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CHAPTER 1

Introduction

1.1 About this thesis

The original version of this thesis was written in 2006 when the author was studying at the University of
Sydney (USYD). This thesis has since been slightly modified, but it remains an atrocious piece of junk.
In my opinion, this is one of the worst honours thesis to have come out of the mathematics department at
USYD. The inconsistency in the description of a "function field" in chapter 2 and 4 is a good illustration
of the poor quality of this thesis.

1.2 What is Coding Theory?

The study of coding theory, or more descriptively - error-correcting codes, is primarily concerned with
dealing with errors introduced by noise when transmitting data over communication channels. In this
thesis, we consider a class of codes known as block-codes where data is encoded as a block of digits of
uniform length.

Computer scientists have devised a number of strategies to deal with errors introduced by noise. The
simplest of which is a technique called parity-check, where a single 0 or 1 is added to end of the data
block so that the block has an even number of 1's. If the data is contaminated at only one place during
transmission, then the received block of data will have an odd number of 1's. This tells the receiver that

the data has been affected by noise, so that retransmission may be requested.

The parity check technique may not be practical in many situations. For example in satellite communica-
tion, retransmission is prohibitively expensive and time-consuming. Often, a better strategy is to encode
the data in a way that allows the receiver to detect and correct the errors! A very intuitive strategy is
repetition. It is implemented simply by sending each digitmes. Suppose the sender sends 00000 but
00101 was received instead. The receiver notes that there are more O's than 1's. Therefore the block
00101 is decoded as 00000. Effectively, two errors were corrected. This strategy of encoding is called a
"repetition code".
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However, the repetition code sacrifices a lot of bandwidth for error correcting ability. Indeed, in the

repetition scheme above, every five bits of data sent represent only one bit of real information. In this
thesis we will introduce a class of very powerful codes called Algebraic Geometric codes that offer a
high degree of flexibility in choosing the trade-offs between bandwidth costs and error correting abilities.

1.3 Why Algebraic Geometry?

Although the general theory of linear codes is well established, a number of computational problems
central to coding theory, such as decoding and the determination of minimum distances, are known to
be NP-Complete, seg@12],98). There is no known "efficient" algorithm for solving any of the NP-
Complete problems. In fact, the first person to discover a deterministic polynomial-time algorithm for
any of the NP-Complete problems attracts a cash prize &1{080,000 from the "Clay Mathematics
Institute".

The above discussion suggests that finding an efficient decoding algorithm for linear codes is close to
being impssible. Hence, our best chance is to focus on linear codes with special properties that lend
themselves to efficient decoding. We will show that the Riemann-Roch theorem from the theory of alge-
braic curves provides the desired special linear codes! Also worth noting is that it is theoretically possi-
ble to construct a sequence of algebraic geometric codes with parameters that better than the asymtoptic
Gilbert-Varshamov Bound (GV-Bound), s€6], 82). Prior to that discovery, it was widely believed that

the GV-Bound was unattainable.

1.4 A Quick Tour

The next two chapter®. Algebraic Curvesand3. Function Fields develop the key definitions and
theorems regarding algebraic curves and their associated function fields leading to the explicit construc-
tion of some Riemann-Roch spaces. The chagteAlgebraic Geometric Codesuses the explicitly
constructed Riemann-Roch spaces to develop practical Algebraic Geometric codes. The decoding prob-
lem for these codes are discussed (and partially solved) in the chapBarsic Decoding Algorithm

The highlight of this thesis comes in the final chap@er,Majority Voting Algorithm , where capa-

bilities of the various Algebraic Geometric codes are exploited to the full by a clever algorithm named
Majority Voting Scheme. This algorithm solves the decoding problem in polynomial time.
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1.5 Assumed Knowledge

It is assumed that the reader is familiar with materials covered in a typical first course in Algebraic
Curves, in particular the all important Riemann-Roch Theorem will be stated but not proved. Also, vari-
ously concepts from Commutative Algebra such as localisation and local rings are assumed knowleddge.
Some basic results in linear algebra are also assumed.

Some familarity with coding theory is assumed. However, a brief introduction to coding theory is
presented in Appendix A for completeness.

1.6 Notations

Throughout, we denote the finite field of ordeasF,. LetF be a field, we denote by[z;, 22, ..., 2]
the ring of polynomials in the indeterminate, -, ..., z,, with coefficients inF. The notationA = B
meansA is equal toB, while A := B meansA is by definition equal ta3.



CHAPTER 2

Algebraic Curves

In this chapter, we cover the basic theory of algebraic curves. Some of the materials presented here are
covered by a typical first undergraduate course in the subject, so the presentation will be kept brief.

This chapter assumes some commutative algebra.

2.1 Affine Curves

Some of the definitions below closely folloi12], 98).

DEerFINITION 2.1.1. (Affine Space, Algebraic Set, Affine Variety)

Let K be an algebraically closed field. Thedimensional affine space, denotéd, is the space of
n-tuples ofK. An element ofA™ is called a point. Anideal C K|z, z2,--- ,x,] corresponds to an
algebraic set defined as

V(I):={(a1,a2, - ,an) € A" | F(ay,as,--- ,a,) =0forall F € I'}
If I C Klzy,z2,---,z,]is aprime ideal, the algebraic Sét1) is called an affine variety.

DEFINITION 2.1.2. (Transcedence degree)
Let L and K be fields such thaf{ C L. The transcendence degree lofover K is defined as the
maximum number of algebraically independent elements afer K.

DerINITION 2.1.3. (Coordinte ring, Function field, Degree of Variety)

Let X = V(I) wherel is as above. The integral domdi{X'] := K[z1,z2, - ,2,]/I is called the
coordinate ring of the affine variety. The function field, denoted b (X), is the field of fractions of
K[x].

REMARK 2.1.4.

Since! is prime,K[X] is an integral domain, and $&(') is indeed a field.

DEFINITION 2.1.5. (Dimension, Algebraic Curve)
The dimension of the varietyt is the transcendence degreelft’) over K. An algebraic curve is a
variety of dimension 1.
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2.2 Plane Curves

From here on we will focus our attention on plane curves, i.e. curves defined by the indetennaintes
y in the affine case and’, Y andZ in the projective case. We will show that planes curves satisfying
certain properties are indeed algebraic curves.

Throughout, assurig s a finite field, sdF is not algebraically closed. L& = F, the algebraic closure
of F, and letA” be then-dimensional affine space &.

DerINITION 2.2.1. (Point, Affine Plane Curve)
Let f € F[z,y|. An affine plane curv€’, defined byf overF, denoted” : f = 0 is the set of zeroes of
finA™i.e.n-tuplesP = (p1,po, ..., pn) € A" such that

f(p17p27 7pn) =0
If Pis asuch a-tuple thenP is called a point on the curve, and we writec C.

REMARK 2.2.2.
Notice that our definition of a plane curve is specific to a fiéldthich may not be algebraically closed.

DEFINITION 2.2.3. (Degree, Rational Points)

Let F be a finite field extension df of minimal degree such th& < F” is a point on the curve, then
the degree of) is defined to béIF“ : F]. A point of degree 1 is called a rational point. Points of higher
degree are not rational.

EXAMPLE 2.2.4.

Consider the plane affine curé : y — x? defined oveff,. The points(0,0) and(1, 1) are the only
rational points whilgw, w?) and(w?, 1) whereF, := F[w] andw? 4+ w + 1 are points of degree 2 and
therefore not rational.

DEeFINITION 2.2.5. (Irreducible Polynomial, Irreducible Curve)

Let f be as above. We safyis irreducible oveif if f = gh whereg, h € F[z,y] theng € Forh € F.
Otherwise we say is reducible. If an affine plane cuné, is defined by an irreducible polynomiél
then we say’ is irreducible oveif. OtherwiseC' is reducible.

If fisirreducible oveif, it does not guarantee thAtcannot be expressed as the product of polynomials
with coeffecients in an extension field Bf For example LeF = R then f = 22 + 2 is irreducible
overF, but f = (z + iy)(x — iy), hencel is reducible ovefC. Being reducible over a finite field df
implies that(f) := { fg | g € K[z,y] } is not prime inK|[z, y] and so in that cas€ : f = 0 is notan
algebraic curve. This motivates the following definition.

DEFINITION 2.2.6. (Absolutely irreducible Curve)
A polynomial f € F[zy,z2,...,x,] is absolutely irreducible iff is irreducible over any finite field
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extension ofF. If C is defined by an absolutely irreducible polynomjale F[z,y] thenC is an
absolutely irreducible affine plane curve.

LEMMA 2.2.7.
Let f € F[z, y] be an absolutely irreducible polynomial. The ideal

(f)={falgeKlzyl } < Klz,y

generated by is prime. Furthermore : f = 0 is an algebraic curve.

PROOF

Sincef is absolutely irreduciblef is irreducible oveiK. Clearly,(f) must be prime sincK|z, y] is an
unique factorization domain. Consideras a transcendental element o¥er Sincey is algebraically
related toz via f, © must be the only transcendental element in the function Kegld). Therefore by
definition,C : f = 0is an algebraic curve.]

REMARK 2.2.8.

We mainly deal with finite fields and any fieltlis a unique factorization domain (UFD), and s&[s1].
In fact, if R is a UFD then so i[x]. ThereforeF|x;, z2,- - - , x,]| are UFDs for all. See Theorem 4.5
p223,([11],96).

LEMMA 2.2.9. (Eisenstein’s criterion)
Let R be an unique factorization domain (UFD), and Jét:) = > ,a;z* € R[z]. Suppose there
exists an irreducible elemepte R such that

a) pdividesa; foralli #n
b)  p does not divideu,

c) p? does not dividei

thenf is irreducible.

PROOF
Supposef satisfies properties a), b) and c¢), and

=0 bia") (O ein)
=0

i=0
wheres > 0 andt > 0. We haveqy = bgcy and by property a) and cp, divides one oby andcg, but
not both. Supposg dividesc, but notby. By our assumptiop does not divider,, = > bic,,—;, SO
p cannot divide all the;;’'s. Let k& > 0 be the smallest value such thatloes not divider;,. We have
ap = Zf:o bick_i, which is divisible byp by property b), bup does not dividég nor ¢;. This is a
contradiction. Therefore eithar=0ort¢t = 0. O
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REMARK 2.2.10.
In Example 2.4.3, it is shown that the Hermitian Curves are absolutely irreducible.

From this point onwards we simply assume all our curves are absolutely irreducible; and they are.

2.3 Projective Plane Curves

DerFINITION 2.3.1. (Projective Space)
A projective space of dimension denotedP”, is the set

P" = (A7 \ {0})/ =

where
(P1,D2; s Pnt1) = AP1,D2, - Pnt1) VA eK*

Let[p; : p2 : .. : ppt+1] denote the equivalence class containing the eletagnps, .., p,+1). We have

P":={[p1:p2: . :pns1] | (P1, P25, Pny1) € A"\ {0}}

where{0} is the set{(0,0,--- ,0)}

REMARK 2.3.2.
The fact that= is an equivalence relation is elementary to check. Note[that : - - - : 0] is not a point
in the projective space.

DEFINITION 2.3.3. (Homogeneous Polynomial)

A polynomial f € Flzy,x2, - ,x,] is called homogeneous if every term pis of equal degree. If

is not homogeneous, let,; be an additional indeterminate distinct from thés for i < n. Letd be
the degree of, we producef by multiplying each term of by z,,, raised to an appropriate power so
that each term of has degreé; this process is called the homogenizatiory of

NOTATION
We write non-homogeneous polynomials using lower-case lettgysas the indeterminates while a
homogeneous polynomial uses capital lettérs” and Z.

EXAMPLE 2.3.4.
Let f = 23y + 3% + z thenf = X3Y + Y37 4+ X 75,

DEFINITION 2.3.5. (Projective Variety)
Consider a prime idedl C K[z1, z9, - - , z,41] cOnsisting of homogeneous polynomials. A projective
variety is defined as the set of pointshf that vanishes at evey € I.
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DEFINITION 2.3.6. (Projective Closure, Plane Projective Curve)
Let f € Flx, y] be absolutely irreducible. The projective closateof C' : f = 0is the projective variety

V(f). A plane projective curve is defined as the projective closure of an affine absolutely irreducible
plane curveC' : f(z,y) = 0.

DEFINITION 2.3.7. (Coordinate Ring, Function Field)

Let C be a projective curve. The coordinate ring is defineKgs| := K[ X, Y, Z]/I. The function field
of C, denotedk(C) is defined as the subring of the quotient fielddt”] where every element is of the
form F'/G whereF andG have the same degree.

REMARK 2.3.8.

The requirement that every elementlofC') must be of the forn¥'/G whereF andG have the same
degree ensures that different representations of a poift ido not get evaluated to different values
under the same function.

DEFINITION 2.3.9. (Point at infinity)
Let C be a plane projective curve. We call a point in the fornipaf: ps : 0] € C a point at infinity.

REMARK 2.3.10.
One may think of the projective curég : f = 0 as the affine curvé’ : f = 0 with some added points
at infinity.

2.4 Some Examples of Curves

EXAMPLE 2.4.1. (Parabola)

Let f = y — 22, The affine plane curv€' : f = 0 consists of the point§, i2) for i € K. The projective
closure ofC'is C' : YZ — X2, it has pointdi : i : 1] and one point at infinity0 : 1 : 0]. Over[Fy, the
only rational pointsar@) : 1: 0],[1:1: 1] and[0:0: 1]

EXAMPLE 2.4.2. (Cusp)
Let f = y? — 2. The projective closure has only one point at infirjity. 1 : 0].

ExAMPLE 2.4.3. (Hermitian Curve)

ThecurveC : f = 29T 499t 41 =0 overFF . is called the;-Hermitian Curve. The projective closure
is defined byf = X! 4 Y1 4 Z9+1 |t hasq + 1 points at infinity. Indeed, lef = 0,Y = 1, we
getX ! +1 = 0 which hasy+1 roots. Letw;,ws, - - - , w,+1 be the roots, then clearfyw; : 1: 0] € C.

HERMITIAN CURVES ARE ABSOLUTELY IRREDUCIBLE
As an example we show that the affine Hermitian Curve is absolutely irreducible. Consider the defining
polynomial f = ag + a4+1y?*! as an element df [z][y], whereay = 1 + 297, a;+1 = 1 anda; = 0
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fori #0,q + 1. Chooser + 1 as the irreducible element. IFfis of characteristic 2 then

pI 1 =gt 1 = (2 — 1)(Zq:xz)

i=0

and sox + 1 dividesag but nota,1, and since}_% ;1 = ¢+ 1 = 1 # 0, we can clearly see that
(x + 1)2 does not dividery. So f must be absolutely irreducible since it cannot be factored Bugy
the Eisenstein’s criterion. IF is not of characteristic 2 thep+ 1 = 2r for somer sinceq is odd. So
24l =2% 41 = (2" +1) (2" —1) = (2" +1)(z — 1)(X2 2), sox — 1 dividesag but nota, 1,
and(z — 1)? clearly does not divide,, so f is absolutely irreducible.

