
Algebra Worksheet

Knowing how to solve both linear and quadratic equations is a key step to knowing how to solve
problems that you will encounter in both math and physics classes. This worksheet will give
some practice in one variable, then move on to solving equations in two variables, then solving
quadratics. We will begin with some review of key algebraic ideas and strategies. Then look at
some examples that you will practice on. The final section of this worksheet will allow you to
practice your algebra skills on a real physics problem.

Review Problems

Simplify:

1. 7x+ 5x 2. 9x2 − x2

3. 9y + 5y2 + 3y + 4y2 4. 7(4t− 5)− 8t

5. 7− 4[3− (4s− 5)] 6. 14n2 + 5− [7(n2 − 2) + 4]

7. (−3v2k−5)3(2v4k7)2 8. (5 +
√
7)(3−

√
2)
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1 Linear Equations in one variable

Disclaimer: If any of the terminology used in this worksheet is unfamiliar (or forgotten) that is
a sign that you should review some math.
Definition A linear equation is an equation that can be written in the form

ax+ b = 0

where a and b are constants.

Here, x is the variable and this equation is considered linear because the power of x is equal to
one (x = x1).

Strategy

Step 1: Simplify each side of the equation.
This would involve things like removing parentheses, fractions, decimals, and combining like
terms.

• To remove parentheses, use the distributive property.

• To remove fractions, multiply each side of the equality by the least common denominator
of all the fractions.

Step 2: Use addition and subtraction properties to move all of the variable terms to one side
of the equality and all other terms to the other side.

Step 3: Use multiplication and division properties to remove coefficients from in front of the
variable.

Step 4: Check your answer by plugging it into the variable.

Example: Solve the equation 2(t+ 5)− 7 = 3(t− 2)

2t+10− 7 = 3t-6 Remove the parentheses by using the distributive property.

2t+ 3 = 3t− 6

2t-3t+ 3 = 3t-3t− 6 Move the variable terms to one side.

−t+ 3 = −6

−t+ 3-3 = -6-3 Move the non-variable term to the other side.

−t = −9

−t

−1
=

−9

−1
Divide by -1 to remove the coefficient from the variable. Notice that the t has

-1 in front of it.
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t = 9

Now to check our answer:

2(9 + 5)− 7 = 3(9− 2) Plug value in for t.

2(14)− 7 = 3(7)

28− 7 = 21

21 = 21 Check!

Practice Problems

1.
5

4
s+

1

2
= 2s− 1

2
2. .35y − .2 = .15y + 1

3. A student on a scooter is initially traveling at 23 m/s. (Yes. She’s bookin’ it.) Find how
long it takes her (in seconds) to reach a velocity of 31 m/s if her acceleration is 2 m/s2. (Hint:
Use the equation Vf = Vi + at where Vf is her final velocity, Vi is her initial velocity, a is her
acceleration, and t is time.)

2 Linear Equations in Two Variables

Now we will look at systems that have two linear equations and two unknowns (variables).

Definition: A system of linear equations is two or more linear equations that are being solved
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simultaneously.

Here, we will be looking at systems that have only two linear equations and two unknowns. In
general, a solution of a system in two variables is an ordered pair that makes BOTH equations
true.
There are two ways to solve systems of linear equations in two variables:

1. The Substitution Method

2. The Elimination Method

Which method you choose is entirely up to you. Use the one that makes the most sense or works
best for the problem. First, we will look at the strategy for using the Substitution Method.

Strategy

Step 1: Simplify if needed.

This step uses the techniques used when solving a linear equation in one variable. Simplify each
of the equations in the system before solving.

Step 2: Solve one equation for either variable.

It doesn’t matter which equation you use or which variable you choose to solve for, the goal is to
make it as simple as possible. If one of the equations is already solved for one of the variables,
that is a quick and easy way to go. If you need to solve for a variable, then try to pick one that
has a 1 as a coefficient. That way when you go to solve for it, you won’t have to divide by a
number and run the risk of having to work with a fraction (yuck!!).

Step 3: Substitute what you get for step 2 into the other equation.

This is why it is called the substitution method. Make sure that you substitute the expression
into the OTHER equation, the one you didn’t use in step 2. This will give you one equation
with one unknown.

Step 4: Solve for the remaining variable.

Solve the equation set up in step 3 for the variable that is left.

Step 5: Solve for the second variable.

Plug the value found in step 4 into any of the equations in the problem and solve for the other
variable.

Step 6: Check the proposed ordered pair solution in BOTH original equations.
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Example: Solve the following:
{
3x− 2y = 6

x− y = 1

Step 1: Simplify if needed.

