Review of Linear Algebra for Statistics

Brian Vegetabile
2017 Statistics Bootcamp
Department of Statistics
University of California, Irvine
September 22nd, 2016

Overview I

- We wrap up the math topics by reviewing some linear algebra concepts
- Linear algebra will become an important tool for you as a statistician
- You'll be using matrix operations most of the year, but the main necessity for linear algebra will come in STAT 200C.

Overview II

- Here are a few good references for reviewing undergraduate linear algebra in general
- Introduction to Linear Algebra by Gilbert Strang
- Gilbert Strang's Lectures on YouTube (https://www.youtube.com/watch?v=ZK30402wf1c)
- Linear Algebra and it's Applications by David Lay
- Linear Algebra by Friedberg, Insel, Spence (Upper division text)
- Graduate Level Linear Algebra References for Statistics
- Matrix Algebra from a Statisticians Perspective by David Harville
- Appendix of Linear Regression Analysis by George Seber and Alan Lee
- Appendix of Applied Linear Regression by Sanford Weisberg

Motivation I

- A familiarity with matrices will allow you to expand the types of statistics you can do.
- Consider the multivariate normal distribution $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

which is said to be "non-degenerate" when $\boldsymbol{\Sigma}$ is positive-definite.

- Additionally, \mathbf{x} is a real-valued n-dimensional column vector and $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$
- To investigate many of the properties of this distribution we'll need matrix algebra

Motivation II

- We'll specifically use this distribution to explore linear regression
- Let Y be a random variable which has some mean μ which we measure under error , ϵ, specifically

$$
Y=\mu+\epsilon
$$

- We will focus on linear models where

$$
\mu=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p-1} x_{p-1}
$$

where \mathbf{x} are explanatory variables and each β_{j} is unknown and to be estimated

Motivation III

- If we consider a random sample of n observations we will have

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
x_{10} & x_{11} & \ldots & x_{1, p-1} \\
x_{20} & x_{21} & \ldots & x_{2, p-1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 0} & x_{n 1} & \ldots & x_{n, p-1}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p-1}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right.
$$

- Or more simply written

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- We will eventually show that $\mathbf{Y} \sim N_{n}(\mathbf{X} \boldsymbol{\beta}, \boldsymbol{\Sigma})$.
- Matrix algebra will play a very important role throughout understanding linear algebra

Defining a Matrix

- A rectangular array of real numbers is called a matrix.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

- A matrix with m rows and n columns is referred to as an $m \times n$ matrix
- Matrices will often be denoted by boldface letters \mathbf{X}.
- Additionally we can denote a matrix $\mathbf{X}=\left\{a_{i j}\right\}$

Basic Matrix Operations I

- Scalar Multiplication: Consider a matrix \mathbf{A} and a scalar k, then

$$
k \mathbf{A}=k\left\{a_{i j}\right\}=\left\{k a_{i j}\right\}
$$

- Matrix Addition: Consider two matrices \mathbf{A} and \mathbf{B}, if they are both of dimension $m \times n$ then we define addition between these two matrices. Specifically $\mathbf{A}+\mathbf{B}$ is the $m \times n$ matrix $\left\{a_{i j}+b_{i j}\right\}$ for all pairs i, j.
- Matrix addition is commutative and associative
- Additionally matrices having the same number of rows and columns are said to be conformal for addition (or subtraction).

Basic Matrix Operations II

- Matrix Multiplication: Let $\mathbf{A}=\left\{a_{i j}\right\}$ represent an $m \times n$ matrix and $\mathbf{B}=\left\{b_{i j}\right\}$ a $p \times q$ matrix. When $n=p$ (when \mathbf{A} has the same number of columns as \mathbf{B} has rows), then the matrix product $\mathbf{A B}$ is defined to be the $m \times q$ matrix whose $i j^{\text {th }}$ element is

$$
\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

- The formation $\mathbf{A B}$ is called the premultiplication of \mathbf{B} by \mathbf{A} or the postmultiplication of \mathbf{A} by \mathbf{B}.
- When $n \neq p$ then the matrix product $\mathbf{A B}$ is undefined.
- Two $n \times n$ matrices \mathbf{A} and \mathbf{B} are said to commute if $\mathbf{A B}=\mathbf{B A}$

