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Abstract

Given the data (X, L, ζ) where X is a smooth 2n-dimensional algebraic
variety, L→ X is a very ample line bundle and

ζ ∈ Hgn(X)prim

is a primitive Hodge class, we shall define an analytic invariant

νζ ∈ Γ(S, J̃e)

and algebro-geometric invariant

δνζ ∈ Γ
(
S,

(
Hn,n−1

e ⊗ Ω1
S(log D)

)
∇

)
where S is a blow-up of PH0(OX(L)) and D ⊂ S is the quasi-local normal
crossing discriminant locus (see below for definitions). We will also define the
singular loci sing νζ and sing δνζ and show that, for L � 0, as subvarieties
of S

sing νζ = sing δνζ

and that in a precise sense these loci define the algebraic cycles W on X

with the property that

〈ζ, [W ]〉 �= 0 .

The Hodge conjecture (HC) is then equivalent to

sing νζ = sing δνζ �= ∅
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for L � 0. In an informal sense we may say that if the HC is true, then
there is a systematic geometric procedure for producing the equations of
algebraic cycles from Hodge classes.

For L� 0 an arbitrary class — not one that is rational — ζ ∈ Hn(Ωn
X)prim

may be localized along the locus of singularities of the universal family
X → S. The HC is then equivalent to the condition that the integrality
of the residues of δνζ along the descriminant locus D give the test that
ζ ∈ H2n(X, Q), which is an explicit form of the absolute Hodge condition.

The effective Hodge conjecture (EHC) is the statement that there is an
explicit k0 such that there is Xs ∈ |Lk0 | and a subvariety W ⊂ Xs with
〈ζ, [W ]〉 �= 0. Heuristic reasons show that in general k0 must be bounded
below by an expression whose dominant term is (−1)nζ2 (which is positive).
The other quantities on which k0 depends and which are independent of ζ

are discussed below.
The polarizing forms on the intermediate Jacobians define line bundles,

including a Poincaré line bundle P that may be pulled back to ν∗
ζ (P ) by

a normal function ζ. Restricting to one dimensional families with only one
ordinary node, the Chern class of ν∗

ζ (P ) evaluates to ζ2. This again suggests
the central role of ζ2 in the study of algebraic cycles.

This is an extended research announcement of joint work in progress. The
complete details of some of the results have yet to be written out. It is an
expanded version of the talk given by the second author at the conference
in Leiden in honor of Jacob Murre.

We would like to especially thank Mark de Cataldo, Luca Migliorini, Gre-
gory Pearlstein, and Patrick Brassman for their interest in and comments
on this work.

4.1 Introduction and Historical Perspective

4.1.1 Introduction and Statement of Results

We shall use the notations

X = smooth projective variety

Zp(X) = group of codimension-p algebraic cycles

= {Z =
∑

i

niZi : Zi ⊂ X}
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where Zi is an irreducible codimension-p subvariety, and

Zp(X) −−−→ Hgp(X) = H2p(X, Z) ∩Hp,p(X)

∪ ∪

Z −−−→ [Z]

is the mapping given by taking the fundamental class.

Hodge’s original conjecture (HC): This map is surjective.

It is known that the HC is

• True when p = 1 (Lefschetz [30], c. 1924)
• False in any currently understood sense for torsion when p ≥ 2 (Atiyah-

Hirzebruch [2] and Kollár (see section 4.4.1 below))
• False in any currently understood sense for X Kähler, p ≥ 2 (Voisin [37])

The phrase “in any currently understood sense” means this: Atiyah and
Hirzebruch showed that for p ≥ 2 there is a smooth variety X and a torsion
class in H2p(X, Z), which being torsion is automatically of Hodge type (p, p),
and which is not the fundamental class of an algebraic cycle. Kollár showed
that there is an algebraic class[∑

i

miZi

]
∈ H2p(X, Z)

where mi ∈ Q but we cannot choose mi ∈ Z. Finally, Voisin [37] showed
that there is a complex 4-torus T and 0 �= ζ ∈ Hg2(X) where T has no
geometry — i.e., no subvarieties or coherent sheaves — other than those
coming from points of T .

Conclusion: Any general construction of codimension p cycles for p ≥ 2
must wipe out torsion and must use the assumption that X is an algebraic
variety.

With the exception of section 4.4.1, in what follows everything is modulo
torsion.

By standard techniques the HC is reduced to the case

dimX = 2n, p = n, primitive Hodge classes

where we are given a very ample line bundle L → X with c1(L) = λ and
where the primitive cohomology (with Q coefficients) is as usual defined by

H2n(X)prim = ker{H2n(X) λ−−−→ H2n+2(X)}.
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If s ∈ H0(OX(L)) and the variety Xs given by {s = 0} is assumed to be
smooth then

H2n(X)prim = ker{H2n(X) → H2n(Xs)}

which by Poincaré duality is

∼= ker{H2n(X) → H2n−2(Xs)} .

We set S = PH̃0(OX(L)), where the tilde means that we have blown
PH0(OX(L)) up so that the discriminant locus

D = {s : Xs singular} ⊂ S

has quasi-local normal crossings (definition below). We also set

S∗ = S\D

so that for s ∈ S∗ the hypersurface Xs is smooth with intermediate Jacobian
J(Xs), and we set

J =
⋃

s∈S∗
J(Xs)

J = OS∗(J) = F̌n/R2n−1
π Z ∼= Fn\H2n−1/R2n−1

π Z .

Here we recall that

J(Xs) = FnȞ2n−1(Xs, C)/H2n−1(Xs, Z)
∼= FnH2n−1(Xs, C)\H2n−1(Xs, C)/H2n−1(Xs, Z) .

We consider the picture

X∗ ⊂ X�π
�π

S∗ ⊂ S

where X ⊂ X × S is the smooth variety given by

X = {(x, s) : x ∈ Xs} .

In this picture we set

H2n−1 = OS∗ ⊗R2n−1
π C

with the Hodge filtration

Fp ∼= R2n−1
π

(
Ω≥p

X∗/S∗

)
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satisfying

∇Fp ⊂ Fp−1 ⊗ Ω1
S∗

where ∇ is the Gauss-Manin connection. We set

H2n−1−p,p = F2n−1−p/F2n−p,

and the cohomology sheaf of the complex

H2n−p,p−1 ∇−→ H2n−1−p,p ⊗ Ω1
S∗

∇−→ H2n−2−p,p+1 ⊗ Ω2
S∗ (4.1)

will be denoted by
(
H2n−1−p,p ⊗ Ω1

S∗
)
∇.

Assuming for the moment that we are in the local crossing case, and the
unipotency of the local monodromy operators Ti around the branches si = 0
at a point s0 ∈ S, where in a suitable local coordinate system s1, . . . , sN

D = {s1 · · · sk = 0} ,

it is well-known ([34]) that there are canonical extensions H2n−1
e and F

p
e

of H2n−1 and Fp with ∇F
p
e ⊂ F

p−1
e ⊗ Ω1

S(log D). We put H
2n−1−p,p
e =

F
2n−1−p
e /F

2n−p
e leading a complex extending (4.1)

K• =:
{

H
2n−p+•,p−1−•
e ⊗ Ω•

S(log D),∇
}

Hk(K•) =:
(
H

2n−p+k,p−1−k
e ⊗ Ωk

S(log D
)
∇

.
(4.2)

A general reference to background material in variation of Hodge structure
is [24].

We will use an extension ([31]) of the above to the situation that we will
term quasi-local normal crossings. This means that locally D =

⋃
i∈I Di is

a union of smooth divisors Di = (si) with the following properties:

(i) On any slice transverse to
⋂

i∈I Di = DI , any subset of q � codim DI of
the functions si form part of a local coordinate system in Si, and

(ii) most importantly, the local monodromy operators Ti around si = 0 are
assumed to commute and are unipotent.

We will define

• an extension J̃e of J and the space of extended normal functions (ENF)

ν ∈ Γ(S, J̃e)

• an infinitesimal invariant

δν ∈ Γ
((

Hn,n−1
e ⊗ Ω1

S(log D)
)
∇

)
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• the singular sets

sing ν, sing δν ⊂ S

The main results concerning sing ν and sing δν are

Theorem 4.1.1. There is an isomorphism

Hgn(X)prim −−−→ Γ(S, J̃e)/J(X)

∪ ∪

ζ −−−→ νζ

Theorem 4.1.2. i) Assume the HC in dimension < 2n. Then

sing νζ = {s ∈ D : 〈ζ, [W ]〉 �= 0 where Wn ⊂ Xs is a subvariety} .

ii) In general

sing νζ = {s ∈ D : ζs �= 0 in IH2n−2(Xs)} .

Corollary. HC ⇔ sing νζ �= 0 for L� 0.

Theorem 4.1.3. For L� 0

i) ζ �= 0 mod torsion ⇒ δνζ �= 0
ii) sing νζ = sing δνζ .

Corollary. HC ⇔ sing δνζ �= 0 for L� 0.

In (ii), IH(Xs) refers to intersection homology, general references for
which are [16], [17]. The definitions of sing ν, sing δν are geometric and
understanding their properties makes extensive use of the theory of degen-
erations of VHS over arbitrary base spaces developed in recent years [9],
[10], [26].

We note that for ζ a torsion class, 〈ζ, [W ]〉 = 0 for all W as above, and
also δνζ = 0. Thus, in the geometry underlying Theorems 4.1.2 and 4.1.3
torsion is indeed “wiped out”, as is necessary.

By the basic setting, the results stated require that we be in a projective
algebraic — not just a Kähler — setting.

We remark that our definition of sing νζ should be taken as provisional.
Taking S = |L| (not blown up) we feel that the definition is probably the
correct one when the singular Xs are at most nodal, but it may well need
modification in the most general case.
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The above results will be explained in sections 4.2 and 4.3. In section 4.4
we will explain how all of Hn(Ωn

X)prim may be localized along the locus of
singularities of the Xs, and how when this is done the HC is equivalent to
being able to express the condition that the complex class ζ ∈ Hn(Ωn

X)prim

actually be a class in H2n(X, Q) in terms of the rationality of the residues
of δνζ , where δνζ may be defined even when νζ cannot be.

Finally, in section 4.5 we will begin the discussion of line bundles over the
family of intermediate Jacobians arising from the “polarizing forms” on the
primitive cohomology groups. These “polarizations” are bilinear integral
valued forms but need not be positive definite (see e.g. [20]) and hence the
theory is completely standard. For this reason in section 4.5.1 we include
a brief treatment of complex tori equipped with such a polarization (see
also [25]). Our results here are very preliminary. They consist of an initial
definition of these line bundles and a first computation of their Chern classes.
Especially noteworthy is the formula for the “universal” theta line bundle
M

c1

(
ν∗

ζ+ζ′(M)
)
− c1

(
ν∗

ζ (M)
)
− c1

(
ν∗

ζ′(M)
)

+ c1 (ν∗
0(M)) = ζ · ζ ′ ,

where the LHS is reminiscent of the relation

(a+̇a′)− (a)− (a′) + (e) ∼ 0

on an elliptic curve E, where +̇ is the group law, (b) is the 0-cycle associated
to a point b ∈ E, e is the origin and ∼ is linear equivalence (see Theorem
(7) in section 4.5.2).

4.1.2 Historical Perspective

In reverse historical order the proofs of HC for p = 1 are

Kodaira-Spencer


(i) λ ∈ Hg1(X) gives a line

bundle Lλ → X (Kähler fact)
(ii) Lλ → X gives a divisor (GAGA-requires that

X be projective)
For p ≥ 2 the first step seems to fail in any reasonable form. In fact, as
noted above, Voisin has given an example of a 4-dimensional complex torus
X with Hg2(X) �= 0 but where there are no coherent sheaves or subvarieties
other than those arising from points.

