ALGEBRA UNIT 2 FUNCTIONS DOMAIN/RANGE/FUNCTIONS (DAY 1)

Previous Vocab-definitions:

- In order to graph an equation you have to plot points (x, y)
- x-values are the \qquad variable
- y-values are the \qquad variable
- To find the y-value \qquad x-value into equation to find answer.

NEW TERMINOLOGY-DEFINITIONS

RELATION: A set of ordered pairs, (,)
FUNCTION: A relation (x, y) where NO \qquad values repeat.

VERTICAL LINE TEST:

- A test to determine whether a graph is a \qquad .
- This test determines if \qquad values repeat

HORIZONTAL LINE TEST:

- A test to determine whether the \qquad of a graph is a FUNCTION
- This test determines if \qquad values repeat

ONE-TO-ONE FUNCTION (1-1):

- Must pass both \qquad and \qquad line test
- NO \qquad or \qquad values repeat

DOMAIN (INPUT):

- The set of \qquad values of a relation (x, y)
- Domain is determined by reading a graph from \qquad to \qquad .

RANGE (OUTPUT):

- The set of \qquad values of a relation (x, y)
- Range is determined by reading a graph from \qquad to \qquad .

Interval Notation: A notation that shows the set of all numbers between, or between and including two endpoints.

Parentheses () = "not included", used when open dots are on a graph
Brackets [] = "included", used when closed dots are on a graph

Complete the following:

1)

Domain:
Range:
Function?
2) $\quad A=\{(0,3),(1,8),(2,5)\}$

Domain:
Range:
Function?
1-1?
4)

Domain:
Range:
Function?

1-1?

5)
Domain:
Range:
Function?
$1-1 ?$

6) Which set of ordered pairs represent a function?
(1) $\{(0,4),(2,4),(2,5)\}$
(3) $\{(4,1),(6,2),(6,3)(5,0)\}$
(2) $\{(6,0),(5,0),(4,0)\}$
(4) $\{(0,4),(1,4),(0,5),(1,5)\}$

DOMAIN/RANGE/FUNCTIONS (DAY 2)

Recap: Domain (input)
 Range (output)

1) Domain: \qquad Range: \qquad

Is it a function?
1-1?
2) Domain: \qquad
Range: \qquad

Is it a function?
1-1?
3) Domain: \qquad
Range: \qquad

Is it a function?
4) Domain: \qquad
Range: \qquad

Is it a function?
1-1?
5) Domain: \qquad
Range: \qquad

Is it a function?

6) $y=-x^{2}+2 x-3$

Domain: \qquad
Range: \qquad
Is it a function?
7) $y=.5(3)^{x}$

Domain: \qquad
Range: \qquad
Is it a function?
1-1?
7) Which of the following does not represent a function?
(1)

x	y
2	8
6	3
8	2
9	8

(2)

x	y
1	2
2	3
6	5
1	8

(3)

x	y
3	1
2	7
4	-2
1	-9

(4)

x	y
4	-1
5	7
3	-7
1	2

8) Which of the following is a function but is not a one-to-one function?

9) Which diagram represents a function?

(1)

(2)

(3)

(4)
10) Which of the following is not a function?
(1) $y=3^{x}$
(2) $2 x+y=5$
(3) $y+6=x^{2}$
(4) $x^{2}+y^{2}=25$

FUNCTION NOTATION (DAY 3)

Function Notation: For every \mathbf{x}-value in the domain that you \qquad into an equation there is a \qquad value in the range that is the OUTPUT.

How to read/say f(x): \qquad
Since the \mathbf{y}-value depends on the x-value, the y-value can be represented by $f(\mathbf{x})$.

Illustration of how to interpret a function:

INPUT
X -VALUE

HOW TO DO THE MATH:

OLD WAY: Given $y=2 x+3$ find y, when $x=4$

$$
\begin{aligned}
& y=2(4)+3 \\
& y=11
\end{aligned}
$$

NEW WAY: Given $f(x)=2 x+3$ find $f(4)$
$f(4)=2(4)+3$
$f(4)=11$

Evaluate the following:

1) If $f(x)=-x^{2}$, find $f(-2)$.
2) If $f: x \rightarrow y \left\lvert\, y=\frac{5}{x-3}\right.$, find $f(7)$.
3) If $g(x)=\frac{x^{2}-x}{4}$, find $g(-4)$.
4) If $w(x)=x^{3}+2 x$, find $w(6)$
5. Given $g(x)=5 x^{2}-4 x+3$, find $g\left(\frac{1}{2}\right)$
6) The graph of the function f is shown at the right. Find the following:
a) $f(0)$
b) $f(1)$
c) $f(x)=4, x=$?
d) $f(x)=1, x=$?
e) $f\left(\frac{1}{2}\right)$
f) $f(2.5)$

g) Domain
h) Range
7) In which of the following is 3 from the domain mapped to 10 in the range?
(1) $f: x \rightarrow y \mid y=x-3$
(2) $f: x \rightarrow y \mid y=x+3$
(3) $f: x \rightarrow y \mid y=7$
(4) $f: x \rightarrow y \mid y=x+7$
8) On the accompanying diagram draw a mapping of a relation from set A to set B that is a function. Explain why the relationship you drew is a function.

9) Circle the table that represents an example of a relation that is not a function.

x	$f(x)$
2	0
4	1
6	2
8	3

x	$f(x)$
2	0
4	2
6	2
2	3

x	$f(x)$
-2	0
-4	1
-6	2
-8	3

x	$f(x)$
2	0
4	1
6	2
-6	3

10) Using the table below:

\mathbf{x}	-3	-1	0	4	10
$\mathbf{f}(\mathbf{x})$	8	-6	10	5	12

a) $f(-1)$
c) the value of x, if $f(x)=10$
b) $f(4)$
d) the value of x, if $f(x)=-6$

FUNCTION TYPES (DAY 4)

| FUNCTION
 NAME | PARENT FUNCTION
 (EQUATION) | TYPES OF GRAPHS | KEY FEATURES |
| :--- | :---: | :---: | :---: | :---: |

Identify the following equations as Linear, Quadratic, or Exponential. Justify your choice.

1. $2 x^{2}+3=18$
2. $3+5 x=20$
3. $2 a+3 a x^{2}=24$ \qquad
4. $5^{x}=125$ \qquad
5. $30=6 x-8$ \qquad
6. $64=4^{x}$

Lets watch the following videos to determine what functions are being illustrated when comparing elevation vs time. Identify key components to explain your choice.
http://blog.mrmeyer.com/?p=213
http://youtu.be/xgODzAwxrx8
http://youtu.be/ZCFBC8aXz-g
https://www.youtube.com/watch? $v=$ =gEwzDydciWc
7. Given the graph below. Identify the parts that represent linear, quadratic, or exponential function.

What types of Functions are illustrated in the picture above?

What is the domain of this graph?

What is the range of this graph?

Write a real life situation that this graph could represent. Remember to use the time and elevation information within your story.

