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1 Introduction I (08/18)

N,Z,Q,R,C denote natural numbers, integers, rational numbers, real numbers and com-
plex numbers respectively.

For two sets A, B, A C B means A is a subset of B, and A C B means A is a proper
subset of B.

We assume every ring R is commutative with a 1, unless otherwise indicated. S C R
is a subring if: 1) S is closed under multiplication and addition; 2) S, R have the same
multiplicative identity. R* = R* = group of unity of R. € R is a unit if 3 y such that
rzy = 1.

A subset of a ring I C R is an ideal if: 1) it is closed under addition and scalar
multiplication by R; 2) I contains 0.

Let A, B,C be R—modules, a sequence of R—module homomorphism

A-fsp_95¢

is exact if imf = kerf. The diagram

B
f\
h
A—>C

commutes if h =go f.

For two groups H C G, the index [G : H] is the number of cosets in G/H. For two
fields K C L, (L : K) is the degree of L/K, which is the dimension of L as a K-vector
space.

Z[z] is the ring of polynomials in one indeterminate x with coefficients in Z, i.e.,
Zlz] = {p(x) = coa” + c1xp_1+ -+ ¢y : co,C1, - ,¢n € Z}. (Z can be replaced by any
ring R.)

Definition 1.1. A complex number z € C is an algebraic number if there exists a poly-
nomial p(x) € Zlz],p(z) # 0, such that p(z) = 0. An algebraic integer is an algebraic
number z such that there is a monic polynomial p(z) € Z[z| with p(z) = 0.

Remark 1.2. A complex number is transcendental if it is not algebraic, for example, e, .
€™ are transcendental, which follows from the Gelfond-Schneider theorem (which states
that if a and b are algebraic numbers with a # 0,1 and b is not a rational number, then

a® is transcentental) since €™ = (—1)7%,

The structure of algebraic integers allows one to prove things about ordinary integers.

Theorem 1.3 (Fermat’s Two Square Theorem (Lagrange)). An odd prime p = x2 + y?
forx,y € Z iff p=1 (mod 4).



Proof. (=) Assume p = 2% + 2, z,y € Z. Notice that 2> = 0 or 1 (mod 4), hence
p=a2+32=0o0r1or2 (mod4). But pis an odd prime, hence p =1 (mod 4).

(«) Assume p = 1 (mod 4). F, = Z/pZ is a finite field of p elements, and F, is a
cyclic group of order p —1 = 0 (mod 4). So F, has an element of order 4. That is to
say, there exists an integer m € Z/pZ such that m* = 1 (mod p), and m? # 1 (mod p).
Hence m? = —1 (mod p). Then p|m? + 1 = (m + i)(m — i) in Z[i]. Notice that Z][i] is an
Euclidean domain with norm N(x + iy) = 22 + y2. If p is a prime in Z[i], then p|m + i
or plm — i. If pl/m + i or p|m — i, then p divides both (suppose m + i = p(x + iy), then
m — i = p(x — iy). The reverse is also true). Then p|(m + i) — (m — i) = 2i. But p is an
odd prime, so p > 3, hence N(p) > 9 while N(2¢) = 2i(—2i) = 4. This is a contradiction.
So p is not prime in Z[i], hence p = (z + iy) (2’ + iy/) where x + iy, 2’ + iy are not units.
Then N(p) = p? = (22 + y2)(2/* + /%), hence p = 22 + % = /% + ¢/°. O

There are more examples, such as primes of p = 2 — 242, p = z? + 6y°.

2 Introduction IT (08/20)
Theorem 2.1. An odd prime p = x> — 2y? for x,y € Z iff p= +1 (mod 8).
To prove this theorem, we first recall the Law of Quadratic Reciprocity.

Theorem 2.2 (Law of Quadratic Reciprocity). For odd prime p,

, ifpla
<> =41, ifa=m? (mod p)
—1, ifa#Zm? (mod p)

s the Legendre symbol. Then
<—1)_ I, ifp=1 (mod4)
p) |-1, #p=3 (mod4)’
<2> R if p=+1 (mod 8)
p) |-1, ifp=+3 (mod8)’
If p,q are odd primes, then

P\ _ (%)v ifporg=1 (mod 4)
<q> —(,%), ifp=q=3 (mod4)

Now we prove Theorem



Proof. (=) Suppose p = z? — 2y? for z,y € Z is an odd prime. For x € Z, 2> = 0,1,4
(mod 8). Since p is odd, 2> = 1 (mod 8). Hence, p = 22 —2y> = 1 — 2 {0,1,4}
(mod 8) =1,—1 (mod 8).

(<) Suppose p = £1 (mod 8). (In Fermat’s Two Square Theorem, when p = 1
(mod 4), we first show there is an integer m such that m? = —1 (mod p)) Here we have
to show that there is an integer m such that m? = 2 (mod p). This follows from the
Law of Quadratic Reciprocity. Hence, p/m? — 2 = (m — v2)(m + v/2) in Z[V2]. If p
is prime in Z[v/2], then p|m — v/2 or p|m + v/2. By conjugation, then p divides both
m — /2 and m + /2. Then p|(m + v2) — (m — v/2) = 2v/2. Then N(p) = p? divides
N(2v/2) = (2v/2) - (—2v/2) = —8. This contradiction proves that p is not prime in Z[v/2].
Z[V2] is a UFD, so p = (x + v2y)(2’ + v/2y') for some nonunits. By taking norm, we
get p? = (22 — 2y2)(2’* — 2y/?). Note that x + /2y is a unit iff 22 — 2y2 = +1. Since
z + /2y, 2’ + /2y are nonunits, we have 22 — 2y? = p or —p. If 22 — 2y% = —p, replace
242y by (2+v2y)(1+V2) = (x+2y) + (v +y) V2, then we get N((z+v2y)(1+V2)) =
(2% = 2y%) - (1 = 2) = —(2® - 29°) = p. O

Remark 2.3. 22 —2y? = +1 is true if and only if x+/2y = (1 ++/2)" for some n € Z.

3 Introduction IIT (08/22)

Next question: which primes are of the form p = z? + 6y2?
Theorem 3.1. An odd prime p = x> + 6y> for x,y € Z iff p=1,7 (mod 24).

Proof. (=) If p = 22 +6y?2, then 22 = —69? (mod p), hence —6 = m? (mod p) since z,y #
0 (mod p). Therefore, (_76) = 1 since (%) = (%)(%) (residue symbol is a homomorphism
(Z/pZ)* — {£1}). The squares form a subgroup H in G = (Z/pZ)* of index 2. G/H =

{H,zH} where z is any non-square, it has order 2), then we have (_76) = (_71) (2)-(3).

We have v
(3) _ {(g) ifp=1 (mod 4)
D —(5)ifp=3 (mod 4)

lifp=1 (mod 3)
(p)_{—1§p52 (mod 3).

3

(Reference for this formula: Hardy and Wright, Introduction to the Theory of Numbers).
Moreover, by Quadratic Reciprocity Law,

<1>_ lifp=1 (mod 4)
p) |-1ifp=3 (mod4).



&p=+1 (mod8),p=1 (mod3)orp==+3 (mod8),p=2 (mod 3)

The Chinese Remainder Theorem implies

(—)=1ep=15"711 (mod 24).
p

(<) Conversely, if p = 1,5,7,11 (mod 24), then Im such that m? = —6 (mod p), so
plm? + 6 = (m + v/—6)(m — v/—6). Same proof as before shows that p is not a prime in
Z[/—6]. Z[/—6] is not a UFD. However, the ideals in Z[v/—6] have unique factorization
as a product of prime ideals. Every p in Z has a prime ideal factorization in Z[v/—6]:
(p) is prime or (p) = pp. (p) = pp happens for p = 1,5,7,11 (mod 24). In addition,
p = (z + yv/—6) is a principal ideal iff p=1,7 (mod 24). O

More generally, for an algebraic number field K/Q, Ok is the set of algebraic integers
in K. We say two ideals a,b C Ok are equivalent if there exists a, f € Og\{0} such that

aa = Sb.

Under multiplication ab of ideals, the equivalence classes form a group, called the class
group of K. a is principal iff a ~ (1) = Og. The class group Ck is always a finitely
generated abelian group, its size is the class number of K, denoted as hg.

A big open question is that there exists infinitely many d such that Q(v/d) has class
number 1.

4 Introduction IV (08/25)

The Riemann zeta function is defined as

1
(s) =) —

n=1 n
where s is a complex variable. It converges locally uniformly for Re(s) > 0. It has
a meromorphic continution to the whole complex plane C which is holomorphic except
for a single pole at s = 1 with residue Res,—1((s) = 1. If I(s) = [;°¢*"te " dt, then

A(s) = ngf(g)g“(s) satisfies the functional equation

A(l —s5) = A(s).



It has an Euler product expansion

primes p

By taking logarithms and a lot of work, we get a formula (Von Mangoldt’s Prime Power
Counting Formula):

Z (logp) =2 — Z xp—cl(o)—;log(l—x%)

primes p,m>1,pMm<x ¢(p)=0,0<Re(p)<1 P C(O)

for x > 0.
All the zeroes p of ((s) are either

p:_27_47_67"'

or in the critical strip 0 < Re(p) < 1. The Prime Number Theorem

w(x)Zan(x):/ml:é)

2

was derived by proving all the nontrivial zeroes are in 0 < Re(p) < 1. The Riemann
Hypothesis is that all nontrivial zeroes have Re(p) = % Riemann based this on detailed
numerical calculations which were uncovered only after nearly a century after his paper
appeared.

For a complex variable s, the Dedekind zeta function is

ws =[] a-@p)!

prime ideals p in Ok

where Np = [Ok : p] is the absolute norm of ideal p.
Ck (s) is holomorphic at all s except for s = 1. Moreover,

. 2" (2m)2hk R
lim(s — 1)Cx(s) = (27) [i K
s—1 wK|dK‘2

where ry is the number of real embeddings K < R, ro is the number of conjugate pairs
of embeddings K <— C which are not real, dx is the discriminant of K (measurement of
size of Ok), Rk is the regulator of K (measurement of size of unit group Ux = OF;), wi
is the number of x € K with 2" = 1 for some n. This formula gives an effective numerical
procedure for calculating hg, that is used in number theory software.



5 Group Rings, Field Algebras, Tensor Products (08/27)

Definition 5.1. Let G be a group and R a commutative ring with identity. The group

ring R[G] is the set of all formal finite sums > . x4g with each z, € R.

Define addition by

(Z ng) + (Z ygg) = Z (g +yg) g

and multiplication by

(X w09) (Zws) = X2 X momnlon) = 3 (z y> g

geG heG geG \heG
One can show that R[G] is a ring.

Example 5.2. For the quaternion group
Qs = {1, +i, £j, £k} where ij = k = —ji,i? = j% = —1,

we have the group algebra R[Qg] which is an 8-dimensional vector space over R. It has a
subgroup H of dimension 4, which is the kernel of the linear map

R[Qs] — R[Qs]
g q+(—1)g

where —1 € Qg. H is a 4-dimensional division algebra over R (Every ¢ € H,q # 0 is a
unit).

Definition 5.3. Let F be a field. An algebra A over a F'is a ring that contains F' in its
center (So za =az foralla € A,z € F).

A finite algebra over F' is a finite-dimensional vector space over F. A division algebra
is one in which every nonzero element is a unit.

If R= K is a field, K[G] is an algebra where K — K[G] by = — x - 1.

Suppose K/F' is a finite separable field extension, and suppose L/F' is any field exten-
sion. Then the tensor product K ®p L is an L-algebra.

Theorem 5.4. K @ L has dimension (K : F') over L. K ®p L is isomorphic to a direct
sum ®t_, L; where each L; is a field extension of L and (K : F) =>'_, (L; : L).

We need to review tensor product to prove the Theorem



Definition 5.5. For a commutative ring R, the tensor product M ®r N of two R-modules
M, N is the unique R-module such that every R-bilinear map

MxN3P
(m,n) = @(m,n)

(P is another R-module) factors through M ®p N:
MxNSM@pN S P
(m,n) —»ma®n
such that ¢ = h o ¢ where h is a linear map.

If K/F is a finite separable field extension, then K = F'(«) for a root « of an irreducible
polynomial f(x) € Flz]. Then K = F(«) = Flz]/(f(z)F[z]).

Proof of Theorem[5.4, Suppose we have a bilinear map ¢ : K x L — P where L is a field
extension of F. Define g : K x L — L[z]/(f(z)L[z]) by

9(p(z) + f(2)Flz], y) = yp(z) + f(z)L[z].
This is well-defined and bilinear. Then define h : L[z]/(f(z)L[z]) — P by
h(co + 1z + -+ emaz™ + f(z)L[z]) = p(1 + f(x)Flz],c0) + - - - + (@™ + f(z)F[z], cm).
This is F-linear and ¢ = h o g. By uniqueness that proves
K ®@p L = Llx]/(f(z)L[x]).

f(z) may factor in L[z] as a product of distinct coprime irreducible factors f(z) =
Hle fi(x) (since f is separable). Chinese Remainder Theorem implies that

Llz]/(f(w)L[a]) = @iz, L[2]/(fi(2)L]z])-

Since f; is irreducible, L; = L[z]/(fi;(x)L[z]) is a field. Since > deg(f;) = deg(f), we have
(K:F)=>(L;: L). O

Example 5.6. For d € Z, d is square-free, Q(\/&) Qg R = @gzlLi for extensions L;/R.
These can be R or C. Since S(L; : R) = (Q(v/d : Q)) = 2, these are two possibilities
R @ R or C. The former happens iff v/d € R.

10



6 More on Tensor Products, Polynomials (08/29)

Remark 6.1. Here is another application of tensor products. Consider the following
tensor product

ZIVd) @z (Z)72) = Z[Vd)/TZ]Vd).
Even though Z/TZ is a field, this tensor product is not always a field. For example, for
d =2, Z[\/2]/TZ]\/2] has zero divisors

(34+V2)3-V2)=7=0.

F[x] is a F-vector space with basis {1,z,22,---,}. We may define a unique linear
map D : F[z] — F[z] by D(z") = na™"!. D is not a ring homomorphism since D(ab) #
D(a)D(b).

Definition 6.2. A derivation on an algebra A over F' is a linear map d : A — A such
that d(ab) = d(a)b+ ad(b).

Remark 6.3. (i) The formal derivative D is a derivation. It suffices to check on basis
elements:

D(z™x") = D(z™)x"™ + 2™ D(x").
If char(F) = 0, then D(f) = f' = 0 if and only if f is constant. If char(F) = p,
D(>" anz™) = 3 apna™t =0 if and only if pjn or a,, = 0 if and only if f(z) = 3 bpa?” =

g(zP).
(ii) All the derivative of an algebra form a ring © (the theory of ©-modules).

Since F[z] is Euclidean and thus a UFD, then the greatest common divisor GCD(f, g) =
(f,g) is defined.

Theorem 6.4. The following statements are equivalent.

(i) f is separable.

(ii) f'(aj) # 0 for all roots aj of f.

(i) (f, ) = 1.

Proof. (i)=(ii) In a splitting field L/F, f(z) = c¢(x — a1) -+ (x — o) for ¢ # 0, a5 # a;
for ¢ # j, all ¢, a’s are in L. Then

f(z) = CZ H (z — ay).
k=1i=1,i£k

So f'(aj) = cHi;ﬁj(aj —a;) #0.

(ii)=(iii) If ¢ = (f, f') # 1, then g(cyj) = 0 for some root a; of f. Since g|f’, that
implies f/(c;) = 0, contrary to (ii).