Both of these equations are simplified. Move on to step 2.

Step 2: Solve one equation for either variable.

It does not matter which equation or which variable you choose to solve for. One choice may be
wiser than the other. If solving for one variable is proving too complicated, go back and start
with the other. The easiest route here is to solve the second equation for x.
Solving the second equation for x we get:

x− y = 1

x− y + y = 1 + y Add y to both sides of the equation.

x = y + 1

Step 3: Substitute what you get for step 2 into the other equation.

3x− 2y = 6

3(y + 1)− 2y = 6 Substitute the value you found for x into the other equation.

Step 4: Solve for the remaining variable.

3(y + 1)− 2y = 6

3y + 3− 2y = 6 Distribute 3 over (y + 1).

y + 3 = 6 Combine like terms.

y + 3− 3 = 6− 3 Subtract 3 from both sides.

y = 3

Step 5: Solve for the second variable.

Plug the result for y into the equation in step 2 to find x.

x = y + 1

x = 3 + 1

x = 4

Step 6: Check the solutions in BOTH original equations.{
3x− 2y = 6

x− y = 1
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{
3(4)− 2(3) = 6

4− 3 = 1
{
12− 6 = 6

1 = 1
{
6 = 6

1 = 1

Thus, (4,3) is a solution to the system.

Now for the Elimination Method.

Strategy

Step 1: Simplify and put both equations into ax+ by − c form, if necessary.

Simplify just like you would in the substitution method, step 1.

Step 2: Multiply one or both equations by a number that will create opposite coefficients for
either x or y if needed.

Looking ahead, we will be adding (or subtracting) these equations. In that process, we need to
make sure that one of the variables drops out, leaving us with one equation and one unknown.
The only way we can guarantee that is if we are adding opposites (subtracting). It doesn’t
matter which variable you choose to drop out, you just want to keep it as simple as possible.
For example, if you had a 2x in one equation and a 3x in another equation, we could multiply
the first equation by 3 and get 6x and the second equation by -2 to get a -6x. So when you go
to add these two together they will drop out.

Step 3: Add the equations. If it is easier to think if this as subtracting the equations, that is
fine. Adding opposite signs and subtracting is really the same thing. For example, 3+(-2) is the
same thing as 3-2. The variable that has the opposite coefficients will drop out in this step and
you will be left with one equation with one unknown.

Step 4: Solve for the remaining variable.

Solve the equation found in step 3 for the variable that is left.

Step 5: Solve for the second variable.

Plug the value found in step 4 into any of the equations in the problem and solve for the other
variable.

Step 6: Check the solutions in BOTH original equations.

You can plug the proposed solution into both equations. If it makes both equations true, then
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you have your solution to the system.

Example:{
1
2
x+ 1

3
y = 13

1
5
x+ 1

8
y = 5

Step 1: Simplify and put both equations into ax+ by − c form, if necessary.

We can simplify both equations by multiplying each separate one by its least common denom-
inator, just like you can do when you are working with one equation. As long as you do the
same thing to both sides of an equation, you keep the two sides equal to each other. Here, we
will multiply the first equation by 6, and the second by 40.
{
(6)(1

2
x+ 1

3
y) = (6)(13)

(40(1
5
x+ 1

8
y) = (40)(5)

{
3x+ 2y = 78

8x+ 5y = 200

Step 2: Multiply one or both equations by a number that will create opposite coefficients for
either x or y if needed.

Again, you want to make this as simple as possible. Note how the coefficient on y in the first
equation is 2 and in the second equation it is 5. We need to have opposites, so if one of them
is 10 and the other is -10, they would cancel each other out when we go to add them. So, lets
multiply the first equation by 5 and the second equation by -2, this would create a 10 and a -10
in front of the y variables and we will have our opposites.
{
(5)(3x+ 2y) = (5)(78)

(−2)(8x+ 5y) = (−2)(200)
{
15x+ 10y = 390

−16x− 10y = −400

Step 3: Add the equations.
{
15x+ 10y = 390

−16x− 10y = −400

−x = −10 Note that the y’s dropped out.

Step 4: Solve for the remaining variable.

−x = −10

x = 10

7



Step 5: Solve for the second variable.

You can choose any equation used in this problem to plug in the found x value. Lets plug in 10
for x into the first simplified equation (found in step 1) to find y’s value.

3x+ 2y = 78

3(10) + 2y = 78 Plug 10 in for x.

30 + 2y = 78

30 + 2y − 30 = 78− 30 Subtract 30 from both sides.

