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Algorithm Analysis 

w Objectives 
⎯  Analyze the efficiency of algorithms 
⎯  Analyze a few classic algorithms 

•  Linear Search, Binary Search, Selection Sort 
⎯  Know the differences between O(1), O(n), 

O(log n), and O(n2) 
⎯  Visualize runtime differences with 

experiments 



Algorithms continued 

w Computer Scientists focus on problems such as 
⎯  How fast do algorithms run 
⎯  How much memory does the process require 

w Example Applications 
⎯  Make the Internet run faster 

•  Pink-Degemark's routing algorithms 
•  Gene Meyers determined the sequences of the Human 

genome using his whole genome shotgun algorithm 



Analysis of Algorithms  

w We have ways to compare algorithms 
⎯  Generally, the larger the problem, the longer it 

takes the algorithm to complete  
⎯  Sorting 100,000 elements can take much more 

time than sorting 1,000 elements   
•  and more than 10 times longer 

⎯  the variable n suggests the "number of things" 
⎯  If an algorithm requires 0.025n2 + 0.012n + 

0.0005 seconds, just plug in a value for n  



A Computational Model 

w To summarize algorithm runtimes, we can 
use a computer independent model 

⎯   instructions are executed sequentially 
⎯   count all assignments, comparisons, and 

increments there is infinite memory 
⎯   every simple instruction takes one unit of time 

 



Simple Instructions 

w Count the simple instructions 
⎯  assignments have cost of 1 
⎯  comparisons have a cost of 1 
⎯  let's count all parts of the loop 

         for (int j = 0; j < n; j++) 

•  j=0 has a cost of 1, j<n executes n+1 times,and j++ 
executes n times for a total cost of 2n+2 

⎯  each statement in the repeated part of a loop have 
have a cost equal to number of iterations 

 



Examples 
                   
       Cost 

sum = 0;                     ->  1  
sum = sum + next;               ->  1   Total Cost: 2 

                    
             Cost 

for (int i = 1; i <= n; i++)    ->  1 + n+1 + n = 2n+2 
  sum = sum++;                  ->  n   Total Cost: 3n + 2 
 
 

             Cost 
k = 0                           ->  1 
for (int i = 0; i < n; i++)     ->  2n+2 
  for (int j = 0; j < n; j++)   ->  n(2n+2) = 2n2 +2n 
    k++;                        ->  n2  Total Cost: 3n2 + 4n + 3` 



Total Cost of Sequential Search 
              
         Cost 

 
  for (int index = 0; index < n; index++) ->  2n + 2 
    if(searchID.equals(names[index])     ->  n  
      return index;                       ->  0 or 1 
  
  return -1 // if not found     ->  0 or 1 
 
 
Total cost = 3n+3 
  



Different Cases 
w The total cost of sequential search is 3n + 3  

⎯  But is it always exactly 3n + 3 instructions?  
⎯  The last assignment does not always execute  

•  But does one assignment really matter?  

⎯  How many times will the loop actually execute?  
•  that depends   

⎯  If searchID is found at index  0:  _____ iterations 
•  best case 

⎯  If searchID is found at index n-1:_____ iterations 
•  worst case 



Typical Case of sequential (linear) 
w The average describes the more typical case 
w First, let the the entire cost be simplified to n   

⎯   Assume the target has a 50/50 chance of being in the array 
•  n comparisons are made: worst-case occurs 1/2 the time  

⎯  Assume if it's in a, it's as likely to be in one index as another 
 

 
 
 
    Half the time it is n comparisons, the other half it is n/2 comparisons 

⎯  So the typical case is 3/4 n comparisons 
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The Essence of Linear Search 

n 

75 

100 

Plot the function this is why sequential search is also  
called linear search.  As n increases, runtime  forms a line  

f(n) 

45 

60 



Linear Search Continued 

u  This equation is a polynomial: 3n + 3 
u  The fastest growing term is the high-order term 
u  The high order term (which could be n2 or n3), 

represents the most important part of the 
analysis function 

u  We refer to the rate of growth as the order of 
magnitude, which measure the rate of growth 



Rate of Growth 

w Imagine two functions: 
        f(n) = 100n     g(n) = n2 + n 

⎯  When n is small, which is the bigger function? 
⎯  When n is big, which is the bigger function? 
⎯  We can say: g(n) grows faster than f(n) 



 Rate of Growth, another view 
Function growth and weight of terms as a percentage of 
all terms as n increases for 

 f(n) = n2 + 80n + 500 

Conclusion: consider highest order term with the coefficient 
dropped, also drop all lower order terms 



Definition 
w The asymptotic growth of an algorithm 

⎯  describes the relative growth of an algorithm as n gets 
very large  

⎯  With speed and memory increases doubling every two 
years, the asymptotic efficiency where n is very large is 
the thing to consider 

