

## ALGEBRA UNIT 2 FUNCTIONS DOMAIN/RANGE/FUNCTIONS (DAY 1)

#### **Previous Vocab-definitions:**

- In order to graph an equation you have to plot points (x, y)
- x-values are the \_\_\_\_\_\_ variable
- y-values are the \_\_\_\_\_\_ variable
- To find the y-value \_\_\_\_\_\_ x-value into equation to find answer.

## NEW TERMINOLOGY-DEFINITIONS

**RELATION:** A set of ordered pairs, ( , )

**FUNCTION:** A relation (x, y) where NO \_\_\_\_\_\_ values repeat.

#### VERTICAL LINE TEST:

- A test to determine whether a graph is a \_\_\_\_
- This test determines if \_\_\_\_\_ values repeat



|   |   |   |   |   | - | - | , | , |   |
|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   | N | ~ |   |   |
|   |   |   | _ |   |   |   |   |   |   |
|   | _ | E | H |   | _ |   | _ | _ | ► |
| H |   |   |   |   | - |   | - | - | - |
|   |   |   |   |   | - |   |   | _ | _ |
|   |   |   |   |   |   |   | 2 |   |   |
|   |   |   |   | 1 | 7 |   |   |   |   |

#### HORIZONTAL LINE TEST:

- A test to determine whether the \_\_\_\_\_ of a graph is a FUNCTION
- This test determines if \_\_\_\_\_ values repeat

### **ONE-TO-ONE FUNCTION (1-1):**

- Must pass both \_\_\_\_\_ and \_\_\_\_\_ line test
- NO \_\_\_\_\_ or \_\_\_\_\_ values repeat

#### DOMAIN (INPUT):

- The set of \_\_\_\_\_values of a relation (x , y)
- Domain is determined by **reading a graph from** \_\_\_\_\_\_ **to** \_\_\_\_\_.

#### RANGE (OUTPUT):

- The set of \_\_\_\_\_values of a relation (x , y)
- Range is determined by reading a graph from \_\_\_\_\_\_ to \_\_\_\_\_.

Domain and Range may be stated in either set or interval notation.

d by K.Snyder 2014



**Interval Notation:** A notation that shows the set of all numbers between, or between and including two endpoints.

**Parentheses ()** = "not included", **used when open dots** are on a graph



Brackets [] = "included", used when closed dots are on a graph





6) Which set of ordered pairs represent a function?

| (1) {(0, 4), (2, 4), (2, 5)} | (3) {(4, 1), (6, 2), (6, 3) (5, 0)} |
|------------------------------|-------------------------------------|
| (2) {(6, 0), (5, 0), (4, 0)} | (4) {(0, 4), (1, 4), (0, 5), (1,5)} |

| Recap | DO <i>l</i><br>Domain (input) : |       | FUNCTIONS (DAY 2)<br>Function: |              |
|-------|---------------------------------|-------|--------------------------------|--------------|
|       | Range (output)                  |       | 1-1 Function:                  |              |
| 1) [  | Domain:                         |       |                                | $\mathbf{N}$ |
|       | Range:                          |       |                                | *            |
| I     | s it a function?                | 1-15  |                                |              |
| 2) [  | Domain:                         |       |                                |              |
| F     | Range:                          |       |                                | •<br>•       |
| I     | s it a function?                | 1-19  |                                |              |
| 3) [  | Domain:                         |       |                                |              |
| F     | Range:                          |       | _                              |              |
| I     | s it a function?                | 1-1S  |                                |              |
| 4) [  | Domain:                         |       |                                | •            |
| -     | Range:                          |       |                                |              |
| I     | s it a function?                | 1-15  |                                |              |
| 5) [  | Domain:                         |       |                                |              |
| ł     | Range:                          |       | -                              |              |
| I     | s it a function?                | ]-]\$ | 3                              |              |

SXX

| 6) | $y = -x^2 + 2x - 3$ | 7)   | √=.5(3) <sup>×</sup> |      |
|----|---------------------|------|----------------------|------|
|    | Domain:             |      | Domain:              |      |
|    | Range:              |      | Range:               |      |
|    | Is it a function?   | ]-]? | Is it a function?    | 1-1S |
|    |                     |      |                      |      |

- 7) Which of the following does not represent a function?
  - (1) x y 2 8 6 3 8 2 9 8

| (2) | х | У |
|-----|---|---|
| (∠) | 1 | 2 |
|     | 2 | 3 |
|     | 6 | 5 |
|     | 1 | 8 |





8) Which of the following *is* a function but is *not* a one-to-one function?