(iii)=(i) Suppose f is not separable. Then o; = «; for some i # j. Then f =
(x — a;)%g(z) for some g(x). Then f'(x) = 2(x — a;)g(x) + (z — a;)%g' () is divisible by
z—ai, so (f, f') # 1. O

11



7 Discriminant, Separable Extensions (09/03)

Definition 7.1. Let f(z) = (z —a“!)--- (z — a’") be an irreducible polynomial of « over
F and E = F(a). Then the discriminant of f is defined as

Disc(f) = ] (a7 —a%)
1<i<j<n
n(n—1) !/ o1 !/ On
=)z - fi@”)- [ (@),
Corollary 7.2. f is separable iff Disc(f) # 0.

Remark 7.3. The Vandermonde determinant of Ty, Ts,--- , T, is

1o Tt
1 Ty - Tyt
V(Ty,-- ,Tp) =det |~ = I @-m).
- - : 1<i<j<n
1 7, - Trt

Hence, Disc(f) = V(a°t,---,a)2.
Definition 7.4. A field F is perfect if every irreducible polynomial f € F[z] is separable.

Theorem 7.5. F is perfect if either (i) char(F) =0 or (ii) char(F) = p and x — aP is
a field automorphism of F.

Proof. Suppose f(x) € F[z] is irreducible and monic. If f is not separable, then d = (f, f’)
is a nonconstant polynomial. Since d|f and f is irreducible and monic, we have d = f.
Then f|f’ and since deg(f’) < deg(f), this means f’ = 0 identically. That cannot happen
in characteristic 0, except f is a constant. Hence, if char(F) = 0, then F' is perfect. In
characteristic p, f(x) = g(aP) for some polynomial g(z). Since z — zP is an automorphism,
we can find a polynomial g;(z) such that

9(z?) = (q1(x))"
= (co+c12+ -+ )P
b+ AP + - cpa:lp

This contradicts the assumption that f is irreducible. O

For any field K and for an “indeterminant” T, the function field is the field of rational

functions
K(T) = {zgi 1p,q € K[T]}

where K[T7] is the set of polynomials in 7" over K.

12



Example 7.6 (Example of non-perfect field). If K is characteristic p, then K(7') is not
perfect.

Proof. We claim f(z) = 2P — T € K(T)[z] is irreducible and inseparable. Since f'(z) =
pzP~t —0 =0, (f,f) # 1, and so f is inseparable. Let F = K(T'), and let a be a root
of f in the algebraic closure F. Let E = F(a). Then (z — a)? = 2P —aoP = 2P — T. We
have to prove (x — )" € Flz] and r > 1 iff r = p. If (x — )" € Flx], then (—a)" (where
x=0)isin F. Soa”" € Fand o € F. If 1 <r < p, then (r,p) =1 and so ru +pv =1
for integers u,v. Then a = o™ *P? = (a")%(a?)” € F. So

WT)? _ ha(T7)
g(Ty qu(T?)’
Hence T'g1(TP) = hi(T?), but this is impossible in K[T]. O

T:O[p:

Suppose E/F is a finite extension of fields. E/F is separable iff for any embedding
o : F — L where L is algebraic closure of F, there exists exactly (E : F') distinct
embeddings o; : E < L such that o;|p = 0.

Remark 7.7. In general, there are < (E : F') such embeddings.
Theorem 7.8. For F C E C H, H/F is separable < both E/F, H/E are separable.

Theorem 7.9. F(a)/F is separable iff the minimal irreducible polynomial mpq(x) satis-
fied by « has distinct roots in an algebraic closure of F'.

Theorem 7.10 (Primitive Element Theorem). Suppose E/F is a finite extension of fields,
then there ezists a € E such that E = F(«) iff there are at most finitely many fields K
with F C K C E. If E/F is separable, then E = F(«) for some o € E.

8 Trace and Norm, Commutative F-algebras (09/05)

Let E/F be separable finite extension, L algebraic closure of F'. The distinct embedding
of E < Lover F are 01, ,op, n=[E: F|. If (u1,--- ,uy,) is a basis of E over F', define

V*(ut, - up) = det([uf'])1<ij<n-

Theorem 8.1.
V*(uy, -+ ,up) #0.

Proof. 1f det([uj']) = 0, then the columns are linearly dependent. So there is a T =
Iy
i

# 0 (l; € L) such that

In



Then for each 1,

n
Z u?j lj =0.
j=1

For any ¢y, --- ,¢c, € F,
n n
o
C; uijlj =0.
i=1 j=1
Hence,
n n
E ( E Ciui)gjlj =0
j=1 =1

where 371 cju; is any element of E. Hence, >3, (@)%l; = 0 for all a € E. This

contradicts linear independence of characters. ]
If (wy,--- ,wy,) is another basis of E over F, then
n
w; = Z Cijuj
j=1

for some ¢;; € F' and det [¢;;] # 0 since this is invertible. Then

[wi*] = [eij][u7*].

Therefore,
V*(w, -+ wy) = det([eg )V (ur, -+ up).

Example 8.2. If £ = F(«), « is separable over F, g; € Gal(E/F') and we take the basis
to be (1,a,---,a™ 1), then

V¥(1,a,--- 0" ) =V(a%, -+, a’") (Vandermonde determinant)
= H (% — %)
1<i<j<n
# 0.

Definition 8.3. Trace and norm are defined as
n
tp/p(e) =) a,
i=1

NE/F(Oé) = HO&Ui.
i=1

14



Both of trace and norm are in F. If H is the Galois closure of E over F (smallest
Galois extension over F' containing E. If £ = F(a),H = F(a,---,a%")), Gal(H/F)
fixes tp/p(a), Ng/p(a). Hence they are in F.

For a basis (uy,--- ,u,) of E/F,

tE/F ulu] Zuak Ok _ ak][u?k]T)ij )

So
[ty r(uivg)] = [uf*][ug*]"

det[tp, p(uiuj)] = (V*(uq, - un))? =d(uy, - up) € F.

9

nfl) —

If f(x) is minimal polynomial of « such that £ = F(«), then d(1,a,- - ,«
Disc(f).

Theorem 8.4 (Tower Laws). If K C F C E are separable finite extension, then
tg/k(a) =tp/k(tg/r(a)),

Ng/k(a) = Np/g(Ng/p(a)).

Suppose A is a finite commutative F-algebra. Each a € A defines an F-linear map

lo : A— A by l.(b) = ab.

Suppose (v1,- -+ ,v,) is a basis of A over F. Then
av; = Z cijvj
for some ¢;; € F. So [c;;] is a matrix of [, relative to (vi,--- ,vy).
Trace(l Zcu = tA/F

Norm(l,) = det[c;j] = Na/r(a).

If A = F is a separable field extension of F' of degree n and E = F(«), then this agrees
with previous definitions.

15



9 Idempotent and Radical (09/08)

Definition 9.1. An idempotent e € A is an element satisfying e = e.

Remark 9.2. (i) e = 0,1 are both idempotent.
(ii) If €2 = e, then

(1—e?=1-2+e’=1-2+e=1—c.

Therefore, 1 — e is also an idempotent. Also,

2—ec—e=0.

e(l—e)=e—ce
So e, 1 — e are orthogonal idempotents.

Definition 9.3. An idempotent e is primitive if e = € + €’ for two idempotents €', e”
with €’e’ = 0 implies ¢/ = 0 or e’ = 0.

Remark 9.4. If e # 0 is an idempotent, then Ae is a subalgebra of A since (ae)(be) =
(ab)e? = (ab)e. Ae is a vector space over F, and 1 < dimp Ae < dimp A.

Theorem 9.5. There exists a maximal finite collection of nonzero orthogonal idempotents
e1, - ,en withl=e; +---+e, and then A = @}, Ae;.

Remark 9.6. (i) e is primitive iff Ae is indecomposible, meaning Ae cannot be written
as B & C for nonzero algebras B, C.
(ii) If A = @ | A; =[] A; where A; = Ae;, then for ¢ = (c1,--- ,cn) € A, we have

tasr(c) = ZtAi/F(C’i)v
=1

Nyp(c) = H Ny, r(ci)-
i—1

Definition 9.7. The radical of A is the set
Rad(A) ={a € A:a" =0 for some n > 1}.
Theorem 9.8. Rad(A) is an ideal of A.
Proof. Clearly 0 € Rad(A). If ™ = 0, then for any ¢ € A,
(ca)” = c"a" = 0.

If a” =0 and b = 0, then
(a+ )" = 0.
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Theorem 9.9. If A= A/Rad(A), then Rad(A) = 0.

Proof. Suppose (a + Rad(A))" = 0 in A, then a" € Rad(4). Then ™ = (a™)™ = 0 for
some integer m > 1 and so a € Rad(A). O

Theorem 9.10. If A is an indecomposible finite F-algebra and Rad(A) = 0, then A is a
field.

Theorem 9.11. Suppose A is a finite commutative F-algebra, then the following (i) and
(ii) are equivalent:

(i) Rad(A) = 0.

(ii) A = @'_| A; where each A; is a field extension of F.

Moreover, if F is perfect, then (i), (ii) are equivalent to (iii), (iv):

(iii) d(v1,- -+ ,vn) # 0 for some basis vy, -- ,v, of A over F.

() d(vi, -+ ,vp) # 0 for all basis vi,--- ,v, of A over F.

Theorem 9.12. t4,p(a) = 0 if a is nilpotent.

Proof. Let l, : A — A be the linear map [, (b) = ab. If vy, -+ ,v, is a basis of A over F,
then av; = Y ;" | ¢ijvj for ¢;j € F. So [c;;] is the matrix of I, with respect to vy,--- ,vp.
Let p(x) = det(xl, — [¢;5]) = 2™ + wiz™ ! + .-+ + u,. By Cayley-Hamilton Theorem,
A = [c;j] satisfies p(A) = A" + uy A"t + - +u,l = 0. Since a™ = 0 for some m > 1,
then [;'(b) = 0 for all b, and [c;;|™ = 0. Also, all the eigenvalues of [c;;] are 0 in some
algebraic closure I of F, we have

n

det(zI, — [ei;]) = [J(z — Xo) = 2™
=1

Since t4/p(a) is the coefficient of 2"~ in det(xI, — [c;;]), we have t4,r(a) = 0. O

10 Integrality (09/10)

Theorem 10.1. For an integral domain o and an extension ring O of 0, a € O is integral
over o iff o[a] is a finitely generated o—module.

Theorem 10.2. a € O is integral over o iff a € R C O where R is a subring of O
containing o and is a finitely generated o—module.

Proof. (=) By Theorem[10.1], R = o[a] is a subring that works.
(<) Suppose R = (11, ,rp)0 =710+ -+ - + r,0. Then

n
ar; = E Cl'jT‘j
Jj=1
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for some ¢;; € 0. Then p(z) = det (z1, — [¢;;]) = 2™ + terms of smaller degree € o[z] (so
it is monic). By Cayley-Hamilton Theorem, p([c;;]) = 0. This implies that p(a)r; = 0 for
all i (since ar; = [e;5][rj]j_;). Some r; # 0 because 1 € R. So p(a) = 0. So a is integral
over o. Ul

Definition 10.3. The integral closure of 0 in O is the set of a which are integral over o.

Definition 10.4. o is integrally closed if it equals to its integral closure in its field of
fractions.

Example 10.5. Z[v/—3] is not integrally closed. a = 71“2/?3 lies in the field of fractions
Q[v-3], and is integral (a? — a + 1 = 0) over Z[/—3], but it is not in Z[/—3].

Example 10.6. 0 = F[T? T3] = {co + c2T? + c3T3 + - - - + ¢, T"|co, 2, -+ ,¢n € F} for
any field F' is not integrally closed. Its field of fractions is K = {%W(T),q(T) € o}.

T3

a = 77 is integral over o (since a> — 7% = 0), but @ is not in o.

Let o be an integral domain which is integrally closed, K the field of fractions, E
a separable finite extension of K of degree n, L is some algebraic closure of E. Let
01,09,++ ,0p : B — L be the distinct embeddings over K.

Proposition 10.7. If a € E is integral over o, then so is a® for 1 < j <mn.

Proof. Suppose a satisfies a monic polynomial p(x) € o[z], so p(a) = 0 and 0 = (p(a))?’ =
p(a”) because coefficients of p(x) are in 0 C K. Then p(z) = [[j_; (v — a%). so a% is
integral over o. O

11 Noetherian Rings and Modules (09/12)

Definition 11.1. An o-module M is Noetherian if it satisfies the following equivalent
conditions:

(i) All o-submodules of M are finitely generated;

(ii) (Ascending Chain Condition) Every strictly increasing o-submodules Ny C Ny C -+ C
M is finite;

(iii) Every nonempty family of o-submodules of M has a maximal element.

Remark 11.2. (i) An o-module M is Artinian module if it satisfies Descending Chain
Condition.

(ii) o is a Noetherian ring if it is a Noetherian o-module (< Every ideal of o is finitely-
generated).

(iii) Every finitely-generated module over a Noetherian ring is a Noetherian module.

Theorem 11.3. If0 - M — N — P — 0 is an exact sequence of o-modules, then N s
Noetherian iff M and P are Noetherian.
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Theorem 11.4. If 0 is a Noetherian ring and M is a finitely-generated o-module, then
M is a Noetherian o-module.

Theorem 11.5. If ¢ : 0 — R is a surjective ring homomorphism and o is Noetherian,
then R is Noetherian.

Theorem 11.6 (Hilbert Basis Theorem). If o is Noetherian, then o[X] is Noetherian.

Proof. Let a be an ideal in o[x]. Let
b={ceco3f(z)=ca"+c1z" '+ +¢, € a for some n}.

b is an ideal in 0, hence it is finitely generated, and so b = (by,--- ,b,)0. Let f1,---, fn €a
be such that the leading coefficient of f; is b;. Let d = max(deg(f;)). Let

¢c={fealf=00r deg(f) <d}.

Thus, ¢ C (1,z,---,2%0 is a submodule of a finitely generated module over o. So ¢
is finitely generated with generators gi, -, ¢m. Then we claim (fi, -+, fn, 91, 9m)
generate a. We use induction on k = deg(f(x)) for f € a. If £k < d, f is a linear
combination of g1, ,gm. If k > d, let f(z) = ca® + c;2* 1 4+ --- + ¢;. Then ¢ € b and
so ¢ =aiby + - -+ + apb, where a; € 0. Then

f(@) —ayfr(z)ak—deef) — ... g £ (x)aFmdeelfn)
has degree < k. By induction, a is generated by (f1, -, fn, 91, ,Im)- O

Corollary 11.7. If o is Noetherian, then o[X1, Xo,- -+, X,,] is Noetherian.

12 Dedekind Domains I (09/15)

An integral domain o is not usually a UFD. But under slightly some general conditions o
will have unique factorization of ideals into products of prime ideals.

Definition 12.1. o is a Dedekind domain if
(i) o is Noetherian;

(ii) o is integrally closed;

(iii) All prime ideals p # 0 are maximal.

Example 12.2. Here is an example of a ring where we have a prime ideal # 0 which is
not maximal. Let K be a field, R = K[X,Y],p=RX = (X)R,m= (X,Y)R= XR+YR,
then 0 Cp Cm C R.

Definition 12.3. The Krull dimension of an integral domain o is the maximal [ such that
there is a sequence of prime ideals po, C p; € --- C prin o.
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Theorem 12.4. Every nonzero ideal a of a Dedekind domain may be written as a product
of prime ideals a = p,p, - - - pn which is unique up to rearrangement.

Theorem 12.5. Any PID is a Dedekind Domain.