Basic Matrix Operations III

- Matrix Transpose: The transpose of an $m \times n$ matrix \mathbf{A}, to be denoted \mathbf{A}^{T} or \mathbf{A}^{\prime} is the $n \times m$ matrix whose $i j^{t h}$ element is the $j i^{\text {th }}$ element of \mathbf{A}.
- For any matrix $\mathbf{A},\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- For any two matrices \mathbf{A} and \mathbf{B} which are conformal for addition

$$
(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}
$$

- Finally any two matrices \mathbf{A} and \mathbf{B} for which the product is defined,

$$
(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}
$$

Vectors

- A matrix with only one column

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)
$$

is called an m-dimensional column vector

- A matrix with only one row is called a row vector
- Vectors will often be denoted by lower case bold symbols x .
- Clearly the transpose of an m-dimensional column vector is an m-dimensional row vector

Square Matrices

- One of the most important types of matrices in all of statistics is the square matrix
- A matrix having the same number of rows as it does columns is called a square matrix
- An $n \times n$ square matrix is said to have order n.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

- The set of terms $\left\{a_{i i}\right\}$ are called the diagonal elements of the square matrix and the terms $\left\{a_{i i}\right\}, i \neq j$ are the off-diagonal terms

Symmetric Matrices

- A matrix \mathbf{A} is said to be symmetric is $\mathbf{A}^{\prime}=\mathbf{A}$
- Thus a symmetric matrix is a square matrix where the $i j^{t h}$ element equals the $j i^{\text {th }}$ element.

$$
\left(\begin{array}{ccc}
5 & 4 & 0 \\
4 & -10 & -2 \\
0 & -2 & 3
\end{array}\right)
$$

Diagonal Matrix

- A diagonal matrix is a square matrix whose off-diagonal elements are zero, that is

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

- The effect of premultiplying an $m \times n$ matrix \mathbf{A} by a $m \times m$ diagonal matrix $\mathbf{D}, \mathbf{D A}$ is to multiply each element of the $i^{\text {th }}$ row of \mathbf{A} by the element $d_{i i}$.

Identity Matrix

- Often the most useful diagonal matrix is the identity matrix \mathbf{I}_{n} where the subscript n denotes the dimension of the identity matrix $(n \times n)$. That is,

$$
\mathbf{I}_{n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

often the subscript n is dropped.

- An important property is

$$
\mathbf{I} \mathbf{A}=\mathbf{A} \mathbf{I}=\mathbf{A}
$$

Matrix Inversion I

- For any scalar c there is a number called the inverse of c, say d such that the product of $c d=1$.
- For example, if $c=3$, then $d=1 / c=1 / 3$, and the inverse of 3 is $1 / 3$.
- This can be extended to square matrices

Definition (Matrix Inverse)

An $n \times n$ square matrix \mathbf{A} is called invertible (also nonsingular and non-degenerate) if there exists an $n \times n$ square matrix \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I}_{n}
$$

If this is the case, then the matrix \mathbf{B} is uniquely determined by \mathbf{A} and is called the inverse of \mathbf{A} denoted \mathbf{A}^{-1}

Matrix Inversion II

- The collection of matrices that have an inverse are called full rank, invertible, or nonsingular.
- A square matrix that is not invertible, is of less than full rank or singular.
- The identity matrix is its own inverse $\left(\mathbf{I}_{n}\right)^{-1}=\mathbf{I}_{n}$.