Lefschetz-Poincaré: For n = 1 we take a Lefschetz pencil |Xs|s∈P1 to have
the classic picture, where X̃ is the blow-up of X along the base locus
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X ← X̃
↓π
P1

Xs Xs0

s s0

Xs0
=

A primitive algebraic cycle Z on X gives

Zs = Z ·Xs ∈ Div0(Xs)

ν(Zs) ∈ J(Xs)

Z → νZ ∈ Γ(P1, Je)

where we have

0 → R1
πZ → R1

πOX̃−→Je → 0

J(Xs0) = H1
(
OXs0

)
/H1

(
X̃s0 , Z

)
∼=

 fibre of
R1

πOX̃

at s0

 /
(
R1

πZ
)
s0

.

(By moving Z in a rational equivalence we may assume that its support
misses the nodes on the singular fibres.) Poincaré’s definition of a normal
function was a section of Je. Equivalently, setting P1∗ = P1-{s0 : Xs0 has a
node}, J = Je|P1∗, he formulated a normal function as a section of J with
the properties

— over ∆∗ it lifts to a section of R1
πOX̃∆

(i.e. no monodromy)
— it extends across s0 to (R1

πOX̃)s0 (moderate growth).

Here, ∆ ⊂ P1 is a disc with origin s0 and ∆∗ = ∆\{s0}.

s0

∆

X̃∆
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Geometrically we think of

where we choose
∫

solid
arc

ω rather than
∫

dotted
arc

ω for the abelian sums.

Ruled out is a picture (which is not a Lefschetz pencil)

δ1

δ2

p

q

Here, any path γ joining p to q has monodromy, while we may choose a path
γ̃ with ∂γ̃ = 2(p− q) that has no monodromy.

 
∂γ1 = p −
γ ∈ H1(Xs, Z)

γ

γ1

p

q

=

q

closed loop
around the hole

Proof With T = T1 the monodromy operator we have:

∂γ1 = p− q

(T − I)γ1 = δ1

(T − I)γ = 2δ1

 ⇒ (T − I)(2γ1 − γ) = 0 in H1(Xs, Z).

Moral: For any family

1-dim base
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with a one dimensional base and Z with deg Zs = 0, for some non-zero
m ∈ Z

mνZ gives a normal function.

As will be seen below this is a consequence of the local invariant cycle
theorem.
Proof of HC: 0 → R1

πZ → R1
πOX̃ → Je → 0 gives

0 → Pic◦(X) → Γ(P1, Je)
δ→ H1(R1

πZ) → H1
(
R1

πOX̃

)
�‖ �‖

H2(X, Z)prim → H2 (OX)

There are then two steps:

(1) ζ ∈ Hg1(X)prim
∼= ker{H1(R1

πZ) → H1(R1
πOX̃)} ⇒ ζ = δνζ

(2) νζ arises from an algebraic cycle Z (Jacobi inversion with dependence on
parameters)

Extensions of (1): dimX = 2n, L→ X very ample.

The first was the general Lefschetz pencil case (Bloch-Griffiths unpub-
lished notes from 1972), where for a section ν with lifting ν̃ as in the follow-
ing diagram

H2n−1 −→ Fn\H2n−1/R2n−1
π Z

∪ ∪
ν̃ −→ ν

we have to add the condition

∇ν̃ ∈ Fn−1.

The next was the definitive extension by Zucker [38] and El Zein-Zucker
(cf. [14] and the references cited therein) to a general one parameter family
of generically smooth hypersurface sections

X̃
↓
S

s0
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with the assumption on ζ ∈ Hgn(X)prim that we should have Poincaré’s first
condition

ζ = 0 in H2n
(
X̃∆, Z

)
Their result is now generally referred to as the Theorem on Normal Func-
tions.

Now we discuss the Clemens-Schmid exact sequence (cf. Chapter VI in
[24]). It implicitely uses the Monodromy Theorem which states that the
eigenvalues of T are all roots of unity and so T is quasi-unipotent, i.e. in
the decomposition T = TsTu in semi-simple and unipotent parts Ts is of
finite order k; after base changing via z �→ zk the monodromy operator T

becomes unipotent. We may and do assume that this is the case and put

N := log(T ) =
∑
k≥1

(−1)k+1 (T − I)k

k
,

the left-hand side of which is a finite sum with Q-coefficients. This explains
we need Q-coefficients in the sequence

Hp
(
X̃∆, ∂X̃∆

)
→ Hp

(
X̃∆

)
→ Hp(Xs)

N−→ Hp(Xs) →
�‖ �‖

H4n+2−p(X̃∆) Hp(Xs0)
�‖ �‖

H4n+2−p(Xs0) (Rp
πZ)s0

{
kerN = invariant cycles

ker N⊥ = vanishing cycles

With the additional assumption

(T − I)2 = 0 ⇒ G = ker(T − I)⊥/im (T − I) is a finite group

we have a Néron model J̄e with an exact sequence

0 → O(Je) → O(J̄e) → G → 0

and Clemens [12] and M. Saito [33] showed that (1) extends using J̄e (G = Z2

in the above example).

Issues. Due to the failure in general of Jacobi inversion the above method,
at least as it has been applied, fails in general to lead to the construction of
cycles (cf. [33]). Among the issues that have arisen in this study are:

— the need dimS arbitrary to see non-torsion phenomena and to have δνξ

non-trivial
— the assumption (T − I)2 = 0 is too restrictive.
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Of these the first may be the more significant, since the second is satisfied
when the singularities are nodal and as discussed below, these seem to be
sufficient to capture much of the geometry.† However, it is only when the
base is higher dimensional that the full richness of the theory of degenera-
tions of Hodge structures and the use of arguments requiring L� 0 and all
of H0(OX(L)) can be brought to bear on the problem. It is also only when
L � 0 and the full H0(OX(L)) is used that the infinitesimal invariant δν

captures the information in ν.

Example 4.1.4. X = Q ⊂ P3, L = OX(2, 2), g(Xs) = 1 and Z = L1 − L2

where the Li are lines from the two rulings on Q. We then have the following
picture

|OX(2, 1)|

|OX(0, 1)|

δ2 → 0

δ1 → 0

s1s2 = 0 in |OX(2, 2)|

δ2

δ1

With ν an extended normal function as defined below we have

— ν(s1, s2) ≡ n1 log s1 + n2 log s2 modulo (periods and holomorphic terms)

— ν extends to Je ⇔ n1 = n2

— J̃e,s0/Je,s0
∼= Z (ν → n1 − n2)

— νZ(s1, s2) ≡ 2 log s1︸ ︷︷ ︸
integrate
over —–

− 2 log s2︸ ︷︷ ︸
integrate

over - - - -

modulo (periods and holomorphic terms)

Here J̃e ⊃ Je is the sheaf of extended normal functions.

† Although from the physicists work on mirror symmetry we see that the “most singular” de-
generations may also be very useful.
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4.2 Extended Normal Functions and their Singularities

4.2.1 Geometric Motivation

Given Wn ⊂ X2n, by a rational equivalence and working modulo torsion
and complete intersection cycles, we may assume that W is smooth, and
then for L � 0 there will be s0 ∈ S such that W ⊂ Xs0 ; we may even
assume that Xs0 is nodal (cf. section 4.4.1 below). If

〈ζ, [W ]〉 �= 0 (⇒ s0 ∈ D and [W ]prim �= 0)

then ζ does not satisfy the analogue of Poincaré’s first condition

ζ = 0 in H2n(X̃∆)

s0

∆

X̃∆

This suggests studying the behaviour of νζ(s), defined initially over S∗ =
{s ∈ S : Xs smooth}, as s → s0. Such a study was attempted in [22]
and [23], but this was inconclusive as the understanding of degenerations of
Hodge structures over higher dimensional base spaces was not yet in place.

4.2.2 Definition of Extended Normal Functions (ENF)

Near s0 ∈ D where we have quasi-local normal crossings, for ω ∈ Fn
e,s0

we
have

〈ν, ω〉 (s) = P (log s1, . . . , log sk) + {meromorphic functionf(s)}

for some polynomial P . By definition, moderate growth is the condition that
f(s) be holomorphic; we assume this analogue of Poincaré’s second condi-
tion. In U∗ choose a (multi-valued) lift ν̃ to F̃n

e ; then modulo homomorphic
functions

〈(Ti − I)ν̃, ω〉 (s) ≡
∫

δi,s

ω(s), δi,s ∈ H2n−1(Xs)

where (Ti − I)ν̃ is the change in ν̃ by analytic continuation around the
puncture in the disk |si| < 1, sj = constant for j �= i. The condition that ν
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can be extended to Je is

δi,s = (Ti − I)λs λs ∈ H2n−1(Xs, Z) , (4.3)

and then mν extends to Je if, and only if, (4.3) holds for mδi,s.

Definition 4.2.1. An ENF is given by the sections ν of J → S∗ that near
a point of the descriminant locus have moderate growth and satisfy

mδi,s = (Ti − I)λi,s for some integer m. (4.4)

Thinking of Je = Fn
e \H2n−1

e /R2n−1
π Z this is equivalent to

mν̃ ≡
∑

i

e(Ni log si)λi,s mod H2n−1
e

where ν̃ is a lift of ν to H2n−1 over the punctured polycylinder U∗ and
e(Ni log si)λi,s is a multi-valued section of H2n−1 over U∗.

Notation: J̃e is the sheaf of ENF’s.

Theorem 4.2.2. νζ gives an ENF.

When the base has dimension one this condition to be an ENF is equiva-
lent to

mν ∈ Je,s0 for some integer m.

The proof of Theorem 4.2.2 uses the full strength of the Clemens-Schmid
exact sequence to show that (4.3) holds.

Note. We are indebted to the authors of [15] for pointing out to use the
close relationship between our notion of an ENF and M. Saito’s concept of
an extended normal function [33]. Briefly, over S∗ a normal function may be
thought of as arising from a variation of mixed Hodge structure (VMHS).
Along the discriminant locus D = S\S∗ the condition of admissibility for a
VMHS assumes a simple form for 2-step adjacent mixed Hodge structures;
i.e., those for which the weight filtration has only two non-trivial adjacent
terms. This is the case for normal functions and, the condition (2) above is
essentially equivalent to admissibility as explained in the preprint [15].

4.2.3 Singularities of ENF’s

By definition there is over S an exact sheaf sequence

0 → Je → J̃e → G → 0 .

Definition 4.2.3. sing ν is given by the support of the image of ν in H0(S, G).
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From the works of Cattani-Kaplan-Schmid ([10]) one is led to consider
the complex given by

V = H2n−1(Xs, Q), s ∈ U∗

Bp =
⊕

i1<···<ip

Ni1 · · ·NipV ,

and with a Koszul-type boundary operator.

Theorem. i) There is an injective map

Gs0 ⊗Q → H1(B•) , and

ii) There is an isomorphism

H1(B◦) ≈ IH1(R2n−1
π Q) .

In the local normal crossing case the second isomorphism is based on the
work of Cattani-Kaplan-Schmid [9] and Beilinson-Bernstein-Deligne-Gabber
[3]. A proof that works also in the quasi-local normal crossing case has been
shown to us by Mark de Cataldo and Luca Migliorini using their theory
developed in [13]. The “purity” result of Gabber implies that the weights
of Gs0 ⊗ Q are non-positive. This theorem will follow from Theorem 3 in
section 4.3.2 below.

Theorem 4.2.4. i) Assuming the HC in dimension < 2n,

sing νζ = {s0 ∈ D : 〈ζ, [W ]〉 �= 0 where Wn ⊂ Xs0} .

ii) In general

sing νζ = {s0 ∈ D : ζs0 �= 0 in IH2n−2(Xs0)} .

Corollary. HC ⇔ sing νζ �= 0 for L� 0.

Example 4.2.5. Perhaps the simplest non-trivial example that illustrates
how the singularities of a normal function are captured by the locus where
H1(B•) �= 0 in the dual variety is given by a smooth cubic surface

X ⊂ P3 .