THE RATIONAL POINTS ONHERMITIAN CURVE

Consider the projective closure of theHermitian Curve defined by = X9t 4 v+l 4 za+1, Set-
ting Z = 0,Y = 1, we haveXt! +1 = 0, and there arg + 1 roots. These roots must lie ify»
since X (¢+D(a-1) — (—1)2-1 = 1 for any ¢ any prime power, i.eX?~! = 1 which confirms that
the roots must lie iff 2. SettingZ = 1, we haveX¢*! + Y4*! + 1 = 0. Thereq + 1 values forY’
such thaty9*! 4 1 = 0, so there arg + 1 points of the form0 : a : 1] lying on the curve. Now if
b=Y9t! 41 +£0,thenX ! + b haveq + 1 distinct roots. The number of possitites that satisfy the
above must bg” — ¢ — 1 since out of the;* elements off 2, ¢ + 1 satisfyY4*! + 1 = 0.

So the number of rational points oryeHermitian Curve is

@+ D)+ @+ + (@ —q-Dg+D)=(q+1)+ (- q)(g+1)=¢*+1

In summary, ifg is a prime power, there arg + 1 rational points on the-Hermitian Curve oveF .

EXAMPLE 2.4.4. (Hermitian Curve Form 2)
We will see that curves with only one point at infinity are more convenient to deal with. We transform
the Hermitian Curve defined bfy= 29! +49t1 +1 overF . into a curve with only one point at infinity
by the following substitutions as describedjh0], 88):
u = bf(z—by)
vV = ur —a
whereb?t! = —1 = a? +aandP = [1 : b: 0] € C. The only place where is undefined is when

x = by. In that case we have

bQ+lyq+l + yq+1 4 1=1 7£ 0
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sowu is defined everywhere on the curve. The above substitution gives
x = (v+a)/u
y = z/b—1/u
y = (v+a)/bu—1/u
which yields
Wit —p? —p =0

Therefore, we can usg = 9t — 7 — y as an alternative formulation of theHermitian Curve. As
mentioned, there is only one point at infinity in this representation of the curve. Using a similar argument
as in the previous example we see that there aregélsol rational points orC overF .

EXAMPLE 2.4.5. (Klein Quartic)
In many papers the Klein Quartic is discussed. It is defined by X3Y + Y3 + X overFs.



CHAPTER 3

Function Fields

3.1 Function Fields

We shall study the function fields associated with an algebraic curve in detail. Recall that our definition
of a plane curve is specific to a fiellwhereF may not be algebraically closed, see Definitibf.1.

In this chapter, important and well known theorems with long proofs such as the Riemann-Roch theorem
will be stated without proof. The main aim of this chapter is to develop enough theory to facilitate some
very explicit contructions of Riemann-Roch spaces.

Previously we denoted the coordinate ring and function field[@§ andK(C) whereK is algebraically
closed. In this chapter, we give slightly different definitions that are field specific.

DEFINITION 3.1.1.
The coordinate rin@'[C] of C : f = 0 overF is defined as

FIC] := Flz,y]/(f)

The function field ofC, denotedr(C), is the field of fractions oF [C]. If g + (f) = h + (f), we write
g = h or as an abuse of notatign= h.

DerINITION 3.1.2. (Equivalence of Rational Functions)

Given a curveC' : f = 0, two elementg; andh of F(C), are equivalent ify can be transformed into
h using only the relatiory = 0. If g andh are equivalent, we writg = h. As an abuse of notation,
sometimes the equal sign is used instead of the equivalence sign.

EXAMPLE 3.1.3.
In the function field of the curvée’ : y — 22 = 0, the functiony/z = 2?/x = z.

REMARK 3.1.4.
The above definition applies to both affine and projective plane curves.

DEFINITION 3.1.5. (Local Ring, Maximal Ideal)
Let f € F(C). A point P € C is said to be defined offi if f = g/h whereh(P) # 0 for some

11
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g,h € F[C]. Reciprocally, such afi is said to be defined @. The local ring ofP denotedF[C]p, is
the ring of functions irf'(C) that are defined a®.

REMARK 3.1.6.
The concept of a local ring of a curve corresponds exactly to the notion of localizing the coordinate
ring atMp =: {f € F[C]p | f(P) =0}i.e.F[C]p = F[Cp, := ST'F[C] whereS = F[C] \ Mp.

DEFINITION 3.1.7. (Non-singular Points, Non-singular Curve)
A point is non-singular if for allf € F(C) eitherf € F[C]p or1/f € F[C]p. An affine curveC'is
non-singular if all the points 0@’ are non-singular.

REMARK 3.1.8.
We will show that the definition of non-singularity given above agrees with other canonical defintions
such as the one involving the partial derivatives. The above definition foll¢eds).

LEmmA 3.1.9.
If we definef(P) to bea(P)/b(P) wheref = a/bandb(P) # 0, then the value of (P) for f € F[C]p
is independent of the presentationfofiven that the presentation is definedrat

PROOF
Supposef = a/b = ¢/d whereb(P) # 0 andd(P) # 0 thenad = be € F[C]. If we considerd andbc
as elements df[ X, Y, Z], then the equivalence above implies that

ad =bc+ gf

for someg € F[X,Y, Z]. Evaluating atP, we get

as requiredd

LEMMA 3.1.10.
If P is non-singular thefi[C]p is a local ring with

Mp :={f € F[C]p | f(P) = 0}

as the unique maximal ideal.

PROOF
By definition,F[C]p is a local ring. Consider the homomorphism

p: FlClp = F; f— f(P)
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which is clearly onto, and/p is the kernel ofp. By the first isomorphism theorem,
F[Clp/Mp =F
is a field, and thud/p must be maximal.
Let f = a/b € F[C]p whereb(P) # 0. Supppose ¢ Mp. We havea(P)/b(P) # 0i.e. a(P) # 0

and thereforé(P)/a(P) is defined; furtherb/a ¢ Mp sinceb(P) # 0. Itis immediate thay is a unit
with inverseb/a € F[C]p.

Now supposef = a/b € Mp, thena(P) = 0. If a/b = ¢/d andd/c € F[C]p wherec(P) # 0, then
we have
0 =a(P)d(P) = b(P)c(P)

butb(P) # 0 = ¢(P) = 0 which is a contradiction. Thereforg'b ¢ F[C]},. We have established that
FICTp = F[C]p \ Mp

and thereforé/p must be all the non-units. Since every proper ideal is contained in the set of non-units,
Mp must be the uniqgue maximal ideal.

REMARK 3.1.11.

All fields are Noetherian since a field has only two ideals. FSiz Noetherian, which implies that
Flx1,z9,- - ,x,] is Noetherian by repeated applications of the Hilbert's Basis Theorem. Since there
is an obvious onto-homomorphism frafiz,, zs, - - - , z,] to F[C], we see thaF[C] is also Noether-

ian. Clearly,Mp is a prime ideal sinc€’ is defined by an irreducible polynomial. $C]p is also
Noetherian. Seg6], 69).

3.2 Discrete Valuation

DEFINITION 3.2.1. (Discrete Valuation Ring (DVR))
A valuation ring of an irreducible curv€ is a ring R satisfying

1) FC RCF(C)
2) For anyy € F(C), eitherp € Rorl/p € R

A discrete valuation ring is a local valuation rigwhere the maximal ideah is principal, together
with a valuation function
v:R— NU{oo}
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such that for allz, y € R, the following are satisfied

1) v(zy) = v(z) +v(y)

2) v(z) +o(y) = min{o(z), v(y)}
3) v(x) = 1forsomer € R

4) v(0) =

REMARK 3.2.2.
By the above definition, we see thatifis a non-singular curve then every local ring is a valuation ring.
In fact, the non-singularity of implies that everyf[C]p is a DVR.

DEFINITION 3.2.3. (Uniformizing Parameter)
Supposé&|[C]pisaDVR. An element € Mp is called an uniformizing parametert if every element
z € F(C) is expressible as = ut" for someu € F[C]}, andn € Z.

The following lemma closely follow§[5], 69) pg 46.

LEMMA 3.2.4.

Suppose the maximal ided/p of F[C]p is principal. Then there existse Mp such that every non-
zero element oF [C]p may be uniquely written agt™ for someu € F[C]}; andn € N. Furthermore,
F[C]p is a DVR with a valuatiorvp(z) = n if z = wt™, such that the choice of the uniformizing
parametet does not affect the value of the valuation.

PROOF

By assumptionV/p is principal, so we can writd/p = ¢F[C]p for somet € Mp. Supposet™ = vt™,
whereu andv are units andh > m, thenut™ ™™ = v is a unit. Butt € Mp is not a unit, hence = m
which impliesu = v. Letz € F[C]p. If zis a unitinF[C]p then we are done. So suppase Mp. We
havez = z;t for somez; € F[C]p since by assumptiof/p is principal. Ifz; is a unit we are done, so
assumer; = zot. Continuing in this way, we obtain an infinite sequen¢ez,, - - - wherez; = z;11t.
But by Remarl3.1.11, F[C]p is Noetherian, therefore the chain

(Zl) - (22) - (23)

must have a maximal element. Theref¢rg) = (z,+1) for somen i.e. vz, = z,41 for somev €
F[C]p, and sovtz,+1 = z,+1 Which yieldsvt = 1. This is a contradiction since we chose be a
non-unit inF[C]p. Thereforez; must have been a unit for someClearly if z = ut™ and we define
vp(z) = n, thenvp is a valuation rendering[C]|p a DVR.
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Supposes also satisfies\/p = sF[C]p then we must have = wt for somew € F[Cp. If z = ut" =
xzs™ for somez € F[C]}, thenut™ = zw™t™. Clearly, we must have: = n sincezw™ is a unit.
Hence the valuation yields the same value regardless of which uniformizing parameter is €hosen.

There is an obvious extension of the valuatioi¥{a”).

DEFINITION 3.2.5. (Order, Poles, Zeroes)
Let C be a non-singular affine curve aftde C. Let f € F(C), and define the order function Rtto be

ordp(f) = wp(f) if fe€F[Clp
= —wp(f) if1/feF[Clp

If ordp(f) > 0 thenP is called a zero of ordesrdp(f) of f. On the other hand, Brdp(f) < 0, then
P is called a pole of orderordp(f) of f.

REMARK 3.2.6.
Clearly,ordp(f) > 0if and only if f(P) = 0, andordp(f) < 0 if and only if f~1(P) = 0.

LEMMA 3.2.7.
LetC : f(z,y) = 0 be an affine curve and l1ét = (a,b) € C, thenMp = (v — a,y — b).

PROOF

Assume without loss of generality th&t= (0, 0), since we can shift the curv@ so thatP is situated
at the origin by letting? = P’ € C" : f(2' + a,y' +b). If g € Mp, then it must be without a constant
term since we requirg(P) = 0, and sag = xh + yi for someh, i € F(C). O

REMARK 3.2.8.
It can be noted that Hilbert's Nullstellensatz can also be applied to showthat (z — a,y — b) if
P = (a,b) is non-singular. Seg12], 98).

THEOREM 3.2.9.
LetC: f(x,y) =0andletP = (a,b) € C. If (y —b)/(z — a) € F[C]p, thenxz — a is a uniformizing
parameter aP and P is non-singular.

PROOF

AssumeP = (0,0). By assumptiory/x € F[C]p, SO we can write
y_ g
=== €eF[C
L =5 €FlClp

whereg, h € F[C] andh(P) # 0. Let
n = max{i | g = z'¢’ whereg’ € F[C]p}

and
m =max{i | g = 2"y'g" whereg” € F[C]p}
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so we can writgyh = 2"t ly™mg”. If m > 1, then we havey(h — 2" 1y™~1¢") = 0. Assume that
y # 0 (since that defines a trivial curve wheéF&| is the ring of polynomials inc and sox is clearly

the uniformizing parameter). We must have- 2" "1y™~1¢” = 0, and in particulah(P) = 0 which is

a contradiction. Thereforg = 2" +1¢” /h. If ¢" is a unit inF[C] » then we have expressedn the form

of uz® for someu € F%, and sax is a uniformizing parameter.

So supposg” € Mp. By Lemma 3.2.7,Mp = (z,y), sog” = zp(z,y) + yq(x,y) for some
p(z,y),q(x,y) € F[C]. By our construction of/”, we must haves(x,y)/y, q(z,y)/x ¢ F[C]p, or
the maximality of eithern or m is contradicted. Rearranging, we obtain

yh = 2" (ap(z,y) +ya(z,y))
y(h— 2" q(z,y)) = 2" p(z,y)
y = $n+2 p(ﬂ:,y)
(h — a2 *tlq(x,y))

which contradicts the maximality of and sog” ¢ Mp. This shows that is a uniformizing parameter.
Consider an arbitrary elemeatz, y) /h(x,y) € F(C), whereg, h € F[C] C F[C]p. Write

g(x,y) = 2"¢ (z,y) andh(z,y) = 2™ (z,y)

wheren andm are maximal such thay’,»’ € F[C]p. If n > m, theng/h € F[C]p, otherwise

h/g € F[C]p. Therefore by definitionP is non-singular, since/h was arbitrary]

COROLLARY 3.2.10.
A point P on a curveC' is non-singular if and only i#*[C]p is a DVR. Furthermore, a curve is non-
singular if and only iff[C]p isa DVR for allP € C.

PROOF

AssumeP = (0,0). If P is non-singular then by definition/z € F[C]p or x/y € F[C]|p. By the

theorem, eithex: or y is the uniformizing parameter &. This implies thatV/p is principal. Therefore
by definitonF[C]p is a DVR. Hence we can conclude that a curve is non-singular if and otyisf

non-singular for allP € C if and only if every local ringf[C]p if DVR. O

DEFINITION 3.2.11. (Differentiation)
Supposef = 3" a; jz'y’ € Flz,y], definef, = " a; jiz'~ly?, andf, = > a; ja’jy’ L.

THEOREM 3.2.12.
LetC : f(z,y) = 0 be an affine curve and l1ét = (a,b) € C. We have

fy(P) #Oifandonly if (y — b)/(z — a) € F[C]p
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PROOF
Assume P = (0,0). SincE € C, we havef(P) = 0, so we can write

fla,y) = cx+dy+a*fi(x) +y* faly) + 2y fa(z,y) 3.1)

for somec,d € F and fi, fa, f3 € F[z,y]. Clearlyc = f,(P) andd = f,(P). By assumptionl # 0,
rearranging we get
y(b+yfoy) +zfs(z,y)) = f(@,y) — x(a — zf1(x))
so we have
—(a—zfi(z))
(b +yfay) + 2fs3(z,y))
sincef = 0. Clearly,y/x is defined atP sinceb # 0.

y/z = € F(C)

Conversely, supposg/z = g/h € F[C]p, then we have

yh(z,y) = zg(z,y) + k(z,y) f(2,y) € Flz,y]

for somek € F|z,y] whereh(z,y) = ¢ + h/(x,y) for some non-zere’ € F andh’ € F[z,y] since
h(P) # 0. Therefore the left hand side must contaifizaterm. This term must appear iz, y) f (2, y)
on the right hand side since every termugf(z, y) must haver as a factor. By comparing witf8 (1),
we see that'y = k(P)dy which impliesd = f,(P) # 0 sincec’ # 0. O

COROLLARY 3.2.13.

LetC, P andf be as in the theorem. Thefi)(P) # 0 implies thatz — a is an uniformizing parameter
at P, andf,(P) # 0 implies thaty — b is an uniformizing parameter &. FurthermorepP is singular if
and only if f,(P) = 0 = f,(P).