Proof. Suppose o0 is a PID. Then o is Noetherian, since every ideal is generated by 1
element.
Let K be the field of fractions of 0, and suppose « € K is integral over 0. Then

(12.1) Q"+ ep1a" M b ejat g =0

for ¢; € R. Suppose a = a/b for a,b € K and a,b have no non-unit common divisor.
Substituting a with a/b in equation ((12.1)) and multiplying each side by b", we get

(12.2) a’ + cp_1a" 0+ cab™ T 4 egb™ =0

If b is a non-unit, we can always find a prime element p which is a divisor of b since o is a
PID, and hence a UFD. From equation , we must have p also divides a since p divides
the rest terms of the equation . Then p divides both a and b. This contradiction
shows that b is a unit. Hence av = a/b is actually in 0. Therefore, o is integrally closed.
Suppose (p) € (m) C 0. Then p = max for some x € 0,2 ¢ 0* (z is not a unit). Since
(m) C o, m¢o*. If m € (p), then m = pu, so p = ma = pux. Therefore, uz = 1, and so
x € 0*. But z € 0%, so m & (p). Then mx € (p) and m, z are not in (p). That contradicts
(p) being a prime ideal. O

Remark 12.6. The prime ideal factorization theorem will prove that a PID is a UFD.

Definition 12.7. Let o be an integral domain, K its field of fractions. Then an o-
submodule b C K is a fractional ideal if there exists ¢ € K* and a nonzero ideal a C o
such that b = ca.

Theorem 12.8 (D1). Suppose o is Noetherian and integrally closed, and a is any fractional
ideal of o, then
{z € K|za C a} =o.

Proof. Clearly o C {z € K|xa C a}, since a is fractional ideal of 0. For the reverse

inclusion, since o is Noetherian, a = (c1, ¢, ,¢p)0. If ba C a, then be; = E;”:l a;jc; for
some a;; € 0. Then by Cayley-Hamilton Theorem b satisfies det(zl,, — [a;;]) = 0. This is
a monic polynomial in ofz]. Since o is integrally closed, b € o. O

Remark 12.9. If 0 is Noetherian, a C K is a fractional ideal if and only if it is a finitely
generated o-submodule.

Theorem 12.10 (D2). Suppose all the prime ideals of an integral domain o are mazximal,
then if p D p1---py, for nonzero prime ideals p,p1,--- , Py, then p = p; for some j.
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Proof. By induction on n. For n =1, if p D p1, then since prime ideals are maximal, we
have p = p;.

Assume the theorem is true for n — 1. Suppose p D pi---p, and p # p,. Then
there exists ¢ € p,,\p. (Again since prime ideals are maximal) Let b € p;---p,—1. Then
bc € p1---pn, C p. Since ¢ € p, we must have b € p, since p is prime. Thus p D p1 -+ Pn_1
and by the induction assumption p = p; for some 1 < j <n — 1. O

Let a be a (nonzero) fractional ideal of 0. Define the inverse of a fractional ideal to be

a ! ={r € K|zaCo}.

1

Then a~! is clearly an o-submodule of K. If & € a and a # 0, then a~'a = b C 0 is an

ideal of 0. So a~! = éb is a fractional ideal. Also aa™! C o.

def

For any fractional ideals a,b, ab = {3>'_ a;b;|a; € a,b; € b} is also a fractional ideal.

Definition 12.11. a is invertible iff aa=! = o.
Theorem 12.12. Fvery fractional ideal in a Dedekind domain o is invertible.
Remark 12.13. If o is a field, there are only two ideals: 0 and o.

Let S be the set of integral ideals a # 0 € o, such that there is a ¢ € K\o such that
ca C o. If 0 is not a field, there is an a # 0 such that a € 0\o*. Then 1 ¢ 0 and 1 (a0) = o.
So S # () because ao is in S. If o is Noetherian and not a field, S has a maximal element
m.

Theorem 12.14 (D3). Let o be a Dedekind domain and not a field. Then any mazimal
element m of S is an invertible prime ideal.

Proof. Suppose ab € m and a € o\m and b € 0. Consider m + a0 2 m. Since m C S,
Je € K\o such that em C o. Then ¢(m 4 a0) = em + cao. m + ao can not be in S
because m is maximal in S. So ca ¢ o. Now consider m + bo O m (bo C o). Then
ac(m + bo) = acm + c(ab)m C o (em € 0, ab € m). By maximality, m + bo is in S and
contains m and so m + bo = m. So b € m. That proves m is prime.

m is maximal by definition of Dedekind domain. Then mm™! is an ideal containing m
and so mm~! =m or mm~! = o. If mm~! = m, then by theorem that {z € K|zra C
a} = o then we’'d have m™! C 0. Since m C S, there is a ¢ € m~'\o. That contradiction

proves mm~ ! = o. O

13 Dedekind Domains IT (09/17)

Theorem 13.1 (D4). Let o be a Dedekind domain. A nonzero ideal a in o is invertible
iff a =my---m, for some invertible prime ideals my,--- ,m,.
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Proof. (<) Ideal multiplication is associative and commutative:
ab = ba, (ab)c = c(be).

Hence,

_1‘

(m] ! !

cm ) (my-my) = (mptmg) - (mptmy) = o
Thus, a=! =m; ' -m; ! satisfies a~la = o.

(=) Assume a # 0 is a proper invertible ideal. Then a C o\o*. Since a™" a = o, there
are ai, - ,ay € aand by, -+, b, € a~! such that a;b; +-- -+ anb, = 1. Some b; is not in
o (otherwise 1 € a). Thus a~! # o and o belongs to the family of ideals S. Then there is
a maximal m; in S such that a C my. Since m; is invertible by Theorem [12.14] we have
m;'a C o and a C m{'a. If m;'a = o, then my(m;'a) = a = my. Otherwise repeat the
process with the nonzero proper ideal ml_la to produce another my and so on. Then we
get a sequence

1

1mQ_IaC---Co.

acC ml_la cmy
Since o0 is Noetherian, this ascending sequence must terminate with a = mymg---m,.. [
Theorem 13.2 (D5). Every prime ideal p of a Dedekind domain is invertible.

Proof. Pick a € p\{0}. Then ao is invertible because (a0) "' = o and (ao)(a0)~! = 0. By

Theorem [I3.1] a0 = m; - --m, where my,--- , m, are invertible prime ideals. So p D ao =
my ---m,. So by Theorem [12.10, p = m; for some j. O

Theorem 13.3 (D6). Every nonzero ideal a in a Dedekind domain o0 is a product of prime
ideals a = py---pr.

Proof. 1f a = o, then we are donw with » = 1. If a C o, then a is contained in a maximal
(hence prime) ideal a C p; C 0. Then a C pl_la Co. If pl_la =0, then a = pl(pl_la) =p;.
Otherwise, repeat the process for a C pl_la C pl_lpz_la C ---. Since o is Noetherian, we
must have a = pips - - - p, at some point. O

Theorem 13.4 (D7). For every a # 0 in a Dedekind domain o, the prime ideal factor-
ization in Theorem [13.5 is unique up to rearrangement.

Proof. Suppose a = p1---p, = q1---qs for prime ideals p1,--- ,pr,q1---qs with » > 0
as small as possible. Then by Theorem [12.10] p; = q; for some j. Renumber so that
J = 1land p; = q;. Then by Theorem [13.2 pl_l(pl---pr) = ql_l(ql -+-(s) reduces to

p2---pr =q2---qs. That contradicts r being minimal. O
Corollary 13.5. In a Dedekind domain, every fractional ideal a can be uniquely written
as a = p{t---per for distinct prime ideals py,--- ,p, and nonzero integers ay,--- ,a, up to
rearrangement.
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14 Dedekind Domains III (09/19)
Example 14.1. Z[\/=5] is not a UFD. 6 can be written as

6=2-3=(1++v-5)(1—-+-5)
as ideals. All of these factors are irreducible.

Definition 14.2. Let o be a Dedekind domain. We say a|b if there is an ideal ¢ C o such
that b = ac.

Proposition 14.3. alb < a D b.

Definition 14.4. The greatest common divisor of two ideals a,b C o is the minimal ideal
¢ such that c|a and c|b.

Remark 14.5. ged(a,b) = a+b.

Definition 14.6. The least common multiple of two ideals a,b C o is the maximal ideal
m such that ajm and b|m.

Remark 14.7. lem(a,b) =anb.

Definition 14.8. a,b are relatively prime iff a+ b = o.

15 Chinese Remainder Theorem for Rings(09/22)

Theorem 15.1 (Chinese Remainder Theorem for Rings). Let R be a ring with 1. Let
ai,- -+, 0, be two-sided ideals in R such that a; 4+ a; = o for any ¢ # j. Then the map

R/(a1n---Nay) = [[ R/a
i=1
defined by
r+(aN---Nay) = (x+a)

1s an R-module isomorphism.

Proof. This map is clearly well-defined and a module homomorphism. It is injective since
if x € a; for all 4, then z € a; N---Na,. To prove surjectivity, we use induction on n, and
then it suffices to prove the theorem for n = 2 ideals. Since a1 + as = R, there are a1 € oy
and ag € ay such that a; +aa = 1. Suppose we are given (y; + a1,y2 +a2) € R/a; X R/as.
Let x = y2a1 + y1ae. Then

r=yoa1 +y1(l —a1) =y1 —y1a1 + y2a1 =y1  (mod a),
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and
v =1ya(l —az) +y1a2 = y2 — yoaz + yraz = y2 (mod a,).
For n > 2 assume the theorem is true for n — 1 ideals, since it is true for 2 ideals, we can
say
R/agn---Na, = (R/a;N---Nap_1) X R/ay

ifagN---Nap_1+a, = R. Since a; +a, = Rforl1 <i<n-—1, then u; +v; = 1 for
some u; € 0;,v; € ayp. S0 1 = (ug +v1)- - (up + vy) = wgua---u, + multiple of v’s €
alﬁ"'ﬂan—1+an- D

Theorem 15.2. For every proper prime ideal p in a Dedekind domain o, 0 2 p D p% D
p2 ...

Proof. The inequalities follow from unique factorization into prime ideals. O

Corollary 15.3. For any nonzero ideals a,b € o, there exists a € a such that aa™ +b = 0.

nj+1

Proof. Let b = p™ ---pJ™. For each j, suppose p] ' exactly divides a. Pick a; € pJ \p .
Pick @ = o (mod pnj“) for all j, by Chinese Remainder Theorem. Then « € p j] for
all j. Hence, a € Hj:1 p?j, then ao = (H?Zl p?j) is a product of primes q # any
p;j. Since o C a, ajao, and together with the assumption that p?j exactly divides a,

(awo)a™! = aa~! is a product of primes q # any p;. So aa™! is relatively prime to b, and

soaat+b=o0. UJ

Corollary 15.4. If a is a nonzero integral ideal in o Dedekind domain o and o« # 0 is in
a, there is an ' € a such that a = (a, ') = a0 + /o.

Proof. Take b = a~'a in Corollary Then there is an o’ € o such that o/a~'+aa™! =
0. Then (¢/,a) = a.

O

16 Valuation (09/24)

Definition 16.1. For a prime p and an ideal a # 0, we define the p-adic valuation of a
to be

vp(a) = exponent of p in the prime factorization of a.

Remark 16.2. Properties of valuation:
(1) vp(ab) = vp(a) + vp(b).

(i) If alb, then vp(a) < vp(b).

(iit) vp(a N b) = max{vy(a),vy(b)}.

(i) vy(a +b) = min{vy(a),vp(b)}.

(v) ve(aNb) +vy(a+b) =vy(a) + vy (b).
(vi)a+b=0< anb=ab.
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Example 16.3. In a noncommutative ring, we may have a +b = 0 but anb # ab. For
example, let R = R[X,Y] with XY # Y X be a noncommutative polynomial ring, let
a=(X),b=(XY +1),thena+b=0,anb# ab.

Definition 16.4. We can define an absolute value |- |, : K* — (0,00). Pick some number
¢ > 1. Define |af, = (@),

Remark 16.5. Properties of absolute value:
(Z) [aBly = lalp|Blp-
(i) o+ Blp < max(|aly, [Blp) < [aly + [Blp-

|- |p is a p-adic absolute value. Extend |- |, to |0], =0, |- |, defines a metric on K. The
completion of K relative to this metric is K, (the field of p-adic numbers).

Theorem 16.6. For a Dedekind domain o and a prime ideal p, 0/p is a field, and o/p =
p"/p" L for alln € 7.

Proof. Define an isomorphism
frofp—p"/pmth

Pick a € p"/p"*L. Define f(x + p) = azx + p"*! for all x € o.

It is well-defined: If z +p = 2’ +p, then z — 2’ € p. Then a - (z — 2’) € p" - p = p" L.
Therefore, f(z +p) = ax + p" Tt = az’ + p" ! = f(2’ +p).

It is injective: If az € p"™T!, then vy(az) > n + 1. On the other hand, vy(az) =
vp(a) + vp(x) = n+ vy(z). Therefore, vy(x) =1 and so = € p.

It is surjective: Since a € p™\p"*!, (a) = p"b where p t b. Then p + b = 0, and so
p" Tl 4 p"b = p™. For y € p", there exists z € 0 and a z € p"*! such that y = z + ax.
Then y + p"*t! = f(z +p). O

Theorem 16.7 (Chinese Remainder Theorem for Dedekind Domains). For an ideal a in
a Dedekind domain o with prime factorization a = py™* ---p"" where each p; is distinct.
Then o/a =T[;_ 0/p;”.

Definition 16.8. If K/Q is a finite extension, we will see 0/p is a finite field where o is
the ring of integers in K. Then we define absolute norm

Remark 16.9. N(a) =[o:a] =[];_; N(p;)™ for a=py"' - p.

17 Ideal Class Group in a Dedekind Domain (09/26)

Let I, be the group of fractional ideals a in the Dedekind domain o, P, be the subgroup
of principal ideals (a) = ao, Cl(o) = I,\P, be the class group. Then 1 — 0* — K* —
I, — Cl(0) — 1 is exact.

25



Corollary 17.1. Cl(o) =1 if and only if o is a PID.

If L is a finite separable extension of K, o0 is the ring of integers of K, and Oy, is the
integral closure of o in L, then for any ideal a C o, aQp, is an ideal in Op. aQOy, is called
the lift of a to Op,.

Theorem 17.2 (Principal Ideal Theorem (Furtwangler, 1929)). For any algebraic number
field K/Q, there is a finite extension L/K such that every ideal a in og lifts to a principal
ideal in Op. The smallest degree extension Hy with this property is uniquely determined,
it’s Galois over K, and Gal(H/K) = Cl(ox ). Hg is called the Hilbert Class Field of K.

Remark 17.3. A prime p = x? 4 6y? for some integers x,y iff (_76) =1 and for any
integers u,v such that plu? +6v?, the ideal p = (p,u++/—6v) is principal. It will turn out
that Cl(Q(v/—6)) = Ca. p is 1 in CI(Q(v/—6)) if and only if p=1,7 (mod 24).

18 Extensions of Dedekind Domain I (09/29)

Let o be a Dedekind domain, K be its field of fractions, L be a finite separable extension
of K, and Op, be the integral closure of o in L. Consider the trace

tL/K(x) = Z z°.

embeddings o of L into K

We have i, k() C o. This is because the embeddings o generate the Galois group of the
Galois closure N of L/K. ty/x(x) =, 7 is just permuted by applying any particular
0. So tp/k(z) is invariant under Gal(N/K). So t7/x(x) € K for all x € L. Each 27 is
an algebraic integer. So tr /x(r) € K N Of = o since o is integrally closed.

Definition 18.1. For any o-submodule X C L, the dual module of X is defined as
XP={ze Lity/k(ry) € o for ally € X}.

Remark 18.2. (i) (XD)D = X.
(ii) If X C Y, then YP c XP.
(iii) tr, )k (Or) C o implies that o 20;.