The dual has a stratification

P̌3 ⊃ X̌ ⊃ X̌1 ⊃ X̌2

where X̌1 = X̌sing, X̌2 = (X̌1)sing and where the pictures are as follows:
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s ∈ X \ X̌1 Xs =

s ∈ X̌1 \ X̌2

(i) Xs =

(ii) Xs =

s ∈ X̌2 Xs =

As will be seen from the general result quoted in the next section{
H1(B•

s )Q ∼= Q s ∈ X̌1 − X̌2 of type (i)

H2(B•
s )Q ∼= Q⊕Q s ∈ X̌2 .

(4.5)

We need not consider the locus s ∈ X̌1 − X̌2 of type (ii), since there the
local monodromy is finite and we are working modulo torsion.

We will think of X as the blow up of 6 points P1, . . . , P6 ∈ P2 that are in
general position with respect to lines and conics. The mapping

X → P3

is given by the cubics in P3 that pass through P1, . . . , P6 — thus

H0 (OX(1)) ∼= H0 (OP2(3)(−P1 − · · · − P6))

and we take the line bundle L on X to be OX(1). The 27 lines on X are
given classically by

Ei = blow up of Pi

Fij = image of the line through Pi and Pj

Gi = image of the conic through P1, . . . P̌i, . . . , P6.

The table of intersection numbers is straightforward to write down. A piece
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of it is
Ej Fjk Gj

Ei −δij δij + δ1k 1− δij

E2 −δ2j δ2j + δ2k 1− δ2j

G2 1− δ2j δ2j + δ2k −δ2j

For a line Λ ⊂ X we will denote by Λ⊥ ⊂ X̌ the corresponding line in the
dual projective space, so that with the obvious notation

X̌1(i) =
⋃
i

E⊥
i

⋃
ij

F⊥
ij

⋃
i

G1
i .

For purposes of illustration to get started we consider the two Hodge
classes {

ζ = [E1 − E2] E1 · E2 = 0

ζ ′ = [E1 −G2] E1 ·G2 �= 1.

The singular loci of νζ , νζ′ are unions of the E⊥
i , F⊥

ij , G⊥
j . We evidently have

Λ⊥ ⊂ sing νζ ⇔ E1 · Λ �= E2 · Λ

Λ⊥ ⊂ sing νζ′ ⇔ E1 · Λ �= G2 · Λ .

From the above table we have
sing νζ = E⊥

1 ∪ E⊥
2 ∪ F⊥

13 ∪ · · · ∪ F⊥
16 ∪ F⊥

23 ∪ · · · ∪ F⊥
26 ∪G⊥

1 ∪G⊥
2

sing νζ′ = E⊥
1 ∪ E⊥

ζ ∪ · · · ∪E⊥
6 ∪ F⊥

13 ∪ · · · ∪ F⊥
16F

⊥
23 ∪ · · ·

· · · ∪ F⊥
26 ∪G⊥

2 ∪ · · · ∪G⊥
6

which have degrees 12 and 18 respectively. In particular, ζ and ζ ′ are dis-
tinguished by their singular sets.

To formalize this we let in general

D ⊃ D1 ⊃ · · · ⊃ DN

be the stratification of the discriminant locus, and we set
DI =

⋂
i∈I

Di

D0
I = non-singular part of DI

D0
I,λ = irreducible (= connected) components of D0

I,λ.

Then

H1(B•
s )Q has constant dimension for s ∈ D0

I,λ .
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Thus we may think of H1(B•
s )Q as a local system VI,λ on D0

I,λ and, as
described above, a Hodge class ζ induces a section

(sing νζ)I,λ ∈ H0(DI,λ, VI,λ) .

We think of this as a map

ζ → sing νζ =
∑
I,λ

(sing νζ)I,λDI,λ (4.6)

which assigns to each Hodge class the formal {VI,λ}-valued cycle as above.
The HC is equivalent to the assertion that the mapping (4.6) is injective for
L� 0 (just how ample L must be will be discussed in section 4.4.1 below).

Returning to the cubic surface, it is easy to see that in this case there
is no new information in the components of X̌2. Moreover, for each line
component Λ⊥ of X̌1 we may, by (4.5), canonically identify H0(Λ⊥, VΛ⊥)
with Q. When this is done, we have

sing νζ =
∑
Λ

(ζ · Λ)Λ⊥

where Λ runs over the lines on X and we have only summed over the
codimension one components of X̌. Since any primitive Hodge class is
uniquely specified by its intersection numbers with the lines, we see that
for L = OX(1) the map (4.6) is injective.

4.2.4 Nodal Hypersurface Sections †

.
As s → s0 we have vanishing cycles δλ → pλ ∈ ∆s0 . The following

numerical invariants reflect the topology, algebraic geometry and Hodge
theory associated to the degeneration Xs → Xs0 :

ρ(i) = dim {space of relations among δλ’s}
ρ(ii) = dim {image of (H2n(Xs0) → H2n(X)prim)}

ρ((iii) = dim
{

failure of pλ to impose independent
conditions on H0(KX ⊗ Ln)

}
= h1

(
I∆s0

⊗KX ⊗ Ln
)
, L� 0

ρ(iv) = hn,n−1(X̃s0)−
(
hn,n−1(Xs)−# double points

)
ρ(v) = dim

{
Hgn−1(X̃s0)/im Hgn−1(X)

}
ρ(vi) = dimH1(B•)

† This section is based in part on correspondence with Herb Clemens and Richard Thomas;
cf. [35]
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Theorem. ρ(i) = ρ(ii) = ρ(iii) = ρ(iv) = ρ(v) = ρ(vi).

Given a smooth codimension-n subvariety W ⊂ X, for L � 0 there exist
nodal hypersurfaces Xs0 passing through W . Generically all of the nodes pλ

will be on W (Bertini) and there is a Chern class formula for the quantities

(a) h0(IW (L))
(b) number of nodes of Xs0 .

Theorem. For Xs0 general among hypersurfaces containing W , the subva-
riety W is uniquely determined by the fundamental class [W̃ ] ∈ H2n−2(X̃s0)
of the proper transform W̃ in the canonical desingularization X̃s0 of Xs0.

A consequence of this result is that, for L � 0, a component of the Hodge-
theoretically defined variety sing νζ is equal to the locus

{s0 ∈ D : there exists a unique W ⊂ Xs0 with 〈ζ, [W ]〉 �= 0} .

It is in this precise sense that a Hodge class gives the equations of the dual
algebraic cycles.

Theorem (Clemens). For L � 0 the monodromy action on the nodes
pλ ∈ Xs0, where W is fixed and Xs0 ⊃W varies, is doubly transitive.

A consequence is that for L � 0 and Xs0 a general nodal hypersurface
containing W

ρ(i) = 1;

in fact, the generating relation is∑
λ

±δλ = 0

where the ± reflects a choice of orientation. From

ρ(i) = ρ(vi)

in the theorem above we conclude that

dim IH1
(
R2n−1

π Q
)

= 1

where the intersection homology of the local system R2n−1
π Q is taken over a

neighborhood of s0.
It is easy to check that if Xs0 has nodes p1, . . . , pm that impose indepen-

dent conditions on the linear system |Xs|, so that locally

D = D1 ∪ · · · ∪Dm



20 M. Green and Ph. Griffiths

where δλ → 0 along Dλ, then

H1(B•
s0

) ∼= {relations along the δλ} .

This is the case in the above theorem of Clemens. However, this is a very
special circumstance, as illustrated by the following

Example. Let X ⊂ P3 be a smooth quartic surface containing a line Λ but
otherwise general. The planes containing Λ give a line

Λ⊥ ⊂ X̌ ⊂ P̌3 .

For s0 a general point of Λ⊥, the picture of Xs as s → s0 is

δ1

δ2

δ3

p1

p2

p3

where δi → pi as s→ s0. A transverse plane slice of X̌ locally looks like

δ2 = 0
δ3 = 0

δ1 = 0 s0

This means that locally X̌ is the union of three smooth hypersurfaces X̌i

that intersect pairwise transversely along a smooth curve, and where δi = 0
on X̌i. This is a situation where one has quasi-local normal crossings; to
obtain the local normal crossing picture we must blow up X̌ along Λ⊥.

In this case the condition (∗) in section 4.1.1 is satisfied. For the complex
B• we have

V
α−−−→ N1V ⊕N2V ⊕N3V

β−−−→ N1N2V ⊕N1N3V ⊕N2N3V.

Since there is one relation among the δi we have

dim kerα = 4

⇒ dim coker α = 1

⇒ H1(B•) ∼= Q
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since β = 0. For H ⊂ X a general plane section and

ζ = [4Λ−H] ∈ Hg1(X)prim ,

one may check that in a neighborhood of s0 as above

sing νζ = Λ⊥ .

Now suppose we blow up Λ⊥ so as to obtain

δ2 = 0 δ3 = 0δ1 = 0

s0
E

where along the exceptional divisor E we have δ1 = δ2 = δ3 = 0. Then, say,
around s0 we have{

T1 = Ts1 (around δ1 = 0)

T2 = Tδ1 + Tδ2 + Tδ3 = 0 (around E),

where in the second relation attention must be paid to signs.

The complex B• is now

V
α−→ N1V ⊕N2V .

With suitable choice of bases and signs we will have

N1γ1 = δ1{
N2γ1 = 2δ1 + δ2

N2γ2 = δ1 + 2δ2

and all other Niγj = 0. Then{
α(γ1) = (δ1, 2δ1 + δ2)

α(γ2) = (0, δ1 + 2δ2)

so that

coker α = H1(B•)

has generator (δ1, 0) and thus is of dimension one.
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Note: We had originally thought that under blowing up the singularities of
νζ might disappear, and are grateful to the authors of [?] for pointing out
to us that this is not the case.

This example is typical in that when we have the situation

W ⊂ Xs0 ∈ |L|

as above, then in a neighborhood U in PH0(OX(L)) of s0 ∈ X̌ we will have
that

X̌ ∩ U = D1 ∩ · · · ∩Dm

where the conditions in (∗) in 4.1.1 are generally satisfied. More precisely, if
we consider the universal local deformation space (Kuraniski space) M for
Xs0 , then in many circumstances it will be the case that the nodes pi may
be independently smoothed. Denoting by Mi ⊂ M the hypersurface where
the node pi remains, Ms0 = ∪

i
Mi forms a normal crossing divisor in M. If

U ⊂ |L| is a neighborhood of s0 and we set Di = U∩Mi, then we may again
generally expect that U meets each MI , so that the quasi-normal condition
in 4.1.1 will be satisfied.

The general result is:

Let I = J ∪K be a set of nodes with J ∩K = ∅ and the nodes in each of
J, K independent. Then

H1(B•) ∼= {relations among the nodes in I} .

4.3 Infinitesimal Invariant and its Singularities

4.3.1 Definition of the Infinitesimal Invariant

Recalling (4.2) we have:

Definition. δν = [∇ν̃] ∈ H0
(
H

n−1,n
e ⊗ Ω1

S(log D)
)
∇

.

The basic properties of δν (cf. [18] and [36]) are as follows.

i) δν = 0 if, and only if, ν lifts to a locally constant section ν̃ of H2n−1.
This requires L� 0, which also implies that
ii) the vanishing cycles are of finite index in

H2n−1(Xs, Z)/H2n−1(X, Z) .

From this an argument using the Picard-Lefschetz formula gives
iii) ν̃ locally constant⇒ ν is torsion in J(Xs)/J(X). It then follows that
iv) νζ torsion ⇒ ζ is torsion.
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This finally implies the mapping

ζ → δνζ

is injective modulo torsion, which is (ii) in Theorem 4.1.3.

