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Overview I

• We wrap up the math topics by reviewing some linear
algebra concepts

• Linear algebra will become an important tool for you as a
statistician

• You’ll be using matrix operations most of the year, but
the main necessity for linear algebra will come in STAT
200C.
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Overview II

• Here are a few good references for reviewing
undergraduate linear algebra in general

• Introduction to Linear Algebra by Gilbert Strang
• Gilbert Strang’s Lectures on YouTube

(https://www.youtube.com/watch?v=ZK3O402wf1c)
• Linear Algebra and it’s Applications by David Lay
• Linear Algebra by Friedberg, Insel, Spence (Upper division

text)

• Graduate Level Linear Algebra References for Statistics
• Matrix Algebra from a Statisticians Perspective by David

Harville
• Appendix of Linear Regression Analysis by George Seber

and Alan Lee
• Appendix of Applied Linear Regression by Sanford

Weisberg
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Motivation I

• A familiarity with matrices will allow you to expand the
types of statistics you can do.

• Consider the multivariate normal distribution
X = (X1, X2, . . . , Xn)T

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
which is said to be “non-degenerate” when Σ is
positive-definite.

• Additionally, x is a real-valued n-dimensional column
vector and |Σ| is the determinant of Σ

• To investigate many of the properties of this distribution
we’ll need matrix algebra
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Motivation II

• We’ll specifically use this distribution to explore linear
regression

• Let Y be a random variable which has some mean µ
which we measure under error ,ε, specifically

Y = µ+ ε

• We will focus on linear models where

µ = β0 + β1x1 + · · ·+ βp−1xp−1

where x are explanatory variables and each βj is unknown
and to be estimated
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Motivation III

• If we consider a random sample of n observations we will
have

Y1

Y2
...
Yn

 =


x10 x11 . . . x1,p−1

x20 x21 . . . x2,p−1
...

...
...

...
xn0 xn1 . . . xn,p−1




β0

β1
...

βp−1

+


ε1
ε2
...
εn


• Or more simply written

Y = Xβ + ε

• We will eventually show that Y ∼ Nn(Xβ,Σ).

• Matrix algebra will play a very important role throughout
understanding linear algebra
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Defining a Matrix

• A rectangular array of real numbers is called a matrix.
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


• A matrix with m rows and n columns is referred to as an
m× n matrix

• Matrices will often be denoted by boldface letters X.

• Additionally we can denote a matrix X = {aij}
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Basic Matrix Operations I

• Scalar Multiplication: Consider a matrix A and a scalar k,
then

kA = k{aij} = {kaij}

• Matrix Addition: Consider two matrices A and B, if they
are both of dimension m× n then we define addition
between these two matrices. Specifically A + B is the
m× n matrix {aij + bij} for all pairs i, j.

• Matrix addition is commutative and associative
• Additionally matrices having the same number of rows and

columns are said to be conformal for addition (or
subtraction).
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Basic Matrix Operations II

• Matrix Multiplication: Let A = {aij} represent an m× n
matrix and B = {bij} a p× q matrix. When n = p (when
A has the same number of columns as B has rows), then
the matrix product AB is defined to be the m× q matrix
whose ijth element is

n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj

• The formation AB is called the premultiplication of B by
A or the postmultiplication of A by B.

• When n 6= p then the matrix product AB is undefined.
• Two n× n matrices A and B are said to commute if

AB = BA
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Basic Matrix Operations III

• Matrix Transpose: The transpose of an m× n matrix A,
to be denoted AT or A′ is the n×m matrix whose ijth

element is the jith element of A.

• For any matrix A, (A′)′ = A
• For any two matrices A and B which are conformal for

addition

(A + B)′ = A′ + B′

• Finally any two matrices A and B for which the product
is defined,

(AB)′ = B′A′
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Vectors

• A matrix with only one column
a1

a2
...
am


is called an m-dimensional column vector

• A matrix with only one row is called a row vector

• Vectors will often be denoted by lower case bold symbols
x.