Proposition 18.3. Suppose {x1, -+ ,x,} is a basis of L/K. Let X = x10+ -+ + x,0 be
L, ifi=j
0, ifi#j.
Proof. We have a K-linear map L — K" defined by y + (tn/x (yxi))i—;. The kernel is 0
due to the fact that ¢y, is nonsingular < the embeddings are linear independent. Since

a free o-submodule of L. For every j, 3 y; € L with tyx(z:y;) = dij = {
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(L: K)=mn,dimg L =n = dimg(K™). Since the kernel is 0, the map is surjective. So
there is some y; such that

(tnyn(ziys)iy = €= | 1

Remark 18.4. {y1, - ,yn} is the dual basis.

Proposition 18.5. For X = z10 + -+ - + 2,0 with dual basis {y1, - ,yn}, we have
XP = {1y + -+ camlei € 0}
s a free module spanned by y1, -+ , Yn-

Proof. Suppose y = c1y1 + -+ + cpyn € L with ¢; € K. Then t /g (yx;) = ¢; € o for all
i. O

Example 18.6. Let K = Q, 0 = Z, L = Q(+/—6). Then O, = Z[/—6],

OP = {z+yv—6|z,y € Q such that tL/i ((z+ yvV—6)(u + vv —6)) € Z where u,v € Z}.
Since tL/K (.T +y\/j6) = 21?, tL/K ((.’13 +y\/j6)\/j6) = _12y7 then OI? = Z% + Z@’
and [OP : O] =2 12 =24.

Theorem 18.7. Let o be a Dedekind domain, K be its field of fractions, L be a finite
separable extension of K, and Of, be the integral closure of o in L. Then Oy, is a Dedekind
domain.

Proof. (i) Oy is integrally closed by the theorem that integral closures are integrally closed.
(ii) Let A be a non-zero ideal of Or. Let xy, - ,x, be a basis of L over K. Then 3

€1, , ¢y # 0such that cizq, -+ ,cpzy € Op. Forany a € A, a # 0, then acix1,- -+, acpxy
is a basis of L over K contained in A. Suppose z1, -, x, is a basis of L over K contained
in A. Then

OrD2ADX =z104 -+ z,0.

Then
XPoAP > 0P >0 D A

So XP is a finitely-generated o-module containing A. Since o is Noetherian, then A is
finitely-generated o-module, then Of is Noetherian.

(iii) Let P be a prime ideal in Oy. Then P No = p is a prime ideal in 0. pOy, is an
ideal in Oy..
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We claim that pOp, # Op. In K, we know that p~' D o because o0 is a Dedekind
domain. Then p~! 2 O, because O, N K = o by integral closure. Then pOr, ¢ Of.

Then Or/pOr = A is a commutative algebra over o/p = k. Since O is finitely-
generated as o-module, A is a finite dimensional algebra over k. Every commutative finite
dimensional algebra A over a field is isomorphic to a direct sum A = Hﬁzl A; where A;
is an decomposable algebra. A; is a field iff Rad(A;) = 0. The radical is an ideal and if
A = A/Rad(A) then Rad(A) = 0. Also A = [['_, A; with A; = A;/Rad(A;). So each A;

is a field. The maximal ideals in A; are

t
Ti= I 4

=15

The maximal ideals in A are the lifts

t
Ji= [ A

=1,

From the map O, — Or/pOr, = A the inverse images of the J;’s are all the maximal ideals
P; that contain pOp. This proves there are only finitely many maximal ideals containing
p(’) L-

If P is a prime ideal in Of that contains pOr, then O /P is a finite dimensional
commutative k-algebra (k = o/p) and Op/P is an integral domain. That means that
O, /P is indecomposable. Since P is prime, if 2™ € P, then = € P for some n > 1. That
means Rad(Op/P) = 0. Then O /P is a field. Then P is maximal. O

19 Extensions of Dedekind Domain IT (10/01)

Example 19.1. Let K = Q, 0 = Z. Theorem implies that for any finite extension
L/Q, Oy is a Dedekind domain. Because Z is a PID, Of, is a free Z-module. Since O,
spans L over Q, Oy, is a free Z-module of rank n, and has an integral basis

{wr, -+ wa}.

The discriminant is

dr, = det([t g (wiwy)]) = det([w]’])* # 0

where o1, -+ , 0, are the distinct embeddings L < Q. Suppose {ui,--- ,u,} is another
basis of Or,. Then there exists integers a;;, b;; € Z such that

n n
w; = E AijUi, U = E bijwi.
Jj=1 J=1
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Then [w;’] = [aij][u;’], [u;’] = [bij][w;’] as n x n matrices. This implies [a;;][b;;] = I.

]
Hence det([a;;] det([bi;]) = 1. Both determinants are integers, then det([a;;] = det([bi;])
+1. Hence, det([wfj}) + det([u;’]). So
dr, = det([w?j])2 = det([u?j])Q.

Theorem 19.2 (Stickelberger-Schur Theorem). For any finite extension L/Q, dr, = 0,1
(mod 4).

Proof. We use the permutation definition of determinant:

det(w Z sign (7 ”(U . n”(")
TESH
O w(n ™ On(n
:Zwl <1)~-w (n) _ Zw (1) “wn(>
T even 7 odd
=F-0.

If we apply any embedding o to these terms,

Ix(i)No __ ,, 9xr(j)
(wj ) = wj

for some permutation A € S;, determined by o. So either
E°=FE 0° =0, if sgn(\) =1

or
=0,0° = E, if sgn(\) = —1.

Then (E+0)° = E+ O forallo. So E+0 € QNOp =2Z. Alsod, = (E—0)?
Then
dr, = (E—0)?=E?-2EO + 0% = (E + 0)* — 4FO.

Since FE— 0O €Z, E+ O € Z, we have EO € QN Op =Z. Then

d, = (E+0)>-4F0=0,1 (mod 4).

20 Extensions of Dedekind Domain III (10/03)

Theorem 20.1. For K = Q(y/m) where m # 1 is square-free,

o Zl\/m] if m=2,3 (mod 4),
K= Z[H‘F} ifm=1 (mod 4).
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Also, the fundamental discriminant is

de — dm if m=2,3 (mod 4),
K mifm=1 (mod 4).

In all cases, O = Z[%].

Proof. The minimal polynomial of & = u4vy/m € K = Q(y/m) is 2> —t /() + N g ().
So
a € Ok & tgg(a) € Z and Nk g(a) € Z.

ti (@) = 2u, N g(a) = u? —muv?. So Z[/m] C Ok with finite index | = [Ok : Z[/m]].

In general, O has a free integral basis {w1,--- ,w,}. Suppose A = Z{uy, - ,un} C
Ok. So u; = Y i | ajjw; for some integers a;;. Then [Of : A] = | det([ai;])| from module
theory over a PID. Ok /A is a finite abelian group. We can choose a basis ay, -+ , ay, of

Ok so that dyag, -+ ,dpay is a basis of A with di|ds| -+ |dy. [Ok : A] = dids - - d,. Also,
det((u’])? = det([ag])? - det([u])?,
SO
d(uy, - up) =[Or : A - dkg.
In our quadratic case, u; = 1,us = \/m, because Z[/m| C Ok.

2
=4m

awm = |y

and d(Og) - I? = d(\/m), we have [2|4m. Since m is squarefree, [ = 1 or 2. If [ = 2, then

%Z[\/%] S Ok S ZVm).

All we have to check are representatives of 1Z[/m]/Z[\/m]. Try a = 3, @, 1+3/m’ and
we will see t(a), N(«) € Z iff m =1 (mod 4). O

Theorem 20.2. Let o be a Dedekind domain with field of fractions K. Assume o/p is
finite for all prime ideals p. Then o/a is finite for all ideals a # 0 in o.

Proof. First, we have shown o/p = p™/p"*! for all n € Z. Then
op™)=[o:pllp:p*] - [p" " p"] = [o:p]" < oo

For general ideals a # 0, Dedekind Theorem implies that a = py™* - - - pI"* for distinct prime
ideals p;. Then

o/a H o/pgnj

j=1
by Chinese Remainder Theorem. That proves [o : a] = H§:1[° S HUER O
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Definition 20.3. We define the absolute norm of a to be
N(a)=[o:a] €N,
N extends to a homomorphism N : I, — Q*:
N(ab) =[o:ab] =[o:a]la:ab] =[o:a]lo:b] = N(a)N(b).

Let L/K be a finite separable extension with O, as the integral closure of 0. Then
for any prime ideal P C O, lying over p C o, O /P is an extension of finite degree over
o/p. So if o/p is finite for all p for all p in o, then O /P is finite for all primes P in Of.
If |o/p| = Ng(p) = q = pf for a prime p € Z, then |Or/P| = Ni(P) = ¢/2/x(P) where
fr/k(P) is the residue degree of P over p in L/K. Also, pOr, = Pi*---Prr for distinct
prime ideals P; in Op. The e; is the ramification degree of P; over p.

21 Valuation Theory I (10/06)

Definition 21.1. Let K be a field. A discrete valuation is a map v : K* — Z such that
(i) v(zy) = v(@) + v(y), ¥,y € K*;

(il) v(x +y) = min(o(@), v(y));

(iii) v is surjective.

Extend v to K by v(0) = oo with 0o + 0o = 00,00 + n = 00,00 > n,Vn € Z. Define

0, = {z € K|v(z) > 0},
P, = {z € K|v(z) > 0}.

0, is a subring of K and P, is an ideal of o,.
Remark 21.2. From the definition, we know that v(1) = v(—1) = 0.
Theorem 21.3. o0, is a PID with a unique mazximal ideal P, .

Proof. If z € 0,, then x is in o} iff 71 is in 0, iff v(z) = 0. Since z2z~! =1, v(z)+v(z~!) =
v(1) = 0. Since if x € o}, then 27! € of, and v(z) > 0,v(z~!) > 0. So x € o} iff
v(z) = v(z~1) = 0. That proves o} = {z € K*|v(z) = 0} = 0,/P,. So P, is maximal and
is the only maximal ideal. There exists 7 € P, such that v(7) = 1 because v is surjective.
We claim that P, = 7o, = (7) and every non-zero ideal in 0, equals P)* = (7") for some
integer m > 0. Suppose z € P,. Then v(z) > 0 and v(z) is an integer, and so v(z) > 1
by definition. Then x = (z7~!)m and v(zr 1) = v(z) —v(r) >1—-1=0. So 7! € 0,.
For any non-zero ideal a C o0,, choose a € a with minimal valuation v(a) = m. We claim
a=P" = (n"). Forany b € a, b = (br~"™)7n"™ and again v(br~"™) = v(b)—m > m—m = 0.
That proves a C (7). By similar reasoning, v(ar~") = 0, and so ar~™ € o). So
"€ a. O
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For a general Dedekind domain, we had an exact sequence
1—0" =K"= 1, — Cl(o) — 1.
For a discrete valuation domain o,, this reduces to

1—o, - K" —7Z—0.
Let U™ =1+ P" for n > 1. Then

oY ou@ oul. ..

and )
0:/U[({) = (0y/Py)",
UI(;L)/UI(Q1+1) = PS/PZ;H1 X 0y /Py = ky.

Here is the proof. Define the homomorphism: o} = 0,/P, — (0,/Py)*: © +— x + Py.
Suppose x maps to 1 + P, in (0,/Py)*, then z € 1 + P,. The kernel of the map is
1+ P, =UY, s0 0/UY = (0,/P)". UM =1+ P =1+, =1+ 7"(a+m0,)
for some a € 0,. Consider the map UI((”) — 0y/Py : 1+ 71"a + 7"t a + P,. This is

well-defined and is actually a homomorphism. The kernel is when a € P, and in that case
1+ 7"a € PP*L. That proves (14 P7)/(1 + Prtl) = o, /P,.

22 Valuation Theory II (10/08)

Theorem 22.1. Let 0 be the ring of algebraic integers in a finite extension K/Q. If v is
a discrete valuation of K, then o C 0,.

Proof. Since v(—1) +v(—1) = v(1) = 0,v(—1) = v(1) = 0. For positive n € N,
v(n) =v(l4+1+---+1) > min(v(1),v(1),--- ,v(1)) =0.
For negative n € N,
v(n)=v(-1—-1—---—1) > min(v(-1),v(-1),--- ,v(—1)) = 0.

So we conclude that v(n) > 0 for all n € N. Suppose = € o and satisfies 2" + ajz" ! +
-4+ a, =0 where ai,--- ,a, € Z. Then 2" = —a;2" ' — ... —a, and so

o(a™) = no() > min (v(a;) + (0 = o))
S)sn

S mi .
> i (1~ (@)

If v(xz) < 0, then nv(x) > (n — 1)v(z), which is a contradiction. Hence v(x) > 0, and so
T € 0,. Therefore, o C o0,. O
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Theorem 22.2. If 0 is a Dedekind domain and v is a valuation such that o C o0,, then
(i) p» = Py No is a prime ideal in o,

(7’7') Py0y = Pv;

(iii) 0/py = 0y /P

We first give an example to illustrate Theorem then give the proof.

Example 22.3. 0 = Q, valuations correspond to prime numbers p, where v(p) equals the
exponent of p in the prime factorization of x € Q*. Then

Z, = {all fractions " where p1ts},
s

P, = {all fractions r where p 1 s, p|r},
S
Loy | Py = 7./ p.

Proof of part (i) of Theorem . Suppose a,b € 0 and ab € p, = P, No. We know that
0 C 0y, so v(a) > 0,v(b) > 0. Since ab € p,, v(ab) = v(a) +v(b) > 1. So v(a) > 1 or
v(b) > 1 since v(a),v(b) € Z>o. That proves p, is a prime ideal in o. O

Example 22.4 (Example of v where o ¢ 0,). Let F be a field, K = F(z) be a field of
rational functions over F', then o = F'[z] is the ring of polynomials over F' which is a PID.
The prime ideals p of o corresponds to monic irreducible polynomials f(z) € F|z]. So
these correspond to all valuations v where 0, D 0, by previous theorem. There is one more
valuation defined by

;Eg — —deg(f) + deg(g)

for f,g € F[z]. By definition,

@@ = —dae xT)) —aeglr\xr e T egls\x
e (121 100) — — (1 (0) — degre) + delofe) + deg(s(a)

deg(g(z)) + deg(s(z))
)9(x))}
= min {—deg(f(x)) + deg(g(z)), — deg(r(x)) + deg(s(z))}

— min {ve (gg; o (g; .




Note that deg(z) = —1,deg() = 1, and 1 & 0. Moreover, we have the following sum

formula N ( @) > Sy, <f<>> - deg (p(x)) = 0.

9(x) prime p(z) 9(z)

23 Valuation Theory III (10/10)

Proof of part (ii) of Theorem . P,0, is an ideal of 0,. Because o0, is a discrete valua-
tion domain, p,0, = Py for some e > 1. Since p, is a prime ideal of o, we can define a
valuation vy, : K* — Z by vy, () = n where o is a product of p}y and other prime ideal
powers. vy, is surjective on Z because p; # pntt,

We claim that for z € K*, if vy, (2) = 0, then v(z) = 0. Here is the proof. Write
z = 3 for some a,b € 0. Then ao = pla and bo = plb for some ideal a,b with p, { a,
py 1 b. The same power occurs because vy, (2) = 0 = vy, (a) — vy, (b). Pick ¢ € p;\p,*L.
Then ca € (p;'pla)\(pL~'pla) = a\(p,a). That proves vy, (ca) = 0. Similarly, vy, (cb) = 0.
Since z = § = &, so we proved that we can assume z = § with v, (a) = v,,(b) = 0.
So a,b € o\p,. Then a,b € 0,\P, (if not, a € P, implies a € o NP, = p,). Then
v(a) =v(b) = 0 and so v(z) = 0.

