∈ I is a maximal element of I, then A is a
prime ideal of R.
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