
Algorithm-Based Secure and Fault Tolerant

Outsourcing of Matrix Computations

Amrit Kumar and Jean-Louis Roch

MOAIS : LIG-INRIA Grenoble joint team
amrit.kumar@inria.fr,jean-louis.roch@imag.fr

Abstract

We study interactive algorithmic schemes for outsourcing matrix computations on un-
trusted global computing infrastructures such as clouds or volunteer peer-to-peer platforms.
In these schemes the client outsources part of the computation with guaranties on both
the inputs’ secrecy and output’s integrity. For the sake of efficiency, thanks to interaction,
the number of operations performed by the client is almost linear in the input/output
size, while the number of outsourced operations is of the order of matrix multiplication.
Our scheme is based on efficient linear codes (especially evaluation/interpolation version
of Reed-Solomon codes). Confidentiality is ensured by encoding the inputs using a se-
cret generator matrix, while fault tolerance is ensured together by using fast probabilistic
verification and high correction capability of the code. The scheme can tolerate multiple
malicious errors and hence provides an efficient solution beyond resilience against soft er-
rors. These schemes also allow to securely compute multiplication of a secret matrix with
a known public matrix. Under reasonable hypotheses, we further prove the non-existence
of such unconditionally secure schemes for general matrices.

1 Introduction

Computational power is often asymmetric. On the one hand, global computing platforms
such as clouds available through Internet provide a large scale of computational power and
resources, but remain susceptible to various kinds of malicious attacks and faults. While on the
other hand, a relatively weak local client is secure and reliable. The goal of today’s computing
infrastructures is to provide solutions to draw the benefits of both of these components while
ensuring secrecy of certain inputs.

With the advent of general Fully-Homomorphic Encryption (FHE) schemes as in [7], any
computation can be securely outsourced. However, such schemes suffer from efficiency issues
as the key size and the cipher-text size are too long compared to the plain-text size. This
makes large matrix computations impractical to outsource. A more specific symmetric scheme
presented in [9] can be extended to operate on matrices. Despite the gain in efficiency the scheme
defeats the purpose of outsourcing as it involves matrix-matrix multiplication. Furthermore,
these schemes do not address perfect secrecy.

In an outsourcing scenario the client should be able to efficiently verify the correctness
of the result returned by the untrusted platform. Solutions for general computations either
rely on Probabilistically Checkable Proofs (PCPs) [1], or FHE. Considering their complexity,
these constructions are currently beyond practical use. However, authors in [11] propose a new
construction that can efficiently verify general computations under cryptographic assumptions.
This construction compactly encodes computations as quadratic programs ([6]) which are then
encoded as elements of a group equipped with a bi-linear map. The weak client receives a proof
(of constant size) along with the computational result. The verification procedure involves
group operations. However, this scheme does not provide secrecy of inputs.

1



Furthermore, on large scale computing systems error resilience is an issue. Error probability
increases with the node count ([4]). Algorithm-based Fault Tolerance (ABFT) [8] solutions
have been explored for matrix computations without considering privacy. Focusing on a small
rate of soft errors, an ABFT dense linear system solver is provided in [4] that is based on a low
density parity check matrix. Soft errors in general are produced in case the computing system
is subject to cosmic radiations. The complexity of localising and correcting errors using these
techniques however increases with the number of errors.

Yet, on externalised computing platforms, malicious attacks that may corrupt a large num-
ber of intermediate computations are of concern. Such massive attacks occur due to Trojan
attacks, and more generally orchestrated attacks against widespread vulnerabilities of a specific
operating system that may result in the corruption of a large number of resources.

In [12], an ABFT efficient solution for vector-matrix multiplication is proposed for integrity
against massive attacks and is based on BCH ([3]) codes. In this work we extend this solution in
both directions. First, to provide secrecy, we use a secret code, based on a private Vandermonde
generator matrix. Second, we extend the scheme to more general matrix computations such as
LU factorisation or matrix powering (with application to connected components in a graph),
where the output data is non-linear in the input data.

A major constraint for these constructions is efficiency : trivial lower bounds for the cost of
an interactive scheme are the size of the input and the output (memory cost) and the work of
the best known algorithm (computational cost).

Our symmetric scheme for matrix multiplication is almost optimal with respect to both
the input/output size on the reliable resource (user side) and the best upper bound on the
unreliable one (global computing platform side). In section 3 the scheme leads to interactive
protocols to efficiently outsource other matrix computations. Finally in section 4 we provide
new impossibility results for achieving perfect secrecy for outsourcing multiplication of a secret
matrix and a known public matrix. Yet, partially secret schemes are provided that tolerate
massive errors.