(4)







9) Which diagram represents a function?





4) 
$$x^2 + y^2 = 25$$



# FUNCTION NOTATION (DAY 3)

Function Notation: For every x-value in the domain that you \_\_\_\_\_\_ into an equation there is a \_\_\_\_\_value in the range that is the OUTPUT.

#### How to read/say f(x):\_\_\_

Since the **y-value** depends on the x-value, the y-value can be **represented by f(x)**.



#### Evaluate the following:

1) If 
$$f(x) = -x^2$$
, find  $f(-2)$ .

2) If 
$$g(x) = \frac{x^2 - x}{4}$$
, find  $g(-4)$ .

3) If 
$$f: x \rightarrow y \mid y = \frac{5}{x-3}$$
, find f(7). 4) If  $w(x) = x^3 + 2x$ , find w(6)

5. Given 
$$g(x) = 5x^2 - 4x + 3$$
, find  $g(\frac{1}{2})$ 



a) f(0)b) f(1)c) f(x) = 4, x = ?d) f(x) = 1, x = ?e)  $f(\frac{1}{2})$ f) f(2.5)g) Domain h) Range



- 7) In which of the following is 3 from the domain mapped to 10 in the range?
  - (1)  $f: x \rightarrow y \mid y = x 3$ (2)  $f: x \rightarrow y \mid y = x + 3$ (3)  $f: x \rightarrow y \mid y = 7$ (4)  $f: x \rightarrow y \mid y = x + 7$
- 8) On the accompanying diagram draw a mapping of a relation from set A to set B that is a function. Explain why the relationship you drew is a function.





9) Circle the table that represents an example of a relation that is not a function.

| Х | f(x) |  |
|---|------|--|
| 2 | 0    |  |
| 4 | 1    |  |
| 6 | 2    |  |
| 8 | 3    |  |

| f(x) |  |
|------|--|
| 0    |  |
| 2    |  |
| 2    |  |
| 3    |  |
|      |  |

| х  | f(x) |  |
|----|------|--|
| -2 | 0    |  |
| -4 | 1    |  |
| -6 | 2    |  |
| -8 | 3    |  |
|    |      |  |

| Х  | f(x) |
|----|------|
| 2  | 0    |
| 4  | 1    |
| 6  | 2    |
| -6 | 3    |

10) Using the table below:

| x    | -3 | -1 | 0  | 4 | 10 |
|------|----|----|----|---|----|
| f(x) | 8  | -6 | 10 | 5 | 12 |

a) f(-1)

c) the value of x, if f(x) = 10

b) f(4) d) the value of x, if f(x) = -6



# FUNCTION TYPES (DAY 4)

| FUNCTION<br>NAME        | PARENT FUNCTION<br>(EQUATION)       | TYPES OF GRAPHS | KEY FEATURES        |
|-------------------------|-------------------------------------|-----------------|---------------------|
| LINEAR<br>FUNCTION      |                                     |                 |                     |
|                         | Would this line be a function? Why? |                 |                     |
| QUADRATIC<br>FUNCTION   |                                     |                 |                     |
| EXPONENTIAL<br>FUNCTION |                                     | 7               | Created by K.Snyder |



Identify the following equations as Linear, Quadratic, or Exponential. Justify your choice.

| 1. | $2x^2 + 3 = 18$     |  |
|----|---------------------|--|
| 2. | 3 + 5x = 20         |  |
| 3. | $2a + 3ax^2 = 24$   |  |
| 4. | 5 <sup>×</sup> =125 |  |
| 5. | 30 = 6x - 8         |  |
| 6. | $64 = 4^{x}$        |  |

Lets watch the following videos to determine what functions are being illustrated when comparing elevation vs time. Identify key components to explain your choice.

http://blog.mrmeyer.com/?p=213 http://youtu.be/xgODzAwxrx8 http://youtu.be/ZCFBC8aXz-g https://www.youtube.com/watch?v=gEwzDydciWc

7. Given the graph below. Identify the parts that represent linear, quadratic, or exponential function.



Write a real life situation that this graph could represent. Remember to use the time and elevation information within your story.