2y = 48

2y

2
=

48

2
Divide each side by 2.

y = 24

Step 6: Check the solutions in BOTH original equations.
{

1
2
(10) + 1

3
(24) = 13

1
5
(10) + 1

8
(24) = 5

{
5 + 8 = 13

2 + 3 = 5
{
13 = 13

5 = 5

Thus, (10,24) is a solution to the system.

Practice Problems

Solve this system using the substitution method:

1.

{
4x+ y = 5

2x− 3y = 13
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Solve this system using the elimination method:

2.

{
2x− 3y = 4

4x+ 5y = 3

3. The sum of Orion and Sagan’s age is 24, and the difference between their ages is 6. Find
their ages given that Orion is older than Sagan.
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4. A landscaping company placed two orders with a nursery. The first order was for 13 bushes
and 4 trees, and totalled $487. The second order was for 6 bushes and 2 trees, and totalled
$232. The bills do not list the per-item price. What were the costs of one bush and of one tree?

3 Quadratic Equations

The standard form for a quadratic equation is

ax2 + bx+ c = 0

where a does not equal 0.

Introduction

We will be looking at solving a specific type of equation called the quadratic equation. Two meth-
ods of solving these types of equations are solving by factoring, and by using the quadratic equa-
tion. Sometimes one method won’t work or another is just faster, depending on the quadratic
equation given. Note that the difference between linear equations and quadratic equations is
that the highest exponent on the variable on the quadratic equation is 2.

Solving Quadratic Equations by Factoring

You can solve a quadratic equation by factoring if, after writing it in standard form, the quadratic
expression factors.

Strategy

Step 1: Simplify each side if needed.
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Like linear equations, this would involve things like removing parentheses, removing fractions,
adding like terms, etc.

Step 2: Write in standard form, if needed.

If it is not in standard form, move any term(s) to the appropriate side by using the addi-
tion/subtraction property of equality. Also, just for clarity, make sure that the squared term is
written first, the x term is second and the constant is third and it is set equal to 0.

Step 3: Factor.

Step 4: Use the Zero-Product Principle: If ab = 0, then a = 0 or b = 0.

0 is our magic number because the only way a product can become 0 is if at least one of its
factors is 0.

Step 5: Solve for the linear equation(s) set up in step 4.

If a quadratic equation factors, it will factor into either one linear factor squared or two distinct
linear factors. So, the equations found in step 4 will be linear equations. You can solve them
using the techniques discussed above.

Example:

Solve x2 − 10 = 3x by factoring.

Step 1: Simplify each side if needed.

This quadratic equation is already simplified.

Step 2: Write in standard form, if needed.

x2 − 10 = −3x
x2 − 10 + 3x = −3x+ 3x Add 3x to both sides to set equation equal to zero.
x2 + 3x− 10 = 0 Rearrange into standard form.

Step 3: Factor.

x2 + 3x− 10 = 0 Equation in standard form.

(x+ 5)(x− 2) The equation factored.

Step 4: Use the Zero-Product Principle.

We know

x2 + 3x− 10 = (x+ 5)(x− 2) = 0

So, by the Zero-Product principle, either (x+5) = 0 or (x− 2) = 0. These are linear equations,
and can be solved as such.
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Step 5: Solve for the linear equation(s) set up in step 4.

x+ 5 = 0
x = −5

x− 2 = 0
x = 2

There are two solutions to this quadratic equation: x = -5 and x = 2.

Now on to our other technique for solving quadratic equations, using the Quadratic Formula.

Theorem: When ax2 + bx+ c = 0 then

x =
−b±

√
b2 − 4ac

2a

You can solve any quadratic equation by using the quadratic formula. This comes in handy
when a quadratic equation does not factor or is difficult to factor.

Strategy

Step 1: Simplify each side if needed.

Step 2: Write in standard form, if needed.

Step 3: Identify a, b, and c.

When the quadratic equation is in standard form, ax2 + bx+ c = 0, then a is the coefficient in
front of the x2 term, b is the coefficient in front of the x term, and c is the constant term.

Step 4: Plug the values found in step 3 into the quadratic formula.

Step 5: Simplify if possible.

Example:

Solve 3x2 = 7x+ 20 by using the Quadratic Formula.

Step 1: Simplify each side if needed.

This quadratic is already simplified.

Step 2: Write in standard form, if needed.

3x2 = 7x+ 20
3x2 − 7x− 20 = 7x− 7x+ 20− 20 Subtract and add terms from both sides to get one side
equal to zero.
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3x2 − 7x− 20 = 0 Standard form.

Step 3: Identify a, b, and c.

Here, a = 3, b = −7, and c = −20.

