

This page intentionally left blank

Acquisitions Editor: Matt Goldstein
Project Editor: Maite Suarez-Rivas
Production Supervisor: Marilyn Lloyd
Marketing Manager: Michelle Brown
Marketing Coordinator: Jake Zavracky
Project Management: Windfall Software
Composition: Windfall Software, using ZzTEX
Copyeditor: Carol Leyba
Technical Illustration: Dartmouth Publishing
Proofreader: Jennifer McClain
Indexer: Ted Laux
Cover Design: Joyce Cosentino Wells
Cover Photo: © 2005 Tim Laman / National Geographic. A pair of weaverbirds work

together on their nest in Africa.
Prepress and Manufacturing: Caroline Fell
Printer: Courier Westford

Access the latest information about Addison-Wesley titles from our World Wide Web
site: http://www.aw-bc.com/computing

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Kleinberg, Jon.
Algorithm design / Jon Kleinberg, Éva Tardos.—1st ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-29535-8 (alk. paper)

1. Computer algorithms. 2. Data structures (Computer science) I. Tardos, Éva.
II. Title.

QA76.9.A43K54 2005
005.1—dc22 2005000401

Copyright © 2006 by Pearson Education, Inc.

For information on obtaining permission for use of material in this work, please
submit a written request to Pearson Education, Inc., Rights and Contract Department,
75 Arlington Street, Suite 300, Boston, MA 02116 or fax your request to (617) 848-7047.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or any toher media embodiments now known or hereafter to
become known, without the prior written permission of the publisher. Printed in the
United States of America.

ISBN 0-321-29535-8
1 2 3 4 5 6 7 8 9 10-CRW-08 07 06 05

http://www.aw-bc.com/computing

About the Authors

Jon Kleinberg is a professor of Computer Science at
Cornell University. He received his Ph.D. from M.I.T.
in 1996. He is the recipient of an NSF Career Award,
an ONR Young Investigator Award, an IBM Outstand-
ing Innovation Award, the National Academy of Sci-
ences Award for Initiatives in Research, research fel-
lowships from the Packard and Sloan Foundations,
and teaching awards from the Cornell Engineering
College and Computer Science Department.

Kleinberg’s research is centered around algorithms, particularly those con-
cerned with the structure of networks and information, and with applications
to information science, optimization, data mining, and computational biol-
ogy. His work on network analysis using hubs and authorities helped form the
foundation for the current generation of Internet search engines.

Éva Tardos is a professor of Computer Science at Cor-
nell University. She received her Ph.D. from Eötvös
University in Budapest, Hungary in 1984. She is a
member of the American Academy of Arts and Sci-
ences, and an ACM Fellow; she is the recipient of an
NSF Presidential Young Investigator Award, the Fulk-
erson Prize, research fellowships from the Guggen-
heim, Packard, and Sloan Foundations, and teach-
ing awards from the Cornell Engineering College and

Computer Science Department.

Tardos’s research interests are focused on the design and analysis of
algorithms for problems on graphs or networks. She is most known for her
work on network-flow algorithms and approximation algorithms for network
problems. Her recent work focuses on algorithmic game theory, an emerging
area concerned with designing systems and algorithms for selfish users.

This page intentionally left blank

Contents

About the Authors v

Preface xiii

1 Introduction: Some Representative Problems 1
1.1 A First Problem: Stable Matching 1
1.2 Five Representative Problems 12

Solved Exercises 19
Exercises 22
Notes and Further Reading 28

2 Basics of Algorithm Analysis 29
2.1 Computational Tractability 29
2.2 Asymptotic Order of Growth 35
2.3 Implementing the Stable Matching Algorithm Using Lists and

Arrays 42
2.4 A Survey of Common Running Times 47
2.5 A More Complex Data Structure: Priority Queues 57

Solved Exercises 65
Exercises 67
Notes and Further Reading 70

3 Graphs 73
3.1 Basic Definitions and Applications 73
3.2 Graph Connectivity and Graph Traversal 78
3.3 Implementing Graph Traversal Using Queues and Stacks 87
3.4 Testing Bipartiteness: An Application of Breadth-First Search 94
3.5 Connectivity in Directed Graphs 97

viii Contents

3.6 Directed Acyclic Graphs and Topological Ordering 99
Solved Exercises 104
Exercises 107
Notes and Further Reading 112

4 Greedy Algorithms 115
4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 116
4.2 Scheduling to Minimize Lateness: An Exchange Argument 125
4.3 Optimal Caching: A More Complex Exchange Argument 131
4.4 Shortest Paths in a Graph 137
4.5 The Minimum Spanning Tree Problem 142
4.6 Implementing Kruskal’s Algorithm: The Union-Find Data

Structure 151
4.7 Clustering 157
4.8 Huffman Codes and Data Compression 161

∗ 4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy
Algorithm 177
Solved Exercises 183
Exercises 188
Notes and Further Reading 205

5 Divide and Conquer 209
5.1 A First Recurrence: The Mergesort Algorithm 210
5.2 Further Recurrence Relations 214
5.3 Counting Inversions 221
5.4 Finding the Closest Pair of Points 225
5.5 Integer Multiplication 231
5.6 Convolutions and the Fast Fourier Transform 234

Solved Exercises 242
Exercises 246
Notes and Further Reading 249

6 Dynamic Programming 251
6.1 Weighted Interval Scheduling: A Recursive Procedure 252
6.2 Principles of Dynamic Programming: Memoization or Iteration

over Subproblems 258
6.3 Segmented Least Squares: Multi-way Choices 261

∗ The star indicates an optional section. (See the Preface for more information about the relationships

among the chapters and sections.)

Contents ix

6.4 Subset Sums and Knapsacks: Adding a Variable 266
6.5 RNA Secondary Structure: Dynamic Programming over

Intervals 272
6.6 Sequence Alignment 278
6.7 Sequence Alignment in Linear Space via Divide and

Conquer 284
6.8 Shortest Paths in a Graph 290
6.9 Shortest Paths and Distance Vector Protocols 297

∗ 6.10 Negative Cycles in a Graph 301
Solved Exercises 307
Exercises 312
Notes and Further Reading 335

7 Network Flow 337
7.1 The Maximum-Flow Problem and the Ford-Fulkerson

Algorithm 338
7.2 Maximum Flows and Minimum Cuts in a Network 346
7.3 Choosing Good Augmenting Paths 352

∗ 7.4 The Preflow-Push Maximum-Flow Algorithm 357
7.5 A First Application: The Bipartite Matching Problem 367
7.6 Disjoint Paths in Directed and Undirected Graphs 373
7.7 Extensions to the Maximum-Flow Problem 378
7.8 Survey Design 384
7.9 Airline Scheduling 387
7.10 Image Segmentation 391
7.11 Project Selection 396
7.12 Baseball Elimination 400

∗ 7.13 A Further Direction: Adding Costs to the Matching Problem 404
Solved Exercises 411
Exercises 415
Notes and Further Reading 448

8 NP and Computational Intractability 451
8.1 Polynomial-Time Reductions 452
8.2 Reductions via “Gadgets”: The Satisfiability Problem 459
8.3 Efficient Certification and the Definition of NP 463
8.4 NP-Complete Problems 466
8.5 Sequencing Problems 473
8.6 Partitioning Problems 481
8.7 Graph Coloring 485

x Contents

8.8 Numerical Problems 490
8.9 Co-NP and the Asymmetry of NP 495
8.10 A Partial Taxonomy of Hard Problems 497

Solved Exercises 500
Exercises 505
Notes and Further Reading 529

9 PSPACE: A Class of Problems beyond NP 531
9.1 PSPACE 531
9.2 Some Hard Problems in PSPACE 533
9.3 Solving Quantified Problems and Games in Polynomial

Space 536
9.4 Solving the Planning Problem in Polynomial Space 538
9.5 Proving Problems PSPACE-Complete 543

Solved Exercises 547
Exercises 550
Notes and Further Reading 551

10 Extending the Limits of Tractability 553
10.1 Finding Small Vertex Covers 554
10.2 Solving NP-Hard Problems on Trees 558
10.3 Coloring a Set of Circular Arcs 563

∗ 10.4 Tree Decompositions of Graphs 572
∗ 10.5 Constructing a Tree Decomposition 584

Solved Exercises 591
Exercises 594
Notes and Further Reading 598

11 Approximation Algorithms 599
11.1 Greedy Algorithms and Bounds on the Optimum: A Load

Balancing Problem 600
11.2 The Center Selection Problem 606
11.3 Set Cover: A General Greedy Heuristic 612
11.4 The Pricing Method: Vertex Cover 618
11.5 Maximization via the Pricing Method: The Disjoint Paths

Problem 624
11.6 Linear Programming and Rounding: An Application to Vertex

Cover 630
∗ 11.7 Load Balancing Revisited: A More Advanced LP Application 637

Contents xi

11.8 Arbitrarily Good Approximations: The Knapsack Problem 644
Solved Exercises 649
Exercises 651
Notes and Further Reading 659

12 Local Search 661
12.1 The Landscape of an Optimization Problem 662
12.2 The Metropolis Algorithm and Simulated Annealing 666
12.3 An Application of Local Search to Hopfield Neural Networks 671
12.4 Maximum-Cut Approximation via Local Search 676
12.5 Choosing a Neighbor Relation 679

∗ 12.6 Classification via Local Search 681
12.7 Best-Response Dynamics and Nash Equilibria 690

Solved Exercises 700
Exercises 702
Notes and Further Reading 705

13 Randomized Algorithms 707
13.1 A First Application: Contention Resolution 708
13.2 Finding the Global Minimum Cut 714
13.3 Random Variables and Their Expectations 719
13.4 A Randomized Approximation Algorithm for MAX 3-SAT 724
13.5 Randomized Divide and Conquer: Median-Finding and

Quicksort 727
13.6 Hashing: A Randomized Implementation of Dictionaries 734
13.7 Finding the Closest Pair of Points: A Randomized Approach 741
13.8 Randomized Caching 750
13.9 Chernoff Bounds 758
13.10 Load Balancing 760
13.11 Packet Routing 762
13.12 Background: Some Basic Probability Definitions 769

Solved Exercises 776
Exercises 782
Notes and Further Reading 793

Epilogue: Algorithms That Run Forever 795

References 805

Index 815

This page intentionally left blank

Preface

Algorithmic ideas are pervasive, and their reach is apparent in examples both
within computer science and beyond. Some of the major shifts in Internet
routing standards can be viewed as debates over the deficiencies of one
shortest-path algorithm and the relative advantages of another. The basic
notions used by biologists to express similarities among genes and genomes
have algorithmic definitions. The concerns voiced by economists over the
feasibility of combinatorial auctions in practice are rooted partly in the fact that
these auctions contain computationally intractable search problems as special
cases. And algorithmic notions aren’t just restricted to well-known and long-
standing problems; one sees the reflections of these ideas on a regular basis,
in novel issues arising across a wide range of areas. The scientist from Yahoo!
who told us over lunch one day about their system for serving ads to users was
describing a set of issues that, deep down, could be modeled as a network flow
problem. So was the former student, now a management consultant working
on staffing protocols for large hospitals, whom we happened to meet on a trip
to New York City.

The point is not simply that algorithms have many applications. The
deeper issue is that the subject of algorithms is a powerful lens through which
to view the field of computer science in general. Algorithmic problems form
the heart of computer science, but they rarely arrive as cleanly packaged,
mathematically precise questions. Rather, they tend to come bundled together
with lots of messy, application-specific detail, some of it essential, some of it
extraneous. As a result, the algorithmic enterprise consists of two fundamental
components: the task of getting to the mathematically clean core of a problem,
and then the task of identifying the appropriate algorithm design techniques,
based on the structure of the problem. These two components interact: the
more comfortable one is with the full array of possible design techniques,
the more one starts to recognize the clean formulations that lie within messy

xiv Preface

problems out in the world. At their most effective, then, algorithmic ideas do
not just provide solutions to well-posed problems; they form the language that
lets you cleanly express the underlying questions.

The goal of our book is to convey this approach to algorithms, as a design
process that begins with problems arising across the full range of computing
applications, builds on an understanding of algorithm design techniques, and
results in the development of efficient solutions to these problems. We seek
to explore the role of algorithmic ideas in computer science generally, and
relate these ideas to the range of precisely formulated problems for which we
can design and analyze algorithms. In other words, what are the underlying
issues that motivate these problems, and how did we choose these particular
ways of formulating them? How did we recognize which design principles were
appropriate in different situations?

In keeping with this, our goal is to offer advice on how to identify clean
algorithmic problem formulations in complex issues from different areas of
computing and, from this, how to design efficient algorithms for the resulting
problems. Sophisticated algorithms are often best understood by reconstruct-
ing the sequence of ideas—including false starts and dead ends—that led from
simpler initial approaches to the eventual solution. The result is a style of ex-
position that does not take the most direct route from problem statement to
algorithm, but we feel it better reflects the way that we and our colleagues
genuinely think about these questions.

Overview
The book is intended for students who have completed a programming-
based two-semester introductory computer science sequence (the standard
“CS1/CS2” courses) in which they have written programs that implement
basic algorithms, manipulate discrete structures such as trees and graphs, and
apply basic data structures such as arrays, lists, queues, and stacks. Since
the interface between CS1/CS2 and a first algorithms course is not entirely
standard, we begin the book with self-contained coverage of topics that at
some institutions are familiar to students from CS1/CS2, but which at other
institutions are included in the syllabi of the first algorithms course. This
material can thus be treated either as a review or as new material; by including
it, we hope the book can be used in a broader array of courses, and with more
flexibility in the prerequisite knowledge that is assumed.

In keeping with the approach outlined above, we develop the basic algo-
rithm design techniques by drawing on problems from across many areas of
computer science and related fields. To mention a few representative examples
here, we include fairly detailed discussions of applications from systems and
networks (caching, switching, interdomain routing on the Internet), artificial

Preface xv

intelligence (planning, game playing, Hopfield networks), computer vision
(image segmentation), data mining (change-point detection, clustering), op-
erations research (airline scheduling), and computational biology (sequence
alignment, RNA secondary structure).

The notion of computational intractability, and NP-completeness in par-
ticular, plays a large role in the book. This is consistent with how we think
about the overall process of algorithm design. Some of the time, an interest-
ing problem arising in an application area will be amenable to an efficient
solution, and some of the time it will be provably NP-complete; in order to
fully address a new algorithmic problem, one should be able to explore both
of these options with equal familiarity. Since so many natural problems in
computer science are NP-complete, the development of methods to deal with
intractable problems has become a crucial issue in the study of algorithms,
and our book heavily reflects this theme. The discovery that a problem is NP-
complete should not be taken as the end of the story, but as an invitation to
begin looking for approximation algorithms, heuristic local search techniques,
or tractable special cases. We include extensive coverage of each of these three
approaches.

Problems and Solved Exercises
An important feature of the book is the collection of problems. Across all
chapters, the book includes over 200 problems, almost all of them developed
and class-tested in homework or exams as part of our teaching of the course
at Cornell. We view the problems as a crucial component of the book, and
they are structured in keeping with our overall approach to the material. Most
of them consist of extended verbal descriptions of a problem arising in an
application area in computer science or elsewhere out in the world, and part of
the problem is to practice what we discuss in the text: setting up the necessary
notation and formalization, designing an algorithm, and then analyzing it and
proving it correct. (We view a complete answer to one of these problems as
consisting of all these components: a fully explained algorithm, an analysis of
the running time, and a proof of correctness.) The ideas for these problems
come in large part from discussions we have had over the years with people
working in different areas, and in some cases they serve the dual purpose of
recording an interesting (though manageable) application of algorithms that
we haven’t seen written down anywhere else.

To help with the process of working on these problems, we include in
each chapter a section entitled “Solved Exercises,” where we take one or more
problems and describe how to go about formulating a solution. The discussion
devoted to each solved exercise is therefore significantly longer than what
would be needed simply to write a complete, correct solution (in other words,

xvi Preface

significantly longer than what it would take to receive full credit if these were
being assigned as homework problems). Rather, as with the rest of the text,
the discussions in these sections should be viewed as trying to give a sense
of the larger process by which one might think about problems of this type,
culminating in the specification of a precise solution.

It is worth mentioning two points concerning the use of these problems
as homework in a course. First, the problems are sequenced roughly in order
of increasing difficulty, but this is only an approximate guide and we advise
against placing too much weight on it: since the bulk of the problems were
designed as homework for our undergraduate class, large subsets of the
problems in each chapter are really closely comparable in terms of difficulty.
Second, aside from the lowest-numbered ones, the problems are designed to
involve some investment of time, both to relate the problem description to the
algorithmic techniques in the chapter, and then to actually design the necessary
algorithm. In our undergraduate class, we have tended to assign roughly three
of these problems per week.

Pedagogical Features and Supplements
In addition to the problems and solved exercises, the book has a number of
further pedagogical features, as well as additional supplements to facilitate its
use for teaching.

As noted earlier, a large number of the sections in the book are devoted
to the formulation of an algorithmic problem—including its background and
underlying motivation—and the design and analysis of an algorithm for this
problem. To reflect this style, these sections are consistently structured around
a sequence of subsections: “The Problem,” where the problem is described
and a precise formulation is worked out; “Designing the Algorithm,” where
the appropriate design technique is employed to develop an algorithm; and
“Analyzing the Algorithm,” which proves properties of the algorithm and
analyzes its efficiency. These subsections are highlighted in the text with an
icon depicting a feather. In cases where extensions to the problem or further
analysis of the algorithm is pursued, there are additional subsections devoted
to these issues. The goal of this structure is to offer a relatively uniform style
of presentation that moves from the initial discussion of a problem arising in a
computing application through to the detailed analysis of a method to solve it.

A number of supplements are available in support of the book itself. An
instructor’s manual works through all the problems, providing full solutions to
each. A set of lecture slides, developed by Kevin Wayne of Princeton University,
is also available; these slides follow the order of the book’s sections and can
thus be used as the foundation for lectures in a course based on the book. These
files are available at www.aw.com. For instructions on obtaining a professor

www.aw.com

Preface xvii

login and password, search the site for either “Kleinberg” or “Tardos” or
contact your local Addison-Wesley representative.

Finally, we would appreciate receiving feedback on the book. In particular,
as in any book of this length, there are undoubtedly errors that have remained
in the final version. Comments and reports of errors can be sent to us by e-mail,
at the address algbook@cs.cornell.edu; please include the word “feedback”
in the subject line of the message.

Chapter-by-Chapter Synopsis
Chapter 1 starts by introducing some representative algorithmic problems. We
begin immediately with the Stable Matching Problem, since we feel it sets
up the basic issues in algorithm design more concretely and more elegantly
than any abstract discussion could: stable matching is motivated by a natural
though complex real-world issue, from which one can abstract an interesting
problem statement and a surprisingly effective algorithm to solve this problem.
The remainder of Chapter 1 discusses a list of five “representative problems”
that foreshadow topics from the remainder of the course. These five problems
are interrelated in the sense that they are all variations and/or special cases
of the Independent Set Problem; but one is solvable by a greedy algorithm,
one by dynamic programming, one by network flow, one (the Independent
Set Problem itself) is NP-complete, and one is PSPACE-complete. The fact that
closely related problems can vary greatly in complexity is an important theme
of the book, and these five problems serve as milestones that reappear as the
book progresses.

Chapters 2 and 3 cover the interface to the CS1/CS2 course sequence
mentioned earlier. Chapter 2 introduces the key mathematical definitions and
notations used for analyzing algorithms, as well as the motivating principles
behind them. It begins with an informal overview of what it means for a prob-
lem to be computationally tractable, together with the concept of polynomial
time as a formal notion of efficiency. It then discusses growth rates of func-
tions and asymptotic analysis more formally, and offers a guide to commonly
occurring functions in algorithm analysis, together with standard applications
in which they arise. Chapter 3 covers the basic definitions and algorithmic
primitives needed for working with graphs, which are central to so many of
the problems in the book. A number of basic graph algorithms are often im-
plemented by students late in the CS1/CS2 course sequence, but it is valuable
to present the material here in a broader algorithm design context. In par-
ticular, we discuss basic graph definitions, graph traversal techniques such
as breadth-first search and depth-first search, and directed graph concepts
including strong connectivity and topological ordering.

xviii Preface

Chapters 2 and 3 also present many of the basic data structures that will
be used for implementing algorithms throughout the book; more advanced
data structures are presented in subsequent chapters. Our approach to data
structures is to introduce them as they are needed for the implementation of
the algorithms being developed in the book. Thus, although many of the data
structures covered here will be familiar to students from the CS1/CS2 sequence,
our focus is on these data structures in the broader context of algorithm design
and analysis.

Chapters 4 through 7 cover four major algorithm design techniques: greedy
algorithms, divide and conquer, dynamic programming, and network flow.
With greedy algorithms, the challenge is to recognize when they work and
when they don’t; our coverage of this topic is centered around a way of clas-
sifying the kinds of arguments used to prove greedy algorithms correct. This
chapter concludes with some of the main applications of greedy algorithms,
for shortest paths, undirected and directed spanning trees, clustering, and
compression. For divide and conquer, we begin with a discussion of strategies
for solving recurrence relations as bounds on running times; we then show
how familiarity with these recurrences can guide the design of algorithms that
improve over straightforward approaches to a number of basic problems, in-
cluding the comparison of rankings, the computation of closest pairs of points
in the plane, and the Fast Fourier Transform. Next we develop dynamic pro-
gramming by starting with the recursive intuition behind it, and subsequently
building up more and more expressive recurrence formulations through appli-
cations in which they naturally arise. This chapter concludes with extended
discussions of the dynamic programming approach to two fundamental prob-
lems: sequence alignment, with applications in computational biology; and
shortest paths in graphs, with connections to Internet routing protocols. Fi-
nally, we cover algorithms for network flow problems, devoting much of our
focus in this chapter to discussing a large array of different flow applications.
To the extent that network flow is covered in algorithms courses, students are
often left without an appreciation for the wide range of problems to which it
can be applied; we try to do justice to its versatility by presenting applications
to load balancing, scheduling, image segmentation, and a number of other
problems.

Chapters 8 and 9 cover computational intractability. We devote most of
our attention to NP-completeness, organizing the basic NP-complete problems
thematically to help students recognize candidates for reductions when they
encounter new problems. We build up to some fairly complex proofs of NP-
completeness, with guidance on how one goes about constructing a difficult
reduction. We also consider types of computational hardness beyond NP-
completeness, particularly through the topic of PSPACE-completeness. We

Preface xix

find this is a valuable way to emphasize that intractability doesn’t end at
NP-completeness, and PSPACE-completeness also forms the underpinning for
some central notions from artificial intelligence—planning and game playing—
that would otherwise not find a place in the algorithmic landscape we are
surveying.

Chapters 10 through 12 cover three major techniques for dealing with com-
putationally intractable problems: identification of structured special cases,
approximation algorithms, and local search heuristics. Our chapter on tractable
special cases emphasizes that instances of NP-complete problems arising in
practice may not be nearly as hard as worst-case instances, because they often
contain some structure that can be exploited in the design of an efficient algo-
rithm. We illustrate how NP-complete problems are often efficiently solvable
when restricted to tree-structured inputs, and we conclude with an extended
discussion of tree decompositions of graphs. While this topic is more suit-
able for a graduate course than for an undergraduate one, it is a technique
with considerable practical utility for which it is hard to find an existing
accessible reference for students. Our chapter on approximation algorithms
discusses both the process of designing effective algorithms and the task of
understanding the optimal solution well enough to obtain good bounds on it.
As design techniques for approximation algorithms, we focus on greedy algo-
rithms, linear programming, and a third method we refer to as “pricing,” which
incorporates ideas from each of the first two. Finally, we discuss local search
heuristics, including the Metropolis algorithm and simulated annealing. This
topic is often missing from undergraduate algorithms courses, because very
little is known in the way of provable guarantees for these algorithms; how-
ever, given their widespread use in practice, we feel it is valuable for students
to know something about them, and we also include some cases in which
guarantees can be proved.

Chapter 13 covers the use of randomization in the design of algorithms.
This is a topic on which several nice graduate-level books have been written.
Our goal here is to provide a more compact introduction to some of the
ways in which students can apply randomized techniques using the kind of
background in probability one typically gains from an undergraduate discrete
math course.

Use of the Book
The book is primarily designed for use in a first undergraduate course on
algorithms, but it can also be used as the basis for an introductory graduate
course.

When we use the book at the undergraduate level, we spend roughly
one lecture per numbered section; in cases where there is more than one

xx Preface

lecture’s worth of material in a section (for example, when a section provides
further applications as additional examples), we treat this extra material as a
supplement that students can read about outside of lecture. We skip the starred
sections; while these sections contain important topics, they are less central
to the development of the subject, and in some cases they are harder as well.
We also tend to skip one or two other sections per chapter in the first half of
the book (for example, we tend to skip Sections 4.3, 4.7–4.8, 5.5–5.6, 6.5, 7.6,
and 7.11). We cover roughly half of each of Chapters 11–13.

This last point is worth emphasizing: rather than viewing the later chapters
as “advanced,” and hence off-limits to undergraduate algorithms courses, we
have designed them with the goal that the first few sections of each should
be accessible to an undergraduate audience. Our own undergraduate course
involves material from all these chapters, as we feel that all of these topics
have an important place at the undergraduate level.

Finally, we treat Chapters 2 and 3 primarily as a review of material from
earlier courses; but, as discussed above, the use of these two chapters depends
heavily on the relationship of each specific course to its prerequisites.

The resulting syllabus looks roughly as follows: Chapter 1; Chapters 4–8
(excluding 4.3, 4.7–4.9, 5.5–5.6, 6.5, 6.10, 7.4, 7.6, 7.11, and 7.13); Chapter 9
(briefly); Chapter 10, Sections.10.1 and 10.2; Chapter 11, Sections 11.1, 11.2,
11.6, and 11.8; Chapter 12, Sections 12.1–12.3; and Chapter 13, Sections 13.1–
13.5.

The book also naturally supports an introductory graduate course on
algorithms. Our view of such a course is that it should introduce students
destined for research in all different areas to the important current themes in
algorithm design. Here we find the emphasis on formulating problems to be
useful as well, since students will soon be trying to define their own research
problems in many different subfields. For this type of course, we cover the
later topics in Chapters 4 and 6 (Sections 4.5–4.9 and 6.5–6.10), cover all of
Chapter 7 (moving more rapidly through the early sections), quickly cover NP-
completeness in Chapter 8 (since many beginning graduate students will have
seen this topic as undergraduates), and then spend the remainder of the time
on Chapters 10–13. Although our focus in an introductory graduate course is
on the more advanced sections, we find it useful for the students to have the
full book to consult for reviewing or filling in background knowledge, given
the range of different undergraduate backgrounds among the students in such
a course.

Finally, the book can be used to support self-study by graduate students,
researchers, or computer professionals who want to get a sense for how they

Preface xxi

might be able to use particular algorithm design techniques in the context of
their own work. A number of graduate students and colleagues have used
portions of the book in this way.

Acknowledgments
This book grew out of the sequence of algorithms courses that we have taught
at Cornell. These courses have grown, as the field has grown, over a number of
years, and they reflect the influence of the Cornell faculty who helped to shape
them during this time, including Juris Hartmanis, Monika Henzinger, John
Hopcroft, Dexter Kozen, Ronitt Rubinfeld, and Sam Toueg. More generally, we
would like to thank all our colleagues at Cornell for countless discussions both
on the material here and on broader issues about the nature of the field.

The course staffs we’ve had in teaching the subject have been tremen-
dously helpful in the formulation of this material. We thank our undergradu-
ate and graduate teaching assistants, Siddharth Alexander, Rie Ando, Elliot
Anshelevich, Lars Backstrom, Steve Baker, Ralph Benzinger, John Bicket,
Doug Burdick, Mike Connor, Vladimir Dizhoor, Shaddin Doghmi, Alexan-
der Druyan, Bowei Du, Sasha Evfimievski, Ariful Gani, Vadim Grinshpun,
Ara Hayrapetyan, Chris Jeuell, Igor Kats, Omar Khan, Mikhail Kobyakov,
Alexei Kopylov, Brian Kulis, Amit Kumar, Yeongwee Lee, Henry Lin, Ash-
win Machanavajjhala, Ayan Mandal, Bill McCloskey, Leonid Meyerguz, Evan
Moran, Niranjan Nagarajan, Tina Nolte, Travis Ortogero, Martin Pál, Jon
Peress, Matt Piotrowski, Joe Polastre, Mike Priscott, Xin Qi, Venu Ramasubra-
manian, Aditya Rao, David Richardson, Brian Sabino, Rachit Siamwalla, Se-
bastian Silgardo, Alex Slivkins, Chaitanya Swamy, Perry Tam, Nadya Travinin,
Sergei Vassilvitskii, Matthew Wachs, Tom Wexler, Shan-Leung Maverick Woo,
Justin Yang, and Misha Zatsman. Many of them have provided valuable in-
sights, suggestions, and comments on the text. We also thank all the students
in these classes who have provided comments and feedback on early drafts of
the book over the years.

For the past several years, the development of the book has benefited
greatly from the feedback and advice of colleagues who have used prepubli-
cation drafts for teaching. Anna Karlin fearlessly adopted a draft as her course
textbook at the University of Washington when it was still in an early stage of
development; she was followed by a number of people who have used it either
as a course textbook or as a resource for teaching: Paul Beame, Allan Borodin,
Devdatt Dubhashi, David Kempe, Gene Kleinberg, Dexter Kozen, Amit Kumar,
Mike Molloy, Yuval Rabani, Tim Roughgarden, Alexa Sharp, Shanghua Teng,
Aravind Srinivasan, Dieter van Melkebeek, Kevin Wayne, Tom Wexler, and

xxii Preface

Sue Whitesides. We deeply appreciate their input and advice, which has in-
formed many of our revisions to the content. We would like to additionally
thank Kevin Wayne for producing supplementary material associated with the
book, which promises to greatly extend its utility to future instructors.

In a number of other cases, our approach to particular topics in the book
reflects the infuence of specific colleagues. Many of these contributions have
undoubtedly escaped our notice, but we especially thank Yuri Boykov, Ron
Elber, Dan Huttenlocher, Bobby Kleinberg, Evie Kleinberg, Lillian Lee, David
McAllester, Mark Newman, Prabhakar Raghavan, Bart Selman, David Shmoys,
Steve Strogatz, Olga Veksler, Duncan Watts, and Ramin Zabih.

It has been a pleasure working with Addison Wesley over the past year.
First and foremost, we thank Matt Goldstein for all his advice and guidance in
this process, and for helping us to synthesize a vast amount of review material
into a concrete plan that improved the book. Our early conversations about
the book with Susan Hartman were extremely valuable as well. We thank Matt
and Susan, together with Michelle Brown, Marilyn Lloyd, Patty Mahtani, and
Maite Suarez-Rivas at Addison Wesley, and Paul Anagnostopoulos and Jacqui
Scarlott at Windfall Software, for all their work on the editing, production, and
management of the project. We further thank Paul and Jacqui for their expert
composition of the book. We thank Joyce Wells for the cover design, Nancy
Murphy of Dartmouth Publishing for her work on the figures, Ted Laux for
the indexing, and Carol Leyba and Jennifer McClain for the copyediting and
proofreading.

We thank Anselm Blumer (Tufts University), Richard Chang (University of
Maryland, Baltimore County), Kevin Compton (University of Michigan), Diane
Cook (University of Texas, Arlington), Sariel Har-Peled (University of Illinois,
Urbana-Champaign), Sanjeev Khanna (University of Pennsylvania), Philip
Klein (Brown University), David Matthias (Ohio State University), Adam Mey-
erson (UCLA), Michael Mitzenmacher (Harvard University), Stephan Olariu
(Old Dominion University), Mohan Paturi (UC San Diego), Edgar Ramos (Uni-
versity of Illinois, Urbana-Champaign), Sanjay Ranka (University of Florida,
Gainesville), Leon Reznik (Rochester Institute of Technology), Subhash Suri
(UC Santa Barbara), Dieter van Melkebeek (University of Wisconsin, Madi-
son), and Bulent Yener (Rensselaer Polytechnic Institute) who generously
contributed their time to provide detailed and thoughtful reviews of the man-
uscript; their comments led to numerous improvements, both large and small,
in the final version of the text.

Finally, we thank our families—Lillian and Alice, and David, Rebecca, and
Amy. We appreciate their support, patience, and many other contributions
more than we can express in any acknowledgments here.

Preface xxiii

This book was begun amid the irrational exuberance of the late nineties,
when the arc of computing technology seemed, to many of us, briefly to pass
through a place traditionally occupied by celebrities and other inhabitants of
the pop-cultural firmament. (It was probably just in our imaginations.) Now,
several years after the hype and stock prices have come back to earth, one can
appreciate that in some ways computer science was forever changed by this
period, and in other ways it has remained the same: the driving excitement
that has characterized the field since its early days is as strong and enticing as
ever, the public’s fascination with information technology is still vibrant, and
the reach of computing continues to extend into new disciplines. And so to
all students of the subject, drawn to it for so many different reasons, we hope
you find this book an enjoyable and useful guide wherever your computational
pursuits may take you.

Jon Kleinberg
Éva Tardos
Ithaca, 2005

This page intentionally left blank

Chapter 1

Introduction: Some
Representative Problems

1.1 A First Problem: Stable Matching
As an opening topic, we look at an algorithmic problem that nicely illustrates
many of the themes we will be emphasizing. It is motivated by some very
natural and practical concerns, and from these we formulate a clean and
simple statement of a problem. The algorithm to solve the problem is very
clean as well, and most of our work will be spent in proving that it is correct
and giving an acceptable bound on the amount of time it takes to terminate
with an answer. The problem itself—the Stable Matching Problem—has several
origins.

The Problem
The Stable Matching Problem originated, in part, in 1962, when David Gale
and Lloyd Shapley, two mathematical economists, asked the question: Could
one design a college admissions process, or a job recruiting process, that was
self-enforcing? What did they mean by this?

To set up the question, let’s first think informally about the kind of situation
that might arise as a group of friends, all juniors in college majoring in
computer science, begin applying to companies for summer internships. The
crux of the application process is the interplay between two different types
of parties: companies (the employers) and students (the applicants). Each
applicant has a preference ordering on companies, and each company—once
the applications come in—forms a preference ordering on its applicants. Based
on these preferences, companies extend offers to some of their applicants,
applicants choose which of their offers to accept, and people begin heading
off to their summer internships.

2 Chapter 1 Introduction: Some Representative Problems

Gale and Shapley considered the sorts of things that could start going
wrong with this process, in the absence of any mechanism to enforce the status
quo. Suppose, for example, that your friend Raj has just accepted a summer job
at the large telecommunications company CluNet. A few days later, the small
start-up company WebExodus, which had been dragging its feet on making a
few final decisions, calls up Raj and offers him a summer job as well. Now, Raj
actually prefers WebExodus to CluNet—won over perhaps by the laid-back,
anything-can-happen atmosphere—and so this new development may well
cause him to retract his acceptance of the CluNet offer and go to WebExodus
instead. Suddenly down one summer intern, CluNet offers a job to one of its
wait-listed applicants, who promptly retracts his previous acceptance of an
offer from the software giant Babelsoft, and the situation begins to spiral out
of control.

Things look just as bad, if not worse, from the other direction. Suppose
that Raj’s friend Chelsea, destined to go to Babelsoft but having just heard Raj’s
story, calls up the people at WebExodus and says, “You know, I’d really rather
spend the summer with you guys than at Babelsoft.” They find this very easy
to believe; and furthermore, on looking at Chelsea’s application, they realize
that they would have rather hired her than some other student who actually
is scheduled to spend the summer at WebExodus. In this case, if WebExodus
were a slightly less scrupulous company, it might well find some way to retract
its offer to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people—
both applicants and employers—can end up unhappy with the process as well
as the outcome. What has gone wrong? One basic problem is that the process
is not self-enforcing—if people are allowed to act in their self-interest, then it
risks breaking down.

We might well prefer the following, more stable situation, in which self-
interest itself prevents offers from being retracted and redirected. Consider
another student, who has arranged to spend the summer at CluNet but calls
up WebExodus and reveals that he, too, would rather work for them. But in
this case, based on the offers already accepted, they are able to reply, “No, it
turns out that we prefer each of the students we’ve accepted to you, so we’re
afraid there’s nothing we can do.” Or consider an employer, earnestly following
up with its top applicants who went elsewhere, being told by each of them,
“No, I’m happy where I am.” In such a case, all the outcomes are stable—there
are no further outside deals that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences
among employers and applicants, can we assign applicants to employers so
that for every employer E, and every applicant A who is not scheduled to work
for E, at least one of the following two things is the case?

1.1 A First Problem: Stable Matching 3

(i) E prefers every one of its accepted applicants to A; or

(ii) A prefers her current situation over working for employer E.

If this holds, the outcome is stable: individual self-interest will prevent any
applicant/employer deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to
this problem, which we will discuss presently. Before doing this, let’s note that
this is not the only origin of the Stable Matching Problem. It turns out that for
a decade before the work of Gale and Shapley, unbeknownst to them, the
National Resident Matching Program had been using a very similar procedure,
with the same underlying motivation, to match residents to hospitals. Indeed,
this system, with relatively little change, is still in use today.

This is one testament to the problem’s fundamental appeal. And from the
point of view of this book, it provides us with a nice first domain in which
to reason about some basic combinatorial definitions and the algorithms that
build on them.

Formulating the Problem To get at the essence of this concept, it helps to
make the problem as clean as possible. The world of companies and applicants
contains some distracting asymmetries. Each applicant is looking for a single
company, but each company is looking for many applicants; moreover, there
may be more (or, as is sometimes the case, fewer) applicants than there are
available slots for summer jobs. Finally, each applicant does not typically apply
to every company.

It is useful, at least initially, to eliminate these complications and arrive at a
more “bare-bones” version of the problem: each of n applicants applies to each
of n companies, and each company wants to accept a single applicant. We will
see that doing this preserves the fundamental issues inherent in the problem;
in particular, our solution to this simplified version will extend directly to the
more general case as well.

Following Gale and Shapley, we observe that this special case can be
viewed as the problem of devising a system by which each of n men and
n women can end up getting married: our problem naturally has the analogue
of two “genders”—the applicants and the companies—and in the case we are
considering, everyone is seeking to be paired with exactly one individual of
the opposite gender.1

1 Gale and Shapley considered the same-sex Stable Matching Problem as well, where there is only a

single gender. This is motivated by related applications, but it turns out to be fairly different at a

technical level. Given the applicant-employer application we’re considering here, we’ll be focusing

on the version with two genders.

4 Chapter 1 Introduction: Some Representative Problems

w

m� w�

m

An instability: m and w�
each prefer the other to
their current partners.

Figure 1.1 Perfect matching
S with instability (m, w′).

So consider a set M = {m1, . . . , mn} of n men, and a set W = {w1, . . . , wn}
of n women. Let M ×W denote the set of all possible ordered pairs of the form
(m, w), where m ∈M and w ∈W. A matching S is a set of ordered pairs, each
from M ×W, with the property that each member of M and each member of
W appears in at most one pair in S. A perfect matching S′ is a matching with
the property that each member of M and each member of W appears in exactly
one pair in S′.

Matchings and perfect matchings are objects that will recur frequently
throughout the book; they arise naturally in modeling a wide range of algo-
rithmic problems. In the present situation, a perfect matching corresponds
simply to a way of pairing off the men with the women, in such a way that
everyone ends up married to somebody, and nobody is married to more than
one person—there is neither singlehood nor polygamy.

Now we can add the notion of preferences to this setting. Each man m ∈M
ranks all the women; we will say that m prefers w to w′ if m ranks w higher
than w′. We will refer to the ordered ranking of m as his preference list. We will
not allow ties in the ranking. Each woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial
motivation in terms of employers and applicants, we should be worried about
the following situation: There are two pairs (m, w) and (m′, w′) in S (as
depicted in Figure 1.1) with the property that m prefers w′ to w, and w′ prefers
m to m′. In this case, there’s nothing to stop m and w′ from abandoning their
current partners and heading off together; the set of marriages is not self-
enforcing. We’ll say that such a pair (m, w′) is an instability with respect to S:
(m, w′) does not belong to S, but each of m and w′ prefers the other to their
partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that
a matching S is stable if (i) it is perfect, and (ii) there is no instability with
respect to S. Two questions spring immediately to mind:

. Does there exist a stable matching for every set of preference lists?

. Given a set of preference lists, can we efficiently construct a stable
matching if there is one?

Some Examples To illustrate these definitions, consider the following two
very simple instances of the Stable Matching Problem.

First, suppose we have a set of two men, {m, m′}, and a set of two women,
{w, w′}. The preference lists are as follows:

m prefers w to w′.
m′ prefers w to w′.

1.1 A First Problem: Stable Matching 5

w prefers m to m′.
w′ prefers m to m′.

If we think about this set of preference lists intuitively, it represents complete
agreement: the men agree on the order of the women, and the women agree
on the order of the men. There is a unique stable matching here, consisting
of the pairs (m, w) and (m′, w′). The other perfect matching, consisting of the
pairs (m′, w) and (m, w′), would not be a stable matching, because the pair
(m, w) would form an instability with respect to this matching. (Both m and
w would want to leave their respective partners and pair up.)

Next, here’s an example where things are a bit more intricate. Suppose
the preferences are

m prefers w to w′.
m′ prefers w′ to w.

w prefers m′ to m.

w′ prefers m to m′.

What’s going on in this case? The two men’s preferences mesh perfectly with
each other (they rank different women first), and the two women’s preferences
likewise mesh perfectly with each other. But the men’s preferences clash
completely with the women’s preferences.

In this second example, there are two different stable matchings. The
matching consisting of the pairs (m, w) and (m′, w′) is stable, because both
men are as happy as possible, so neither would leave their matched partner.
But the matching consisting of the pairs (m′, w) and (m, w′) is also stable, for
the complementary reason that both women are as happy as possible. This is
an important point to remember as we go forward—it’s possible for an instance
to have more than one stable matching.

Designing the Algorithm
We now show that there exists a stable matching for every set of preference
lists among the men and women. Moreover, our means of showing this will
also answer the second question that we asked above: we will give an efficient
algorithm that takes the preference lists and constructs a stable matching.

Let us consider some of the basic ideas that motivate the algorithm.

. Initially, everyone is unmarried. Suppose an unmarried man m chooses
the woman w who ranks highest on his preference list and proposes to
her. Can we declare immediately that (m, w) will be one of the pairs in our
final stable matching? Not necessarily: at some point in the future, a man
m′ whom w prefers may propose to her. On the other hand, it would be

6 Chapter 1 Introduction: Some Representative Problems

w

m�

m

Woman w will become
engaged to m if she
prefers him to m�.

Figure 1.2 An intermediate
state of the G-S algorithm
when a free man m is propos-
ing to a woman w.

dangerous for w to reject m right away; she may never receive a proposal
from someone she ranks as highly as m. So a natural idea would be to
have the pair (m, w) enter an intermediate state—engagement.

. Suppose we are now at a state in which some men and women are free—
not engaged—and some are engaged. The next step could look like this.
An arbitrary free man m chooses the highest-ranked woman w to whom
he has not yet proposed, and he proposes to her. If w is also free, then m
and w become engaged. Otherwise, w is already engaged to some other
man m′. In this case, she determines which of m or m′ ranks higher
on her preference list; this man becomes engaged to w and the other
becomes free.