Inverting a 2×2 Matrix. I

- Consider the following matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

- the inverse of \mathbf{A} denoted \mathbf{A}^{-1} is

$$
\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

where the determinant of $\mathbf{A},|\mathbf{A}|=a_{11} a_{22}-a_{12} a_{21}$

- By our previous definitions we should have that $\mathbf{A A}^{-1}=\mathbf{I}$

06 - Linear Algebra Review

Defining

Matrices
Basic Matrix Operations

Special Types of Matrices

Matrix Inversion

Properties of Matrices

Operations of Matrices

Simple Linear Regression

Inverting a 2×2 Matrix. II

$$
\begin{aligned}
\mathbf{A A}^{-1} & =\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) \\
& =\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{ll}
a_{11} a_{22}-a_{12} a_{21} & -a_{11} a_{12}+a_{12} \\
a_{21} a_{22}-a_{22} a_{21} & -a_{21} a_{12}+a_{22}
\end{array}\right. \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

- This satisfies our requirement

Orthogonality

- Two vectors \mathbf{a} and \mathbf{b} (of the same length), are orthogonal if

$$
\mathbf{a}^{\prime} \mathbf{b}=0
$$

- An $r \times c$ matrix \mathbf{Q} has orthonormal columns if its columns, viewed as a set $c \leq r$ different $r \times 1$ vectors, are orthogonal and in addition have length 1.
- This is equivalent to

$$
\mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{I}
$$

- Additionally a square matrix \mathbf{A} is orthogonal if

$$
\mathbf{A}^{\prime} \mathbf{A}=\mathbf{A} \mathbf{A}^{\prime}=\mathbf{I}
$$

so $\mathbf{A}^{-1}=\mathbf{A}^{\prime}$.

Linear Dependence and Rank I

- Consider an $n \times p$ matrix \mathbf{X} with columns given by the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}$ (we only consider the case when $p \leq n$.)
- We say that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}$ are linearly dependent if we can find multipliers a_{1}, \ldots, a_{p} not all equal to 0 , such that

$$
\sum_{i=1}^{p} a_{i} \mathbf{x}_{i}=0
$$

Linear Dependence and Rank II

- If no such multipliers exist, then we say the vectors are linearly independent, and the matrix is full-rank.
- In general the rank of a matrix is the maximum number of \mathbf{x}_{i} which form a linearly independent set.
- The matrix $\mathbf{X}^{\prime} \mathbf{X}$ is a $p \times p$ matrix.
- If \mathbf{X} has rank p, so does $\mathbf{X}^{\prime} \mathbf{X}$.
- Full Rank matrices always have an inverse
- Square matrices less than full rank never have an inverse

More Properties of Matrices I

Definition (Positive-Semidefinite Matrix)

A symmetric matrix \mathbf{A} is said to be positive-semidefinite (p.s.d) if and only if

$$
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} \geq 0
$$

for all \mathbf{x}
Definition (Positive-Definite Matrix)
A symmetric matrix \mathbf{A} is said to be positive-definite (p.d.) if

$$
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}>0
$$

for all $\mathbf{x}, \mathbf{x} \neq 0$. Note that a matrix that is p.d. is also p.s.d.

More Properties of Matrices II

Definition (Idempotent Matrices)

A matrix \mathbf{P} is idempotent if $\mathbf{P P}=\mathbf{P}^{2}=\mathbf{P}$. A symmetric idempotent matrix is called a projection matrix.

Trace of a Matrix

- An important operation on square matrices is called the trace.
- While not blatantly obvious at the moment, the trace of a square is encountered throughout statistics and therefore we'll define it

Definition (trace)

The trace of a square matrix $\mathbf{A}=\left\{a_{i j}\right\}$ of order n is defined to be the sum of the n diagonal elements of \mathbf{A} and is said to be the symbol $\operatorname{tr}(\mathbf{A})$. Thus

$$
\operatorname{tr}(\mathbf{A})=a_{11}+a_{22}+\cdots+a_{n n}
$$

Vector Differentiation

- Finally we introduce Differentiation for Vectors
- If $\frac{d}{d \beta}=\left(\frac{d}{d \beta_{i}}\right)$, then
(1) Consider the vector a,

$$
\frac{d\left(\beta^{\prime} \mathbf{a}\right)}{d \beta}=\mathbf{a}
$$

2 If \mathbf{A} is a symmetric matrix, then

$$
\frac{d\left(\beta^{\prime} \mathbf{A} \beta\right)}{d \beta}=2 \mathbf{A} \beta
$$

Simple Linear Regression I

- Consider a random sample of n observations such

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\epsilon_{i}
$$

where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and independent observations.