⎯  There are many sorting algorithm that are "on the order 
of" n2 (there are roughly n×n instructions executed) 

⎯  Other algorithms are "on the order of"  n×log2n   
•  and this is a huge difference when n is very large  



Constant Function 
w Some functions don't grow with n 

⎯  If the sorting program initializes a few variables 
first, the time required does not change when n 
increases 

⎯  These statements run in constant time 
•  e.g. construct an empty List with capacity 20 

⎯  The amount of time can be described as a 
constant function f(n) = k, where k is a constant  

⎯  it takes ~0.0003 seconds no matter the size of n 



Big O 
w Linear search is "on the order of n", which can be 

written as O(n) to describe the upper bound on the 
number of operations 

w This is called big O notation 
w Orders of magnitude: 

  O(1)  constant (the size of n has no effect) 
          O(n)   linear  
             O(log n) logarithmic 

  O(n log n)  no other way to say it, John K’s License plate 
  O(n2)  quadratic 
  O(n3)  cubic 
  O(2n)  exponential 



Binary Search 
w We'll see that binary search can be a more 

efficient algorithm for searching 
  

       If the element in the middle is the target 
         report target was found and the search is done 

  if the key is smaller 
                 search the array to the left 

  Otherwise 
                  search the array to the right 

w This process repeats until the target is found 
or there is nothing left to search 

w Each comparison narrows search by half 



Binary Search Harry 
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How fast is Binary Search? 

w Best case: 1 
w Worst case: when target is not in the array 
w At each pass, the "live" portion of the array is 

narrowed to half the previous size. 
w The series proceeds like this: 

⎯  n , n/2, n/4, n/8, ... 
w Each term in the series represents one 

comparison How long does it take to get to 1? 
⎯  This will be the number of comparisons 



Binary Search (con.) 

w Could start at 1 and double until we get to n 
       1, 2, 4, 8, 16, ... , k >= n   or 
       20, 21, 22, 23, 24, ... , 2c >= n 

w The length of this series is c+1 
w The question is 

  2 to what power c is greater than or equal to n? 
•  if n is 8, c is 3 
•  if n is 1024, c is 10 
•  if n is 16,777,216, c is 24    

w Binary search runs O(log n)   logarithmic 



Comparing O(n) to O(log n) 

Rates of growth and logarithmic functions 

   Power of 2          n             log2n   
         24                16             4   
         28              128             8   
         212              4,096         12   
         224               16,777,216      24  



Graph Illustrating Relative 
Growth   n, log n, n2 
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Other logarithm examples 

w The guessing game: 
⎯  Guess a number from 1 to 100 

•  try the middle, you could be right 
•  if it is too high 

–  check near middle of 1..49 
•  if it is too low 

–  check near middle of 51..100 

⎯  Should find the answer in a maximum of 7 tries 
•  If 1..250, a maximum of 2c >= 250, c == 8 
•  If 1..500, a maximum of 2c >= 500, c == 9 
•  If 1..1000, a maximum of 2c >= 1000, c == 10 



Logarithmic Explosion 

w Assuming an infinitely large piece of paper 
that can be cut in half, layered, and cut in half 
again as often as you wish.  

⎯  How many times do you need to cut and layer 
until paper thickness reaches the moon? 

⎯  Assumptions 
•  paper is 0.002 inches thick 
•  distance to moon is 240,000 miles 

–  240,000 * 5,280 feet per mile * 12 inches per foot =  
152,060,000,000 inches to the moon 



Examples of Logarithmic Explosion 

w The number of bits required to store a binary 
number is logarithmic add 1 bit to get much larger ints 

⎯  8 bits stored 256 values   log2256 = 8 
⎯  log 2,147,483,648 = 31 

w The inventor of chess asked the Emperor to be 
paid like this: 

⎯  1 grain of rice on the first square, 2 on the next, 
double grains on each successive square  263 



Compare Sequential and 
Binary Search 

w Output from CompareSearches.java (1995) 
 

Search for 20000 objects 
 
Binary Search 
#Comparisons: 267248 
     Average: 13 
    Run time: 20ms 
 
Sequential Search 
#Comparisons: 200010000 
     Average: 10000 
    Run time: 9930ms 
 
Difference in comparisons : 199742752 
Difference in milliseconds: 9910 
 

0	


200	


400	


600	


800	


1000	


1200	


0	
 200	
 400	
 600	
 800	
 1000	


Seconds  2013	




O(n2) quadratic 

w O(n2) reads on the order of n squared or quadratic 
w When n is small, rates of growth don’t matter 
w Quadratic algorithms are greatly affected by 

increases in n 
⎯  Consider the selection sort algorithm 

•  Find the largest, n-1 times 
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n

Actual observed data for O(n2) sort 

       1          10            20           3 0       40      
                                            in  thousands 