. Finally, the algorithm will terminate when no one is free; at this moment,
all engagements are declared final, and the resulting perfect matching is
returned.

Here is a concrete description of the Gale-Shapley algorithm, with Fig-
ure 1.2 depicting a state of the algorithm.

Initially all m ∈M and w ∈W are free

While there is a man m who is free and hasn’t proposed to

every woman

Choose such a man m

Let w be the highest-ranked woman in m’s preference list

to whom m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then

m remains free

Else w prefers m to m′

(m, w) become engaged

m′ becomes free
Endif

Endif

Endwhile

Return the set S of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple
to state, it is not immediately obvious that it returns a stable matching, or
even a perfect matching. We proceed to prove this now, through a sequence
of intermediate facts.

1.1 A First Problem: Stable Matching 7

Analyzing the Algorithm
First consider the view of a woman w during the execution of the algorithm.
For a while, no one has proposed to her, and she is free. Then a man m may
propose to her, and she becomes engaged. As time goes on, she may receive
additional proposals, accepting those that increase the rank of her partner. So
we discover the following.

(1.1) w remains engaged from the point at which she receives her first
proposal; and the sequence of partners to which she is engaged gets better and
better (in terms of her preference list).

The view of a man m during the execution of the algorithm is rather
different. He is free until he proposes to the highest-ranked woman on his
list; at this point he may or may not become engaged. As time goes on, he
may alternate between being free and being engaged; however, the following
property does hold.

(1.2) The sequence of women to whom m proposes gets worse and worse (in
terms of his preference list).

Now we show that the algorithm terminates, and give a bound on the
maximum number of iterations needed for termination.

(1.3) The G-S algorithm terminates after at most n2 iterations of the While
loop.

Proof. A useful strategy for upper-bounding the running time of an algorithm,
as we are trying to do here, is to find a measure of progress. Namely, we seek
some precise way of saying that each step taken by the algorithm brings it
closer to termination.

In the case of the present algorithm, each iteration consists of some man
proposing (for the only time) to a woman he has never proposed to before. So
if we let P(t) denote the set of pairs (m, w) such that m has proposed to w by
the end of iteration t, we see that for all t, the size of P(t + 1) is strictly greater
than the size of P(t). But there are only n2 possible pairs of men and women
in total, so the value of P(·) can increase at most n2 times over the course of
the algorithm. It follows that there can be at most n2 iterations.

Two points are worth noting about the previous fact and its proof. First,
there are executions of the algorithm (with certain preference lists) that can
involve close to n2 iterations, so this analysis is not far from the best possible.
Second, there are many quantities that would not have worked well as a
progress measure for the algorithm, since they need not strictly increase in each

8 Chapter 1 Introduction: Some Representative Problems

iteration. For example, the number of free individuals could remain constant
from one iteration to the next, as could the number of engaged pairs. Thus,
these quantities could not be used directly in giving an upper bound on the
maximum possible number of iterations, in the style of the previous paragraph.

Let us now establish that the set S returned at the termination of the
algorithm is in fact a perfect matching. Why is this not immediately obvious?
Essentially, we have to show that no man can “fall off” the end of his preference
list; the only way for the While loop to exit is for there to be no free man. In
this case, the set of engaged couples would indeed be a perfect matching.

So the main thing we need to show is the following.

(1.4) If m is free at some point in the execution of the algorithm, then there
is a woman to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed
to every woman. Then by (1.1), each of the n women is engaged at this point
in time. Since the set of engaged pairs forms a matching, there must also be
n engaged men at this point in time. But there are only n men total, and m is
not engaged, so this is a contradiction.

(1.5) The set S returned at termination is a perfect matching.

Proof. The set of engaged pairs always forms a matching. Let us suppose that
the algorithm terminates with a free man m. At termination, it must be the
case that m had already proposed to every woman, for otherwise the While
loop would not have exited. But this contradicts (1.4), which says that there
cannot be a free man who has proposed to every woman.

Finally, we prove the main property of the algorithm—namely, that it
results in a stable matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs
S. The set S is a stable matching.

Proof. We have already seen, in (1.5), that S is a perfect matching. Thus, to
prove S is a stable matching, we will assume that there is an instability with
respect to S and obtain a contradiction. As defined earlier, such an instability
would involve two pairs, (m, w) and (m′, w′), in S with the properties that

. m prefers w′ to w, and

. w′ prefers m to m′.

In the execution of the algorithm that produced S, m’s last proposal was, by
definition, to w. Now we ask: Did m propose to w′ at some earlier point in

1.1 A First Problem: Stable Matching 9

this execution? If he didn’t, then w must occur higher on m’s preference list
than w′, contradicting our assumption that m prefers w′ to w. If he did, then
he was rejected by w′ in favor of some other man m′′, whom w′ prefers to m.
m′ is the final partner of w′, so either m′′ =m′ or, by (1.1), w′ prefers her final
partner m′ to m′′; either way this contradicts our assumption that w′ prefers
m to m′.

It follows that S is a stable matching.

Extensions
We began by defining the notion of a stable matching; we have just proven
that the G-S algorithm actually constructs one. We now consider some further
questions about the behavior of the G-S algorithm and its relation to the
properties of different stable matchings.

To begin with, recall that we saw an example earlier in which there could
be multiple stable matchings. To recap, the preference lists in this example
were as follows:

m prefers w to w′.
m′ prefers w′ to w.

w prefers m′ to m.

w′ prefers m to m′.

Now, in any execution of the Gale-Shapley algorithm, m will become engaged
to w, m′ will become engaged to w′ (perhaps in the other order), and things
will stop there. Thus, the other stable matching, consisting of the pairs (m′, w)

and (m, w′), is not attainable from an execution of the G-S algorithm in which
the men propose. On the other hand, it would be reached if we ran a version of
the algorithm in which the women propose. And in larger examples, with more
than two people on each side, we can have an even larger collection of possible
stable matchings, many of them not achievable by any natural algorithm.

This example shows a certain “unfairness” in the G-S algorithm, favoring
men. If the men’s preferences mesh perfectly (they all list different women as
their first choice), then in all runs of the G-S algorithm all men end up matched
with their first choice, independent of the preferences of the women. If the
women’s preferences clash completely with the men’s preferences (as was the
case in this example), then the resulting stable matching is as bad as possible
for the women. So this simple set of preference lists compactly summarizes a
world in which someone is destined to end up unhappy: women are unhappy
if men propose, and men are unhappy if women propose.

Let’s now analyze the G-S algorithm in more detail and try to understand
how general this “unfairness” phenomenon is.

10 Chapter 1 Introduction: Some Representative Problems

To begin with, our example reinforces the point that the G-S algorithm
is actually underspecified: as long as there is a free man, we are allowed to
choose any free man to make the next proposal. Different choices specify
different executions of the algorithm; this is why, to be careful, we stated (1.6)
as “Consider an execution of the G-S algorithm that returns a set of pairs S,”
instead of “Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question: Do all executions of
the G-S algorithm yield the same matching? This is a genre of question that
arises in many settings in computer science: we have an algorithm that runs
asynchronously, with different independent components performing actions
that can be interleaved in complex ways, and we want to know how much
variability this asynchrony causes in the final outcome. To consider a very
different kind of example, the independent components may not be men and
women but electronic components activating parts of an airplane wing; the
effect of asynchrony in their behavior can be a big deal.

In the present context, we will see that the answer to our question is
surprisingly clean: all executions of the G-S algorithm yield the same matching.
We proceed to prove this now.

All Executions Yield the Same Matching There are a number of possible
ways to prove a statement such as this, many of which would result in quite
complicated arguments. It turns out that the easiest and most informative ap-
proach for us will be to uniquely characterize the matching that is obtained and
then show that all executions result in the matching with this characterization.

What is the characterization? We’ll show that each man ends up with the
“best possible partner” in a concrete sense. (Recall that this is true if all men
prefer different women.) First, we will say that a woman w is a valid partner
of a man m if there is a stable matching that contains the pair (m, w). We will
say that w is the best valid partner of m if w is a valid partner of m, and no
woman whom m ranks higher than w is a valid partner of his. We will use
best(m) to denote the best valid partner of m.

Now, let S∗ denote the set of pairs {(m, best(m)) : m ∈M}. We will prove
the following fact.

(1.7) Every execution of the G-S algorithm results in the set S∗.

This statement is surprising at a number of levels. First of all, as defined,
there is no reason to believe that S∗ is a matching at all, let alone a stable
matching. After all, why couldn’t it happen that two men have the same best
valid partner? Second, the result shows that the G-S algorithm gives the best
possible outcome for every man simultaneously; there is no stable matching
in which any of the men could have hoped to do better. And finally, it answers

1.1 A First Problem: Stable Matching 11

our question above by showing that the order of proposals in the G-S algorithm
has absolutely no effect on the final outcome.

Despite all this, the proof is not so difficult.

Proof. Let us suppose, by way of contradiction, that some execution E of the
G-S algorithm results in a matching S in which some man is paired with a
woman who is not his best valid partner. Since men propose in decreasing
order of preference, this means that some man is rejected by a valid partner
during the execution E of the algorithm. So consider the first moment during
the execution E in which some man, say m, is rejected by a valid partner w.
Again, since men propose in decreasing order of preference, and since this is
the first time such a rejection has occurred, it must be that w is m’s best valid
partner best(m).

The rejection of m by w may have happened either because m proposed
and was turned down in favor of w’s existing engagement, or because w broke
her engagement to m in favor of a better proposal. But either way, at this
moment w forms or continues an engagement with a man m′ whom she prefers
to m.

Since w is a valid partner of m, there exists a stable matching S′ containing
the pair (m, w). Now we ask: Who is m′ paired with in this matching? Suppose
it is a woman w′ �= w.

Since the rejection of m by w was the first rejection of a man by a valid
partner in the execution E, it must be that m′ had not been rejected by any valid
partner at the point in E when he became engaged to w. Since he proposed in
decreasing order of preference, and since w′ is clearly a valid partner of m′, it
must be that m′ prefers w to w′. But we have already seen that w prefers m′
to m, for in execution E she rejected m in favor of m′. Since (m′, w) �∈ S′, it
follows that (m′, w) is an instability in S′.

This contradicts our claim that S′ is stable and hence contradicts our initial
assumption.

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot
be said for the women. For a woman w, we say that m is a valid partner if
there is a stable matching that contains the pair (m, w). We say that m is the
worst valid partner of w if m is a valid partner of w, and no man whom w
ranks lower than m is a valid partner of hers.

(1.8) In the stable matching S∗, each woman is paired with her worst valid
partner.

Proof. Suppose there were a pair (m, w) in S∗ such that m is not the worst
valid partner of w. Then there is a stable matching S′ in which w is paired

12 Chapter 1 Introduction: Some Representative Problems

with a man m′ whom she likes less than m. In S′, m is paired with a woman
w′ �= w; since w is the best valid partner of m, and w′ is a valid partner of m,
we see that m prefers w to w′.

But from this it follows that (m, w) is an instability in S′, contradicting the
claim that S′ is stable and hence contradicting our initial assumption.

Thus, we find that our simple example above, in which the men’s pref-
erences clashed with the women’s, hinted at a very general phenomenon: for
any input, the side that does the proposing in the G-S algorithm ends up with
the best possible stable matching (from their perspective), while the side that
does not do the proposing correspondingly ends up with the worst possible
stable matching.

1.2 Five Representative Problems
The Stable Matching Problem provides us with a rich example of the process of
algorithm design. For many problems, this process involves a few significant
steps: formulating the problem with enough mathematical precision that we
can ask a concrete question and start thinking about algorithms to solve
it; designing an algorithm for the problem; and analyzing the algorithm by
proving it is correct and giving a bound on the running time so as to establish
the algorithm’s efficiency.

This high-level strategy is carried out in practice with the help of a few
fundamental design techniques, which are very useful in assessing the inherent
complexity of a problem and in formulating an algorithm to solve it. As in any
area, becoming familiar with these design techniques is a gradual process; but
with experience one can start recognizing problems as belonging to identifiable
genres and appreciating how subtle changes in the statement of a problem can
have an enormous effect on its computational difficulty.

To get this discussion started, then, it helps to pick out a few representa-
tive milestones that we’ll be encountering in our study of algorithms: cleanly
formulated problems, all resembling one another at a general level, but differ-
ing greatly in their difficulty and in the kinds of approaches that one brings
to bear on them. The first three will be solvable efficiently by a sequence of
increasingly subtle algorithmic techniques; the fourth marks a major turning
point in our discussion, serving as an example of a problem believed to be un-
solvable by any efficient algorithm; and the fifth hints at a class of problems
believed to be harder still.

The problems are self-contained and are all motivated by computing
applications. To talk about some of them, though, it will help to use the
terminology of graphs. While graphs are a common topic in earlier computer

1.2 Five Representative Problems 13

(a)

(b)

Figure 1.3 Each of (a) and
(b) depicts a graph on four
nodes.

science courses, we’ll be introducing them in a fair amount of depth in
Chapter 3; due to their enormous expressive power, we’ll also be using them
extensively throughout the book. For the discussion here, it’s enough to think
of a graph G as simply a way of encoding pairwise relationships among a set
of objects. Thus, G consists of a pair of sets (V , E)—a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e ∈ E as a two-element subset of V: e = {u, v} for some
u, v ∈ V, where we call u and v the ends of e. We typically draw graphs as in
Figure 1.3, with each node as a small circle and each edge as a line segment
joining its two ends.

Let’s now turn to a discussion of the five representative problems.

Interval Scheduling
Consider the following very simple scheduling problem. You have a resource—
it may be a lecture room, a supercomputer, or an electron microscope—and
many people request to use the resource for periods of time. A request takes
the form: Can I reserve the resource starting at time s, until time f ? We will
assume that the resource can be used by at most one person at a time. A
scheduler wants to accept a subset of these requests, rejecting all others, so
that the accepted requests do not overlap in time. The goal is to maximize the
number of requests accepted.

More formally, there will be n requests labeled 1, . . . , n, with each request
i specifying a start time si and a finish time fi. Naturally, we have si < fi for all
i. Two requests i and j are compatible if the requested intervals do not overlap:
that is, either request i is for an earlier time interval than request j (fi ≤ sj),
or request i is for a later time than request j (fj ≤ si). We’ll say more generally
that a subset A of requests is compatible if all pairs of requests i, j ∈A, i �= j are
compatible. The goal is to select a compatible subset of requests of maximum
possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.4.
Note that there is a single compatible set of size 4, and this is the largest
compatible set.

Figure 1.4 An instance of the Interval Scheduling Problem.

14 Chapter 1 Introduction: Some Representative Problems

We will see shortly that this problem can be solved by a very natural
algorithm that orders the set of requests according to a certain heuristic and
then “greedily” processes them in one pass, selecting as large a compatible
subset as it can. This will be typical of a class of greedy algorithms that we
will consider for various problems—myopic rules that process the input one
piece at a time with no apparent look-ahead. When a greedy algorithm can be
shown to find an optimal solution for all instances of a problem, it’s often fairly
surprising. We typically learn something about the structure of the underlying
problem from the fact that such a simple approach can be optimal.

Weighted Interval Scheduling
In the Interval Scheduling Problem, we sought to maximize the number of
requests that could be accommodated simultaneously. Now, suppose more
generally that each request interval i has an associated value, or weight,
vi > 0; we could picture this as the amount of money we will make from
the ith individual if we schedule his or her request. Our goal will be to find a
compatible subset of intervals of maximum total value.

The case in which vi = 1 for each i is simply the basic Interval Scheduling
Problem; but the appearance of arbitrary values changes the nature of the
maximization problem quite a bit. Consider, for example, that if v1 exceeds
the sum of all other vi, then the optimal solution must include interval 1
regardless of the configuration of the full set of intervals. So any algorithm
for this problem must be very sensitive to the values, and yet degenerate to a
method for solving (unweighted) interval scheduling when all the values are
equal to 1.

There appears to be no simple greedy rule that walks through the intervals
one at a time, making the correct decision in the presence of arbitrary values.
Instead, we employ a technique, dynamic programming, that builds up the
optimal value over all possible solutions in a compact, tabular way that leads
to a very efficient algorithm.

Bipartite Matching
When we considered the Stable Matching Problem, we defined a matching to
be a set of ordered pairs of men and women with the property that each man
and each woman belong to at most one of the ordered pairs. We then defined
a perfect matching to be a matching in which every man and every woman
belong to some pair.

We can express these concepts more generally in terms of graphs, and in
order to do this it is useful to define the notion of a bipartite graph. We say that
a graph G = (V , E) is bipartite if its node set V can be partitioned into sets X

1.2 Five Representative Problems 15

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

Figure 1.5 A bipartite graph.

and Y in such a way that every edge has one end in X and the other end in Y.
A bipartite graph is pictured in Figure 1.5; often, when we want to emphasize
a graph’s “bipartiteness,” we will draw it this way, with the nodes in X and
Y in two parallel columns. But notice, for example, that the two graphs in
Figure 1.3 are also bipartite.

Now, in the problem of finding a stable matching, matchings were built
from pairs of men and women. In the case of bipartite graphs, the edges are
pairs of nodes, so we say that a matching in a graph G = (V , E) is a set of edges
M ⊆ E with the property that each node appears in at most one edge of M.
M is a perfect matching if every node appears in exactly one edge of M.

To see that this does capture the same notion we encountered in the Stable
Matching Problem, consider a bipartite graph G′ with a set X of n men, a set Y
of n women, and an edge from every node in X to every node in Y. Then the
matchings and perfect matchings in G′ are precisely the matchings and perfect
matchings among the set of men and women.

In the Stable Matching Problem, we added preferences to this picture. Here,
we do not consider preferences; but the nature of the problem in arbitrary
bipartite graphs adds a different source of complexity: there is not necessarily
an edge from every x ∈ X to every y ∈ Y, so the set of possible matchings has
quite a complicated structure. In other words, it is as though only certain pairs
of men and women are willing to be paired off, and we want to figure out
how to pair off many people in a way that is consistent with this. Consider,
for example, the bipartite graph G in Figure 1.5: there are many matchings in
G, but there is only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are
being assigned to other objects. Thus, the nodes in X can represent jobs, the
nodes in Y can represent machines, and an edge (xi, yj) can indicate that
machine yj is capable of processing job xi. A perfect matching is then a way
of assigning each job to a machine that can process it, with the property that
each machine is assigned exactly one job. In the spring, computer science
departments across the country are often seen pondering a bipartite graph in
which X is the set of professors in the department, Y is the set of offered
courses, and an edge (xi, yj) indicates that professor xi is capable of teaching
course yj. A perfect matching in this graph consists of an assignment of each
professor to a course that he or she can teach, in such a way that every course
is covered.

Thus the Bipartite Matching Problem is the following: Given an arbitrary
bipartite graph G, find a matching of maximum size. If |X| = |Y| = n, then there
is a perfect matching if and only if the maximum matching has size n. We will
find that the algorithmic techniques discussed earlier do not seem adequate

16 Chapter 1 Introduction: Some Representative Problems

1

3

6

2

4 5

7

Figure 1.6 A graph whose
largest independent set has
size 4.

for providing an efficient algorithm for this problem. There is, however, a very
elegant and efficient algorithm to find a maximum matching; it inductively
builds up larger and larger matchings, selectively backtracking along the way.
This process is called augmentation, and it forms the central component in a
large class of efficiently solvable problems called network flow problems.

Independent Set
Now let’s talk about an extremely general problem, which includes most of
these earlier problems as special cases. Given a graph G = (V , E), we say
a set of nodes S ⊆ V is independent if no two nodes in S are joined by an
edge. The Independent Set Problem is, then, the following: Given G, find an
independent set that is as large as possible. For example, the maximum size of
an independent set in the graph in Figure 1.6 is four, achieved by the four-node
independent set {1, 4, 5, 6}.

The Independent Set Problem encodes any situation in which you are
trying to choose from among a collection of objects and there are pairwise
conflicts among some of the objects. Say you have n friends, and some pairs
of them don’t get along. How large a group of your friends can you invite to
dinner if you don’t want any interpersonal tensions? This is simply the largest
independent set in the graph whose nodes are your friends, with an edge
between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special
cases of the Independent Set Problem. For Interval Scheduling, define a graph
G = (V , E) in which the nodes are the intervals and there is an edge between
each pair of them that overlap; the independent sets in G are then just the
compatible subsets of intervals. Encoding Bipartite Matching as a special case
of Independent Set is a little trickier to see. Given a bipartite graph G′ = (V ′, E′),
the objects being chosen are edges, and the conflicts arise between two edges
that share an end. (These, indeed, are the pairs of edges that cannot belong
to a common matching.) So we define a graph G = (V , E) in which the node
set V is equal to the edge set E′ of G′. We define an edge between each pair
of elements in V that correspond to edges of G′ with a common end. We can
now check that the independent sets of G are precisely the matchings of G′.
While it is not complicated to check this, it takes a little concentration to deal
with this type of “edges-to-nodes, nodes-to-edges” transformation.2

2 For those who are curious, we note that not every instance of the Independent Set Problem can arise

in this way from Interval Scheduling or from Bipartite Matching; the full Independent Set Problem

really is more general. The graph in Figure 1.3(a) cannot arise as the “conflict graph” in an instance of

1.2 Five Representative Problems 17

Given the generality of the Independent Set Problem, an efficient algorithm
to solve it would be quite impressive. It would have to implicitly contain
algorithms for Interval Scheduling, Bipartite Matching, and a host of other
natural optimization problems.

The current status of Independent Set is this: no efficient algorithm is
known for the problem, and it is conjectured that no such algorithm exists.
The obvious brute-force algorithm would try all subsets of the nodes, checking
each to see if it is independent, and then recording the largest one encountered.
It is possible that this is close to the best we can do on this problem. We will
see later in the book that Independent Set is one of a large class of problems
that are termed NP-complete. No efficient algorithm is known for any of them;
but they are all equivalent in the sense that a solution to any one of them
would imply, in a precise sense, a solution to all of them.

Here’s a natural question: Is there anything good we can say about the
complexity of the Independent Set Problem? One positive thing is the following:
If we have a graph G on 1,000 nodes, and we want to convince you that it
contains an independent set S of size 100, then it’s quite easy. We simply
show you the graph G, circle the nodes of S in red, and let you check that
no two of them are joined by an edge. So there really seems to be a great
difference in difficulty between checking that something is a large independent
set and actually finding a large independent set. This may look like a very basic
observation—and it is—but it turns out to be crucial in understanding this class
of problems. Furthermore, as we’ll see next, it’s possible for a problem to be
so hard that there isn’t even an easy way to “check” solutions in this sense.

Competitive Facility Location
Finally, we come to our fifth problem, which is based on the following two-
player game. Consider two large companies that operate café franchises across
the country—let’s call them JavaPlanet and Queequeg’s Coffee—and they are
currently competing for market share in a geographic area. First JavaPlanet
opens a franchise; then Queequeg’s Coffee opens a franchise; then JavaPlanet;
then Queequeg’s; and so on. Suppose they must deal with zoning regulations
that require no two franchises be located too close together, and each is trying
to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region
in question is divided into n zones, labeled 1, 2, . . . , n. Each zone i has a

Interval Scheduling, and the graph in Figure 1.3(b) cannot arise as the “conflict graph” in an instance

of Bipartite Matching.

18 Chapter 1 Introduction: Some Representative Problems

10 1 5 15 5 1 5 1 15 10

Figure 1.7 An instance of the Competitive Facility Location Problem.

value bi, which is the revenue obtained by either of the companies if it opens
a franchise there. Finally, certain pairs of zones (i, j) are adjacent, and local
zoning laws prevent two adjacent zones from each containing a franchise,
regardless of which company owns them. (They also prevent two franchises
from being opened in the same zone.) We model these conflicts via a graph
G = (V , E), where V is the set of zones, and (i, j) is an edge in E if the
zones i and j are adjacent. The zoning requirement then says that the full
set of franchises opened must form an independent set in G.

Thus our game consists of two players, P1 and P2, alternately selecting
nodes in G, with P1 moving first. At all times, the set of all selected nodes
must form an independent set in G. Suppose that player P2 has a target bound
B, and we want to know: is there a strategy for P2 so that no matter how P1
plays, P2 will be able to select a set of nodes with a total value of at least B?
We will call this an instance of the Competitive Facility Location Problem.

Consider, for example, the instance pictured in Figure 1.7, and suppose
that P2’s target bound is B= 20. Then P2 does have a winning strategy. On the
other hand, if B= 25, then P2 does not.

One can work this out by looking at the figure for a while; but it requires
some amount of case-checking of the form, “If P1 goes here, then P2 will go
there; but if P1 goes over there, then P2 will go here. . . . ” And this appears to
be intrinsic to the problem: not only is it computationally difficult to determine
whether P2 has a winning strategy; on a reasonably sized graph, it would even
be hard for us to convince you that P2 has a winning strategy. There does not
seem to be a short proof we could present; rather, we’d have to lead you on a
lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that
finding a large solution is hard but checking a proposed large solution is easy.
This contrast can be formalized in the class of PSPACE-complete problems, of
which Competitive Facility Location is an example. PSPACE-complete prob-
lems are believed to be strictly harder than NP-complete problems, and this
conjectured lack of short “proofs” for their solutions is one indication of this
greater hardness. The notion of PSPACE-completeness turns out to capture a
large collection of problems involving game-playing and planning; many of
these are fundamental issues in the area of artificial intelligence.

Solved Exercises 19

Solved Exercises

Solved Exercise 1
Consider a town with n men and n women seeking to get married to one
another. Each man has a preference list that ranks all the women, and each
woman has a preference list that ranks all the men.

The set of all 2n people is divided into two categories: good people and
bad people. Suppose that for some number k, 1≤ k ≤ n − 1, there are k good
men and k good women; thus there are n− k bad men and n− k bad women.

Everyone would rather marry any good person than any bad person.
Formally, each preference list has the property that it ranks each good person
of the opposite gender higher than each bad person of the opposite gender: its
first k entries are the good people (of the opposite gender) in some order, and
its next n − k are the bad people (of the opposite gender) in some order.

Show that in every stable matching, every good man is married to a good
woman.

Solution A natural way to get started thinking about this problem is to
assume the claim is false and try to work toward obtaining a contradiction.
What would it mean for the claim to be false? There would exist some stable
matching M in which a good man m was married to a bad woman w.

Now, let’s consider what the other pairs in M look like. There are k good
men and k good women. Could it be the case that every good woman is married
to a good man in this matching M? No: one of the good men (namely, m) is
already married to a bad woman, and that leaves only k − 1 other good men.
So even if all of them were married to good women, that would still leave some
good woman who is married to a bad man.

Let w′ be such a good woman, who is married to a bad man. It is now
easy to identify an instability in M: consider the pair (m, w′). Each is good,
but is married to a bad partner. Thus, each of m and w′ prefers the other to
their current partner, and hence (m, w′) is an instability. This contradicts our
assumption that M is stable, and hence concludes the proof.

Solved Exercise 2
We can think about a generalization of the Stable Matching Problem in which
certain man-woman pairs are explicitly forbidden. In the case of employers and
applicants, we could imagine that certain applicants simply lack the necessary
qualifications or certifications, and so they cannot be employed at certain
companies, however desirable they may seem. Using the analogy to marriage
between men and women, we have a set M of n men, a set W of n women,

20 Chapter 1 Introduction: Some Representative Problems

and a set F ⊆M ×W of pairs who are simply not allowed to get married. Each
man m ranks all the women w for which (m, w) �∈ F , and each woman w′ ranks
all the men m′ for which (m′, w′) �∈ F .

In this more general setting, we say that a matching S is stable if it does
not exhibit any of the following types of instability.

(i) There are two pairs (m, w) and (m′, w′) in S with the property that
(m, w′) �∈ F , m prefers w′ to w, and w′ prefers m to m′. (The usual kind
of instability.)

(ii) There is a pair (m, w) ∈ S, and a man m′, so that m′ is not part of any
pair in the matching, (m′, w) �∈ F , and w prefers m′ to m. (A single man
is more desirable and not forbidden.)

(iii) There is a pair (m, w) ∈ S, and a woman w′, so that w′ is not part of
any pair in the matching, (m, w′) �∈ F , and m prefers w′ to w. (A single
woman is more desirable and not forbidden.)

(iv) There is a man m and a woman w, neither of whom is part of any pair
in the matching, so that (m, w) �∈ F . (There are two single people with
nothing preventing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be
a perfect matching.

Now we can ask: For every set of preference lists and every set of forbidden
pairs, is there always a stable matching? Resolve this question by doing one of
the following two things: (a) give an algorithm that, for any set of preference
lists and forbidden pairs, produces a stable matching; or (b) give an example
of a set of preference lists and forbidden pairs for which there is no stable
matching.

Solution The Gale-Shapley algorithm is remarkably robust to variations on
the Stable Matching Problem. So, if you’re faced with a new variation of the
problem and can’t find a counterexample to stability, it’s often a good idea to
check whether a direct adaptation of the G-S algorithm will in fact produce
stable matchings.

That turns out to be the case here. We will show that there is always a
stable matching, even in this more general model with forbidden pairs, and
we will do this by adapting the G-S algorithm. To do this, let’s consider why
the original G-S algorithm can’t be used directly. The difficulty, of course, is
that the G-S algorithm doesn’t know anything about forbidden pairs, and so
the condition in the While loop,

While there is a man m who is free and hasn’t proposed to

every woman,

Solved Exercises 21

won’t work: we don’t want m to propose to a woman w for which the pair
(m, w) is forbidden.

Thus, let’s consider a variation of the G-S algorithm in which we make
only one change: we modify the While loop to say,

While there is a man m who is free and hasn’t proposed to

every woman w for which (m, w) �∈ F.

Here is the algorithm in full.

Initially all m ∈M and w ∈W are free

While there is a man m who is free and hasn’t proposed to

every woman w for which (m, w) �∈ F

Choose such a man m

Let w be the highest-ranked woman in m’s preference list

to which m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then

m remains free

Else w prefers m to m′

(m, w) become engaged

m′ becomes free
Endif

Endif

Endwhile

Return the set S of engaged pairs

We now prove that this yields a stable matching, under our new definition
of stability.

To begin with, facts (1.1), (1.2), and (1.3) from the text remain true (in
particular, the algorithm will terminate in at most n2 iterations). Also, we
don’t have to worry about establishing that the resulting matching S is perfect
(indeed, it may not be). We also notice an additional pairs of facts. If m is
a man who is not part of a pair in S, then m must have proposed to every
nonforbidden woman; and if w is a woman who is not part of a pair in S, then
it must be that no man ever proposed to w.

Finally, we need only show

(1.9) There is no instability with respect to the returned matching S.

22 Chapter 1 Introduction: Some Representative Problems

Proof. Our general definition of instability has four parts: This means that we
have to make sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (m, w)

and (m′, w′) in S with the property that (m, w′) �∈ F , m prefers w′ to w, and w′
prefers m to m′. It follows that m must have proposed to w′; so w′ rejected m,
and thus she prefers her final partner to m—a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair
(m, w) ∈ S, and a man m′, so that m′ is not part of any pair in the matching,
(m′, w) �∈ F , and w prefers m′ to m. Then m′ must have proposed to w and
been rejected; again, it follows that w prefers her final partner to m′—a
contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair
(m, w) ∈ S, and a woman w′, so that w′ is not part of any pair in the matching,
(m, w′) �∈ F , and m prefers w′ to w. Then no man proposed to w′ at all;
in particular, m never proposed to w′, and so he must prefer w to w′—a
contradiction.

Finally, suppose there is an instability of type (iv), consisting of a man
m and a woman w, neither of which is part of any pair in the matching,
so that (m, w) �∈ F . But for m to be single, he must have proposed to every
nonforbidden woman; in particular, he must have proposed to w, which means
she would no longer be single—a contradiction.

Exercises

1. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

True or false? In every instance of the Stable Matching Problem, there is a

stable matching containing a pair (m, w) such that m is ranked first on the

preference list of w and w is ranked first on the preference list of m.

2. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

True or false? Consider an instance of the Stable Matching Problem in which

there exists a man m and a woman w such that m is ranked first on the

preference list of w and w is ranked first on the preference list of m. Then in

every stable matching S for this instance, the pair (m, w) belongs to S.

3. There are many other settings in which we can ask questions related

to some type of “stability” principle. Here’s one, involving competition

between two enterprises.

Exercises 23

Suppose we have two television networks, whom we’ll call A and B.

There are n prime-time programming slots, and each network has n TV

shows. Each network wants to devise a schedule—an assignment of each

show to a distinct slot—so as to attract as muchmarket share as possible.

Here is the way we determine how well the two networks perform

relative to each other, given their schedules. Each show has a fixed rating,

which is based on the number of people who watched it last year; we’ll

assume that no two shows have exactly the same rating. A networkwins a

given time slot if the show that it schedules for the time slot has a larger

rating than the show the other network schedules for that time slot. The

goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a

schedule S and Network B reveals a schedule T . On the basis of this pair

of schedules, each network wins certain time slots, according to the rule

above.We’ll say that the pair of schedules (S, T) is stable if neither network

can unilaterally change its own schedule and win more time slots. That

is, there is no schedule S′ such that Network A wins more slots with the

pair (S′, T) than it did with the pair (S, T); and symmetrically, there is no

schedule T ′ such that Network B wins more slots with the pair (S, T ′) than
it did with the pair (S, T).

The analogue of Gale and Shapley’s question for this kind of stability

is the following: For every set of TV shows and ratings, is there always

a stable pair of schedules? Resolve this question by doing one of the

following two things:

(a) give an algorithm that, for any set of TV shows and associated

ratings, produces a stable pair of schedules; or

(b) give an example of a set of TV shows and associated ratings for

which there is no stable pair of schedules.

4. Gale and Shapley published their paper on the Stable Matching Problem

in 1962; but a version of their algorithm had already been in use for

ten years by the National Resident Matching Program, for the problem of

assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals,

each with a certain number of available positions for hiring residents.

There were n medical students graduating in a given year, each interested

in joining one of the hospitals. Each hospital had a ranking of the students

in order of preference, and each student had a ranking of the hospitals

in order of preference. We will assume that there were more students

graduating than there were slots available in the m hospitals.

24 Chapter 1 Introduction: Some Representative Problems

The interest, naturally, was in finding a way of assigning each student

to at most one hospital, in such a way that all available positions in all

hospitals were filled. (Since we are assuming a surplus of students, there

would be some students who do not get assigned to any hospital.)

We say that an assignment of students to hospitals is stable if neither

of the following situations arises.

. First type of instability: There are students s and s′, and a hospital h,

so that

– s is assigned to h, and

– s′ is assigned to no hospital, and

– h prefers s′ to s.

. Second type of instability: There are students s and s′, and hospitals

h and h′, so that

– s is assigned to h, and

– s′ is assigned to h′, and
– h prefers s′ to s, and

– s′ prefers h to h′.

So we basically have the Stable Matching Problem, except that (i)

hospitals generally wantmore than one resident, and (ii) there is a surplus

of medical students.

Show that there is always a stable assignment of students to hospi-

tals, and give an algorithm to find one.

5. The Stable Matching Problem, as discussed in the text, assumes that all

men and women have a fully ordered list of preferences. In this problem

wewill consider a version of the problem in whichmen andwomen can be

indifferent between certain options. As before we have a set M of n men

and a set W of n women. Assume each man and each woman ranks the

members of the opposite gender, but now we allow ties in the ranking.

For example (with n = 4), a woman could say that m1 is ranked in first

place; second place is a tie between m2 and m3 (she has no preference

between them); and m4 is in last place. We will say that w prefers m to m′

if m is ranked higher than m′ on her preference list (they are not tied).

With indifferences in the rankings, there could be two natural notions

for stability. And for each, we can ask about the existence of stable

matchings, as follows.

(a) A strong instability in a perfect matching S consists of a man m and

a woman w, such that each of m and w prefers the other to their

partner in S. Does there always exist a perfect matching with no

Exercises 25

strong instability? Either give an example of a set of men and women

with preference lists for which every perfect matching has a strong

instability; or give an algorithm that is guaranteed to find a perfect

matching with no strong instability.

(b) A weak instability in a perfect matching S consists of a man m and

a woman w, such that their partners in S are w′ and m′, respectively,
and one of the following holds:

– m prefers w to w′, and w either prefers m to m′ or is indifferent

between these two choices; or

– w prefers m to m′, and m either prefers w to w′ or is indifferent

between these two choices.

In other words, the pairing between m and w is either preferred

by both, or preferred by one while the other is indifferent. Does

there always exist a perfect matching with no weak instability? Either

give an example of a set of men and women with preference lists

for which every perfect matching has a weak instability; or give an

algorithm that is guaranteed to find a perfect matching with no weak

instability.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships

and provides service to n ports. Each of its ships has a schedule that says,

for each day of the month, which of the ports it’s currently visiting, or

whether it’s out at sea. (You can assume the “month” here has m days,

for some m > n.) Each ship visits each port for exactly one day during the

month. For safety reasons, PSL Inc. has the following strict requirement:

(†) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this

month, via the following scheme. They want to truncate each ship’s

schedule: for each ship Si, there will be some day when it arrives in its

scheduled port and simply remains there for the rest of the month (for

maintenance). This means that Si will not visit the remaining ports on

its schedule (if any) that month, but this is okay. So the truncation of

Si’s schedule will simply consist of its original schedule up to a certain

specified day on which it is in a port P; the remainder of the truncated

schedule simply has it remain in port P.

Now the company’s question to you is the following: Given the sched-

ule for each ship, find a truncation of each so that condition (†) continues
to hold: no two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an

algorithm to find them.

26 Chapter 1 Introduction: Some Representative Problems

Example. Suppose we have two ships and two ports, and the “month” has

four days. Suppose the first ship’s schedule is

port P1; at sea; port P2; at sea

and the second ship’s schedule is

at sea; port P1; at sea; port P2

Then the (only) way to choose truncations would be to have the first ship

remain in port P2 starting on day 3, and have the second ship remain in

port P1 starting on day 2.

7. Some of your friends are working for CluNet, a builder of large commu-

nication networks, and they are looking at algorithms for switching in a

particular type of input/output crossbar.

Here is the setup. There are n input wires and n output wires, each

directed from a source to a terminus. Each input wire meets each output

wire in exactly one distinct point, at a special piece of hardware called

a junction box. Points on the wire are naturally ordered in the direction

from source to terminus; for two distinct points x and y on the same

wire, we say that x is upstream from y if x is closer to the source than

y, and otherwise we say x is downstream from y. The order in which one

input wire meets the output wires is not necessarily the same as the order

in which another input wire meets the output wires. (And similarly for

the orders in which output wires meet input wires.) Figure 1.8 gives an

example of such a collection of input and output wires.

Now, here’s the switching component of this situation. Each input

wire is carrying a distinct data stream, and this data stream must be

switched onto one of the output wires. If the stream of Input i is switched

onto Output j, at junction box B, then this stream passes through all

junction boxes upstream from B on Input i, then through B, then through

all junction boxes downstream from B on Output j. It does not matter

which input data stream gets switched onto which output wire, but

each input data stream must be switched onto a different output wire.

Furthermore—and this is the tricky constraint—no two data streams can

pass through the same junction box following the switching operation.

Finally, here’s the problem. Show that for any specified pattern in

which the input wires and output wires meet each other (each pair meet-

ing exactly once), a valid switching of the data streams can always be

found—one in which each input data stream is switched onto a different

output, and no two of the resulting streams pass through the same junc-

tion box. Additionally, give an algorithm to find such a valid switching.

Exercises 27

Junction

Junction

Junction

Junction

Input 1
(meets Output 2
before Output 1)

Input 2
(meets Output 1
before Output 2)

Output 1
(meets Input 2
before Input 1)

Output 2
(meets Input 2
before Input 1)

Figure 1.8 An example with two input wires and two output wires. Input 1 has its
junction with Output 2 upstream from its junction with Output 1; Input 2 has its
junction with Output 1 upstream from its junction with Output 2. A valid solution is
to switch the data stream of Input 1 onto Output 2, and the data stream of Input 2
onto Output 1. On the other hand, if the stream of Input 1 were switched onto Output
1, and the stream of Input 2 were switched onto Output 2, then both streams would
pass through the junction box at the meeting of Input 1 and Output 2—and this is not
allowed.

8. For this problem, we will explore the issue of truthfulness in the Stable

Matching Problem and specifically in the Gale-Shapley algorithm. The

basic question is: Can a man or a woman end up better off by lying about

his or her preferences? More concretely, we suppose each participant has

a true preference order. Now consider a woman w. Suppose w prefersman

m to m′, but both m and m′ are low on her list of preferences. Can it be the

case that by switching the order of m and m′ on her list of preferences (i.e.,

by falsely claiming that she prefers m′ to m) and running the algorithm

with this false preference list, w will end up with a man m′′ that she truly

prefers to both m and m′? (We can ask the same question for men, but

will focus on the case of women for purposes of this question.)

Resolve this question by doing one of the following two things:

(a) Give a proof that, for any set of preference lists, switching the

order of a pair on the list cannot improve a woman’s partner in the Gale-

Shapley algorithm; or

28 Chapter 1 Introduction: Some Representative Problems

(b) Give an example of a set of preference lists for which there is

a switch that would improve the partner of a woman who switched

preferences.

Notes and Further Reading

The Stable Matching Problem was first defined and analyzed by Gale and
Shapley (1962); according to David Gale, their motivation for the problem
came from a story they had recently read in the New Yorker about the intricacies
of the college admissions process (Gale, 2001). Stable matching has grown
into an area of study in its own right, covered in books by Gusfield and Irving
(1989) and Knuth (1997c). Gusfield and Irving also provide a nice survey of
the “parallel” history of the Stable Matching Problem as a technique invented
for matching applicants with employers in medicine and other professions.

As discussed in the chapter, our five representative problems will be
central to the book’s discussions, respectively, of greedy algorithms, dynamic
programming, network flow, NP-completeness, and PSPACE-completeness.
We will discuss the problems in these contexts later in the book.

Chapter 2

Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource require-
ments—the amount of time and space they use—will scale with increasing
input size. We begin this chapter by talking about how to put this notion on a
concrete footing, as making it concrete opens the door to a rich understanding
of computational tractability. Having done this, we develop the mathematical
machinery needed to talk about the way in which different functions scale
with increasing input size, making precise what it means for one function to
grow faster than another.

We then develop running-time bounds for some basic algorithms, begin-
ning with an implementation of the Gale-Shapley algorithm from Chapter 1
and continuing to a survey of many different running times and certain char-
acteristic types of algorithms that achieve these running times. In some cases,
obtaining a good running-time bound relies on the use of more sophisticated
data structures, and we conclude this chapter with a very useful example of
such a data structure: priority queues and their implementation using heaps.

2.1 Computational Tractability
A major focus of this book is to find efficient algorithms for computational
problems. At this level of generality, our topic seems to encompass the whole
of computer science; so what is specific to our approach here?

First, we will try to identify broad themes and design principles in the
development of algorithms. We will look for paradigmatic problems and ap-
proaches that illustrate, with a minimum of irrelevant detail, the basic ap-
proaches to designing efficient algorithms. At the same time, it would be
pointless to pursue these design principles in a vacuum, so the problems and

30 Chapter 2 Basics of Algorithm Analysis

approaches we consider are drawn from fundamental issues that arise through-
out computer science, and a general study of algorithms turns out to serve as
a nice survey of computational ideas that arise in many areas.