Now pick x € o,z # 0. Then vy, (z) =1 > 0. Then zo = pla for some ideal a with
py 1 a. So there exists a € a, o & py,a € 0. By the previous claim, v(a) = 0. Then
a0, = 0y, then ao, = 0,. So xo, = péaoy = pﬁ,ov = (pyov)l = (735)[ = Pﬁf. That proves
v(x) = el = evy, (x). Since v(K*) = Z, we must have e = 1. O

Proof of part (iii) of Theorem [22.4 By the Second Homomorphism Theorem, we have

0/]31; = 0/(0 N Pv) = (0 + 7Dv)/Pv

We claim that o + P, = 0,. Suppose z € o0,, we have z = 7 where a,b € o. If

v(z) > 0, then z € P,, we are done. If v(z) = 0, then by previous argument z = ¢ for
some a,b € 0/p,. a,b correspond to non-zero elements in o/p, which is a field. So there

exists ¢ € o such that bc = 1 (mod p,). So bc — 1 € p,,. Then z = § = (§ — ac) + ac with

@. Since 1 — be € p, C Py, we have v (a(lgbc)> > 1 and thus

ac € 0, and § —ac =

ol € p,. S0z €0+ P, 0

24 Valuations of a Function Field (10/13)

Let F' be a field, K = F(z) be the rational function field over F, o = F[x] be the
polynomial ring over F.
We consider valuations of K. For any prime ideal p C o,

vp(x) = exponent of p in prime factorization of xo, for x # 0,
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vool) = — deg(f) + des(g), for f,g € Fla] =o.
If 0 # f(z) € Flx] factors as
f@) = upr(x)* - - pp(2)*

for uw € F*, where p;(x) are irreducible monic polynomials which are distinct, then

and
i.e.,

Define deg(vs) = 1, then
> w(f)deg(f) =0

all valuations v

for all f € K = F(x).

Theorem 24.1. The set of all valuations on K = F(x) such that v(F*) = 0 consists of
Voo and all vy, for irreducible monic polynomials p € Fx].

To prove Theorem [24.1] we need the following lemma.
Lemma 24.2. Ifv(a) < v(b), then v(a+b) = v(a).
Proof. Since v(g) = v(b) —v(a) > 1, so g €Py. Sol —1—2 €l1+4+P, Co,\Py, =0}. So
v(1+2)=0. Then
b b
v(a+b) =v(a(l + a)) =v(a)+v(l+ E) = v(a).
0

Proof of Theorem [24.1 If v(z) > 0, then v(F[z]) > 0, and so 0 = F[z] C 0,. By our
previous theorem, v = v, for some monic irreducible polynomial p € F[z]. (Note that for
any two irreducible polynomials p # ¢ € F[z], vp(p) = 1,v,(q) = 0 and vy(p) = 0, v4(q) =
1. So v, # vg.) If v(z) = a < 0, then v(z") = na, ¥n € Z. So for f(x) = apx™ +---+ay €
Flz] with ag € F*, v(f(z)) = v(apz™) = —na by Lemma[24.2] Hence

f(ﬂ«“))

v = (—de +de a € al.

(g(x) (—deg(f) + deg(g))

Since v maps K* onto Z, we have o = —1. Thus v(—ggg) = —deg(f) + deg(g). O
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Definition 24.3. An absolute value on a field K is a function |- | : K — [0, 00) satisfying
(i) || =0iff z = 0;

(ii) [zy| = |z[ly;

(iif) [ +y| <[] + Jy]

Remark 24.4. (i) Trivial absolute value is an absolute value |- | such that |x| =1 for all
x € K*. From now on we assume our absolute values to be non-trivial.
(i) If v is a discrete valuation on K and X is any number with 0 < A < 1, then

2] N@)if e £ 0
Tly =
0 ife=0

s an absolute value on K.

(ii3) If |z + y| < max(|z|,|y|), | - | is called ultrametric or nonarchimedean. If not, | - |
s called archimedean.

(iv) If v is a discrete valuation, then |- |, is nonarchimedean.

Definition 24.5. Two absolute values |- |,|-|' on K are equivalent iff 3a > 0 such that
|x|" = |z|* for all z € K.

25 Ostrowski’s Theorem I (10/15)

/

Theorem 25.1. Two absolute values | -|,|-|" on a field K are equivalent iff

{reK:|z|>1}Cc{reK: |z >1}.

Proof. (=) If |z|" = |z|* for some a > 0 for all x € K, then if |z| > 1, then|z| = |z|* > 1.

(<) Since we assume |- | is nontrivial, there exists xg with |zo| > 1. So by assumption,
|zo| > 1, too. Then |zo|" = |z|* for some a > 0.

For any other z # 0 in K, suppose |z|" < |z|* We've given that if |x| > 1, then
|z > 1. Soif [z~ > 1, then |2~!|' > 1. So if |z| < 1, then |z|' < 1. Now take logs, we
have

log |zo|" = alog |zo|,

and
log |z|" < alog|z|.

We can find a rational number 7 € Q with m,n integers and n > 0 such that
log |z|' < mlog lzo|" < alog|z|
n
(by density of log |zo/'Q in R). So

n-log x| — m-log|zo| < 0.
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So
‘x"z:gm‘I <1
Also, we have
na - log |x| — m - log |zo|" > 0,
then
na - log |x| — ma - log |xg| > 0
since |xo|" = |xo|*. Hence,
n - log|z| —m -log|zo| > 0.
So
|2y ™| > 1.
This contradicts the inclusion |y|" > 1 = |y| < 1 proved earlier. A similar contradiction
proves |z|" > |z|* is also impossible. Therefore, |z|" = |z|* for all z € K*. O

Theorem 25.2 (Ostrowski’s Theorem (Acta Mathematica, 1916)). Every absolute value
of Q is equivalent to exactly one of | - |r (ordinary absolute value on R) or |- |, for some
prime p in Z where |z|, = p~®) (the p-adic absolute value).

26 Ostrowski’s Theorem II (10/17)

Proof of Theorem [25.3 Assume first that [n| < 1 for all n € Z. The nontriviality of | - |
implies that there exists a prime p with |p| < 1 (if not, then by prime factorization |z| = 1
for all z € K*). Suppose there is another prime ¢ with |¢g| < 1. Choose integers a,b > 1
with |p|* < %, q|° < % Then there are integers m,n with mp® + ng™ = 1 since p® and ¢®
are relatively prime. So

1 1
1= |mpa+nqb| < |m]|p|* 4+ |n|\p|b <1- 5—1—1 = =1.

2
That contradiction proves no such prime ¢ exists. So |¢| = 1 for all prime ¢ # p. Then
clearly |z| = |p|”(®) by prime factorization for all z € Q*. Since |p| < 1, |p| = p~ for
some a > 0. Then |z| = [z[}.

Now assume |n| > 1 for some integer n > 1. Then |n| = n® for some a > 0. It is
sufficient to prove that |m| = m® for all integers m > 1. First, [m| =|14+1+---+ 1| <
1+14---4+1=m for all integers m > 1. In particular, n® < n. So a < 1. Write

m=co+cin+ con® + - + ¢gn

for integers 0 < ¢; <n, 0 < j <k,and 1 < ¢ <n. So

ml < lejlind| <Y em?®
§=0 5=0

nk+la _ 1

n® —1

k
<(n-1D)Y n"=(n-1).
j=0
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Only k depends on m. That proves
Im| < ¢-n** < c-m®

for all m > 1, for some cqnstant c > 0. Replacei m by m” for an integer » > 1. Then
Im”| <c-m"™. So |m| < cr -m®. Then lim,_,o cr = 1. Then that proves

jm| < m*®

for all integers m > 1.
To prove |m| > m®, write
m=co+cin+ con® + -+ ¢enF
for integers 0 < ¢; <n,0<j <k,and 1 < ¢ <n. Then m < nFtl. Also m > n*. Let

b=nkF1 —m > 0. Then

k+1 k+1 _ k

n —-m<n n.

So [b] < b by our above argument. Then
|b| < (nk—l-l o nk)a‘
On the other hand, by the Triangle Inequality, we have

’m| < |nk+1’ o |b| < n(k—i—l)a B (nk—l-l - nk)a

= plktla <1 —(1- 1)“)

n

c/ . n(k+1)a

A\VARAYS

/
c -m®

where ¢’ is a constant independent of m. Replace mlby m” for an integer » > 1. Then
|m”| > - (m")%, so |m|" > ¢ - m"*. Hence |m| > (¢/)* - m®. Since lim, _,(¢')* = 1, this
proves |m| > m®.

|

O

Theorem 26.1 (Ostrowski’s Theorem for Algebraic Number Fields K/Q). If K/Q is a
finite extension, then every absolute value || on K is equivalent to a p-adic absolute value
for a unique prime ideal p in ox, or is equivalent to an absolute value coming from a real
or complex embedding of K.

Definition 26.2. Equivalence classes of absolute values of K are called places of K.

An absolute value |- | on K defines a topoloty on K by means of the basis of neigh-
borhoods:
B(a,r) ={x € K||z —a| < r}
foralla € K,r > 0,r € R.
U C K is open if for every a € U, there exists r > 0 such that B(a,r) C U. Addition,
multiplication, and | - | are all continuous on K relative to this topology.
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Theorem 26.3. If |n| < 1 for all n € Z, where Z is the image of Z in K, then | - | is
ultrametric, i.e., |z + y| < max (|z|, |y|).

Proof. First, we prove |1 +a| <1 for all @ € K with |a| < 1. By the Binomial Theorem,

()

So |1+al < (m+ l)i Since limy, o0 (m + 1)% =1, we have |1 + a| < 1.
If z # 0 and |y| < |z|, then

m

|1+ a|™ = Z <T.L>aj < i
j prt

J=0

m
’aj‘ §Z‘aj| <m+1.
=0

24yl =zl [1+ 2| <Jal
by the above result, and so by symmetry,

|z +y| < max (|z], |y]),Vz,y € K.

27 Weak Approximation Theorem (10/20)

Theorem 27.1 (Weak Approximation Theorem). Let |1, -, ||n be inequivalent absolute
values on a field K. Let K; be the field with the topology derived from | -|;. Embed
K — Ky x --- K, along diagonal:

x> (T, ,x).

Then the image of K is dense in H?Zl Kj, i.e., for any e > 0, and any x1,--- ,x, € K,
Jy € K such that |y — xj]; <€ for1 <i<n.

Before we prove Weak Approximation Theory, let’s see an example.

Example 27.2 (A special case). If K is the field of fractions of a Dedekind domain o and
if | - |; corresponds to a prime ideal p; in o, then the Chinese Remainder Theorem says
that for any M > 0 and any yi1,---,y, € 0, Jz with z = y; (mod p;-”), that’s equivalent
saying |z — y;]; < (Ny,) ™. So if we choose M large enough so that (N, )™ < ¢, then
this proves a special case of Weak Approximation Theorem.

Remark 27.3. Weak Approximation Theorem involves any absolute values including
archimedean ones.

Lemma 27.4. Suppose | |1, -+ ,| - |n are inequivalent absolute values on a field K, then
there exists a € K such that |a|l; > 1 and |a|; <1 for all2 < i <mn.
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Proof. We prove by induction on n.
The first case is n = 2. Since | - |1, | - |2 are inequivalent, by our earlier theorem,

{lzfr <1} Z {|z]2 < 1}

and
{lzla <1} & {|z[r <1}
So there exists x,y # 0 such that

’.’L‘|1 <1, |:E|2 >1

and
lyla < 1,[yl1 > 1.
Then
T
‘ <1< ‘
Yl Ylo

That proves the n = 2 case.
Assume it is true for n absolute values for some n > 2. Assume there is a b with
|bly > 1,|bl; < 1fori=2--- ,n. By n=2 case, there exists ¢ with

|C‘1 > 1, |C|n+1 < 1.

If |b|p+1 < 1, then a = b works. So assume |b|,4+1 > 1. If |b|,41 = 1, take a = ¢b” where r
is chosen large enough so that for 2 < i < n,

e ]s = |elalolf < 1
which we can do because |b]; < 1. Also
|eb" [y = [efy - [olt > 1,

| |41 = lelnt1 - [blpg1 = lelnsr < 1.

So ¢b” works. Finally, assume |b|,+1 > 1. Then take

cb”
a =
14067
for some integer r > 0. Then
laly = lelulbly _ lelubly
[L+b[7 — 1+ [blf
Note that since [b]; > 1, lim, o0 % = 1, we can choose  >> 0 such that |a]; > 1
because |c[; > 1. For 2 <i <n,
|CL|' < ’C”L’b’:
T
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because |b|; < 1, and
bl

oo 1 — BT

So we can choose r >> 0 so that |a|; < 1. Moreover,

‘CL| 1 |C|n+1|b‘:l+l
n —
‘b’n-i-l
and .
r—00 |b|;+1 —1
because |b|n4+1 > 1. Since |¢|n+1 < 1, we can choose r >> 0 so that |a|,4+1 < 1. O

Proof of Theorem[27.1. By Lemma choose a; € K so that |aj|; > 1, |aj|; < 1 for
1 # j. Let

"ooatx;
)
y=> .
olta
For » >> 0, we will verify that this y works.
ajx; alz;
‘y_wi‘igzl_i_ar 1+a1‘”—1‘i‘
J#i i i
<y 1‘; I (e ol < L > 1)
J#i aj @ilg

. . a;l|’ .
Since lim,_, oo % = 0 and lim,_, Ial+—1 = 0, we can choose r >> 0 such that |y —
VAT Tl
l’z‘z <e. ]

Corollary 27.5. Suppose K/Q is a finite extension. Suppose |-|1,- -+ ,|-|m are inequivalent
real absolute values:

|z|; = |27 |r for distinct embeddings o; : K — R.

Let each €;(1 < i <m) be £1. Then there exists x € K such that sign(o;(z)) = &;.

28 Completions of Valued Fields I (10/22)

Definition 28.1. Let K be a field with an absolute value |- |. A sequence {ay,}22, with
an € K is Cauchy if Ve > 0, IN > 0 with |a, — ap| < e forn >m > N.
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A Cauchy sequence {a,}22, has a limit [ € K if limy,_yo |ap, — 1| = 0. {a,} is a null
sequence if [ = 0. We say K is complete if every Cauchy sequence has a limit in K.

The set of Cauchy sequence forms a commutative ring R with a 1 = {1} with opera-
tions:

{an} +{bn} = {an + bn},
{anH{bn} = {anbn}.

The set M of null sequences forms an ideal in R. If {a,} € R\M, then there exists
€ > 0 such that |a,| > € for infinitely many n. Choose N such that |a, — an| < § for
n >m > N. Choose N with |ay| > e. Then

lan| = |an — an + an]|

> lan| — |an — an]

for alln > N. So a, # 0. Now choose {b,} with b, = i for n > N. Then {b,} is Cauchy.
Then
{an}{bn} = {1} + some sequence in N.

That proves M is maximal (if we add any {a,} € R\?M to M, then 1 = {1} € 9M.) Then
K = R\N is a field.

Theorem 28.2. (i) K has an absolute value

Han} = lim Ja.
(i) K is complete with respect to ||-||.
(iii) There is an embedding
K—K
a—{a}+MN

satisfying || {o}] = Jal. B

(iv) The image of K is dense in K. B

(v) If K is a complete field containing K as a dense subset, then K is isomorphic to K,
with K mapping to K by the identity.

If K/Q is a finite extension, and o : K — R is a real embedding, then the completion of
K relative to |z7|g is isomorphic to R. For o : K < C which are nonreal, the completion
of K relative to |z7|c is always isomorphic to C.