PROOF

If f,(P) # 0then(y —b)/(z —a) € F[C]p which implies thatz — a is an uniforming parameter.
AssumeP = (0,0). By the theoremf, (P) # 0 if and only ify/z € F[C]p. The contrapositive gives
fy(P) =0ifand only ify/x ¢ F[C]p. Similarly, f,(P) = 0ifand only if z/y ¢ F[C]p. Therefore,
fz(P)=0= fy(P)ifandonly ify/x,z/y ¢ F[C]p. By definition, P is singular.]

3.2.1 Some Explicit Determination of Singularities and Valuations

EXAMPLE 1 (PARABOLA)
Consider the irreducible affine plane cuWe f =y — x? = 0. Differentiating with respect tg give

of
g, =1#0

so this curve is non-singular by Corollay2.13. Let P = (0, 0) thenz is the uniformizing parameter in
F[C]p andvp(z) = 1. Thereforevp(z™) = mvp(xz) = m. Let@ = (1, 1), thenz—1 is a uniformizing
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parameter iff[C]g,and0 = f =y —1+1—2? =y — 1+ (1 — z)(1 + z), from this we can deduce
thaty —1 = —(1 —z)(1 + ) = (z — 1)(z + 1). When working over a field of characteristic two
vo(y — 1) = 2, otherwisevg(y — 1) = 1.

EXAMPLE 2 (f = y? — %)

Differentiating with repsect tg thenz and equating the derivatives to zero,
of of
ay Y0

We see that any singular point must satisfy- 0 = y, and soP = (0, 0) is the only singular point. Let

Q@ = (1,-1), theny + 1 is a uniformizing parameter over fields of characteristic 2, whilel is not as

fy(Q) = 0.

EXAMPLE 3 (HERMITIAN CURVE)

Consider the Hermitian Curv@ : f = 2° + y® + 1 defined oveif ;. It is non-singular, since
afg;, Y) _ph 5yt = afg;, Y)

is true if and only ifz = y = 0, but f(0,0) # 0. Let@ = (0, 1), thenz is a uniformizing parameter at

Q. Considery + 1 = 2°/(1 +y + % + v + y*). Clearlyl/(1 + y + y? + 3 + y*) is a unit inF[C] p,

and sovg(y + 1) = 5.

2 322 =0

=0

3.3 Divisors and Riemann Roch Spaces

In this section, we shift our focus to non-singular plane projective curves.

DEefFINITION 3.3.1. (Non-singular Plane Projective Curve)

LetC : f(X,Y,Z) = 0 be a plane projective curve. A poift € C'is singular if
Of oy _ OF oy _OF 1y _
aT(P)_aT(P)_aZ(P)_O

A plane projective curve is non-singular if all tiec C' are non-singular.

REMARK 3.3.2.
It can also be shown that the projective cutfds non-singular if and only if the affine plane curves
defined byf(z,y,1), f(xy, 1, 2,) and f(1,y,, z,) are non-singular.

REMARK 3.3.3.

The above remark was made in view of the fact that a projective curve may be viewed as the union
of three patches of affine curves. The three patches correspond to the affine curves given by setting
Z =1,Y =1landX = 1in f. This approach reduces the problem of determining the valuation of
non-singular points to the affine case where the theory was sufficiently developed in the last section. It
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is an easy consequence that’ifs non-singular then the three affine patches must also be non-singular,
see([12],98).

DerINITION 3.3.4. (Order)
Let C : f = 0 be a plane projective curve. Without loss of generality,fet= [a : b : 1] € C be
non-singular. Ley € F(C), define

OI‘dP(g) = Ord(a,b) (g(x7 Y, 1))

whereord, ) is the order function defined on the poiat b) € C": f(z,y,1) =0

REMARK 3.3.5.

Sinceg = h/h' anddeg h = degh/, we havey(X,Y,Z) = ¢(X/Z,Y/Z,1). So if we definer = X/Z
andy = Y/Z theng(z,y,1) = g(X,Y, Z). Therefore a uniformizing parameterd@ : f(z,y, 1) with
respect to the local ring(C”) 4 ) is a uniformizing parameter ifi[C] ». We saw that ifs andt are both
uniformizing parameters then= tu for some unit. in F[C] p, so the value ofrd »(¢) does not depend
on which variable we set to 1.

ExAMPLE 3.3.6.
Consider the curv€' : YZ — X? = ( defined oveif,. ConsiderP = [1:1: 1] € C. SettingZ = 1,
we have
Ordp((X — Z)/Z) = Ord(Ll)(X — 1) =1
and settingX = 1 gives

ord(l’l)((l — Z)/Z) = ord(l’l)(l — Z) — ord(l’l)(Z) =1—-0=1

We simplify our presentation a little by considering only rational points. It can be noted that any point
on a curve can be regarded as a rational point if we enlarge the field on which the curve is defined to an
appropriate degree.

DerFINITION 3.3.7. (Rational Divisor, Effective divisor, Degree, Support)

The set of divisors of’ is the free abelian additive group generated by the set of rational goiats’.
If D=3 p.DpP for Dp € Zis divisor such thaDp > 0 for all rational pointsP € C, thenD is
called effective. The degree of a divisord&D) := > |, Dp. The support oD is

supp(D) := {P | Dp # 0}
REMARK 3.3.8.

By definition of a free group, iD = >, DpP for Dp € Z then only a finite number of th®p's
are non-zero.
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DerFINITION 3.3.9. (Riemann-Roch space)
Let D = p.- DpP be adivisor. The Riemann-Roch spacdafdenoted. (D), is the vector space

L(D):={feF(C)|ordp(f)+Dp >0 foral Pec C}
The dimension of (D) is denoted (D).

REMARK 3.3.10.
Recall thabordp(0) = vp(0) = oo for all P € C and therefor® € L(D) for all D. Clearly, if D is not
effective thenZ (D) = {0} which givesl/(D) = 0.

Recall the Riemann-Roch theorem stated below without proof. For a complete proof of theorem, see
([4],98) p125-p140.

THEOREM 3.3.11.
Let C' be a non-singular projective curve. There is an integer0 called the genus af’, such that for
any divisorD theF-vector spacd.(D) is finite dimensional, and

I(D)—l(Kc—D)=dD)+1—g
for some divisorK - known as the canonical divisor 6f.
COROLLARY 3.3.12.

The canonical divisor satisfie§ K) = 2g — 2 andi(K¢) = g.

PrROOF
Firstly, L(0P) = L(0) the vector space whose members do not have a pole or zero, dgajlynust
be the constants, §00P) = 1. SettingD = 0, we get

1(0) = I(Kc)=1-g
which yieldsl(K¢) = g. SettingD = K¢, we get
I(Kc)—U(Kc—Ke) = d(Ke)+1-g
(Ke)—1 = d(Ko)+1—g
l(Kc) = dKe)+2—yg

which yieldsd(K¢) = 2g — 2. O

REMARK 3.3.13.
If d(D) > 2g —1,thenK¢ — D is not effective and s&( Ko — D) = 0. Hence, we can deduce that

I(D)=d(D)+1—g
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if d(D) > 2g—1.

COROLLARY 3.3.14.
Let C be a non-singular curve defined ow&rLet P € C' be a rational point. We have

(D)< I(D+P)<ID)+1

for any divisorD.

PROOF
Omitted sed[4], 98) p44.0]

THEOREM 3.3.15. (Degree theorem)
Let C' be a non-singular projective curve. LEtc F(C'), thenordp(f) # 0 for only a finite number of
P e C. Moreover,

Z ordp(f) =0

PROOF
Omitted. Se€[4],98) p119.0

DerFINITION 3.3.16. (Principal Divisor)
Let f € F(C) be non-zero. The principal divisor gfdenoted f), is defined to be

(f):=)_ ordp(f)P

REMARK 3.3.17.
The definition of Riemann-Roch spaces can be restated using principal divisors. We have

L(D) ={f €F(C) [ (f)+D =0}

REMARK 3.3.18.
By the degree theoremi((f)) = 0.

As mentioned in[4], 98), the exact value of(D) is difficult to calculate, so the following theorem is
useful.

THEOREM 3.3.19. (Plucker)
If C : f = 0is anon-singular irreducible plane projective curve then the gemi<” is given by the

formula

_[@d-1)d-2)
9=

whered = deg(f)
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PROOF
Omitted. Sed[4],98) p171.0

REMARK 3.3.20.
We will see that the Riemann-Roch theorem allows us to estimate the various parameters of algebraic
geometric codes, and that is why we study the theorem.

3.4 Some Explicit Constructions of Riemann-Roch Spaces

EXAMPLE 1 (PARABOLA)
Consider the non-singular plane projective cué’e f = YZ — X2 = 0. There is only one point
@ = [0:1: 0] atinfinity. Consider the order &f/ X € F[C] atQ. Letz, = X/Y andz, = Z/Y, we
getf(zy,1,2,) = z, — 7, and

of

so x, is the uniformizing parameter d@[C]p for all P € C. We havez,/z, = z/x, = z,. SO
ordg(zy/xy) = ordg(Z/X) =1 = ordg(X/Z) = —1. The only poles ofX/Z must haveZ = 0, but
Q is the only point withZ = 0, thereforeL (mQ) has basig1,z, 22, --- , 2™}, wherex = X/Z.

EXAMPLE 2 (HERMITIAN CURVE FORM 2)
ConsiderC : f = X5 4+ Y*Z + Y Z* overFy,. It is non-singular, since equating the partial derivatives
gives

5XY =437 4+ 7' =Y+ Z3Y
which simplifies to

Xt=2'=Yv"+ 2%

Any singular point must satisiX = 0 = Z = Y. So there is no singular point. L&t = [0 : 1 : 0] be
the sole point at infinity. Let, = X/Y andz, = Z/Y, and consider the plane affine curve defined by
f(xy,1, z,). Differentiating shows that, is a uniformization parameter, sodg(z,) = 1. We have

5132 + z;l +zy = 0
zg +zy = :1:2
zy(zs +1) = 1:;3
25
S G

We see that /(2] +1)(0,0) = 1i.e.1/(z} + 1) € F[C]}. Therefore

x
_ Y _ _
ordg(zy) = ordg( EE 1)) = Sordg(zy) =5
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We can deduce
ordg(Y/Z) = ordg(1/2y) = =5

and similarly
ordg(X/Z) = ordg(zy/2y) = ordg(zy) —ordg(zy) =1—-5=—4

By Plucker’s formula, the curve has genus- 6 and sal.(11Q) = 11+1—6 = 6. Since bothe := X/Z
andy := Y/Z can only have poles &. Clearly we must havé(11Q) = (1, z,y, 2%, zy, 2).

EXAMPLE 3 (GENERAL HERMITIAN CURVE)
More generally, for @-Hermitian Curve, we haverdg(z) = —¢ andordg(y) = —(¢ + 1) whereQ is
the point at infinity and: = X/Z andy = Y/Z.

REMARK 3.4.1.

In fact, it is well known thatZ(m@) for anym € N can be written as a polynomial inandy. Letg
be the genus of thg-Hermitian Curve. It has been shown that every natural number largeethar?
can be expressed a8 + (¢ + 1)b for somea, b € N. This is due to the fact tha#, ¢ + 1] is so called a
telescopic sequence. Sge3|, 95).

EXAMPLE 3.1 (HERMITIAN CURVE)

Consider the Hermitian Curv€ : f = X° + Y 4 Z° defined overFi¢. It is non-singular. Let
Q =1[0:1:1]. Considerg := f(z,y,1) = 2° +¢° + 1. We haveg—z(o, 1) = 5y*(0,1) = 5 # 0, and
soz is a uniformizing parameter &. It can be shown that

and
LO1Q) = (La/(y+1),y/(y+1),2*/(y+ 1% ay/(y+ 1)* v/ (y +1)%)

REMARK 3.4.2.

It can seen that the second form of the Hermitian Curve is more convenient to usé.&in€g where
Q is the point at infinity, can be constructed using monomials, i instead of the more complicated
functions as shown above,

EXAMPLE 4 (KLEIN QUARTIC)
The point@Q = [0 : 0 : 1] lies on the Klein quartic oveF,. It can be shown thatrdg (y'/27) = 35 — i
and thatZL(m@) for anym can constructed using only those elements.



CHAPTER 4

Algebraic Geometric Codes

4.1 Introduction

The class of codes now known as Algebraic Geometric Codes (AG-codes) was first described by Goppa
in ([16],81). For that reason, AG-codes are also known as Goppa codes. Goppa’s insight was that a

code can be constructed by evaluating functions belonging to a Riemann-Roch space on a set of rational
points.

Recall thatL(D) is aF-vector space for any rational divisér on a curve defined ovéf. Recall also

that a linear code is simply a vector subspac&'ofor some positive integet. But L(D) is a vector

space of functions, so it is not immediately a code. In this chapter, we show how the linear property
of the Riemann-Roch spaces can be exploited to construct linear codes. Furthermore, the Riemann-
Roch theorem is used to determine the ranks and (designed) minimum distances of these codes. This
highlights the importance of the Riemann-Roch theorem to the theory of AG-codes, since the problem
of determining the minimum distances for linear codes is NP-Complete.

4.2 Function Codes
DEFINITION 4.2.1. (Function Code)
Let C be a non-singular projective curve. LBtfor i = 1,2, ...n ben distinct rational points od'. Let
B=P +P+---+P,
and letD be a divisor with support disjoint from the supportiéfi.e.
supp(D)N{P;|i=1,2,...n} =0
The function code o8 and D, denoted”, (B, D), is the image of the following evaluation map
ev: L(D) = F" [ (f(P), f(P2),..., f(Pn)

that is

24
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REMARK 4.2.2.

The requirement that the support bf is disjoint from the support oB is necessary and practical.
Supposeupp(D’) Nsupp(B) = @ andm € N\ {0}. If D = D" + mP;, then a function in.(D) may
have a pole aP;, thenf(F;) is not defined. On the hand® = D’ — mP; then any function in.(D)
will evaluate to zero af’;. So every codeword if', (B, D) has a zero at positiof) so we can delete
that position and not affect the code’s minimum distance at all! Therefgrg(D) N supp(B) = @ is

a sensible requirement.

REMARK 4.2.3.
The codeC',(B, D) is clearly linear sincd.(D) is a vector space.

LEMMA 4.2.4.
The function code”,(B, D) is a linear code of length = d(B), rankm = [(D) — (D — B) and
minimum distancel > n — d(D)

PROOF
Clearly, since the points aB are rational, the length of the codes the same as the degree®f We
can proven = [(D) — (D — B) via a simple application of the first isomorphism theorem for vector
spaces. We know thai; (B, D) = im(ev), SO

m :=dim Cr(B, D) = dimim(ev) = dim L(D) — dim ker(ev)

By definition!(D) := dim L(D), so it remains to findlim ker(ev). Itis clear thatf € ker(ev) if and
onlyif f(P;) =0fori=1,2,...,n,thereforeordp,(f) > 1. So(f) —>_;~, P; > 0. Sincef € L(D)
and f has a zero at each of the’s, we can deduce thagt € L(D — >  F;,) = L(D — B). Hence
ker(ev) = L(D — B), and sadim ker(ev) = I(D — B).