2 ABFT Dense Matrix Multiplication

As most of the linear algebra computations reduce to dense matrix-matrix multiplication, the
design of interactive zero-knowledge protocols for matrix computations is based on outsourcing
matrix multiplication. For the sake of clarity, we restrict in the sequel to k×k square matrices.
The goal of these protocols is to keep the complexity of the operations almost linear in the
size of the input (O(k2)) on the weak client, while on the unreliable cloud, a complexity Õ(nω)
would be acceptable, where 2 < ω ≤ 3 denotes the exponent in the matrix multiplication cost.

A standard way for ABFT matrix multiplication consists in encoding the left and right
operands by multiplying each by the generator matrix of a linear code ([8]). These codes
defined over a base field F are maximum distance separable. For any n with card(F) ≥ n > k,
an (n, k) code is characterized by a k × n generator matrix G. A source vector x of size k is
encoded by y = x · G. In particular, to correct very few errors, G is chosen as a LDPC (Low
Density Parity Check) code with O(k) coefficients. To correct higher error rate G can be chosen
as Vandermonde matrix (evaluation-interpolation code) that defines a Reed-Solomon (RS) code
and corrects any configuration of (n− k)/2 errors in y. For RS code we assume that F is large
enough.

The proposed secured ABFT protocol is as follows. The weak client initiates the protocol
by generating two (n, k) RS codes, defined by G1 and G2. The input k × k matrices A and B
are encoded as : GA = tr(G1) · A and GB = B ·G2, where tr denotes the transpose map. G1



and G2 are kept secret which eventually renders A and B secret. The client sends GA and GB

to the global platform that performs GA · GB and sends back the result. Various errors may
occur during computations or communication. The received matrix R̃ is seen as a perturbation
of the correct encoded result GC = GA ·GB . Upon decoding R̃ = GC + E, where En×n is the
error matrix, client obtains the desired matrix product C = A ·B. Thanks to unique decoding,
the client can correct up to (n− k)2/4 errors in R̃ to recover C.

The cost of computation on the reliable client sums to the cost of encoding and decoding.
The encoding of each row or column reduces to k polynomial evaluations of degree k in n points,
each computed in Õ(n) with precomputation, so Õ(n2) for the full matrices A and B. With

fast extended GCD, decoding can be performed in Õ(n) for each row or column, so Õ(n2) for

the matrix R̃. Multiplication performed by the remote platform costs O(nω).

The client also has the possibility to verify correctness of the result. This verification al-
lows to detect extremely unreliable or collusive workers and even prevents man-in-the-middle
(MITM) attacks. Verification allows to abort an interactive protocol while reducing computa-
tional overhead. In MITM scenario, an adversary might simply intercept the communication
between the client and the platform and replaces the result by some other good-looking matrix,
ex. the adversary might replace the matrix R̃ by GA ·D ·GB for a random D. For verification
i.e. testing if C = A · B, we propose to use probabilistic Freivalds’ algorithm ([5]) which runs
in O(n2), and states the correctness with good probability.

The evaluation points in general are randomly chosen and kept secret. However, if secrecy
is discarded, the evaluation points can be chosen as {1, α, α2, . . . , αcard(F)−2}, where α is a gen-
erator of the multiplicative group of the base field F. With this choice of evaluation points, Fast
Fourier Transformation (FFT) allows fast encoding and decoding and provides a logarithmic
advantage. We note that a small field (such as F2) would not provide enough evaluation points.

3 Illustrative Examples

Interactive matrix inversion. We use relation (T ) where R = (A−B ·D−1 ·C) and suppose
that D and R are invertible. Interactive matrix inversion requires to recursively calculate D−1

and R−1.

[
An×n Bn×n

Cn×n Dn×n

]−1

=

[
R−1 −R−1 ·B ·D−1

−D−1 · C ·R−1 D−1 +D−1 · C ·R−1 ·B ·D−1

]
(T )

Let T client(n) be the client’s cost of outsourcing while Tworker(n) be the cost on the worker’s
side. Then T client(2n) = 2T client(n)+Θ(Cost of outsourcing multiplication) and Tworker(2n) =

2Tworker(n) + O(nw). Hence, inverse can be outsourced with Tworker(n) = Õ(nw) and

T client(n) = Õ(Cost of outsourcing multiplication).

Interactive block LU decomposition. To outsource block LU we use the relation :[
A B
C D

]
=

[
I 0

C ·A−1 I

]
×

[
A B
0 S

]
where S = D − C · A−1 · B. Computation of A−1 is

outsourced and so are the multiplications involved in computing S. Recursively outsourcing of
decomposition of S leads to the same client-cost as in outsourcing multiplication.

Linear system solving. Efficient Block LU decomposition leads to a Õ(n2) algorithm for
solving linear system of equations : Ax = b with A and b secret. The client interactively
retrieves the LU decomposition of A and outsources inversion of L and U , and finally computes
the product U−1 · L−1 · b locally in O(n2).