Suppose o is a Dedekind domain and not a field, K is its field of fractions, p is a nonzero
prime ideal of 0. Define |z|, = A" with some 0 < A < 1. |- |, is an absolute value on K.
Then K, is the completion of K relative to |- |, (p-adic field). The valuation v, extends to
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K, so that |z]|, = \?*@). Then for any Cauchy sequence {a,} in K, lim, o |a,|p exists.
{lz|p for x € K} C {\"|n € Z} U {0} and since this is a discrete subset of (0,00), the
only possible limits of sequence of these are {\"|n € Z} U {0}. Then lim,_, |a,| = 0 or
A™ for some integer m € Z. Then if x # 0, define vy(x) = m. Then v, is a valuation
on K. Then denote K, as K,, and 0, = {z € K, : |z|, < 1} as the valuation ring,
Py, ={x € K, : |z|, < 1}.

29 Completions of Valued Fields II, Inverse Limits(10/27)

Let K be a field of fractions of a Dedekind domain o, v be a valuation on K, and K,
be the completion of K with respect to v. Suppose {a,} is Cauchy in K, representing
z € K,. Let

Lo = liminf,,_o0lan|v, L1 = limsup,,_, o |an|v-

For € > 0, there exists N > 0 such that |a, — am|, < § for all n > m > N. There exists
n,m > N such that |a,|, < Lo + § and |am|, > L1 — 5. Then

= > Jan — amlo > by — lan > L = S = (Lo + 5) = L1~ Lo — =
Then L — Lo < ¢ for any € > 0. Hence L1 = Ly and lim,_,« |an|, exists.

If v is a discrete valuation, then |z|, = A*®) for some 0 < A < 1. Since {\"|n € Z},
then lim,, o |an|y, = 0 or A™ for some n € Z. The first case happens if and only if z = 0.
If z # 0, then lim,,_, |a,| # 0 by definition of Null Cauchy sequence. Then lim, ;o |an|
is in the closure of {A\"|n € Z}. The only limit point of that set not in the set is 0. Then
lim,, o0 |an|y = A™ for some m. Define v(x) = m, then there exists N > 0 such that
|an|y = A™ for all n > N.

Let
0, = valuation ring of v in K,
={re K,: |z, <1}
= closure of 0 in K,
and

P, = unique prime ideal in o,
={reK,: |z, <1}
={r € K,: x|y <A}

= closure of p in K.

Theorem 29.1.
0,/P" Zo/p"

forr>1.
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Proof. Consider the map
o/p" — 0,/P,"
r+p" =+ P, .
Since | - |, is discrete in K,
P, ={r e Ky: |z, <A}

Since v is an extension of the valuation on K, p” C P,”. So the map is well-defined.
Suppose € 0N P,", then = € p". So the map is injective. Given z € 0, x is represented
by a Cauchy sequence {a,} C K. Also |ay|, = |z], # 0 for n >> 0. Choose 0 < & < \".
Then there exists N > 0 such that for n > N

lan, — x|, < e < A
Then ay — z € P,". So ay + p" maps to x + P,". That proves the map is surjective. [
Example 29.2. Z/p"Z = 7, /p" Zy.
Corollary 29.3. If q is any prime ideal of o with q # p, then qo, = 0,.

Proof. Since q C o, qo, C 0,. Then qo, = P,” for some r > 0. Since q # p, there exists
a € q\p. Then |a|, = 1 and hence r = 0. O

Now we come to the Inverse Limits.
Suppose we have a sequence of commutative groups: for n > 1

Ap =o0/p"

with homomorphisms
ay tAp — Ap,

for all n > m > 1, satisfying forn > m >r > 1

where

ap, (x+p") =z +p"
which is well-defined because since n > m,p™ C p". To any such inverse system {A,},
there is associated an inverse limit

Z:yLnAn: {(mn) € HAn:a"m(xn):xm forn >m > 1}
n=1

n

with natural surjective homomorphisms
Bn:A— A,

such that for n > m > 1, B, = aj}, o Bp.
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Theorem 29.4.
limo/p" = 0,.
i

Proof. Define for x € o0,, the sequence (a,),a, € 0/p™ where a,, is the image of z under
the isomorphism

0y/Py" = 0/p".
Then (a,) € A and this gives the isomorphism. O

Choose ™ € p\p?. So |7, = A. Let R be any set of representatives in o for the
residue field k = o/p. Let z € K,,x # 0. Then |z|, = \™ = |r|,"* for some n; € Z.
Then |x7~ ™|, = 1. Then 7~ ™ € 0,. Choose a; € R with x7~" = a; (mod p). Either
|lz™™ —ay|, = 0or |[z7™ —ay|, = A"2 = |«|,"? for some ny > 1. Then |(zr~ " —a;)7~"2|, =
1. Choose as € R with (z7™™ — a1)7 "™ = ag (mod p). We can continue the process.
This gives a unique expansion
o
T = Z amm"
m=n

with every a,, € R for all x € K,,.

30 Compactness (10/29)

Example 30.1. Here is an example of 2-adic expansion of —1 in Q2. R = {0, 1} is a set
of representatives for Z/27Z. —1 € 1+ 27, s0 ag = 1. Then (=1 —1)27! = —1 € 1 + 2Z,,
so a1 = 1, and this pattern repeats forever. This establishes

oo
1= 22”.
n=0

Example 30.2. Does a solution to 22 = —1 exist in Q5? The Binomial Series
L = (1
1 2 = 2 ) "
(1+2) ;;Q)x
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2
formally satisfies ((1 + :r)%> =1+ z. Note

<%> -1 —(mn-1)

n n!
_ (- '2n-3)(2n —1)---3-1
T oon n!
(=Dt 2n—-2)2n—3)(2n—1)(2n)---3-2-1
T n!(2n —2)(2n —4) - -2

(-1 (2n —2)!
T 92 gl (n—1)!

(=Dt am—2\ 1

- 222 n—1 n
Z

22n71n'

€

1
i ((2)) 2 ~(20 = 102 = wyl) = - oo
n
for p = 5. For p =5, as long as vy(z) > 1, the series converges, because
1

Up (<2>x”) >n — clog(n) — oo as n — o0.

n

So (1 —5)1/2 =3, (é)(—5)” = z converges in Zs and this satisfies 22 = 1 — 5 = —4.
So (£)? = —1.

Let K be a complete field with a nonarchimedean absolute value | - |. Then
o={z:|z| <1}

is a subring of K,
p={z:l|z| <1}

is the unique maximal or prime ideal of 0. We can choose 7 € p\p2. Let v = vp be the
valuation on K.

Theorem 30.3. If k = o/p is finite, then o0 is compact with respect to the topology defined
by |- .

Recall that a basis of neighborhoods of z € K is {z + p"} for n € Z.
Theorem 30.4. If{A,} is a projective sequence of finite abelian groups, then mn A, =A

s compact with respect to the projective topology.
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A basis of neighborhoods of 0 in A is
Unv ={(an) : ap, =01in 4, for n < N}.
We have

U Uv ={0}.
N=1
A basis of neighborhoods of a € A is {a + Uy}.

Proof of Theorem [30.4 We will prove sequential compactness. Let {x,} be a sequence
in A. We have to show there is a convergent subsequence. There are only finitely many
a; € Ay, and A = UaleAl a1 +U;j. So a; + Uy contains infinitely many z,, for some a;.
Suppose we have a,, € A,,, defined where there are infinitely many x, in a, + U,. Then
an + U, is the union of a,, 41+ Uy+1 where a,,41 projects to a,,. Since there are only finitely
many a1, one of them a,,1+U, 41 has infinitely many x,, in it. That defines a = (a,,) € A
where a,, + U, contains infinitely many x,’s. Then there are n; < ny < nz < --- such
that Tn; € a; + Uj for all j. Then by definition lim;_, Tn; = a. O

Since 0 = %Lnn o/p™, that proves o is compact.

Remark 30.5. Infinite Galois groups are projective limits. Suppose K*P is the field of
all algebraic numbers which are separable over K. Then

KoeP = U L= ling L (direct limit).
L/K finite separable L/K finite separable
Then
Gal(K*P/K) = Jim Gal(L/K)

L/K finite separable
since for K C L1 C Lo we have

forms a projective system of groups. With the projective topology, Gal(K*?/K) is a com-
pact group. This suggests a relationship between Gal(K*? /K') and groups like Z,,. Iwasawa
Theory is the study of Z,-Galois extensions over Q.

31 Hensel’s Lemma (10/31)

Theorem 31.1 (Hensel’s Lemma). Let K be a complete field with nonarchimedean abso-
lute value | - | = |- |y, o ={z € K:|z| <1}, p={z € K : |z| < 1}, ® € p\p?. Suppose
f(z) € o[z]. If there is an ag € 0 with

<1

’ f(ao)
() 7

then there is a root o € 0 with f(a) =0 and |a — ap| < 1.
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Proof. For f(x) € o[z], f(z) = Z%:O cma™ where ¢, € 0. Then

0 k=0
N N m
S 3 ()
k=0 m=k
Note that N
Zcm<k>az = € olx]
m=k
So

fl@+7'y) = f(z) + ('y) f () + (7'y)*h(z, 7y)
where h(x,my) € o[z,y]. At the beginning we have ag with
|f(a0)| < |f'(a0)” < 1.

If v(f'(ag)) = ¢ > 0, then v(flag)) = n + ¢ for some n > ¢ (because f'(ap) € 7¢0* and
flag) € m2t1o). Let a; = ag + yn" for some y € 0. Then

flar) = fao +yr") = f(ao) + f'(ao)n™y  (mod p™).

Choose
y = —f(Oéo) '
7™ f'(0)
Then
g ol
|7 f'(ao)|  [mn ]

Then y € 0*. Then for that y,
fla1) =0 (mod p?").

That proves
v(f(en)) = 2n.

Since n > ¢,
v(f(@1)) = v(f(@0)) = c.

Repeat the process from «; to get g, then as and so on, and we get

v(flag)) < v(f(ar)) < v(f(ag))- -
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and
v(f'(an)) = v(f'(a1)), Vn.
Also
V(g1 — ) > vy — ap_1),

which implies {a,} is Cauchy. So lim, o o, = « exists in 0. Since v(f(ay,)) — oo, by
continuity lim, o f(an) =0 = f(a). O

Example 31.2. Consider f(z) = 22 + 1 in Q5 and ap = 2. We have f(ag) = 5, so
|f(ap)ls < 1. Also f'(ap) =2 x 2 =4, so |f'(ag)] = 1. Then by Hensel’s Lemma, there
exists a € Zz with @ =2 (mod 5) and o + 1 = 0.

32 Teichmiiller Units (11/03)

Let K be a complete field with nonarchimedean absolute value |- | =|-|,, 0 ={z € K :
|z| < 1} the valuation ring of K, p = {z € K : || < 1} the maximal ideal of 0. Assume
k= o/p is a finite field of order ¢ = pf for a prime p.

Theorem 32.1. For each a € o/p with a # 0, there exists G € o with (a)7! = 1 and
a=a (mod p).

Proof. Pick zo € o with z, = a (mod p). Since a?! = 1 in (o/p)*, then mgfl =1
(mod p). So for f(x) = 2971 — 1, we have |f(zo)| < 1. Next, f'(x) = (q — 1)33872. Since
mg_l =1 (mod p), |z| = 1. Also, since p|#(0/p), we have p =0 (mod p) andsoq=p/ =0
(mod p). So |¢g— 1] =1. So |f'(z0)| = |¢ — 1| - |z0|?72 = 1. Then |f(z0)| < 1 = |f'(z0)|?.
Then by Hensel’s Lemma, there exists root & with f(a) = (a)? ' —1 =0 and a = ¢
(mod p). O

Remark 32.2. It is common to use R ={0,a} as “digits” in p-adic series expansion.
Next we consider when zy is a square in Z;
Theorem 32.3. If xg € Z;,, then xo = a® for some a € Zy, if and only if

ro=a? (mod p) ifp> 2,
zg=1 (mod8) ifp=2.

Proof. We look at f(z) = 22 — zy.

For p > 2, |f(a)|p < 1 and |f'(a)|, = |2a|, = 1. By Hensel’s Lemma, we are done.

For p = 2, we need o = 1 (mod 8). Then |f(1)|z = |12 — 2¢|2 < |8|2 and |f'(1)]2 =
215 = [2|o. Hence |8]y < |f/(1)]2* = |2|2? = |4|o. By Hensel’s Lemma, there exists a root
x with f(z) = 0 and so z¢9 = 2%. Conversely, if xg = a? for some a € Z}, then a = 1 + 2b
for some b € Zy. Then a? = (1 +2b)2 =1+4b(b+1) =1 (mod 8). O
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33 Adeles and Ideles I (11/05)

A good reference for this part is the book Basic Number Theory by Weil.

Let K/Q be a number field of degree n. Let 9 = M i be the set of inequivalent
absolute values on K (places of K'), Mo, be the set of archimedean places (infinite places),
Mpr be the set real places, M be the set complex places. Let rq,ro be the number of
real places and complex places respectively. So r; 4+ 2ry = n. Let 9y be the set of
nonarchimedean places of K. For each v € M, let K, be the completion of K with respect
to v. For v € My, let

o, ={z € K, : x|, <1},
py ={z € K, : |z|, <1},

Ty € Po\Py,
Uy=o0, ={z €K, :|z|, =1} = units of o,.

The ring of adeles of K is
/
Ky=Ag =[] K,
veEM
where the direct product is restricted to (x,),con where for all but finitely many v € 9y
we have |z,|, <1 (or z, € 0y).
A basis of open sets in K consists of

UxHoU

vgS
where S is a finite set S C M, S D M, and U is an open subset of [[, g K.

Theorem 33.1 (Tychonoff’s Theorem). A countable direct product of compact sets is
compact.

Tychonoff’s Theorem implies that Hveimo 0, is compact, and hence K is locally com-
pact.
We use direct product laws of addition and multiplication on Kjy.

Theorem 33.2 (Theorem of Haar). Every Hausdorff locally compact topological group G
has an invariant measure p on open subsets of G, satisfying

(i) p(U) > 0 for all open subsets U,

(ii) (U) < oo if U is compact,

(iii) p (11o2y Un) = > vy w(Uy) for disjoint union |72 Uy,

(iv) waU) = ap(U) for alla € G.

The Haar measure p is unique, determined up to a nonzero constant multiplier. For
additive group G, (iv) in Theorem of Haar becomes p(a + U) = pu(U) for all a € G.
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K, is locally compact topological group under addition, so it has a Haar measure. If
K, =R, then u((a,b)) = b—a up to a constant is the usual Lebesgue measure. If K, = C,
then u({|z| < r}) = 7r? up to a constant multiplier. If v is nonarchimedean, it is normal
to normalize p by p(o,) = 1.

If 1 is a Haar measure on K, for any a € K;, define

Ma(U) = M(G’U>'

Then p,(U) is also a Haar measure. So j14(U) = modg, (a) - u(U). modg, (a) is called the
modulus of a in K,. modg,(a) = |alg if K, 2 R, modg, (a) = |a|? if K, = C.
In general, there is a constant A such that
modg, (z +y) < A (modg, (z) + modg, (v))
for any z,y € K,. For example, for K, = C, mod¢(z) = |z|? where | - | is the ordinary
absolute value, we have modc(z + w) < 2(modc¢(z) + modc(w)).
If v is nonarchimedean with o, /p, finite,

0p = H (a + moy)
a€oy /P

for any 7 € p,\p2. So

p(oy) = Z pla+ moy)

a€oy /P
= Z pu(moy)
a€oy /P
_HlOdKU Z 1
aEOv/Pv
— i
|0v/Po]
aeﬂu/pu

34 Adeles and Ideles II (11/07)

Now let K/Q be a finite extension. Let K, = H/ ot K,. Ky is locally compact and has
v

a Haar measure defined by
0) = [ ldsli = [ (@)
U U

One common normalization is to put

M<H{xv:|xv|vs1}> 1 [ e o [ st TT e

veEM vEMR vEM

— 27"1 27r 7‘2
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The group of ideles of K is the restricted direct product

Ki=I
veEM

where (), must satisfy z, € o} for almost all finite places v. K} has the direct product
multiplicative law and the restricted direct product topology. K7} is locally compact. K}
acts continuously on K by a € K and x € K going to ax € Ky.