4.3.2 Singularities of δν

Theorem 4.3.1. i) There is a canonical map(
Hn−1,n

e ⊗ Ωp
S(log D)

)
∇,s0

→ Hp(B•)

which then allows us to define

sing δνζ = image of δνζ ∈ H1(B•) ,

and with this definition we have for L� 0

sing νζ = sing δνζ .

ii) For L� 0

ζ �= 0 mod torsion ⇒ δνζ �= 0 .

Corollary. HC ⇔ sing δνζ �= 0 for L� 0.

Whereas νζ is an analytic invariant, δνζ is an algebro-geometric invariant;
by (ii) the information in ζ is, for L� 0, captured by δνζ .

To sketch the basic idea of the proof, if D has quasi-local normal crossings
there is a map

Ress0Ω
p
S(log D) → ⊕

I
CI

where I = {i1 < · · · < ip} and CI is the constant sheaf supported on DI .
This gives

Ress0Ω
p
S(log D)⊗He → ⊕

I
(He,s0)I

where (He,s0)I = He,s0 ⊗C CI . If ν̃ is a local multi-valued lifting on ν, then
by definition of an ENF, for some integer m we have

m(Ti − I)ν̃ ∈ Im
{
(Ti − I)H2n−1(Xs0 , Z)

}
where Ti − I is “analytic continuation around Di”. This relation translates
into

mRes s0(∇ν̃) ∈ ⊕
i
(Ti − I)HZ,e,s0 .
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so that from the complex

(∗) HZ,e;s0 → ⊕(Ti − I)HZ,e;s0 → ⊕
i<j

(Ti − I)(Tj − I)HZ,e;s0

we obtain

mRes s0(∇ν̃) ∈ H1(∗) .

Now ν̃ is well-defined up to

ν̃ → ν̃ + f + λ (4.7)

where f ∈ Fn
e and λ ∈ HZ,e;s0 . The contribution of λ is

∑
(Ti − I)λ which

gives a coboundary which This disposes of the ambiguity λ in (4.7). The
ambiguity f disappears because ∇f = 0 in the complex (4.2).

Next, we need to replace (Ti − I) by Ni = (Ti − I)Ai where Ai is an
invertible matrix defined over Q and where all the Ai commute among each
other. So over Q the new complex has the same cohomology as the complex
(∗). At this stage we have, over Q, essentially described the definition of the
map

sing ν → H1(B0
s0

)Q .

Next we define the subcomplex

Ω•
S

(
df1

f1
N1He, . . . ,

dfk

fk
NkHe

)
⊂ Ω•

S(log D)⊗He ,

where the differential on the subcomplex is given by(
∧

∑
i

dfi

fi
Ni

)
.

There is then a map of complexes

He −−−→ Ω1
S −−−→ Ω2

S

(
df1

f1
N1He, . . . , dfk

kk
NkHe

)
�Res s0

�Res s0

�Res s0

He,s0 −−−→ ⊕
i

NiHe,s0 −−−→ ⊕
i<j

NiNjHe,s0

under which δν maps to sing ν in H1(B•
s0

)Q. This is the construction of
Theorem 3.
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4.4 Issues and Deeper Structures

4.4.1 The Effective Hodge Conjecture (EHC)

Let X be a smooth variety, of any dimension for the moment, L→ X a very
ample line bundle with Chern class λ = c1(L), and

ζ ∈ Hgp(X) .

Since torsion consideration will be important in this section we shall use Z
coefficients. The (HC) is equivalent to the statement

(1) There exist integers k0, m0 such that for m � m0

k0ζ + m(λ)p = [Z] (4.8)

where Z is an effective, integral algebraic cycle.

Indeed, if

k0ζ = [Z ′ − Z ′′]

where Z ′, Z ′′ are effective cycles, then writing

Z ′′ =
∑

niZi, ni ∈ Z ,

where the Zi are irreducible of codimension p, by passing hypersurfaces of
high degree through each Zi we will have

Zi + Wi = H1 ∩ · · · ∩Hp

for a subvariety Wi, which then gives

[−Zi] = lλp + [Wi]

for some integer l, from which (1) follows. We note that if (1) holds for
m = m0, then it also holds for m � m0. The (EHC), in various forms to be
discussed below, asks for (1) with estimates on k0, m0.

We are grateful to the referee for pointing out to us the following result
of Kollár, which illustrates the care that must be taken in consideration of
the torsion coefficient k0.

We consider the space M of smooth hypersurfaces

X ⊂ Pn+1, n � 3

of degree d � n + 1. Then

Hgn−1(X) ∼= H2n−2(X, Z) ∼= Z .

Denoting by

Mk ⊂M
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the subvariety of X’s containing a curve of degree k, Kollár [29, 32] showed
that if (k, d) = 1 and d is divisible by a prime power p3 where p > n, then
Mk is a proper subvariety; and Soulé-Voisin [32, § 2] further remark that⋃

(k,d)=1 Mk is dense in M. Of course, for any integer l

Mdl = M .

One conclusion is that the torsion coefficient k0 in (4.8) could have subtle
dependence on X.

Now we return to the main situation in this paper where dimX = 2n and
we are considering a primitive Hodge class ζ. If

ζ = [Z]

for an integral algebraic cycle Z, then it follows from results of Kleiman [28]
that we will have

(n− 1)!ζ + mλm = [W ], m � m0 , (4.9)

where W is a smooth, codimension n subvariety. In fact, we may take W

to be the degeneracy classes of general sections σ1, . . . , σr−1 of a very ample
rank r vector bundle F → X. This implies that the normal bundle NW/X is
ample, and by a result of Fulton-Lazarsfeld (Annals of Math. 118 (1983),
35–60)

cn(NW/X) > 0 . (4.10)

When n is odd, so that

−ζ2 > 0

by the Hodge-Riemann bilinear relation, (4.9) and (4.10) give

m0 � 1
(n− 1)!

2n

√
−ζ2

λ2n
, n ≥ 2. (4.11)

This suggests that any estimate on m0 in (4.8) must involve ζ2.
In fact, for n = 1, where the above relation does not make sense, it follows

from known results that

The (EHC) (4.8) holds for k0 = 1 and where we may take

m0 = −ζ2 + C(ζc1(X), λc1(X), c2
1(X), c2(X)) (4.12)

where C is a universal linear combination of the constants listed.
Moreover, we shall give an heuristic argument that there exist divisors in
surfaces X for which a lower bound (4.11) holds, up to constants.
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The last statement follows by considering the case of quartic surfaces X ⊂
P3. Letting H be a hyperplane class, we first note that there is no uniform
m0 such that for every X and ζ ∈ Hg1(X)prim

ζ + m0H is effective. (4.13)

In fact, by considering X for which NS(X) is generated by H plus a non-
complete intersection curve of degree d we see that

There is no uniform m such that for every X there are curves W1, . . . , Wρ

in X that span NS(X) and have degree � m.

Thus there is no uniform m for which (4.13) holds for all X.
Next, to see why the lower bound should hold we consider the following

statement.

Any estimate on m0 in (4.13) must in general involve the lengths
of the shortest spanning vectors in Hg1(X, Z)prim.

(4.14)

The heuristic argument for (4.14) is based on the following quite plausible
(and possibly known) statements: Let Λ = H2(X, Z) and Λ0 = {ζ ∈ Λ :
ζ ·H = 0}. Let P ⊂ Λ be the vectors that are not divisible by any n ∈ Z,
n �= ±1 (these are primitive in a different sense of the term). Then

i) there exists ζn ∈ P ∩ Λ, with ζ2
n → −∞

ii) there exists a polarized Hodge structure Hn on ΛC with ζn ∈ Hg1(Hn)
iii) in (ii) we may arrange that the Picard number ρ(Hn) = 2
(iv) there exists a (possibly singular) Xn ⊂ P3 such that Hn is a direct

summand of the Hodge structure on a desingularization X̃n of X.

Let λ = [H] and Z be an irreducible curve on X̃n with

[Z] = aλ + bζn a, b ∈ Z .

Then deg Z = a. By adjunction, since Z is irreducible the arithmetic genus
π(Z) satisfies

0 � π(Z) =
Z · Z

2
+ 1

while

Z · Z = 4a2 + b2ζ2
n

which implies

a �
√
−ζ2

n

2
.
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Returning to (4.11) which only gives information for odd n, for the first
even case n = 2 for purposes of illustration we assume that there exists a
rank-two vector bundle E → X with{

c2(E) = ζ

c1(E) = aλ .

Setting as usual E(m) = E⊗Lm, let m0 be such that there is σ ∈ H0(OX(E(m0)))
with (σ) = W where N∨

W/X
∼= E(m0)|W is ample. Then we claim that

m2
0 + bm0 > c

√
ζ2 (4.15)

where b, c are constants depending only on X, E and L.

Proof By another result due to Fulton-Lazarsfeld (loc. cit.), since NW/X is
ample we have

c1(NW/X)2 > c2(NW/X) ,

from which(4.15) follows.

This again suggests the possibility of there being, in general, a lower bound
on m0 for which (4.8) holds in terms of |ζ|2.

This possibility is reinforced by the following considerations: Let M be a
quasi-projective algebraic variety parametrizing a family of smooth projec-
tive X’s with reference variety X0 ∈M. For example, M could be a moduli
space if such exists. Letting U be a sufficiently small neighborhood of X0

and ζ ∈ Hgn(Xc)prim, the locus

Uζ = U ∩ {X ∈ U : ζ ∈ Hgn(X)prim}

of nearby points where ζ remains a Hodge class is an analytic variety. By a
theorem of Cattani-Deligne-Kaplan [8] it is part of an algebraic subvariety

Mζ ⊂ M .

We shall write points of Mζ as (X, ζ) to signify that there is a Hodge class
ζ extending the one defined over Uζ , where we may have to go to a finite
covering to make ζ single-valued. For each k, m with m > 0, k �= 0 we
consider the subvarieties

Mk,m = {(X, ζ) ∈Mζ : kζ + mλn = [Z]}

where Z is an effective algebraic cycle.
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Assuming the (HC) we have⋃
k,m

Mk,m = Mζ .

It follows that the LHS is a finite union; thus

Mζ =
N⋃

i=1

Mki,mi
.

Letting k0, m0 be multiples of all the ki, mi respectively, and using that for
a positive integer a

Mk,m ⊂Mak,am

we have that

Mk0,m0 = Mζ (4.16)

from which we conclude:

If the (HC) is true, then (4.8) holds for a uniform k0, m0 when (X, ζ)
varies in an algebraic family.

Now suppose we now let the Hodge class ζ vary. Then on the one hand, for
each positive constant c we shall give an heuristic argument that⋃

|ζ|2�c

Mζ = Mc is an algebraic subvariety of M. (4.17)

On the other hand, typically⋃
ζ

Mζ is dense in M . (4.18)

Letting kζ , mζ be integers such that (4.16) holds with k0 = kζ , m0 = mζ we
will then have {

kζ , mζ are bounded if |ζ|2 < c

kζ , mζ are not bounded for all ζ .
(4.19)

This again suggests the possibility of a lower bound on mζ in terms of |ζ|2.
A proof of (4.17) follows from [8]. Here we give a slightly different way of
proceeding, anticipating some possible consequences of the recent work [27].

Heuristic argument for (4.17): Let D be the classifying space for polarized
Hodge structures of the same type as H2n(X0, Z)prim/mod torsion. Thus we
are given a lattice with integral non-degenerate quadratic form (HZ, Q) and
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D consists of all Hodge-type filtrations {F p} on HC satisfying the Hodge-
Riemann linear relations. There is a period mapping

ϕ : M → Γ\D
where Γ = Aut(HZ, Q). By the work of Kato-Usui [27], it is reasonable
to expect that there will be a partial compactification (Γ\D)Σ such that ϕ

extends to

ϕ : M → (Γ\D)Σ (4.20)

for a suitable compactification of M of M. Here, Σ stands for a set of fans
that arise in the work of Kato-Usui (loc. cit.)