Step 4: Plug the values found in step 3 into the quadratic formula.

x =
−(−7)±

√
(−7)2−4(3)(−20)

2(3)

Step 5: Simplify if possible.

x =
−(−7)±

√
(−7)2−4(3)(−20)

2(3)

x = 7±
√
49+240
6

Simplify under the radical first.

x = 7±
√
289

6

x = 7±17
6

Take the square root of 289.

x = 7+17
6

or x = 7−17
6

Split the equation into its two parts.

x = 24
6
or x = −10

6
Continue to simplify.

x = 4 or x = −5
3

Thus, x = (4, −5
3
)

Here is a quick word about the solutions that are possible when using the Quadratic Formula.

Discriminant

When a quadratic equation is in standard form, the expression, b2− 4ac that is found under the
square root part of the quadratic formula is called the discriminant. The discriminant can tell
you how many solutions there are going to be and if the solutions are real numbers, the type
of numbers that represent real world measurables, or complex imaginary numbers, which, since
they have no ”real world” use, won’t be worried about here.

b2 − 4ac > 0 Two distinct real solutions
b2 − 4ac = 0 One real solution
b2 − 4ac < 0 Two distinct complex imaginary solutions
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Practice Problems

1. Solve by factoring: x2 + x = 42

2. Solve by using the Quadratic Formula: x2 + 10x+ 25
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3. An object is launched at 19.6 m/s from a 58.8 meter tall platform. The equation for the
object’s height s at time t seconds after launch is s(t) = −4.9t2 + 19.6t + 58.8, where s is in
meters. When does the object strike the ground? Note that you will get two answers. (Hint:
You are looking for the time when the object hits the ground so set the equation equal to zero
and solve for t.)

Did you notice something odd about the solutions to the last problem? Was one of your answers
negative? This negative result is, indeed, a solution to the problem but it doesn’t seem to make
any sense. How can we have a negative unit of time? This negative answer actually means that
the ball also hits the ground x seconds before it was launched. If we could rewind time, that’s
when the ball would have last been at ground level. This is a correct mathematical answer, but
in physics, we only accept answers that have real-world meaning. Thus, in this case, we can
ignore the negative result and conclude that the object hits the ground at precisely the time
that is the positive result.

All right. Now that you have had some practice working with equations algebraically, let’s put it
to use in the real world and derive a couple of important physics equations. We will be working
completely generally here, so there will be no numerical coefficients, but don’t freak out. The
algebra is still the same and these general solutions give equations that can be used in every
case, so they are much more useful.

Perfectly Elastic Collisions in One Dimension

When two particles collide, they exert forces on one another that are much larger than any
external acting forces. Thus, we may assume that external forces are negligible, with the con-
sequence that the momentum of the system remains constant. In other words, the sum of the
momentums of each particle before a collision is the same as the sum of the momentums of
each particle after the collision (conserved). In elastic collisions, the loss in kinetic energy is
negligible, and so the kinetic energy of the system is also conserved. Here are the constants,
variables, and equations we will be working with:
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Constants (Knowns)
m1 mass of particle one
m2 mass of particle 2
v1 velocity of particle one before the collision
v2 velocity of particle two before the collision

Variables (Unknowns)
V1 velocity of particle one after the collision
V2 velocity of particle two after the collision

Equations
p=m v The linear momentum,p, of a particle
K = 1

2
mv2 The kinetic energy, K, of a particle

Since momentum is conserved, we can say

m1v1 +m2v2 = m1V1 +m2V2 (3.1)

But we also know, since this is a perfectly elastic collision, that kinetic energy is conserved, thus

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1V

2
1 +

1

2
m2V

2
2 (3.2)

I know this looks a little scary but is is just algebra. The main thing is to stay calm and do all
of the algebra steps above. We will walk through this together and it will be great practice.
Let’s say that we know what the masses of the two objects are and their initial velocities. What
we want to find is the final velocities of the two objects. Right away, we can see that we have
two equations, the momentum equation and the kinetic energy equation, and two unknowns,
V1 and V2. This means that we can use the same techniques we learned in solving systems of
equations to figure out this problem.
Let’s make our task slightly less confusing by renaming the constants and variables in the table
above to get rid of those subscripts. We’ll let:

m1 = s

m2 = t

v1 = x

v2 = y

V1 = w

V2 = z

Then, by substituting these into equations (3.1) and (3.2), our equations become:

sx+ ty = sw + tz (3.3)

16



and

1

2
sx2 +

1

2
ty2 =

1

2
sw2 +

1

2
tz2 (3.4)

We can multiply equation (3.4) by 2 to simplify to:

sx2 + ty2 = sw2 + tz2 (3.5)

Now we will work together. I will tell you what to do, and you will carry out the calculations
in the spaces. Along the way, I will give you checkpoints so you can be sure that you are on the
right track. Ready? Remember, be brave! It’s just algebra.