Suppose f(Py), f(Ps),..., f(P,)) is a codeword of minimum weight i6' (B, D), i.e. f(P;) # 0
for exactly d distinct values ofi, then there exista — d distinct values{iy, is, ..., i,_4} such that
f(P;;)=0forj=1,2,...,n—d. By asimilar argument as aboyec L(D — Z?:_fl P;;). Therefore

n—d
(f)+D=> P, >0
j=1
taking degrees of both sides we obtain
d(D)—(n—d)>0

sincedeg((f)) = 0, which yieldsd > n — d(D) as required]
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4.3 Residue codes

DEFINITION 4.3.1. (Residue Code)
Let B andD be as before. The residue cadg(B, D), is the dual code of the function codg, (B, D).
We have

Ca(B, D) = { (fi, fas---+ fa) EF" | Y _ fip(P;) = Oforall o € L(D)}
=1

REMARK 4.3.2.

Since we did not develop the theory of differentials necessary for an proper account of the construction
of Cq(B, D), we resort to the above definition. It can be noted that the canonical construction of
Cq(B, D) does not play a part in the description of the theory covered in this thesis. For an account of
a more canonical construction 6%,(B, D) we refer the reader to ([4], 98) p138 and ([8], 99) p245.

LEMMA 4.3.3.
The residue cod€'q(B, D) is a linear code of length = d(B), rankm = n — (D) + (D — B) and
minimum distancel > d(D) — (2g — 2) whereg is the genus of’".

PROOF
As beforen = d(B) is clear. Sinc&’o (B, D) is the dual ofC (B, D), we have

dim Co(B, D) + dim C(B, D) = n (4.1)
By Lemma4.2.4, dim CL(B, D) = (D) — (D — B). Using @.1) and we obtain the required result.

For the minimum distance, it is clear thatlifD) < 2g — 2 then the lemma does not improve upon the
obvious bound! > 0. So assumé(D) > 2¢g — 2. For a contradiction, suppoge< d(D) — (2g — 2).
Letc = (c1,¢2,...,¢,) € Cq(B, D) be a word of minimum weight. Consider of indicesovhere

c; # 0. We denote it

C(]ZZ{Z"CZ'%O}

Clearly,|Cy| = d, so we have

Col = d(3" P) < d(D) — (29 — 2)

1e€Co
which yields
d(D— > P)>25—2
i€Co
By Riemann-Roch we have
(D-> P)=dD)—d+1-g
1eCo
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Letj € Cp, then we have
(D= P+P)=dD)—(d-1)+1-g>ID- > P)
i€Co i€Co
So there existe € L(D — ., i + Pj) bute ¢ L(D — 3 .. P;). SinceP; € supp(B) and
P; ¢ supp(D), we must haverdp, (@) > 1 for i # j, implying thatp(P;) = 0 for ¢ # j. Similarly
sinceordp, (¢) < 0, we must haveo(P;) #0. By D — > ... P; < D, we havep € L(D), and by the
definition of Cq (B, D) we have

Cl‘P(Pl) + CQ(P(PQ) + -+ Cn@(Pn) =0

If i € Cythenp(F;) = 0andifi ¢ Cy thenc; = 0, so the above equation reduces:jo(P;) = 0.
Butj € Cy which impliesc; # 0, and this is a contradiction, singg ;) # 0. Therefore we must have
d>d(D)— (29 —2)ifd(D) >2g—2.0

COROLLARY 4.3.4.
Supposel(D) > 2g — 2. The residue cod€' (B, D) hasrankn =n —d(D) +g — 1+ (D — B).

PROOF
By Riemann-Rochi(D) = d(D) + 1 — g if d(D) > 2¢g — 2. Substitute into the equation in the above
lemma.

DEFINITION 4.3.5. (Designed Minimum Distance, Minimum distance)

The designed minimum distance 6%, (B, D) is defined to bel* := d(D) — (29 — 2). We some-
times denotel* asd*(Cq(B, D)) to emphasise that the codel$,(B, D). Definet* := [ L71]. Let
d(Cq(B, D)) denote the true minimum distance@& (B, D).

REMARK 4.3.6.
The designed minimum distance is only useful(iD) > 2g — 2.

4.4 Examples of AG-codes

Recall that the generator matrix or parity check matrix uniquely determines a linear code. We shall
construct the parity check matrices for some residue codes. Not€'#{@, D) is the dual code of
Cr(B, D) and so the generator matrix 6%, (B, D) is the parity check matrix of'o (B, D).

EXAMPLE 4.4.1. (Parabola)

ConsiderC : f =Y Z — X? = 0 over[F. This curve is non-singular with genus 0 and its rational points
areP, =[i:i%:1]fori =0,1,--- ,6andQ = [0 : 1 : 0]. Letx = X/Z and recall tha.(mQ) is the
vector space spanned byfori =0,1,2,--- ,m. Let

B:P0—|-P1—|----—|-P6
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then the parity check matrix far (B, mQ) is

1 1 1 1
o(P)  z(P)  x(P) - w(B)
Z‘Q(PQ) Z‘Q(Pl) :L'Q(Pg) s :BZ(PG)
$m(P0> mm(Pl) .rm(Pg) xm(P(;)
which evaluates to
1 1
1 2 6
1 22 62
01 2m 6"

Of course the value ofrn cannot be too large. Since by Corolla#y3.4, the rank ofCqo (B, D) is
d(B) —m+0—1+1(mQ — B) = 6 —m. We haved*(Cq(B,mQ)) = m — (29 —2) = m + 2.
Considernn = 3, this code hag* = 5 and so it can correct (at least) 2 errors.

EXAMPLE 4.4.2.

Consider th@-Hermitian Curve form 2 defined by = X3 +Y2Z +Y Z2. Itis non-singular with genus
1. It has9 rational points and one point at infinit§) = [0 : 1 : 0]. ConsidetCq(B, a@) whereB is the
sum of all the rational points exce@t The code has designed minimum distaite- a —(2g—2) = a.
So lettinga = 5 will allow the correction of 2 errors. The codes hasré8nka+1—-1=8 —a = 3if

a = 5. We haveL(5Q) = (1, z,y, 22, zy). DefineF, := Fy[w] wherew? + w + 1 = 0. Let

Pr=[0:0:1 Po=[0:1:1 P3=[1:w:1] Py=[1:w*:1]
Ps=w:w:1 Ps=[w:w?:1 Pr=[w?:w:1 Py=[w?:w?:1]

The codeCq (B, 5@Q) has parity check matrix.

1 1 1
z(P) x(P) -  x(F)
y(P)  y(P2) - y(Fs)
2 (P) 2*(P) - 2P (By)
zy(P1) xy(P) - xy(Ps)
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which evaluates to

111 1 1 1 1 1

00 1 1 w w w w?
01 w w? w w w w?
00 1 1 w w w w
00 w w?> w> 1 1 w

4.5 The Number of Rational Points on an Algebraic Curve

We state without proof a bound on the number of rational points on a curve in relation to the genus.

THEOREM 4.5.1. (Serre’s Bound)
Let C be a non-singular projective curve defined ofgr Let N be the number of rational points @,
then

IN = (¢+1)] < g[2v/4]
whereg is the genus of’.

REMARK 4.5.2.

It can easily be verified that the Hermitian curves and the Klein Quartic all attain the upper bound.
Hence, they are known as maximal curves. We saw that the number of rational points on a curve
determines the maximum length of the Algebraic Geometrice codes it can define. Therefore it is more
efficient to use maximal curves.



CHAPTER 5

Basic Decoding Algorithm

5.1 Introduction

5.1.1 Preliminaries

Ever since the discovery of the AG codes, researchers have tried to design practical algorithms for the
decoding problem. Skorobogatov and Vladut's 1990 p&fiet, 90) introduced the notion of an error-
locator and utilized it to design the first practical decoding algorithm. An error-locator, to be defined
more precisely below, is a function that narrows down the possible locations of the errors. Once an error-
locator has been found, the error word can be determined precisely in polynomial time by solving a linear
system. This procedure is known as the SV-Algorithm. Unfortunately, sometimes an error-locator may
be impossible to compute using the method covered in this chapter. Therefore, the algorithm can only
correct upt* — g/2 errors, whereg* = L%J andd* is the designed minimum distance. However, in
([2],93) Feng and Rao developed an algorithm that corrected the serious defect for One-Point codes.
Their algorithm was soon generalised by Duursmgi#], 93). In this chapter we will present the SV-
algorithm in such a way that it paves the way for a complete description of the more advanced algorithm
with mimimal modification.

Assumptions

Throughout, let”' be a non-singular projective curve of genusLet B := " | P, whereP; € C
are distinct rational points. We also & be an arbitrary divisor witkupp(D) N supp(B) = & and
d(D) = 2g + 2t* — 1 for somet* € Nsod*(Cq(B, D)) = 2t* 4 1.

5.2 Error Locators

DEFINITION 5.2.1. (Mector Syndrome, Syndrome)
Let g, ¢ € L(D). Define the vector syndrome gfand any vector = (ry,ra,...,r,) € F™ to be

(o x71)B = (@(P)r1, o(P2)ra, ..., 0(Pn)rn)
30
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A syndrome is defined to be

(@-m)B = @(P1)r1 +p(P)ra + ...+ o(Py)ry

When there is no confusion as to the compositionBofwe simply drop the subscript to make the
notation nicer.

REMARK 5.2.2.
The definition ofCq (B, D) can be restated using syndromes. We have

Cao(B,D)={ceC|p-c=0 forallpe L(D)}
Clearly the syndromes are bilinear. For example
(p+¢)-(cte)=p-ctp-etd-cto-e

LEMMA 5.2.3. (Syndrome lemma)
Letr = ¢+ e wherec € Cqo(B, D) ande € F”, thenyp - r = ¢ - eforall ¢ € L(D).

PrOOF
Wehavep r=¢-c+p-e=0+p-e=p-e O

DEFINITION 5.2.4. (Error Location, Error Locator)
Suppose: = (ej,ea,...,e,) € F™. If ¢; # 0 thenP; is called an error location far. A non-zero
functiony € F(C) is an error locator foe if o(F;) = 0 for all error locationsP; of e.

REMARK 5.2.5.
Notice that we dichotrequirep(F;) = 0 only if P; is an error location.

LEMMA 5.2.6.
If a functioné € F(C) is an error locator of thenf - e = 0.

PrROOF
If 6 is an error locator of = (ey, ez, -+, e,) thene; # 0 impliesd(P;) = 0, clearlyf - e = 0 in this
case]

5.2.1 Existence of Error Locator

Before we discuss how to use an error locator to compyrtee first show that one exists. We assume
that we know the genus a@f' and we are able to compute a basis/g@f)). Although in practice, the
genus of a curve and a basislofD) can be extremely difficult to compute.
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LEMMA 5.2.7.
Lete € ™ with wt(e) < t for some) # ¢t € N. Let A be an arbitrary divisor with support disjoint from
the support ofB. Supposé(A) > t, then there exists an error locatorfifA) for e.

PROOF
Let P, := {P, | e; # 0} i.e. P. is the set of error locations ef Let{¢; | i = 1,2,...,l(A)} be a basis
of L(A). Then

(4)
0= Z Oéj(ﬁj S L(A)
7j=1
is an error locator if and only #(P;) = 0 for all P, € P.. Then finding an error locatdris equivalent
to solving the linear system

1(A)
0(F;) = Zozjdy(Pi) =0 forPeP,
j=1

we havel(A) unknowns and at most(> wt(e)) equations, wherg A) > ¢ by assumption. Therefore
there must be a non-zero solution. and that solution corresponds to an error latator.

THEOREM 5.2.8.
Let A and F be divisors with support disjoint from the supporti®f such that

d(Ca(B, E)) > d(A) (5.1)
Suppose also thdw; | i =1,2,...,l(E)} is a basis folL(F). Letd € L(A) and let

Iy := {e € " | A is an error locator of }

then
for lo —{(d1-¢ d2-e, -+, Qypy-e)|eclp}
e = (p1-e Pa-e, -, dyp)-e)
is a bijection.
PrROOF

The surjective property is clear from the definition. Suppgs€ € Iy and thatfy(e) = fy(¢’). We have
fole) — fo(e)) = 0,i.e. ¢;- (e—¢€) =0fori =1,2,--- | I(F). But theg;'s form a basis of.(E).
Thereforep - (e — ¢’) = 0 for all ¢ € L(E) and so by definitiofe — ¢’) € Cq(B, E).

If e — €' # 0thenwt(e — €') > d(Cq(B,E)) > d(A) by (5.1). But this cannot be the case since
6 € L(A) is an error locator foe ande’. Indeed, let?) = {P; | 6(P;) = 0 }, then we have

feL(A- > P)

PePy
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therefore

LA- Y P)#@ =dA- > P)>0
PEPQ P€P0
from which we can deduce

d(A) > d( Y P)=|Py| > wit(e—¢)
PEP@
Hencewt(e —¢€’) > d(A) must be incorrect, therefore- ¢/ = 0 since 0 is the only codeword of weight
less thani(A) by definition of minimum distance. This shows thfatis injective.

REMARK 5.2.9.

The task now is to decipher the above theorem and use it to help decode received codewords. The
theorem states thatéfande’ are both error words with the same error locdtar L(A), then they can

be distinguished using some Riemann-Roch sgdde) with d(Cq (B, E)) > d(A). We have

e #eifandonlyif¢ - e # ¢ - ¢ for somep € L(F)

Therefore, if we assume thép, - e, ¢ - e, -, PuE) - e) is known, then it is at least theorectical
possible to finc: by computingf(;l, since we have

e=fy(pre da-e, o, dyp) -e) (5.2)

We will show that solving §.2) is equivalent to solving a linear system in the following corollary.

COROLLARY 5.2.10.
Let A andE be as in the theorem. Let= (ej,e2,--- ,e,) be a vector with error locatat € L(A).
Define

Py:={P,|0(P) =0}
then we have

di-e= > i(P)e

PjePy

fori =1,2,--- ,I(E). Supposdy < D then thee;’s are the only unknowns ands the unique solution
of the above linear system.

PrOOF
We have

= Z ¢i(Pj)e; sincee; =0if P; ¢ Py
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If E < DthenL(E) C L(D), which givesg; - r = ¢; - e by Lemma5.2.3. So thee;’s are the only
unknowns. As in Theorer.2.8, the solution is uniqué.]

REMARK 5.2.11.

Although the above corollary allows us to calculate the error vector given an error locator, we still have
not discussed how to find an error locator yet. In fact the SV-Algorithm'’s biggest weakness is that it is not
guaranteed that an error locator can be found foe wlith wt(e) < t* givend*(Cq(B, D)) = 2t* + 1.

5.3 Finding an Error Locator

LEMMA 5.3.1.
Lete = (e1,e9, -+ ,e,) € F™ with wt(e) < s and letA be a divisor withsupp(A) N supp(B) = 0.
Then a non-zerg € L(A) is an error locator of if and only if ¢ x e = 0.

PROOF
By definition we have

¢ x e:= (d(Pr)er, p(P)ez, -, ¢(Pn)en)
If ¢ is an error locator o, theng(P;) = 0 if e; # 0. In that case, clearly x e = 0. If ¢ x e =0, i.e.
o(P;)e; = 0 for all i. Thene; # 0 implies¢(P;) = 0 since we are working over a field. Therefore by
definition, ¢ is an error locator of. [

LEMMA 5.3.2.
Lete € F™ with wt(e) < s and letY be a divisor withsupp(Y") N supp(B) = 0. If d(Cq(B,Y)) > s,
thend is an error locator o if and only if x - e = 0 for all x € L(Y).