Now let Hprim
Z be the lattice vectors ζ that are primitive in the arithmetic

sense; i.e., ζ is only divisible by ±1 in HZ. Then it is known that

There are only finitely many Γ orbits in Hprim
Z with fixed Q(ζ, ζ). (4.21)

For each ζ ∈ Hprim
Z we let

Dζ =
{
{F 0} ∈ D : ζ ∈ Fn is a Hodge class

}
.

Then, by (4.21), Dζ projects to a closed analytic subvariety

(Γ\D)ζ ⊂ Γ\D .

Analysis similar to that in Cattani-Deligne-Kaplan (loc. cit.) suggests that
(Γ\D)ζ extends to a closed log-subvariety

(Γ\D)ζ ⊂ (Γ\D)Σ .

Then

Mζ = ϕ−1((Γ\D)ζ)

will be an algebraic subvariety (which, as noted above, we know by Cattani-
Deligne-Kaplan) and essentially because of (4.21), there are only finitely
many such Mζ ’s with |ζ|2 � c.

Summary. i) There is heuristic evidence that any bounds on k0, m0

such that (4.8) holds will depend on |ζ|2, together with quantities a|ζ|+
b, where a, b are constants independent of ζ.

ii) For n = 1 we may take k0 = 1 and there is an upper bound (4.12)
on m0. For a general surface X, this bound is sharp.

In a subsequent work, we shall show that obtaining an estimate on codim(sing νζ)
requires that we let X vary in its moduli space and consider the Noether-
Lefschetz loci. Heuristic reasoning then suggest the following formulation of
an effective (HC)
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(EHC): There is a relation (4.8) where the constants k0, m0 depend on
|ζ2|, aζ + b, and universal characters constructed from H∗(X) and H∗(M)
that do not depend on ζ.

4.4.2 Localization of Primitive Cohomology along the Singular

Locus

The central issue is that δνζ — but not νζ — can be defined for any class

ζ ∈ Hn,n(X)prim ⊂ Hn (Ωn
X) , (4.22)

and then as a consequence of Theorem 3

ζ ∈ Hgn(X)⊥ ∩Hn,n(X)prim

⇒ sing (δνζ) = 0 for L� 0 .

Thus, any existence result involving δνζ must involve the condition that
ζ be an integral class, or equivalently that νζ exist. Roughly speaking the
residues of δνζ must be integral in order to be able to “integrate” and enable
us to define

νζ = “
∫

δνζ”.

This brings us to the

Question 4.4.1. Given ζ as in (4.53), how can we tell if ζ ∈ H2n(X, Q) —
i.e. ∫

Γ
ζ ∈ Q , Γ ∈ H2n(X, Z) ?

It turns out that there is a very nice geometric structure underlying this
question. It is based on two principles

1st Principle: Denoting by X̌ the dual variety of X and by H → X̌ the
hyperplane bundle, the group Hn(Ωn

X)prim may be expressed globally along
the singular locus

∆ ⊂ X × X̌

by the failure collectively of the ∆s = ∆ ∩ Xs × {s}, s ∈ D, to impose
independent conditions on |KX ⊗ Ln ⊗Hn|.

Here we are thinking algebraically with Hn(Ωn
X) being defined in the Zariski

topology.
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2nd Principle: For p ∈ ∆s there is a map

KX,p ⊗ Ln
p → C ,

well-defined up to sign and given by

ω → ±Res p

( ω

sn

)
, ω ∈ KX,p ⊗ Ln

p ,

where ω̃ is any extension of ω to a neighborhood and s ∈ H0(OX(L)) defines
Xs.

Remark. This leads to an integral structure expressed by (4.27) below.

The injection (4.22) also arises from a canonical section

η ∈ H0
(
O∆

(
K2

X ⊗ L2n ⊗H2n
))

and we may think of the image of Zζ in (4.17) as being

Z
√

η ⊂ O∆ (KX ⊗ Ln ⊗Hn) .

The section η is constructed as follows: At points p ∈ ∆, the universal
section

s = quadratic + (higher order terms)

and the quadratic terms give a canonical symmetric map

TX,p → T ∗
X,p ⊗ Lp ⊗Hp

which by exterior algebra induces (recalling that dimX = 2n)

Λ2nTX,p → Λ2nT ∗
X,p ⊗ L2n

p ⊗H2n
p

and then we obtain

η(p) ∈
(
Λ2nT ∗

X,p

)2 ⊗ L2n
p ⊗H2n

p

with the property that

η(p) �= 0 ⇔ p is a node.

Globalizing over X × S, this map gives an injection of sheaves

Z
√

η → O∆ (KX ⊗ Ln ⊗Hn) . (4.23)
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Combining these two principles leads to a commutative diagram for L� 0

H0 (O∆(KX ⊗ Ln ⊗Hn))
H0 (OX×S(KX ⊗ Ln ⊗Hn))

≈−→

Hn(Ωn
X)prim�∼=

H1 (I∆ ⊗KX ⊗ Ln ⊗Hn)⋃
Λ

(4.24)

The horizontal isomorphism is the standard long exact cohomology sequence
arising from 0 → I∆ → OX×S → O∆ → 0 and using L � 0, and Λ is
the subgroup arising from (4.23) and the numerator in (4.24) under the
horizontal isomorphism there.

The vertical isomorphism is more interesting. It uses the Koszul complex
associated to

ds ∈ H0 (OX×S(Σ∗ ⊗ L))

where the prolongation bundle Σ arises from

0 → Ω1
X×S → OX×S(Σ) → OX×S → 0

with extension class c1(L ⊗ H), and the vanishing theorems necessary to
have the isomorphism require L � 0 to ensure Castelnuovo-Mumford type
of regularity. This isomorphism is constructed purely algebraically. The
Leray spectral sequence applied to the universal family

X ⊂ X × S

↙↘π

X S

lead to a spectral sequence which, when combined with (4.24), gives a dia-
gram

H1 (I∆ ⊗ (KX ⊗ Ln ⊗Hn)) α−→ H0
(
R1

πI∆ ⊗ (KX ⊗ Ln ⊗Hn)
)

‖�
Hn(Ωn)prim⋃
Hgn(X)prim

Theorem. Combining (4.23) and (4.24) we have

Hgn(X) →
{
image of Λ in H0

(
R1

πI∆ ⊗KX ⊗ Ln ⊗Hn
)}

; (4.25)

i.e., Hodge classes have integral residues.
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Then it may be shown that (this is essentially ρ(iii) = ρ(v) in section 4.2.4
above)

HC ⇒ α is injective on Hgn(X)prim . (4.26)

From (4.24) a consequence is that

a class ζ ∈ Hn(Ωn
X)prim is integral ⇔ the residues of ζ are integral (4.27)

The spectral sequence argument also gives

H1
(
R0

πI∆ ⊗ (KX ⊗ Ln ⊗Hn)
)

= 0 for L� 0
⇒ α is injective
⇒ HC.

(4.28)

The statements (4.26) and (4.28) give precise meaning to the general prin-
ciple:

The HC may be reduced to (in fact, is equivalent to) a statement about the
global geometry of

∆ ⊂ X × S . (4.29)

We thus have:

HC ⇔ geometric property of (4.29) when L� 0.

Above we have discussed the question: Can we a priori estimate how pos-
itive L must be? The condition L � 0 in this section requires sufficient
positivity to have vanishing of cohomology plus Castelnuovo-Mumford reg-
ularity. Above, we gave a heuristic argument to the effect that for each ζ

the condition L� 0 must also involve ζ2.

Discussion: Denote by X̌k the dual variety to the image of

X → PȞ0(OX(Lk)) .

One may ask the question

What are the properties of the singular set X̌k,sing of X̌k for k � 0?

Although we shall not try to make it precise, one may imagine two types
of singularities: (i) Ones that are present for a general X ⊂ PȞ0(OX(L))
having the same numerical characters as X; in particular, they should be
invariant as X varies in moduli. (In this regard, one may assume that L→ X

is already sufficiently ample so as to have those vanishing theorems that will
ensure that dim X̌k can be computed from the numerical characters of X1).
(ii) Ones that are only present for special X. What our study shows is that:
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If the HC is true, then non-generic singularities of type (ii) are necessarily
present when Hgn(X)prim �= 0.

One may of course ask if singularities of type (ii) are caused by anything
other than Hodge classes?

4.4.3 Remarks on Absolute Hodge Theory

Recent works [19] on Hodge-theoretic invariants of algebraic cycles have
shown that in codimension � 2 arithmetic aspects of the geometry — specif-
ically the spread of both X and of cycles in X — must be taken into account
and this might be a consideration for an effective HC. In considering spreads
a central issue is that one does not know that

A Hodge class is an absolute Hodge class. (4.30)

That is, for X defined over a field k of characteristic zero, a class in Hn(Ωn
X(k)/k)

(sheaf cohomology computed algebraically in the Zariski topology) that is a
Hodge class for one embedding k ⊂ C using

Hn
(
Ωn

X(k)/k

)
⊗ C ∼= Hn

(
Ωn

X(C)

)
(GAGA) is a Hodge class for any embedding of k in C (here we also assume
that k = k̄). We shall refer to the statement (4.30) as absolute Hodge (AH).

We close by remarking that the above geometric story works over any
algebraically closed field of characteristic zero — in particular one has the
diagram (4.24) and integrality conditions on Hn(Ωn

X(k)/k) given by the image
of Λ in H0(R1

πI∆ ⊗KX ⊗ Ln ⊗Hn). For any embedding k ⊂ C such that
the (well-defined) map

Hgn(X)prim → Λ

is injective (which is implied by the HC), one has a direct geometric “test”
for when a class in Hn

(
Ωn

X(k)/k

)
is in H2n(X(C), Q).

Remark. We shall give a very heuristic argument to suggest that

AH ⇒ HC . (4.31)

The reasoning is as follows.

i) Assuming AH, the statement of HC is purely algebraic;
ii) When p = 1 the HC is true, and although the existing proofs both
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use transcendental arguments, by model theory there will be a purely
algebraic proof of the algebraic statement

sing νζ �= ∅ for L� 0 , (4.32)

which is equivalent to the HC;
iii) Finally (and most “heuristically”), because the geometric picture
of the structure of sing νζ is “uniform” for all n — in contrast, for
example, to Jacobi inversion — any purely algebraic proof of (4.32)
that works for n = 1 will work for all n.

4.5 The Poincaré Line Bundle

Given a Hodge class ζ ∈ Hgn(X)prim there is an associated analytic invariant
νζ ∈ H0(S, J̃E) and its singular locus

sing νζ ⊂ D .

Although the local behaviour of νζ and subsequent local structure of sing νζ

can perhaps be understood, the direct study of the global behaviour of νζ

and of sing νζ — e.g., is sing νζ �= ∅ for L � 0 — seems of course to
be more difficult. In this section we will begin the study of potentially
important global invariants of νζ obtained by pulling back canonical line
bundles (or rather line bundle stacks) that arise from the polarizations on
the intermediate Jacobians J(Xs). We shall do this only in the simplest
non-trivial case and there we shall find, among other things, that

c1

(
ν∗

ζ×ζ(Poincaré line bundle)
)

= ζ2 .

This is perhaps significant since as we have given in section 4.4.1 an heuristic
argument to the effect that any lower bound estimate required for an EHC
will involve ζ2.

4.5.1 Polarized Complex Tori and the Associated Poincaré Line

Bundle

The material in this section is rather standard; see for instance [25, Ch. 2].
We shall use the notations

• V is a complex vector space of dimension b,
• Λ ⊂ V is a lattice of rank 2b.
• T = V/Λ is the associated complex torus.
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We then have, setting ΛC = Λ⊗Z C,

ΛC = V ⊕ V̄

where the conjugation is relative to the real structure on ΛC. There are
canonical identifications

(i) Hp,q(T ) ∼= ΛpV ∗ ⊗ ΛqV̄ ∗

(ii) (ΛpV ∗ ⊗ ΛqV̄ ∗)∗ ∼= Λb−pV ∗ ⊗ Λb−qV̄ ∗
(4.33)

where (ii) is given by

ϕ⊗ ψ →
∫

T
ϕ ∧ ψ .