Another property shared by many of the problems we study is their
fundamentally discrete nature. That is, like the Stable Matching Problem, they
will involve an implicit search over a large set of combinatorial possibilities;
and the goal will be to efficiently find a solution that satisfies certain clearly
delineated conditions.

As we seek to understand the general notion of computational efficiency,
we will focus primarily on efficiency in running time: we want algorithms that
run quickly. But it is important that algorithms be efficient in their use of other
resources as well. In particular, the amount of space (or memory) used by an
algorithm is an issue that will also arise at a number of points in the book, and
we will see techniques for reducing the amount of space needed to perform a
computation.

Some Initial Attempts at Defining Efficiency
The first major question we need to answer is the following: How should we
turn the fuzzy notion of an “efficient” algorithm into something more concrete?

A first attempt at a working definition of efficiency is the following.

Proposed Definition of Efficiency (1): An algorithm is efficient if, when
implemented, it runs quickly on real input instances.

Let’s spend a little time considering this definition. At a certain level, it’s hard
to argue with: one of the goals at the bedrock of our study of algorithms is
solving real problems quickly. And indeed, there is a significant area of research
devoted to the careful implementation and profiling of different algorithms for
discrete computational problems.

But there are some crucial things missing from this definition, even if our
main goal is to solve real problem instances quickly on real computers. The
first is the omission of where, and how well, we implement an algorithm. Even
bad algorithms can run quickly when applied to small test cases on extremely
fast processors; even good algorithms can run slowly when they are coded
sloppily. Also, what is a “real” input instance? We don’t know the full range of
input instances that will be encountered in practice, and some input instances
can be much harder than others. Finally, this proposed definition above does
not consider how well, or badly, an algorithm may scale as problem sizes grow
to unexpected levels. A common situation is that two very different algorithms
will perform comparably on inputs of size 100; multiply the input size tenfold,
and one will still run quickly while the other consumes a huge amount of time.

2.1 Computational Tractability 31

So what we could ask for is a concrete definition of efficiency that is
platform-independent, instance-independent, and of predictive value with
respect to increasing input sizes. Before focusing on any specific consequences
of this claim, we can at least explore its implicit, high-level suggestion: that
we need to take a more mathematical view of the situation.

We can use the Stable Matching Problem as an example to guide us. The
input has a natural “size” parameter N; we could take this to be the total size of
the representation of all preference lists, since this is what any algorithm for the
problem will receive as input. N is closely related to the other natural parameter
in this problem: n, the number of men and the number of women. Since there
are 2n preference lists, each of length n, we can view N = 2n2, suppressing
more fine-grained details of how the data is represented. In considering the
problem, we will seek to describe an algorithm at a high level, and then analyze
its running time mathematically as a function of this input size N.

Worst-Case Running Times and Brute-Force Search
To begin with, we will focus on analyzing the worst-case running time: we will
look for a bound on the largest possible running time the algorithm could have
over all inputs of a given size N, and see how this scales with N. The focus on
worst-case performance initially seems quite draconian: what if an algorithm
performs well on most instances and just has a few pathological inputs on
which it is very slow? This certainly is an issue in some cases, but in general
the worst-case analysis of an algorithm has been found to do a reasonable job
of capturing its efficiency in practice. Moreover, once we have decided to go
the route of mathematical analysis, it is hard to find an effective alternative to
worst-case analysis. Average-case analysis—the obvious appealing alternative,
in which one studies the performance of an algorithm averaged over “random”
instances—can sometimes provide considerable insight, but very often it can
also become a quagmire. As we observed earlier, it’s very hard to express the
full range of input instances that arise in practice, and so attempts to study an
algorithm’s performance on “random” input instances can quickly devolve into
debates over how a random input should be generated: the same algorithm
can perform very well on one class of random inputs and very poorly on
another. After all, real inputs to an algorithm are generally not being produced
from a random distribution, and so average-case analysis risks telling us more
about the means by which the random inputs were generated than about the
algorithm itself.

So in general we will think about the worst-case analysis of an algorithm’s
running time. But what is a reasonable analytical benchmark that can tell us
whether a running-time bound is impressive or weak? A first simple guide

32 Chapter 2 Basics of Algorithm Analysis

is by comparison with brute-force search over the search space of possible
solutions.

Let’s return to the example of the Stable Matching Problem. Even when
the size of a Stable Matching input instance is relatively small, the search
space it defines is enormous (there are n! possible perfect matchings between
n men and n women), and we need to find a matching that is stable. The
natural “brute-force” algorithm for this problem would plow through all perfect
matchings by enumeration, checking each to see if it is stable. The surprising
punchline, in a sense, to our solution of the Stable Matching Problem is that we
needed to spend time proportional only to N in finding a stable matching from
among this stupendously large space of possibilities. This was a conclusion we
reached at an analytical level. We did not implement the algorithm and try it
out on sample preference lists; we reasoned about it mathematically. Yet, at the
same time, our analysis indicated how the algorithm could be implemented in
practice and gave fairly conclusive evidence that it would be a big improvement
over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact
representation, implicitly specifying a giant search space. For most of these
problems, there will be an obvious brute-force solution: try all possibilities
and see if any one of them works. Not only is this approach almost always too
slow to be useful, it is an intellectual cop-out; it provides us with absolutely
no insight into the structure of the problem we are studying. And so if there
is a common thread in the algorithms we emphasize in this book, it would be
the following alternative definition of efficiency.

Proposed Definition of Efficiency (2): An algorithm is efficient if it achieves
qualitatively better worst-case performance, at an analytical level, than
brute-force search.

This will turn out to be a very useful working definition for us. Algorithms
that improve substantially on brute-force search nearly always contain a
valuable heuristic idea that makes them work; and they tell us something
about the intrinsic structure, and computational tractability, of the underlying
problem itself.

But if there is a problem with our second working definition, it is vague-
ness. What do we mean by “qualitatively better performance?” This suggests
that we consider the actual running time of algorithms more carefully, and try
to quantify what a reasonable running time would be.

Polynomial Time as a Definition of Efficiency
When people first began analyzing discrete algorithms mathematically—a
thread of research that began gathering momentum through the 1960s—

2.1 Computational Tractability 33

a consensus began to emerge on how to quantify the notion of a “reasonable”
running time. Search spaces for natural combinatorial problems tend to grow
exponentially in the size N of the input; if the input size increases by one, the
number of possibilities increases multiplicatively. We’d like a good algorithm
for such a problem to have a better scaling property: when the input size
increases by a constant factor—say, a factor of 2—the algorithm should only
slow down by some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose
an algorithm has the following property: There are absolute constants c > 0
and d > 0 so that on every input instance of size N, its running time is
bounded by cNd primitive computational steps. (In other words, its running
time is at most proportional to Nd.) For now, we will remain deliberately
vague on what we mean by the notion of a “primitive computational step”—
but it can be easily formalized in a model where each step corresponds to
a single assembly-language instruction on a standard processor, or one line
of a standard programming language such as C or Java. In any case, if this
running-time bound holds, for some c and d, then we say that the algorithm
has a polynomial running time, or that it is a polynomial-time algorithm. Note
that any polynomial-time bound has the scaling property we’re looking for. If
the input size increases from N to 2N, the bound on the running time increases
from cNd to c(2N)d = c · 2dNd, which is a slow-down by a factor of 2d. Since d is
a constant, so is 2d; of course, as one might expect, lower-degree polynomials
exhibit better scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third
attempt at a working definition of efficiency.

Proposed Definition of Efficiency (3): An algorithm is efficient if it has a
polynomial running time.

Where our previous definition seemed overly vague, this one seems much
too prescriptive. Wouldn’t an algorithm with running time proportional to
n100—and hence polynomial—be hopelessly inefficient? Wouldn’t we be rel-
atively pleased with a nonpolynomial running time of n1+.02(log n)? The an-
swers are, of course, “yes” and “yes.” And indeed, however much one may
try to abstractly motivate the definition of efficiency in terms of polynomial
time, a primary justification for it is this: It really works. Problems for which
polynomial-time algorithms exist almost invariably turn out to have algorithms
with running times proportional to very moderately growing polynomials like
n, n log n, n2, or n3. Conversely, problems for which no polynomial-time al-
gorithm is known tend to be very difficult in practice. There are certainly
exceptions to this principle in both directions: there are cases, for example, in

34 Chapter 2 Basics of Algorithm Analysis

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 1025 years, we simply record the algorithm as
taking a very long time.

n n log2 n n2 n3 1.5n 2n n!

n = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 years

n = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n = 100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 1017 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long

n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long

n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

which an algorithm with exponential worst-case behavior generally runs well
on the kinds of instances that arise in practice; and there are also cases where
the best polynomial-time algorithm for a problem is completely impractical
due to large constants or a high exponent on the polynomial bound. All this
serves to reinforce the point that our emphasis on worst-case, polynomial-time
bounds is only an abstraction of practical situations. But overwhelmingly, the
concrete mathematical definition of polynomial time has turned out to corre-
spond surprisingly well in practice to what we observe about the efficiency of
algorithms, and the tractability of problems, in real life.

One further reason why the mathematical formalism and the empirical
evidence seem to line up well in the case of polynomial-time solvability is that
the gulf between the growth rates of polynomial and exponential functions
is enormous. Suppose, for example, that we have a processor that executes
a million high-level instructions per second, and we have algorithms with
running-time bounds of n, n log2 n, n2, n3, 1.5n, 2n, and n!. In Table 2.1,
we show the running times of these algorithms (in seconds, minutes, days,
or years) for inputs of size n = 10, 30, 50, 100, 1,000, 10,000, 100,000, and
1,000,000.

There is a final, fundamental benefit to making our definition of efficiency
so specific: it becomes negatable. It becomes possible to express the notion
that there is no efficient algorithm for a particular problem. In a sense, being
able to do this is a prerequisite for turning our study of algorithms into
good science, for it allows us to ask about the existence or nonexistence
of efficient algorithms as a well-defined question. In contrast, both of our

2.2 Asymptotic Order of Growth 35

previous definitions were completely subjective, and hence limited the extent
to which we could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific
implementation of an algorithm, turned efficiency into a moving target: as
processor speeds increase, more and more algorithms fall under this notion of
efficiency. Our definition in terms of polynomial time is much more an absolute
notion; it is closely connected with the idea that each problem has an intrinsic
level of computational tractability: some admit efficient solutions, and others
do not.

2.2 Asymptotic Order of Growth
Our discussion of computational tractability has turned out to be intrinsically
based on our ability to express the notion that an algorithm’s worst-case
running time on inputs of size n grows at a rate that is at most proportional to
some function f (n). The function f (n) then becomes a bound on the running
time of the algorithm. We now discuss a framework for talking about this
concept.

We will mainly express algorithms in the pseudo-code style that we used
for the Gale-Shapley algorithm. At times we will need to become more formal,
but this style of specifying algorithms will be completely adequate for most
purposes. When we provide a bound on the running time of an algorithm,
we will generally be counting the number of such pseudo-code steps that
are executed; in this context, one step will consist of assigning a value to a
variable, looking up an entry in an array, following a pointer, or performing
an arithmetic operation on a fixed-size integer.

When we seek to say something about the running time of an algorithm on
inputs of size n, one thing we could aim for would be a very concrete statement
such as, “On any input of size n, the algorithm runs for at most 1.62n2+
3.5n+ 8 steps.” This may be an interesting statement in some contexts, but as
a general goal there are several things wrong with it. First, getting such a precise
bound may be an exhausting activity, and more detail than we wanted anyway.
Second, because our ultimate goal is to identify broad classes of algorithms that
have similar behavior, we’d actually like to classify running times at a coarser
level of granularity so that similarities among different algorithms, and among
different problems, show up more clearly. And finally, extremely detailed
statements about the number of steps an algorithm executes are often—in
a strong sense—meaningless. As just discussed, we will generally be counting
steps in a pseudo-code specification of an algorithm that resembles a high-
level programming language. Each one of these steps will typically unfold
into some fixed number of primitive steps when the program is compiled into

36 Chapter 2 Basics of Algorithm Analysis

an intermediate representation, and then into some further number of steps
depending on the particular architecture being used to do the computing. So
the most we can safely say is that as we look at different levels of computational
abstraction, the notion of a “step” may grow or shrink by a constant factor—
for example, if it takes 25 low-level machine instructions to perform one
operation in our high-level language, then our algorithm that took at most
1.62n2+ 3.5n+ 8 steps can also be viewed as taking 40.5n2+ 87.5n+ 200 steps
when we analyze it at a level that is closer to the actual hardware.

O, �, and �

For all these reasons, we want to express the growth rate of running times
and other functions in a way that is insensitive to constant factors and low-
order terms. In other words, we’d like to be able to take a running time like
the one we discussed above, 1.62n2+ 3.5n + 8, and say that it grows like n2,
up to constant factors. We now discuss a precise way to do this.

Asymptotic Upper Bounds Let T(n) be a function—say, the worst-case run-
ning time of a certain algorithm on an input of size n. (We will assume that
all the functions we talk about here take nonnegative values.) Given another
function f (n), we say that T(n) is O(f (n)) (read as “T(n) is order f (n)”) if, for
sufficiently large n, the function T(n) is bounded above by a constant multiple
of f (n). We will also sometimes write this as T(n)= O(f (n)). More precisely,
T(n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0 so that for all n ≥ n0,
we have T(n)≤ c · f (n). In this case, we will say that T is asymptotically upper-
bounded by f . It is important to note that this definition requires a constant c
to exist that works for all n; in particular, c cannot depend on n.

As an example of how this definition lets us express upper bounds on
running times, consider an algorithm whose running time (as in the earlier
discussion) has the form T(n)= pn2+ qn + r for positive constants p, q, and
r. We’d like to claim that any such function is O(n2). To see why, we notice
that for all n ≥ 1, we have qn ≤ qn2, and r ≤ rn2. So we can write

T(n)= pn2+ qn + r ≤ pn2+ qn2+ rn2= (p+ q + r)n2

for all n ≥ 1. This inequality is exactly what the definition of O(·) requires:
T(n)≤ cn2, where c = p+ q + r.

Note that O(·) expresses only an upper bound, not the exact growth rate
of the function. For example, just as we claimed that the function T(n) =
pn2+ qn + r is O(n2), it’s also correct to say that it’s O(n3). Indeed, we just
argued that T(n) ≤ (p + q + r)n2, and since we also have n2 ≤ n3, we can
conclude that T(n) ≤ (p + q + r)n3 as the definition of O(n3) requires. The
fact that a function can have many upper bounds is not just a trick of the
notation; it shows up in the analysis of running times as well. There are cases

2.2 Asymptotic Order of Growth 37

where an algorithm has been proved to have running time O(n3); some years
pass, people analyze the same algorithm more carefully, and they show that
in fact its running time is O(n2). There was nothing wrong with the first result;
it was a correct upper bound. It’s simply that it wasn’t the “tightest” possible
running time.

Asymptotic Lower Bounds There is a complementary notation for lower
bounds. Often when we analyze an algorithm—say we have just proven that
its worst-case running time T(n) is O(n2)—we want to show that this upper
bound is the best one possible. To do this, we want to express the notion that for
arbitrarily large input sizes n, the function T(n) is at least a constant multiple of
some specific function f (n). (In this example, f (n) happens to be n2.) Thus, we
say that T(n) is �(f (n)) (also written T(n)=�(f (n))) if there exist constants
ε > 0 and n0≥ 0 so that for all n≥ n0, we have T(n)≥ ε · f (n). By analogy with
O(·) notation, we will refer to T in this case as being asymptotically lower-
bounded by f . Again, note that the constant ε must be fixed, independent
of n.

This definition works just like O(·), except that we are bounding the
function T(n) from below, rather than from above. For example, returning
to the function T(n)= pn2+ qn + r, where p, q, and r are positive constants,
let’s claim that T(n)=�(n2). Whereas establishing the upper bound involved
“inflating” the terms in T(n) until it looked like a constant times n2, now we
need to do the opposite: we need to reduce the size of T(n) until it looks like
a constant times n2. It is not hard to do this; for all n ≥ 0, we have

T(n)= pn2+ qn + r ≥ pn2,

which meets what is required by the definition of �(·) with ε = p > 0.

Just as we discussed the notion of “tighter” and “weaker” upper bounds,
the same issue arises for lower bounds. For example, it is correct to say that
our function T(n)= pn2+ qn + r is �(n), since T(n)≥ pn2≥ pn.

Asymptotically Tight Bounds If we can show that a running time T(n) is
both O(f (n)) and also �(f (n)), then in a natural sense we’ve found the “right”
bound: T(n) grows exactly like f (n) to within a constant factor. This, for
example, is the conclusion we can draw from the fact that T(n)= pn2+ qn+ r
is both O(n2) and �(n2).

There is a notation to express this: if a function T(n) is both O(f (n)) and
�(f (n)), we say that T(n) is �(f (n)). In this case, we say that f (n) is an
asymptotically tight bound for T(n). So, for example, our analysis above shows
that T(n)= pn2+ qn + r is �(n2).

Asymptotically tight bounds on worst-case running times are nice things
to find, since they characterize the worst-case performance of an algorithm

38 Chapter 2 Basics of Algorithm Analysis

precisely up to constant factors. And as the definition of �(·) shows, one can
obtain such bounds by closing the gap between an upper bound and a lower
bound. For example, sometimes you will read a (slightly informally phrased)
sentence such as “An upper bound of O(n3) has been shown on the worst-case
running time of the algorithm, but there is no example known on which the
algorithm runs for more than �(n2) steps.” This is implicitly an invitation to
search for an asymptotically tight bound on the algorithm’s worst-case running
time.

Sometimes one can also obtain an asymptotically tight bound directly by
computing a limit as n goes to infinity. Essentially, if the ratio of functions
f (n) and g(n) converges to a positive constant as n goes to infinity, then
f (n)=�(g(n)).

(2.1) Let f and g be two functions that

lim
n→∞

f (n)

g(n)

exists and is equal to some number c > 0. Then f (n)=�(g(n)).

Proof. We will use the fact that the limit exists and is positive to show that
f (n)= O(g(n)) and f (n)=�(g(n)), as required by the definition of �(·).

Since

lim
n→∞

f (n)

g(n)
= c > 0,

it follows from the definition of a limit that there is some n0 beyond which the
ratio is always between 1

2c and 2c. Thus, f (n)≤ 2cg(n) for all n ≥ n0, which
implies that f (n)= O(g(n)); and f (n) ≥ 1

2cg(n) for all n ≥ n0, which implies
that f (n)=�(g(n)).

Properties of Asymptotic Growth Rates
Having seen the definitions of O, �, and �, it is useful to explore some of their
basic properties.

Transitivity A first property is transitivity: if a function f is asymptotically
upper-bounded by a function g, and if g in turn is asymptotically upper-
bounded by a function h, then f is asymptotically upper-bounded by h. A
similar property holds for lower bounds. We write this more precisely as
follows.

(2.2)

(a) If f = O(g) and g = O(h), then f = O(h).

(b) If f =�(g) and g =�(h), then f =�(h).

2.2 Asymptotic Order of Growth 39

Proof. We’ll prove part (a) of this claim; the proof of part (b) is very similar.

For (a), we’re given that for some constants c and n0, we have f (n)≤ cg(n)

for all n ≥ n0. Also, for some (potentially different) constants c′ and n′0, we
have g(n)≤ c′h(n) for all n ≥ n′0. So consider any number n that is at least as
large as both n0 and n′0. We have f (n)≤ cg(n)≤ cc′h(n), and so f (n)≤ cc′h(n)

for all n ≥max(n0, n′0). This latter inequality is exactly what is required for
showing that f = O(h).

Combining parts (a) and (b) of (2.2), we can obtain a similar result
for asymptotically tight bounds. Suppose we know that f =�(g) and that
g =�(h). Then since f = O(g) and g = O(h), we know from part (a) that
f = O(h); since f =�(g) and g =�(h), we know from part (b) that f =�(h).
It follows that f =�(h). Thus we have shown

(2.3) If f =�(g) and g =�(h), then f =�(h).

Sums of Functions It is also useful to have results that quantify the effect of
adding two functions. First, if we have an asymptotic upper bound that applies
to each of two functions f and g, then it applies to their sum.

(2.4) Suppose that f and g are two functions such that for some other function
h, we have f = O(h) and g = O(h). Then f + g = O(h).

Proof. We’re given that for some constants c and n0, we have f (n) ≤ ch(n)

for all n ≥ n0. Also, for some (potentially different) constants c′ and n′0,
we have g(n) ≤ c′h(n) for all n ≥ n′0. So consider any number n that is at
least as large as both n0 and n′0. We have f (n)+ g(n)≤ ch(n)+ c′h(n). Thus
f (n) + g(n) ≤ (c + c′)h(n) for all n ≥max(n0, n′0), which is exactly what is
required for showing that f + g = O(h).

There is a generalization of this to sums of a fixed constant number of
functions k, where k may be larger than two. The result can be stated precisely
as follows; we omit the proof, since it is essentially the same as the proof of
(2.4), adapted to sums consisting of k terms rather than just two.

(2.5) Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions such
that fi = O(h) for all i. Then f1+ f2+ . . .+ fk = O(h).

There is also a consequence of (2.4) that covers the following kind of
situation. It frequently happens that we’re analyzing an algorithm with two
high-level parts, and it is easy to show that one of the two parts is slower
than the other. We’d like to be able to say that the running time of the whole
algorithm is asymptotically comparable to the running time of the slow part.
Since the overall running time is a sum of two functions (the running times of

40 Chapter 2 Basics of Algorithm Analysis

the two parts), results on asymptotic bounds for sums of functions are directly
relevant.

(2.6) Suppose that f and g are two functions (taking nonnegative values)
such that g = O(f). Then f + g =�(f). In other words, f is an asymptotically
tight bound for the combined function f + g.

Proof. Clearly f + g =�(f), since for all n ≥ 0, we have f (n)+ g(n) ≥ f (n).
So to complete the proof, we need to show that f + g = O(f).

But this is a direct consequence of (2.4): we’re given the fact that g =O(f),
and also f = O(f) holds for any function, so by (2.4) we have f + g = O(f).

This result also extends to the sum of any fixed, constant number of
functions: the most rapidly growing among the functions is an asymptotically
tight bound for the sum.

Asymptotic Bounds for Some Common Functions
There are a number of functions that come up repeatedly in the analysis of
algorithms, and it is useful to consider the asymptotic properties of some of
the most basic of these: polynomials, logarithms, and exponentials.

Polynomials Recall that a polynomial is a function that can be written in
the form f (n)= a0+ a1n+ a2n

2+ . . .+ adnd for some integer constant d > 0,
where the final coefficient ad is nonzero. This value d is called the degree of the
polynomial. For example, the functions of the form pn2+ qn + r (with p �= 0)
that we considered earlier are polynomials of degree 2.

A basic fact about polynomials is that their asymptotic rate of growth is
determined by their “high-order term”—the one that determines the degree.
We state this more formally in the following claim. Since we are concerned here
only with functions that take nonnegative values, we will restrict our attention
to polynomials for which the high-order term has a positive coefficient ad > 0.

(2.7) Let f be a polynomial of degree d, in which the coefficient ad is positive.
Then f = O(nd).

Proof. We write f = a0 + a1n + a2n
2+ . . .+ adnd, where ad > 0. The upper

bound is a direct application of (2.5). First, notice that coefficients aj for j < d
may be negative, but in any case we have ajn

j ≤ |aj|nd for all n ≥ 1. Thus each
term in the polynomial is O(nd). Since f is a sum of a constant number of
functions, each of which is O(nd), it follows from (2.5) that f is O(nd).

One can also show that under the conditions of (2.7), we have f =�(nd),
and hence it follows that in fact f =�(nd).

2.2 Asymptotic Order of Growth 41

This is a good point at which to discuss the relationship between these
types of asymptotic bounds and the notion of polynomial time, which we
arrived at in the previous section as a way to formalize the more elusive concept
of efficiency. Using O(·) notation, it’s easy to formally define polynomial time:
a polynomial-time algorithm is one whose running time T(n) is O(nd) for some
constant d, where d is independent of the input size.

So algorithms with running-time bounds like O(n2) and O(n3) are
polynomial-time algorithms. But it’s important to realize that an algorithm
can be polynomial time even if its running time is not written as n raised
to some integer power. To begin with, a number of algorithms have running
times of the form O(nx) for some number x that is not an integer. For example,
in Chapter 5 we will see an algorithm whose running time is O(n1.59); we will
also see exponents less than 1, as in bounds like O(

√
n)= O(n1/2).

To take another common kind of example, we will see many algorithms
whose running times have the form O(n log n). Such algorithms are also
polynomial time: as we will see next, log n ≤ n for all n ≥ 1, and hence
n log n ≤ n2 for all n ≥ 1. In other words, if an algorithm has running time
O(n log n), then it also has running time O(n2), and so it is a polynomial-time
algorithm.

Logarithms Recall that logb n is the number x such that bx = n. One way
to get an approximate sense of how fast logb n grows is to note that, if we
round it down to the nearest integer, it is one less than the number of digits
in the base-b representation of the number n. (Thus, for example, 1+ log2 n,
rounded down, is the number of bits needed to represent n.)

So logarithms are very slowly growing functions. In particular, for every
base b, the function logb n is asymptotically bounded by every function of the
form nx, even for (noninteger) values of x arbitrary close to 0.

(2.8) For every b > 1 and every x > 0, we have logb n = O(nx).

One can directly translate between logarithms of different bases using the
following fundamental identity:

loga n = logb n

logb a
.

This equation explains why you’ll often notice people writing bounds like
O(log n) without indicating the base of the logarithm. This is not sloppy
usage: the identity above says that loga n = 1

logb a · logb n, so the point is that
loga n=�(logb n), and the base of the logarithm is not important when writing
bounds using asymptotic notation.

42 Chapter 2 Basics of Algorithm Analysis

Exponentials Exponential functions are functions of the form f (n)= rn for
some constant base r. Here we will be concerned with the case in which r > 1,
which results in a very fast-growing function.

In particular, where polynomials raise n to a fixed exponent, exponentials
raise a fixed number to n as a power; this leads to much faster rates of growth.
One way to summarize the relationship between polynomials and exponentials
is as follows.

(2.9) For every r > 1 and every d > 0, we have nd = O(rn).

In particular, every exponential grows faster than every polynomial. And as
we saw in Table 2.1, when you plug in actual values of n, the differences in
growth rates are really quite impressive.

Just as people write O(log n) without specifying the base, you’ll also see
people write “The running time of this algorithm is exponential,” without
specifying which exponential function they have in mind. Unlike the liberal
use of log n, which is justified by ignoring constant factors, this generic use of
the term “exponential” is somewhat sloppy. In particular, for different bases
r > s > 1, it is never the case that rn =�(sn). Indeed, this would require that
for some constant c > 0, we would have rn ≤ csn for all sufficiently large n.
But rearranging this inequality would give (r/s)n ≤ c for all sufficiently large
n. Since r > s, the expression (r/s)n is tending to infinity with n, and so it
cannot possibly remain bounded by a fixed constant c.

So asymptotically speaking, exponential functions are all different. Still,
it’s usually clear what people intend when they inexactly write “The running
time of this algorithm is exponential”—they typically mean that the running
time grows at least as fast as some exponential function, and all exponentials
grow so fast that we can effectively dismiss this algorithm without working out
further details of the exact running time. This is not entirely fair. Occasionally
there’s more going on with an exponential algorithm than first appears, as
we’ll see, for example, in Chapter 10; but as we argued in the first section of
this chapter, it’s a reasonable rule of thumb.

Taken together, then, logarithms, polynomials, and exponentials serve as
useful landmarks in the range of possible functions that you encounter when
analyzing running times. Logarithms grow more slowly than polynomials, and
polynomials grow more slowly than exponentials.

2.3 Implementing the Stable Matching Algorithm
Using Lists and Arrays

We’ve now seen a general approach for expressing bounds on the running
time of an algorithm. In order to asymptotically analyze the running time of

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays 43

an algorithm expressed in a high-level fashion—as we expressed the Gale-
Shapley Stable Matching algorithm in Chapter 1, for example—one doesn’t
have to actually program, compile, and execute it, but one does have to think
about how the data will be represented and manipulated in an implementation
of the algorithm, so as to bound the number of computational steps it takes.

The implementation of basic algorithms using data structures is something
that you probably have had some experience with. In this book, data structures
will be covered in the context of implementing specific algorithms, and so we
will encounter different data structures based on the needs of the algorithms
we are developing. To get this process started, we consider an implementation
of the Gale-Shapley Stable Matching algorithm; we showed earlier that the
algorithm terminates in at most n2 iterations, and our implementation here
provides a corresponding worst-case running time of O(n2), counting actual
computational steps rather than simply the total number of iterations. To get
such a bound for the Stable Matching algorithm, we will only need to use two
of the simplest data structures: lists and arrays. Thus, our implementation also
provides a good chance to review the use of these basic data structures as well.

In the Stable Matching Problem, each man and each woman has a ranking
of all members of the opposite gender. The very first question we need to
discuss is how such a ranking will be represented. Further, the algorithm
maintains a matching and will need to know at each step which men and
women are free, and who is matched with whom. In order to implement the
algorithm, we need to decide which data structures we will use for all these
things.

An important issue to note here is that the choice of data structure is up
to the algorithm designer; for each algorithm we will choose data structures
that make it efficient and easy to implement. In some cases, this may involve
preprocessing the input to convert it from its given input representation into a
data structure that is more appropriate for the problem being solved.

Arrays and Lists
To start our discussion we will focus on a single list, such as the list of women
in order of preference by a single man. Maybe the simplest way to keep a list
of n elements is to use an array A of length n, and have A[i] be the ith element
of the list. Such an array is simple to implement in essentially all standard
programming languages, and it has the following properties.

. We can answer a query of the form “What is the ith element on the list?”
in O(1) time, by a direct access to the value A[i].

. If we want to determine whether a particular element e belongs to the
list (i.e., whether it is equal to A[i] for some i), we need to check the

44 Chapter 2 Basics of Algorithm Analysis

elements one by one in O(n) time, assuming we don’t know anything
about the order in which the elements appear in A.

. If the array elements are sorted in some clear way (either numerically
or alphabetically), then we can determine whether an element e belongs
to the list in O(log n) time using binary search; we will not need to use
binary search for any part of our stable matching implementation, but
we will have more to say about it in the next section.

An array is less good for dynamically maintaining a list of elements that
changes over time, such as the list of free men in the Stable Matching algorithm;
since men go from being free to engaged, and potentially back again, a list of
free men needs to grow and shrink during the execution of the algorithm. It
is generally cumbersome to frequently add or delete elements to a list that is
maintained as an array.

An alternate, and often preferable, way to maintain such a dynamic set
of elements is via a linked list. In a linked list, the elements are sequenced
together by having each element point to the next in the list. Thus, for each
element v on the list, we need to maintain a pointer to the next element; we
set this pointer to null if i is the last element. We also have a pointer First
that points to the first element. By starting at First and repeatedly following
pointers to the next element until we reach null, we can thus traverse the entire
contents of the list in time proportional to its length.

A generic way to implement such a linked list, when the set of possible
elements may not be fixed in advance, is to allocate a record e for each element
that we want to include in the list. Such a record would contain a field e.val
that contains the value of the element, and a field e.Next that contains a
pointer to the next element in the list. We can create a doubly linked list, which
is traversable in both directions, by also having a field e.Prev that contains
a pointer to the previous element in the list. (e.Prev = null if e is the first
element.) We also include a pointer Last, analogous to First, that points to
the last element in the list. A schematic illustration of part of such a list is
shown in the first line of Figure 2.1.

A doubly linked list can be modified as follows.

. Deletion. To delete the element e from a doubly linked list, we can just
“splice it out” by having the previous element, referenced by e.Prev, and
the next element, referenced by e.Next, point directly to each other. The
deletion operation is illustrated in Figure 2.1.

. Insertion. To insert element e between elements d and f in a list, we
“splice it in” by updating d.Next and f .Prev to point to e, and the Next
and Prev pointers of e to point to d and f , respectively. This operation is

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays 45

Before deleting e:

val

Element e

val val

After deleting e:

val

Element e

val val

Figure 2.1 A schematic representation of a doubly linked list, showing the deletion of
an element e.

essentially the reverse of deletion, and indeed one can see this operation
at work by reading Figure 2.1 from bottom to top.

Inserting or deleting e at the beginning of the list involves updating the First
pointer, rather than updating the record of the element before e.

While lists are good for maintaining a dynamically changing set, they also
have disadvantages. Unlike arrays, we cannot find the ith element of the list in
O(1) time: to find the ith element, we have to follow the Next pointers starting
from the beginning of the list, which takes a total of O(i) time.

Given the relative advantages and disadvantages of arrays and lists, it may
happen that we receive the input to a problem in one of the two formats and
want to convert it into the other. As discussed earlier, such preprocessing is
often useful; and in this case, it is easy to convert between the array and
list representations in O(n) time. This allows us to freely choose the data
structure that suits the algorithm better and not be constrained by the way
the information is given as input.

Implementing the Stable Matching Algorithm
Next we will use arrays and linked lists to implement the Stable Matching algo-
rithm from Chapter 1. We have already shown that the algorithm terminates in
at most n2 iterations, and this provides a type of upper bound on the running
time. However, if we actually want to implement the G-S algorithm so that it
runs in time proportional to n2, we need to be able to implement each iteration
in constant time. We discuss how to do this now.

For simplicity, assume that the set of men and women are both {1, . . . , n}.
To ensure this, we can order the men and women (say, alphabetically), and
associate number i with the ith man mi or ith women wi in this order. This

46 Chapter 2 Basics of Algorithm Analysis

assumption (or notation) allows us to define an array indexed by all men
or all women. We need to have a preference list for each man and for each
woman. To do this we will have two arrays, one for women’s preference lists
and one for the men’s preference lists; we will use ManPref[m, i] to denote
the ith woman on man m’s preference list, and similarly WomanPref[w, i] to
be the ith man on the preference list of woman w. Note that the amount of
space needed to give the preferences for all 2n individuals is O(n2), as each
person has a list of length n.

We need to consider each step of the algorithm and understand what data
structure allows us to implement it efficiently. Essentially, we need to be able
to do each of four things in constant time.

1. We need to be able to identify a free man.

2. We need, for a man m, to be able to identify the highest-ranked woman
to whom he has not yet proposed.

3. For a woman w, we need to decide if w is currently engaged, and if she
is, we need to identify her current partner.

4. For a woman w and two men m and m′, we need to be able to decide,
again in constant time, which of m or m′ is preferred by w.

First, consider selecting a free man. We will do this by maintaining the set
of free men as a linked list. When we need to select a free man, we take the
first man m on this list. We delete m from the list if he becomes engaged, and
possibly insert a different man m′, if some other man m′ becomes free. In this
case, m′ can be inserted at the front of the list, again in constant time.

Next, consider a man m. We need to identify the highest-ranked woman
to whom he has not yet proposed. To do this we will need to maintain an extra
array Next that indicates for each man m the position of the next woman he
will propose to on his list. We initialize Next[m]= 1 for all men m. If a man m
needs to propose to a woman, he’ll propose to w = ManPref[m,Next[m]], and
once he proposes to w, we increment the value of Next[m] by one, regardless
of whether or not w accepts the proposal.

Now assume man m proposes to woman w; we need to be able to identify
the man m′ that w is engaged to (if there is such a man). We can do this by
maintaining an array Current of length n, where Current[w] is the woman
w’s current partner m′. We set Current[w] to a special null symbol when we
need to indicate that woman w is not currently engaged; at the start of the
algorithm, Current[w] is initialized to this null symbol for all women w.

To sum up, the data structures we have set up thus far can implement the
operations (1)–(3) in O(1) time each.

2.4 A Survey of Common Running Times 47

Maybe the trickiest question is how to maintain women’s preferences to
keep step (4) efficient. Consider a step of the algorithm, when man m proposes
to a woman w. Assume w is already engaged, and her current partner is
m′ =Current[w]. We would like to decide in O(1) time if woman w prefers m
or m′. Keeping the women’s preferences in an array WomanPref, analogous to
the one we used for men, does not work, as we would need to walk through
w’s list one by one, taking O(n) time to find m and m′ on the list. While O(n)

is still polynomial, we can do a lot better if we build an auxiliary data structure
at the beginning.

At the start of the algorithm, we create an n × n array Ranking, where
Ranking[w, m] contains the rank of man m in the sorted order of w’s prefer-
ences. By a single pass through w’s preference list, we can create this array in
linear time for each woman, for a total initial time investment proportional to
n2. Then, to decide which of m or m′ is preferred by w, we simply compare
the values Ranking[w, m] and Ranking[w, m′].

This allows us to execute step (4) in constant time, and hence we have
everything we need to obtain the desired running time.

(2.10) The data structures described above allow us to implement the G-S
algorithm in O(n2) time.

2.4 A Survey of Common Running Times
When trying to analyze a new algorithm, it helps to have a rough sense of
the “landscape” of different running times. Indeed, there are styles of analysis
that recur frequently, and so when one sees running-time bounds like O(n),
O(n log n), and O(n2) appearing over and over, it’s often for one of a very
small number of distinct reasons. Learning to recognize these common styles
of analysis is a long-term goal. To get things under way, we offer the following
survey of common running-time bounds and some of the typical approaches
that lead to them.

Earlier we discussed the notion that most problems have a natural “search
space”—the set of all possible solutions—and we noted that a unifying theme
in algorithm design is the search for algorithms whose performance is more
efficient than a brute-force enumeration of this search space. In approaching a
new problem, then, it often helps to think about two kinds of bounds: one on
the running time you hope to achieve, and the other on the size of the problem’s
natural search space (and hence on the running time of a brute-force algorithm
for the problem). The discussion of running times in this section will begin in
many cases with an analysis of the brute-force algorithm, since it is a useful

48 Chapter 2 Basics of Algorithm Analysis

way to get one’s bearings with respect to a problem; the task of improving on
such algorithms will be our goal in most of the book.

Linear Time
An algorithm that runs in O(n), or linear, time has a very natural property:
its running time is at most a constant factor times the size of the input. One
basic way to get an algorithm with this running time is to process the input
in a single pass, spending a constant amount of time on each item of input
encountered. Other algorithms achieve a linear time bound for more subtle
reasons. To illustrate some of the ideas here, we consider two simple linear-
time algorithms as examples.

Computing the Maximum Computing the maximum of n numbers, for ex-
ample, can be performed in the basic “one-pass” style. Suppose the numbers
are provided as input in either a list or an array. We process the numbers
a1, a2, . . . , an in order, keeping a running estimate of the maximum as we go.
Each time we encounter a number ai, we check whether ai is larger than our
current estimate, and if so we update the estimate to ai.

max= a1

For i = 2 to n

If ai > max then

set max= ai

Endif

Endfor

In this way, we do constant work per element, for a total running time of O(n).

Sometimes the constraints of an application force this kind of one-pass
algorithm on you—for example, an algorithm running on a high-speed switch
on the Internet may see a stream of packets flying past it, and it can try
computing anything it wants to as this stream passes by, but it can only perform
a constant amount of computational work on each packet, and it can’t save
the stream so as to make subsequent scans through it. Two different subareas
of algorithms, online algorithms and data stream algorithms, have developed
to study this model of computation.

Merging Two Sorted Lists Often, an algorithm has a running time of O(n),
but the reason is more complex. We now describe an algorithm for merging
two sorted lists that stretches the one-pass style of design just a little, but still
has a linear running time.

Suppose we are given two lists of n numbers each, a1, a2, . . . , an and
b1, b2, . . . , bn, and each is already arranged in ascending order. We’d like to

2.4 A Survey of Common Running Times 49

merge these into a single list c1, c2, . . . , c2n that is also arranged in ascending
order. For example, merging the lists 2, 3, 11, 19 and 4, 9, 16, 25 results in the
output 2, 3, 4, 9, 11, 16, 19, 25.

To do this, we could just throw the two lists together, ignore the fact that
they’re separately arranged in ascending order, and run a sorting algorithm.
But this clearly seems wasteful; we’d like to make use of the existing order in
the input. One way to think about designing a better algorithm is to imagine
performing the merging of the two lists by hand: suppose you’re given two
piles of numbered cards, each arranged in ascending order, and you’d like to
produce a single ordered pile containing all the cards. If you look at the top
card on each stack, you know that the smaller of these two should go first on
the output pile; so you could remove this card, place it on the output, and now
iterate on what’s left.

In other words, we have the following algorithm.

To merge sorted lists A = a1, . . . , an and B= b1, . . . , bn:

Maintain a Current pointer into each list, initialized to

point to the front elements

While both lists are nonempty:

Let ai and bj be the elements pointed to by the Current pointer

Append the smaller of these two to the output list

Advance the Current pointer in the list from which the

smaller element was selected

EndWhile

Once one list is empty, append the remainder of the other list

to the output

See Figure 2.2 for a picture of this process.

Merged result

Append the smaller of
ai and bj to the output.

bj///

ai

B

A//////

Figure 2.2 To merge sorted lists A and B, we repeatedly extract the smaller item from
the front of the two lists and append it to the output.

50 Chapter 2 Basics of Algorithm Analysis

Now, to show a linear-time bound, one is tempted to describe an argument
like what worked for the maximum-finding algorithm: “We do constant work
per element, for a total running time of O(n).” But it is actually not true that
we do only constant work per element. Suppose that n is an even number, and
consider the lists A= 1, 3, 5, . . . , 2n − 1 and B= n, n + 2, n + 4, . . . , 3n − 2.
The number b1 at the front of list B will sit at the front of the list for n/2
iterations while elements from A are repeatedly being selected, and hence
it will be involved in �(n) comparisons. Now, it is true that each element
can be involved in at most O(n) comparisons (at worst, it is compared with
each element in the other list), and if we sum this over all elements we get
a running-time bound of O(n2). This is a correct bound, but we can show
something much stronger.

The better way to argue is to bound the number of iterations of the While
loop by an “accounting” scheme. Suppose we charge the cost of each iteration
to the element that is selected and added to the output list. An element can
be charged only once, since at the moment it is first charged, it is added
to the output and never seen again by the algorithm. But there are only 2n
elements total, and the cost of each iteration is accounted for by a charge to
some element, so there can be at most 2n iterations. Each iteration involves a
constant amount of work, so the total running time is O(n), as desired.

While this merging algorithm iterated through its input lists in order, the
“interleaved” way in which it processed the lists necessitated a slightly subtle
running-time analysis. In Chapter 3 we will see linear-time algorithms for
graphs that have an even more complex flow of control: they spend a constant
amount of time on each node and edge in the underlying graph, but the order
in which they process the nodes and edges depends on the structure of the
graph.

O(n log n) Time
O(n log n) is also a very common running time, and in Chapter 5 we will
see one of the main reasons for its prevalence: it is the running time of any
algorithm that splits its input into two equal-sized pieces, solves each piece
recursively, and then combines the two solutions in linear time.

Sorting is perhaps the most well-known example of a problem that can be
solved this way. Specifically, the Mergesort algorithm divides the set of input
numbers into two equal-sized pieces, sorts each half recursively, and then
merges the two sorted halves into a single sorted output list. We have just
seen that the merging can be done in linear time; and Chapter 5 will discuss
how to analyze the recursion so as to get a bound of O(n log n) on the overall
running time.