The normalize Haar measure on K7} is

N T —\ "2
dt |dx A dT
1 1<|zly <N}y x [T of :(2/ > / e
H{ 2 J H 1t /4 1<jelo<N  |Z[v

vEMas vEMo
=27 (log N)" (27 - 2log(V'N))"
—9r1 . (27T)T2 . (log N)T1+T2.

If p is a Haar measure on K and a € K}, then p(aU) for any open U C Kj defines
another Haar measure on Kj. So p(aU) = moda(a)u(U). Another common notation
is |a|]a = moda(a). From the product structure of K and K}, we can prove |aly =
[Locon l@vlo- (This is the product formula for ideles.)

35 Module Theory over Dedekind Domain (11/10)

Let o be an integral domain and M a module over 0. Then x € M is torsion if there exists
r € o such that r #£ 0 and rz = 0. tM, the set of torsion elements in M, is a submodule
of M and is called the torsion submodule of M. M is torsion-free if tM = 0. M/tM is
torsion-free for any module M over o.

Let 0 be Noetherian, K be the field of fractions of o.

Theorem 35.1. Let M be a finitely generated o-module. The following are equivalent:
(i) M is torsion-free.

(ii) M is isomorphic to a submodule of a free o-module of finite rank.

(i1i) M is isomorphic to an o-submodule of a finite dimensional K -vector space.

(iv) The map M — M ®, K defined by m — m ®, 1 is injective.

dimg (M ®, K) = rko(M) is the o-rank of M.
Theorem 35.2. If 0 is a PID, any finitely-generated torsion-free module is free.

Theorem 35.3. If 0 is an integral domain containing a single prime ideal p # 0 and if
M =tM is a torsion module, then

M = @i_(o/p™)

for uniquely determined n1 < ng < -+ < ny.
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Theorem 35.4. Let 0 be an Dedekind domain.

(i) Every fractional o-ideal is a projective o-module.

(ii) Every torsion-free finitely generated o-module M is isomorphic as a o-module to F ©a
for some free o-module F' and a fractional 0-ideal a.

Remark 35.5. The o-rank of F' and the ideal class of a are uniquely determined. The
ideal class of a is dependent only on M is denoted as c¢(M) and is called the Steinitz
invariant of M. M is free if and only if c(M) =1 in cl(K) = cl(o).

Suppose K is a finite extension of Q, and L/K is a finite extension. Then the ring
oy, of integers in L is a finitely generated torsion free ox-module. oy, is free if and only if

C(OL) = 1.

Theorem 35.6 (Kable-Wright, 2006). As L/K ranges over all extensions of degree 2
(or 3) by size of discriminant of L/Q, then the Steinitz class of or, as an 0x-module is
equidistributed over all the ideal classes in cl(of).

Remark 35.7. Bhargava and his coauthors laid out distribution of discriminants of degree
4 and 5 relative extensions. One should be able to use this to do this theorem for degree 4
and 5.

36 Extensions I (11/12)

Let (K, v) be a complete valued field. Let E/K be a finite separable extension.

Theorem 36.1. There is a unique absolute value | - |, on E such that x|y, = ||, for all
x € K. Furthermore, for a € E, we have \a\&E:K) = |Ng/k(a)lo-

Proof. (Existence) If K = R, then E = R or C; if K = C, then E = C. In both cases,
existence is clear. For the ordinary absolute value | -| on C, |z|* = |z - Z| = [Ng/r(2) |-

If K is a nonarchimedean field with valuation v and maximal compact subring o,
prime ideal pg, then the integral closure og of 0 in F is a discrete valuation domain with
unique prime ideal pg satisfying pp N ox = pi. Let m = 7 € px\p% and 7 € pp\p%.
Then mop = p$, for some integer e > 1. If ||, = A < 1, define |7p|, = A/¢ < 1. We can
show that | - |, defines an absolute value on F satisfying

Tl = 75l = (AV/4)* = A = |,

(Uniqueness) Suppose w,w’ are two extensions of v to E over K. We want to prove
that w,w’ are equivalent. Earlier we saw that this follows from

(36.1) {reE:|z|ly <1} C{zr € E:|z|y <1}
If so then |z|, = |z|S, for some ¢ > 0. Since |z|y = |z|, = |2|y for € K, we have ¢ = 1.
It suffices to show which is dealt with in Lemma [36.2 ]
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Lemma 36.2. For any sequence {x,} C E, if we have
(36.2) if lim |z, =0, then lim |2,|w = 0,
n—oo n—oo

then [36.1) is true.

Proof. Suppose is not true, then there exists y € E with |y|, < 1 and |y|,» > 1. Then
limy, 00 |¥"|w = 0 and limy, o0 |y™ | > 1, a contradiction. O

To finish the proof of Theorem [36.1} we need to prove the limit connection [36.2

37 Extensions IT (11/14)

Both ||y and | - |,,» define v-norms on E as a vector space over K. Recall that ||-||: E —
[0,00) is a v-norm if

(i) ||z|| = 0 if and only if z = 0.

(ii) |[Ax]| = [y - [|=|| for all A € K, z € E.

(iii) [l + gl < ||| + lly[| for all 2,y € E.

Lemma 37.1. Let {z,} be a sequence in E. Let ||-|| be a v-norm on E over K. Let
{z1, -+ ,2n} be a basis of E over K. Let

Tm = Am, 21+ + A, 2n
for Apm; € K. Then

(37.1) l|zm|| = 0 if and only if n%gnoo |Am; v =0 for all 1 < j <n.

lim
m—00

Since is independent of || - ||, this shows the following corollary.

Corollary 37.2. For any two v-norms || -||,|| - ||" on E over K, we have
lim ||z,,|| =0 if and only if lim ||z,,| = 0.

Proof of Lemma[37.1 (<=) Assume lim,, o0 [ A, v = 0 for all j. Then
0 < ||l < [Amilo - [l22][ + - [Am o - |20l

By the Squeeze Theorem, limy, o0 ||m|| = 0.
(=) We prove this direction by induction. For n =1, ||z, || = |Am, | - ||21]] and since
||z1]] # 0O, this statement is clear.
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Assume it is true for some n > 1 and let dim(E/K) = n+1, with basis {z1,- - , znt1}.
Let U = span(z;) and consider the quotient space E/U which has dimension n. Define

|- 1lo: E/U = [0, 00)
x+ U inf ||z + z|| = inf ||z + Az1].
zeU AeK

We will check that || - ||p is @ norm on E/U.

(i) If ||z + Ullo = 0 = inf,cp ||z + z||, then there is a sequence z, € U such that
limy, o0 || — 2zm|| = 0. Then lim,, o 2, = 2. All finite-dimensional subspaces of a
finite-dimensional normed vector space are closed. So z € U.

(ii) For any A € U,
[A(z + U)llo = inf [[A(z + 2)]|
zeU
= inf || Az + Az||
zeU
= |A|p - inf ||z + ||
zeU
= [Alo - [lz + Ullo-
(iii)
(@ +U) + (y + U)llo = inf ||z +y + 2]
= inf |lz+y+z+7
z,2'elU

< infU (|l + ]| + |ly + 2||) (by Triangle Inequality)
z,2' €

A

inf ||z + z|| + inf ||z + /||
zeU 2'eU

[z + Ullo + [ly + Ullo-

Take a sequence
T = Ay 21+ -+ Ay 2l

with limy, o0 ||Zm|| = 0. Let
Ym = Amp22 + -+ Ay 2np1 + U € EJU.

Then
Yym + Ullo < [|zml]-

So limy,—00 ||Ym +Ullo = 0. Since 29+ U, -+ - , 2,41 + U is a basis of E/U, by the induction
assumption for n, this implies

lim Ay, lo =0, V2<j5<n+1
m—0o0
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Repeat the whole argument with U = span(z;) for any ¢ # 1, then we get

lim Al =0, Vj#0,1<j<n+1

m—o0

Then we proved
lim Ay, lo =0, VI<j<n+1
m—r0o0

O

38 Correspondence Between Prime Ideals and Absolute Val-
ues (11/17)

Let K be a field with a valuation v, K, be its completion, and L/K be a finite separable
extension. Then L @k K, = H’;Zl L; and L; is a finite separable extension of K,. v has
a unique extension w; to L;. Every extension of v to L is one of the w;’s. The w;’s are
inequivalent absolute values on L.

Corollary 38.1. L is dense under the embedding L — L Qg K, defined by a — a @k 1
by the Weak Approzimation Theorem.

We will write
L ®K Kv = H Lw

wlv

where w|v means w is an extension of v.

Let v be a discrete valuation. Let ox, = 0, = {z € K, : |z|, < 1} be the maximal
compact subring of K, p, the maximal ideal of 0, 07, = {x € Ly, : |z|, < 1} the maximal
compact subring of L,,, P, the maximal ideal of or,. We have proved P, Nox, = po.
Then the ramification order e = e(w|v) is defined by

p,0r, = Py
If e = 1, w is unramified over v. Define the residue degree of w over v to be
f=fwlv) = (oL, /Puw : 0k, /pv)-
Theorem 38.2. (L, : K,) = e(w|v) f (w|v).

Proof. We sketch the idea of the proof. Choose 7, € Py, \P2. List a basis of oy, /P, over
0k, /Pv to {a1, -+ ,ar}. Then {a;m, }1<i<fo<j<e—1 is a basis of Ly /K,. O

Suppose o is a Dedekind domain, K is its field of fractions, p is a prime ideal in o,
L/K is a finite separable extension, O, is the integral closure of ox in L, P is a prime
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ideal of Oy, lying over p. So PNox = p. Let v be the valuation corresponding to p on K,
w the valuation of L corresponding to P. In the Dedekind domain oy,

pOL = PeL... Pt

for distinct prime ideals P; in Or. The P; corresponds to all the inequivalent absolute
values w extending v from K to L. Each P; corresponds to some wj|v and Lp, = L,
and e; = e(w;|v). That describes the correspondence between the prime ideals over p and
the direct sum components in L ®x K, = wa L.

Inside L ® i K, we have a ring O, ®,, 0k, . Since ok, is a PID, Or ®,,. 0k, is a free
0x,-module of rank (L : K). Also

Or, By 0k, = [ [ or..-
wlv

The mapping a € L — a®1 — («) is dense because the absolute values w are inequivalent,
by the Weak Approximation Theorem. Also, since o, is closed, O ®,, 0k, is closed as
a submodule. So the mapping is onto.

Theorem 38.3 (Tower Laws). Suppose
K—L<—=N
are finite separable extensions with prime ideals
p—>P—=Q
in each of them. Then

e(Qlp) = e(QIP)e(Plp),
f(@lp) = £(QIP)f(Plp),
(Ng : Ky) = (Ng : Lp)(Lp : Ky).

39 Galois Extensions I (11/19)

Let L/K be a finite separable extension, K be the field of fractions of a Dedekind domain
0, O, be the integral closure of 0 in L. Any prime ideal p in o lifts to an ideal pOy, with
factors as

pOL = P{t e Py

for all distinct prime ideals P; lying over p and P; Nog = p. The primes P; correspond
to the inequivalent valuations w; extending the valuation on K corresponding to p to L.
With regard to completions, Lp, = Ly,;. If we omit the j, the prime ideal in Ly Py
satisfies P, N O, = p.

Suppose L/K is a Galois extension with G = Gal(L/K).
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Theorem 39.1. G acts transitively on the prime divisors P; of pOr,. So all ej = e and
all fj = f and so [L : K] = efr.

The decomposition group (Zerlegungsgruppe in German) of P lying over p is defined
as

Z(P)={oce€G:0(P)="P}.
We have [G : Z] = r and Z(P;) is conjugate to Z(P;) in G. The inertia group (Tragnngs
in German) is defined as
T(P)={c€G:0(a)=a (modP) forall € Op}
= {0 € G : 0 acts as the identity in Or/P}.

T(P) is a normal subgroup of Z(P) and
Z(P)/T(P) = Gal ((Or/P)/ (oK /b)) -

If ox/p is a finite field of order g, then O /P has order ¢/, and is cyclic generated by
Frobenius ¢(z) = z9. The class of ¢ in Z/T is called the Frobenius symbol [L/TK} € G.
If G is abelian, then Z(P) is the same for all P|p, and then we write

L/K] (L/K
Pl o\ oy
and the second one is the Artin symbol. p is ramified (e > 1) if and only if 7" # 1. If

T =1, then (L/TK> € G is a well-defined element.

40 Galois Extensions IT (11/21)

Suppose L/K is Galois with Gal(L/K) = G. For any prime ideal p in og, let P be a
prime ideal lying over p in Or. We have defined

Z(P)={0c€G:0o(P)="P},

T(P)={oc€eG:0(a)=a (modP) forall a € Op}.

This implies that Gal ((Or/P)/(ok/p)) = Z(P)/T(P). Z(P) = Gal(Lp/K,) where Lp is
the completion of L relative to the valuation determined by P and K, is the completion
of K relative to the valuation determined by p. Suppose we have a tower of extension
K, — F — Lp where Gal(F/K,) = Z/T, Gal(Lp/F) = T, then the extension F'/K, is
unramified, and the extension Lp/F is totally ramified.

Suppose K is a finite extension of Q, (K : Q) = n, and Ok is the the ring of integers
of K. Suppose a € O satisfies an Eisenstein polynomial for the prime p

fla)=a"+ca" 4. ¢, =0
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where p|c; for 1 < j <n and p?{ ¢,. Then p{[Ok : Z[a]] and p is totally ramified in K
(e=n,f=1,r=1). (Recall Disc(f) = Disc(Ok) - ([Ox : Z[a]])?).

Here is an example for K = Q(w) where w = e2™/P, p > 3. f(z) = 2™ — 1. We have
Disc(f) = (—1)172;1 - pP~2 (by midterm problem). So Dy = Disc(O)| (—1)% SpP2
Notice that

(z+1)P —1=2af +paPt + <§>xp—2+-~-+ (pfl)x

:x<xp_1—|—pmp_2+~-—|—< P >>
p—1

and oP~! + prP=2 + ... 4 (pf 1) is an Eisenstein polynomial for p, so w — 1 satisfies an
Eisenstein polynomial for p. Then p t [Ox : Zjw — 1]] = [Ok : Z[w]]. That proves
[Ok : Z[w]] = 1. That proves

p—1 _
Dy =(-1)7z -p'™?
= square of Vandermonde determinant

with entries equal to power of w.

Then Dy is a square in K. So v/Dg € K. Since p is odd, p — 2 is odd. Then F =

oo = (Y-n=) e k.