Definition. A polarization on T is given by a non-degenerate, alternating
bilinear form

Q : Λ⊗ Λ → Z

which, when extended to ΛC, satisfies

Q(V, V ) = 0 . (4.34)

The polarization is principal in case detQ = ±1.

We shall see that a polarization gives a holomorphic line bundle

M → T ,

well-defined up to translation, and satisfying

c1(M)b[T ] �= 0 .

We shall also see that Q defines an Hermitian metric in M whose Chern
form is expressed as

c1(M) =
√
−1
2π

∑
hij̄dvi ∧ dv̄j

where v1, . . . , vb ∈ V ∗ gives a basis and{
hij̄ = h̄jī

det ‖hij̄‖ �= 0 .

Thus the Hermitian matrix ‖hij̄‖ is non-degenerate but, in contrast to the
usual terminology, we do not require that it be positive or negative definite.
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We shall give two constructions of M . For the first, assuming as we shall
always do that the polarization is principal, we may choose a Q-symplectic
basis x1, . . . , xb; y1, . . . , yb for Λ∗

Z so that

Q =
∑

i

dxi ∧ dyi .

Thinking of Λ as H1(T, Z) and with the canonical identification

H2(T, Λ) = Hom(Λ2H1(T, Z), Z)

we have

Q ∈ H2(T, Z) .

By (4.34), when expressed in terms of dv1, . . . , dvb, dv̄1, . . . , dv̄b we have
that

Q =
√
−1
2π

∑
hij̄dvi ∧ dv̄j

where the matrix ‖hij̄‖ is Hermitian and non-singular. Thus

Q ∈ Hg1(T ) ,

and since T is a compact Kähler manifold it is well-known that there exists
a holomorphic line bundle M → T with a Hermitian metric and with

Q = c1(M)

being the resulting Chern form.
It is also well-known that the subgroup Pic0(T ) of line bundles with trivial

Chern class has a canonical identification

Pic0(T ) ∼= V̄ ∗/Λ∗ (4.35)

and that the action of T on Pic0(T ) by translation is the natural linear
algebra one using the above identification. Thus, M is uniquely determined
by c1(M) up to translation.

Before doing that we want to recall the construction of the Poincaré line
bundle

P → T × Pic0(T ) .

For this we have the canonical identification

H1(T × Pic0(T ), Z) ∼= Λ⊗ Λ∗

and from this the canonical inclusion

Hom(Λ∗,Λ∗) ⊂ H2(T × Pic0(T ), Z) .
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The class T in H2(T×Pic0(T ), Z) corresponding to the identity in Hom(Λ∗,Λ∗)
is easily seen to lie in Hg1(T ×Pic0(T )) and therefore defines a class of line
bundles

P → T × Pic0(T ) .

We may uniquely specify P by requiring that both

P | T × {e◦}
P | {e} × Pic0(T )

are trivial, where e, e◦ are the respective origins in T, Pic0(T ). The map

Pic0(T ) → Pic0(T )

given by

a◦ → P | T × {a◦}, a◦ ∈ Pic0(T )

is the identity.
The above construction gives what is usually called the Poincaré line

bundle. However, for the purposes of this work we assume given a principal
polarization Q in T and will canonically define a line bundle

PQ → T × T (4.36)

which will induce an isomorphism

T ∼= Pic0(T )

by

a→ PQ | T × {a}, a ∈ T

and via this isomorphism the identification

P ∼= PQ .

Definition. Denoting by

µ : T × T → T

the group law, the Poincaré line bundle (4.36) is defined by

PQ = µ∗M ⊗ p∗1M
∗ ⊗ p∗2M

∗ ⊗Me (4.37)

where the pi : T × T → T are the coordinate projections of M → T in any
line bundle with c1(M) = Q and Me is the fibre of M over the identity.
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Proof that (4.37) is well defined: Denote by PM the RHS of (4.37) . Since

PM⊗R = PM ⊗ PR

we have to show that for a line bundle R → T

PR = 0 if c1(R) = 0 . (4.38)

In fact we will show that PR is canonically trivial. We will check that

c1(R) = 0⇒ c1(PR) = 0 . (4.39)

Assuming this we have

PR ∈ Pic0(T × T ) ∼= Pic0(T )⊕ Pic0(T ) .

Then, by definition, for a, a′ ∈ T

(PR)(a,e) = R∗
e

(PR)(e,a′) = R∗
e

so that the two “coordinates” of PR are zero, hence PR is trivial. To make
the trivialization canonical we need to show independence of scaling, and
this is the role of the Me factor.

To verify (4.39), in general we may choose coordinates xi, yi ∈ Λ∗
Z so that

any line bundle R has c1(R) represented by∑
i

λidxi ∧ dyi .

Using coordinates (xi, yi, x′j , y′j) on ΛR ⊕ ΛR and using that

µi((x, y)+̇(x′, y′)) = (xi + x′i, yi + y′i)

where +̇ is the group law on T , it follows that c1(PR) is represented by∑
i

λi(dxi ∧ dy′i + dx′i ∧ dyi) .

In particular, if the λi = 0 then (4.39) follows.

Remark. For later use we note for Q as above

c1(PQ) =
∑

i

dxi ∧ dy′i + dx′i ∧ dyi .

In particular

c1(PQ)2b[T × T ] = 2b . (4.40)
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4.5.2 Topological Properties of the Poincaré Line Bundle in

Smooth Families

We let X and
X ⊂ X × S�p

S

be as above. For simplicity of exposition we assume that for a general point
s ∈ S all of H2n−1(Xs) is primitive, so that the intermediate Jacobian

J(Xs) = FnH2n−1(Xs)\H2n−1(Xs)/H2n−1(Xs, Z)
∼= FnȞ2n−1(Xs)/H2n−1(Xs, Z)

has a principal polarization as discussed in the preceding section. In this
section we will assume the existence of a smooth curve B ⊂ S such that all
the Xs, s ∈ B, are smooth. This is a very rare circumstance, but one that
will help to prepare the way for the treatments below of the case when B is
a general curve in S. We set

XB = p−1(B)

and denote by

JB → B

the smooth analytic fibre space of complex tori with fibres J(Xs),
s ∈ B. Then

(1) There exists a complex line bundle stack MB → JB whose restriction
to each fibre gives a line bundle, defined up to translation by a point of
finite order, and whose Chern class is the polarizing form.

The meaning of the term “stack” in the present context will be explained
below.

(2) There exists a complex line bundle PB → JB ×B JB whose restriction
to each fibre of JB ×B JB → B is the Poincaré line bundle.

The point is that in each case the Chern classes

c1(MB), c1(PB) ∈ H2(B, Q)

may be defined.
We let D be the classifying space for polarized complex tori and

T → D
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the universal family of these tori. Then there is a line bundle

M → T ×D T�
D

(4.43)

such that over each T × T ∼= T × Pic0(T ) the line bundle M restricts to be
the family of all principally polarized line bundles whose Chern class is the
polarizing form, as explained in the preceding section. We denote by Me

the restriction of M to T ×D {e} ∼= T.
Let ΓZ ∼= Sp(b, Z) be the arithmetic group associated to the above situa-

tion. Then D/ΓZ is an analytic variety whose points are in one-to-one cor-
respondence with equivalence classes of principally polarized complex tori.
As usual in the theory of stacks, there is no universal family of complex tori
over all of D/ΓZ, although the quotient

Cb ×D/Z2b × ΓZ

exists as a family of complex tori over the automorphism-free ones. Given
XB → B as above, letting Γ ⊂ ΓZ be the monodromy group we have the
picture

JB�
B

ϕ−→ D/Γ

(4.44)

which one thinks of as the family of complex tori that would be induced by
pulling back the universal family if the latter existed.

Turning to (4.56), there is an action of Z2b×ΓZ on D×Cb×Cb×C that
would represent the descent of (4.56) to D/ΓZ were it not for the presence
of automorphisms. In addition, it can be shown that for γ ∈ ΓZ, Z2b × {γ}
maps Me to Ma(γ) where

Ma(γ) | T = M | T × {a(γ)}

where a(γ) is a division point in T . (This is well-known phenomenon for
principally polarized abelian varieties.) Turning to (4.44), there will be a
subgroup Γ0 ⊂ Γ of finite index and such that a(γ) = e for γ ∈ Γ0. Let
π : B̃ → B be a finite covering such that (4.44) lifts to

JB̃�̃
B

ϕ̃−→ D/Γ0 .
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Then Me is invariant under Γ0 and induces a line bundle

ϕ̃∗(Me) −→ JB̃�̃
B

that on each fibre induces a line bundle whose Chern class is the polarizing
form. If d is the degree of B̃

π→ B, then even though MB is not defined, we
may set

c1(MB) =
1
d
c1 (π∗(ϕ̃∗(Me)) ∈ H2(B, Q) . (4.45)

One may check that this is independent of the choice of covering
B̃ → B.

The discussion of the Poincaré line bundle is similar but easier since it is
uniquely characterized by the properties discussed in the preceding section.

Having defined MB and PB we now consider normal functions νζ viewed
as cross-sections of

JB�
B

νζ

�

and ask:

What is the dependence of c1(ν∗
ζ (MB)) and c1(ν∗

ζ×ζ′(PB))
on ζ, ζ ′?

Here, the Chern classes are considered as rational numbers using H2(B, Q)
∼= Q. To discuss this question we set

Zζ = νζ(B)− ν0(B)

and define the quantities

(i) Q1(ζ, ζ ′) = c1(ν∗
ζ+ζ′(MB))− c1(ν∗

ζ (MB))
− c1(ν∗

ζ′(MB)) + c1(ν∗
0(MB))

(ii) Q2(ζ, ζ ′) = c1(ν∗
ζ×ζ′(PB))− c1(ν∗

0×0(PB))

(iii) Q3(ζ, ζ ′) = p∗1[Zζ ] ∪ p∗2[Zζ′ ] ∪ c1(µ∗(MB)) .

 (4.46)

Here in (iii), we are working in the cohomology ring of JB ×B JB and the pi

are the projections onto the two coordinate factors. We remark that:

The definition of Q1(ζ, ζ ′) is motivated by the property

(a+̇a′)− (a)− (a′) + (e) ∼ 0
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on an elliptic curve E, where +̇ is the group law on E, (b) is the 0-cycle
associated to a point b ∈ E and ∼ is linear equivalence.

Theorem 4.5.1. Q1(ζ, ζ ′) = Q2(ζ, ζ ′) = Q3(ζ, ζ ′) = ζζ ′. The last term is
to be taken as the value of the ζ ∪ ζ ′ on [X].

Since for ζ �= 0 primitive,

(−1)nζ2 > 0

we have the following curious

Corollary 4.5.2. Setting PB,ζ = ν∗
ζ×ζ(PB), we have for m ∈ Z

h0(P(±)
B,mζ) = m2(ζ2) + (terms not depending on m) .

where ± is the parity of n.