4 On Information-Theoretic Security

Considering the fact that an RS code is parametrized using only n coefficients, the secrecy
provided by the scheme to encrypt an n × n matrix is very limited. We analyse the existen-
tial possibility of similar schemes which could provide perfect secrecy. We focus our search to
only those schemes which allow to outsource multiplication of a secret matrix with a public
matrix. We consider a symmetric encryption scheme defined using three algorithms KG, E , and
D, denoting key-generation, encryption and decryption algorithms respectively. We consider
the spaces K,M and C denoting the key-space, clear-text space and the cipher-text space re-
spectively. In the sequel we consider encryption schemes of type E(K,M) = K ·M for suitable
K and M, we call it product-based encryption. In the following we write linear time cost to
denote Õ(n2) complexity.

4.1 Impossibility Results

Lemma 4.1. If there exists a product-based encryption with cost O(f(n)) for invertible matrices
which achieves perfect secrecy then the cost of matrix multiplication is O(f(n)).

Proof. Perfect secrecy is defined as: ∀A invertible ∀K ∈ K , ∀A′ invertible ∃K ′ verifying A′ ·
K ′ = A ·K, so K ′ = (A′)−1 ·A ·K. Thus K ⊃ {M1 ·M2 ·K |M1,M2 invertible and K ∈ K}.
Now consider two invertible matrices A and B. We choose K1 ∈ K and compute K2 = E(K1, B)
in O(f(n)). As K2 = B ·K1 = In · B ·K1, K2 belongs to K. Hence A · B = D(K1, E(K2, A))
can be computed in O(f(n)).

Corollary 1. Unless there exists a linear time algorithm for matrix multiplication, there does
not exist a product-based matrix encryption scheme for invertible matrices which ensures perfect
secrecy and runs with linear cost.

The following lemma characterises perfectly secure encryption schemes which allow a user
to export matrix multiplication of a secret matrix with a known public matrix. For lemma
4.2 we consider an encryption scheme defined over (M, C,K) where M is the set of all n × p
matrices and C the set of all m× n.

Lemma 4.2. If In (p = n) belongs to M and the scheme satisfies : E(K,M1) ·M2 = E(K,M1 ·
M2) for all M1, M2 in the message space M and for each key K ∈ K then, E(K,M) = S(K)·M
for some S(K) in C.

Lemma 4.2 proves that any such encryption scheme with identity matrix in the message
space must be a product-based matrix encryption. The key-space K is the set of encryptions
of the identity matrix.

Main theorem. We now present our main theorem which builds on a weaker and more
general property than the one used in Lemma 4.2 : E(K,M1)·M2 = E(K,M1 ·M2) ∀M1, M2 ∈
M and ∀K ∈ K.

For this purpose, we suppose that there are two functions φEval : C × M → I and ψ :
K × I → M where I is an intermediate subspace of the space containing all m× n matrices.

Theorem 4.3. If In belongs to M, and ∀M1,M2 ∈ M ψ(K,φEval(E(K,M1),M2)) =M1 ·M2,
with φEval(C,M) = C ·M ∀C ∈ C and ∀M ∈ M, then the encryption scheme is product-based.



Proof. We have, ∀M1,M2 ∈ M and ∀K ∈ K ψ(K, E(K,M1) ·M2) =M1 ·M2 (1). Choosing
M2 = In in (1), we obtain ∀M1 ∈ M, ∀K ∈ K ψ(K, E(K,M1)) =M1 which implies that ψ(K)
is the decryption function for K. If the encryption algorithm was deterministic, encryption of
equation (1) using K gives E(K,M1) ·M2 = E(K,M1 ·M2) ∀M1,M2 ∈ M. The same can be
obtained for randomized encryption if the same random coins are used for encryption as the
one used in the inner encryption in LHS of (1). Lemma 4.2 now applies and we prove that the
scheme is product-based.

Combining Theorem 4.3 and corollary 1, we conclude that no matrix encryption scheme
exists which runs in linear time and which can evaluate the product of an encrypted and a public
matrix. The special case in which Theorem 4.3 has been proven assumes a reasonable hypothesis
knowing the fact that, we are only interested in characterising schemes which yield matrix
product. We further claim that no efficient (running in linear time) multiplicative homomorphic
encryption over matrices exists. This follows from the characterization of automorphism ([10])
maps over the general linear group of degree n (i.e. the set of all n× n invertible matrices over
a ring).

4.2 Alternatives for Partial Secrecy

In subsection 4.1, we proved that no outsourcing scheme for matrix multiplication exists which
could attain perfect secrecy. For many applications perfect secrecy can be an overkill, a scheme
ensuring quantified secrecy would be enough.