Two O(n2) algorithms 

w Many known sorting algorithms are O(n2) 
w Given n points, find the pair that are closest 
  Compare p1 with p2, p3, p4, p5  (4 comparisons) 

  Compare p2 with p3, p4, p5      (3 comparisons) 

  Compare p3 with p4, p5          (2 comparisons) 

  Compare p4 with p5              (1 comparisons) 

⎯  When n is 5, make 10 comparisons 
⎯  In general, #comparisons is  

               n(n-1) / 2  == n2/2 - n/2  

⎯  highest order term is n2, drop ½ and runtime 
is O(n2) 



O(n3) algorithms 

w Matrix Multiplication (naïve): 
 
for(int i = 0; i < m.length; i++) { 
  for(int j = 0; j < m2.length - 1; j++) { 
    for(int k = 0; k < m2.length; k++){ 
      m[i][j] += m[i][k] * m2[k][j]; 
    } 
  }  

  }  



Big O and Style Guidelines 

w Big O is similar to saying the runtime is 
less than or equal to Big O notation. 

⎯  O(f) is an upper bound 
w Don't use constants or lower-order terms 

⎯  These are no-nos for now (you will use 
coefficients in C Sc 345) 

  O(n2 + n) should be written O(n2) 
  O(5500n) should be written O(n) 
  O(2.5n) should be written O(n) 



Properties of Big-O 

Summarizing two main properties 
 
If f(n) is a sum of several terms, the one with the largest growth 
rate is kept, and all others omitted 
 
If f(n) is a product of several factors, any constants (terms in the 
product that do not depend on n) are omitted – which means you 
can drop coefficients 
  
 



Properties of Big-O 

We can drop coefficient 
   
Example: 
 
f(n) = 100*n 
then f(n) is O(n) 



Summation of same Orders 

The property is useful when an algorithm contains 
several loops of the same order 
 
Example:  
 

 f(n) is O(n)  
 f2(n) is O(n)  
 then f(n) + f2(n) is O(n) + O(n), which is O(n) 

 



Summation of different Orders 

This property works because we are only concerned 
with the term of highest growth rate 
 
Example:  
 

 f1(n) is O(n2)  
 f2(n) is O(n)  
 so f1(n) + f2(n) = n2 + n is O(n2) 

 



Product 
This property is useful for analyzing segments of an 
algorithm with nested loops 
 
Example:  
 

 f1(n) is O(n2)  
 f2(n) is O(n)  
 then f1(n) x f2(n) is O(n2) x O(n),  which is O(n3) 



Limitations of Big-Oh Analysis 

w Constants sometimes make a difference 
⎯  n log n may be faster than 10000n 
⎯  Doesn't differentiate between data cache 

memory, main memory, and data on a disk--there 
is a huge time difference to access disk data  
•  thousands of times slower 

⎯  Worst case doesn't happen often 
•  it's an overestimate 



Quick Analysis 

w Can be less detailed  
w Running time of nested loops is  

⎯  the product of each loop's number of iterations 

w Several consecutive loops 
⎯  the longest running loop 

⎯  3n is O(n) after all 



Runtimes with for loops 
    int n = 1000; 
    int[] x = new int[n]; 

w  O(n)  
    for(int j = 0; j < n; j++) 
      x[j] = 0; 
 

w O(n2) 
    int sum = 0; 
    for (int j = 0; j < n; j++) 
      for (int k = 0; k < n; k++) 
         sum += j * k; 
 
 



Run times with for loops 

w O(n3) 
    for (int j = 0; j < n; j++) 
      for (int k = 0; k < n; k++) 
        for (int l = 0; l < n; l++) 
          sum += j * k * l; 

w O(n) 
    for (int j = 0; j < n; j++) 
      sum++; 
    for (int j = 0; j < n; j++) 
      sum--; 

w O(log n)      
    for (int j = 1; j < n; j = 2 * j) 
      sum += j;   



Analyze this 

public void swap(int[] a, int left, int right) { 
  int temp = array[left]; 
  array[left] = array[right]; 
  array [right] = temp; 
} 
 



Analyze that 

for (int j = 0; j < n; j++) 
 sum += l; 
 
for (int k = 0; k < n; k++) 
 sum += l; 
 
for (int l = 0; l < n; l++) 
  sum += l; 
 



Analyze that 

for (int j = 0; j < n; j++) 
  for (int k = 0; k < n; k++) 
    sum += k + l; 
 
for (int l = 0; l < n; l++) 
  sum += l; 
 



Analyze this 

for (int top = 0; top < n - 1; top++) { 
  int smallestIndex = top;                     
  for (int index = top; index < n; index++)  { 
    if(a[index] < a[smallestIndex])          
      smallestIndex = index;                   
  } 
  // Swap smallest to the top index 
  swap(a, top, smallestIndex);               
}  