Sketch of the proof: The real dimension of JB is 4b + 2, and denoting the
Leray filtration by F p

L we have that the fundamental class

[Zζ ] ∈ F 1
LH2b(JB) → H1(B, R2b−1ZJB

)

where we use Z coefficients throughout and R2b−1ZJB
is the (2b−1)st direct

image of Z under the map JB → B. Here and below the notation means that
[Zζ ] ∈ F 1

LH2b(JB) which then maps to Gr1
LH2b(JB) ∼= H1(B, R2b−1ZJB

).
Denoting by JB the sheaf of holomorphic sections of JB → B we have

JB =
R2n−1CXB

FnR2n−1CXB
+ R2n−1ZXB

∼= R2b−1CJB

FbR2b−1CJB
+ R2b−1ZJB

where R2n−1CXB
is understood to be

OB ⊗R2n−1CXB

and R2n−1CXB
is R2n−1C for the projection p : XB → B. Now ζ → νζ ∈

H0(B, JB) is linear in ζ, and we have

H0(B, JB) → H1(B, R2n−1ZXB
)

�‖
H1(B, R2b−1ZJB

)

where in the top row

νζ → ζ ∈ F 1
LH2n−1(XB) → H1(B, R2n−1ZXB

)

and under the vertical isomorphism

ζ → [Zζ ] ∈ F 1
LH2b(JB) → H1(B, R2b−1ZJB

) .
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Thus this mapping is linear in ζ.
For simplicity of notation we set

Mζ = ν∗
ζ (MB)

Pζ×ζ′ = ν∗
ζ×ζ′(PB)

= ν∗
ζ×ζ′ (µ

∗MB ⊗ p∗1M
∗
B ⊗ p∗2M

∗
B ⊗M0)

where MB,0 → B is the line bundle stack whose fibres are the fibres of MB

over the 0-section and µ is the fiberwise addition map. Then we have

c1(Pζ×ζ′) = c1(Mζ+ζ′)− c1(Mζ)− c1(Mζ′) + c1(M0) . (4.47)

The first step is to analyze

p∗1[Zζ ] ∪ p∗2[Zζ′ ] . (4.48)

Since cup product is Poincaré dual to intersection on a smooth manifold,
and since p∗1[Zζ ] is the cycle traced by

{νζ(s)× Js − ν0(s)× Js}s∈S

and similarly for ζ ′, we see that (4.48) is Poincaré dual to the cycle traced
out by

{νζ(s)× νζ′(s)− νζ(s)× ν0(s)− ν0(s)× νζ′(s) + ν0(s)× ν0(s)}s∈S .

Call this cycle Zζ×ζ′ , so that

p∗1[Zζ ] ∪ p∗2[Zζ′ ] = [Zζ×ζ′ ] .

For the second step, since

[Zζ×ζ′ ] ∪ c1(µ∗MB) =
∫

Zζ×ζ′
µ∗c1(MB)

where the RHS is the sum with signs of the values of µ∗c1(MB) on the four
curves in the definition of the cycle Zζ×ζ′ , we have from (4.47) that

p∗1[Zζ ] ∪ p∗2[Zζ′ ] ∪ c1(µ∗MB) = c1(Pζ×ζ′) . (4.49)

For the next step, since ζ and ζ ′ are primitive and thus live in F 1
LH2n(XB, Z)

where FL is the Leray filtration, they define classes

[ζ], [ζ ′] ∈ H1(B, R2n−1ZXB
)

in Gr1
L = F 1

L/F 2
L. As above, the notation R2n−1ZXB

means R2n−1
p Z for the

projection p : XB→B. We then have

H1(B, R2n−1ZXB
)⊗H1(B, R2n−1ZXB

) → H2(B, R4n−2ZXB
) ∼= Z , (4.50)
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where the last isomorphism uses R4n−2ZXB
∼= Z and H2(B, Z) ∼= Z. It is

known that

Under the mapping (4.50), [ζ]⊗ [ζ ′]→ ζ · ζ ′ (4.51)

Passing to JB → B, we have by definition

R2b−1ZJB
∼= R2n−1ZXB

and that the image of [Zζ ] in H2b(JB, Z) ∼= H1(B, R2n−1ZJB
) corresponds

to the image of ζ in Gr1H2b(XB, Z) ∼= H1(B, R2n−1ZXB
). Moreover, since

the polarization is principal we have

Qb−1 : R1ZJB
∼= R2b−1ZJB

.

Thus [Zζ ] defines a class

[Zζ ]Q ∈ H1(B, R1ZJB
) ,

and it may be shown from (4.50) that under the pairing

H1(B, R1ZJB
)⊗H1(B, R2b−1ZJB

) → H2(B, R2bZJB
) ∼= Z , (4.52)

where the last isomorphism results from R2bZJB
∼= Z and H2(B, Z) ∼= Z, we

have in (4.52)

[Zζ ]Q ⊗ [Zζ′ ] maps to ζ · ζ ′ . (4.53)

For the final step, for a torus T = V | Λ with principal polarization Q ∈ Λ2Λ∗

we have
i) Λ2bΛ∗ ∼= Z (using [35])
ii) Λ∗ ⊗ Λ2b−1Λ∗ → Z (cup product)
where we have
iii) Qb−1 ⊗ identity: Λ∗ ⊗ Λ2b−1Λ∗ � Λ2b−1Λ∗ ⊗ Λ2b−1Λ∗,
and
iv) the diagram

H1(T, Z)⊗H2b−1(T, Z) −→ Z
�‖ ‖

H2b−1(T, Z)⊗H2b−1(T, Z)
Q−→ Z� ‖

H4b−2(T × T, Z)
c1(PQ)−→ Z

commutes where the top vertical isomorphism is (iii).
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This gives the conclusion

p∗1[Zζ ]⊗ p∗2[Zζ′ ]⊗ c1(µ∗MB) → Z computes ζ · ζ ′,

where the LHS is in

H2b−1(JB ×B JB, Z)⊗H2b−1(JB ×B JB, Z)⊗H2(JB×B, Z)

and the mapping is cup product. This completes the sketch of the proof of
Theorem 4.5.1.

4.5.3 Generalized Complex Tori and Their Compactifications

For the purposes of this work one needs the construction and properties of
the Poincaré line bundle in families in which there are singular fibres. In
fact, heuristic reasoning suggests that this line bundle may have some sort
of “topological discontinuity” along the locus H1(B•

s0
) �= 0. What we are

able to do here is only to take some first steps in this program. Specifically,
for smooth curves B ⊂ S such that the fibres of XB → B have at most one
ordinary node as singularities we shall

i) construct an analytic fibre space

JB → B

of complex Lie groups whose fibre over s ∈ B is J(Xs) when Xs is
smooth and is the generalized intermediate Jacobian Je(Xs) when Xs

has a node; and where

OB(JB) = Je

as defined in sections 4.2.1, 4.5.2 above,
ii) construct a compactification

J̄B ⊃ JB� �
B = B

where J̄B is a smooth compact complex manifold and for Xs0 nodal

(J̄B,s0)sing
defn= J∞,s0

has dimension b− 1 and is smooth,
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(iii) contruct a desingularlization

˜J̄B ×B J̄B → J̄B ×B J̄B� �
B = B ;

where

(J̄B ×B J̄B)sing=J̄∞ ×B J̄∞ ,

iii) although we shall not construct the line bundle stack MB → J̄B and

Poincaré line bundle PB → ˜J̄B ×B J̄B, we will show that their Chern
classes

c1(MB) ∈ H2(J̄B, Q)

c1(PB) ∈ H2( ˜J̄B ×B J̄B, Q)

can be defined, and

iv) finally, we shall show that the arguments in the preceding section
can be extended to give the main result Theorem 4.5.1 in this context.

Remark. There is a substantial literature on compactification of quasi-abelian
varieties and of generalized Jacobians of singular curves, both singly and in
families. Although we shall not get into it here, for our study the paper [4]
by Lucia Caporaso and its sequel [5] together with [1] are especially rele-
vant. In those papers there is an extensive bibliography to other work on the
compactifications referred to above. In addition the papers [7] and [6] have
been useful in that they directly relate Hodge theory to compactifications.

We now realize our program outlined above.

i) We begin by recalling the construction for a family of elliptic curves.
The question is local over a disc ∆ = {s : |s| < 1}, where Xs is smooth
for s �= 0 and Xs has a node p. It is well-known that the normalized
period matrix of Xs is (

1,
log s

2πi
+ a(s)

)
,

where a(s) is a holomorphic function at s = 0. It represents an inessen-
tial peturbation term and for simplicity of exposition will be assumed
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to be zero. The period lattice of Xs, s �= 0, thus has generators

i

2π
log

1

|s|

1 +
arg s

2π

We let Z2 act on C×∆ by

e1 · (z, s) = (z + 1 +
arg s

2π
, s)

e1 · (z, s) =

({
z + i

2π log 1
|s| , s �= 0

z, s = 0

}
, s

)
.

The quotient by this action is J∆ → ∆.
To see that it is an analytic fibre space of complex Lie groups, we

first restrict to the axis Im s = 0 and factor out the action of e1 by
setting

w = e2πiz ∈ C∗ .

Then e2 acts on C∗ ×∆ by

e2 · (w, s) =
{
|s| · w s ∈ 0

w s = 0

}
.

By similar but more complicated expressions one may extend this to
all s, and when this is done the resulting action is visibly properly dis-
continuous and exhibits J∆ → ∆ as an analytic fibre space of complex
Lie groups.

For a curve of genus g the normalized period matrix is

(Ig, Z(s))

where Z(s) ∈ Hg, the Siegel generalized upper-half-plane, is given by

Z(s) =

(
log s
2πi + a(s) Tb(s)

b(s) Z̃(s)

)
(4.54)

where a(s) is holomorphic at s = 0, and b(s) ∈ Cg−1 and Z̃(s) ∈ Hg−1

are holomorphic at s = 0. The above discussion extends to define an
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analytic fibre space J∆ → ∆ of complex Lie groups. The fibre J∆,s

over s �= 0 is the Jacobian J(Xs), and over s = 0 we have

1 → C∗ → J∆,o → J(X̃o) → 0 (4.55)

where X̃o → Xo is the normalization. The extension class of (4.55) is
represented by b(0). Locally over a point of J(X̃0), J∆ is a product

C∗ × U

where U ⊂ J(X̃0) is an open set. This local splitting is as complex
manifolds, not as complex Lie groups, and locally refers to the strong
property of holding outside a compact set in the C∗ factor.

In general, for Xs ⊂ X2n as above and for L sufficiently am-
ple so that hn,n−1(Xs) �= 0 for s �= 0, it is known (cf. [21]) that
the period matrix will have the form (4.33) where now Z̃(s) repre-
sents the period matrix of a family of polarized complex tori with
hn,n−1 = hn,n−1(Xs) − 1, s �= 0. Thus the same conclusion — that
J∆ → ∆ may be constructed as an analytic fibre space of complex
Lie groups — holds. Moreover, we have (4.55) where now J(X̃0) is
the intermediate Jacobian of the standard desingularization X̃0 → X0

obtained by blowing up the node p ∈ X0. We shall refer to J∆,0 as
the generalized intermediate Jacobian of X0.

We may summarize as follows:

The analytic fibre space of complex Lie groups JB → B is
locally biholomorphic to the product of a smooth fibre space
and an elliptic curve acquiring a node across a disc.

(4.56)

Here, as noted above, locally has the strong meaning of “outside a
compact set in the C∗ factor”.

ii) Because of (4.56) does not work !! it will suffice to analyze the elliptic
curve picture in a way that will extend to the local product situation
as described above. Here we may be guided by the geometry. Namely,
locally in the analytic topology around a nodal elliptic curve Xs0 there
are local coordinates x, y on XB and s on B such that s0 is the origin
and the map XB → B is given by
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(4.57)
xy = s

r

q

Then
dx

x
≡ −dy

y
mod ds ,

and using the above notation, on C∗ with coordinate w we have
dw

w
≡ dx

x
near w = 0

dw

w
≡ −dy

y
near w =∞

where ≡ denotes congruence modulo holomorphic terms. Then we
compactify C∗ by adding one ideal point p with

lim
q→p

∫ q dw

w
= lim

r→p
−

∫ r dw

w

in the above figure.
Of course, in this case the compactification of JB,o

∼= C∗ is just the
original elliptic curve Xs0 . But using (4.43) and the above coordinate
description enables us to infer the general case from the particular
case.