PROOF
This proof is similar to Theorens.2.8. Supposé is an error locator ok, then clearly the vector
syndromé) x e = 0 and so

Ox-e=x-0xe)=x-0=0
Conversely, suppose th@ - e = x - (0 x e) = 0forall y € L(Y). We can deduce thait( x e) < s
sincewt(e) < s. Nowfx -e = x- (0 x e) =0forall x € L(Y) then by definitiord x e € Cqo(B,Y).
But Cq(B,Y') has minimum distance greater thanTherefored x e = 0, and sop is an error locator
as requiredd

From the above lemma we can derive the following practical result.

COROLLARY 5.3.3.
Let A be an arbitrary divisor witkupp(A) N supp(B) = @ andl(A) = s + 1 with basisy; for
i =1,2,---,s+ 1and lete € F" with wt(e) < s. LetY be as in the lemma and assume that



5.3 ANDING AN ERRORLOCATOR 35

xi € L(Y)fori =1,2,--- (V) form a basis ofL(Y). Letw; fori = 1,2,--- ,s + 1, not all zero,

satisfy,
s+1
Zaz(pZXj e=0 for.j = 1727"' 7Z(Y)
i=1

that is if thea;'s satisfy

X1¥1 - € X1$p2 - € X1¥Ps+1 " € o1
X2P1-€  X2p2-e  ctc X2Wsql € o3 0
. . , } Sl=1. (5.3)
Xi(V)P1 € Xuy)P2-€ - Xi(V)Ps+1 €] \Qst1 0

then
0 =a1p1 +aopa + -+ Qsp1Ps 41

is an error locator oé.

REMARK 5.3.4.
Since an error locator exists ib(A) if [(A) > s, clearly we can also choo$€A) to be bigger than
s+ 1, but there is no need.

PROOF
If 6 = ijll a;p; € L(A) satisfies the above condition fog's in F, then we have

s+1

0 = Z%‘%Xj'e forj=1,2,--- (V)
i=1

s+1

= (Z ipi)Xj - e
i=1

= Oxj-e forj=1,2,--- (YY)

but they;’s form a basis for.(Y"), sofx - e = 0 for all x € L(Y") since the one dimensional syndrome
is (bi)linear. Hence by the theoreijs an error locator]

Unfortunately, our good fortune in terms of decoding success ends here. It is an easy consequence that
if we chooses to be big enough, then not all the required syndromas - e are computable via Lemma

5.2.3. If the syndromes are not always computable, then we can not $od)e Therefore we may not be

able to compute error locators for all error words of weight less thaivend* (Cq(B, D)) = 2t* + 1.

We shall investigate what is the biggest valuesafuch that all errors of of weight less thanare
correctable.
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Firstly we have(A) > d(A) + 1 — g by Riemann-Roch. To guarantee th@l) > s + 1, we require
d(A)>s+g (5.4)
On the other hand we want
d*(Cqo(B,Y))=dY)—(29—2)>s+1

Therefore, we must have

dY)>s+2g—1 (5.5)
Combining condition§.4) and 6.5) we see that

d(A)+d(Y)>2s+3g—1

so the minimum value foll(A + Y) is 2s + 3g — 1. Butd(D) = 2g + 2t* — 1 by assumption. If we
want all the syndromes to be computable, we ndedY < D. For that to happen we must necessarily
haved(A +Y) <d(D), so

25+3g—1<2t"+29g—1 = s<t*—g/2

In fact we can assume < [t* — g/2] sinces is a natural number. So our decoding algorithm is not
perfect, since we can only correct uptto— g/2 errors, when in theory we should be able to correct at
leastt*.

Fortunately, in turns out that some of the required unknown entries may be obtained via a so called
"majority voting" process. We will cover an advanced algorithm pioneered by Feng and B2p 93)

to decode up to the designed minimum distance and sometimes beyond! For now we shall give some
worked examples of the SV-Algorithm.

5.4 Examples of SV decoding

ExAamMPLE 5.4.1. (Parabola)
Consider the cod€q (B, 3Q) overF; as in Examplet.4.1, where the curve i€’ : YZ — X2 = 0. This
code can correct 2 errors. We use the following codewpedror worde and received word
c=(1,1,1,1,1,1,1)
e=(0,2,0,5,0,0,0)
r=(1,3,1,6,1,1,1)
wherec is the codeword sent andthe errorword and the received word. If we assume the role of the

receiver, we know only the vecter By our prediction, we can correct upto— 0/2 = t* = 2 errors.
Let p; = 2' and leth; ; = p;p; - e. By Corollary5.3.3 we need to compute the following to obtain an
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hoo ho1 hoz
hio hi1 hig

Hereh; ; = ¢;1; - e and all the above entries are computable. Solving for

a1 0
0 3 5

042:()
3 5 4

Qasg 0

error locator

We get(ai, az,a3) = (3,3,1). S0¢ = 3 + 3z + 22 is error locator. We see that= (z — 1)(z — 3)
which implies that onlyP;, and P; are zeroes of. Therefore the errors must be confined to those two
locations. Sincd.(3()) contains an error locator and

d(Ca(B,2Q)) = d*(Ca(B,2Q)) = 4 > d(3Q)

hence by Corollary.2.10, we can solve the following to obtain the error vector

1 1 l-e 0
€2

1 3 (): z-e | =13
e

1 32) ! 22 5

We gete, = 2 andey = 5 which gives us the error vector as= (0, 2,0, 5,0,0,0) as given.

EXAMPLE 5.4.2. (Hermitian Curve)
Consider the-Hermitian Curve form 2. Recall that the codg (B, 5Q) hasd* = 5, andF, = Fa[w]
wherew? +w + 1 = 0, see Example 4.4.2. We use the following codewgrelror worde and recieved
word r

c=(1,1,1,1,1,1,1,1)

e=(0,0,w,0,0,0,0,0)

r=(1,1,w"1,1,1,1,1)

Takepy = 1, g2 =, o3 = y, pa = 2%, andps = zy as a basis fol.(5Q). Leth;; = pip; - e.
Assume we only know, we have

hoo=w hoa=w hos=w?> hoa=w hos=w’

and note thak; ; = ;4 - eif i + j < 5. We have the syndrome matrix

w w h3’3

wherehs 3 = p3p3 -3 = y? - e cannot be computed using the Syndrome Lem@a. If hs 3 is known,
then we would be able to find an error locator for any error word with 2 or fewer errors. But/sjgce
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is unknown, Corollars.3.3 only guarantees that one error can be corrected. We drop the third column

w o w ap\ 0
w o w Qa9 0
clearlya; = 1 anday = 1 is a solution. S@ = 1 + «x is an error locator, ané’; = [1 : w : 1] and

Py = [1:w: 1] are the only possible zeroes. We can deducecthate;, ea, - - - , eg) must have; = 0
except possiblys or e4. Our error locator is contained ib(2@Q), and since

and the third row and try to solve

d(Ca(B,3Q)) = d*(Ca(B,3Q)) =3 > d(2Q)

We see that we need to solve

1
1
w

SHH
[\e}

N
o o
= W
~
Il
K
o o
Il
-, 8 8

which yieldse; = w andes = 0 as given.

In the next chapter we will show how to obtain unknown syndromes suéh asbove so that we can
correct errors up to the designed minimum distance and (sometimes) beyond!



CHAPTER 6

Majority Voting Algorithm

6.1 Introduction

From the last chapter we saw that the SV-Algorithm can only correct up te g/2 errors, where
theoretically at least" errors are correctable. The breakthrough can be fourii2jr93) where Feng

and Rao utilized a Majority Voting Scheme (MVS) to obtain the unknown syndromes for a One-Point
codes via a "voting process". During the revision phase of the paper Duursma derived a generalization
of Feng-Rao’s MVS to arbitrary divisors. In this chapter, we will treat the One-Point codes first and
define the Feng-Rao minimum distance which is better than designed minimum distance in many cases.
From there we present Duursma’s extension.

Assumptions
Throughout, let”' be a non-singular projective curve. LBt:= > "' | P, whereP; € C are distinct
rational points. We also IdD be an arbitrary divisor withupp(D) N supp(B) = 0.

6.2 Majority Voting Scheme for One-Point Codes

We will consider One-Point codes and the decoding algorithm (MVS) that allows us to decode upto
half the designed minimum distance and sometimes beyond! In the last chapter, the difficulty we had
was that not all the syndromes can be computed. So our main aim is to compute the syndromes by other
means. We start by developing some theory of Weierstrass points, crucial to the theoretical underpinning
of the MVS.

Throughout, letD = mQ@Q wherem = 2g + 2t* — 1, therefored*(Cq(B, D)) = 2t* + 1 implying that
at leastt* errors may be corrected.

39
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6.2.1 Basic Weierstrass Points theory

Let P € C be a rational point. We would like to study the valuesiotvherel(mP) = i((m — 1)P).
These values are related to an improved estimate of the minimum distance named after Feng and Rao
proposed in[3], 95). We will derived these results using the Riemann-Roch theorem.

DEFINITION 6.2.1. (Gap, Non-Gap)
Let P € C. Foranym € N, if (mP) = [((m —1)P) thenm is called a gap. Otherwise is a non-gap.
We denote the set of gaps Bfby G(P).

LEMMA 6.2.2.
The setN \ G(P) for any P € C'is a semigroup with respect to addition.

PROOF

Supposen,n € N\ G(P), then there existe € L(mP) and¢ € L(nP) whereordp(¢) = m and
ordp(¢) = n. The productp¢ € L((m+n)P) butdoes notlieirl((m+n—1)P), som+n € N\G(P).
The associativity of the non-gaps is clear.

LEMMA 6.2.3.
The gaps=(P), is a subset of1,2,--- ,2g — 1}. Moreover there are exactlygaps.

PROOF
Clearly,i(—kP) = 0 for k positive. So0 ¢ G(P). Now we establish that € G(P) impliesn < 2g
via a proof by contradiction. Suppose> 2¢g (son — 1 > 2g — 1), by Riemman-Roch we have

I(mP)=n+1—-g#n—g=1(n—-1)P)

therefore we havé/(P) C {1,2,---,2¢g — 1}. Also by Riemann Roch we have

((29-1)P)=29-1+1-g=g

which helps us to derive the following inequilities

1=1(0P)<I(P)<I2P)<---<I((29g—1)P) =g
Together with the fact thait < /(D + P) — (D) < 1 for any divisorD, we see that there must be

exactlyg — 1 values ofm for which[((m — 1)P) + 1 = I(mP) for m between 1 an@g — 1. Hence
there arg2g — 1) — (g — 1) = g gaps.d

REMARK 6.2.4.
A Weierstrass Point is a point whe€g P) # {1,2,---,¢g}. There are only a finite number of Weier-
strass points on any curve.
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6.2.2 Preliminaries

DEFINITION 6.2.5.
A One-Point code is a residue codg (B, D) whereD = sP for somes € NandP € C.

Let X; for i € N be a sequence of divisors such th@at;) = i andX; = jP for somej € N\ G(P).
As an immediate consequence we see Myat X forall i, D = X+, 94, andordp(y;) = —d(X;).

Throughout we assume that
L(Xi) =(pj |7 =1,2,--- 1)
As in the last chapter, an error locator existdifX¢-11) and we see that
(Xpryg) =" 4+ g = d(Xp44) + 1 — g; by Riemann-Roch
= d(Xpag) =t +29—1
=  d(Ca(B,Xiy) =t +1

We know thatX;-, can be used in conjunction witki;-_; to find any error wora of weight less than
or equal tat*, provided we can compute the following matrix of syndromes

P1p1-€ Pip2 - € P1Pt+1 - €
g Pp2p1 - € P2p2 - € P2Pt41 - €
Ptr+gP1 € Ptr4gP2 € - PrrigPtr41 €

But we will see that it is more beneficial to consider a largers matrix wheres = max(t* +1,t* +g).
Therefore, from here on we will consider

PYipr-€ p1p2-€ 0 P1Pg - €
S = (p2g0.1 - 802@_2 - . (p%O_s - ; s =max(t" + 1,t" + g)
Pspr-€ Psp2-€ - PsPg - €
REMARK 6.2.6.

In many texts,S is assumed to be &* + g) x (t* + ¢g) syndrome matrix instead. This is a minor
oversight, since iff = 0 then we should consider thi¢" + 1) x (¢* + 1) syndrome matrix to ensure that
an error locator can be found.

REMARK 6.2.7.

By the theory we have developed in the last chapter, we seeXthat, can be replaced by,
providedk satisfiiesd(Cq (B, X;+4)) > t + 1 andt = | 251 | for some the minimum distance estimate
d.
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Notation
SupposeV! be a matrix. Then/<,, <, denotes the submatrix @i consisting of the intersection of the
firstu rows andv columns.

For convenience we defink(s, j) := d(X;) + d(X;), andd;; := (P (4, j) P)

6.2.3 Rank Matrices, Pivots and Non-Pivots

In this section, we aim to discuss the main insights of the Majority Voting Scheme informally in order
to build an intuition about why the method works. In particular, we will introduce an original novel
approach via rank matrices.

DEFINITION 6.2.8. (Rank Matrix)

Let M be a matrix with entries coming frofn DefineR,,, the rank matrix of\/ to be the matrix where
the (4, j)th entry is the rank of the submatriX<; <;. We adopt the convention thét,, = (r; ;) and
definerg; = 0 = r;o for all i and;j. Note thatR,; has the same shape &5, and therg ;'s andr;'s
are not entries oR?),.

REMARK 6.2.9.
We will see that the rank matrix helps us to visualise the majority voting scheme, providing an interesting
insight into the problem.

DEFINITION 6.2.10. (Totally Rank Equivalent)
We call M and M’ totally rank equivalent (TRE) if2y; = Ry, and we writeM =g M.

REMARK 6.2.11.
The relation=g, is indeed an equivalence relation. More interesting however, isthatr M. As a
consequence, the theory of rank matrices allows us to study a large class of matrices simultaneously.

LEMMA 6.2.12.
Let Ry, be the rank matrix ofi/ and letR,; = (r; ;). We have

a) rij <ripry <rig+l
b) rij <rijy1<rij+1

C) Tij < Tit1j41 S Tijj A+ 2

PROOF

Consider the submatrice®/<; <; and M<;11 <;. The latter is the former with an added row. The
(¢ + 1)th row of M<; 11 <; is either a linear combination of the other rows, in which cage= 741 ;

by definition, or it is linearly independent of the other rows and we hayer 1 = r;; ;. For part b)
considerM;g andM;SjJrl and apply a). For c), apply a) and then b).
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Consider an x n matrix M of rankr. By Lemma6.2.12, ther; ;s increase at most by one for successive
values ofi andj, and additionally-,,, ,, = r. Hence we can conclude that there are at pgtositions

of i, j wherer; ; < ri;1;0rr; ; <r;jr1. Assume without loss of generality thatl m < n. The ratio

of the entries that are larger than entries on the previous row of column is at;iﬁgogt% = % For

n large, this ratio is small. This insight motivates the following definition.

DEFINITION 6.2.13. (Pivot, Non-Pivot)
Let M be a matrix with rank matrix,; = (r; ;), and recally ; = 0 = r; o for all < and;j. A pivot of
M is a position(i, j) where

Tig 7é Ti—1,j—1 = Ti-1,7 = Ti,j—1

If (4, 7) is not a pivot then it is called a non-pivot.