- Here the x_{i} are observed and known and we would like to estimate the parameter β.
- We can rewrite into matrix notation for the n observations

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & x_{11} \\
1 & x_{21} \\
\vdots & \vdots \\
1 & x_{n 1}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right)
$$

or

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Simple Linear Regression II

- One method that can be used to estimate $\boldsymbol{\beta}$ is through the method of least squares
- The idea is to find the vector $\boldsymbol{\beta}$ which minimizes the squared errors

$$
\begin{aligned}
\sum_{i}^{n} \epsilon_{i}^{2} & =\boldsymbol{\epsilon}^{\prime} \boldsymbol{\epsilon} \\
& =(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

- That is

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\beta}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

Simple Linear Regression III

Let's expand this function

$$
\begin{aligned}
(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) & =\mathbf{Y}^{\prime} \mathbf{Y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}-\mathbf{Y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X} \mathbf{X} \boldsymbol{X} \boldsymbol{\beta} \\
& =\mathbf{Y}^{\prime} \mathbf{Y}-2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

where the above holds since $\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{Y}^{\prime} \mathbf{X} \boldsymbol{\beta}$ which is a scalar.

Simple Linear Regression IV

Now

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) & =\frac{d}{d \boldsymbol{\beta}}\left(\mathbf{Y}^{\prime} \mathbf{Y}-2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right) \\
& =-2 \mathbf{X}^{\prime} \mathbf{Y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

We can set this equal to zero and thus

$$
\mathbf{X}^{\prime} \mathbf{Y}=\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}
$$

Now provided the inverse of $\mathbf{X}^{\prime} \mathbf{X}$ exists we have.

$$
\hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

Simple Linear Regression V

Let us consider $\mathbf{X}^{\prime} \mathbf{X}$, its inverse will exist only if it is full rank and/or nonsingular.

$$
\begin{gathered}
\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right) \\
\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cc}
n & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right)
\end{gathered}
$$

The determinant is $\operatorname{det}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}$

Simple Linear Regression VI

Consider if $\mathbf{x}=\mathbf{1}=\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)^{T}$, Then

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{X}^{\prime} \mathbf{X}\right) & =n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \\
& =n^{2}-n^{2}=0
\end{aligned}
$$

We also see that

$$
\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{cc}
n & n \\
n & n
\end{array}\right)
$$

which is not full rank. Thus one condition for inversion is that $\mathrm{x} \neq 1$

Simple Linear Regression VII

Continuing we can solve for $\hat{\boldsymbol{\beta}}$, by our formula for 2×2 inversions we have

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}\left(\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\
-\sum_{i=1}^{n} x_{i} & n
\end{array}\right)
$$

and

$$
\mathbf{X}^{T} \mathbf{Y}=\binom{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i} y_{i}}
$$

Defining

Matrices
Basic Matrix Operations

Special Types of Matrices

Matrix
Inversion
Properties of Matrices

Operations of Matrices

Simple Linear Regression

Simple Linear Regression VIII

Without going into all fun of calculating this for you guys, it can be shown that

$$
\binom{\hat{\beta}_{0}}{\hat{\beta}_{1}}=\left(\begin{array}{c}
\bar{y}-\hat{\beta}_{1} \bar{x} \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i} \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{array}\right)
$$

References

Stephen Abbott. Understanding analysis. Springer, 2001. George Casella and Roger L Berger. Statistical inference. Second edition, 2002.

EJ Dudewicz and SN Mishra. Modern mathematical statistics. john wilsey \& sons. Inc., West Sussex, 1988.
Sheldon Ross. A first course in probability. Pearson, ninth edition, 2014.
Mark J Schervish. Probability and Statistics. 2014.