2.4 A Survey of Common Running Times 51

One also frequently encounters O(n log n) as a running time simply be-
cause there are many algorithms whose most expensive step is to sort the
input. For example, suppose we are given a set of n time-stamps x1, x2, . . . , xn
on which copies of a file arrived at a server, and we’d like to find the largest
interval of time between the first and last of these time-stamps during which
no copy of the file arrived. A simple solution to this problem is to first sort the
time-stamps x1, x2, . . . , xn and then process them in sorted order, determining
the sizes of the gaps between each number and its successor in ascending
order. The largest of these gaps is the desired subinterval. Note that this algo-
rithm requires O(n log n) time to sort the numbers, and then it spends constant
work on each number in ascending order. In other words, the remainder of the
algorithm after sorting follows the basic recipe for linear time that we discussed
earlier.

Quadratic Time
Here’s a basic problem: suppose you are given n points in the plane, each
specified by (x, y) coordinates, and you’d like to find the pair of points that
are closest together. The natural brute-force algorithm for this problem would
enumerate all pairs of points, compute the distance between each pair, and
then choose the pair for which this distance is smallest.

What is the running time of this algorithm? The number of pairs of points
is
(n

2

)= n(n−1)
2 , and since this quantity is bounded by 1

2n2, it is O(n2). More
crudely, the number of pairs is O(n2) because we multiply the number of
ways of choosing the first member of the pair (at most n) by the number
of ways of choosing the second member of the pair (also at most n). The
distance between points (xi, yi) and (xj , yj) can be computed by the formula√

(xi − xj)
2+ (yi − yj)

2 in constant time, so the overall running time is O(n2).
This example illustrates a very common way in which a running time of O(n2)

arises: performing a search over all pairs of input items and spending constant
time per pair.

Quadratic time also arises naturally from a pair of nested loops: An algo-
rithm consists of a loop with O(n) iterations, and each iteration of the loop
launches an internal loop that takes O(n) time. Multiplying these two factors
of n together gives the running time.

The brute-force algorithm for finding the closest pair of points can be
written in an equivalent way with two nested loops:

For each input point (xi , yi)

For each other input point (xj , yj)

Compute distance d =
√

(xi − xj)
2 + (yi − yj)

2

52 Chapter 2 Basics of Algorithm Analysis

If d is less than the current minimum, update minimum to d

Endfor

Endfor

Note how the “inner” loop, over (xj , yj), has O(n) iterations, each taking
constant time; and the “outer” loop, over (xi, yi), has O(n) iterations, each
invoking the inner loop once.

It’s important to notice that the algorithm we’ve been discussing for the
Closest-Pair Problem really is just the brute-force approach: the natural search
space for this problem has size O(n2), and we’re simply enumerating it. At
first, one feels there is a certain inevitability about this quadratic algorithm—
we have to measure all the distances, don’t we?—but in fact this is an illusion.
In Chapter 5 we describe a very clever algorithm that finds the closest pair of
points in the plane in only O(n log n) time, and in Chapter 13 we show how
randomization can be used to reduce the running time to O(n).

Cubic Time
More elaborate sets of nested loops often lead to algorithms that run in
O(n3) time. Consider, for example, the following problem. We are given sets
S1, S2, . . . , Sn, each of which is a subset of {1, 2, . . . , n}, and we would like
to know whether some pair of these sets is disjoint—in other words, has no
elements in common.

What is the running time needed to solve this problem? Let’s suppose that
each set Si is represented in such a way that the elements of Si can be listed in
constant time per element, and we can also check in constant time whether a
given number p belongs to Si. The following is a direct way to approach the
problem.

For pair of sets Si and Sj

Determine whether Si and Sj have an element in common

Endfor

This is a concrete algorithm, but to reason about its running time it helps to
open it up (at least conceptually) into three nested loops.

For each set Si

For each other set Sj

For each element p of Si

Determine whether p also belongs to Sj

Endfor

If no element of Si belongs to Sj then

2.4 A Survey of Common Running Times 53

Report that Si and Sj are disjoint

Endif

Endfor

Endfor

Each of the sets has maximum size O(n), so the innermost loop takes time
O(n). Looping over the sets Sj involves O(n) iterations around this innermost
loop; and looping over the sets Si involves O(n) iterations around this. Multi-
plying these three factors of n together, we get the running time of O(n3).

For this problem, there are algorithms that improve on O(n3) running
time, but they are quite complicated. Furthermore, it is not clear whether
the improved algorithms for this problem are practical on inputs of reasonable
size.

O(nk) Time
In the same way that we obtained a running time of O(n2) by performing brute-
force search over all pairs formed from a set of n items, we obtain a running
time of O(nk) for any constant k when we search over all subsets of size k.

Consider, for example, the problem of finding independent sets in a graph,
which we discussed in Chapter 1. Recall that a set of nodes is independent
if no two are joined by an edge. Suppose, in particular, that for some fixed
constant k, we would like to know if a given n-node input graph G has an
independent set of size k. The natural brute-force algorithm for this problem
would enumerate all subsets of k nodes, and for each subset S it would check
whether there is an edge joining any two members of S. That is,

For each subset S of k nodes

Check whether S constitutes an independent set

If S is an independent set then

Stop and declare success

Endif

Endfor

If no k-node independent set was found then

Declare failure

Endif

To understand the running time of this algorithm, we need to consider two
quantities. First, the total number of k-element subsets in an n-element set is(

n
k

)
= n(n − 1)(n − 2) . . . (n − k + 1)

k(k − 1)(k − 2) . . . (2)(1)
≤ nk

k!
.

54 Chapter 2 Basics of Algorithm Analysis

Since we are treating k as a constant, this quantity is O(nk). Thus, the outer
loop in the algorithm above will run for O(nk) iterations as it tries all k-node
subsets of the n nodes of the graph.

Inside this loop, we need to test whether a given set S of k nodes constitutes
an independent set. The definition of an independent set tells us that we need
to check, for each pair of nodes, whether there is an edge joining them. Hence
this is a search over pairs, like we saw earlier in the discussion of quadratic
time; it requires looking at

(k
2

)
, that is, O(k2), pairs and spending constant time

on each.

Thus the total running time is O(k2nk). Since we are treating k as a constant
here, and since constants can be dropped in O(·) notation, we can write this
running time as O(nk).

Independent Set is a principal example of a problem believed to be compu-
tationally hard, and in particular it is believed that no algorithm to find k-node
independent sets in arbitrary graphs can avoid having some dependence on k
in the exponent. However, as we will discuss in Chapter 10 in the context of
a related problem, even once we’ve conceded that brute-force search over k-
element subsets is necessary, there can be different ways of going about this
that lead to significant differences in the efficiency of the computation.

Beyond Polynomial Time
The previous example of the Independent Set Problem starts us rapidly down
the path toward running times that grow faster than any polynomial. In
particular, two kinds of bounds that come up very frequently are 2n and n!,
and we now discuss why this is so.

Suppose, for example, that we are given a graph and want to find an
independent set of maximum size (rather than testing for the existence of one
with a given number of nodes). Again, people don’t know of algorithms that
improve significantly on brute-force search, which in this case would look as
follows.

For each subset S of nodes

Check whether S constitutes an independent set

If S is a larger independent set than the largest seen so far then

Record the size of S as the current maximum

Endif

Endfor

This is very much like the brute-force algorithm for k-node independent sets,
except that now we are iterating over all subsets of the graph. The total number

2.4 A Survey of Common Running Times 55

of subsets of an n-element set is 2n, and so the outer loop in this algorithm
will run for 2n iterations as it tries all these subsets. Inside the loop, we are
checking all pairs from a set S that can be as large as n nodes, so each iteration
of the loop takes at most O(n2) time. Multiplying these two together, we get a
running time of O(n22n).

Thus see that 2n arises naturally as a running time for a search algorithm
that must consider all subsets. In the case of Independent Set, something
at least nearly this inefficient appears to be necessary; but it’s important
to keep in mind that 2n is the size of the search space for many problems,
and for many of them we will be able to find highly efficient polynomial-
time algorithms. For example, a brute-force search algorithm for the Interval
Scheduling Problem that we saw in Chapter 1 would look very similar to the
algorithm above: try all subsets of intervals, and find the largest subset that has
no overlaps. But in the case of the Interval Scheduling Problem, as opposed
to the Independent Set Problem, we will see (in Chapter 4) how to find an
optimal solution in O(n log n) time. This is a recurring kind of dichotomy in
the study of algorithms: two algorithms can have very similar-looking search
spaces, but in one case you’re able to bypass the brute-force search algorithm,
and in the other you aren’t.

The function n! grows even more rapidly than 2n, so it’s even more
menacing as a bound on the performance of an algorithm. Search spaces of
size n! tend to arise for one of two reasons. First, n! is the number of ways to
match up n items with n other items—for example, it is the number of possible
perfect matchings of n men with n women in an instance of the Stable Matching
Problem. To see this, note that there are n choices for how we can match up
the first man; having eliminated this option, there are n− 1choices for how we
can match up the second man; having eliminated these two options, there are
n− 2 choices for how we can match up the third man; and so forth. Multiplying
all these choices out, we get n(n − 1)(n − 2) . . . (2)(1)= n!

Despite this enormous set of possible solutions, we were able to solve
the Stable Matching Problem in O(n2) iterations of the proposal algorithm.
In Chapter 7, we will see a similar phenomenon for the Bipartite Matching
Problem we discussed earlier; if there are n nodes on each side of the given
bipartite graph, there can be up to n! ways of pairing them up. However, by
a fairly subtle search algorithm, we will be able to find the largest bipartite
matching in O(n3) time.

The function n! also arises in problems where the search space consists
of all ways to arrange n items in order. A basic problem in this genre is the
Traveling Salesman Problem: given a set of n cities, with distances between
all pairs, what is the shortest tour that visits all cities? We assume that the
salesman starts and ends at the first city, so the crux of the problem is the

56 Chapter 2 Basics of Algorithm Analysis

implicit search over all orders of the remaining n− 1 cities, leading to a search
space of size (n − 1)!. In Chapter 8, we will see that Traveling Salesman
is another problem that, like Independent Set, belongs to the class of NP-
complete problems and is believed to have no efficient solution.

Sublinear Time
Finally, there are cases where one encounters running times that are asymp-
totically smaller than linear. Since it takes linear time just to read the input,
these situations tend to arise in a model of computation where the input can be
“queried” indirectly rather than read completely, and the goal is to minimize
the amount of querying that must be done.

Perhaps the best-known example of this is the binary search algorithm.
Given a sorted array A of n numbers, we’d like to determine whether a given
number p belongs to the array. We could do this by reading the entire array,
but we’d like to do it much more efficiently, taking advantage of the fact that
the array is sorted, by carefully probing particular entries. In particular, we
probe the middle entry of A and get its value—say it is q—and we compare q
to p. If q = p, we’re done. If q > p, then in order for p to belong to the array
A, it must lie in the lower half of A; so we ignore the upper half of A from
now on and recursively apply this search in the lower half. Finally, if q < p,
then we apply the analogous reasoning and recursively search in the upper
half of A.

The point is that in each step, there’s a region of A where p might possibly
be; and we’re shrinking the size of this region by a factor of two with every
probe. So how large is the “active” region of A after k probes? It starts at size
n, so after k probes it has size at most (1

2)kn.

Given this, how long will it take for the size of the active region to be
reduced to a constant? We need k to be large enough so that (1

2)k = O(1/n),
and to do this we can choose k = log2 n. Thus, when k = log2 n, the size of
the active region has been reduced to a constant, at which point the recursion
bottoms out and we can search the remainder of the array directly in constant
time.

So the running time of binary search is O(log n), because of this successive
shrinking of the search region. In general, O(log n) arises as a time bound
whenever we’re dealing with an algorithm that does a constant amount of
work in order to throw away a constant fraction of the input. The crucial fact
is that O(log n) such iterations suffice to shrink the input down to constant
size, at which point the problem can generally be solved directly.

2.5 A More Complex Data Structure: Priority Queues 57

2.5 A More Complex Data Structure:
Priority Queues

Our primary goal in this book was expressed at the outset of the chapter:
we seek algorithms that improve qualitatively on brute-force search, and in
general we use polynomial-time solvability as the concrete formulation of
this. Typically, achieving a polynomial-time solution to a nontrivial problem
is not something that depends on fine-grained implementation details; rather,
the difference between exponential and polynomial is based on overcoming
higher-level obstacles. Once one has an efficient algorithm to solve a problem,
however, it is often possible to achieve further improvements in running time
by being careful with the implementation details, and sometimes by using
more complex data structures.

Some complex data structures are essentially tailored for use in a single
kind of algorithm, while others are more generally applicable. In this section,
we describe one of the most broadly useful sophisticated data structures,
the priority queue. Priority queues will be useful when we describe how to
implement some of the graph algorithms developed later in the book. For our
purposes here, it is a useful illustration of the analysis of a data structure that,
unlike lists and arrays, must perform some nontrivial processing each time it
is invoked.

The Problem
In the implementation of the Stable Matching algorithm in Section 2.3, we
discussed the need to maintain a dynamically changing set S (such as the set
of all free men in that case). In such situations, we want to be able to add
elements to and delete elements from the set S, and we want to be able to
select an element from S when the algorithm calls for it. A priority queue is
designed for applications in which elements have a priority value, or key, and
each time we need to select an element from S, we want to take the one with
highest priority.

A priority queue is a data structure that maintains a set of elements S,
where each element v ∈ S has an associated value key(v) that denotes the
priority of element v; smaller keys represent higher priorities. Priority queues
support the addition and deletion of elements from the set, and also the
selection of the element with smallest key. Our implementation of priority
queues will also support some additional operations that we summarize at the
end of the section.

A motivating application for priority queues, and one that is useful to keep
in mind when considering their general function, is the problem of managing

58 Chapter 2 Basics of Algorithm Analysis

real-time events such as the scheduling of processes on a computer. Each
process has a priority, or urgency, but processes do not arrive in order of
their priorities. Rather, we have a current set of active processes, and we want
to be able to extract the one with the currently highest priority and run it.
We can maintain the set of processes in a priority queue, with the key of a
process representing its priority value. Scheduling the highest-priority process
corresponds to selecting the element with minimum key from the priority
queue; concurrent with this, we will also be inserting new processes as they
arrive, according to their priority values.

How efficiently do we hope to be able to execute the operations in a priority
queue? We will show how to implement a priority queue containing at most
n elements at any time so that elements can be added and deleted, and the
element with minimum key selected, in O(log n) time per operation.

Before discussing the implementation, let us point out a very basic appli-
cation of priority queues that highlights why O(log n) time per operation is
essentially the “right” bound to aim for.

(2.11) A sequence of O(n) priority queue operations can be used to sort a set
of n numbers.

Proof. Set up a priority queue H, and insert each number into H with its value
as a key. Then extract the smallest number one by one until all numbers have
been extracted; this way, the numbers will come out of the priority queue in
sorted order.

Thus, with a priority queue that can perform insertion and the extraction
of minima in O(log n) per operation, we can sort n numbers in O(n log n)

time. It is known that, in a comparison-based model of computation (when
each operation accesses the input only by comparing a pair of numbers),
the time needed to sort must be at least proportional to n log n, so (2.11)
highlights a sense in which O(log n) time per operation is the best we can
hope for. We should note that the situation is a bit more complicated than
this: implementations of priority queues more sophisticated than the one we
present here can improve the running time needed for certain operations, and
add extra functionality. But (2.11) shows that any sequence of priority queue
operations that results in the sorting of n numbers must take time at least
proportional to n log n in total.

A Data Structure for Implementing a Priority Queue
We will use a data structure called a heap to implement a priority queue.
Before we discuss the structure of heaps, we should consider what happens
with some simpler, more natural approaches to implementing the functions

2.5 A More Complex Data Structure: Priority Queues 59

of a priority queue. We could just have the elements in a list, and separately
have a pointer labeled Min to the one with minimum key. This makes adding
new elements easy, but extraction of the minimum hard. Specifically, finding
the minimum is quick—we just consult the Min pointer—but after removing
this minimum element, we need to update the Min pointer to be ready for the
next operation, and this would require a scan of all elements in O(n) time to
find the new minimum.

This complication suggests that we should perhaps maintain the elements
in the sorted order of the keys. This makes it easy to extract the element with
smallest key, but now how do we add a new element to our set? Should we
have the elements in an array, or a linked list? Suppose we want to add s
with key value key(s). If the set S is maintained as a sorted array, we can use
binary search to find the array position where s should be inserted in O(log n)

time, but to insert s in the array, we would have to move all later elements
one position to the right. This would take O(n) time. On the other hand, if we
maintain the set as a sorted doubly linked list, we could insert it in O(1) time
into any position, but the doubly linked list would not support binary search,
and hence we may need up to O(n) time to find the position where s should
be inserted.

The Definition of a Heap So in all these simple approaches, at least one of
the operations can take up to O(n) time—much more than the O(log n) per
operation that we’re hoping for. This is where heaps come in. The heap data
structure combines the benefits of a sorted array and list for purposes of this
application. Conceptually, we think of a heap as a balanced binary tree as
shown on the left of Figure 2.3. The tree will have a root, and each node can
have up to two children, a left and a right child. The keys in such a binary tree
are said to be in heap order if the key of any element is at least as large as the
key of the element at its parent node in the tree. In other words,

Heap order: For every element v, at a node i, the element w at i’s parent
satisfies key(w)≤ key(v).

In Figure 2.3 the numbers in the nodes are the keys of the corresponding
elements.

Before we discuss how to work with a heap, we need to consider what data
structure should be used to represent it. We can use pointers: each node at the
heap could keep the element it stores, its key, and three pointers pointing to
the two children and the parent of the heap node. We can avoid using pointers,
however, if a bound N is known in advance on the total number of elements
that will ever be in the heap at any one time. Such heaps can be maintained
in an array H indexed by i = 1, . . . , N. We will think of the heap nodes as
corresponding to the positions in this array. H[1] is the root, and for any node

60 Chapter 2 Basics of Algorithm Analysis

1

2 5

10 3 117

15 17 20 9 15 8 16

1 2 5 10 3 117 15 17 20 9 15 8 16 X

Each node’s key is at least
as large as its parent’s.

Figure 2.3 Values in a heap shown as a binary tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i)= 2i and
rightChild(i)= 2i+ 1. So the two children of the root are at positions 2 and
3, and the parent of a node at position i is at position parent(i)= �i/2. If
the heap has n < N elements at some time, we will use the first n positions
of the array to store the n heap elements, and use length(H) to denote the
number of elements in H. This representation keeps the heap balanced at all
times. See the right-hand side of Figure 2.3 for the array representation of the
heap on the left-hand side.

Implementing the Heap Operations
The heap element with smallest key is at the root, so it takes O(1) time to
identify the minimal element. How do we add or delete heap elements? First
consider adding a new heap element v, and assume that our heap H has n < N
elements so far. Now it will have n+ 1 elements. To start with, we can add the
new element v to the final position i= n+ 1, by setting H[i]= v. Unfortunately,
this does not maintain the heap property, as the key of element v may be
smaller than the key of its parent. So we now have something that is almost a
heap, except for a small “damaged” part where v was pasted on at the end.

We will use the procedure Heapify-up to fix our heap. Let j= parent(i)=
�i/2 be the parent of the node i, and assume H[j]= w. If key[v]< key[w],
then we will simply swap the positions of v and w. This will fix the heap
property at position i, but the resulting structure will possibly fail to satisfy
the heap property at position j—in other words, the site of the “damage” has
moved upward from i to j. We thus call the process recursively from position

2.5 A More Complex Data Structure: Priority Queues 61

2

4 5

10 9 117

15 17 20 17 15 8 16 3

w

v

v

w

2

4 5

10 9 37

15 17 20 17 15 8 16 11

The Heapify-up process is moving
element v toward the root.

Figure 2.4 The Heapify-up process. Key 3 (at position 16) is too small (on the left).
After swapping keys 3 and 11, the heap violation moves one step closer to the root of
the tree (on the right).

j= parent(i) to continue fixing the heap by pushing the damaged part upward.
Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up(H,i):

If i > 1 then

let j = parent(i)= �i/2
If key[H[i]]<key[H[j]] then

swap the array entries H[i] and H[j]

Heapify-up(H,j)

Endif

Endif

To see why Heapify-up works, eventually restoring the heap order, it
helps to understand more fully the structure of our slightly damaged heap in
the middle of this process. Assume that H is an array, and v is the element in
position i. We say that H is almost a heap with the key of H[i] too small, if there
is a value α ≥ key(v) such that raising the value of key(v) to α would make
the resulting array satisfy the heap property. (In other words, element v in H[i]
is too small, but raising it to α would fix the problem.) One important point
to note is that if H is almost a heap with the key of the root (i.e., H[1]) too
small, then in fact it is a heap. To see why this is true, consider that if raising
the value of H[1] to α would make H a heap, then the value of H[1] must
also be smaller than both its children, and hence it already has the heap-order
property.

62 Chapter 2 Basics of Algorithm Analysis

(2.12) The procedure Heapify-up(H , i) fixes the heap property in O(log i)
time, assuming that the array H is almost a heap with the key of H[i] too small.
Using Heapify-up we can insert a new element in a heap of n elements in
O(log n) time.

Proof. We prove the statement by induction on i. If i = 1 there is nothing to
prove, since we have already argued that in this case H is actually a heap.
Now consider the case in which i > 1: Let v = H[i], j = parent(i), w = H[j],
and β = key(w). Swapping elements v and w takes O(1) time. We claim that
after the swap, the array H is either a heap or almost a heap with the key of
H[j] (which now holds v) too small. This is true, as setting the key value at
node j to β would make H a heap.

So by the induction hypothesis, applying Heapify-up(j) recursively will
produce a heap as required. The process follows the tree-path from position i
to the root, so it takes O(log i) time.

To insert a new element in a heap, we first add it as the last element. If the
new element has a very large key value, then the array is a heap. Otherwise,
it is almost a heap with the key value of the new element too small. We use
Heapify-up to fix the heap property.

Now consider deleting an element. Many applications of priority queues
don’t require the deletion of arbitrary elements, but only the extraction of
the minimum. In a heap, this corresponds to identifying the key at the root
(which will be the minimum) and then deleting it; we will refer to this oper-
ation as ExtractMin(H). Here we will implement a more general operation
Delete(H , i), which will delete the element in position i. Assume the heap
currently has n elements. After deleting the element H[i], the heap will have
only n − 1 elements; and not only is the heap-order property violated, there
is actually a “hole” at position i, since H[i] is now empty. So as a first step,
to patch the hole in H, we move the element w in position n to position i.
After doing this, H at least has the property that its n − 1 elements are in the
first n− 1 positions, as required, but we may well still not have the heap-order
property.

However, the only place in the heap where the order might be violated is
position i, as the key of element w may be either too small or too big for the
position i. If the key is too small (that is, the violation of the heap property is
between node i and its parent), then we can use Heapify-up(i) to reestablish
the heap order. On the other hand, if key[w] is too big, the heap property
may be violated between i and one or both of its children. In this case, we will
use a procedure called Heapify-down, closely analogous to Heapify-up, that

2.5 A More Complex Data Structure: Priority Queues 63

4

7 21

10 16 117

15 17 20 17 15 8 16

The Heapify-down process
is moving element w down,
toward the leaves.

w

4

7 7

10 16 1121

15 17 20 17 15 8 16

w

Figure 2.5 The Heapify-down process:. Key 21 (at position 3) is too big (on the left).
After swapping keys 21 and 7, the heap violation moves one step closer to the bottom
of the tree (on the right).

swaps the element at position i with one of its children and proceeds down
the tree recursively. Figure 2.5 shows the first steps of this process.

Heapify-down(H,i):

Let n = length(H)

If 2i > n then

Terminate with H unchanged

Else if 2i < n then

Let left= 2i, and right= 2i + 1

Let j be the index that minimizes key[H[left]] and key[H[right]]

Else if 2i = n then

Let j = 2i

Endif

If key[H[j]] < key[H[i]] then

swap the array entries H[i] and H[j]

Heapify-down(H , j)

Endif

Assume that H is an array and w is the element in position i. We say that
H is almost a heap with the key of H[i] too big, if there is a value α ≤ key(w)

such that lowering the value of key(w) to α would make the resulting array
satisfy the heap property. Note that if H[i] corresponds to a leaf in the heap
(i.e., it has no children), and H is almost a heap with H[i] too big, then in fact
H is a heap. Indeed, if lowering the value in H[i] would make H a heap, then

64 Chapter 2 Basics of Algorithm Analysis

H[i] is already larger than its parent and hence it already has the heap-order
property.

(2.13) The procedure Heapify-down(H , i) fixes the heap property in O(log n)

time, assuming that H is almost a heap with the key value of H[i] too big. Using
Heapify-up or Heapify-down we can delete a new element in a heap of n
elements in O(log n) time.

Proof. We prove that the process fixes the heap by reverse induction on the
value i. Let n be the number of elements in the heap. If 2i > n, then, as we
just argued above, H is a heap and hence there is nothing to prove. Otherwise,
let j be the child of i with smaller key value, and let w = H[j]. Swapping the
array elements w and v takes O(1) time. We claim that the resulting array is
either a heap or almost a heap with H[j]= v too big. This is true as setting
key(v) = key(w) would make H a heap. Now j ≥ 2i, so by the induction
hypothesis, the recursive call to Heapify-down fixes the heap property.

The algorithm repeatedly swaps the element originally at position i down,
following a tree-path, so in O(log n) iterations the process results in a heap.

To use the process to remove an element v=H[i]from the heap, we replace
H[i] with the last element in the array, H[n]=w. If the resulting array is not a
heap, it is almost a heap with the key value of H[i] either too small or too big.
We use Heapify-down or Heapify-down to fix the heap property in O(log n)

time.

Implementing Priority Queues with Heaps
The heap data structure with the Heapify-down and Heapify-up operations
can efficiently implement a priority queue that is constrained to hold at most
N elements at any point in time. Here we summarize the operations we will
use.

. StartHeap(N) returns an empty heap H that is set up to store at most N
elements. This operation takes O(N) time, as it involves initializing the
array that will hold the heap.

. Insert(H , v) inserts the item v into heap H. If the heap currently has n
elements, this takes O(log n) time.

. FindMin(H) identifies the minimum element in the heap H but does not
remove it. This takes O(1) time.

. Delete(H , i) deletes the element in heap position i. This is implemented
in O(log n) time for heaps that have n elements.

. ExtractMin(H) identifies and deletes an element with minimum key
value from a heap. This is a combination of the preceding two operations,
and so it takes O(log n) time.

Solved Exercises 65

There is a second class of operations in which we want to operate on
elements by name, rather than by their position in the heap. For example, in
a number of graph algorithms that use heaps, the heap elements are nodes of
the graph with key values that are computed during the algorithm. At various
points in these algorithms, we want to operate on a particular node, regardless
of where it happens to be in the heap.

To be able to access given elements of the priority queue efficiently, we
simply maintain an additional array Position that stores the current position
of each element (each node) in the heap. We can now implement the following
further operations.

. To delete the element v, we apply Delete(H ,Position[v]). Maintaining
this array does not increase the overall running time, and so we can
delete an element v from a heap with n nodes in O(log n) time.

. An additional operation that is used by some algorithms is ChangeKey
(H , v, α), which changes the key value of element v to key(v)= α. To
implement this operation in O(log n) time, we first need to be able to
identify the position of element v in the array, which we do by using
the array Position. Once we have identified the position of element v,
we change the key and then apply Heapify-up or Heapify-down as
appropriate.

Solved Exercises

Solved Exercise 1
Take the following list of functions and arrange them in ascending order of
growth rate. That is, if function g(n) immediately follows function f (n) in
your list, then it should be the case that f (n) is O(g(n)).

f1(n)= 10n

f2(n)= n1/3

f3(n)= nn

f4(n)= log2 n

f5(n)= 2
√

log2 n

Solution We can deal with functions f1, f2, and f4 very easily, since they
belong to the basic families of exponentials, polynomials, and logarithms.
In particular, by (2.8), we have f4(n) = O(f2(n)); and by (2.9), we have
f2(n)= O(f1(n)).

66 Chapter 2 Basics of Algorithm Analysis

Now, the function f3 isn’t so hard to deal with. It starts out smaller than
10n, but once n ≥ 10, then clearly 10n ≤ nn. This is exactly what we need for
the definition of O(·) notation: for all n ≥ 10, we have 10n ≤ cnn, where in this
case c = 1, and so 10n = O(nn).

Finally, we come to function f5, which is admittedly kind of strange-
looking. A useful rule of thumb in such situations is to try taking logarithms
to see whether this makes things clearer. In this case, log2 f5(n)=√

log2 n =
(log2 n)1/2. What do the logarithms of the other functions look like? log f4(n)=
log2 log2 n, while log f2(n)= 1

3 log2 n. All of these can be viewed as functions
of log2 n, and so using the notation z = log2 n, we can write

log f2(n)= 1
3
z

log f4(n)= log2 z

log f5(n)= z1/2

Now it’s easier to see what’s going on. First, for z ≥ 16, we have log2 z ≤
z1/2. But the condition z ≥ 16 is the same as n ≥ 216 = 65, 536; thus once
n ≥ 216 we have log f4(n)≤ log f5(n), and so f4(n)≤ f5(n). Thus we can write
f4(n) = O(f5(n)). Similarly we have z1/2 ≤ 1

3z once z ≥ 9—in other words,
once n ≥ 29= 512. For n above this bound we have log f5(n) ≤ log f2(n) and
hence f5(n) ≤ f2(n), and so we can write f5(n) = O(f2(n)). Essentially, we

have discovered that 2
√

log2 n is a function whose growth rate lies somewhere
between that of logarithms and polynomials.

Since we have sandwiched f5 between f4 and f2, this finishes the task of
putting the functions in order.

Solved Exercise 2
Let f and g be two functions that take nonnegative values, and suppose that
f = O(g). Show that g =�(f).

Solution This exercise is a way to formalize the intuition that O(·) and �(·)
are in a sense opposites. It is, in fact, not difficult to prove; it is just a matter
of unwinding the definitions.

We’re given that, for some constants c and n0, we have f (n)≤ cg(n) for
all n ≥ n0. Dividing both sides by c, we can conclude that g(n) ≥ 1

c f (n) for
all n ≥ n0. But this is exactly what is required to show that g =�(f): we have
established that g(n) is at least a constant multiple of f (n) (where the constant
is 1

c), for all sufficiently large n (at least n0).

Exercises 67

Exercises

1. Suppose you have algorithms with the five running times listed below.

(Assume these are the exact running times.) How much slower do each of

these algorithms get when you (a) double the input size, or (b) increase

the input size by one?

(a) n2

(b) n3

(c) 100n2

(d) n log n

(e) 2n

2. Suppose you have algorithms with the six running times listed below.

(Assume these are the exact number of operations performed as a func-

tion of the input size n.) Suppose you have a computer that can perform

1010 operations per second, and you need to compute a result in at most

an hour of computation. For each of the algorithms, what is the largest

input size n for which you would be able to get the result within an hour?

(a) n2

(b) n3

(c) 100n2

(d) n log n

(e) 2n

(f) 22n

3. Take the following list of functions and arrange them in ascending order

of growth rate. That is, if function g(n) immediately follows function f (n)

in your list, then it should be the case that f (n) is O(g(n)).

f1(n)= n2.5

f2(n)=√2n

f3(n)= n + 10

f4(n)= 10n

f5(n)= 100n

f6(n)= n2 log n

4. Take the following list of functions and arrange them in ascending order

of growth rate. That is, if function g(n) immediately follows function f (n)

in your list, then it should be the case that f (n) is O(g(n)).

68 Chapter 2 Basics of Algorithm Analysis

g1(n)= 2
√

log n

g2(n)= 2n

g4(n)= n4/3

g3(n)= n(log n)3

g5(n)= nlog n

g6(n)= 22n

g7(n)= 2n2

5. Assume you have functions f and g such that f (n) is O(g(n)). For each of

the following statements, decide whether you think it is true or false and

give a proof or counterexample.

(a) log2 f (n) is O(log2 g(n)).

(b) 2f (n) is O(2g(n)).

(c) f (n)2 is O(g(n)2).

6. Consider the following basic problem. You’re given an array A consisting

of n integers A[1], A[2], . . . , A[n]. You’d like to output a two-dimensional

n-by-n array B in which B[i, j] (for i < j) contains the sum of array entries

A[i] through A[j]—that is, the sum A[i]+ A[i + 1]+ . . .+ A[j]. (The value of

array entry B[i, j] is left unspecified whenever i ≥ j, so it doesn’t matter

what is output for these values.)

Here’s a simple algorithm to solve this problem.

For i = 1, 2, . . . , n

For j = i + 1, i + 2, . . . , n

Add up array entries A[i] through A[j]

Store the result in B[i, j]

Endfor

Endfor

(a) For some function f that you should choose, give a bound of the

form O(f (n)) on the running time of this algorithm on an input of

size n (i.e., a bound on the number of operations performed by the

algorithm).

(b) For this same function f , show that the running time of the algorithm

on an input of size n is also �(f (n)). (This shows an asymptotically

tight bound of �(f (n)) on the running time.)

(c) Although the algorithm you analyzed in parts (a) and (b) is the most

natural way to solve the problem—after all, it just iterates through

Exercises 69

the relevant entries of the array B, filling in a value for each—it

contains some highly unnecessary sources of inefficiency. Give a

different algorithm to solve this problem, with an asymptotically

better running time. In other words, you should design an algorithm

with running time O(g(n)), where limn→∞ g(n)/f (n)= 0.

7. There’s a class of folk songs and holiday songs in which each verse

consists of the previous verse, with one extra line added on. “The Twelve

Days of Christmas” has this property; for example, when you get to the

fifth verse, you sing about the five golden rings and then, reprising the

lines from the fourth verse, also cover the four calling birds, the three

French hens, the two turtle doves, and of course the partridge in the pear

tree. The Aramaic song “Had gadya” from the Passover Haggadah works

like this as well, as do many other songs.

These songs tend to last a long time, despite having relatively short

scripts. In particular, you can convey the words plus instructions for one

of these songs by specifying just the new line that is added in each verse,

without having to write out all the previous lines each time. (So the phrase

“five golden rings” only has to be written once, even though it will appear

in verses five and onward.)

There’s something asymptotic that can be analyzed here. Suppose,

for concreteness, that each line has a length that is bounded by a constant

c, and suppose that the song, when sung out loud, runs for n words total.

Show how to encode such a song using a script that has length f (n), for

a function f (n) that grows as slowly as possible.

8. You’re doing some stress-testing on various models of glass jars to

determine the height from which they can be dropped and still not break.

The setup for this experiment, on a particular type of jar, is as follows.

You have a ladder with n rungs, and you want to find the highest rung

from which you can drop a copy of the jar and not have it break. We call

this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle

rung, see if it breaks, and then recursively try from rung n/4 or 3n/4
depending on the outcome. But this has the drawback that you could

break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you

could try the following strategy. Start by dropping a jar from the first

rung, then the second rung, and so forth, climbing one higher each time

until the jar breaks. In this way, you only need a single jar—at themoment

70 Chapter 2 Basics of Algorithm Analysis

it breaks, you have the correct answer—but you may have to drop it n

times (rather than log n as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if

you’re willing to break more jars. To understand better how this trade-

off works at a quantitative level, let’s consider how to run this experiment

given a fixed “budget” of k ≥ 1 jars. In other words, you have to determine

the correct answer—the highest safe rung—and can use at most k jars in

doing so.

(a) Suppose you are given a budget of k = 2 jars. Describe a strategy for

finding the highest safe rung that requires you to drop a jar at most

f (n) times, for some function f (n) that grows slower than linearly. (In

other words, it should be the case that limn→∞ f (n)/n = 0.)

(b) Now suppose you have a budget of k > 2 jars, for some given k.

Describe a strategy for finding the highest safe rung using at most

k jars. If fk(n) denotes the number of times you need to drop a jar

according to your strategy, then the functions f1, f2, f3, . . . should have

the property that each grows asymptotically slower than the previous

one: limn→∞ fk(n)/fk−1(n)= 0 for each k.

Notes and Further Reading

Polynomial-time solvability emerged as a formal notion of efficiency by a
gradual process, motivated by the work of a number of researchers includ-
ing Cobham, Rabin, Edmonds, Hartmanis, and Stearns. The survey by Sipser
(1992) provides both a historical and technical perspective on these develop-
ments. Similarly, the use of asymptotic order of growth notation to bound the
running time of algorithms—as opposed to working out exact formulas with
leading coefficients and lower-order terms—is a modeling decision that was
quite non-obvious at the time it was introduced; Tarjan’s Turing Award lecture
(1987) offers an interesting perspective on the early thinking of researchers
including Hopcroft, Tarjan, and others on this issue. Further discussion of
asymptotic notation and the growth of basic functions can be found in Knuth
(1997a).

The implementation of priority queues using heaps, and the application to
sorting, is generally credited to Williams (1964) and Floyd (1964). The priority
queue is an example of a nontrivial data structure with many applications; in
later chapters we will discuss other data structures as they become useful for
the implementation of particular algorithms. We will consider the Union-Find
data structure in Chapter 4 for implementing an algorithm to find minimum-

Notes and Further Reading 71

cost spanning trees, and we will discuss randomized hashing in Chapter 13.
A number of other data structures are discussed in the book by Tarjan (1983).
The LEDA library (Library of Efficient Datatypes and Algorithms) of Mehlhorn
and Näher (1999) offers an extensive library of data structures useful in
combinatorial and geometric applications.

Notes on the Exercises Exercise 8 is based on a problem we learned from
Sam Toueg.

This page intentionally left blank

Chapter 3

Graphs

Our focus in this book is on problems with a discrete flavor. Just as continuous
mathematics is concerned with certain basic structures such as real numbers,
vectors, and matrices, discrete mathematics has developed basic combinatorial
structures that lie at the heart of the subject. One of the most fundamental and
expressive of these is the graph.

The more one works with graphs, the more one tends to see them ev-
erywhere. Thus, we begin by introducing the basic definitions surrounding
graphs, and list a spectrum of different algorithmic settings where graphs arise
naturally. We then discuss some basic algorithmic primitives for graphs, be-
ginning with the problem of connectivity and developing some fundamental
graph search techniques.

3.1 Basic Definitions and Applications
Recall from Chapter 1 that a graph G is simply a way of encoding pairwise
relationships among a set of objects: it consists of a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e ∈ E as a two-element subset of V: e = {u, v} for some
u, v ∈ V, where we call u and v the ends of e.

Edges in a graph indicate a symmetric relationship between their ends.
Often we want to encode asymmetric relationships, and for this we use the
closely related notion of a directed graph. A directed graph G′ consists of a set
of nodes V and a set of directed edges E′. Each e′ ∈ E′ is an ordered pair (u, v);
in other words, the roles of u and v are not interchangeable, and we call u the
tail of the edge and v the head. We will also say that edge e′ leaves node u and
enters node v.

74 Chapter 3 Graphs

When we want to emphasize that the graph we are considering is not
directed, we will call it an undirected graph; by default, however, the term
“graph” will mean an undirected graph. It is also worth mentioning two
warnings in our use of graph terminology. First, although an edge e in an
undirected graph should properly be written as a set of nodes {u, v}, one will
more often see it written (even in this book) in the notation used for ordered
pairs: e = (u, v). Second, a node in a graph is also frequently called a vertex;
in this context, the two words have exactly the same meaning.

Examples of Graphs Graphs are very simple to define: we just take a collec-
tion of things and join some of them by edges. But at this level of abstraction,
it’s hard to appreciate the typical kinds of situations in which they arise. Thus,
we propose the following list of specific contexts in which graphs serve as
important models. The list covers a lot of ground, and it’s not important to
remember everything on it; rather, it will provide us with a lot of useful ex-
amples against which to check the basic definitions and algorithmic problems
that we’ll be encountering later in the chapter. Also, in going through the list,
it’s useful to digest the meaning of the nodes and the meaning of the edges in
the context of the application. In some cases the nodes and edges both corre-
spond to physical objects in the real world, in others the nodes are real objects
while the edges are virtual, and in still others both nodes and edges are pure
abstractions.

1. Transportation networks. The map of routes served by an airline carrier
naturally forms a graph: the nodes are airports, and there is an edge from
u to v if there is a nonstop flight that departs from u and arrives at v.
Described this way, the graph is directed; but in practice when there is an
edge (u, v), there is almost always an edge (v, u), so we would not lose
much by treating the airline route map as an undirected graph with edges
joining pairs of airports that have nonstop flights each way. Looking at
such a graph (you can generally find them depicted in the backs of in-
flight airline magazines), we’d quickly notice a few things: there are often
a small number of hubs with a very large number of incident edges; and
it’s possible to get between any two nodes in the graph via a very small
number of intermediate stops.

Other transportation networks can be modeled in a similar way. For
example, we could take a rail network and have a node for each terminal,
and an edge joining u and v if there’s a section of railway track that
goes between them without stopping at any intermediate terminal. The
standard depiction of the subway map in a major city is a drawing of
such a graph.

2. Communication networks. A collection of computers connected via a
communication network can be naturally modeled as a graph in a few

3.1 Basic Definitions and Applications 75

different ways. First, we could have a node for each computer and
an edge joining u and v if there is a direct physical link connecting
them. Alternatively, for studying the large-scale structure of the Internet,
people often define a node to be the set of all machines controlled by
a single Internet service provider, with an edge joining u and v if there
is a direct peering relationship between them—roughly, an agreement
to exchange data under the standard BGP protocol that governs global
Internet routing. Note that this latter network is more “virtual” than
the former, since the links indicate a formal agreement in addition to
a physical connection.

In studying wireless networks, one typically defines a graph where
the nodes are computing devices situated at locations in physical space,
and there is an edge from u to v if v is close enough to u to receive a signal
from it. Note that it’s often useful to view such a graph as directed, since
it may be the case that v can hear u’s signal but u cannot hear v’s signal
(if, for example, u has a stronger transmitter). These graphs are also
interesting from a geometric perspective, since they roughly correspond
to putting down points in the plane and then joining pairs that are close
together.

3. Information networks.The World Wide Web can be naturally viewed as a
directed graph, in which nodes correspond to Web pages and there is an
edge from u to v if u has a hyperlink to v. The directedness of the graph
is crucial here; many pages, for example, link to popular news sites,
but these sites clearly do not reciprocate all these links. The structure of
all these hyperlinks can be used by algorithms to try inferring the most
important pages on the Web, a technique employed by most current
search engines.

The hypertextual structure of the Web is anticipated by a number of
information networks that predate the Internet by many decades. These
include the network of cross-references among articles in an encyclopedia
or other reference work, and the network of bibliographic citations
among scientific papers.

4. Social networks. Given any collection of people who interact (the em-
ployees of a company, the students in a high school, or the residents of
a small town), we can define a network whose nodes are people, with
an edge joining u and v if they are friends with one another. We could
have the edges mean a number of different things instead of friendship:
the undirected edge (u, v) could mean that u and v have had a roman-
tic relationship or a financial relationship; the directed edge (u, v) could
mean that u seeks advice from v, or that u lists v in his or her e-mail
address book. One can also imagine bipartite social networks based on a

76 Chapter 3 Graphs

notion of affiliation: given a set X of people and a set Y of organizations,
we could define an edge between u ∈ X and v ∈ Y if person u belongs to
organization v.