First, solve the kinetic energy equation (3.5) for z2.

Now solve the momentum equation (3.3) for z.

We can square what you found in the step above to find another expression for z2.

(
sx+ ty − sw

t

)2

= z2

Is this what you got? Good! Let’s proceed. Why did we square that last equation? We did that
so we could set both expressions for z2 equal to one another and thereby eliminate one of our
variables z. Set the two expressions we found for z2 equal to one another and you’ll see what I
mean. (Just write it in the space. Don’t solve anything yet.)

See what I mean? We have used the technique of elimination cleverly to rid ourselves of one
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of our variables! Now we are only left with one variable, w, which means that even though the
rest of this is going to get a bit messy, we are just solving an equation in one variable. This one
will be a quadratic so it will nicely tie all of the concepts we talked about at the beginning of
the unit together. Now lets work with this equation and eventually solve for w.

You should now have something that looks like this:

(
sx+ ty − sw

t

)2

=
sx2 + ty2 − sw2

t

Go ahead and square the left side.

Did you get

s2x2 + t2y2 + s2w2 + 2stxy − 2s2xw − 2styw

t2
=

sx2 + ty2 − sw2

t
(3.6)

If not, check what you got against what you see in equation (3.6). Maybe your variables or
terms are in a different order than in equation (3.6). That’s O.K. It is still the same as what you
see in equation (3.6). However, if the problem is more than just a matter of order, go back and
check your calculations. Remember the process for squaring trinomials. Next, multiply both
sides by t2 to clear the fractions.
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We can simplify a little by subtracting the t2y2 terms from both sides.

Now, move both terms from the right side of the equation to the left side by adding one term
to both sides and subtracting the other from both sides. You should end up with zero on the
right side.

You should have something that looks like

s2x2 + s2w2 + 2stxy − 2s2xw − 2styw − stx2 + stw2 = 0

Since we are solving for w, and w is squared in some of our terms, we are going to have to resort
to solving this as if it were a quadratic equation (because it is one). So let’s put this beast into
standard form, aw2 + bw + c = 0 by gathering some terms and factoring.

(s2 + st)w2 + (−2s2x− 2sty)w + (s2x2 + 2stxy − stx2) = 0

We are going to need to use the Quadratic Formula (QF), as this thing is not so easily factorable.
So, next, we identify our a, b and c.

a = (s2 + st)

b = (−2s2x− 2sty)

c = (s2x2 + 2stxy − stx2)

Recall that we are going to be plugging all of this into the QF, w = −b±
√
b2−4ac
2a

, but that is going
to be a huge mess to try to solve if we just plug in right now. Instead, let’s find −b, b2, 4ac, and
b2 − 4ac separately, then plug their simplified forms into the QF.
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First, find −b.

Now, b2

Next, 4ac
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And finally, b2 − 4ac. (Use the b2 and the 4ac that you just found.)

So, the QF, w = −b±
√
b2−4ac
2a

, becomes

w =
2s2x+ 2sty ±

√
s2t2(2y − 2x)2

2(s2 + st)

=
(2s2x+ 2sty)± (st(2y − 2x))

2(s2 + st)

=
(2s2x+ 2sty)± (st(2y − 2x))

2(s(s+ t))

=
(2s2x+ 2sty)± (st(2y − 2x))

2s(s+ t)

Here is an example of when using the negative part of a solution doesn’t make sense, as discussed
above, so we will only proceed with the positive part.

So, we have

w =
(2s2x+ 2sty) + (st(2y − 2x))

2s(s+ t)

=
(2s2x+ 2sty) + 2st(y − x)

2s(s+ t)

=
(sx+ ty) + t(y − x)

(s+ t)
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That’s it! We have found our solution! Now, when we plug back in the constants and variables
that we had at the very beginning, we get an expression for the final velocity of particle one.
Here it is:

V1 =
(m1v1 +m2v2) +m2(v2 − v1)

(m1 +m2)

Since this is a perfectly elastic collision, we don’t have to do any more calculating to find V2

(thanks goodness) since it is just a mirror image of V1. Thus its equation is

V2 =
(m2v2 +m1v1) +m1(v1 − v2)

(m2 +m1)

You did it! That is one of the most involved algebra problems you will encounter, so, pat your
self on the back, then go do something a little more fun...like your other physics homework.
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