• Clearly the transpose of an m-dimensional column vector
is an m-dimensional row vector
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Square Matrices

• One of the most important types of matrices in all of
statistics is the square matrix

• A matrix having the same number of rows as it does
columns is called a square matrix

• An n× n square matrix is said to have order n.
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann


• The set of terms {aii} are called the diagonal elements of

the square matrix and the terms {aii}, i 6= j are the
off-diagonal terms
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Symmetric Matrices

• A matrix A is said to be symmetric is A′ = A

• Thus a symmetric matrix is a square matrix where the
ijth element equals the jith element. 5 4 0

4 −10 −2
0 −2 3


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Diagonal Matrix

• A diagonal matrix is a square matrix whose off-diagonal
elements are zero, that is

d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


• The effect of premultiplying an m× n matrix A by a
m×m diagonal matrix D, DA is to multiply each
element of the ith row of A by the element dii.
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Identity Matrix

• Often the most useful diagonal matrix is the identity
matrix In where the subscript n denotes the dimension of
the identity matrix (n× n). That is,

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


often the subscript n is dropped.

• An important property is

IA = AI = A
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Matrix Inversion I

• For any scalar c there is a number called the inverse of c,
say d such that the product of cd = 1.

• For example, ifc = 3, then d = 1/c = 1/3, and the inverse
of 3 is 1/3.

• This can be extended to square matrices

Definition (Matrix Inverse)

An n× n square matrix A is called invertible (also nonsingular
and non-degenerate) if there exists an n× n square matrix B
such that

AB = BA = In

If this is the case, then the matrix B is uniquely determined by
A and is called the inverse of A denoted A−1

16 / 35



06 - Linear
Algebra
Review

Defining
Matrices

Basic Matrix
Operations

Special Types
of Matrices

Matrix
Inversion

Properties of
Matrices

Operations of
Matrices

Simple Linear
Regression

References

Matrix Inversion II

• The collection of matrices that have an inverse are called
full rank, invertible, or nonsingular.

• A square matrix that is not invertible, is of less than full
rank or singular.

• The identity matrix is its own inverse (In)−1 = In.
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Inverting a 2× 2 Matrix. I

• Consider the following matrix

A =

(
a11 a12

a21 a22

)
• the inverse of A denoted A−1 is

A−1 =
1

|A|

(
a22 −a12

−a21 a11

)
where the determinant of A, |A| = a11a22 − a12a21

• By our previous definitions we should have that
AA−1 = I
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Inverting a 2× 2 Matrix. II

AA−1 =
1

a11a22 − a12a21

(
a11 a12

a21 a22

)(
a22 −a12

−a21 a11

)
=

1

a11a22 − a12a21

(
a11a22 − a12a21 −a11a12 + a12a11

a21a22 − a22a21 −a21a12 + a22 + a11

)
=

(
1 0
0 1

)

• This satisfies our requirement
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Orthogonality

• Two vectors a and b (of the same length), are orthogonal
if

a′b = 0

• An r × c matrix Q has orthonormal columns if its
columns, viewed as a set c ≤ r different r × 1 vectors, are
orthogonal and in addition have length 1.

• This is equivalent to

Q′Q = I

• Additionally a square matrix A is orthogonal if

A′A = AA′ = I

so A−1 = A′.
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Linear Dependence and Rank I

• Consider an n× p matrix X with columns given by the
vectors x1,x2, . . . ,xp (we only consider the case when
p ≤ n.)

• We say that x1,x2, . . . ,xp are linearly dependent if we
can find multipliers a1, . . . , ap not all equal to 0, such
that

p∑
i=1

aixi = 0
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Linear Dependence and Rank II

• If no such multipliers exist, then we say the vectors are
linearly independent, and the matrix is full-rank.

• In general the rank of a matrix is the maximum number of
xi which form a linearly independent set.

• The matrix X′X is a p× p matrix.

• If X has rank p, so does X′X.