Networks such as this are used extensively by sociologists to study
the dynamics of interaction among people. They can be used to identify
the most “influential” people in a company or organization, to model
trust relationships in a financial or political setting, and to track the
spread of fads, rumors, jokes, diseases, and e-mail viruses.

5. Dependency networks. It is natural to define directed graphs that capture
the interdependencies among a collection of objects. For example, given
the list of courses offered by a college or university, we could have a
node for each course and an edge from u to v if u is a prerequisite for v.
Given a list of functions or modules in a large software system, we could
have a node for each function and an edge from u to v if u invokes v by a
function call. Or given a set of species in an ecosystem, we could define
a graph—a food web—in which the nodes are the different species and
there is an edge from u to v if u consumes v.

This is far from a complete list, too far to even begin tabulating its
omissions. It is meant simply to suggest some examples that are useful to
keep in mind when we start thinking about graphs in an algorithmic context.

Paths and Connectivity One of the fundamental operations in a graph is
that of traversing a sequence of nodes connected by edges. In the examples
just listed, such a traversal could correspond to a user browsing Web pages by
following hyperlinks; a rumor passing by word of mouth from you to someone
halfway around the world; or an airline passenger traveling from San Francisco
to Rome on a sequence of flights.

With this notion in mind, we define a path in an undirected graph
G = (V , E) to be a sequence P of nodes v1, v2, . . . , vk−1, vk with the property
that each consecutive pair vi, vi+1 is joined by an edge in G. P is often called
a path from v1 to vk, or a v1-vk path. For example, the nodes 4, 2, 1, 7, 8 form
a path in Figure 3.1. A path is called simple if all its vertices are distinct from
one another. A cycle is a path v1, v2, . . . , vk−1, vk in which k > 2, the first k− 1
nodes are all distinct, and v1= vk—in other words, the sequence of nodes
“cycles back” to where it began. All of these definitions carry over naturally
to directed graphs, with the following change: in a directed path or cycle,
each pair of consecutive nodes has the property that (vi, vi+1) is an edge. In
other words, the sequence of nodes in the path or cycle must respect the
directionality of edges.

We say that an undirected graph is connected if, for every pair of nodes u
and v, there is a path from u to v. Choosing how to define connectivity of a

3.1 Basic Definitions and Applications 77

1

2 5

6

7

3 4 98

1

2

5
6

7

3

4

9

8

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

directed graph is a bit more subtle, since it’s possible for u to have a path to
v while v has no path to u. We say that a directed graph is strongly connected
if, for every two nodes u and v, there is a path from u to v and a path from v
to u.

In addition to simply knowing about the existence of a path between some
pair of nodes u and v, we may also want to know whether there is a short path.
Thus we define the distance between two nodes u and v to be the minimum
number of edges in a u-v path. (We can designate some symbol like ∞ to
denote the distance between nodes that are not connected by a path.) The
term distance here comes from imagining G as representing a communication
or transportation network; if we want to get from u to v, we may well want a
route with as few “hops” as possible.

Trees We say that an undirected graph is a tree if it is connected and does not
contain a cycle. For example, the two graphs pictured in Figure 3.1 are trees.
In a strong sense, trees are the simplest kind of connected graph: deleting any
edge from a tree will disconnect it.

For thinking about the structure of a tree T, it is useful to root it at a
particular node r. Physically, this is the operation of grabbing T at the node r
and letting the rest of it hang downward under the force of gravity, like a
mobile. More precisely, we “orient” each edge of T away from r; for each other
node v, we declare the parent of v to be the node u that directly precedes v
on its path from r; we declare w to be a child of v if v is the parent of w. More
generally, we say that w is a descendant of v (or v is an ancestor of w) if v lies
on the path from the root to w; and we say that a node x is a leaf if it has no
descendants. Thus, for example, the two pictures in Figure 3.1 correspond to
the same tree T—the same pairs of nodes are joined by edges—but the drawing
on the right represents the result of rooting T at node 1.

78 Chapter 3 Graphs

Rooted trees are fundamental objects in computer science, because they
encode the notion of a hierarchy. For example, we can imagine the rooted tree
in Figure 3.1 as corresponding to the organizational structure of a tiny nine-
person company; employees 3 and 4 report to employee 2; employees 2, 5,
and 7 report to employee 1; and so on. Many Web sites are organized according
to a tree-like structure, to facilitate navigation. A typical computer science
department’s Web site will have an entry page as the root; the People page is
a child of this entry page (as is the Courses page); pages entitled Faculty and
Students are children of the People page; individual professors’ home pages
are children of the Faculty page; and so on.

For our purposes here, rooting a tree T can make certain questions about T
conceptually easy to answer. For example, given a tree T on n nodes, how many
edges does it have? Each node other than the root has a single edge leading
“upward” to its parent; and conversely, each edge leads upward from precisely
one non-root node. Thus we have very easily proved the following fact.

(3.1) Every n-node tree has exactly n − 1 edges.

In fact, the following stronger statement is true, although we do not prove
it here.

(3.2) Let G be an undirected graph on n nodes. Any two of the following
statements implies the third.

(i) G is connected.

(ii) G does not contain a cycle.

(iii) G has n − 1 edges.

We now turn to the role of trees in the fundamental algorithmic idea of
graph traversal.

3.2 Graph Connectivity and Graph Traversal
Having built up some fundamental notions regarding graphs, we turn to a very
basic algorithmic question: node-to-node connectivity. Suppose we are given a
graph G= (V , E) and two particular nodes s and t. We’d like to find an efficient
algorithm that answers the question: Is there a path from s to t in G? We will
call this the problem of determining s-t connectivity.

For very small graphs, this question can often be answered easily by visual
inspection. But for large graphs, it can take some work to search for a path.
Indeed, the s-t Connectivity Problem could also be called the Maze-Solving
Problem. If we imagine G as a maze with a room corresponding to each node,
and a hallway corresponding to each edge that joins nodes (rooms) together,

3.2 Graph Connectivity and Graph Traversal 79

1 7 9 11

2

5

6 13

8 10 12

3

4

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9
through 13.

then the problem is to start in a room s and find your way to another designated
room t. How efficient an algorithm can we design for this task?

In this section, we describe two natural algorithms for this problem at a
high level: breadth-first search (BFS) and depth-first search (DFS). In the next
section we discuss how to implement each of these efficiently, building on a
data structure for representing a graph as the input to an algorithm.

Breadth-First Search
Perhaps the simplest algorithm for determining s-t connectivity is breadth-first
search (BFS), in which we explore outward from s in all possible directions,
adding nodes one “layer” at a time. Thus we start with s and include all nodes
that are joined by an edge to s—this is the first layer of the search. We then
include all additional nodes that are joined by an edge to any node in the first
layer—this is the second layer. We continue in this way until no new nodes
are encountered.

In the example of Figure 3.2, starting with node 1 as s, the first layer of
the search would consist of nodes 2 and 3, the second layer would consist of
nodes 4, 5, 7, and 8, and the third layer would consist just of node 6. At this
point the search would stop, since there are no further nodes that could be
added (and in particular, note that nodes 9 through 13 are never reached by
the search).

As this example reinforces, there is a natural physical interpretation to the
algorithm. Essentially, we start at s and “flood” the graph with an expanding
wave that grows to visit all nodes that it can reach. The layer containing a
node represents the point in time at which the node is reached.

We can define the layers L1, L2, L3, . . . constructed by the BFS algorithm
more precisely as follows.

80 Chapter 3 Graphs

. Layer L1 consists of all nodes that are neighbors of s. (For notational
reasons, we will sometimes use layer L0 to denote the set consisting just
of s.)

. Assuming that we have defined layers L1, . . . , Lj, then layer Lj+1 consists
of all nodes that do not belong to an earlier layer and that have an edge
to a node in layer Lj.

Recalling our definition of the distance between two nodes as the minimum
number of edges on a path joining them, we see that layer L1 is the set of all
nodes at distance 1 from s, and more generally layer Lj is the set of all nodes
at distance exactly j from s. A node fails to appear in any of the layers if and
only if there is no path to it. Thus, BFS is not only determining the nodes that s
can reach, it is also computing shortest paths to them. We sum this up in the
following fact.

(3.3) For each j ≥ 1, layer Lj produced by BFS consists of all nodes at distance
exactly j from s. There is a path from s to t if and only if t appears in some
layer.

A further property of breadth-first search is that it produces, in a very
natural way, a tree T rooted at s on the set of nodes reachable from s.
Specifically, for each such node v (other than s), consider the moment when
v is first “discovered” by the BFS algorithm; this happens when some node u
in layer Lj is being examined, and we find that it has an edge to the previously
unseen node v. At this moment, we add the edge (u, v) to the tree T—u
becomes the parent of v, representing the fact that u is “responsible” for
completing the path to v. We call the tree T that is produced in this way a
breadth-first search tree.

Figure 3.3 depicts the construction of a BFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of BFS that produces this
tree can be described as follows.

(a) Starting from node 1, layer L1 consists of the nodes {2, 3}.
(b) Layer L2 is then grown by considering the nodes in layer L1 in order (say,

first 2, then 3). Thus we discover nodes 4 and 5 as soon as we look at 2,
so 2 becomes their parent. When we consider node 2, we also discover
an edge to 3, but this isn’t added to the BFS tree, since we already know
about node 3.

We first discover nodes 7 and 8 when we look at node 3. On the other
hand, the edge from 3 to 5 is another edge of G that does not end up in

3.2 Graph Connectivity and Graph Traversal 81

1

2

4 5

3

87

6

1

2

4 5

3

87

1

2 3

(a) (b) (c)

Figure 3.3 The construction of a breadth-first search tree T for the graph in Figure 3.2,
with (a), (b), and (c) depicting the successive layers that are added. The solid edges are
the edges of T ; the dotted edges are in the connected component of G containing node
1, but do not belong to T .

the BFS tree, because by the time we look at this edge out of node 3, we
already know about node 5.

(c) We then consider the nodes in layer L2 in order, but the only new node
discovered when we look through L2 is node 6, which is added to layer
L3. Note that the edges (4, 5) and (7, 8) don’t get added to the BFS tree,
because they don’t result in the discovery of new nodes.

(d) No new nodes are discovered when node 6 is examined, so nothing is put
in layer L4, and the algorithm terminates. The full BFS tree is depicted
in Figure 3.3(c).

We notice that as we ran BFS on this graph, the nontree edges all either
connected nodes in the same layer, or connected nodes in adjacent layers. We
now prove that this is a property of BFS trees in general.

(3.4) Let T be a breadth-first search tree, let x and y be nodes in T belonging
to layers Li and Lj respectively, and let (x, y) be an edge of G. Then i and j differ
by at most 1.

Proof. Suppose by way of contradiction that i and j differed by more than 1;
in particular, suppose i < j − 1. Now consider the point in the BFS algorithm
when the edges incident to x were being examined. Since x belongs to layer
Li, the only nodes discovered from x belong to layers Li+1 and earlier; hence,
if y is a neighbor of x, then it should have been discovered by this point at the
latest and hence should belong to layer Li+1 or earlier.

82 Chapter 3 Graphs

s

It is safe to add v.

Current component
containing s

u v

Figure 3.4 When growing the connected component containing s, we look for nodes
like v that have not yet been visited.

Exploring a Connected Component
The set of nodes discovered by the BFS algorithm is precisely those reachable
from the starting node s. We will refer to this set R as the connected component
of G containing s; and once we know the connected component containing s,
we can simply check whether t belongs to it so as to answer the question of
s-t connectivity.

Now, if one thinks about it, it’s clear that BFS is just one possible way to
produce this component. At a more general level, we can build the component
R by “exploring” G in any order, starting from s. To start off, we define R= {s}.
Then at any point in time, if we find an edge (u, v) where u ∈ R and v �∈ R, we
can add v to R. Indeed, if there is a path P from s to u, then there is a path
from s to v obtained by first following P and then following the edge (u, v).
Figure 3.4 illustrates this basic step in growing the component R.

Suppose we continue growing the set R until there are no more edges
leading out of R; in other words, we run the following algorithm.

R will consist of nodes to which s has a path

Initially R= {s}
While there is an edge (u, v) where u ∈ R and v �∈ R

Add v to R

Endwhile

Here is the key property of this algorithm.

(3.5) The set R produced at the end of the algorithm is precisely the connected
component of G containing s.

3.2 Graph Connectivity and Graph Traversal 83

Proof. We have already argued that for any node v ∈ R, there is a path from s
to v.

Now, consider a node w �∈ R, and suppose by way of contradiction, that
there is an s-w path P in G. Since s ∈ R but w �∈ R, there must be a first node v
on P that does not belong to R; and this node v is not equal to s. Thus there is
a node u immediately preceding v on P, so (u, v) is an edge. Moreover, since v
is the first node on P that does not belong to R, we must have u ∈ R. It follows
that (u, v) is an edge where u ∈ R and v �∈ R; this contradicts the stopping rule
for the algorithm.

For any node t in the component R, observe that it is easy to recover the
actual path from s to t along the lines of the argument above: we simply record,
for each node v, the edge (u, v) that was considered in the iteration in which
v was added to R. Then, by tracing these edges backward from t, we proceed
through a sequence of nodes that were added in earlier and earlier iterations,
eventually reaching s; this defines an s-t path.

To conclude, we notice that the general algorithm we have defined to
grow R is underspecified, so how do we decide which edge to consider next?
The BFS algorithm arises, in particular, as a particular way of ordering the
nodes we visit—in successive layers, based on their distance from s. But
there are other natural ways to grow the component, several of which lead
to efficient algorithms for the connectivity problem while producing search
patterns with different structures. We now go on to discuss a different one of
these algorithms, depth-first search, and develop some of its basic properties.

Depth-First Search
Another natural method to find the nodes reachable from s is the approach you
might take if the graph G were truly a maze of interconnected rooms and you
were walking around in it. You’d start from s and try the first edge leading out
of it, to a node v. You’d then follow the first edge leading out of v, and continue
in this way until you reached a “dead end”—a node for which you had already
explored all its neighbors. You’d then backtrack until you got to a node with
an unexplored neighbor, and resume from there. We call this algorithm depth-
first search (DFS), since it explores G by going as deeply as possible and only
retreating when necessary.

DFS is also a particular implementation of the generic component-growing
algorithm that we introduced earlier. It is most easily described in recursive
form: we can invoke DFS from any starting point but maintain global knowl-
edge of which nodes have already been explored.

84 Chapter 3 Graphs

DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

If v is not marked "Explored" then

Recursively invoke DFS(v)

Endif

Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not
explored, and invoke DFS(s).

There are some fundamental similarities and some fundamental differ-
ences between DFS and BFS. The similarities are based on the fact that they
both build the connected component containing s, and we will see in the next
section that they achieve qualitatively similar levels of efficiency.

While DFS ultimately visits exactly the same set of nodes as BFS, it typically
does so in a very different order; it probes its way down long paths, potentially
getting very far from s, before backing up to try nearer unexplored nodes. We
can see a reflection of this difference in the fact that, like BFS, the DFS algorithm
yields a natural rooted tree T on the component containing s, but the tree will
generally have a very different structure. We make s the root of the tree T,
and make u the parent of v when u is responsible for the discovery of v. That
is, whenever DFS(v) is invoked directly during the call to DFS(u), we add the
edge (u, v) to T. The resulting tree is called a depth-first search tree of the
component R.

Figure 3.5 depicts the construction of a DFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of DFS begins by building a
path on nodes 1, 2, 3, 5, 4. The execution reaches a dead end at 4, since there
are no new nodes to find, and so it “backs up” to 5, finds node 6, backs up
again to 3, and finds nodes 7 and 8. At this point there are no new nodes to find
in the connected component, so all the pending recursive DFS calls terminate,
one by one, and the execution comes to an end. The full DFS tree is depicted
in Figure 3.5(g).

This example suggests the characteristic way in which DFS trees look
different from BFS trees. Rather than having root-to-leaf paths that are as short
as possible, they tend to be quite narrow and deep. However, as in the case
of BFS, we can say something quite strong about the way in which nontree
edges of G must be arranged relative to the edges of a DFS tree T: as in the
figure, nontree edges can only connect ancestors of T to descendants.

3.2 Graph Connectivity and Graph Traversal 85

1

2

4

5

3

8

7

6

1

2

4

5

3

7

6

1

2

4

5

3

6

(e)

1

2

4

5

3

(d)

1

2

5

3

(c)

1

2

3

(b)

1

2

(a)

(f) (g)

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2,
with (a) through (g) depicting the nodes as they are discovered in sequence. The solid
edges are the edges of T ; the dotted edges are edges of G that do not belong to T .

To establish this, we first observe the following property of the DFS
algorithm and the tree that it produces.

(3.6) For a given recursive call DFS(u), all nodes that are marked “Explored”
between the invocation and end of this recursive call are descendants of u
in T.

Using (3.6), we prove

(3.7) Let T be a depth-first search tree, let x and y be nodes in T, and let
(x, y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor
of the other.

86 Chapter 3 Graphs

Proof. Suppose that (x, y) is an edge of G that is not an edge of T, and suppose
without loss of generality that x is reached first by the DFS algorithm. When
the edge (x, y) is examined during the execution of DFS(x), it is not added
to T because y is marked “Explored.” Since y was not marked “Explored”
when DFS(x) was first invoked, it is a node that was discovered between the
invocation and end of the recursive call DFS(x). It follows from (3.6) that y is
a descendant of x.

The Set of All Connected Components
So far we have been talking about the connected component containing a
particular node s. But there is a connected component associated with each
node in the graph. What is the relationship between these components?

In fact, this relationship is highly structured and is expressed in the
following claim.

(3.8) For any two nodes s and t in a graph, their connected components are
either identical or disjoint.

This is a statement that is very clear intuitively, if one looks at a graph like
the example in Figure 3.2. The graph is divided into multiple pieces with no
edges between them; the largest piece is the connected component of nodes
1 through 8, the medium piece is the connected component of nodes 11, 12,
and 13, and the smallest piece is the connected component of nodes 9 and 10.
To prove the statement in general, we just need to show how to define these
“pieces” precisely for an arbitrary graph.

Proof. Consider any two nodes s and t in a graph G with the property that
there is a path between s and t. We claim that the connected components
containing s and t are the same set. Indeed, for any node v in the component
of s, the node v must also be reachable from t by a path: we can just walk
from t to s, and then on from s to v. The same reasoning works with the roles
of s and t reversed, and so a node is in the component of one if and only if it
is in the component of the other.

On the other hand, if there is no path between s and t, then there cannot
be a node v that is in the connected component of each. For if there were such
a node v, then we could walk from s to v and then on to t, constructing a
path between s and t. Thus, if there is no path between s and t, then their
connected components are disjoint.

This proof suggests a natural algorithm for producing all the connected
components of a graph, by growing them one component at a time. We start
with an arbitrary node s, and we use BFS (or DFS) to generate its connected

3.3 Implementing Graph Traversal Using Queues and Stacks 87

component. We then find a node v (if any) that was not visited by the search
from s, and iterate, using BFS starting from v, to generate its connected
component—which, by (3.8), will be disjoint from the component of s. We
continue in this way until all nodes have been visited.

3.3 Implementing Graph Traversal Using Queues
and Stacks

So far we have been discussing basic algorithmic primitives for working with
graphs without mentioning any implementation details. Here we discuss how
to use lists and arrays to represent graphs, and we discuss the trade-offs
between the different representations. Then we use these data structures to
implement the graph traversal algorithms breadth-first search (BFS) and depth-
first search (DFS) efficiently. We will see that BFS and DFS differ essentially
only in that one uses a queue and the other uses a stack, two simple data
structures that we will describe later in this section.

Representing Graphs
There are two basic ways to represent graphs: by an adjacency matrix and
by an adjacency list representation. Throughout the book we will use the
adjacency list representation. We start, however, by reviewing both of these
representations and discussing the trade-offs between them.

A graph G= (V , E) has two natural input parameters, the number of nodes
|V|, and the number of edges |E|. We will use n = |V| and m = |E| to denote
these, respectively. Running times will be given in terms of both of these two
parameters. As usual, we will aim for polynomial running times, and lower-
degree polynomials are better. However, with two parameters in the running
time, the comparison is not always so clear. Is O(m2) or O(n3) a better running
time? This depends on what the relation is between n and m. With at most
one edge between any pair of nodes, the number of edges m can be at most(n

2

) ≤ n2. On the other hand, in many applications the graphs of interest are
connected, and by (3.1), connected graphs must have at least m≥ n− 1edges.
But these comparisons do not always tell us which of two running times (such
as m2 and n3) are better, so we will tend to keep the running times in terms
of both of these parameters. In this section we aim to implement the basic
graph search algorithms in time O(m+ n). We will refer to this as linear time,
since it takes O(m+ n) time simply to read the input. Note that when we work
with connected graphs, a running time of O(m+ n) is the same as O(m), since
m ≥ n − 1.

Consider a graph G = (V , E) with n nodes, and assume the set of nodes
is V = {1, . . . , n}. The simplest way to represent a graph is by an adjacency

88 Chapter 3 Graphs

matrix, which is an n × n matrix A where A[u, v] is equal to 1 if the graph
contains the edge (u, v) and 0 otherwise. If the graph is undirected, the matrix A
is symmetric, with A[u, v]= A[v, u] for all nodes u, v ∈ V. The adjacency
matrix representation allows us to check in O(1) time if a given edge (u, v) is
present in the graph. However, the representation has two basic disadvantages.

. The representation takes �(n2) space. When the graph has many fewer
edges than n2, more compact representations are possible.

. Many graph algorithms need to examine all edges incident to a given node
v. In the adjacency matrix representation, doing this involves considering
all other nodes w, and checking the matrix entry A[v, w] to see whether
the edge (v, w) is present—and this takes �(n) time. In the worst case,
v may have �(n) incident edges, in which case checking all these edges
will take �(n) time regardless of the representation. But many graphs in
practice have significantly fewer edges incident to most nodes, and so it
would be good to be able to find all these incident edges more efficiently.

The representation of graphs used throughout the book is the adjacency
list, which works better for sparse graphs—that is, those with many fewer than
n2 edges. In the adjacency list representation there is a record for each node v,
containing a list of the nodes to which v has edges. To be precise, we have an
array Adj, where Adj[v] is a record containing a list of all nodes adjacent to
node v. For an undirected graph G = (V , E), each edge e = (v, w) ∈ E occurs on
two adjacency lists: node w appears on the list for node v, and node v appears
on the list for node w.

Let’s compare the adjacency matrix and adjacency list representations.
First consider the space required by the representation. An adjacency matrix
requires O(n2) space, since it uses an n× n matrix. In contrast, we claim that
the adjacency list representation requires only O(m + n) space. Here is why.
First, we need an array of pointers of length n to set up the lists in Adj, and
then we need space for all the lists. Now, the lengths of these lists may differ
from node to node, but we argued in the previous paragraph that overall, each
edge e = (v, w) appears in exactly two of the lists: the one for v and the one
for w. Thus the total length of all lists is 2m = O(m).

Another (essentially equivalent) way to justify this bound is as follows.
We define the degree nv of a node v to be the number of incident edges it has.
The length of the list at Adj[v] is list is nv, so the total length over all nodes is
O
(∑

v∈V nv
)
. Now, the sum of the degrees in a graph is a quantity that often

comes up in the analysis of graph algorithms, so it is useful to work out what
this sum is.

(3.9)
∑

v∈V nv = 2m.

3.3 Implementing Graph Traversal Using Queues and Stacks 89

Proof. Each edge e = (v, w) contributes exactly twice to this sum: once in the
quantity nv and once in the quantity nw. Since the sum is the total of the
contributions of each edge, it is 2m.

We sum up the comparison between adjacency matrices and adjacency
lists as follows.

(3.10) The adjacency matrix representation of a graph requires O(n2) space,
while the adjacency list representation requires only O(m + n) space.

Since we have already argued that m ≤ n2, the bound O(m + n) is never
worse than O(n2); and it is much better when the underlying graph is sparse,
with m much smaller than n2.

Now we consider the ease of accessing the information stored in these two
different representations. Recall that in an adjacency matrix we can check in
O(1) time if a particular edge (u, v) is present in the graph. In the adjacency list
representation, this can take time proportional to the degree O(nv): we have to
follow the pointers on u’s adjacency list to see if edge v occurs on the list. On
the other hand, if the algorithm is currently looking at a node u, it can read
the list of neighbors in constant time per neighbor.

In view of this, the adjacency list is a natural representation for exploring
graphs. If the algorithm is currently looking at a node u, it can read this list
of neighbors in constant time per neighbor; move to a neighbor v once it
encounters it on this list in constant time; and then be ready to read the list
associated with node v. The list representation thus corresponds to a physical
notion of “exploring” the graph, in which you learn the neighbors of a node
u once you arrive at u, and can read them off in constant time per neighbor.

Queues and Stacks
Many algorithms have an inner step in which they need to process a set of
elements, such the set of all edges adjacent to a node in a graph, the set of
visited nodes in BFS and DFS, or the set of all free men in the Stable Matching
algorithm. For this purpose, it is natural to maintain the set of elements to be
considered in a linked list, as we have done for maintaining the set of free men
in the Stable Matching algorithm.

One important issue that arises is the order in which to consider the
elements in such a list. In the Stable Matching algorithm, the order in which
we considered the free men did not affect the outcome, although this required
a fairly subtle proof to verify. In many other algorithms, such as DFS and BFS,
the order in which elements are considered is crucial.

90 Chapter 3 Graphs

Two of the simplest and most natural options are to maintain a set of
elements as either a queue or a stack. A queue is a set from which we extract
elements in first-in, first-out (FIFO) order: we select elements in the same order
in which they were added. A stack is a set from which we extract elements
in last-in, first-out (LIFO) order: each time we select an element, we choose
the one that was added most recently. Both queues and stacks can be easily
implemented via a doubly linked list. In both cases, we always select the first
element on our list; the difference is in where we insert a new element. In a
queue a new element is added to the end of the list as the last element, while
in a stack a new element is placed in the first position on the list. Recall that a
doubly linked list has explicit First and Last pointers to the beginning and
end, respectively, so each of these insertions can be done in constant time.

Next we will discuss how to implement the search algorithms of the
previous section in linear time. We will see that BFS can be thought of as
using a queue to select which node to consider next, while DFS is effectively
using a stack.

Implementing Breadth-First Search
The adjacency list data structure is ideal for implementing breadth-first search.
The algorithm examines the edges leaving a given node one by one. When we
are scanning the edges leaving u and come to an edge (u, v), we need to
know whether or not node v has been previously discovered by the search.
To make this simple, we maintain an array Discovered of length n and set
Discovered[v]= true as soon as our search first sees v. The algorithm, as
described in the previous section, constructs layers of nodes L1, L2, . . . , where
Li is the set of nodes at distance i from the source s. To maintain the nodes in
a layer Li, we have a list L[i] for each i = 0, 1, 2,

BFS(s):

Set Discovered[s] = true and Discovered[v] = false for all other v

Initialize L[0] to consist of the single element s

Set the layer counter i = 0

Set the current BFS tree T = ∅
While L[i] is not empty

Initialize an empty list L[i + 1]

For each node u ∈ L[i]

Consider each edge (u, v) incident to u

If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T

3.3 Implementing Graph Traversal Using Queues and Stacks 91

Add v to the list L[i + 1]

Endif

Endfor

Increment the layer counter i by one

Endwhile

In this implementation it does not matter whether we manage each list
L[i] as a queue or a stack, since the algorithm is allowed to consider the nodes
in a layer Li in any order.

(3.11) The above implementation of the BFS algorithm runs in time O(m+ n)

(i.e., linear in the input size), if the graph is given by the adjacency list
representation.

Proof. As a first step, it is easy to bound the running time of the algorithm
by O(n2) (a weaker bound than our claimed O(m+ n)). To see this, note that
there are at most n lists L[i] that we need to set up, so this takes O(n) time.
Now we need to consider the nodes u on these lists. Each node occurs on at
most one list, so the For loop runs at most n times over all iterations of the
While loop. When we consider a node u, we need to look through all edges
(u, v) incident to u. There can be at most n such edges, and we spend O(1)
time considering each edge. So the total time spent on one iteration of the For
loop is at most O(n). We’ve thus concluded that there are at most n iterations
of the For loop, and that each iteration takes at most O(n) time, so the total
time is at most O(n2).

To get the improved O(m + n) time bound, we need to observe that the
For loop processing a node u can take less than O(n) time if u has only a
few neighbors. As before, let nu denote the degree of node u, the number of
edges incident to u. Now, the time spent in the For loop considering edges
incident to node u is O(nu), so the total over all nodes is O(

∑
u∈V nu). Recall

from (3.9) that
∑

u∈V nu = 2m, and so the total time spent considering edges
over the whole algorithm is O(m). We need O(n) additional time to set up
lists and manage the array Discovered. So the total time spent is O(m + n)

as claimed.

We described the algorithm using up to n separate lists L[i] for each layer
Li. Instead of all these distinct lists, we can implement the algorithm using a
single list L that we maintain as a queue. In this way, the algorithm processes
nodes in the order they are first discovered: each time a node is discovered,
it is added to the end of the queue, and the algorithm always processes the
edges out of the node that is currently first in the queue.

92 Chapter 3 Graphs

If we maintain the discovered nodes in this order, then all nodes in layer Li
will appear in the queue ahead of all nodes in layer Li+1, for i= 0, 1, 2Thus,
all nodes in layer Li will be considered in a contiguous sequence, followed
by all nodes in layer Li+1, and so forth. Hence this implementation in terms
of a single queue will produce the same result as the BFS implementation
above.

Implementing Depth-First Search
We now consider the depth-first search algorithm. In the previous section we
presented DFS as a recursive procedure, which is a natural way to specify it.
However, it can also be viewed as almost identical to BFS, with the difference
that it maintains the nodes to be processed in a stack, rather than in a queue.
Essentially, the recursive structure of DFS can be viewed as pushing nodes
onto a stack for later processing, while moving on to more freshly discovered
nodes. We now show how to implement DFS by maintaining this stack of
nodes to be processed explicitly.

In both BFS and DFS, there is a distinction between the act of discovering
a node v—the first time it is seen, when the algorithm finds an edge leading
to v—and the act of exploring a node v, when all the incident edges to v are
scanned, resulting in the potential discovery of further nodes. The difference
between BFS and DFS lies in the way in which discovery and exploration are
interleaved.

In BFS, once we started to explore a node u in layer Li, we added all its
newly discovered neighbors to the next layer Li+1, and we deferred actually
exploring these neighbors until we got to the processing of layer Li+1. In
contrast, DFS is more impulsive: when it explores a node u, it scans the
neighbors of u until it finds the first not-yet-explored node v (if any), and
then it immediately shifts attention to exploring v.

To implement the exploration strategy of DFS, we first add all of the nodes
adjacent to u to our list of nodes to be considered, but after doing this we
proceed to explore a new neighbor v of u. As we explore v, in turn, we add
the neighbors of v to the list we’re maintaining, but we do so in stack order,
so that these neighbors will be explored before we return to explore the other
neighbors of u. We only come back to other nodes adjacent to u when there
are no other nodes left.

In addition, we use an array Explored analogous to the Discovered array
we used for BFS. The difference is that we only set Explored[v] to be true
when we scan v’s incident edges (when the DFS search is at v), while BFS sets
Discovered[v] to true as soon as v is first discovered. The implementation
in full looks as follows.

3.3 Implementing Graph Traversal Using Queues and Stacks 93

DFS(s):

Initialize S to be a stack with one element s

While S is not empty

Take a node u from S

If Explored[u] = false then

Set Explored[u] = true

For each edge (u, v) incident to u

Add v to the stack S

Endfor

Endif

Endwhile

There is one final wrinkle to mention. Depth-first search is underspecified,
since the adjacency list of a node being explored can be processed in any order.
Note that the above algorithm, because it pushes all adjacent nodes onto the
stack before considering any of them, in fact processes each adjacency list
in the reverse order relative to the recursive version of DFS in the previous
section.

(3.12) The above algorithm implements DFS, in the sense that it visits the
nodes in exactly the same order as the recursive DFS procedure in the previous
section (except that each adjacency list is processed in reverse order).

If we want the algorithm to also find the DFS tree, we need to have each
node u on the stack S maintain the node that “caused” u to get added to
the stack. This can be easily done by using an array parent and setting
parent[v]= u when we add node v to the stack due to edge (u, v). When
we mark a node u �= s as Explored, we also can add the edge (u,parent[u])
to the tree T. Note that a node v may be in the stack S multiple times, as it
can be adjacent to multiple nodes u that we explore, and each such node adds
a copy of v to the stack S. However, we will only use one of these copies to
explore node v, the copy that we add last. As a result, it suffices to maintain one
value parent[v] for each node v by simply overwriting the value parent[v]
every time we add a new copy of v to the stack S.

The main step in the algorithm is to add and delete nodes to and from
the stack S, which takes O(1) time. Thus, to bound the running time, we
need to bound the number of these operations. To count the number of stack
operations, it suffices to count the number of nodes added to S, as each node
needs to be added once for every time it can be deleted from S.

How many elements ever get added to S? As before, let nv denote the
degree of node v. Node v will be added to the stack S every time one of its
nv adjacent nodes is explored, so the total number of nodes added to S is at

94 Chapter 3 Graphs

most
∑

u nv = 2m. This proves the desired O(m + n) bound on the running
time of DFS.

(3.13) The above implementation of the DFS algorithm runs in time O(m+ n)

(i.e., linear in the input size), if the graph is given by the adjacency list
representation.

Finding the Set of All Connected Components
In the previous section we talked about how one can use BFS (or DFS) to find
all connected components of a graph. We start with an arbitrary node s, and
we use BFS (or DFS) to generate its connected component. We then find a
node v (if any) that was not visited by the search from s and iterate, using
BFS (or DFS) starting from v to generate its connected component—which, by
(3.8), will be disjoint from the component of s. We continue in this way until
all nodes have been visited.

Although we earlier expressed the running time of BFS and DFS as O(m+
n), where m and n are the total number of edges and nodes in the graph, both
BFS and DFS in fact spend work only on edges and nodes in the connected
component containing the starting node. (They never see any of the other
nodes or edges.) Thus the above algorithm, although it may run BFS or
DFS a number of times, only spends a constant amount of work on a given
edge or node in the iteration when the connected component it belongs to is
under consideration. Hence the overall running time of this algorithm is still
O(m + n).

3.4 Testing Bipartiteness: An Application of
Breadth-First Search

Recall the definition of a bipartite graph: it is one where the node set V can
be partitioned into sets X and Y in such a way that every edge has one end
in X and the other end in Y. To make the discussion a little smoother, we can
imagine that the nodes in the set X are colored red, and the nodes in the set
Y are colored blue. With this imagery, we can say a graph is bipartite if it is
possible to color its nodes red and blue so that every edge has one red end
and one blue end.

The Problem
In the earlier chapters, we saw examples of bipartite graphs. Here we start by
asking: What are some natural examples of a nonbipartite graph, one where
no such partition of V is possible?

3.4 Testing Bipartiteness: An Application of Breadth-First Search 95

Clearly a triangle is not bipartite, since we can color one node red, another
one blue, and then we can’t do anything with the third node. More generally,
consider a cycle C of odd length, with nodes numbered 1, 2, 3, . . . , 2k, 2k + 1.
If we color node 1 red, then we must color node 2 blue, and then we must color
node 3 red, and so on—coloring odd-numbered nodes red and even-numbered
nodes blue. But then we must color node 2k+ 1 red, and it has an edge to node
1, which is also red. This demonstrates that there’s no way to partition C into
red and blue nodes as required. More generally, if a graph G simply contains
an odd cycle, then we can apply the same argument; thus we have established
the following.

(3.14) If a graph G is bipartite, then it cannot contain an odd cycle.

It is easy to recognize that a graph is bipartite when appropriate sets X
and Y (i.e., red and blue nodes) have actually been identified for us; and in
many settings where bipartite graphs arise, this is natural. But suppose we
encounter a graph G with no annotation provided for us, and we’d like to
determine for ourselves whether it is bipartite—that is, whether there exists a
partition into red and blue nodes, as required. How difficult is this? We see from
(3.14) that an odd cycle is one simple “obstacle” to a graph’s being bipartite.
Are there other, more complex obstacles to bipartitness?

Designing the Algorithm
In fact, there is a very simple procedure to test for bipartiteness, and its analysis
can be used to show that odd cycles are the only obstacle. First we assume
the graph G is connected, since otherwise we can first compute its connected
components and analyze each of them separately. Next we pick any node s ∈ V
and color it red; there is no loss in doing this, since s must receive some color.
It follows that all the neighbors of s must be colored blue, so we do this. It
then follows that all the neighbors of these nodes must be colored red, their
neighbors must be colored blue, and so on, until the whole graph is colored. At
this point, either we have a valid red/blue coloring of G, in which every edge
has ends of opposite colors, or there is some edge with ends of the same color.
In this latter case, it seems clear that there’s nothing we could have done: G
simply is not bipartite. We now want to argue this point precisely and also
work out an efficient way to perform the coloring.

The first thing to notice is that the coloring procedure we have just
described is essentially identical to the description of BFS: we move outward
from s, coloring nodes as soon as we first encounter them. Indeed, another
way to describe the coloring algorithm is as follows: we perform BFS, coloring

96 Chapter 3 Graphs

s

The cycle through x, y,
and z has odd length.

Layer Li

Layer Lj

z

x y

Figure 3.6 If two nodes x and
y in the same layer are joined
by an edge, then the cycle
through x, y, and their lowest
common ancestor z has odd
length, demonstrating that
the graph cannot be bipartite.

s red, all of layer L1 blue, all of layer L2 red, and so on, coloring odd-numbered
layers blue and even-numbered layers red.

We can implement this on top of BFS, by simply taking the implementation
of BFS and adding an extra array Color over the nodes. Whenever we get
to a step in BFS where we are adding a node v to a list L[i + 1], we assign
Color[v] = red if i+ 1 is an even number, and Color[v] = blue if i+ 1 is an
odd number. At the end of this procedure, we simply scan all the edges and
determine whether there is any edge for which both ends received the same
color. Thus, the total running time for the coloring algorithm is O(m+ n), just
as it is for BFS.

Analyzing the Algorithm
We now prove a claim that shows this algorithm correctly determines whether
G is bipartite, and it also shows that we can find an odd cycle in G whenever
it is not bipartite.

(3.15) Let G be a connected graph, and let L1, L2, . . . be the layers produced
by BFS starting at node s. Then exactly one of the following two things must
hold.

(i) There is no edge of G joining two nodes of the same layer. In this case G
is a bipartite graph in which the nodes in even-numbered layers can be
colored red, and the nodes in odd-numbered layers can be colored blue.

(ii) There is an edge of G joining two nodes of the same layer. In this case, G
contains an odd-length cycle, and so it cannot be bipartite.

Proof. First consider case (i), where we suppose that there is no edge joining
two nodes of the same layer. By (3.4), we know that every edge of G joins nodes
either in the same layer or in adjacent layers. Our assumption for case (i) is
precisely that the first of these two alternatives never happens, so this means
that every edge joins two nodes in adjacent layers. But our coloring procedure
gives nodes in adjacent layers the opposite colors, and so every edge has ends
with opposite colors. Thus this coloring establishes that G is bipartite.

Now suppose we are in case (ii); why must G contain an odd cycle? We
are told that G contains an edge joining two nodes of the same layer. Suppose
this is the edge e = (x, y), with x, y ∈ Lj. Also, for notational reasons, recall
that L0 (“layer 0”) is the set consisting of just s. Now consider the BFS tree T
produced by our algorithm, and let z be the node whose layer number is as
large as possible, subject to the condition that z is an ancestor of both x and y
in T; for obvious reasons, we can call z the lowest common ancestor of x and y.
Suppose z ∈ Li, where i < j. We now have the situation pictured in Figure 3.6.
We consider the cycle C defined by following the z-x path in T, then the edge e,

3.5 Connectivity in Directed Graphs 97

and then the y-z path in T. The length of this cycle is (j− i)+ 1+ (j− i), adding
the length of its three parts separately; this is equal to 2(j − i)+ 1, which is an
odd number.

3.5 Connectivity in Directed Graphs
Thus far, we have been looking at problems on undirected graphs; we now
consider the extent to which these ideas carry over to the case of directed
graphs.

Recall that in a directed graph, the edge (u, v) has a direction: it goes from
u to v. In this way, the relationship between u and v is asymmetric, and this
has qualitative effects on the structure of the resulting graph. In Section 3.1, for
example, we discussed the World Wide Web as an instance of a large, complex
directed graph whose nodes are pages and whose edges are hyperlinks. The act
of browsing the Web is based on following a sequence of edges in this directed
graph; and the directionality is crucial, since it’s not generally possible to
browse “backwards” by following hyperlinks in the reverse direction.

At the same time, a number of basic definitions and algorithms have
natural analogues in the directed case. This includes the adjacency list repre-
sentation and graph search algorithms such as BFS and DFS. We now discuss
these in turn.

Representing Directed Graphs
In order to represent a directed graph for purposes of designing algorithms,
we use a version of the adjacency list representation that we employed for
undirected graphs. Now, instead of each node having a single list of neighbors,
each node has two lists associated with it: one list consists of nodes to which it
has edges, and a second list consists of nodes from which it has edges. Thus an
algorithm that is currently looking at a node u can read off the nodes reachable
by going one step forward on a directed edge, as well as the nodes that would
be reachable if one went one step in the reverse direction on an edge from u.

The Graph Search Algorithms
Breadth-first search and depth-first search are almost the same in directed
graphs as they are in undirected graphs. We will focus here on BFS. We start
at a node s, define a first layer of nodes to consist of all those to which s has
an edge, define a second layer to consist of all additional nodes to which these
first-layer nodes have an edge, and so forth. In this way, we discover nodes
layer by layer as they are reached in this outward search from s, and the nodes
in layer j are precisely those for which the shortest path from s has exactly
j edges. As in the undirected case, this algorithm performs at most constant
work for each node and edge, resulting in a running time of O(m + n).

98 Chapter 3 Graphs

It is important to understand what this directed version of BFS is comput-
ing. In directed graphs, it is possible for a node s to have a path to a node t
even though t has no path to s; and what directed BFS is computing is the set
of all nodes t with the property that s has a path to t. Such nodes may or may
not have paths back to s.

There is a natural analogue of depth-first search as well, which also runs
in linear time and computes the same set of nodes. It is again a recursive
procedure that tries to explore as deeply as possible, in this case only following
edges according to their inherent direction. Thus, when DFS is at a node u, it
recursively launches a depth-first search, in order, for each node to which u
has an edge.

Suppose that, for a given node s, we wanted the set of nodes with paths
to s, rather than the set of nodes to which s has paths. An easy way to do this
would be to define a new directed graph, Grev, that we obtain from G simply
by reversing the direction of every edge. We could then run BFS or DFS in Grev;
a node has a path from s in Grev if and only if it has a path to s in G.

Strong Connectivity
Recall that a directed graph is strongly connected if, for every two nodes u and
v, there is a path from u to v and a path from v to u. It’s worth also formulating
some terminology for the property at the heart of this definition; let’s say that
two nodes u and v in a directed graph are mutually reachable if there is a path
from u to v and also a path from v to u. (So a graph is strongly connected if
every pair of nodes is mutually reachable.)