LEMMA 6.2.14.
Let M be a matrix; be the rank of\/ and Ry = (14 ;), then

a) If(i,5) is a pivot then(i’, j)and(i, ;') are non-pivots for all’ > i and;j’ > j

b) The number of pivots of/is equal to the rank of/

PROOF

Suppos€i, j) is a pivot so we have; j_; + 1 = r; j. Nowr; 1 ; cannot be a pivot sincg j_1 # r; ;.

If riv1j-1 = rig1-1 + 1thenr;q; = rip1; + 1 since if the first(é + 1)th row restricted to the
j—1columnsiis linearly indepedent of the previous row then adding another column will not change the
linear independence. In this way we see tfiat 2, j) can not be a pivot either sineg; 1 ; # 741 j—1.
Continuing in this way, we see th@t, j) can not be pivots for afl > i if (4, j) is. Anidentical argument

can be applied to show thét, ') are not pivots for alj’ > ;.

If (i,7) is a pivot thenr; ; > r;_1 ;_1, butr > r; ;, so the number of pivots is less than But by

part a) the pivots are on different rows, and each row that contains a pivot is linearly independent of the
previous rows. So the number of pivots must equal to the number of linearly independent rows, which
is the rank [

6.2.4 Application to Decoding

Recall that we defined = (s; ;) wheres; ; := ¢;¢; - e. Also, recall that we need to be able to compute
all the values ofS to ensure that an error locator can be found for all error vecteith wt(e) < t*.
Unfortunately, ifd(X;) + d(X;) > 2t* + 2¢g — 1, then there is no easy way of computifg.

By the discussion in the previous section, the ratio of pivots to non-pivatsiefat mostl / max n, m
for am x n matrix S. Suppose; ; is unknown, then we should "guess" that it is a non-pivot, since that
is more likely.
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It turns out that if(¢, j) is a non-pivot satisfying the following relations
Tij = Ti-1,j-1 = Ti-1j = Tij-1

then we can produce a guess valuedgr. There is no known way of producing a good guess value for
si 4 if (¢, 7) does not satisfy the above. This motivates the following definition and theorem.

DEFINITION 6.2.15. (Good non-pivot, Bad non-pivots)
A non-pivot (i, j) is good if
Tij = Ti—1,j-1 = Ti—1,j = Tij—1

Other non-pivots are referred to as bad.

THEOREM 6.2.16.
Let S be a matrix oveF. Lets;, denote théth row ofS; ;_; and letRg = (r; ;). Supposéi, j) satisfies

Ti-1j-1 = Ti-1,j = Tij—1

then it is either a good non-pivot or a pivot, and

i—1
S; = Zaksk (6.1)
k=1

for someo; € IF. Furthermore, ifs; ; is a good non-pivot then

i—1
Sij = E :O‘ksk,j
k=1

PROOF

Clearly, (i, 7) is either a pivot or a good non-pivot by definitioA.13 and6.2.15. Since we have
ri—1;-1 = Tij—1, this tells us that there exists a linear row relatiorbjr}_, such that theéth row of

S;,j—1 is expressible as a linear combination of the other rows. Suppose we have a linear relation as in
(6.1). Apply the following row operations

1—1
T <—T; — E ATk
k=1

to S; ; to obtains; ;. We have

5171 5172 e o e Sl,j

, 8271 52’2 e o e 827]

.3
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where the value must satisfy the following (by the row operations we applied),

i—1
T =S85 — Z QL Sk, j (62)
k=1

We also have;_1 ; = r;_1 1, i.e. thejth column ofS;_ ; is expressible as a linear combination of
the other columns, therefore we can apply column operations of the form

7—1
¢j—¢j— > Bren
k=1
to S; ; and obtainS}’; such that
S1,1 81,2

"o
27] -

0 o --- 0 =z

We note that théth row of S”; ; is the same a$; ; since the column operations had the effect of only
adding zeroes te. Note also that the row and column operations applieﬂiyoandsg,j do not affect
the submatrixS;_; ;1. Furthermore, applying row and column operations do not affect the rank.

Now if (4, j) is a pivot thenw # 0 since in that case; ; > 7,1 ;—1. On the other hand, ifi, j) is a
good non-pivot thew = 0 since we require; ; = ;1 j_1.

By (6.2), we have

7j—1
Sij = g QLS k
k=1

as required

Based on the above theorem, we have a way of making an educated "guess" for the yajuetan
(1,7) satisfies;_1 j_1 = r;—1,; = r; j—1, by assuming that, ;) is a good non-pivot. Note that {t, ;)

is a pivot then it also satisfies_1 ;—1 = r—1; = ri;—1. Infactif s; ; is unknown then there is no
straightforward way of determining whethgr, j) is a pivot or a good non-pivot. We summarise the
discussion in the following corollary.

COROLLARY 6.2.17.
Supposes; ; satisfies

Ti-1,j-1 = Ti-1,j = Tij—1
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and
i—1
S; — Z QL Sk
k=1

wheres, is thekth row of S; ;_; andoy, € F for all &, then

i—1
Sij = ) kS,
k=1

if and only if (4, j) is a good non-pivot.

PROOF
As in the proof of theorem, ifi, j) is good pivot thers; ; = 22;11 aysg,;. On the other hand, ifi, j)
is a pivot then the value af must be non zero, and

i—1

Sij = E QS j +x
k=1

instead.]

REMARK 6.2.18.

The corollary tells us that any row relation involviagallows us to uniquely determine the valuesgf,

if (¢, 7) is a good non-pivot. The theorem makes use of all the properties of a good non-pivot, and there
is no obvious extension to guessing the value;gfif it is a bad non-pivot. Also, if we produce a guess
value fors; ; assuming that it's a good non-pivot, then our guess will be wrong if it is indeed a pivot.

LEMMA 6.2.19.
Let M be a matrix and let; ; be the(z, j)th entry of R);. The position(s, j) is a bad non-pivot if and
only if there existg#’, j) or (i, /) such thats’, j) or (¢, j') is a pivot for some’ < i or j' < j.

PROOF

Supposqi’, j) is a pivot for some’ < i. By Lemma6.2.14, (i, j) must be a non-pivot. Further, by
definition of a pivot we must have’, j — 1) < (¢, j), so(¢,j — 1) < (i, 7) and therefore it cannot be a
good non-pivot. The cagg, ;') being a pivot for somg’ < j is entirely analogous.
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Conversely, suppogg, j) is bad non-pivot then we can classify them into one of the four different types

listed below
i1 i1 k—1 k
Type 1 ( LT ) :< )
Tij—1  Tij ko k
Ti—1,j—1 Ti—1, N k—2 k-1
Tij—1  Tij k=1 k
i1 i i1 k—1 k
Type3 [Tt TR
Tij-1  Tij k-1 k
Ti—1j-1 Ti—1j . k—1 k-1
Ti,jfl ri,j k‘ k’
For type 1, we must havg_» ;1 = k — 1 or k — 2 since the rank values on the same column and

successive rows must only differ by at most one by Lentn2al2. If r,_»,; 1 = k — 1, then by
applying Lemma6.2.12 again, either (1);—1 ; = k in which case

Ti—2j-1 Ti-2j k-1 k
ric1j-1 Ti-1; |= | k-1 k
Tig—1  Tij ko k

which reduces to type 3; or (2)_, ; = k yielding

Ti—2,j—1 Ti-2; k—1 k-1
ric1j-1 Ti—15 |T k=1 k
Tig—1  Tij k k

in which case we can easily see tliat- 1, j) is a pivot.

If r;_2 ;1 = k — 2 thenr;_o ; must equak — 1, because the only other alternative, ; = k violates
Lemma6.2.12; so we have

Ti—2,j—1 Ti-2; k—2 k-1
ric1j-1 Ti—15 |T|k—1 k
Tig—1  Tij k k

Clearly this reduces to type 2.

Now to type 2, again, either;_>,; 1 =k —1and (1)r;_2; = k—10r (2)rio; =k —2; 0r (3)
ri—2j—1 = k —2andr;_p; = k — 1. Following a similar argument set out in proving type 1, we see
that case (1) reduces to type 3, case (2) gives(thatl, j) is a pivot, and case (3) gives
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Ti—2,j—1 Ti-2; k—3 k-2
Ti—1j-1 Ti—15 |~ k—2 k-1
Tig-1  Tij k=1 &k

which reduces back to type 2. But we see that a type 2 sometimes can not be reduced back to a type
2 sincer; ; > 0 by definition, so if we apply our analysis to the type 2 problem above, we see that

eventually it must reduce to case (1) or (2). This proves type 2.

It remains to show that type 3 satisfies the theorem and note that type 4 can be solved by considering its
transpose as type 3. Again we have 3 cases:;(b);—1 = k—1landr;_o; =kor(2)ri_2;-1 =k—1
andr;_o; =k —1;0r(3)ri—2;-1 = k—2andr;_o; = k — 1. Case (1) reduces to type 3, but this
reduction can not always happen singej — 1 = 0 by definition, so as we traversei — 1,--- ,0, we

see that;_, j—1 > rr—qt1,j—1 O i—qj > Tr—at1,; fOr somea € N which in effect reduces case (1)

to (2) or (3). Case (2) shows that_ ; is a pivot. Case (3) reduces back to type 2, but note that this
reduction is accompanied by a reduction in the value of the rank. A type 2 is sometimes reduced back
to type 3, but since the reduction from type 3 to type 2 lowers the rank value, this reduction pattern can
not continue forever, so case (3) either gets resolved by the prove for type ! 2 or it is reduced to case (1)
or (2).0

To gain some more insight into the intuition behind the MVS we prove the following lemma.
LEMMA 6.2.20.

Let r be the rank of5 thenr < wt(e).

PROOF
Recall,s = max (t* + g,t* + 1). We express as the following product of matrices

e1(P1) o1(P2) - ei(B)) fer 0 - 0 for(P1) @a(P1) - s(P1)
o | PP @a(P2) e oa(Ba) | 0 ep e O [ or(PR) oa(BR) e ()
0s(P1) @s(P2) - ps(Pn) 0 0 - en 01(Pn) @2(Pn) -+ @s(Pn)
where we assume= (e, es,- - - , e,). Clearly, the rank of is at most equal to the rank of the middle

diagonal matrix, which isvt(e). O

We have been arguing the case that we can produce a guess fof;sdig@ssumings, j) is a good non-

pivot and our guesses are more likely to be correct. The next lemma shows that a lot of our seemingly
different guesses are actually guesses about the same thing. Therefore, if the majority of them are correct
then we can discover the unknown values of via a voting process!

Recall thatd (7, j) := d(X;) + d(X;) andd;; := [(P(7, j) P) wherel(X;) = i.
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LEMMA 6.2.21.
Suppose thg; ;'s are known for all(4, j) such that? (i, j) < s, for somes € N, then knowing any one
s;; With ®(i, j) = s determines all othey;, ;'s with ®(k,1) = s.

PROOF
Suppose we know the value &f; with ®(i, j) = s, then we have

8ij = Q11 €+ Q- e+ -+ Qg Pdiyg €
If ®(i, j') = s, then similarly we have
S50 = 11 - € + Q2p2 - € + o+ adi’j’@di’,j’ e

By assumption, we know the value gf ;, andyy’s are known fork < ®(i,j). So froms; ; we can
derive the value fopy, ; = ¢s = @, r which in turn determines;, ;. [

6.2.5 Majority Voting

In this section we will prove a number of technical results that confirm our intuition and show how we
can make use of those results to design a reasonably fast decoding algorithm we call MVS. We begin
with a definition.

Definition (Candidate, Non-candiate)

Let S = (s; ;) be as before and €%y, = (r; ;). Supposs,, ,, is an unknown syndrome but al] ; for

i <wandj < v, except(i,j) = (u,v), are known. We calb; ; a candidate iz, j) is either a good
non-pivot or pivot. Otherwisey; ; is called a non-candidate. (f, j) is a good non-pivot, then it is a
correct or true candidate, otherwise it is called incorrect or false.

REMARK 6.2.22.
Consistent with previous discussions, a candidate is one for which we can produce a guess value for,
and our guess will be false if the position of the candidate is actually a pivot, hence the above definition.

We can now describe the MVS that completely determines the syndrome $aefined earlier. Firstly,
we give a description of the MVS algorithm.

Recall thatd (7, j) := d(X;) + d(X;) andd; ; := I[(P(4,5)P), and

L(X’L) = <S011 P25, SDI>
and suppose that
d.’,

1,3
85 = E Biker - e
k=1

where the values of the scala#g,’s are known.
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Assume the code we usel$, (B, X;) for somes € N\ G(P).

The Basic MVS Algorithm

Initialise d < d(Xs41)-

(1): Locate all candidates; ; with ®(i, j) = d. For each candidate ;, find a linear row relation in the
form of

i—1
Si = Z Q4 Sk
k=1
wheres; is thelth row of S; ;_; ando; ;'s are scalars.

Let s;j — 22;11 o; 1Sk, then let

d; 1
Y
9ij = (si;— > Cipse)
k=1

aZ7dZJ
Once all the possiblg; ;'s are computed, lgj be the value that most of thg ;'s take. Let

d@jfl

Sij— > Bikpr-etyg
k=1

If a row/column relation is found it then we can use that relation to compute an error-locator, and
hence the error word, and so we halt the algorithm in that case. Otherwise, if not gll; thee known
then incremend by 1 and go back to step (1).

EXAMPLE 1
Consider the2-Hermitian Curve, see Example4.2. For@ = [0 : 1 : 0] We haveL(5Q) =
(1,z,y, 2%, xy), whereF, := Fo[w] andw? + w + 1 = 0. Let

P=[0:0:1 Po=1[0:1:1 Py=[l:w:1] Py=[1:w?:1]
Ps=[w:w:1 Po=[w:w?:1 Pr=w?:w:1] Py=[w?:w?:1]

The codeCq (B, 5@Q) can correct 2 errors and it has parity check matrix.

111 1 1 1 1 1

001 1 w w w w?
01 w v w w w w
00 1 1 w w w w
00 w w? w? 1 1w

For this example we let
e=(1,0,w,0,0,0,0)
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andgg = 1, ¢o = x, ¢3 = vy, ¢4 = 22, ¢5 = xy. Since the genus is 1, we need to computesthe3
matrix

bodo e Qo€ dops-e l-e z-e y-e w? w  w?
S=1|toto-e ¢apa-e top3-e|=|xz-e 2>-e zy-e|l=w w 0
P3P0 € P3p2-e P3p3-e y-e xy-e y’-e w? 0 y®-e
and
1 1 1
Rs=11 2 2
1 2 r33

clearly (3, 3) is a candidate. The third row ¢f; » can be expressed as the sumudf; + w?ry where
r1 andr, are the first and second row 8§ 2, so we guesss 3 to bew?w? + w?0 = w* = w. It can be
confirmed that? - e = w.

REMARK 6.2.23.
For larger scale examples, sgg], 95) or Appendix B.

6.2.6 Feng-Rao Minimum Distance

We now prove a theorem that validates the MVS, where the main skeleton of the proof was sketched in
([3],95). We start with some definitions.