• Full Rank matrices always have an inverse

• Square matrices less than full rank never have an inverse
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More Properties of Matrices I

Definition (Positive-Semidefinite Matrix)

A symmetric matrix A is said to be positive-semidefinite
(p.s.d) if and only if

x′Ax ≥ 0

for all x

Definition (Positive-Definite Matrix)

A symmetric matrix A is said to be positive-definite (p.d.) if

x′Ax > 0

for all x,x 6= 0. Note that a matrix that is p.d. is also p.s.d.
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More Properties of Matrices II

Definition (Idempotent Matrices)

A matrix P is idempotent if PP = P2 = P. A symmetric
idempotent matrix is called a projection matrix.
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Trace of a Matrix

• An important operation on square matrices is called the
trace.

• While not blatantly obvious at the moment, the trace of a
square is encountered throughout statistics and therefore
we’ll define it

Definition (trace)

The trace of a square matrix A = {aij} of order n is defined
to be the sum of the n diagonal elements of A and is said to
be the symbol tr(A). Thus

tr(A) = a11 + a22 + · · ·+ ann
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Vector Differentiation

• Finally we introduce Differentiation for Vectors

• If d
dβ =

(
d
dβi

)
, then

1 Consider the vector a,

d(β′a)

dβ
= a

2 If A is a symmetric matrix, then

d(β′Aβ)

dβ
= 2Aβ
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Simple Linear Regression I

• Consider a random sample of n observations such

Yi = β0 + β1xi,1 + εi

where εi ∼ N(0, σ2) and independent observations.

• Here the xi are observed and known and we would like to
estimate the parameter β.

• We can rewrite into matrix notation for the n
observations

Y1

Y2
...
Yn

 =


1 x11

1 x21
...

...
1 xn1


(
β0

β1

)
+


ε1
ε2
...
εn


or

Y = Xβ + ε
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Simple Linear Regression II

• One method that can be used to estimate β is through
the method of least squares

• The idea is to find the vector β which minimizes the
squared errors

n∑
i

ε2i = ε′ε

= (Y −Xβ)′(Y −Xβ)

• That is

β̂ = arg min
β

(Y −Xβ)′(Y −Xβ)
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Simple Linear Regression III

Let’s expand this function

(Y −Xβ)′(Y −Xβ) = Y′Y − β′X′Y −Y′Xβ + β′X′Xβ

= Y′Y − 2β′X′Y + β′X′Xβ

where the above holds since β′X′Y = Y′Xβ which is a scalar.
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Simple Linear Regression IV

Now

d

dβ
(Y −Xβ)′(Y −Xβ) =

d

dβ
(Y′Y − 2β′X′Y + β′X′Xβ)

= −2X′Y + 2X′Xβ

We can set this equal to zero and thus

X′Y = X′Xβ

Now provided the inverse of X′X exists we have.

β̂ = (X′X)−1X′Y
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Simple Linear Regression V

Let us consider X′X, its inverse will exist only if it is full rank
and/or nonsingular.

X′X =

(
1 1 . . . 1
x1 x2 . . . xn

)
1 x1

1 x2
...

...
1 xn


X′X =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
The determinant is det(X′X) = n

∑n
i=1 x

2
i − (

∑n
i=1 xi)

2
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Simple Linear Regression VI

Consider if x = 1 =
(

1 1 . . . 1
)T

, Then

det(X′X) = n

n∑
i=1

x2
i − (

n∑
i=1

xi)
2

= n2 − n2 = 0

We also see that

X′X =

(
n n
n n

)
which is not full rank. Thus one condition for inversion is that
x 6= 1
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Simple Linear Regression VII

Continuing we can solve for β̂, by our formula for 2 × 2 inver-
sions we have

(X′X)−1 =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
and

XTY =

( ∑n
i=1 yi∑n
i=1 xiyi

)
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Simple Linear Regression VIII

Without going into all fun of calculating this for you guys, it
can be shown that(

β̂0

β̂1

)
=

(
ȳ − β̂1x̄∑n
i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

)
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