Mutual reachability has a number of nice properties, many of them stem-
ming from the following simple fact.

(3.16) If u and v are mutually reachable, and v and w are mutually reachable,
then u and w are mutually reachable.

Proof. To construct a path from u to w, we first go from u to v (along the
path guaranteed by the mutual reachability of u and v), and then on from v
to w (along the path guaranteed by the mutual reachability of v and w). To
construct a path from w to u, we just reverse this reasoning: we first go from
w to v (along the path guaranteed by the mutual reachability of v and w), and
then on from v to u (along the path guaranteed by the mutual reachability of
u and v).

There is a simple linear-time algorithm to test if a directed graph is strongly
connected, implicitly based on (3.16). We pick any node s and run BFS in G
starting from s. We then also run BFS starting from s in Grev. Now, if one of
these two searches fails to reach every node, then clearly G is not strongly
connected. But suppose we find that s has a path to every node, and that

3.6 Directed Acyclic Graphs and Topological Ordering 99

every node has a path to s. Then s and v are mutually reachable for every v,
and so it follows that every two nodes u and v are mutually reachable: s and
u are mutually reachable, and s and v are mutually reachable, so by (3.16) we
also have that u and v are mutually reachable.

By analogy with connected components in an undirected graph, we can
define the strong component containing a node s in a directed graph to be the
set of all v such that s and v are mutually reachable. If one thinks about it, the
algorithm in the previous paragraph is really computing the strong component
containing s: we run BFS starting from s both in G and in Grev; the set of nodes
reached by both searches is the set of nodes with paths to and from s, and
hence this set is the strong component containing s.

There are further similarities between the notion of connected components
in undirected graphs and strong components in directed graphs. Recall that
connected components naturally partitioned the graph, since any two were
either identical or disjoint. Strong components have this property as well, and
for essentially the same reason, based on (3.16).

(3.17) For any two nodes s and t in a directed graph, their strong components
are either identical or disjoint.

Proof. Consider any two nodes s and t that are mutually reachable; we claim
that the strong components containing s and t are identical. Indeed, for any
node v, if s and v are mutually reachable, then by (3.16), t and v are mutually
reachable as well. Similarly, if t and v are mutually reachable, then again by
(3.16), s and v are mutually reachable.

On the other hand, if s and t are not mutually reachable, then there cannot
be a node v that is in the strong component of each. For if there were such
a node v, then s and v would be mutually reachable, and v and t would be
mutually reachable, so from (3.16) it would follow that s and t were mutually
reachable.

In fact, although we will not discuss the details of this here, with more
work it is possible to compute the strong components for all nodes in a total
time of O(m + n).

3.6 Directed Acyclic Graphs and
Topological Ordering

If an undirected graph has no cycles, then it has an extremely simple structure:
each of its connected components is a tree. But it is possible for a directed graph
to have no (directed) cycles and still have a very rich structure. For example,
such graphs can have a large number of edges: if we start with the node

100 Chapter 3 Graphs

In a topological ordering, all
edges point from left to right.

(a)

v1

v2 v3

v4v5v6

v7

(b)

v1 v2 v3 v4 v5 v6 v7

(c)

Figure 3.7 (a) A directed acyclic graph. (b) The same DAG with a topological ordering,
specified by the labels on each node. (c) A different drawing of the same DAG, arranged
so as to emphasize the topological ordering.

set {1, 2, . . . , n} and include an edge (i, j) whenever i < j, then the resulting
directed graph has

(n
2

)
edges but no cycles.

If a directed graph has no cycles, we call it—naturally enough—a directed
acyclic graph, or a DAG for short. (The term DAG is typically pronounced as a
word, not spelled out as an acronym.) In Figure 3.7(a) we see an example of
a DAG, although it may take some checking to convince oneself that it really
has no directed cycles.

The Problem
DAGs are a very common structure in computer science, because many kinds
of dependency networks of the type we discussed in Section 3.1 are acyclic.
Thus DAGs can be used to encode precedence relations or dependencies in a
natural way. Suppose we have a set of tasks labeled {1, 2, . . . , n} that need to
be performed, and there are dependencies among them stipulating, for certain
pairs i and j, that i must be performed before j. For example, the tasks may be
courses, with prerequisite requirements stating that certain courses must be
taken before others. Or the tasks may correspond to a pipeline of computing
jobs, with assertions that the output of job i is used in determining the input
to job j, and hence job i must be done before job j.

We can represent such an interdependent set of tasks by introducing a
node for each task, and a directed edge (i, j) whenever i must be done before
j. If the precedence relation is to be at all meaningful, the resulting graph G
must be a DAG. Indeed, if it contained a cycle C, there would be no way to do
any of the tasks in C: since each task in C cannot begin until some other one
completes, no task in C could ever be done, since none could be done first.

3.6 Directed Acyclic Graphs and Topological Ordering 101

Let’s continue a little further with this picture of DAGs as precedence
relations. Given a set of tasks with dependencies, it would be natural to seek
a valid order in which the tasks could be performed, so that all dependencies
are respected. Specifically, for a directed graph G, we say that a topological
ordering of G is an ordering of its nodes as v1, v2, . . . , vn so that for every edge
(vi, vj), we have i < j. In other words, all edges point “forward” in the ordering.
A topological ordering on tasks provides an order in which they can be safely
performed; when we come to the task vj, all the tasks that are required to
precede it have already been done. In Figure 3.7(b) we’ve labeled the nodes of
the DAG from part (a) with a topological ordering; note that each edge indeed
goes from a lower-indexed node to a higher-indexed node.

In fact, we can view a topological ordering of G as providing an immediate
“proof” that G has no cycles, via the following.

(3.18) If G has a topological ordering, then G is a DAG.

Proof. Suppose, by way of contradiction, that G has a topological ordering
v1, v2, . . . , vn, and also has a cycle C. Let vi be the lowest-indexed node on C,
and let vj be the node on C just before vi—thus (vj , vi) is an edge. But by our
choice of i, we have j > i, which contradicts the assumption that v1, v2, . . . , vn
was a topological ordering.

The proof of acyclicity that a topological ordering provides can be very
useful, even visually. In Figure 3.7(c), we have drawn the same graph as
in (a) and (b), but with the nodes laid out in the topological ordering. It is
immediately clear that the graph in (c) is a DAG since each edge goes from left
to right.

Computing a Topological Ordering The main question we consider here is
the converse of (3.18): Does every DAG have a topological ordering, and if so,
how do we find one efficiently? A method to do this for every DAG would be
very useful: it would show that for any precedence relation on a set of tasks
without cycles, there is an efficiently computable order in which to perform
the tasks.

Designing and Analyzing the Algorithm
In fact, the converse of (3.18) does hold, and we establish this via an efficient
algorithm to compute a topological ordering. The key to this lies in finding a
way to get started: which node do we put at the beginning of the topological
ordering? Such a node v1 would need to have no incoming edges, since any
such incoming edge would violate the defining property of the topological

102 Chapter 3 Graphs

ordering, that all edges point forward. Thus, we need to prove the following
fact.

(3.19) In every DAG G, there is a node v with no incoming edges.

Proof. Let G be a directed graph in which every node has at least one incoming
edge. We show how to find a cycle in G; this will prove the claim. We pick
any node v, and begin following edges backward from v: since v has at least
one incoming edge (u, v), we can walk backward to u; then, since u has at
least one incoming edge (x, u), we can walk backward to x; and so on. We
can continue this process indefinitely, since every node we encounter has an
incoming edge. But after n+ 1steps, we will have visited some node w twice. If
we let C denote the sequence of nodes encountered between successive visits
to w, then clearly C forms a cycle.

In fact, the existence of such a node v is all we need to produce a topological
ordering of G by induction. Specifically, let us claim by induction that every
DAG has a topological ordering. This is clearly true for DAGs on one or two
nodes. Now suppose it is true for DAGs with up to some number of nodes n.
Then, given a DAG G on n+ 1nodes, we find a node v with no incoming edges,
as guaranteed by (3.19). We place v first in the topological ordering; this is
safe, since all edges out of v will point forward. Now G−{v} is a DAG, since
deleting v cannot create any cycles that weren’t there previously. Also, G−{v}
has n nodes, so we can apply the induction hypothesis to obtain a topological
ordering of G−{v}. We append the nodes of G−{v} in this order after v; this is
an ordering of G in which all edges point forward, and hence it is a topological
ordering.

Thus we have proved the desired converse of (3.18).

(3.20) If G is a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topo-
logical ordering of G.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G−{v}
and append this order after v

In Figure 3.8 we show the sequence of node deletions that occurs when this
algorithm is applied to the graph in Figure 3.7. The shaded nodes in each
iteration are those with no incoming edges; the crucial point, which is what

3.6 Directed Acyclic Graphs and Topological Ordering 103

v1

v2 v3

v4v5v6

v7

(a)

v2 v3

v4v5v6

v7

(b)

v3

v4v5v6

v7

(c)

v4v5v6

v7

(d)

v5v6

v7

(e)

v6

v7

(f)

Figure 3.8 Starting from the graph in Figure 3.7, nodes are deleted one by one so as
to be added to a topological ordering. The shaded nodes are those with no incoming
edges; note that there is always at least one such edge at every stage of the algorithm’s
execution.

(3.19) guarantees, is that when we apply this algorithm to a DAG, there will
always be at least one such node available to delete.

To bound the running time of this algorithm, we note that identifying a
node v with no incoming edges, and deleting it from G, can be done in O(n)

time. Since the algorithm runs for n iterations, the total running time is O(n2).

This is not a bad running time; and if G is very dense, containing �(n2)

edges, then it is linear in the size of the input. But we may well want something
better when the number of edges m is much less than n2. In such a case, a
running time of O(m + n) could be a significant improvement over �(n2).

In fact, we can achieve a running time of O(m + n) using the same high-
level algorithm—iteratively deleting nodes with no incoming edges. We simply
have to be more efficient in finding these nodes, and we do this as follows.

We declare a node to be “active” if it has not yet been deleted by the
algorithm, and we explicitly maintain two things:

(a) for each node w, the number of incoming edges that w has from active
nodes; and

(b) the set S of all active nodes in G that have no incoming edges from other
active nodes.

104 Chapter 3 Graphs

d

b

ea

c

Figure 3.9 How many topo-
logical orderings does this
graph have?

At the start, all nodes are active, so we can initialize (a) and (b) with a single
pass through the nodes and edges. Then, each iteration consists of selecting
a node v from the set S and deleting it. After deleting v, we go through all
nodes w to which v had an edge, and subtract one from the number of active
incoming edges that we are maintaining for w. If this causes the number
of active incoming edges to w to drop to zero, then we add w to the set S.
Proceeding in this way, we keep track of nodes that are eligible for deletion at
all times, while spending constant work per edge over the course of the whole
algorithm.

Solved Exercises

Solved Exercise 1
Consider the directed acyclic graph G in Figure 3.9. How many topological
orderings does it have?

Solution Recall that a topological ordering of G is an ordering of the nodes
as v1, v2, . . . , vn so that all edges point “forward”: for every edge (vi, vj), we
have i < j.

So one way to answer this question would be to write down all 5 · 4 · 3 · 2 ·
1= 120 possible orderings and check whether each is a topological ordering.
But this would take a while.

Instead, we think about this as follows. As we saw in the text (or reasoning
directly from the definition), the first node in a topological ordering must be
one that has no edge coming into it. Analogously, the last node must be one
that has no edge leaving it. Thus, in every topological ordering of G, the node a
must come first and the node e must come last.

Now we have to figure how the nodes b, c, and d can be arranged in the
middle of the ordering. The edge (c, d) enforces the requirement that c must
come before d; but b can be placed anywhere relative to these two: before
both, between c and d, or after both. This exhausts all the possibilities, and
so we conclude that there are three possible topological orderings:

a, b, c, d, e

a, c, b, d, e

a, c, d, b, e

Solved Exercise 2
Some friends of yours are working on techniques for coordinating groups of
mobile robots. Each robot has a radio transmitter that it uses to communicate

Solved Exercises 105

with a base station, and your friends find that if the robots get too close to one
another, then there are problems with interference among the transmitters. So
a natural problem arises: how to plan the motion of the robots in such a way
that each robot gets to its intended destination, but in the process the robots
don’t come close enough together to cause interference problems.

We can model this problem abstractly as follows. Suppose that we have
an undirected graph G = (V , E), representing the floor plan of a building, and
there are two robots initially located at nodes a and b in the graph. The robot
at node a wants to travel to node c along a path in G, and the robot at node b
wants to travel to node d. This is accomplished by means of a schedule: at
each time step, the schedule specifies that one of the robots moves across a
single edge, from one node to a neighboring node; at the end of the schedule,
the robot from node a should be sitting on c, and the robot from b should be
sitting on d.

A schedule is interference-free if there is no point at which the two robots
occupy nodes that are at a distance ≤ r from one another in the graph, for a
given parameter r. We’ll assume that the two starting nodes a and b are at a
distance greater than r, and so are the two ending nodes c and d.

Give a polynomial-time algorithm that decides whether there exists an
interference-free schedule by which each robot can get to its destination.

Solution This is a problem of the following general flavor. We have a set
of possible configurations for the robots, where we define a configuration
to be a choice of location for each one. We are trying to get from a given
starting configuration (a, b) to a given ending configuration (c, d), subject to
constraints on how we can move between configurations (we can only change
one robot’s location to a neighboring node), and also subject to constraints on
which configurations are “legal.”

This problem can be tricky to think about if we view things at the level of
the underlying graph G: for a given configuration of the robots—that is, the
current location of each one—it’s not clear what rule we should be using to
decide how to move one of the robots next. So instead we apply an idea that
can be very useful for situations in which we’re trying to perform this type of
search. We observe that our problem looks a lot like a path-finding problem,
not in the original graph G but in the space of all possible configurations.

Let us define the following (larger) graph H. The node set of H is the set
of all possible configurations of the robots; that is, H consists of all possible
pairs of nodes in G. We join two nodes of H by an edge if they represent
configurations that could be consecutive in a schedule; that is, (u, v) and
(u′, v′) will be joined by an edge in H if one of the pairs u, u′ or v, v′ are equal,
and the other pair corresponds to an edge in G.

106 Chapter 3 Graphs

We can already observe that paths in H from (a, b) to (c, d) correspond
to schedules for the robots: such a path consists precisely of a sequence of
configurations in which, at each step, one robot crosses a single edge in G.
However, we have not yet encoded the notion that the schedule should be
interference-free.

To do this, we simply delete from H all nodes that correspond to configura-
tions in which there would be interference. Thus we define H ′ to be the graph
obtained from H by deleting all nodes (u, v) for which the distance between
u and v in G is at most r.

The full algorithm is then as follows. We construct the graph H ′, and then
run the connectivity algorithm from the text to determine whether there is a
path from (a, b) to (c, d). The correctness of the algorithm follows from the
fact that paths in H ′ correspond to schedules, and the nodes in H ′ correspond
precisely to the configurations in which there is no interference.

Finally, we need to consider the running time. Let n denote the number
of nodes in G, and m denote the number of edges in G. We’ll analyze the
running time by doing three things: (1) bounding the size of H ′ (which will in
general be larger than G), (2) bounding the time it takes to construct H ′, and
(3) bounding the time it takes to search for a path from (a, b) to (c, d) in H.

1. First, then, let’s consider the size of H ′. H ′ has at most n2 nodes, since
its nodes correspond to pairs of nodes in G. Now, how many edges does
H ′ have? A node (u, v) will have edges to (u′, v) for each neighbor u′
of u in G, and to (u, v′) for each neighbor v′ of v in G. A simple upper
bound says that there can be at most n choices for (u′, v), and at most n
choices for (u, v′), so there are at most 2n edges incident to each node
of H ′. Summing over the (at most) n2 nodes of H ′, we have O(n3) edges.

(We can actually give a better bound of O(mn) on the number of
edges in H ′, by using the bound (3.9) we proved in Section 3.3 on the
sum of the degrees in a graph. We’ll leave this as a further exercise.)

2. Now we bound the time needed to construct H ′. We first build H by
enumerating all pairs of nodes in G in time O(n2), and constructing edges
using the definition above in time O(n) per node, for a total of O(n3).
Now we need to figure out which nodes to delete from H so as to produce
H ′. We can do this as follows. For each node u in G, we run a breadth-
first search from u and identify all nodes v within distance r of u. We list
all these pairs (u, v) and delete them from H. Each breadth-first search
in G takes time O(m + n), and we’re doing one from each node, so the
total time for this part is O(mn + n2).

Exercises 107

e

b c

fa

d

Figure 3.10 How many topo-
logical orderings does this
graph have?

3. Now we have H ′, and so we just need to decide whether there is a path
from (a, b) to (c, d). This can be done using the connectivity algorithm
from the text in time that is linear in the number of nodes and edges
of H ′. Since H ′ has O(n2) nodes and O(n3) edges, this final step takes
polynomial time as well.

Exercises

1. Consider the directed acyclic graph G in Figure 3.10. How many topolog-

ical orderings does it have?

2. Give an algorithm to detect whether a given undirected graph contains

a cycle. If the graph contains a cycle, then your algorithm should output

one. (It should not output all cycles in the graph, just one of them.) The

running time of your algorithm should be O(m + n) for a graph with n

nodes and m edges.

3. The algorithm described in Section 3.6 for computing a topological order-

ing of a DAG repeatedly finds a node with no incoming edges and deletes

it. This will eventually produce a topological ordering, provided that the

input graph really is a DAG.

But suppose that we’re given an arbitrary graph that may or may not

be a DAG. Extend the topological ordering algorithm so that, given an

input directed graph G, it outputs one of two things: (a) a topological

ordering, thus establishing that G is a DAG; or (b) a cycle in G, thus

establishing that G is not a DAG. The running time of your algorithm

should be O(m + n) for a directed graph with n nodes and m edges.

4. Inspired by the example of that great Cornellian, Vladimir Nabokov, some

of your friends have become amateur lepidopterists (they study butter-

flies). Often when they return from a trip with specimens of butterflies,

it is very difficult for them to tell how many distinct species they’ve

caught—thanks to the fact that many species look very similar to one

another.

One day they return with n butterflies, and they believe that each

belongs to one of two different species, which we’ll call A and B for

purposes of this discussion. They’d like to divide the n specimens into

two groups—those that belong to A and those that belong to B—but it’s

very hard for them to directly label any one specimen. So they decide to

adopt the following approach.

108 Chapter 3 Graphs

For each pair of specimens i and j, they study them carefully side by

side. If they’re confident enough in their judgment, then they label the

pair (i, j) either “same” (meaning they believe them both to come from

the same species) or “different” (meaning they believe them to come from

different species). They also have the option of rendering no judgment

on a given pair, in which case we’ll call the pair ambiguous.

So now they have the collection of n specimens, as well as a collection

of m judgments (either “same” or “different”) for the pairs that were not

declared to be ambiguous. They’d like to know if this data is consistent

with the idea that each butterfly is from one of species A or B. So more

concretely, we’ll declare the m judgments to be consistent if it is possible

to label each specimen either A or B in such a way that for each pair (i, j)

labeled “same,” it is the case that i and j have the same label; and for each

pair (i, j) labeled “different,” it is the case that i and j have different labels.

They’re in the middle of tediously working out whether their judgments

are consistent, when one of them realizes that you probably have an

algorithm that would answer this question right away.

Give an algorithm with running time O(m + n) that determines

whether the m judgments are consistent.

5. A binary tree is a rooted tree in which each node has at most two children.

Show by induction that in any binary tree the number of nodes with two

children is exactly one less than the number of leaves.

6. We have a connected graph G= (V , E), and a specific vertex u ∈ V. Suppose

we compute a depth-first search tree rooted at u, and obtain a tree T that

includes all nodes of G. Suppose we then compute a breadth-first search

tree rooted at u, and obtain the same tree T . Prove that G = T . (In other

words, if T is both a depth-first search tree and a breadth-first search

tree rooted at u, then G cannot contain any edges that do not belong to

T .)

7. Some friends of yours work on wireless networks, and they’re currently

studying the properties of a network of n mobile devices. As the devices

move around (actually, as their human owners move around), they define

a graph at any point in time as follows: there is a node representing each

of the n devices, and there is an edge between device i and device j if the

physical locations of i and j are no more than 500 meters apart. (If so, we

say that i and j are “in range” of each other.)

They’d like it to be the case that the network of devices is connected at

all times, and so they’ve constrained the motion of the devices to satisfy

Exercises 109

the following property: at all times, each device i is within 500 meters

of at least n/2 of the other devices. (We’ll assume n is an even number.)

What they’d like to know is: Does this property by itself guarantee that

the network will remain connected?

Here’s a concrete way to formulate the question as a claim about

graphs.

Claim: Let G be a graph on n nodes, where n is an even number. If every node

of G has degree at least n/2, then G is connected.

Decide whether you think the claim is true or false, and give a proof of

either the claim or its negation.

8. A number of stories in the press about the structure of the Internet and

the Web have focused on some version of the following question: How

far apart are typical nodes in these networks? If you read these stories

carefully, you find that many of them are confused about the difference

between the diameter of a network and the average distance in a network;

they often jump back and forth between these concepts as though they’re

the same thing.

As in the text, we say that the distance between two nodes u and v

in a graph G = (V , E) is the minimum number of edges in a path joining

them; we’ll denote this by dist(u, v). We say that the diameter of G is

the maximum distance between any pair of nodes; and we’ll denote this

quantity by diam(G).

Let’s define a related quantity, which we’ll call the average pairwise

distance in G (denoted apd(G)). We define apd(G) to be the average, over

all
(n

2

)
sets of two distinct nodes u and v, of the distance between u and v.

That is,

apd(G)=
⎡
⎣ ∑
{u,v}⊆V

dist(u, v)

⎤
⎦ /

(
n
2

)
.

Here’s a simple example to convince yourself that there are graphs G

for which diam(G) �= apd(G). Let G be a graph with three nodes u, v, w, and

with the two edges {u, v} and {v, w}. Then

diam(G)= dist(u, w)= 2,

while

apd(G)= [dist(u, v)+ dist(u, w)+ dist(v, w)]/3= 4/3.

110 Chapter 3 Graphs

Of course, these two numbers aren’t all that far apart in the case of

this three-node graph, and so it’s natural to ask whether there’s always a

close relation between them. Here’s a claim that tries tomake this precise.

Claim: There exists a positive natural number c so that for all connected graphs

G, it is the case that

diam(G)

apd(G)
≤ c.

Decide whether you think the claim is true or false, and give a proof of

either the claim or its negation.

9. There’s a natural intuition that two nodes that are far apart in a com-

munication network—separated by many hops—have a more tenuous

connection than two nodes that are close together. There are a number

of algorithmic results that are based to some extent on different ways of

making this notion precise. Here’s one that involves the susceptibility of

paths to the deletion of nodes.

Suppose that an n-node undirected graph G = (V , E) contains two

nodes s and t such that the distance between s and t is strictly greater

than n/2. Show that there must exist some node v, not equal to either s

or t, such that deleting v from G destroys all s-t paths. (In other words,

the graph obtained from G by deleting v contains no path from s to t.)

Give an algorithm with running time O(m + n) to find such a node v.

10. A number of art museums around the country have been featuring work

by an artist named Mark Lombardi (1951–2000), consisting of a set of

intricately rendered graphs. Building on a great deal of research, these

graphs encode the relationships among people involved inmajor political

scandals over the past several decades: the nodes correspond to partici-

pants, and each edge indicates some type of relationship between a pair

of participants. And so, if you peer closely enough at the drawings, you

can trace out ominous-looking paths from a high-ranking U.S. govern-

ment official, to a former business partner, to a bank in Switzerland, to

a shadowy arms dealer.

Such pictures form striking examples of social networks, which, as

we discussed in Section 3.1, have nodes representing people and organi-

zations, and edges representing relationships of various kinds. And the

short paths that abound in these networks have attracted considerable

attention recently, as people ponder what they mean. In the case of Mark

Lombardi’s graphs, they hint at the short set of steps that can carry you

from the reputable to the disreputable.

Exercises 111

Of course, a single, spurious short path between nodes v and w in

such a network may be more coincidental than anything else; a large

number of short paths between v and w can be much more convincing.

So in addition to the problem of computing a single shortest v-w path

in a graph G, social networks researchers have looked at the problem of

determining the number of shortest v-w paths.

This turns out to be a problem that can be solved efficiently. Suppose

we are given an undirected graph G = (V , E), and we identify two nodes v

and w in G. Give an algorithm that computes the number of shortest v-w

paths in G. (The algorithm should not list all the paths; just the number

suffices.) The running time of your algorithm should be O(m + n) for a

graph with n nodes and m edges.

11. You’re helping some security analysts monitor a collection of networked

computers, tracking the spread of an online virus. There are n computers

in the system, labeled C1, C2, . . . , Cn, and as input you’re given a collection

of trace data indicating the times at which pairs of computers commu-

nicated. Thus the data is a sequence of ordered triples (Ci, Cj , tk); such a

triple indicates that Ci and Cj exchanged bits at time tk. There are m triples

total.

We’ll assume that the triples are presented to you in sorted order of

time. For purposes of simplicity, we’ll assume that each pair of computers

communicates at most once during the interval you’re observing.

The security analysts you’re working with would like to be able to

answer questions of the following form: If the virus was inserted into

computer Ca at time x, could it possibly have infected computer Cb by

time y? The mechanics of infection are simple: if an infected computer

Ci communicates with an uninfected computer Cj at time tk (in other

words, if one of the triples (Ci, Cj , tk) or (Cj , Ci, tk) appears in the trace

data), then computer Cj becomes infected as well, starting at time tk.

Infection can thus spread from onemachine to another across a sequence

of communications, provided that no step in this sequence involves a

move backward in time. Thus, for example, if Ci is infected by time tk,

and the trace data contains triples (Ci, Cj , tk) and (Cj , Cq, tr), where tk ≤ tr ,

then Cq will become infected via Cj. (Note that it is okay for tk to be equal

to tr ; this would mean that Cj had open connections to both Ci and Cq at

the same time, and so a virus could move from Ci to Cq.)

For example, suppose n = 4, the trace data consists of the triples

(C1, C2, 4), (C2, C4, 8), (C3, C4, 8), (C1, C4, 12),

112 Chapter 3 Graphs

and the virus was inserted into computer C1 at time 2. Then C3 would be

infected at time 8 by a sequence of three steps: first C2 becomes infected

at time 4, then C4 gets the virus from C2 at time 8, and then C3 gets the

virus from C4 at time 8. On the other hand, if the trace data were

(C2, C3, 8), (C1, C4, 12), (C1, C2, 14),

and again the virus was inserted into computer C1 at time 2, then C3

would not become infected during the period of observation: although

C2 becomes infected at time 14, we see that C3 only communicates with C2

before C2 was infected. There is no sequence of communications moving

forward in time by which the virus could get from C1 to C3 in this second

example.

Design an algorithm that answers questions of this type: given a

collection of trace data, the algorithm should decide whether a virus

introduced at computer Ca at time x could have infected computer Cb

by time y. The algorithm should run in time O(m + n).

12. You’re helping a group of ethnographers analyze some oral history data

they’ve collected by interviewing members of a village to learn about the

lives of people who’ve lived there over the past two hundred years.

From these interviews, they’ve learned about a set of n people (all

of them now deceased), whom we’ll denote P1, P2, . . . , Pn. They’ve also

collected facts about when these people lived relative to one another.

Each fact has one of the following two forms:

. For some i and j, person Pi died before person Pj was born; or

. for some i and j, the life spans of Pi and Pj overlapped at least partially.

Naturally, they’re not sure that all these facts are correct; memories

are not so good, and a lot of this was passed down by word of mouth. So

what they’d like you to determine is whether the data they’ve collected is

at least internally consistent, in the sense that there could have existed a

set of people for which all the facts they’ve learned simultaneously hold.

Give an efficient algorithm to do this: either it should produce pro-

posed dates of birth and death for each of the n people so that all the facts

hold true, or it should report (correctly) that no such dates can exist—that

is, the facts collected by the ethnographers are not internally consistent.

Notes and Further Reading

The theory of graphs is a large topic, encompassing both algorithmic and non-
algorithmic issues. It is generally considered to have begun with a paper by

Notes and Further Reading 113

Euler (1736), grown through interest in graph representations of maps and
chemical compounds in the nineteenth century, and emerged as a systematic
area of study in the twentieth century, first as a branch of mathematics and later
also through its applications to computer science. The books by Berge (1976),
Bollobas (1998), and Diestel (2000) provide substantial further coverage of
graph theory. Recently, extensive data has become available for studying large
networks that arise in the physical, biological, and social sciences, and there
has been interest in understanding properties of networks that span all these
different domains. The books by Barabasi (2002) and Watts (2002) discuss this
emerging area of research, with presentations aimed at a general audience.

The basic graph traversal techniques covered in this chapter have numer-
ous applications. We will see a number of these in subsequent chapters, and
we refer the reader to the book by Tarjan (1983) for further results.

Notes on the Exercises Exercise 12 is based on a result of Martin Golumbic
and Ron Shamir.

This page intentionally left blank

Chapter 4

Greedy Algorithms

In Wall Street, that iconic movie of the 1980s, Michael Douglas gets up in
front of a room full of stockholders and proclaims, “Greed . . . is good. Greed
is right. Greed works.” In this chapter, we’ll be taking a much more understated
perspective as we investigate the pros and cons of short-sighted greed in the
design of algorithms. Indeed, our aim is to approach a number of different
computational problems with a recurring set of questions: Is greed good? Does
greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy
algorithm. An algorithm is greedy if it builds up a solution in small steps,
choosing a decision at each step myopically to optimize some underlying
criterion. One can often design many different greedy algorithms for the same
problem, each one locally, incrementally optimizing some different measure
on its way to a solution.

When a greedy algorithm succeeds in solving a nontrivial problem opti-
mally, it typically implies something interesting and useful about the structure
of the problem itself; there is a local decision rule that one can use to con-
struct optimal solutions. And as we’ll see later, in Chapter 11, the same is true
of problems in which a greedy algorithm can produce a solution that is guar-
anteed to be close to optimal, even if it does not achieve the precise optimum.
These are the kinds of issues we’ll be dealing with in this chapter. It’s easy to
invent greedy algorithms for almost any problem; finding cases in which they
work well, and proving that they work well, is the interesting challenge.

The first two sections of this chapter will develop two basic methods for
proving that a greedy algorithm produces an optimal solution to a problem.
One can view the first approach as establishing that the greedy algorithm stays
ahead. By this we mean that if one measures the greedy algorithm’s progress

116 Chapter 4 Greedy Algorithms

in a step-by-step fashion, one sees that it does better than any other algorithm
at each step; it then follows that it produces an optimal solution. The second
approach is known as an exchange argument, and it is more general: one
considers any possible solution to the problem and gradually transforms it
into the solution found by the greedy algorithm without hurting its quality.
Again, it will follow that the greedy algorithm must have found a solution that
is at least as good as any other solution.

Following our introduction of these two styles of analysis, we focus on
several of the most well-known applications of greedy algorithms: shortest
paths in a graph, the Minimum Spanning Tree Problem, and the construc-
tion of Huffman codes for performing data compression. They each provide
nice examples of our analysis techniques. We also explore an interesting re-
lationship between minimum spanning trees and the long-studied problem of
clustering. Finally, we consider a more complex application, the Minimum-
Cost Arborescence Problem, which further extends our notion of what a greedy
algorithm is.

4.1 Interval Scheduling: The Greedy Algorithm
Stays Ahead

Let’s recall the Interval Scheduling Problem, which was the first of the five
representative problems we considered in Chapter 1. We have a set of requests
{1, 2, . . . , n}; the ith request corresponds to an interval of time starting at s(i)
and finishing at f (i). (Note that we are slightly changing the notation from
Section 1.2, where we used si rather than s(i) and fi rather than f (i). This
change of notation will make things easier to talk about in the proofs.) We’ll
say that a subset of the requests is compatible if no two of them overlap in time,
and our goal is to accept as large a compatible subset as possible. Compatible
sets of maximum size will be called optimal.

Designing a Greedy Algorithm
Using the Interval Scheduling Problem, we can make our discussion of greedy
algorithms much more concrete. The basic idea in a greedy algorithm for
interval scheduling is to use a simple rule to select a first request i1. Once
a request i1 is accepted, we reject all requests that are not compatible with i1.
We then select the next request i2 to be accepted, and again reject all requests
that are not compatible with i2. We continue in this fashion until we run out
of requests. The challenge in designing a good greedy algorithm is in deciding
which simple rule to use for the selection—and there are many natural rules
for this problem that do not give good solutions.

Let’s try to think of some of the most natural rules and see how they work.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 117

. The most obvious rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request
i is for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution.
In a really bad case—say, when the finish time f (i) is the maximum
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. Such a situation
is depicted in Figure 4.1(a).

. This might suggest that we should start out by accepting the request that
requires the smallest interval of time—namely, the request for which
f (i)− s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in
the middle would prevent us from accepting the other two, which form
an optimal solution.

(a)

(b)

(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

118 Chapter 4 Greedy Algorithms

. In the previous greedy rule, our problem was that the second request
competes with both the first and the third—that is, accepting this request
made us reject two other requests. We could design a greedy algorithm
that is based on this idea: for each request, we count the number of
other requests that are not compatible, and accept the request that has
the fewest number of noncompatible requests. (In other words, we select
the interval with the fewest “conflicts.”) This greedy choice would lead
to the optimum solution in the previous example. In fact, it is quite a
bit harder to design a bad example for this rule; but it can be done, and
we’ve drawn an example in Figure 4.1(c). The unique optimal solution
in this example is to accept the four requests in the top row. The greedy
method suggested here accepts the middle request in the second row and
thereby ensures a solution of size no greater than three.

A greedy rule that does lead to the optimal solution is based on a fourth
idea: we should accept first the request that finishes first, that is, the request i
for which f (i) is as small as possible. This is also quite a natural idea: we ensure
that our resource becomes free as soon as possible while still satisfying one
request. In this way we can maximize the time left to satisfy other requests.

Let us state the algorithm a bit more formally. We will use R to denote
the set of requests that we have neither accepted nor rejected yet, and use A
to denote the set of accepted requests. For an example of how the algorithm
runs, see Figure 4.2.

Initially let R be the set of all requests, and let A be empty

While R is not yet empty

Choose a request i ∈ R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i

EndWhile

Return the set A as the set of accepted requests

Analyzing the Algorithm
While this greedy method is quite natural, it is certainly not obvious that it
returns an optimal set of intervals. Indeed, it would only be sensible to reserve
judgment on its optimality: the ideas that led to the previous nonoptimal
versions of the greedy method also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A
returned by the algorithm are all compatible.

(4.1) A is a compatible set of requests.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 119

Intervals numbered in order

86

9531

742

8

9531

74

8

9531

7

8

9531

8

531

Selecting interval 1

Selecting interval 3

Selecting interval 5

Selecting interval 8

Figure 4.2 Sample run of the Interval Scheduling Algorithm. At each step the selected
intervals are darker lines, and the intervals deleted at the corresponding step are
indicated with dashed lines.

What we need to show is that this solution is optimal. So, for purposes of
comparison, let O be an optimal set of intervals. Ideally one might want to show
that A= O, but this is too much to ask: there may be many optimal solutions,
and at best A is equal to a single one of them. So instead we will simply show
that |A| = |O|, that is, that A contains the same number of intervals as O and
hence is also an optimal solution.

The idea underlying the proof, as we suggested initially, will be to find
a sense in which our greedy algorithm “stays ahead” of this solution O. We
will compare the partial solutions that the greedy algorithm constructs to initial
segments of the solution O, and show that the greedy algorithm is doing better
in a step-by-step fashion.

We introduce some notation to help with this proof. Let i1, . . . , ik be the set
of requests in A in the order they were added to A. Note that |A| = k. Similarly,
let the set of requests in O be denoted by j1, . . . , jm. Our goal is to prove that
k =m. Assume that the requests in O are also ordered in the natural left-to-
right order of the corresponding intervals, that is, in the order of the start and
finish points. Note that the requests in O are compatible, which implies that
the start points have the same order as the finish points.

120 Chapter 4 Greedy Algorithms

ir–1 ir ?

jr–1 jr

Can the greedy algorithm’s
r th interval really finish later?

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

Our intuition for the greedy method came from wanting our resource to
become free again as soon as possible after satisfying the first request. And
indeed, our greedy rule guarantees that f (i1)≤ f (j1). This is the sense in which
we want to show that our greedy rule “stays ahead”—that each of its intervals
finishes at least as soon as the corresponding interval in the set O. Thus we now
prove that for each r ≥ 1, the r th accepted request in the algorithm’s schedule
finishes no later than the r th request in the optimal schedule.

(4.2) For all indices r ≤ k we have f (ir)≤ f (jr).

Proof. We will prove this statement by induction. For r = 1 the statement is
clearly true: the algorithm starts by selecting the request i1 with minimum
finish time.

Now let r > 1. We will assume as our induction hypothesis that the
statement is true for r − 1, and we will try to prove it for r. As shown in
Figure 4.3, the induction hypothesis lets us assume that f (ir−1) ≤ f (jr−1). In
order for the algorithm’s r th interval not to finish earlier as well, it would
need to “fall behind” as shown. But there’s a simple reason why this could
not happen: rather than choose a later-finishing interval, the greedy algorithm
always has the option (at worst) of choosing jr and thus fulfilling the induction
step.

We can make this argument precise as follows. We know (since O consists
of compatible intervals) that f (jr−1)≤ s(jr). Combining this with the induction
hypothesis f (ir−1)≤ f (jr−1), we get f (ir−1)≤ s(jr). Thus the interval jr is in the
set R of available intervals at the time when the greedy algorithm selects ir.
The greedy algorithm selects the available interval with smallest finish time;
since interval jr is one of these available intervals, we have f (ir)≤ f (jr). This
completes the induction step.

Thus we have formalized the sense in which the greedy algorithm is
remaining ahead of O: for each r, the r th interval it selects finishes at least
as soon as the r th interval in O. We now see why this implies the optimality
of the greedy algorithm’s set A.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 121

(4.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, then
an optimal set O must have more requests, that is, we must have m > k.
Applying (4.2) with r = k, we get that f (ik) ≤ f (jk). Since m > k, there is a
request jk+1 in O. This request starts after request jk ends, and hence after
ik ends. So after deleting all requests that are not compatible with requests
i1, . . . , ik, the set of possible requests R still contains jk+1. But the greedy
algorithm stops with request ik, and it is only supposed to stop when R is
empty—a contradiction.

Implementation and Running Time We can make our algorithm run in time
O(n log n) as follows. We begin by sorting the n requests in order of finishing
time and labeling them in this order; that is, we will assume that f (i) ≤ f (j)
when i < j. This takes time O(n log n). In an additional O(n) time, we construct
an array S[1 . . . n] with the property that S[i] contains the value s(i).

We now select requests by processing the intervals in order of increasing
f (i). We always select the first interval; we then iterate through the intervals in
order until reaching the first interval j for which s(j)≥ f (1); we then select this
one as well. More generally, if the most recent interval we’ve selected ends
at time f , we continue iterating through subsequent intervals until we reach
the first j for which s(j)≥ f . In this way, we implement the greedy algorithm
analyzed above in one pass through the intervals, spending constant time per
interval. Thus this part of the algorithm takes time O(n).

Extensions
The Interval Scheduling Problem we considered here is a quite simple schedul-
ing problem. There are many further complications that could arise in practical
settings. The following point out issues that we will see later in the book in
various forms.

. In defining the problem, we assumed that all requests were known to
the scheduling algorithm when it was choosing the compatible subset.
It would also be natural, of course, to think about the version of the
problem in which the scheduler needs to make decisions about accepting
or rejecting certain requests before knowing about the full set of requests.
Customers (requestors) may well be impatient, and they may give up
and leave if the scheduler waits too long to gather information about all
other requests. An active area of research is concerned with such on-
line algorithms, which must make decisions as time proceeds, without
knowledge of future input.

122 Chapter 4 Greedy Algorithms

. Our goal was to maximize the number of satisfied requests. But we could
picture a situation in which each request has a different value to us. For
example, each request i could also have a value vi (the amount gained
by satisfying request i), and the goal would be to maximize our income:
the sum of the values of all satisfied requests. This leads to the Weighted
Interval Scheduling Problem, the second of the representative problems
we described in Chapter 1.

There are many other variants and combinations that can arise. We now
discuss one of these further variants in more detail, since it forms another case
in which a greedy algorithm can be used to produce an optimal solution.

A Related Problem: Scheduling All Intervals
The Problem In the Interval Scheduling Problem, there is a single resource
and many requests in the form of time intervals, so we must choose which
requests to accept and which to reject. A related problem arises if we have
many identical resources available and we wish to schedule all the requests
using as few resources as possible. Because the goal here is to partition
all intervals across multiple resources, we will refer to this as the Interval
Partitioning Problem.1

For example, suppose that each request corresponds to a lecture that needs
to be scheduled in a classroom for a particular interval of time. We wish to
satisfy all these requests, using as few classrooms as possible. The classrooms
at our disposal are thus the multiple resources, and the basic constraint is that
any two lectures that overlap in time must be scheduled in different classrooms.
Equivalently, the interval requests could be jobs that need to be processed for
a specific period of time, and the resources are machines capable of handling
these jobs. Much later in the book, in Chapter 10, we will see a different
application of this problem in which the intervals are routing requests that
need to be allocated bandwidth on a fiber-optic cable.

As an illustration of the problem, consider the sample instance in Fig-
ure 4.4(a). The requests in this example can all be scheduled using three
resources; this is indicated in Figure 4.4(b), where the requests are rearranged
into three rows, each containing a set of nonoverlapping intervals. In general,
one can imagine a solution using k resources as a rearrangement of the requests
into k rows of nonoverlapping intervals: the first row contains all the intervals

1 The problem is also referred to as the Interval Coloring Problem; the terminology arises from

thinking of the different resources as having distinct colors—all the intervals assigned to a particular

resource are given the corresponding color.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 123

e

c

b

b

h

h

a

a

c j

e

f

f

d

d

g

g

i

i

j

(a)

(b)

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

assigned to the first resource, the second row contains all those assigned to
the second resource, and so forth.

Now, is there any hope of using just two resources in this sample instance?
Clearly the answer is no. We need at least three resources since, for example,
intervals a, b, and c all pass over a common point on the time-line, and hence
they all need to be scheduled on different resources. In fact, one can make
this last argument in general for any instance of Interval Partitioning. Suppose
we define the depth of a set of intervals to be the maximum number that pass
over any single point on the time-line. Then we claim

(4.4) In any instance of Interval Partitioning, the number of resources needed
is at least the depth of the set of intervals.

Proof. Suppose a set of intervals has depth d, and let I1, . . . , Id all pass over a
common point on the time-line. Then each of these intervals must be scheduled
on a different resource, so the whole instance needs at least d resources.

We now consider two questions, which turn out to be closely related.
First, can we design an efficient algorithm that schedules all intervals using
the minimum possible number of resources? Second, is there always a schedule
using a number of resources that is equal to the depth? In effect, a positive
answer to this second question would say that the only obstacles to partitioning
intervals are purely local—a set of intervals all piled over the same point. It’s
not immediately clear that there couldn’t exist other, “long-range” obstacles
that push the number of required resources even higher.