Let ¢ be a prime different from p. ¢ splits in F/Q if gop = qq for some prime ideal
4. ¢ € q. By earlier lemma, q = (¢, ) for some o = a + bv/D. Then qor = (¢,a +
bv/D)(q,a — bv/D). This proves gla* — b>D. So D is a square mod ¢. So (—1)% -pis a
square mod ¢. Gal(Q(w)/Q) = (Z/pZ)* is cyclic of order p — 1. It has a unique subgroup
H of order 251 and H = {I?|l € (Z/pZ)*}. By Galois theory, Kl = F. ¢ splits in F if
and only if the decomposition group of any prime ideal @ lying over p satisfies Z(Q) C H.
Zrolq) = Gal((Ok)/(Z/qZ)) is generated by the Frobenius map x + 9. This map
must be in H. So ¢ is a square mod p. This yields another proof of the Law of Quadratic
Reciprocity: for odd primes p, ¢,

p—1

(-1)2 -p=0 (modgq)iff =0 (mod p).

41 Galois Extensions III (11/24)

Lemma 41.1. Let K is a finite extension of Q, (K : Q) = n, and Ok is the the ring of
integers of K. Suppose o € O satisfies an Fisenstein polynomial

fla)y=a"+cia™ e,

where ple; for 1 < j <n and p* | cn, then pt [Ok : Z[a]].
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Proof. Suppose p| [Ok : Z[a]]. Then there exists § € Ox with ps € Z[a], 5 & Z[a]. let

pB=by+bia+--+b, 1"

where b; € Z for all j = 0,--- ,n — 1 and some b; is not divisible by p. Let j be the
smallest index such that p { b;. Then p|b; for 0 <i < j. Let v € O be

bo+bra+---+bj_1ad™t  bjad + -4 by
p p '

v=5

Then .
I L
b b

for some ¢ € Z[a]. Since %(5 € Ok, bjagil € Ok. So

b. n—1 . N a n—1 bncn—l
NK/@<Ja ):J K/g() o A
b b p

Since pl|cn, p" Y|, hence p[b} and so p|b;. This is a contradiction. O

Remark 41.2. If |- |, on K is the extension of | - |, on Q, then

o™, = | — o™t — o Cnlw
< max (] — o™y, | - cn|y) .
By the Eisenstein condition, plci,--- ,cn. So |cjlv = |¢jlp < |plp < 1. Then |af, < 1.
Since | — cja I, = |ejlpla™ ], < |plp for all1 < j < n—1 and | — cyly = |plp, then

|a™|, = |plp. That means that K, is totally ramified over Q,. Also, (aOg)" = pOk and
so e(vlp) =n = (K : Q). Conversely, if K/Q is totally ramified at p, then there is an
a € K that satisfies an Eisenstein polynomial at p.

Theorem 41.3. Let K be a nonarchimedean complete field with absolute value | - |y,
maximal compact subring o, prime ideal p, with finite residue field k = o/p of order
q = pl. Let 7 be a generator of p. A finite separable extension L/K is totally ramified
(e=(L:K),f=1)if and only if L = K(«) where a has a minimal polynomial

an_i_clanfl_’_..._i-cn:()’ n:(LK)
where wlc; for 1 < j <n, n2fcy.

Theorem 41.4. Let K be a nonarchimedean complete field with absolute value | - |y,
maximal compact subring o, prime ideal p, with finite residue field k = o/p of order
q = plo. Let m be a generator of p. A finite separable extension L/K is unramified
(e=1,f=(L:K)=mn)if and only if L = K(«) where « is a (¢" — 1)-th root of unity in
L.
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Proof. Earlier we showed that there is an isomorphism
(Op/P)* — L*

that maps onto the (¢" — 1)-th root of unity, (the Teichmiiller units) proved by Hensel’s
Lemma. Thus, these roots of unity generate L/K. O

Theorem 41.5. Every finite separable extension L/K of complete nonarchimedean num-
ber fields has a unique intermediate field

LOFDOK

such that F/K is unramified and L/F' is totally ramified.

Corollary 41.6. Every Galois extension L/K of complete nonarchimedean number fields
has solvable Galois group.

42 Finiteness of the Class Group I (12/01)

Let K/Q be a finite extension with ring of integers Ok . The class group is
Ck =cl(Ok) = lo, /Poy -
The absolute norm of an ideal a C O is
N(a) =[Ok : q.

If p is a prime ideal lying over p in Q, then (O /p) is an extension of (Z/pZ) of degree
f(plp). So N(p) =p’.

Lemma 42.1. For any X > 0, there are finitely many ideals a C Ok with N(a) < X.

Proof. By Dedekind Theorem, every ideal has a prime factorization a = p§'---p¢ . The
Chinese Remainder Theorem says that

N(a) =[Ok /a] = N(p1)° -~ N(p,)""

There are only finitely many ideals p in O that lie over a given ordinary prime p € Z.
Forn < X, ifn= plfl ---p¥ in Z then each p; has only finitely many prime ideals p lying
over p and N(p) = pf. So if N(a) = n, and if p¢||a then p/® = N(p¢) < N(a) = n. That
proves that

o < Jos(n)

flog(p)
For a given n, that allows only finitely many prime ideals p and only finitely many expo-
nents e. That means there are finitely many a such that N(a) = n. t
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We will show that there is a constant A depending on K /Q such that every ideal class
contains an ideal b C O with N(b) < A.

Let vy, ,v, be a Z-basis of Ok. Pick some ideal a in the inverse ideal class CI_(I.
Then let

L={s=> mv;,0<m; < (N(a)"/"+1}.
j=1
Then

HL > f[ ((N(a))l/” + 1) > N(a)+ 1.
j=1

By Pigeonhole Principle, there exists a,b € £ with a # b and a = b (mod a). (there are
only N(a) = |Og/a| congruence classes.) So a —b # 0 and a — b = ab for some Og-ideal
b. Notice since (a — b) is principal, b belongs to the ideal class C. Let

n n
o
A=112 w]
j=1i=1
where o; ranges over the embeddings o, : K < C over Q. Now

n

N(a)N(b) = |[Ng/gla —b)| = |N(Zpivi)| < H (Z |p¢||vfj|>
j=1

i=1 i=1
for some integers p; € Z and |p;| < N(a)/" + 1. So
N(a)N(b) < (N(a)l/" + 1)” A

and hence

N@m+1)"
o (e

a was arbitrary chosen in CI_(l. Replace a by Ma for any M > 1. In the limit, as M — oo,
we get N(b) < A.

Theorem 42.2. Let K/Q be a finite extension, (K : Q) = n, and di be the discriminant
of K/Q. Let a be a non-zero fractional ideal in O . There is a non-zero y € a such that

4 2 n! 1/2
1< |Ng@|<(=) - e |ldi|"” N(a)

™

where r1 be the number of real embeddings K — R over Q, ro be the number of conjugate
pairs of nonreal embeddings 0,7 : K — R over Q.

62



We postpone the proof of Theorem to next lecture, but see the consequences of
it first.

Theorem 42.3 (Minkowski Bound). Given a class ¢ € Ck, there exists an Ok -ideal b € ¢

such that N '
n!

N(b) < () '7‘|dK|1/2.
T n

Proof. Choose an Og-ideal a # 0 in ¢~!. By Theorem there exists  # 0 in a such

that
4

2 n' 1/2
< — —_ A
| Nijo(x)| < <W> A7 N(a)

Since x € a, z # 0, () = ab for some Og-ideal b. Then b is in class ¢. Then

N@N(E) = [Nio(o)| < () 2l N @)

Then cancel N(a).
Remark 42.4. Theorem implies that there are only finitely many ideal classes.

Theorem 42.5. Forn > 2,
™z nm\ 2
>( (=) - — .
x| = ((4) n!) >

Proof. Choose a = Ok in Theorem Then [Ng/g(y)| > 1 and N(a) = N(Ok) =
1.

Remark 42.6. The worst case for the bound in Theorem is when vy = 5. Then

T\M2 n" 1
~) =>1
(4) n!

This can be proved by induction. If n =2, then 7 - 22—2, = § > 1. Now consider the ratio of

n + 1-term to the n-term:

n n n+1
(%)( +1)/2 . ((—rt—li-)l)J'r (z)l/Q ‘ (n + 1)n+1

()" 5 NGNS
_(Z)e e
- \4 nn

()



Note that (1 + %)n is an increasing sequence for n > 2 (converges to e). The minimal

ratio is when n = 2, which is
m\1/2 1\?
— (1+=) ~1.99>1.
(4) < + 2>

43 Finiteness of the Class Group II (12/03)

Let K/Q be a finite extension, (K : Q) = n, and dg be the discriminant of K/Q. Let r;
be the number of real embeddings K — R over QQ, 2 be the number of conjugate pairs
of nonreal embeddings 0,7 : K < R over Q. So K ®g R = R" x C" and n = ry + 2rs.
Number the embeddings o1, - - - , 0, such that

oj: K —=Rforl<j<rg,

oj: K—=Cforr +1<j<ri+mr,
and

Ojtr, =05 form +1<j <ry+ro.
Each o; induces an R-linear map

fj:Uj®id:K®QR—>(C
x@r—r(x).

Set V = K ®g R which is a n-dimensional R-vector space. Let a be a fractional ideal of

Ok. Let ay,--- ,a, be a Z-basis of a. Then {a; ® a}1<j<y is an R-basis of V. The general
point z in V can be written as
n
xr = Z a; Q x;
j=1

for z; € R.
Let
1 r1+72
Rd:{feR”:Z\xj\+2 Z «/$?+$]2-+T2§d}.
j=1 j=ri+1

Then R, is symmetric (¥ € Ry = —& € Ry), compact, convex. Moreover,

or1 (T T2 dm
vol(Ry) = dz = #
Ry n:

For a fractional ideal a C Op, choose a Z-basis ai,---,a, of a over Q and map
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> j=1a5 ®yj to

[z ] [ oi(m) oian) 1 [ w1 ] [y
Tri+1 Re(or+1(a1)) -+ Re(opy1(an)) Yri+1 Yri+1
= * = J
Lri+ry Re(oy 4ry(a1)) -+ Re(or4ry(an)) Yri+ra Yri4re
Lry+ro+1 Im(0'7,1+1(a1)) T Im(UT1+1(an)) Yri+ro+1 Yri+ra+1
L Tn | | Im(oyy 4ry(a1)) -+ Im(op4rp(an))] | Un | Yn |

Then
det(J) = 27"2|det(o;(ar))]
= 27"2|dg |2 N (a).

The image A = JZ" is a lattice in R™: a free Z-module of rank n such that R"/A has
finite volume.

vol(R"/A) = |det(J)|vol(R"/Z")
(by the multivariable change-of-variables theorem)
= [det(J)]
=272 |dg|Y2N(a).
Lemma 43.1 (Minkowski-Blichfeldt Lemma). Let A be a lattice in R™ and S a compact,

symmetric, convexr subset of R™. If vol(S) > 2"vol(R™/A), then S contains a non-zero
point i A.

Proof of Theorem[{2.4 Choose d so that
or1 (T T2 dm
vol(Ry) :/ dz = # > 27272 |dg | V2N (a).
Ry n.

Then there exists y € Z™, y # 0 such that Jy € Ry. Let y = Z?:l y;jaj € a. The setup
implies that

r1 r1+72
Dl +2 > [yl <d
j=1 j=ri+1
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Then

r1
N =[] v
j=1

. n
(Sl
- n

(Arithmetic-Geometry Mean Inequality)
d’rb

< —.

= .

Take d to be the smallest of all such values that work, then we have

1 n!
N@)| < — [ ———2"27"2|dx|'2N
\<m|nn(7%9m d| (@)

v r2
_n <4> ldx| 2N (a).

n" \mw

44 Dirichlet’s Unit Theorem (12/05)

Let Ux = O be the group of units of O, ux = {x € Ug : 2™ = 1 for some m € Z} be
the subgroup of roots of unity in Ug. Since (Q(e2™/™) : Q) = ¢(m) — oo as ¢ — oo and
(K : Q) is finite, there exists m such that ur =< €*™/™ > and ¢(m) < (K : Q). Uk is a
multiplicative Z-module (I € Z acts on u € Ux by u'.) ug is a torsion submodule. The
torsion-free quotient is Uy = Uk /.

Lemma 44.1. u € O is a unit if and only if [Nk g(u)| = 1.
Theorem 44.2 (Dirichlet’s Unit Theorem).
Uk & pg x 221,

A basis of the free part Uy is called a system of fundamental units.
Define a map

Y: K" — W =R
u > (log [u”|1<j<r, 210g [u” |ry p1<j<r +r,) -
Soifée=(1,1,---,1) € R™*"2 then
¥(u) - €= log(N (u)).
So 9 maps Ux into the hyperplane H = {& € W : - & = 0} = &+. Note that dimg H =
r1 + 19 — 1. Our goal is to show that ¢ (Uk) is a lattice of rank m +ro — 1 in H.
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Lemma 44.3. {a € Ok : [a%| < (B for all j =1,--- ,n} is a finite set.

Proof. The coefficients of

f(x):H(IE—CLU):xn+clxn_1+...+cn

o

satisfies |c¢;| < (?) 7. This allows at most finitely many f(z) € Z[z], each of which has
finitely many roots. O

Corollary 44.4. This proves ¥(Uk) is discrete in W.
Corollary 44.5. ker(¢)) = ug.

Proof. By Lemma ker(t)) is a finite subgroup of {a € K* : |a%| =1 for all j} C K*.
Hence, ker(%)) is cyclic and thus ker(¢) = pg. O

We will next prove
Theorem 44.6. ¢(Uk) spans H.
Then we will use a geometry theorem.

Theorem 44.7. If A is a discrete subgroup of a real vector space R™ that spans R™, then
A is a free Z-module of rank n and vol(R™/N\) < oo.

Corollary 44.8. )(Uk) is a free Z-module of rank r1 + ro — 1.

Proof of Theorem[{{.] Suppose 9)(Uk) does not span H = &+. Then there is another
hyperplane H, = b+ with b = 0, b € w, b is not any scalar multlple of €, such that
Y (Ug) C Hy. By orthogonalization of b relative to €, we may assume b-&=0. We will
show that there exists u € Ug with ¢ (u) - b # 0.
Consider the map
hiK—V=K®gRXR" x C"
a— (a%).
We have seen that h(Og) is a lattice in V' of rank n. Let £ be a symmetric, compact,

convex region in V. The Minkowski-Blichfeldt Lemma says that there is a constant A > 0
such that if vol(£) > A then £ contains a non-zero point h(a), a € Og\{0}. Let

L={TeV:|zj|<pj,1<j<ri+mr}CV.
Then

2 ry,T 2 2
vol(£) = | [ 20 [T =] =27"p1 pripdin 02 s
1<j<r r1+1<j<ri+rz
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Choose p’s so that this equals A. Then for o € O with a # 0, h(a) € L, we have

A
[Nijgla)] < p1-- pr1p12"1+1 T p%1+r2 T origre A

Also |[Ng/g(a)| > 1. There are finitely many principal ideals (5;) C O with [N (5;)] < A’

Let

B = max [4(8;) - Bl

Claim: There is a vector 7 C V such that 7- &= log A’, and 7- b > B + (log A") 3 |bj].
Actually

log A B+1-
pogds DAy
g-é b.b

works.
Define the p;’s by

log p; = j-th coordinate of 7, 1 <j <1y,
2log p; = j-th coordinate of 7, r1 +1 <7 <7y 4 ro.
Then 7- € = log A’ implies
pL- prlpgl—l-l T 1072"1+7'2 = A,'
So we have o € Ok, o # 0 with |a% | < p; for all j. So

][ N N

[ILizj 0%l = Ilisy pi A

So
Pi <

A/ |Oégj, S p]

So
log p; — log A’ < log |a| < log p;.

Since |N(a)| < A’, there is a j such that (o) = (8;). Then u = % € Uk. Hence,

W(a) b= (¥(a) —(B;)) - b

> (a)-b— B
. r1+7r2

>7b— Y (logA')|b;| — B
j=1

> 0 (by the choice of 7).

That proves i € Hy and hence finishes the proof. O
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