Remark. One obvious but slightly subtle point is that we are not say-
ing that a general family XB → B has around a node the local coor-
dinate description (4.57). Rather, for n � 2 that is

x2
1 + · · ·+ x2

2n = s .

What we are saying is that in the family JB → B, the “C∗ direction”
has the coordinate description (4.57).
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iii) We now turn to the study of the singularities of J̄B ×B J̄B. Again,
locally in the sense explained above the situation is a product of the
elliptic curve picture with some parameters. Around a point on a
smooth fibre, respectively a node on a singular fibre, the map J̄B → B

is {
(x, y) −→ s = y (smooth case)
(x, y) −→ s = xy (nodal case) .

From this it follows directly that(
J̄B ×B J̄B

)
sing

⊆ J̄∞ ×B J̄∞ (4.58)

where J̄B,∞ ⊂ J̄B is the set of singular points on fibres. Moreover,
in coordinates (x, y, x′, y′, s) ∈ C5 such that J̄B,∞ ×B J̄B,∞ is locally
given by {

f = xy − s = 0
f ′ = x′y′ − s = 0

, (4.59)

from

df ∧ df ′ = 0 ⇔ x = y = x′ = y′ = 0

we see that we have equality in (4.58). Moreover, for the Jacobian of
(f, f ′) we have that

rank(J(f, f ′)) = 1

along J̄B,∞. Finally, (4.59) gives

xy = x′y′

which is a quadric cone in C4 and has a canonical desingularization.

Remark 4.5.3. For later reference we note that

a) the 0-section of JB ⊂ J̄B is a smooth section not meeting J̄∞;
b) for the group law µ : JB ×B JB → JB we have that µ−1(0) = W ,

and in J̄B ×B J̄B we have for the closure W = J̄∞×B J̄∞ . The model
here is

C∗ = (P1, {0,∞}) =
p

µ : C∗ × C∗ → C∗ is multiplication

⇒ (p, p′) = µ−1(1) ∩
(
(P 1, {0,∞})\C∗)× (

(P1, {0,∞})\C∗)
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4.5.4 Topological Properties of the Poincaré Line Bundle in

some Families with Singular Fibres

The objective of this section is to show that, using J̄B → B, the argument
sketched above for the proof of Theorem 4.5.1 may be extended to the case
in which there are singular fibres as in the preceding section.

First we shall explain why JB → B is not the right object. We give three
reasons.

i) Although JB is a smooth manifold it is non-compact; in particular, it
does not have a fundamental class and Poincaré duality does not hold
(both of which were used in the proof of Theorem 4.5.1.

ii) The local invariant cycle theorem does not hold for JB → B, whereas
it does hold for J̄B → B. Thus, for Xs0 having a simple node and s

close to s0 with (as usual) T representing monodromy, we have

(R2b−1ZJ̄B
)s0
∼= ker{T − I : H2b−1(Js, Z) → H2b−1(Js, Z)} (4.60)

but

(R2b−1ZJB
)s0 �= ker{T − I : H2b−1(Js, Z) → H2b−1(Js, Z)} . (4.61)

Note: This is related to the fact that for ∆ a disc around s0 and
with J̄∆ = p̄−1(∆)

J̄∆ retracts onto J̄s0

while this fails to be the case for J∆.
iii) Relatedly, the Leray spectral sequence for p̄ : J̄B → B degenerates

at E2 while this fails to be the case for JB → B.

Example. Let dim Js = 1 so that J̄B → B is an elliptic surface whose
singular fibres J̄si are all nodal elliptic curves while

Jsi = J̄si\{pi} ∼= C∗ . (4.62)

Then

(RqZJ̄B
)s
∼= (RqZJB

)s

for all points s ∈ B and all q, except that

(R3ZJ̄B
)si = 0, (R3ZJB

)si
∼= Z . (4.63)

This follows from localizing (4.62) over a disc ∆i around si. Then

Z ∼= H2(B, R2ZJ̄B
) ∼= H2(B, R2ZJB

) (4.64)
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but whereas the Leray spectral sequence for J̄B → B degenerates at E2 and
the first isomorphism in (4.64) gives

H4(J̄B, Z) ∼= Z ,

the Leray spectral sequence for JB → B has by (4.63)

H0(B, R3ZJB
) d2−→ H2(B, R2ZJB

)

�‖
⊕
i

Z

so that the right term in (4.64) is killed by d2.

Before begining the argument we remark that we are not claiming that

the line bundle stack MB → J̄B and Poincaré line bundle PB → ˜J̄B ×B J̄B

exist, although this may well be true. What we shall use is that what would
be images of their Chern classes{

c1(MB) ∈ H0(B, R2ZJ̄B
)

c1(PB) ∈ H0(B, R2Z ˜J̄B×B J̄B

)

do exist, and their pullbacks under νζ and νζ×ζ′ are all that is really required
for the argument. Thus we are able to proceed pretending that MB and PB

exist as in the case treated in section 4.5.2.

We think that the issue of defining M and P over the family of all J(Xs),
s ∈ S is a very attractive and probably important geometric problem.

Referring to the proof of Theorem 4.5.1 in section 4.5.2, we note that
both νζ and Zζ avoid the singularities in the fibres of XB → B and J̄B → B,
respectively. Moreover, the argument that

[Zζ ]→ H1(B, R2b−1ZJ̄B
)

is defined and is linear in ζ carries over verbatim.

The next step, which uses Poincaré duality on J̄B and ˜J̄B ×B J̄B, also
carries over to give

p∗[Zζ ] ∪ p∗2[Zζ′ ] = [Zζ×ζ′ ]

p∗1[Zζ ] ∪ p∗2[Zζ′ ] ∪ c1(µ∗MB) = c1 (P )

as before. Additionally, (4.50) and the discussion just under remain as stated
there, with J̄B replacing JB.
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Next comes the main somewhat subtle point; namely, that

Qb−1 : R1ZJ̄B
∼= R2b−1ZJ̄B

(4.65)

continues to hold. Essentially this is because of (ii) above. Namely, we have

Qb−1 : H1(J̄B,s, Z) ∼= H2b−1(J̄B,s, Z) (4.66)

for s near si and where we have set J̄B,s = p̄−1(s). Moreover since

TQ = Q (4.67)

and

(R1ZJ̄B
)si
∼= ker{T − I : Hq(J̄B,s, Z) → H1(J̄B, Z)} (4.68)

we may infer (4.65) from (4.66)–(4.68).
The final step is essentially the same as before, where over si we replace

Λ by

(R2b−1ZJ̄B
)si

∼= RHS of (4.68)
∼= (R1ZJ̄B

)si

of (4.65), and then the pairing

(R1ZJ̄B
)si ⊗ (R2b−1ZJ̄B

)si → Z

follows from the fact that the compact analytic variety J̄B,si has a funda-
mental class.

Note: The condition to be able to fill in a family of intermediate Jacobian

{Js}s∈∆∗

with a compactification J0 of the generalized intermediate Jacobian over the
origin is probably very special to the case n = 1. Namely, first recall that
for s �= 0

H1(Js, Z) ∼= H2n−1(Xs, Z) . (4.69)

Suppose that we can compactify the family

J∆
π−−−→ ∆

where π−1(s) = Js to have

J∆ → ∆ .

It is reasonable to expect that the total space J∆ will be a Kähler manifold,
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and Clemens [11] has shown that in this situation the local monodromy
theorem holds, so that after after passing to a finite covering the monodromy

T : H1(Jη, Z) → H1(Jη, Z) (η �= 0)

will satisfy

(T − I)2 = 0 . (4.70)

But by (4.70) all we can expect in general is

(T − I)2n = 0 .

In other words, (4.70) (which is satisfied in the model case) is perhaps a
necessary condition to be able to compactify J0 in a family. More plausible
is that J∆ → ∆ will have a partial compactification of the sort appearing in
the work of Kato-Usui [27].

4.6 Conclusions

The theory discussed above is, we feel, only part of what could be a rather
beautiful story of the geometry associated to a Hodge class ζ ∈ Hgn(X)prim

through its normal function νζ ∈ H0(S, JE) where S is either PH0(X, Lk), or
is a suitable blowup of that space If one wants to use the theory to construct
algebraic cycles, i.e. to show that

sing νζ �= ∅ ,

then the following four assumptions must enter:

i) ζ is an integral class in H2n(X, Z)
ii) ζ is of Hodge type (n, n)
iii) a) k � k0(ζ)

b) where the ζ-dependence of k0 is at least |ζ2|;
and
iii) all of H0(X, Lk) is used.

In our work above, there are two main approaches to studying the geom-
etry associated to ζ

A) the “capturing” of ζ along the singular locus ∆ ⊂ X (cf. section
4.4.2); and

B) the (as yet only partially defined) line bundles ν∗
ζ (M) and νζ×ζ′(P ).
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In A) we have used the assumptions (iii), (iiia), (iv) in order to have the
necessary vanishing theorems so as to have the isomorphism

Hn(Ωn
X)prim

∼= H1(I∆ ⊗KX ⊗ Ln ⊗Hn) (4.71)

with the resulting conclusion

HC ⇔ Hgn(X)prim ↪→ H0(R1
pI∆ ⊗K ⊗ Ln ⊗Hn) (4.72)

where p : ∆ → D is the projection. We refer to section 4.4.2 for a discussion
of how the assumption (i) should enter, and in fact will enter if the HC is
true.

We remark that, based on the heuristics discussed in section 4.4.1, one
may reasonably expect that the stronger assumption (iiib) must be used. In
this regard, the condition (iiia) needed to have (4.33) is locally uniform in
the moduli space of X, whereas the stronger assumption (iiib) cannot have
this local uniformity.

In B) we have used from the very outset the assumptions (i) and (ii),
and moreover the quantity ζ2 appears naturally in c1(ν∗

ζ×ζ(P )). However,
the assumptions (iiib), (iv) have as yet to appear, even heuristically, in the
geometry of ν∗

ζ (M) and ν∗
ζ×ζ′(P ).

In closing we would like to suggest three examples whose understanding
would, we feel, shed light on the question of existence of singularities of νζ .
These are all examples in the case n = 1 of curves on an algebraic surface,
where of course the HC is known. However, one should ignore this and seek
to analyze sing νζ in the context of this paper.

Example 4.6.1. (i) X = P1 × P2, L = OX(2, 2) and ζ is the class of
L1−L2 where the Li are lines from different rulings of X realized as
a quadric in P.

(ii) X is a general smooth quartic surface in P3 containing a line Λ,
L = OX(1) and ζ = [H − 4Λ] where H is a hyperplane.

(iii) X is a general smooth surface of degree d � 4 in P3 containing a
twisted curve C, L = OX(1) and ζ = [H − dC].

In example 4.6.1.1 the general fibre Xs is an elliptic curve where degener-
ations are well understood, although in this case the base space is 8 dimen-
sional and the non-torsion phenomena in our extened Néron-type model J̃E

is what is of interest.
In example 4.6.1.2 we have the situation where the nodes do not impose

independent conditions on |L|, which must then be blown up so that the
discriminant locus D has local normal crossings. This example has the
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advantage that dimS = 3 so that the analysis of, e.g., the “singularities” of
the Poincaré line bundle should be easier to do directly.

Example 4.6.1.3 exhibits the phenomenon that νζ has no singularities on
PH0(OX(L)); one must pass to L2 to have sing νζ �= 0. This will of course
be the general case.

Of course these examples could be extended, e.g. to smooth hypersurfaces
in P5 where in example 4.6.1.3 the condition is to contain a Veronese surface.
As explained in section 4.4.3, we see no a priori reason why the geometric
picture as regards sing νζ should be significantly different from the n = 1
case, although analyzing the geometry will of course be technically much
more involved.
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