124 Chapter 4 Greedy Algorithms

We now design a simple greedy algorithm that schedules all intervals
using a number of resources equal to the depth. This immediately implies the
optimality of the algorithm: in view of (4.4), no solution could use a number
of resources that is smaller than the depth. The analysis of our algorithm
will therefore illustrate another general approach to proving optimality: one
finds a simple, “structural” bound asserting that every possible solution must
have at least a certain value, and then one shows that the algorithm under
consideration always achieves this bound.

Designing the Algorithm Let d be the depth of the set of intervals; we show
how to assign a label to each interval, where the labels come from the set of
numbers {1, 2, . . . , d}, and the assignment has the property that overlapping
intervals are labeled with different numbers. This gives the desired solution,
since we can interpret each number as the name of a resource, and the label
of each interval as the name of the resource to which it is assigned.

The algorithm we use for this is a simple one-pass greedy strategy that
orders intervals by their starting times. We go through the intervals in this
order, and try to assign to each interval we encounter a label that hasn’t already
been assigned to any previous interval that overlaps it. Specifically, we have
the following description.

Sort the intervals by their start times, breaking ties arbitrarily

Let I1, I2, . . . , In denote the intervals in this order

For j = 1, 2, 3, . . . , n

For each interval Ii that precedes Ij in sorted order and overlaps it

Exclude the label of Ii from consideration for Ij
Endfor

If there is any label from {1, 2, . . . , d} that has not been excluded then
Assign a nonexcluded label to Ij

Else

Leave Ij unlabeled

Endif

Endfor

Analyzing the Algorithm We claim the following.

(4.5) If we use the greedy algorithm above, every interval will be assigned a
label, and no two overlapping intervals will receive the same label.

Proof. First let’s argue that no interval ends up unlabeled. Consider one of
the intervals Ij, and suppose there are t intervals earlier in the sorted order
that overlap it. These t intervals, together with Ij, form a set of t + 1 intervals
that all pass over a common point on the time-line (namely, the start time of

4.2 Scheduling to Minimize Lateness: An Exchange Argument 125

Ij), and so t + 1≤ d. Thus t ≤ d − 1. It follows that at least one of the d labels
is not excluded by this set of t intervals, and so there is a label that can be
assigned to Ij.

Next we claim that no two overlapping intervals are assigned the same
label. Indeed, consider any two intervals I and I ′ that overlap, and suppose I
precedes I ′ in the sorted order. Then when I ′ is considered by the algorithm,
I is in the set of intervals whose labels are excluded from consideration;
consequently, the algorithm will not assign to I ′ the label that it used for I.

The algorithm and its analysis are very simple. Essentially, if you have
d labels at your disposal, then as you sweep through the intervals from left
to right, assigning an available label to each interval you encounter, you can
never reach a point where all the labels are currently in use.

Since our algorithm is using d labels, we can use (4.4) to conclude that it
is, in fact, always using the minimum possible number of labels. We sum this
up as follows.

(4.6) The greedy algorithm above schedules every interval on a resource,
using a number of resources equal to the depth of the set of intervals. This
is the optimal number of resources needed.

4.2 Scheduling to Minimize Lateness: An Exchange
Argument

We now discuss a scheduling problem related to the one with which we began
the chapter. Despite the similarities in the problem formulation and in the
greedy algorithm to solve it, the proof that this algorithm is optimal will require
a more sophisticated kind of analysis.

The Problem
Consider again a situation in which we have a single resource and a set of n
requests to use the resource for an interval of time. Assume that the resource is
available starting at time s. In contrast to the previous problem, however, each
request is now more flexible. Instead of a start time and finish time, the request
i has a deadline di, and it requires a contiguous time interval of length ti, but
it is willing to be scheduled at any time before the deadline. Each accepted
request must be assigned an interval of time of length ti, and different requests
must be assigned nonoverlapping intervals.

There are many objective functions we might seek to optimize when faced
with this situation, and some are computationally much more difficult than

126 Chapter 4 Greedy Algorithms

Job 1

Deadline 2

Job 2

Deadline 4

Job 3

Length 1

Length 2

Length 3

Solution:

Deadline 6

Job 1:
done at
time 1

Job 2:
done at

time 1+2=3

Job 3:
done at

time 1+2+3=6

Figure 4.5 A sample instance of scheduling to minimize lateness.

others. Here we consider a very natural goal that can be optimized by a greedy
algorithm. Suppose that we plan to satisfy each request, but we are allowed
to let certain requests run late. Thus, beginning at our overall start time s, we
will assign each request i an interval of time of length ti; let us denote this
interval by [s(i), f (i)], with f (i)= s(i)+ ti. Unlike the previous problem, then,
the algorithm must actually determine a start time (and hence a finish time)
for each interval.

We say that a request i is late if it misses the deadline, that is, if f (i) > di.
The lateness of such a request i is defined to be li = f (i)− di. We will say that
li = 0 if request i is not late. The goal in our new optimization problem will be
to schedule all requests, using nonoverlapping intervals, so as to minimize the
maximum lateness, L=maxi li. This problem arises naturally when scheduling
jobs that need to use a single machine, and so we will refer to our requests as
jobs.

Figure 4.5 shows a sample instance of this problem, consisting of three
jobs: the first has length t1= 1 and deadline d1= 2; the second has t2 = 2
and d2= 4; and the third has t3= 3 and d3= 6. It is not hard to check that
scheduling the jobs in the order 1, 2, 3 incurs a maximum lateness of 0.

Designing the Algorithm
What would a greedy algorithm for this problem look like? There are several
natural greedy approaches in which we look at the data (ti, di) about the jobs
and use this to order them according to some simple rule.

. One approach would be to schedule the jobs in order of increasing length
ti, so as to get the short jobs out of the way quickly. This immediately

4.2 Scheduling to Minimize Lateness: An Exchange Argument 127

looks too simplistic, since it completely ignores the deadlines of the jobs.
And indeed, consider a two-job instance where the first job has t1= 1and
d1= 100, while the second job has t2= 10 and d2= 10. Then the second
job has to be started right away if we want to achieve lateness L= 0, and
scheduling the second job first is indeed the optimal solution.

. The previous example suggests that we should be concerned about jobs
whose available slack time di − ti is very small—they’re the ones that
need to be started with minimal delay. So a more natural greedy algorithm
would be to sort jobs in order of increasing slack di − ti.

Unfortunately, this greedy rule fails as well. Consider a two-job
instance where the first job has t1= 1and d1= 2, while the second job has
t2= 10 and d2= 10. Sorting by increasing slack would place the second
job first in the schedule, and the first job would incur a lateness of 9. (It
finishes at time 11, nine units beyond its deadline.) On the other hand,
if we schedule the first job first, then it finishes on time and the second
job incurs a lateness of only 1.

There is, however, an equally basic greedy algorithm that always produces
an optimal solution. We simply sort the jobs in increasing order of their
deadlines di, and schedule them in this order. (This rule is often called Earliest
Deadline First.) There is an intuitive basis to this rule: we should make sure
that jobs with earlier deadlines get completed earlier. At the same time, it’s a
little hard to believe that this algorithm always produces optimal solutions—
specifically because it never looks at the lengths of the jobs. Earlier we were
skeptical of the approach that sorted by length on the grounds that it threw
away half the input data (i.e., the deadlines); but now we’re considering a
solution that throws away the other half of the data. Nevertheless, Earliest
Deadline First does produce optimal solutions, and we will now prove this.

First we specify some notation that will be useful in talking about the
algorithm. By renaming the jobs if necessary, we can assume that the jobs are
labeled in the order of their deadlines, that is, we have

d1≤ . . .≤ dn.

We will simply schedule all jobs in this order. Again, let s be the start time for
all jobs. Job 1 will start at time s= s(1) and end at time f (1)= s(1)+ t1; Job 2
will start at time s(2)= f (1) and end at time f (2)= s(2)+ t2; and so forth. We
will use f to denote the finishing time of the last scheduled job. We write this
algorithm here.

Order the jobs in order of their deadlines

Assume for simplicity of notation that d1≤ . . .≤ dn

Initially, f = s

128 Chapter 4 Greedy Algorithms

Consider the jobs i = 1, . . . , n in this order

Assign job i to the time interval from s(i)= f to f (i)= f + ti
Let f = f + ti

End

Return the set of scheduled intervals [s(i), f (i)] for i = 1, . . . , n

Analyzing the Algorithm
To reason about the optimality of the algorithm, we first observe that the
schedule it produces has no “gaps”—times when the machine is not working
yet there are jobs left. The time that passes during a gap will be called idle
time: there is work to be done, yet for some reason the machine is sitting idle.
Not only does the schedule A produced by our algorithm have no idle time;
it is also very easy to see that there is an optimal schedule with this property.
We do not write down a proof for this.

(4.7) There is an optimal schedule with no idle time.

Now, how can we prove that our schedule A is optimal, that is, its
maximum lateness L is as small as possible? As in previous analyses, we will
start by considering an optimal schedule O. Our plan here is to gradually
modify O, preserving its optimality at each step, but eventually transforming
it into a schedule that is identical to the schedule A found by the greedy
algorithm. We refer to this type of analysis as an exchange argument, and we
will see that it is a powerful way to think about greedy algorithms in general.

We first try characterizing schedules in the following way. We say that a
schedule A′ has an inversion if a job i with deadline di is scheduled before
another job j with earlier deadline dj < di. Notice that, by definition, the
schedule A produced by our algorithm has no inversions. If there are jobs
with identical deadlines then there can be many different schedules with no
inversions. However, we can show that all these schedules have the same
maximum lateness L.

(4.8) All schedules with no inversions and no idle time have the same
maximum lateness.

Proof. If two different schedules have neither inversions nor idle time, then
they might not produce exactly the same order of jobs, but they can only differ
in the order in which jobs with identical deadlines are scheduled. Consider
such a deadline d. In both schedules, the jobs with deadline d are all scheduled
consecutively (after all jobs with earlier deadlines and before all jobs with
later deadlines). Among the jobs with deadline d, the last one has the greatest
lateness, and this lateness does not depend on the order of the jobs.

4.2 Scheduling to Minimize Lateness: An Exchange Argument 129

The main step in showing the optimality of our algorithm is to establish
that there is an optimal schedule that has no inversions and no idle time. To do
this, we will start with any optimal schedule having no idle time; we will then
convert it into a schedule with no inversions without increasing its maximum
lateness. Thus the resulting scheduling after this conversion will be optimal
as well.

(4.9) There is an optimal schedule that has no inversions and no idle time.

Proof. By (4.7), there is an optimal schedule O with no idle time. The proof
will consist of a sequence of statements. The first of these is simple to establish.

(a) If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled immediately after i and has dj < di.

Indeed, consider an inversion in which a job a is scheduled sometime before
a job b, and da > db. If we advance in the scheduled order of jobs from a to b
one at a time, there has to come a point at which the deadline we see decreases
for the first time. This corresponds to a pair of consecutive jobs that form an
inversion.

Now suppose O has at least one inversion, and by (a), let i and j be a pair of
inverted requests that are consecutive in the scheduled order. We will decrease
the number of inversions in O by swapping the requests i and j in the schedule
O. The pair (i, j) formed an inversion in O, this inversion is eliminated by the
swap, and no new inversions are created. Thus we have

(b) After swapping i and j we get a schedule with one less inversion.

The hardest part of this proof is to argue that the inverted schedule is also
optimal.

(c) The new swapped schedule has a maximum lateness no larger than that
of O.

It is clear that if we can prove (c), then we are done. The initial schedule O

can have at most
(n

2

)
inversions (if all pairs are inverted), and hence after at

most
(n

2

)
swaps we get an optimal schedule with no inversions.

So we now conclude by proving (c), showing that by swapping a pair of
consecutive, inverted jobs, we do not increase the maximum lateness L of the
schedule.

Proof of (c). We invent some notation to describe the schedule O: assume
that each request r is scheduled for the time interval [s(r), f (r)] and has
lateness l′r. Let L′ =maxr l′r denote the maximum lateness of this schedule.

130 Chapter 4 Greedy Algorithms

Before swapping:

dj

Job i Job j

di

(a)

Only the finishing times of i and j
are affected by the swap.

After swapping:

dj

Job j Job i

di

(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

Let O denote the swapped schedule; we will use s(r), f (r), lr, and L to denote
the corresponding quantities in the swapped schedule.

Now recall our two adjacent, inverted jobs i and j. The situation is roughly
as pictured in Figure 4.6. The finishing time of j before the swap is exactly equal
to the finishing time of i after the swap. Thus all jobs other than jobs i and j
finish at the same time in the two schedules. Moreover, job j will get finished
earlier in the new schedule, and hence the swap does not increase the lateness
of job j.

Thus the only thing to worry about is job i: its lateness may have been
increased, and what if this actually raises the maximum lateness of the
whole schedule? After the swap, job i finishes at time f (j), when job j was
finished in the schedule O. If job i is late in this new schedule, its lateness
is li = f (i)− di = f (j)− di. But the crucial point is that i cannot be more late
in the schedule O than j was in the schedule O. Specifically, our assumption
di > dj implies that

li = f (j)− di < f (j)− dj = l′j.

Since the lateness of the schedule O was L′ ≥ l′j > li, this shows that the swap
does not increase the maximum lateness of the schedule.

The optimality of our greedy algorithm now follows immediately.

4.3 Optimal Caching: A More Complex Exchange Argument 131

(4.10) The schedule A produced by the greedy algorithm has optimal maxi-
mum lateness L.

Proof. Statement (4.9) proves that an optimal schedule with no inversions
exists. Now by (4.8) all schedules with no inversions have the same maximum
lateness, and so the schedule obtained by the greedy algorithm is optimal.

Extensions
There are many possible generalizations of this scheduling problem. For ex-
ample, we assumed that all jobs were available to start at the common start
time s. A natural, but harder, version of this problem would contain requests i
that, in addition to the deadline di and the requested time ti, would also have
an earliest possible starting time ri. This earliest possible starting time is usu-
ally referred to as the release time. Problems with release times arise naturally
in scheduling problems where requests can take the form: Can I reserve the
room for a two-hour lecture, sometime between 1 P.M. and 5 P.M.? Our proof
that the greedy algorithm finds an optimal solution relied crucially on the fact
that all jobs were available at the common start time s. (Do you see where?)
Unfortunately, as we will see later in the book, in Chapter 8, this more general
version of the problem is much more difficult to solve optimally.

4.3 Optimal Caching: A More Complex Exchange
Argument

We now consider a problem that involves processing a sequence of requests
of a different form, and we develop an algorithm whose analysis requires
a more subtle use of the exchange argument. The problem is that of cache
maintenance.

The Problem
To motivate caching, consider the following situation. You’re working on a
long research paper, and your draconian library will only allow you to have
eight books checked out at once. You know that you’ll probably need more
than this over the course of working on the paper, but at any point in time,
you’d like to have ready access to the eight books that are most relevant at
that time. How should you decide which books to check out, and when should
you return some in exchange for others, to minimize the number of times you
have to exchange a book at the library?

This is precisely the problem that arises when dealing with a memory
hierarchy: There is a small amount of data that can be accessed very quickly,

132 Chapter 4 Greedy Algorithms

and a large amount of data that requires more time to access; and you must
decide which pieces of data to have close at hand.

Memory hierarchies have been a ubiquitous feature of computers since
very early in their history. To begin with, data in the main memory of a
processor can be accessed much more quickly than the data on its hard disk;
but the disk has much more storage capacity. Thus, it is important to keep
the most regularly used pieces of data in main memory, and go to disk as
infrequently as possible. The same phenomenon, qualitatively, occurs with
on-chip caches in modern processors. These can be accessed in a few cycles,
and so data can be retrieved from cache much more quickly than it can be
retrieved from main memory. This is another level of hierarchy: small caches
have faster access time than main memory, which in turn is smaller and faster
to access than disk. And one can see extensions of this hierarchy in many
other settings. When one uses a Web browser, the disk often acts as a cache
for frequently visited Web pages, since going to disk is still much faster than
downloading something over the Internet.

Caching is a general term for the process of storing a small amount of data
in a fast memory so as to reduce the amount of time spent interacting with a
slow memory. In the previous examples, the on-chip cache reduces the need
to fetch data from main memory, the main memory acts as a cache for the
disk, and the disk acts as a cache for the Internet. (Much as your desk acts as
a cache for the campus library, and the assorted facts you’re able to remember
without looking them up constitute a cache for the books on your desk.)

For caching to be as effective as possible, it should generally be the case
that when you go to access a piece of data, it is already in the cache. To achieve
this, a cache maintenance algorithm determines what to keep in the cache and
what to evict from the cache when new data needs to be brought in.

Of course, as the caching problem arises in different settings, it involves
various different considerations based on the underlying technology. For our
purposes here, though, we take an abstract view of the problem that underlies
most of these settings. We consider a set U of n pieces of data stored in main
memory. We also have a faster memory, the cache, that can hold k < n pieces
of data at any one time. We will assume that the cache initially holds some
set of k items. A sequence of data items D = d1, d2, . . . , dm drawn from U is
presented to us—this is the sequence of memory references we must process—
and in processing them we must decide at all times which k items to keep in the
cache. When item di is presented, we can access it very quickly if it is already
in the cache; otherwise, we are required to bring it from main memory into
the cache and, if the cache is full, to evict some other piece of data that is
currently in the cache to make room for di. This is called a cache miss, and we
want to have as few of these as possible.

4.3 Optimal Caching: A More Complex Exchange Argument 133

Thus, on a particular sequence of memory references, a cache main-
tenance algorithm determines an eviction schedule—specifying which items
should be evicted from the cache at which points in the sequence—and this
determines the contents of the cache and the number of misses over time. Let’s
consider an example of this process.

. Suppose we have three items {a, b, c}, the cache size is k = 2, and we
are presented with the sequence

a, b, c, b, c, a, b.

Suppose that the cache initially contains the items a and b. Then on the
third item in the sequence, we could evict a so as to bring in c; and
on the sixth item we could evict c so as to bring in a; we thereby incur
two cache misses over the whole sequence. After thinking about it, one
concludes that any eviction schedule for this sequence must include at
least two cache misses.

Under real operating conditions, cache maintenance algorithms must
process memory references d1, d2, . . . without knowledge of what’s coming
in the future; but for purposes of evaluating the quality of these algorithms,
systems researchers very early on sought to understand the nature of the
optimal solution to the caching problem. Given a full sequence S of memory
references, what is the eviction schedule that incurs as few cache misses as
possible?

Designing and Analyzing the Algorithm
In the 1960s, Les Belady showed that the following simple rule will always
incur the minimum number of misses:

When di needs to be brought into the cache,

evict the item that is needed the farthest into the future

We will call this the Farthest-in-Future Algorithm. When it is time to evict
something, we look at the next time that each item in the cache will be
referenced, and choose the one for which this is as late as possible.

This is a very natural algorithm. At the same time, the fact that it is optimal
on all sequences is somewhat more subtle than it first appears. Why evict the
item that is needed farthest in the future, as opposed, for example, to the one
that will be used least frequently in the future? Moreover, consider a sequence
like

a, b, c, d, a, d, e, a, d, b, c

134 Chapter 4 Greedy Algorithms

with k = 3 and items {a, b, c} initially in the cache. The Farthest-in-Future rule
will produce a schedule S that evicts c on the fourth step and b on the seventh
step. But there are other eviction schedules that are just as good. Consider
the schedule S′ that evicts b on the fourth step and c on the seventh step,
incurring the same number of misses. So in fact it’s easy to find cases where
schedules produced by rules other than Farthest-in-Future are also optimal;
and given this flexibility, why might a deviation from Farthest-in-Future early
on not yield an actual savings farther along in the sequence? For example, on
the seventh step in our example, the schedule S′ is actually evicting an item
(c) that is needed farther into the future than the item evicted at this point by
Farthest-in-Future, since Farthest-in-Future gave up c earlier on.

These are some of the kinds of things one should worry about before
concluding that Farthest-in-Future really is optimal. In thinking about the
example above, we quickly appreciate that it doesn’t really matter whether
b or c is evicted at the fourth step, since the other one should be evicted at
the seventh step; so given a schedule where b is evicted first, we can swap
the choices of b and c without changing the cost. This reasoning—swapping
one decision for another—forms the first outline of an exchange argument that
proves the optimality of Farthest-in-Future.

Before delving into this analysis, let’s clear up one important issue. All
the cache maintenance algorithms we’ve been considering so far produce
schedules that only bring an item d into the cache in a step i if there is a
request to d in step i, and d is not already in the cache. Let us call such a
schedule reduced—it does the minimal amount of work necessary in a given
step. But in general one could imagine an algorithm that produced schedules
that are not reduced, by bringing in items in steps when they are not requested.
We now show that for every nonreduced schedule, there is an equally good
reduced schedule.

Let S be a schedule that may not be reduced. We define a new schedule
S—the reduction of S—as follows. In any step i where S brings in an item d
that has not been requested, our construction of S “pretends” to do this but
actually leaves d in main memory. It only really brings d into the cache in
the next step j after this in which d is requested. In this way, the cache miss
incurred by S in step j can be charged to the earlier cache operation performed
by S in step i, when it brought in d. Hence we have the following fact.

(4.11) S is a reduced schedule that brings in at most as many items as the
schedule S.

Note that for any reduced schedule, the number of items that are brought
in is exactly the number of misses.

4.3 Optimal Caching: A More Complex Exchange Argument 135

Proving the Optimalthy of Farthest-in-Future We now proceed with the
exchange argument showing that Farthest-in-Future is optimal. Consider an
arbitrary sequence D of memory references; let SFF denote the schedule
produced by Farthest-in-Future, and let S∗ denote a schedule that incurs the
minimum possible number of misses. We will now gradually “transform” the
schedule S∗ into the schedule SFF , one eviction decision at a time, without
increasing the number of misses.

Here is the basic fact we use to perform one step in the transformation.

(4.12) Let S be a reduced schedule that makes the same eviction decisions
as SFF through the first j items in the sequence, for a number j. Then there is a
reduced schedule S′ that makes the same eviction decisions as SFF through the
first j + 1 items, and incurs no more misses than S does.

Proof. Consider the (j + 1)st request, to item d = dj+1. Since S and SFF have
agreed up to this point, they have the same cache contents. If d is in the cache
for both, then no eviction decision is necessary (both schedules are reduced),
and so S in fact agrees with SFF through step j + 1, and we can set S′ = S.
Similarly, if d needs to be brought into the cache, but S and SFF both evict the
same item to make room for d, then we can again set S′ = S.

So the interesting case arises when d needs to be brought into the cache,
and to do this S evicts item f while SFF evicts item e �= f . Here S and SFF do
not already agree through step j + 1 since S has e in cache while SFF has f in
cache. Hence we must actually do something nontrivial to construct S′.

As a first step, we should have S′ evict e rather than f . Now we need to
further ensure that S′ incurs no more misses than S. An easy way to do this
would be to have S′ agree with S for the remainder of the sequence; but this
is no longer possible, since S and S′ have slightly different caches from this
point onward. So instead we’ll have S′ try to get its cache back to the same
state as S as quickly as possible, while not incurring unnecessary misses. Once
the caches are the same, we can finish the construction of S′ by just having it
behave like S.

Specifically, from request j + 2 onward, S′ behaves exactly like S until one
of the following things happens for the first time.

(i) There is a request to an item g �= e, f that is not in the cache of S, and S
evicts e to make room for it. Since S′ and S only differ on e and f , it must
be that g is not in the cache of S′ either; so we can have S′ evict f , and
now the caches of S and S′ are the same. We can then have S′ behave
exactly like S for the rest of the sequence.

(ii) There is a request to f , and S evicts an item e′. If e′ = e, then we’re all
set: S′ can simply access f from the cache, and after this step the caches

136 Chapter 4 Greedy Algorithms

of S and S′ will be the same. If e′ �= e, then we have S′ evict e′ as well, and
bring in e from main memory; this too results in S and S′ having the same
caches. However, we must be careful here, since S′ is no longer a reduced
schedule: it brought in e when it wasn’t immediately needed. So to finish
this part of the construction, we further transform S′ to its reduction S′
using (4.11); this doesn’t increase the number of items brought in by S′,
and it still agrees with SFF through step j + 1.

Hence, in both these cases, we have a new reduced schedule S′ that agrees
with SFF through the first j + 1 items and incurs no more misses than S does.
And crucially—here is where we use the defining property of the Farthest-in-
Future Algorithm—one of these two cases will arise before there is a reference
to e. This is because in step j + 1, Farthest-in-Future evicted the item (e) that
would be needed farthest in the future; so before there could be a request to
e, there would have to be a request to f , and then case (ii) above would apply.

Using this result, it is easy to complete the proof of optimality. We begin
with an optimal schedule S∗, and use (4.12) to construct a schedule S1 that
agrees with SFF through the first step. We continue applying (4.12) inductively
for j = 1, 2, 3, . . . , m, producing schedules Sj that agree with SFF through the
first j steps. Each schedule incurs no more misses than the previous one; and
by definition Sm = SFF , since it agrees with it through the whole sequence.
Thus we have

(4.13) SFF incurs no more misses than any other schedule S∗ and hence is
optimal.

Extensions: Caching under Real Operating Conditions
As mentioned in the previous subsection, Belady’s optimal algorithm provides
a benchmark for caching performance; but in applications, one generally must
make eviction decisions on the fly without knowledge of future requests.
Experimentally, the best caching algorithms under this requirement seem to be
variants of the Least-Recently-Used (LRU) Principle, which proposes evicting
the item from the cache that was referenced longest ago.

If one thinks about it, this is just Belady’s Algorithm with the direction
of time reversed—longest in the past rather than farthest in the future. It is
effective because applications generally exhibit locality of reference: a running
program will generally keep accessing the things it has just been accessing.
(It is easy to invent pathological exceptions to this principle, but these are
relatively rare in practice.) Thus one wants to keep the more recently referenced
items in the cache.

4.4 Shortest Paths in a Graph 137

Long after the adoption of LRU in practice, Sleator and Tarjan showed that
one could actually provide some theoretical analysis of the performance of
LRU, bounding the number of misses it incurs relative to Farthest-in-Future.
We will discuss this analysis, as well as the analysis of a randomized variant
on LRU, when we return to the caching problem in Chapter 13.

4.4 Shortest Paths in a Graph
Some of the basic algorithms for graphs are based on greedy design principles.
Here we apply a greedy algorithm to the problem of finding shortest paths, and
in the next section we look at the construction of minimum-cost spanning trees.

The Problem
As we’ve seen, graphs are often used to model networks in which one trav-
els from one point to another—traversing a sequence of highways through
interchanges, or traversing a sequence of communication links through inter-
mediate routers. As a result, a basic algorithmic problem is to determine the
shortest path between nodes in a graph. We may ask this as a point-to-point
question: Given nodes u and v, what is the shortest u-v path? Or we may ask
for more information: Given a start node s, what is the shortest path from s to
each other node?

The concrete setup of the shortest paths problem is as follows. We are
given a directed graph G = (V , E), with a designated start node s. We assume
that s has a path to every other node in G. Each edge e has a length �e ≥ 0,
indicating the time (or distance, or cost) it takes to traverse e. For a path P,
the length of P—denoted �(P)—is the sum of the lengths of all edges in P.
Our goal is to determine the shortest path from s to every other node in the
graph. We should mention that although the problem is specified for a directed
graph, we can handle the case of an undirected graph by simply replacing each
undirected edge e = (u, v) of length �e by two directed edges (u, v) and (v, u),
each of length �e.

Designing the Algorithm
In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the
single-source shortest-paths problem. We begin by describing an algorithm that
just determines the length of the shortest path from s to each other node in the
graph; it is then easy to produce the paths as well. The algorithm maintains a
set S of vertices u for which we have determined a shortest-path distance d(u)

from s; this is the “explored” part of the graph. Initially S = {s}, and d(s)= 0.
Now, for each node v ∈ V−S, we determine the shortest path that can be
constructed by traveling along a path through the explored part S to some
u ∈ S, followed by the single edge (u, v). That is, we consider the quantity

138 Chapter 4 Greedy Algorithms

d′(v)=mine=(u,v):u∈S d(u)+ �e. We choose the node v ∈ V−S for which this
quantity is minimized, add v to S, and define d(v) to be the value d′(v).

Dijkstra’s Algorithm (G, �)

Let S be the set of explored nodes

For each u ∈ S, we store a distance d(u)

Initially S = {s} and d(s)= 0

While S �= V

Select a node v �∈ S with at least one edge from S for which

d′(v)=mine=(u ,v):u∈S d(u)+ �e is as small as possible

Add v to S and define d(v)= d′(v)

EndWhile

It is simple to produce the s-u paths corresponding to the distances found
by Dijkstra’s Algorithm. As each node v is added to the set S, we simply record
the edge (u, v) on which it achieved the value mine=(u,v):u∈S d(u)+ �e. The
path Pv is implicitly represented by these edges: if (u, v) is the edge we have
stored for v, then Pv is just (recursively) the path Pu followed by the single
edge (u, v). In other words, to construct Pv, we simply start at v; follow the
edge we have stored for v in the reverse direction to u; then follow the edge we
have stored for u in the reverse direction to its predecessor; and so on until we
reach s. Note that s must be reached, since our backward walk from v visits
nodes that were added to S earlier and earlier.

To get a better sense of what the algorithm is doing, consider the snapshot
of its execution depicted in Figure 4.7. At the point the picture is drawn, two
iterations have been performed: the first added node u, and the second added
node v. In the iteration that is about to be performed, the node x will be added
because it achieves the smallest value of d′(x); thanks to the edge (u, x), we
have d′(x)= d(u)+ lux = 2. Note that attempting to add y or z to the set S at
this point would lead to an incorrect value for their shortest-path distances;
ultimately, they will be added because of their edges from x.

Analyzing the Algorithm
We see in this example that Dijkstra’s Algorithm is doing the right thing and
avoiding recurring pitfalls: growing the set S by the wrong node can lead to an
overestimate of the shortest-path distance to that node. The question becomes:
Is it always true that when Dijkstra’s Algorithm adds a node v, we get the true
shortest-path distance to v?

We now answer this by proving the correctness of the algorithm, showing
that the paths Pu really are shortest paths. Dijkstra’s Algorithm is greedy in

4.4 Shortest Paths in a Graph 139

u

y

z

x

v

s

1

3

3

11

2 2

4

2
Set S:
nodes already
explored

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will
be added to the set S is x, due to the path through u.

the sense that we always form the shortest new s-v path we can make from a
path in S followed by a single edge. We prove its correctness using a variant of
our first style of analysis: we show that it “stays ahead” of all other solutions
by establishing, inductively, that each time it selects a path to a node v, that
path is shorter than every other possible path to v.

(4.14) Consider the set S at any point in the algorithm’s execution. For each
u ∈ S, the path Pu is a shortest s-u path.

Note that this fact immediately establishes the correctness of Dijkstra’s
Algorithm, since we can apply it when the algorithm terminates, at which
point S includes all nodes.

Proof. We prove this by induction on the size of S. The case |S| = 1 is easy,
since then we have S= {s} and d(s)= 0. Suppose the claim holds when |S| = k
for some value of k ≥ 1; we now grow S to size k + 1 by adding the node v.
Let (u, v) be the final edge on our s-v path Pv.

By induction hypothesis, Pu is the shortest s-u path for each u ∈ S. Now
consider any other s-v path P; we wish to show that it is at least as long as Pv.
In order to reach v, this path P must leave the set S somewhere; let y be the
first node on P that is not in S, and let x ∈ S be the node just before y.

The situation is now as depicted in Figure 4.8, and the crux of the proof
is very simple: P cannot be shorter than Pv because it is already at least as

140 Chapter 4 Greedy Algorithms

x y

s
The alternate s–v path P through
x and y is already too long by
the time it has left the set S.

Set S

P�

Pu

u v

Figure 4.8 The shortest path Pv and an alternate s-v path P through the node y.

long as Pv by the time it has left the set S. Indeed, in iteration k + 1, Dijkstra’s
Algorithm must have considered adding node y to the set S via the edge (x, y)

and rejected this option in favor of adding v. This means that there is no path
from s to y through x that is shorter than Pv. But the subpath of P up to y is
such a path, and so this subpath is at least as long as Pv. Since edge lengths
are nonnegative, the full path P is at least as long as Pv as well.

This is a complete proof; one can also spell out the argument in the
previous paragraph using the following inequalities. Let P′ be the subpath
of P from s to x. Since x ∈ S, we know by the induction hypothesis that Px is a
shortest s-x path (of length d(x)), and so �(P′)≥ �(Px)= d(x). Thus the subpath
of P out to node y has length �(P′)+ �(x, y)≥ d(x)+ �(x, y)≥ d′(y), and the
full path P is at least as long as this subpath. Finally, since Dijkstra’s Algorithm
selected v in this iteration, we know that d′(y)≥ d′(v)= �(Pv). Combining these
inequalities shows that �(P)≥ �(P′)+ �(x, y)≥ �(Pv).

Here are two observations about Dijkstra’s Algorithm and its analysis.
First, the algorithm does not always find shortest paths if some of the edges
can have negative lengths. (Do you see where the proof breaks?) Many
shortest-path applications involve negative edge lengths, and a more com-
plex algorithm—due to Bellman and Ford—is required for this case. We will
see this algorithm when we consider the topic of dynamic programming.

The second observation is that Dijkstra’s Algorithm is, in a sense, even
simpler than we’ve described here. Dijkstra’s Algorithm is really a “contin-
uous” version of the standard breadth-first search algorithm for traversing a
graph, and it can be motivated by the following physical intuition. Suppose
the edges of G formed a system of pipes filled with water, joined together at
the nodes; each edge e has length �e and a fixed cross-sectional area. Now
suppose an extra droplet of water falls at node s and starts a wave from s. As
the wave expands out of node s at a constant speed, the expanding sphere

4.4 Shortest Paths in a Graph 141

of wavefront reaches nodes in increasing order of their distance from s. It is
easy to believe (and also true) that the path taken by the wavefront to get to
any node v is a shortest path. Indeed, it is easy to see that this is exactly the
path to v found by Dijkstra’s Algorithm, and that the nodes are discovered by
the expanding water in the same order that they are discovered by Dijkstra’s
Algorithm.

Implementation and Running Time To conclude our discussion of Dijkstra’s
Algorithm, we consider its running time. There are n − 1 iterations of the
While loop for a graph with n nodes, as each iteration adds a new node v
to S. Selecting the correct node v efficiently is a more subtle issue. One’s first
impression is that each iteration would have to consider each node v �∈ S,
and go through all the edges between S and v to determine the minimum
mine=(u,v):u∈S d(u) + �e, so that we can select the node v for which this
minimum is smallest. For a graph with m edges, computing all these minima
can take O(m) time, so this would lead to an implementation that runs in
O(mn) time.

We can do considerably better if we use the right data structures. First, we
will explicitly maintain the values of the minima d′(v)=mine=(u,v):u∈S d(u)+
�e for each node v ∈ V − S, rather than recomputing them in each iteration.
We can further improve the efficiency by keeping the nodes V − S in a priority
queue with d′(v) as their keys. Priority queues were discussed in Chapter 2;
they are data structures designed to maintain a set of n elements, each with a
key. A priority queue can efficiently insert elements, delete elements, change
an element’s key, and extract the element with the minimum key. We will need
the third and fourth of the above operations: ChangeKey and ExtractMin.

How do we implement Dijkstra’s Algorithm using a priority queue? We put
the nodes V in a priority queue with d′(v) as the key for v ∈V. To select the node
v that should be added to the set S, we need the ExtractMin operation. To see
how to update the keys, consider an iteration in which node v is added to S, and
let w �∈ S be a node that remains in the priority queue. What do we have to do
to update the value of d′(w)? If (v, w) is not an edge, then we don’t have to do
anything: the set of edges considered in the minimum mine=(u,w):u∈S d(u)+ �e
is exactly the same before and after adding v to S. If e′ = (v, w) ∈ E, on
the other hand, then the new value for the key is min(d′(w), d(v)+ �e′). If
d′(w) > d(v)+ �e′ then we need to use the ChangeKey operation to decrease
the key of node w appropriately. This ChangeKey operation can occur at most
once per edge, when the tail of the edge e′ is added to S. In summary, we have
the following result.

142 Chapter 4 Greedy Algorithms

(4.15) Using a priority queue, Dijkstra’s Algorithm can be implemented on
a graph with n nodes and m edges to run in O(m) time, plus the time for n
ExtractMin and m ChangeKey operations.

Using the heap-based priority queue implementation discussed in Chap-
ter 2, each priority queue operation can be made to run in O(log n) time. Thus
the overall time for the implementation is O(m log n).

4.5 The Minimum Spanning Tree Problem
We now apply an exchange argument in the context of a second fundamental
problem on graphs: the Minimum Spanning Tree Problem.

The Problem
Suppose we have a set of locations V = {v1, v2, . . . , vn}, and we want to build a
communication network on top of them. The network should be connected—
there should be a path between every pair of nodes—but subject to this
requirement, we wish to build it as cheaply as possible.

For certain pairs (vi, vj), we may build a direct link between vi and vj for
a certain cost c(vi, vj) > 0. Thus we can represent the set of possible links that
may be built using a graph G = (V , E), with a positive cost ce associated with
each edge e = (vi, vj). The problem is to find a subset of the edges T ⊆ E so
that the graph (V , T) is connected, and the total cost

∑
e∈T ce is as small as

possible. (We will assume that the full graph G is connected; otherwise, no
solution is possible.)

Here is a basic observation.

(4.16) Let T be a minimum-cost solution to the network design problem
defined above. Then (V , T) is a tree.

Proof. By definition, (V , T) must be connected; we show that it also will
contain no cycles. Indeed, suppose it contained a cycle C, and let e be any
edge on C. We claim that (V , T − {e}) is still connected, since any path that
previously used the edge e can now go “the long way” around the remainder
of the cycle C instead. It follows that (V , T − {e}) is also a valid solution to the
problem, and it is cheaper—a contradiction.

If we allow some edges to have 0 cost (that is, we assume only that the
costs ce are nonnegative), then a minimum-cost solution to the network design
problem may have extra edges—edges that have 0 cost and could optionally
be deleted. But even in this case, there is always a minimum-cost solution that
is a tree. Starting from any optimal solution, we could keep deleting edges on

4.5 The Minimum Spanning Tree Problem 143

cycles until we had a tree; with nonnegative edges, the cost would not increase
during this process.

We will call a subset T ⊆ E a spanning tree of G if (V , T) is a tree. Statement
(4.16) says that the goal of our network design problem can be rephrased as
that of finding the cheapest spanning tree of the graph; for this reason, it
is generally called the Minimum Spanning Tree Problem. Unless G is a very
simple graph, it will have exponentially many different spanning trees, whose
structures may look very different from one another. So it is not at all clear
how to efficiently find the cheapest tree from among all these options.

Designing Algorithms
As with the previous problems we’ve seen, it is easy to come up with a number
of natural greedy algorithms for the problem. But curiously, and fortunately,
this is a case where many of the first greedy algorithms one tries turn out to be
correct: they each solve the problem optimally. We will review a few of these
algorithms now and then discover, via a nice pair of exchange arguments, some
of the underlying reasons for this plethora of simple, optimal algorithms.

Here are three greedy algorithms, each of which correctly finds a minimum
spanning tree.

. One simple algorithm starts without any edges at all and builds a span-
ning tree by successively inserting edges from E in order of increasing
cost. As we move through the edges in this order, we insert each edge
e as long as it does not create a cycle when added to the edges we’ve
already inserted. If, on the other hand, inserting e would result in a cycle,
then we simply discard e and continue. This approach is called Kruskal’s
Algorithm.

. Another simple greedy algorithm can be designed by analogy with Dijk-
stra’s Algorithm for paths, although, in fact, it is even simpler to specify
than Dijkstra’s Algorithm. We start with a root node s and try to greedily
grow a tree from s outward. At each step, we simply add the node that
can be attached as cheaply as possibly to the partial tree we already have.

More concretely, we maintain a set S ⊆ V on which a spanning tree
has been constructed so far. Initially, S = {s}. In each iteration, we grow
S by one node, adding the node v that minimizes the “attachment cost”
mine=(u,v):u∈S ce, and including the edge e = (u, v) that achieves this
minimum in the spanning tree. This approach is called Prim’s Algorithm.

. Finally, we can design a greedy algorithm by running sort of a “back-
ward” version of Kruskal’s Algorithm. Specifically, we start with the full
graph (V , E) and begin deleting edges in order of decreasing cost. As we
get to each edge e (starting from the most expensive), we delete it as

144 Chapter 4 Greedy Algorithms

b

a

r

c

d
e

f
g

h

b

a

r

c

d
e

f
g

h

(a)

(b)

Figure 4.9 Sample run of the Minimum Spanning Tree Algorithms of (a) Prim and
(b) Kruskal, on the same input. The first 4 edges added to the spanning tree are indicated
by solid lines; the next edge to be added is a dashed line.

long as doing so would not actually disconnect the graph we currently
have. For want of a better name, this approach is generally called the
Reverse-Delete Algorithm (as far as we can tell, it’s never been named
after a specific person).

For example, Figure 4.9 shows the first four edges added by Prim’s and
Kruskal’s Algorithms respectively, on a geometric instance of the Minimum
Spanning Tree Problem in which the cost of each edge is proportional to the
geometric distance in the plane.

The fact that each of these algorithms is guaranteed to produce an opti-
mal solution suggests a certain “robustness” to the Minimum Spanning Tree
Problem—there are many ways to get to the answer. Next we explore some of
the underlying reasons why so many different algorithms produce minimum-
cost spanning trees.

Analyzing the Algorithms
All these algorithms work by repeatedly inserting or deleting edges from a
partial solution. So, to analyze them, it would be useful to have in hand some
basic facts saying when it is “safe” to include an edge in the minimum spanning
tree, and, correspondingly, when it is safe to eliminate an edge on the grounds
that it couldn’t possibly be in the minimum spanning tree. For purposes of
the analysis, we will make the simplifying assumption that all edge costs are
distinct from one another (i.e., no two are equal). This assumption makes it

4.5 The Minimum Spanning Tree Problem 145

easier to express the arguments that follow, and we will show later in this
section how this assumption can be easily eliminated.

When Is It Safe to Include an Edge in the Minimum Spanning Tree? The
crucial fact about edge insertion is the following statement, which we will
refer to as the Cut Property.

(4.17) Assume that all edge costs are distinct. Let S be any subset of nodes that
is neither empty nor equal to all of V, and let edge e = (v, w) be the minimum-
cost edge with one end in S and the other in V − S. Then every minimum
spanning tree contains the edge e.

Proof. Let T be a spanning tree that does not contain e; we need to show that T
does not have the minimum possible cost. We’ll do this using an exchange
argument: we’ll identify an edge e′ in T that is more expensive than e, and
with the property exchanging e for e′ results in another spanning tree. This
resulting spanning tree will then be cheaper than T, as desired.

The crux is therefore to find an edge that can be successfully exchanged
with e. Recall that the ends of e are v and w. T is a spanning tree, so there
must be a path P in T from v to w. Starting at v, suppose we follow the nodes
of P in sequence; there is a first node w′ on P that is in V − S. Let v′ ∈ S be the
node just before w′ on P, and let e′ = (v′, w′) be the edge joining them. Thus,
e′ is an edge of T with one end in S and the other in V − S. See Figure 4.10 for
the situation at this stage in the proof.