DEFINITION 6.2.24.
Defined; := d(X;). We let the set of paird/, be defined by

N, = {(di,dj) € N* | d; +dj = dr41)}
wherel(X;) =iandd; € N\ G(P).
DEFINITION 6.2.25. (Feng-Rao Minimum Distance)
Let n,. denote the cardinality oiV,,. The Feng-Rao minimum distanek-z of the One-Point code

Caq(B, X) is defined to be
dpgr = min{n, | r > s}

LEMMA 6.2.26.
For a code’q (B, X;). We havedrr > d*, and they are equal if(X;) > 4g — 2, whereg is the genus
of C.

PROOF
Considem, for somer > s. If d(X,) < 2¢g — 2, thend* = d(X;) — (29 — 2) < 0 which is clearly less



6.2 MAJORITY VOTING SCHEME FORONE-POINT CODES 52

thann,. So assumé(X;) > 29 — 1. Letd; := d(X;) and define the set¥, I and.J by

N = {(i,dpp1—9)|i=0,1,- ,dps1}
I = {(i,dpy1—i) € N|ieN\G(P)}
J = {(dr1—3,) € N|jeN\G(P)}

then we haveV, = I N J, and by the Inclusion-Exclusion Principle
[INJ| =|I|+|J|—[IUJ| (6.3)

For the values between1,2, - - - ,d,.; there argy non-gaps fron, 1, - - - , 2g—1 sincel((2g—1)P) =

g for any rational pointP € C. Thed,+; — 2¢g + 1 values betweeflg andd,,; are all non-gaps, so
|[I| =g+dry1—29+1=dr41—g+1. NotethatJ| = |I|and/UJ C NandsqlUJ| < d,41 + 1.
Substitute into§.3), we get

ny = [INJ| dry1—g+1+diy1—g+1—|TUJ|
2dry1 —29+2— (dry1 +1) (%)

dT‘+1 —29+1

v

d. —2g+2; sinced, >2g—1landsod, 1 =d,+1
> dy— (29— 2) =:d*; by assumptionl, > d,

Thereforedpr := min{n, | r > s} > d*. Nowifds > 49 —2 = d,4; > 49— 1,thenfUJ = N
since ifi ¢ N(P) thend, ;1 —i > 49 — 1 — (29 — 1) = 2g is a non-gap, s¢i, j) € N implies either
(i,7) € LT or(i,j) € J. So(x) is an equality and henceérr := min{n, | r > s} =ns =d*. O

THEOREM 6.2.27.

Consider the cod€q(B, X;). Letd; := d(X;). Suppose the; ;'s are known for all(, j)’s with
d; + d;j < d,. Additionally, supposevt(e) < (n, — 1)/2. Then the sefV, has more good non-pivots
then pivots.

PrROOF

This proof is based on the proof sketchedit8],95). Let K be the number of known pivots i, let
I be the number of pivots in the sat., and letT” the number of good non-pivots iN,.. We must have
K + F'less than the total number of pivots, and so

K + F <rankS < wt(e) (6.4)

If (i,7) is a pivotthen(i’, j) and(i, ;') fori’ > i andj’ > j are all bad non-pivots, so the S€f consists
of at most2K bad non-pivots. Note that any eleméni, d;) € N, fit into three categories(, j) is a
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pivot, a good non-pivot, or a bad non-pivot. Therefore

which implies
wt(e) < (n, —1)2<(T+F))2+ K —-1/2

Combine with(6.4) yields F' < T" as required]

COROLLARY 6.2.28.
For a codeCq (B, X;), the MVS can correct all error wordsatisfying

<M

wt(e) < 5

PROOF

Initially, all the sydnromess; ; for d; ; < d, are known. By the theorem, the syndromgs with

d; + dj = ds41 can be obtained via the MVS sin¢e, — 1)/2 > (drpr — 1)/2 > wt(e). Now we
can obtain the syndromes that satigfy+ d; = ds2. Clearly this process may be repeated until all the
required syndromes are obtainéd.

REMARK 6.2.29.

It may be noted that not all the syndromes that we claim to be computable are situated in the matrix
S which is a(t* + g) x (t* + g) matrix if g > 1. For examplesy, ¢+14+1 iS not an element of' for

anyk. Butif s -, is a candidate, thesy, .-, 41 must have been a good non-pivot. Which means
that thekth row of S<, <-4 is expressible as a linear row relation of the previous rows, in which case
the MVS would have halted. So if the algorithm needs to compilte, 411, thensy, 41 Mmust be a
non-candidate. Hence it does not contribute a vote, and so it can be ignored.

REMARK 6.2.30.
We see thatipg is a better measure of the minimum distance tHan Therefore we can consider a
smaller syndrome matrig of shapes’ x s’ wheres’ = max(t + g,t + 1) andt = (dpr — 1)/2.

The following example demonstrates the superiority of the Feng-Rao minimum distance to the designed
minimum distance. We consider the cadg(B, D) whereC' is the4-Hermitian codes form 2. Recall
thatordg(z) = —4 andordg(y) = —5for Q = [0 : 1 : 0]. The non-gaps are

0,4,5,8,9,10,12,13,14, 15, - - -
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Letd, := d(X,), whereX, = d,P andL(X,) = r. Recall thaty = 6 and sodg — 2 = 22 and
2g — 2 = 10. We have

d- 5 8 9 10 12 13 14 15 16 17 18 19 20 21 22
dry1 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23
n. 3 4 3 4 6 6 4 5 8 9 8 9 10 12 12
dr,rp 3 3 3 4 4 4 4 5 8 8 8 9 10 12 12
a“d@ - - - 0 2 3 4 5 6 7 8 9 10 11 12

The — symbol denotes a minimum distance that cannot be estimatedti@learly,drr is superior to
d* in many cases. The difference is very pronounced in a class of codes defined over the Suzuki curves.
See Example 8.43],95).

6.3 The General Algorithm

6.3.1 Definitions and Preliminaries

The general MVS is very similar to the One-Point code MVS. Throughout, assume we are considering
acodeCq (B, D), and by a curve we mean a non-singular projective curve.

DEFINITION 6.3.1. (-Order)
Let C a curve, letP ¢ C and letX be a divisor. Define

px,p(¢) = min{m | ¢ € L(X —d(X)P +mP)}; ifdefined
:= oo; otherwise

REMARK 6.3.2.

The p-order provides an indexing of functions similar to that of the indexing via ordriatthe MVS
for One-Point codes. Note thatlf = d,P for somed, € N\ G(P) thenux p(pi) = —ordp(p;).

DEFINITION 6.3.3. (Gaps, Non-Gaps)
Let C be a curve. LeX be a divisor and leP € C. Define the gaps ok at P by

Gx(P):={m | (X —d(X)+mP)=1(X —d(X)+ (m—1)P)}
The elements oN \ Gx(P) are called the non-gaps &f at P. Any elementa € Gx(P) is called a

X-gap, similarly any elemerite N\ Gx(P) is called aX-non-gap.

REMARK 6.3.4.

The above definitions are generalisations of the Weierstrass Points gaps and non-gaps. It can be seen
that if we setX = 0, then the definitions above agrees with the definitions of gaps and non-gaps in the
One-Point code case. By almost exactly the same proof as Lén3awe see that there are exacily
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gaps betweeh and2g— 1. Indeed, clearlyl(X —d(X )P+ (2g—1)P) = 2g—1 which by the Riemann-
Roch theorem implies thatX — d(X)P + (29 — 1)P) = g. Sincel(E) < I(E + P) < l(E) + 1 for
any divisorE, there must bg — 1 X-gap between and2g — 1 from which our claim follows.

DEFINITION 6.3.5. (Duursma sequence)
The Duursma sequence &f with respect toP is the sequence of divisors; wherel(X;) = ¢ and
Xi =X —d(X)P + mP forsomem € N\ Gx(P).

We prove some properties of the Duursma sequence.

LEMMA 6.3.6.

Let (X;) be the Duursma sequence of a divisdmwith respect taP.
1) If ¢ € L(Xi41) \ L(X;) thenpx p(¢) = d(X;).

2) If X = 0then for anyp € L(X;), we have

px,p(¢) = —ordp(o)

PROOF

LetX; = X—d(X)P+mP andX;;; = X—d(X)P-+nP where clearlyl(X;) = m andd(X;+1) = n.
Let ¢ € L(Xi+1) \ L(X;), thenux p(¢) > m or else¢ € L(X;). Clearlyux p(¢) = d(X;) by
definition.

If X =dsP for somed; € N\ G(P), then
px,p(¢) :=min{k | ¢ € L(X —d(X)P + kP)} = min{k | ¢ € L(kP)} = —ordp(¢)

If d(X;) < d(X) then we must havé(X;) = m < d(X) whereX; = X — d(X)P + mP for some
m e N\ Gx(P).ClearX > X + (m —d(X))P =X;. O

DEFINITION 6.3.7.

Let C be a curve. LefX andY be divisors, letP € C, and let(X;) and(Y;) be the Duursma sequence
of X andY’, respectively, with respect tB. Additionally, let(1W;) be the Duursma sequenceX®f+ Y
with respect taP. Define

NX vy = {(d(X3),d(Y))) | d(X;) + d(Y;) = d(Wri1)}

LEMMA 6.3.8.
If nx p(¢) =a < ooanduy,p(¢) =b < ocothenuxiy,p(pp) =a+b.
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PROOF
Clearlypp € L(X +Y — (d(X)+d(Y))P + (a+b)P) and soux+v,p(¢¢) < a+b. We can see that

ordp(¢) =d(X) — Xp—a

where X p is the coefficient of? in the divisorX, sincep € L(X — d(X)P + a) wherea is minimal.
Similarly
ordp(¢) =d(Y)—Yp —b

whereYp is the coefficient of? in the divisorX. Lastly
ordp(pp) =d(X +Y) — (X +Y)p — pxiv,p(ed)
The three equations above are relatedbip (p¢) = ordp(p) + ordp(¢) which gives
AX+Y) = (X +Y)p— pixiv.p(pp) =d(X) — Xp —a+ordp(¢) +d(Y) —Yp —b

rearrange and we get the result required.

6.3.2 The General MVS

Given a code’ (B, D), we aim to adapt the MVS algorithm developed for One-Point codes to help
decode received words. Hefeis generally not assumed to be of the fodgP for someP € C and
ds € N.

Let L(D) = (pq, | di = d(D;)) whereP ¢ supp(B). Let(D;) be the Duursma sequence Bfwith
respect taP. Note that Lemma®.3.6 givesD; < D if d(D;) < d(D) and so every function if.(D)
have au-order of D with respect taP.

Let s = max{t + 1,¢ + g} whereg is the genus of” and¢ = L%J whered is some estimate of

minimum distance such as the generalised minimum distance defined beld; Lieé the Duursma’s
sequence for the zero divisor with respectfto Let y; := d(Y;) and letL(Y;) = (¢,, | j < i), we
consider the syndrome matrix

Pdy ¢y1 € Pdy (byz e Pdy d)ys €
G .— ‘pd2¢y1 e 90d2¢y2 B ¢d2¢ys e
PdePyy * € PdPys € 1 PdPy, €

As before, if we know enough of the syndromes to find a linear row or column relation, then we can find
an error locator and hence the error.

By Lemma6.3.8, we see that

tp+o,p(Pid;) = up,p(pit;) =1+ j
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and soi + j = i’ + j/ = k is the minimum value such that

therefore if we try to produce a guess for the positighsd;) and(d;, d; ), then they are guesses about
the same thing. Hence the MVS we developed in the previous section can be applied with minimal
modification.

Using the definitions above we see that the theory we developed for One-Point codes is naturally ex-
tended to solving the problem for a general residue @@@éB, D). Note thatl(D;11) = ¢t + 1 and

[(Yi4+1) = t 4+ 1 and so error locators can be foundlinD; 1) or L(Y:11). So the natural extension is

to look for linear row relations irt' as well as linear column relations. Note that jherder provided

a way to index the functions similar to that found in the One-Point code MVS, and this is important for
the definition of the generalised Feng-Rao Minimum distance given below. Also worthing noting is that
our choice of thep;’s andy;’s ensured that as many syndromes are computable as possible.

REMARK 6.3.9.
In the One-Point code case, we hay®) = (Y;). Therefore the syndrome matrikgiven above would
have been symmetric and hence looking for row relations is the same as looking for column relations.

DEFINITION 6.3.10. (Generalised Feng-Rao minimum distance)
Consider a cod€'q(B, D). Let(D;) be the Duursma sequencelofwith respect taP ¢ supp(B), and
letn, = ]N5707r| assumingD = Dy(py. The generalised Feng-Rao minimum distance with respect to
P is defined to be

dbp == min{n, | r > (D)}

REMARK 6.3.11.
The requirement tha® ¢ supp(B) ensures that the syndromgs = ¢;¢; - e are defined for all and
7.

The validity of the MVS in the general setting is verifiable by essentially the same proofs as in the
One-Point code case.

LEMMA 6.3.12.
For a codeCq(B, D), where we assum® = Dyp). We havedﬁR > d*, and they are equal if
d(D) > 49 — 2 whereg is the genus of” and P ¢ supp(B).

PROOF
The case wheré(D) < 2g — 2 is clear, see Lemm@&2.26. So assumé(D) > 2g — 1. Letd; = d(D;)
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andy; = d(Y;) where(D;) and(Y;) are as defined above. We define the $étd, and.J by

N = {(iydpsy—i) i =01, dpp1}
I = {(di,dr+1 — dz) S N}
J = {(dr+1—vyj,y;) € N}

We haveN, = I N J. There argy D-non-gaps frond to 2g — 1. Thed, 1 — 2g + 1 values betweefg
andd,., are allD-non-gaps, so

|I|:g+dr+1_2g+1:dr+1_g+1

Similarly, |J| = |I|. Note that/ UJ C N and so|I U J| < d,41 + 1. By the Inclusion-Exclusion
Principle we get

n.=INJ = dpy1—9g+1+dy1—g+1—|I1UJ]|

2dry1 =29+ 2~ (dry1+1) (%)
> ds— (29 —2) =:d*; by assumptionl, > d

v

The rest of the proof is entirely identical to Lem$.2.26. [

LEMMA 6.3.13.
Let N, = Ngo’r and letn, = |N,|. For the codeCo (B, D), where we assum® = Dy py, andd;,
vi,(D;i) and(Y;) are as defined above. Suppasge) < (n, —1)/2. Suppose they, ,,’s are known for

all (d;, y;) such that/; + d; < d,. The setV, has more good non-pivots then pivots.

PrROOF
This proof is very similar to Theore2.27. Let K be the number of known pivots ifi, let F' be the
number of pivots in theV,., andT the number of good non-pivots iN,.. We have as before

K + F <rankS < wt(e) (6.5)

Also N, must have no more thal¥ bad non-pivots. Note that any elemédf, y;) € N, must satisfy
one of the following:(i, j) is a pivot, a good non-pivot, or a bad non-pivot, and so

n. <T+F+4+2K
which with (6.5) yields F' < T" as required]

The general MVS is essentially the same as the One-Point code MVS. It proceeds by computing all
syndromes computable by the Syndrome Lemma. Then it produces guess values for all the candidates.
The syndrome table is updated using the values of the correct candidates. Continue this process until a
row or column relation is found. Recall that a column/row relation determines an error locator, and the
error locator uniquely determines the error werd
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The correctness of the general MVS is guaranteed by the above lemma. The lemma shows that if
satisfieswt(e) < (d£, — 1)/2, then the correct candidates outnumber the incorrect candidates at every
stage of the MVS. Hence we have solved the decoding problem for Algebraic Geometric codes!
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APPENDIX A

Basic Coding Theory

A.1 Block Codes

DeriNITION A.1.1. (Block Code, Codeword)

Let IF be a field. A block code&”, of lengthn overF is a subset of™. As we will only be dealing
with block codes in this essay, we will simply referd@bas just a code. Any element 6f is called a
codeword.