Noisy shares in Shamir’s protocol. A Shamir based (n, (n−1)/2) threshold scheme ([13])
is described in [2]. We can design a Shamir’s protocol based encryption scheme for single
worker with quantified and partial secrecy. The client wishes to outsource multiplication of two
matrices A and B. She chooses polynomials of degree k − 1 to hide the entries of the matrices
and r+k shares of points for each one of them. The first r values are noises (ri, P (ri)) i.e. false
values, and the remaining (ki, P (ki)) for the correct values, where P is the polynomial for each
entry of A and B.

The client then permutes these shares and sends them to the worker. The worker computes
all the matrix multiplications and returns the result, the client upon reception applies the inverse
permutation and filters out the correct matrices and by interpolation retrieves the result.

The security of the schemes relies on the secret permutation and hence the worker has to
find the correct permutation from (r + k)! choices.

Using product-based encryption. An intermediate solution would be to design a product-
based scheme where the set of coding matrices G is the set of matrices defined using O(n)
parameters. Such a scheme can be easily extended to design a multiplicative homomorphic
encryption scheme. The idea is to encrypt A as CA = tr(G1) ·S1 ·A and B as CB = B ·S2 ·G2

where S1 and S2 are defined using O(n) parameters, and G1, G2 are generator matrices. The
matrix product A · B can be retrieved by first decoding and then multiplying left by S−1

1 and
right by S−1

2 .
Clearly, the security of the encryption scheme relies on the size of the key-space. We denote

G to be the set of all matrices over a finite field F of size |F| with O(n) coefficients and set
the key-space K to be the set of all matrices which can be written as an arithmetic expression
over matrices of constant size say λ. In other terms a key k is a finite sum of finite product of
matrices over F . For example k = K1 ·K2 ·K3 +K4 ·K5 +K6 where Ki ∈ F .



As the matrices in G have only O(n) coefficients, |G| = |F|O(n) ·
(

n
2

O(n)

)
. Furthermore,

the permissible arithmetic operations are either {+, ·, {·}−1, {·}1} i.e. addition, multiplication,
inverse or identity, |K| = |F|λ · 4λ.

5 Conclusion

In this paper, we design an efficient alternative to FHE based outsourcing with practicality
and acceptable security (for certain applications). Our ABFT solution is resilient against ma-
licious errors and hence goes beyond the correction of soft errors and can even handle MITM
attacks. The scheme computes matrix operations such as matrix-matrix multiplication and can
be extended to interactive protocols performing more complex operations on matrices.

The intriguing question that remains is whether problems with known polynomial time
algorithms admit unconditionally secure outsourcing schemes. This question is even more
difficult to answer when the gap between the targeted cost of the outsourcing scheme and the
best known algorithm is too narrow. We addressed the problem of matrix-matrix multiplication,
with O(n3) vs. Õ(n2) cost gap. Another perspective is to extend the ABFT scheme to work
on floating point numbers and measure the stability of computations.

References

[1] Sanjeev Arora. Probabilistic checking of proofs: a new characterization of np. In Journal of the
ACM, pages 2–13, 1998.

[2] Mikhail J. Atallah and Keith B. Frikken. Securely outsourcing linear algebra computations. In
Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’10, pages 48–59, New York, NY, USA, 2010. ACM.

[3] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group codes. Infor-
mation and Control, 3(1):68–79, March 1960.

[4] Peng Du, Piotr Luszczek, and Jack Dongarra. High performance dense linear system solver with
resilience to multiple soft errors. In ICCS, pages 216–225, 2012.

[5] Rusins Freivalds. Probabilistic machines can use less running time. In IFIP Congress, pages
839–842, 1977.

[6] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[7] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[8] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput., 33(6):518–528, June 1984.

[9] Aviad Kipnis and Eliphaz Hibshoosh. Efficient methods for practical fully homomorphic
symmetric-key encrypton, randomization and verification. Cryptology ePrint Archive, Report
2012/637, 2012. http://eprint.iacr.org/.

[10] Bernard R. McDonald. Automorphisms of gl n(r). Transactions of the American Mathematical
Society, 215:145–159, 1976.

[11] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[12] Jean-Louis Roch and Sebastien Varrette. Probabilistic certification of divide & conquer algorithms
on global computing platforms. application to fault-tolerant exact matrix-vector product. In ACM
publishing, editor, Parallel Symbolic Computation’07 (PASCO’07), London, Ontario, Canada, July
2007.

crypto.stanford.edu/craig
http://eprint.iacr.org/


[13] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.


	Introduction
	ABFT Dense Matrix Multiplication
	Illustrative Examples
	On Information-Theoretic Security
	Impossibility Results
	Alternatives for Partial Secrecy

	Conclusion