Throughout, assume that a block cadés defined over a field.

One of the most important parameters of a code is its minimum distance, which is defined in terms of
the Hamming distance. It measures how many errors can be corrected by the Majority Logic Decoding
(MLD) method, to be defined later.

DerINITION A.1.2. (Weight, Hamming Distance, Minimum Distance)
Let c be a codeword. The weight efdenotedwt(c) is defined to be the number of components abt
equal to zero. The Hamming distance (or just distance) betwegr C isd(x,y) := wt(x — y). The
distance between a codeword and a code is defined to be

d(z,C) :=min{d(z, ¢) | ce C}

The minimum distance of a codeis

d(C) := min{d(z,y)|z,y € C}

Exampleswt(0101) = 2 andd(010,000) = 1 andd(010,101) = 3.

LEMMA A.1.3.
The Hamming distance defined by, y) := wt(z — y) is a metric.

PROOF
1)d(x,y) > 0is clear.
2) d(z,y) = wt(x —y) = wt(—(y — z)) = wt(y — z) = d(y,x); since multiplying by -1 does not
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change the weight

3) This proof follows([1], 92). Letx = (z1, 22, -+ ,&n), ¥y = (Y1, Y2, -+ ,Yn) @NAz = (21, 22, -+ , 2p).
Let D, . = {i | z; # z}, then clearlyD,, = SUT whereS = {i | z; # z,2; = y;} and
T ={i|z; # z,x; # y;}. It follows that

T < d(z,y)
and since € S, theny; = x; # z;. Therefore
S| < d(y, 2)
which yields
d(x,2) = |Daz| = S|+ |T| < d(x,y) + d(y, 2)

as required

DEFINITION A.1.4. (Closest Point Set)
Let C be acode and let € C. DefinePo(z) :={ce C|d(z,c) =d(z,C)}.

REMARK A.1.5.
In this thesisTF is always finite, certainly’-(x) must not be empty.

DEFINITION A.1.6. (Majority Logic Decoding)
The Majority Logic Decoding (MLD) scheme is the process where the receivedaverelis decoded
asPc(c+ e).

The following lemma is important in that it describes when the closest point set is a singleton set. It
illustrates the importance of the minimum distance.

LEMMA A.1.7.
Let C' be a code and let(C) = 2t + 1 or d(C') = 2t + 2 for somet € N. If wt(e) < ¢, thenPz(c + €)

={c}.

PROOF

Let f = c+e, thenwe havé( f, c) = wt(e) < t. Suppose’ € C andcd’ # ¢ suchthatl(d, f) < wt(e),
then2t + 1 =d(C) < d(c,c) < d(c, f) +d(f,c) < 2wt(e) < 2t which is a contradiction. Therefore
cis the closest tgf. The casel(C') = 2t + 2 uses exactly the same proai.

Notation
For convenience, when there is no chance of confusion we thidk 0f + ) as an element, not a set.

REMARK A.1.8.
The above lemma says that if the receiver receivese andwt(e) < ¢, then by computing®c(c + €)
the original message can be recovered. Computing the closest point set while assufjng ¢t is
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referred to as the decoding problem. A large portion of this thesis is devoted to the decoding problem
for Algebraic Geometric codes.

A.2 Linear Codes

Large block codes that lack some internal structure can be difficult to define and decode. It is even
difficult to determine whether a vector is a codeword or not. This motivates the development of linear
codes.

DEFINITION A.2.1. (Linear Code, Rank)

Let F be a field. A linear cod€’, of lengthn is a three-tupléU, G, H) whereU is a vector-subspace
of F” andG : FimU _, F” is a linear operator such thahG = U, andH : F* — F»—dimU gych that
ker H = U. The rank ofC is the dimension of/.

DEFINITION A.2.2. (Generator Matrix)
The linear operatofy in matrix form is called the generator matrix.

REMARK A.2.3.
Note thatGG or H uniquely determine¥’.

Notation

We abuse notation a little by referring to the vector spéicas C. When there is no chance of a
confusion,C refers to the associated subspéteAlso the linear operator§ and H are almost always
expressed explicitly as matrices.

A code is useless if it can not convey information. So it is important to understand how we represent
information using a linear code. Lét be a linear code and let be the rank ofC. Fix a basis of

C, say, cy,ca,...,cn. We can represent s-digit information block, (dy, da, ..., d,,), as the vector

dicy + dsco + ... + dme. SO every vector il representsn-bits of information.

In coding theory, we tak& to be a finite field of sizg, say. So a linear cod€' of rank m haveq™
distinct vectors. If each vector represent a different symbol, hean be thought of as an alphabet of
sizeq™ .

Notation
LetF = F,. We call a linear code of length, rankk and minimum distance a g-ary [n, k, d] code.
This is standard notation.
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DEFINITION A.2.4. (Dual)
Let C be ag-ary [n, k, d] code. Define an inner product

n
(,y) = Z ZLiYi
i=1

, Wherez = (z1,x9,...,x,) @andy = (y1,v2, ..., yn). We sayz is orthogonal toy if (x,y) = 0. We
define the dual of’ to be the set

Ct:={xeF"|(x,¢) =0VceC}

REMARK A.2.5.

1. The spac€'* is the orthogonal complement €.

2. It can easily be shown that! is a subspace d@” and therefore is also a linear code.

3. The dimension o is n — k since we hav&” = C @ C* by an elementary result in functional
analysis.

4. We also havéC+)+ = C

DEFINITION A.2.6. (Parity Check Matrix)
Let C+ have basig], c5, ..., ¢, _,, and assumé, is a row vector for ali between 1 and — k, then the
matrix

is called the parity check matrix @f.

LEMMA A.2.7.
Let H be as above, theHc¢” = 0ifand onlyifc € C.

PROOF
Clearly, ifc € C then(c, ¢;) = 0 for all ;. By definition of H, we have

Conversely, supposHc! = 0, i.e. (c},¢) = 0 for all i between 1 and — k. Since the inner proudct is
linear, any linear combination of thé's is also orthogonal te, i.e. every element af' is orthogonal
to ¢, by definitionc € (C+)* = C. O
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REMARK A.2.8.
Note that the parity check matri is the generator matrix fap'-.

REMARK A.2.9.
The matrix allows us to decide whether a vectois a codeword or not, but this does not tell us how
to computeP:(c + e). Some texts do not require the rowsfto be linearly indepedent.

LEMMA A.2.10.
Let C be a code of length. Thendim C + dim C+ =n

PROOF
Consider the parity check matri{ as a linear operator, then we halien imH + dim ker H = n. But
dimker H = dim C' = k and we havelimimH = rankH = dimC+ =n — k. O
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A Large Scale MVS Example

Consider the cod€q (B, 19Q) whereC : X°+Y*Z +Y Z* = 0 is the4-Hermitian Curve form 2, and
Q=1[0:1:0].LetB= P, + Py +---+ P, Where

P=1:w:1] Py=[1:w?:1]; Py=[1:w*:1]; Py=1:w®:1]

Ps=w:w:1; Po=w:w?:1]; Pr=w:w:1; B=[w:w®: 1]

Po=[wl:w:1; Po=wb:w?:1]; Py=[wb:w:1]; Pp=[ws:w®:1];
w

Pz=w:w:1); Py=w:w?:1; P5=[w’:w:1]; Pg=][w:

w~
w~
We recallF[16] := F[2][w] wherew? + w + 1 = 0. Also recall that

L(19Q) = (La,y, 2% zy, %, 2°, 2y, ay?, o 2t 2Py, a2, oy

By the example following Remark 6.3.24. we haker (Cqo (B, 19Q)) = 9. Thereforel = 4 errors can
be corrected. We consider the- g = 10 by 10 syndrome matrixs.

Assume we know only + e for somec € Cq(B, 19Q)). Consider the case where

e=(0,1,w,0,0,0,0,0,0,0,0,0,0,0,0, w, w?)

For convenience, we index the functions by their ordeP aand writep,;+5; = 'y’ for 4i + 5j < 19
noting that the representation is unique. Also/lgt := ¢;p; - e and the(i, j)th position ofS refers to
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the position that; ; is located, instead of the position situated inttherow and;jth column. We have

W W wt W wd W w0 w? wil w
W W wd w0 w?  wll w3 13 w? Wb
vt oW W W wl w wl3 w? WS hss
w w® w? wB® W W hgia hsis  hsia hsis
g wd w?  wHt wB W w®  hoia  hois hoia  hois
T 11 1
w' o w w w®  w hioao hioiz hioas hiois hioas
10 .13 13
w o w w hi2g hizg hizio hizi2 hi2iz hizia hizas
9 .1 9
w? w3 w” hizg hizg hizi0 hizi2 Rz hizia hisas
11 9 6
w w w’  hiag hiag hisio hianz hiaiz hiaia hias
6
w  w’  hiss hisg hisg hisio hisi2 hisis hisia hisis

where the values not computable by the Syndrome Lemma are shoyn'sslLet Rg = (r; ;). We
compute the; ;'s where we can and we have

2 3 riag Ti49 T14,10 T14,12 714,13 714,14 T14,15

1 1 1 1 1 1

1 2 2 2 2 2 2

1 2 3 3 3 3 3 3 3 515

1 2 3 3 3 3 rg12  Trg13 7814 T815
Rs = 12 3 3 4 4 r912  T913 T914 1915

12 3 3 4 7rio10 710,12 T10,13 710,14 710,15

1 2 3 7reg m29 T2l Ti2,12 Ti12,13 T12,14 T12,15

12 3 rizsg 7139 71310 713,12 71313 71314 113,15

1

1

2 155 T158 T159 T1510 71512 715,13 715,14 T15,15

Although we do not yet know the values bf 15 or his 5, we can deduce that 15 = 3 = r155. We

see that(8, 12), (10, 10), (12, 8) are the only candidates. Since the matrix is symmetfic]2) and

(12, 8) must produce the same vote, and since there are a total of only three votes, they must be correct
candidates. We find an linear row relationSag <19, by solving for thew;’s in the following linear

system

’LU8 ’LU9 ’LU4 w5 U}S ’LU7
(Oq s ag) W W wd w® w® w!l :<w5 w0 w? w3 w3 w9>
'UJ4 'UJ3 'UJ7 U)g wll w

One solution iy, az, a3) = (w?, w’,0). Therefore, we have

hs.1a = w?w!® + wlw!d = w' 4 w? = wh + wd = Wb
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We havehg 12 = x° e = hi2,8, and recall that the values 6f 15, hi55 andhig 19 can be calculated
usinghsg 12. Indeed,

hsis = hiss = h1o10 = y* e = (2° + y) - e = hg 12 + ho 5 = w® + w* = w®

Updating the syndrome matrix and the rank matrix gives

8

9

4

3

7

10

11

w w w w w w w w w w
W W wd w®  w?  wl wBd W w?  wb
ot ot W W o' w w® W Wb W
w’ w'® W w® W w? w® hgiz hsia hsis
w? w? w w® w? w® hgie hois hois  hos
w'ow w w? W W’ higae Rz hioaa hioas
w'® W W higg higg hizio hizaz hiziz hizia hizis
w? w'3 w hizg hizg Mz Pz hiziz hizis hizis
wh w?  wS hiag hiag hisgo sz hiaiz hiaas hiaas
w o wS w® hiss hisy hisio hisiz hisiz hisia hasas
and

111 1 1 1 1

1 2 2 2 2 2 2 2

1 2 3 3 3 3 3 3

1 2 3 3 3 3 3 78,13 78,14 78,15

Re— 1 2 3 3 4 4 r912 7913 T914 T915

1 2 3 3 4 4 ripa12 710,13 T10,14 710,15

1 2 3 3 7r29 7m210 712,12 T12,13 Ti2,14 T12,15

1 2 3 738 7139 713,10 713,12 T13,13 T13,14 T13,15

1 2 3 ruug 7r49 71400 71412 T1413 714,14 T14,15

1 2 3 rs8 Ti59 7Ti510 71512 71513 71514 T1515

From Rgs we can see thaf, 13) and (13, 8) are the candidates and so they are both true candidates,
since they produce the same vote and the number of correct votes is in the majority. Again by looking

for row relations, we get

and

hg 13 = w9h0,13 + w7h4,13 —wt+w=w

ho12 = (zy x 2°) - e = (2? x 2%y) - e = hg13 = w'!

11



We update the table

S

g

g

g

S

g

S

g

g

g

S

S

S

S

S

g
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g

g g & & g €

S
—_

h13,9
his9
his.,9

ST

> €

g €
[=2)

w5

hi2,10
h13,10
hi4,10

his,10

h1o,12
hi2.12
h13,12
hia,12

his,12

Continuing in this way, we get all the required syndromes

g §E 8 g8 8 8 & &
© 5 N w o ok~ o

S»—l

w

w?
w®
w3
10
w?
11
13
'3
9

w
w
w
w

w
w()

Let ¢; be thesth column ofS

From which we can deduce that

w4 U)5
W w0
w7 w9
w9 w13
,wll w13
w U)g
wB W
w?  wll
w6 1U2
w5 w
. We see that

3

& & &
- ©

S
3

S
%

S
o

g
©

his.9

7

g g

o €

€ € & g
(=)

w?

his10
his,10

hi2,12
hi3,12
hia,12

his,12

wgcl + w702 +c4 =0

h10,13
hi2,13
h13,13
hia,13

his,13

p=w +w'z+a=(z+1)(z+w’)

11

w

w
hg,14
hg 14
h10,14
hi1214
h13,14
hia,14

his,14

w

w
hg,15
ho 15
hio,15
hi2,15
hi3,15
hi4,15

his,15

g

g €
[SECY

S

ho 15
h10,15
hi2,15
hi3,15
hi415
his,15

69

is an error locator ok. The zeroes ob are P, P, P3, Py, P13, P14, P15 and Pig. We see thaty €

L(8@Q), and

d(Ca(B,19Q)) > drr(Ca(B,19Q)) = 9 > d(8Q)
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Therefore by Corollary 5.2.10 the errorword is the unique solution to the following linear system

1 1 1 1 1 1 1 1 w®
1 1 1 1w w W w w?
w o w wt Wt w W owt Wl w?
1 1 1 1w W oW W el w®
w w?: wr o wd wl® Wl W w2 es w3
w? wt Wt ow w? owt W w es w’
1 1 1 1 w'2 w!2 w2 2 e wl0
w o w?: owt Wl wt Wb W’ wl! €13 | w®
w2 owt W w w' wB w? W' 14 wll
w3 owb w2 w? wd Wb w'? w? e1s w
1 1 1 1wl wh W Wb €16 wl3
w o w: wt wd w® w4 w W Mk
w? wt wd w W W W'l w? w?
w3 owb w2 w? w? 1 Wb wd wb

which has the unique solutian = 1, e3 = w, e15 = w, e1g = w? ande; = 0 for i not equal t, 3, 15
or 16 as given.