If we exchange e for e′, we get a set of edges T ′ = T − {e′} ∪ {e}. We
claim that T ′ is a spanning tree. Clearly (V , T ′) is connected, since (V , T)

is connected, and any path in (V , T) that used the edge e′ = (v′, w′) can now
be “rerouted” in (V , T ′) to follow the portion of P from v′ to v, then the edge
e, and then the portion of P from w to w′. To see that (V , T ′) is also acyclic,
note that the only cycle in (V , T ′ ∪ {e′}) is the one composed of e and the path
P, and this cycle is not present in (V , T ′) due to the deletion of e′.

We noted above that the edge e′ has one end in S and the other in V − S.
But e is the cheapest edge with this property, and so ce < ce′. (The inequality
is strict since no two edges have the same cost.) Thus the total cost of T ′ is
less than that of T, as desired.

The proof of (4.17) is a bit more subtle than it may first appear. To
appreciate this subtlety, consider the following shorter but incorrect argument
for (4.17). Let T be a spanning tree that does not contain e. Since T is a
spanning tree, it must contain an edge f with one end in S and the other in
V − S. Since e is the cheapest edge with this property, we have ce < cf , and
hence T − {f } ∪ {e} is a spanning tree that is cheaper than T.

146 Chapter 4 Greedy Algorithms

S

v w

h

e�

e

f

v� w�

e can be swapped for e�.

Figure 4.10 Swapping the edge e for the edge e′ in the spanning tree T , as described in
the proof of (4.17).

The problem with this argument is not in the claim that f exists, or that
T − {f } ∪ {e} is cheaper than T. The difficulty is that T − {f } ∪ {e} may not be
a spanning tree, as shown by the example of the edge f in Figure 4.10. The
point is that we can’t prove (4.17) by simply picking any edge in T that crosses
from S to V − S; some care must be taken to find the right one.

The Optimality of Kruskal’s and Prim’s Algorithms We can now easily
prove the optimality of both Kruskal’s Algorithm and Prim’s Algorithm. The
point is that both algorithms only include an edge when it is justified by the
Cut Property (4.17).

(4.18) Kruskal’s Algorithm produces a minimum spanning tree of G.

Proof. Consider any edge e = (v, w) added by Kruskal’s Algorithm, and let
S be the set of all nodes to which v has a path at the moment just before
e is added. Clearly v ∈ S, but w �∈ S, since adding e does not create a cycle.
Moreover, no edge from S to V − S has been encountered yet, since any such
edge could have been added without creating a cycle, and hence would have
been added by Kruskal’s Algorithm. Thus e is the cheapest edge with one end
in S and the other in V − S, and so by (4.17) it belongs to every minimum
spanning tree.

4.5 The Minimum Spanning Tree Problem 147

So if we can show that the output (V , T) of Kruskal’s Algorithm is in fact
a spanning tree of G, then we will be done. Clearly (V , T) contains no cycles,
since the algorithm is explicitly designed to avoid creating cycles. Further, if
(V , T) were not connected, then there would exist a nonempty subset of nodes
S (not equal to all of V) such that there is no edge from S to V − S. But this
contradicts the behavior of the algorithm: we know that since G is connected,
there is at least one edge between S and V − S, and the algorithm will add the
first of these that it encounters.

(4.19) Prim’s Algorithm produces a minimum spanning tree of G.

Proof. For Prim’s Algorithm, it is also very easy to show that it only adds
edges belonging to every minimum spanning tree. Indeed, in each iteration of
the algorithm, there is a set S ⊆ V on which a partial spanning tree has been
constructed, and a node v and edge e are added that minimize the quantity
mine=(u,v):u∈S ce. By definition, e is the cheapest edge with one end in S and the
other end in V − S, and so by the Cut Property (4.17) it is in every minimum
spanning tree.

It is also straightforward to show that Prim’s Algorithm produces a span-
ning tree of G, and hence it produces a minimum spanning tree.

When Can We Guarantee an Edge Is Not in the Minimum Spanning
Tree? The crucial fact about edge deletion is the following statement, which
we will refer to as the Cycle Property.

(4.20) Assume that all edge costs are distinct. Let C be any cycle in G, and
let edge e = (v, w) be the most expensive edge belonging to C. Then e does not
belong to any minimum spanning tree of G.

Proof. Let T be a spanning tree that contains e; we need to show that T does
not have the minimum possible cost. By analogy with the proof of the Cut
Property (4.17), we’ll do this with an exchange argument, swapping e for a
cheaper edge in such a way that we still have a spanning tree.

So again the question is: How do we find a cheaper edge that can be
exchanged in this way with e? Let’s begin by deleting e from T; this partitions
the nodes into two components: S, containing node v; and V − S, containing
node w. Now, the edge we use in place of e should have one end in S and the
other in V − S, so as to stitch the tree back together.

We can find such an edge by following the cycle C. The edges of C other
than e form, by definition, a path P with one end at v and the other at w. If
we follow P from v to w, we begin in S and end up in V − S, so there is some

148 Chapter 4 Greedy Algorithms

S e

e�

v w

Cycle C

e� can be swapped for e.

Figure 4.11 Swapping the edge e′ for the edge e in the spanning tree T , as described in
the proof of (4.20).

edge e′ on P that crosses from S to V − S. See Figure 4.11 for an illustration of
this.

Now consider the set of edges T ′ = T − {e} ∪ {e′}. Arguing just as in the
proof of the Cut Property (4.17), the graph (V , T ′) is connected and has no
cycles, so T ′ is a spanning tree of G. Moreover, since e is the most expensive
edge on the cycle C, and e′ belongs to C, it must be that e′ is cheaper than e,
and hence T ′ is cheaper than T, as desired.

The Optimality of the Reverse-Delete Algorithm Now that we have the Cycle
Property (4.20), it is easy to prove that the Reverse-Delete Algorithm produces
a minimum spanning tree. The basic idea is analogous to the optimality proofs
for the previous two algorithms: Reverse-Delete only adds an edge when it is
justified by (4.20).

(4.21) The Reverse-Delete Algorithm produces a minimum spanning tree
of G.

Proof. Consider any edge e = (v, w) removed by Reverse-Delete. At the time
that e is removed, it lies on a cycle C; and since it is the first edge encountered
by the algorithm in decreasing order of edge costs, it must be the most
expensive edge on C. Thus by (4.20), e does not belong to any minimum
spanning tree.

So if we show that the output (V , T) of Reverse-Delete is a spanning tree
of G, we will be done. Clearly (V , T) is connected, since the algorithm never
removes an edge when this will disconnect the graph. Now, suppose by way of

4.5 The Minimum Spanning Tree Problem 149

contradiction that (V , T) contains a cycle C. Consider the most expensive edge
e on C, which would be the first one encountered by the algorithm. This edge
should have been removed, since its removal would not have disconnected
the graph, and this contradicts the behavior of Reverse-Delete.

While we will not explore this further here, the combination of the Cut
Property (4.17) and the Cycle Property (4.20) implies that something even
more general is going on. Any algorithm that builds a spanning tree by
repeatedly including edges when justified by the Cut Property and deleting
edges when justified by the Cycle Property—in any order at all—will end up
with a minimum spanning tree. This principle allows one to design natural
greedy algorithms for this problem beyond the three we have considered here,
and it provides an explanation for why so many greedy algorithms produce
optimal solutions for this problem.

Eliminating the Assumption that All Edge Costs Are Distinct Thus far, we
have assumed that all edge costs are distinct, and this assumption has made the
analysis cleaner in a number of places. Now, suppose we are given an instance
of the Minimum Spanning Tree Problem in which certain edges have the same
cost – how can we conclude that the algorithms we have been discussing still
provide optimal solutions?

There turns out to be an easy way to do this: we simply take the instance
and perturb all edge costs by different, extremely small numbers, so that they
all become distinct. Now, any two costs that differed originally will still have
the same relative order, since the perturbations are so small; and since all
of our algorithms are based on just comparing edge costs, the perturbations
effectively serve simply as “tie-breakers” to resolve comparisons among costs
that used to be equal.

Moreover, we claim that any minimum spanning tree T for the new,
perturbed instance must have also been a minimum spanning tree for the
original instance. To see this, we note that if T cost more than some tree T∗ in
the original instance, then for small enough perturbations, the change in the
cost of T cannot be enough to make it better than T∗ under the new costs. Thus,
if we run any of our minimum spanning tree algorithms, using the perturbed
costs for comparing edges, we will produce a minimum spanning tree T that
is also optimal for the original instance.

Implementing Prim’s Algorithm
We next discuss how to implement the algorithms we have been considering
so as to obtain good running-time bounds. We will see that both Prim’s and
Kruskal’s Algorithms can be implemented, with the right choice of data struc-
tures, to run in O(m log n) time. We will see how to do this for Prim’s Algorithm

150 Chapter 4 Greedy Algorithms

here, and defer discussing the implementation of Kruskal’s Algorithm to the
next section. Obtaining a running time close to this for the Reverse-Delete
Algorithm is difficult, so we do not focus on Reverse-Delete in this discussion.

For Prim’s Algorithm, while the proof of correctness was quite different
from the proof for Dijkstra’s Algorithm for the Shortest-Path Algorithm, the
implementations of Prim and Dijkstra are almost identical. By analogy with
Dijkstra’s Algorithm, we need to be able to decide which node v to add next to
the growing set S, by maintaining the attachment costs a(v)=mine=(u,v):u∈S ce
for each node v ∈ V − S. As before, we keep the nodes in a priority queue with
these attachment costs a(v) as the keys; we select a node with an ExtractMin
operation, and update the attachment costs using ChangeKey operations.
There are n− 1 iterations in which we perform ExtractMin, and we perform
ChangeKey at most once for each edge. Thus we have

(4.22) Using a priority queue, Prim’s Algorithm can be implemented on a
graph with n nodes and m edges to run in O(m) time, plus the time for n
ExtractMin, and m ChangeKey operations.

As with Dijkstra’s Algorithm, if we use a heap-based priority queue we
can implement both ExtractMin and ChangeKey in O(log n) time, and so get
an overall running time of O(m log n).

Extensions
The minimum spanning tree problem emerged as a particular formulation
of a broader network design goal—finding a good way to connect a set of
sites by installing edges between them. A minimum spanning tree optimizes
a particular goal, achieving connectedness with minimum total edge cost. But
there are a range of further goals one might consider as well.

We may, for example, be concerned about point-to-point distances in the
spanning tree we build, and be willing to reduce these even if we pay more
for the set of edges. This raises new issues, since it is not hard to construct
examples where the minimum spanning tree does not minimize point-to-point
distances, suggesting some tension between these goals.

Alternately, we may care more about the congestion on the edges. Given
traffic that needs to be routed between pairs of nodes, one could seek a
spanning tree in which no single edge carries more than a certain amount of
this traffic. Here too, it is easy to find cases in which the minimum spanning
tree ends up concentrating a lot of traffic on a single edge.

More generally, it is reasonable to ask whether a spanning tree is even the
right kind of solution to our network design problem. A tree has the property
that destroying any one edge disconnects it, which means that trees are not at

4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure 151

all robust against failures. One could instead make resilience an explicit goal,
for example seeking the cheapest connected network on the set of sites that
remains connected after the deletion of any one edge.

All of these extensions lead to problems that are computationally much
harder than the basic Minimum Spanning Tree problem, though due to their
importance in practice there has been research on good heuristics for them.

4.6 Implementing Kruskal’s Algorithm:
The Union-Find Data Structure

One of the most basic graph problems is to find the set of connected compo-
nents. In Chapter 3 we discussed linear-time algorithms using BFS or DFS for
finding the connected components of a graph.

In this section, we consider the scenario in which a graph evolves through
the addition of edges. That is, the graph has a fixed population of nodes, but it
grows over time by having edges appear between certain pairs of nodes. Our
goal is to maintain the set of connected components of such a graph throughout
this evolution process. When an edge is added to the graph, we don’t want
to have to recompute the connected components from scratch. Rather, we
will develop a data structure that we call the Union-Find structure, which
will store a representation of the components in a way that supports rapid
searching and updating.

This is exactly the data structure needed to implement Kruskal’s Algorithm
efficiently. As each edge e = (v, w) is considered, we need to efficiently find
the identities of the connected components containing v and w. If these
components are different, then there is no path from v and w, and hence
edge e should be included; but if the components are the same, then there is
a v-w path on the edges already included, and so e should be omitted. In the
event that e is included, the data structure should also support the efficient
merging of the components of v and w into a single new component.

The Problem
The Union-Find data structure allows us to maintain disjoint sets (such as the
components of a graph) in the following sense. Given a node u, the operation
Find(u) will return the name of the set containing u. This operation can be
used to test if two nodes u and v are in the same set, by simply checking
if Find(u) = Find(v). The data structure will also implement an operation
Union(A, B) to take two sets A and B and merge them to a single set.

These operations can be used to maintain connected components of an
evolving graph G = (V , E) as edges are added. The sets will be the connected
components of the graph. For a node u, the operation Find(u) will return the

152 Chapter 4 Greedy Algorithms

name of the component containing u. If we add an edge (u, v) to the graph,
then we first test if u and v are already in the same connected component (by
testing if Find(u) = Find(v)). If they are not, then Union(Find(u),Find(v))
can be used to merge the two components into one. It is important to note
that the Union-Find data structure can only be used to maintain components
of a graph as we add edges; it is not designed to handle the effects of edge
deletion, which may result in a single component being “split” into two.

To summarize, the Union-Find data structure will support three oper-
ations.

. MakeUnionFind(S) for a set S will return a Union-Find data structure
on set S where all elements are in separate sets. This corresponds, for
example, to the connected components of a graph with no edges. Our
goal will be to implement MakeUnionFind in time O(n) where n = |S|.

. For an element u ∈ S, the operation Find(u) will return the name of the
set containing u. Our goal will be to implement Find(u) in O(log n) time.
Some implementations that we discuss will in fact take only O(1) time
for this operation.

. For two sets A and B, the operation Union(A, B) will change the data
structure by merging the sets A and B into a single set. Our goal will be
to implement Union in O(log n) time.

Let’s briefly discuss what we mean by the name of a set—for example,
as returned by the Find operation. There is a fair amount of flexibility in
defining the names of the sets; they should simply be consistent in the sense
that Find(v) and Find(w) should return the same name if v and w belong to
the same set, and different names otherwise. In our implementations, we will
name each set using one of the elements it contains.

A Simple Data Structure for Union-Find
Maybe the simplest possible way to implement a Union-Find data structure
is to maintain an array Component that contains the name of the set currently
containing each element. Let S be a set, and assume it has n elements denoted
{1, . . . , n}. We will set up an array Component of size n, where Component[s]is
the name of the set containing s. To implement MakeUnionFind(S), we set up
the array and initialize it to Component[s]= s for all s ∈ S. This implementation
makes Find(v) easy: it is a simple lookup and takes only O(1) time. However,
Union(A, B) for two sets A and B can take as long as O(n) time, as we have
to update the values of Component[s] for all elements in sets A and B.

To improve this bound, we will do a few simple optimizations. First, it is
useful to explicitly maintain the list of elements in each set, so we don’t have to
look through the whole array to find the elements that need updating. Further,

4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure 153

we save some time by choosing the name for the union to be the name of one of
the sets, say, set A: this way we only have to update the values Component[s]
for s ∈ B, but not for any s ∈ A. Of course, if set B is large, this idea by itself
doesn’t help very much. Thus we add one further optimization. When set B
is big, we may want to keep its name and change Component[s] for all s ∈ A
instead. More generally, we can maintain an additional array size of length
n, where size[A] is the size of set A, and when a Union(A, B) operation is
performed, we use the name of the larger set for the union. This way, fewer
elements need to have their Component values updated.

Even with these optimizations, the worst case for a Union operation is
still O(n) time; this happens if we take the union of two large sets A and B,
each containing a constant fraction of all the elements. However, such bad
cases for Union cannot happen very often, as the resulting set A ∪ B is even
bigger. How can we make this statement more precise? Instead of bounding
the worst-case running time of a single Union operation, we can bound the
total (or average) running time of a sequence of k Union operations.

(4.23) Consider the array implementation of the Union-Find data structure
for some set S of size n, where unions keep the name of the larger set. The
Find operation takes O(1) time, MakeUnionFind(S) takes O(n) time, and any
sequence of k Union operations takes at most O(k log k) time.

Proof. The claims about the MakeUnionFind and Find operations are easy
to verify. Now consider a sequence of k Union operations. The only part
of a Union operation that takes more than O(1) time is updating the array
Component. Instead of bounding the time spent on one Union operation,
we will bound the total time spent updating Component[v] for an element
v throughout the sequence of k operations.

Recall that we start the data structure from a state when all n elements are
in their own separate sets. A single Union operation can consider at most two
of these original one-element sets, so after any sequence of k Union operations,
all but at most 2k elements of S have been completely untouched. Now
consider a particular element v. As v’s set is involved in a sequence of Union
operations, its size grows. It may be that in some of these Unions, the value
of Component[v] is updated, and in others it is not. But our convention is that
the union uses the name of the larger set, so in every update to Component[v]
the size of the set containing v at least doubles. The size of v’s set starts out at
1, and the maximum possible size it can reach is 2k (since we argued above
that all but at most 2k elements are untouched by Union operations). Thus
Component[v] gets updated at most log2(2k) times throughout the process.
Moreover, at most 2k elements are involved in any Union operations at all, so

154 Chapter 4 Greedy Algorithms

we get a bound of O(k log k) for the time spent updating Component values
in a sequence of k Union operations.

While this bound on the average running time for a sequence of k opera-
tions is good enough in many applications, including implementing Kruskal’s
Algorithm, we will try to do better and reduce the worst-case time required.
We’ll do this at the expense of raising the time required for the Find operation
to O(log n).

A Better Data Structure for Union-Find
The data structure for this alternate implementation uses pointers. Each node
v ∈ S will be contained in a record with an associated pointer to the name
of the set that contains v. As before, we will use the elements of the set S
as possible set names, naming each set after one of its elements. For the
MakeUnionFind(S) operation, we initialize a record for each element v ∈ S
with a pointer that points to itself (or is defined as a null pointer), to indicate
that v is in its own set.

Consider a Union operation for two sets A and B, and assume that the
name we used for set A is a node v ∈ A, while set B is named after node u ∈ B.
The idea is to have either u or v be the name of the combined set; assume we
select v as the name. To indicate that we took the union of the two sets, and
that the name of the union set is v, we simply update u’s pointer to point to v.
We do not update the pointers at the other nodes of set B.

As a result, for elements w ∈ B other than u, the name of the set they
belong to must be computed by following a sequence of pointers, first leading
them to the “old name” u and then via the pointer from u to the “new name” v.
See Figure 4.12 for what such a representation looks like. For example, the two
sets in Figure 4.12 could be the outcome of the following sequence of Union
operations: Union(w, u), Union(s, u), Union(t , v), Union(z, v), Union(i, x),
Union(y, j), Union(x, j), and Union(u, v).

This pointer-based data structure implements Union in O(1) time: all we
have to do is to update one pointer. But a Find operation is no longer constant
time, as we have to follow a sequence of pointers through a history of old
names the set had, in order to get to the current name. How long can a Find(u)

operation take? The number of steps needed is exactly the number of times
the set containing node u had to change its name, that is, the number of times
the Component[u] array position would have been updated in our previous
array representation. This can be as large as O(n) if we are not careful with
choosing set names. To reduce the time required for a Find operation, we will
use the same optimization we used before: keep the name of the larger set
as the name of the union. The sequence of Unions that produced the data

4.6 Implementing Kruskal’s Algorithm: The Union-Find Data Structure 155

u v

t z

j

x

i

y

The set {s, u, w} was merged into {t, v, z}.

w s

Figure 4.12 A Union-Find data structure using pointers. The data structure has only
two sets at the moment, named after nodes v and j. The dashed arrow from u to v is the
result of the last Union operation. To answer a Find query, we follow the arrows until
we get to a node that has no outgoing arrow. For example, answering the query Find(i)
would involve following the arrows i to x, and then x to j.

structure in Figure 4.12 followed this convention. To implement this choice
efficiently, we will maintain an additional field with the nodes: the size of the
corresponding set.

(4.24) Consider the above pointer-based implementation of the Union-Find
data structure for some set S of size n, where unions keep the name of the larger
set. A Union operation takes O(1) time, MakeUnionFind(S) takes O(n) time,
and a Find operation takes O(log n) time.

Proof. The statements about Union and MakeUnionFind are easy to verify.
The time to evaluate Find(v) for a node v is the number of times the set
containing node v changes its name during the process. By the convention
that the union keeps the name of the larger set, it follows that every time the
name of the set containing node v changes, the size of this set at least doubles.
Since the set containing v starts at size 1 and is never larger than n, its size can
double at most log2 n times, and so there can be at most log2 n name changes.

Further Improvements
Next we will briefly discuss a natural optimization in the pointer-based Union-
Find data structure that has the effect of speeding up the Find operations.
Strictly speaking, this improvement will not be necessary for our purposes in
this book: for all the applications of Union-Find data structures that we con-
sider, the O(log n) time per operation is good enough in the sense that further
improvement in the time for operations would not translate to improvements

156 Chapter 4 Greedy Algorithms

in the overall running time of the algorithms where we use them. (The Union-
Find operations will not be the only computational bottleneck in the running
time of these algorithms.)

To motivate the improved version of the data structure, let us first discuss a
bad case for the running time of the pointer-based Union-Find data structure.
First we build up a structure where one of the Find operations takes about log n
time. To do this, we can repeatedly take Unions of equal-sized sets. Assume v
is a node for which the Find(v) operation takes about log n time. Now we can
issue Find(v) repeatedly, and it takes log n for each such call. Having to follow
the same sequence of log n pointers every time for finding the name of the set
containing v is quite redundant: after the first request for Find(v), we already
“know” the name x of the set containing v, and we also know that all other
nodes that we touched during our path from v to the current name also are all
contained in the set x. So in the improved implementation, we will compress
the path we followed after every Find operation by resetting all pointers along
the path to point to the current name of the set. No information is lost by
doing this, and it makes subsequent Find operations run more quickly. See
Figure 4.13 for a Union-Find data structure and the result of Find(v) using
path compression.

Now consider the running time of the operations in the resulting imple-
mentation. As before, a Union operation takes O(1) time and MakeUnion-
Find(S) takes O(n) time to set up a data structure for a set of size n. How did
the time required for a Find(v) operation change? Some Find operations can
still take up to log n time; and for some Find operations we actually increase

x

v

(a)

x

v

(b)

Everything on the path from v to x
now points directly to x.

Figure 4.13 (a) An instance of a Union-Find data structure; and (b) the result of the
operation Find(v) on this structure, using path compression.

4.7 Clustering 157

the time, since after finding the name x of the set containing v, we have to go
back through the same path of pointers from v to x, and reset each of these
pointers to point to x directly. But this additional work can at most double
the time required, and so does not change the fact that a Find takes at most
O(log n) time. The real gain from compression is in making subsequent calls to
Find cheaper, and this can be made precise by the same type of argument we
used in (4.23): bounding the total time for a sequence of n Find operations,
rather than the worst-case time for any one of them. Although we do not go
into the details here, a sequence of n Find operations employing compression
requires an amount of time that is extremely close to linear in n; the actual
upper bound is O(nα(n)), where α(n) is an extremely slow-growing function
of n called the inverse Ackermann function. (In particular, α(n) ≤ 4 for any
value of n that could be encountered in practice.)

Implementing Kruskal’s Algorithm
Now we’ll use the Union-Find data structure to implement Kruskal’s Algo-
rithm. First we need to sort the edges by cost. This takes time O(m log m).
Since we have at most one edge between any pair of nodes, we have m ≤ n2

and hence this running time is also O(m log n).

After the sorting operation, we use the Union-Find data structure to
maintain the connected components of (V , T) as edges are added. As each
edge e = (v, w) is considered, we compute Find(u) and Find(v) and test
if they are equal to see if v and w belong to different components. We
use Union(Find(u),Find(v)) to merge the two components, if the algorithm
decides to include edge e in the tree T.

We are doing a total of at most 2m Find and n − 1 Union operations
over the course of Kruskal’s Algorithm. We can use either (4.23) for the
array-based implementation of Union-Find, or (4.24) for the pointer-based
implementation, to conclude that this is a total of O(m log n) time. (While
more efficient implementations of the Union-Find data structure are possible,
this would not help the running time of Kruskal’s Algorithm, which has an
unavoidable O(m log n) term due to the initial sorting of the edges by cost.)

To sum up, we have

(4.25) Kruskal’s Algorithm can be implemented on a graph with n nodes and
m edges to run in O(m log n) time.

4.7 Clustering
We motivated the construction of minimum spanning trees through the prob-
lem of finding a low-cost network connecting a set of sites. But minimum

158 Chapter 4 Greedy Algorithms

spanning trees arise in a range of different settings, several of which appear
on the surface to be quite different from one another. An appealing example
is the role that minimum spanning trees play in the area of clustering.

The Problem
Clustering arises whenever one has a collection of objects—say, a set of
photographs, documents, or microorganisms—that one is trying to classify
or organize into coherent groups. Faced with such a situation, it is natural
to look first for measures of how similar or dissimilar each pair of objects is.
One common approach is to define a distance function on the objects, with
the interpretation that objects at a larger distance from one another are less
similar to each other. For points in the physical world, distance may actually
be related to their physical distance; but in many applications, distance takes
on a much more abstract meaning. For example, we could define the distance
between two species to be the number of years since they diverged in the
course of evolution; we could define the distance between two images in a
video stream as the number of corresponding pixels at which their intensity
values differ by at least some threshold.

Now, given a distance function on the objects, the clustering problem
seeks to divide them into groups so that, intuitively, objects within the same
group are “close,” and objects in different groups are “far apart.” Starting from
this vague set of goals, the field of clustering branches into a vast number of
technically different approaches, each seeking to formalize this general notion
of what a good set of groups might look like.

Clusterings of Maximum Spacing Minimum spanning trees play a role in one
of the most basic formalizations, which we describe here. Suppose we are given
a set U of n objects, labeled p1, p2, . . . , pn. For each pair, pi and pj, we have a
numerical distance d(pi, pj). We require only that d(pi, pi)= 0; that d(pi, pj) > 0
for distinct pi and pj; and that distances are symmetric: d(pi, pj)= d(pj , pi).

Suppose we are seeking to divide the objects in U into k groups, for a
given parameter k. We say that a k-clustering of U is a partition of U into k
nonempty sets C1, C2, . . . , Ck. We define the spacing of a k-clustering to be the
minimum distance between any pair of points lying in different clusters. Given
that we want points in different clusters to be far apart from one another, a
natural goal is to seek the k-clustering with the maximum possible spacing.

The question now becomes the following. There are exponentially many
different k-clusterings of a set U; how can we efficiently find the one that has
maximum spacing?

4.7 Clustering 159

Designing the Algorithm
To find a clustering of maximum spacing, we consider growing a graph on the
vertex set U. The connected components will be the clusters, and we will try
to bring nearby points together into the same cluster as rapidly as possible.
(This way, they don’t end up as points in different clusters that are very close
together.) Thus we start by drawing an edge between the closest pair of points.
We then draw an edge between the next closest pair of points. We continue
adding edges between pairs of points, in order of increasing distance d(pi, pj).
In this way, we are growing a graph H on U edge by edge, with connected
components corresponding to clusters. Notice that we are only interested in
the connected components of the graph H, not the full set of edges; so if we
are about to add the edge (pi, pj) and find that pi and pj already belong to the
same cluster, we will refrain from adding the edge—it’s not necessary, because
it won’t change the set of components. In this way, our graph-growing process
will never create a cycle; so H will actually be a union of trees. Each time
we add an edge that spans two distinct components, it is as though we have
merged the two corresponding clusters. In the clustering literature, the iterative
merging of clusters in this way is often termed single-link clustering, a special
case of hierarchical agglomerative clustering. (Agglomerative here means that
we combine clusters; single-link means that we do so as soon as a single link
joins them together.) See Figure 4.14 for an example of an instance with k = 3
clusters where this algorithm partitions the points into an intuitively natural
grouping.

What is the connection to minimum spanning trees? It’s very simple:
although our graph-growing procedure was motivated by this cluster-merging
idea, our procedure is precisely Kruskal’s Minimum Spanning Tree Algorithm.
We are doing exactly what Kruskal’s Algorithm would do if given a graph G
on U in which there was an edge of cost d(pi, pj) between each pair of nodes
(pi, pj). The only difference is that we seek a k-clustering, so we stop the
procedure once we obtain k connected components.

In other words, we are running Kruskal’s Algorithm but stopping it just
before it adds its last k− 1edges. This is equivalent to taking the full minimum
spanning tree T (as Kruskal’s Algorithm would have produced it), deleting the
k− 1most expensive edges (the ones that we never actually added), and defin-
ing the k-clustering to be the resulting connected components C1, C2, . . . , Ck.
Thus, iteratively merging clusters is equivalent to computing a minimum span-
ning tree and deleting the most expensive edges.

Analyzing the Algorithm
Have we achieved our goal of producing clusters that are as spaced apart as
possible? The following claim shows that we have.

160 Chapter 4 Greedy Algorithms

Cluster 1

Cluster 2

Cluster 3

Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters
are formed by adding edges between points in order of increasing distance.

(4.26) The components C1, C2, . . . , Ck formed by deleting the k − 1 most
expensive edges of the minimum spanning tree T constitute a k-clustering of
maximum spacing.

Proof. Let C denote the clustering C1, C2, . . . , Ck. The spacing of C is precisely
the length d∗ of the (k − 1)st most expensive edge in the minimum spanning
tree; this is the length of the edge that Kruskal’s Algorithm would have added
next, at the moment we stopped it.

Now consider some other k-clustering C′, which partitions U into non-
empty sets C ′1, C ′2, . . . , C ′k. We must show that the spacing of C′ is at most
d∗.

Since the two clusterings C and C′ are not the same, it must be that one
of our clusters Cr is not a subset of any of the k sets C ′s in C′. Hence there
are points pi, pj ∈ Cr that belong to different clusters in C′—say, pi ∈ C ′s and
pj ∈ C ′t �= C ′s.

Now consider the picture in Figure 4.15. Since pi and pj belong to the same
component Cr, it must be that Kruskal’s Algorithm added all the edges of a
pi-pj path P before we stopped it. In particular, this means that each edge on

4.8 Huffman Codes and Data Compression 161

pi
pjp�

p

Cluster Cr

Cluster C �s

Cluster C �t

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any
other clustering can be no larger than that of the clustering found by the single-linkage
algorithm.

P has length at most d∗. Now, we know that pi ∈ C ′s but pj �∈ C ′s; so let p′ be
the first node on P that does not belong to C ′s, and let p be the node on P that
comes just before p′. We have just argued that d(p, p′) ≤ d∗, since the edge
(p, p′) was added by Kruskal’s Algorithm. But p and p′ belong to different sets
in the clustering C′, and hence the spacing of C′ is at most d(p, p′)≤ d∗. This
completes the proof.

4.8 Huffman Codes and Data Compression
In the Shortest-Path and Minimum Spanning Tree Problems, we’ve seen how
greedy algorithms can be used to commit to certain parts of a solution (edges
in a graph, in these cases), based entirely on relatively short-sighted consid-
erations. We now consider a problem in which this style of “committing” is
carried out in an even looser sense: a greedy rule is used, essentially, to shrink
the size of the problem instance, so that an equivalent smaller problem can
then be solved by recursion. The greedy operation here is proved to be “safe,”
in the sense that solving the smaller instance still leads to an optimal solu-
tion for the original instance, but the global consequences of the initial greedy
decision do not become fully apparent until the full recursion is complete.

The problem itself is one of the basic questions in the area of data com-
pression, an area that forms part of the foundations for digital communication.

162 Chapter 4 Greedy Algorithms

The Problem
Encoding Symbols Using Bits Since computers ultimately operate on se-
quences of bits (i.e., sequences consisting only of the symbols 0 and 1), one
needs encoding schemes that take text written in richer alphabets (such as the
alphabets underpinning human languages) and converts this text into long
strings of bits.

The simplest way to do this would be to use a fixed number of bits for
each symbol in the alphabet, and then just concatenate the bit strings for
each symbol to form the text. To take a basic example, suppose we wanted to
encode the 26 letters of English, plus the space (to separate words) and five
punctuation characters: comma, period, question mark, exclamation point,
and apostrophe. This would give us 32 symbols in total to be encoded.
Now, you can form 2b different sequences out of b bits, and so if we use 5
bits per symbol, then we can encode 25= 32 symbols—just enough for our
purposes. So, for example, we could let the bit string 00000 represent a, the
bit string 00001 represent b, and so forth up to 11111, which could represent the
apostrophe. Note that the mapping of bit strings to symbols is arbitrary; the
point is simply that five bits per symbol is sufficient. In fact, encoding schemes
like ASCII work precisely this way, except that they use a larger number of
bits per symbol so as to handle larger character sets, including capital letters,
parentheses, and all those other special symbols you see on a typewriter or
computer keyboard.

Let’s think about our bare-bones example with just 32 symbols. Is there
anything more we could ask for from an encoding scheme? We couldn’t ask
to encode each symbol using just four bits, since 24 is only 16—not enough
for the number of symbols we have. Nevertheless, it’s not clear that over large
stretches of text, we really need to be spending an average of five bits per
symbol. If we think about it, the letters in most human alphabets do not
get used equally frequently. In English, for example, the letters e, t , a, o, i,
and n get used much more frequently than q, j, x, and z (by more than an
order of magnitude). So it’s really a tremendous waste to translate them all
into the same number of bits; instead we could use a small number of bits for
the frequent letters, and a larger number of bits for the less frequent ones, and
hope to end up using fewer than five bits per letter when we average over a
long string of typical text.

This issue of reducing the average number of bits per letter is a funda-
mental problem in the area of data compression. When large files need to be
shipped across communication networks, or stored on hard disks, it’s impor-
tant to represent them as compactly as possible, subject to the requirement
that a subsequent reader of the file should be able to correctly reconstruct it.
A huge amount of research is devoted to the design of compression algorithms

4.8 Huffman Codes and Data Compression 163

that can take files as input and reduce their space through efficient encoding
schemes.

We now describe one of the fundamental ways of formulating this issue,
building up to the question of how we might construct the optimal way to take
advantage of the nonuniform frequencies of the letters. In one sense, such an
optimal solution is a very appealing answer to the problem of compressing
data: it squeezes all the available gains out of nonuniformities in the frequen-
cies. At the end of the section, we will discuss how one can make further
progress in compression, taking advantage of features other than nonuniform
frequencies.

Variable-Length Encoding Schemes Before the Internet, before the digital
computer, before the radio and telephone, there was the telegraph. Commu-
nicating by telegraph was a lot faster than the contemporary alternatives of
hand-delivering messages by railroad or on horseback. But telegraphs were
only capable of transmitting pulses down a wire, and so if you wanted to send
a message, you needed a way to encode the text of your message as a sequence
of pulses.

To deal with this issue, the pioneer of telegraphic communication, Samuel
Morse, developed Morse code, translating each letter into a sequence of dots
(short pulses) and dashes (long pulses). For our purposes, we can think of
dots and dashes as zeros and ones, and so this is simply a mapping of symbols
into bit strings, just as in ASCII. Morse understood the point that one could
communicate more efficiently by encoding frequent letters with short strings,
and so this is the approach he took. (He consulted local printing presses to get
frequency estimates for the letters in English.) Thus, Morse code maps e to 0
(a single dot), t to 1 (a single dash), a to 01 (dot-dash), and in general maps
more frequent letters to shorter bit strings.

In fact, Morse code uses such short strings for the letters that the encoding
of words becomes ambiguous. For example, just using what we know about
the encoding of e, t, and a, we see that the string 0101 could correspond to
any of the sequences of letters eta, aa, etet , or aet. (There are other possi-
bilities as well, involving other letters.) To deal with this ambiguity, Morse
code transmissions involve short pauses between letters (so the encoding of
aa would actually be dot-dash-pause-dot-dash-pause). This is a reasonable
solution—using very short bit strings and then introducing pauses—but it
means that we haven’t actually encoded the letters using just 0 and 1; we’ve
actually encoded it using a three-letter alphabet of 0, 1, and “pause.” Thus, if
we really needed to encode everything using only the bits 0 and 1, there would
need to be some further encoding in which the pause got mapped to bits.

164 Chapter 4 Greedy Algorithms

Prefix Codes The ambiguity problem in Morse code arises because there exist
pairs of letters where the bit string that encodes one letter is a prefix of the bit
string that encodes another. To eliminate this problem, and hence to obtain an
encoding scheme that has a well-defined interpretation for every sequence of
bits, it is enough to map letters to bit strings in such a way that no encoding
is a prefix of any other.

Concretely, we say that a prefix code for a set S of letters is a function γ

that maps each letter x ∈ S to some sequence of zeros and ones, in such a way
that for distinct x, y ∈ S, the sequence γ (x) is not a prefix of the sequence γ (y).

Now suppose we have a text consisting of a sequence of letters x1x2x3 . . .

xn. We can convert this to a sequence of bits by simply encoding each letter as
a bit sequence using γ and then concatenating all these bit sequences together:
γ (x1)γ (x2) . . . γ (xn). If we then hand this message to a recipient who knows the
function γ , they will be able to reconstruct the text according to the following
rule.

. Scan the bit sequence from left to right.

. As soon as you’ve seen enough bits to match the encoding of some letter,
output this as the first letter of the text. This must be the correct first letter,
since no shorter or longer prefix of the bit sequence could encode any
other letter.

. Now delete the corresponding set of bits from the front of the message
and iterate.

In this way, the recipient can produce the correct set of letters without our
having to resort to artificial devices like pauses to separate the letters.

For example, suppose we are trying to encode the set of five letters
S = {a, b, c, d, e}. The encoding γ1 specified by

γ1(a)= 11

γ1(b)= 01

γ1(c)= 001

γ1(d)= 10

γ1(e)= 000

is a prefix code, since we can check that no encoding is a prefix of any other.
Now, for example, the string cecab would be encoded as 0010000011101. A
recipient of this message, knowing γ1, would begin reading from left to right.
Neither 0 nor 00 encodes a letter, but 001 does, so the recipient concludes that
the first letter is c. This is a safe decision, since no longer sequence of bits
beginning with 001 could encode a different letter. The recipient now iterates

4.8 Huffman Codes and Data Compression 165

on the rest of the message, 0000011101; next they will conclude that the second
letter is e, encoded as 000.

Optimal Prefix Codes We’ve been doing all this because some letters are
more frequent than others, and we want to take advantage of the fact that more
frequent letters can have shorter encodings. To make this objective precise, we
now introduce some notation to express the frequencies of letters.

Suppose that for each letter x ∈ S, there is a frequency fx, representing the
fraction of letters in the text that are equal to x. In other words, assuming
there are n letters total, nfx of these letters are equal to x. We notice that the
frequencies sum to 1; that is,

∑
x∈S fx = 1.

Now, if we use a prefix code γ to encode the given text, what is the total
length of our encoding? This is simply the sum, over all letters x ∈ S, of the
number of times x occurs times the length of the bit string γ (x) used to encode
x. Using |γ (x)| to denote the length γ (x), we can write this as

encoding length=
∑
x∈S

nfx|γ (x)| = n
∑
x∈S

fx|γ (x)|.

Dropping the leading coefficient of n from the final expression gives us∑
x∈S fx|γ (x)|, the average number of bits required per letter. We denote this

quantity by ABL(γ).

To continue the earlier example, suppose we have a text with the letters
S = {a, b, c, d, e}, and their frequencies are as follows:

fa = .32, fb = .25, fc = .20, fd = .18, fe = .05.

Then the average number of bits per letter using the prefix code γ1 defined
previously is

.32 · 2+ .25 · 2+ .20 · 3+ .18 · 2+ .05 · 3= 2.25.

It is interesting to compare this to the average number of bits per letter using
a fixed-length encoding. (Note that a fixed-length encoding is a prefix code:
if all letters have encodings of the same length, then clearly no encoding can
be a prefix of any other.) With a set S of five letters, we would need three bits
per letter for a fixed-length encoding, since two bits could only encode four
letters. Thus, using the code γ1 reduces the bits per letter from 3 to 2.25, a
savings of 25 percent.

And, in fact, γ1 is not the best we can do in this example. Consider the
prefix code γ2 given by

166 Chapter 4 Greedy Algorithms

γ2(a)= 11

γ2(b)= 10

γ2(c)= 01

γ2(d)= 001

γ2(e)= 000

The average number of bits per letter using γ2 is

.32 · 2+ .25 · 2+ .20 · 2+ .18 · 3+ .05 · 3= 2.23.

So now it is natural to state the underlying question. Given an alphabet
and a set of frequencies for the letters, we would like to produce a prefix
code that is as efficient as possible—namely, a prefix code that minimizes the
average number of bits per letter ABL(γ)=∑

x∈S fx|γ (x)|. We will call such a
prefix code optimal.

Designing the Algorithm
The search space for this problem is fairly complicated; it includes all possible
ways of mapping letters to bit strings, subject to the defining property of prefix
codes. For alphabets consisting of an extremely small number of letters, it is
feasible to search this space by brute force, but this rapidly becomes infeasible.

We now describe a greedy method to construct an optimal prefix code
very efficiently. As a first step, it is useful to develop a tree-based means of
representing prefix codes that exposes their structure more clearly than simply
the lists of function values we used in our previous examples.

Representing Prefix Codes Using Binary Trees Suppose we take a rooted tree
T in which each node that is not a leaf has at most two children; we call such
a tree a binary tree. Further suppose that the number of leaves is equal to the
size of the alphabet S, and we label each leaf with a distinct letter in S.

Such a labeled binary tree T naturally describes a prefix code, as follows.
For each letter x ∈ S, we follow the path from the root to the leaf labeled x;
each time the path goes from a node to its left child, we write down a 0, and
each time the path goes from a node to its right child, we write down a 1. We
take the resulting string of bits as the encoding of x.

Now we observe

(4.27) The encoding of S constructed from T is a prefix code.

Proof. In order for the encoding of x to be a prefix of the encoding of y, the
path from the root to x would have to be a prefix of the path from the root

4.8 Huffman Codes and Data Compression 167

to y. But this is the same as saying that x would lie on the path from the
root to y, which isn’t possible if x is a leaf.

This relationship between binary trees and prefix codes works in the other
direction as well. Given a prefix code γ , we can build a binary tree recursively
as follows. We start with a root; all letters x ∈ S whose encodings begin with
a 0 will be leaves in the left subtree of the root, and all letters y ∈ S whose
encodings begin with a 1 will be leaves in the right subtree of the root. We
now build these two subtrees recursively using this rule.

For example, the labeled tree in Figure 4.16(a) corresponds to the prefix
code γ0 specified by

γ0(a)= 1

γ0(b)= 011

γ0(c)= 010

γ0(d)= 001

γ0(e)= 000

To see this, note that the leaf labeled a is obtained by simply taking the right-
hand edge out of the root (resulting in an encoding of 1); the leaf labeled e is
obtained by taking three successive left-hand edges starting from the root; and
analogous explanations apply for b, c, and d. By similar reasoning, one can
see that the labeled tree in Figure 4.16(b) corresponds to the prefix code γ1
defined earlier, and the labeled tree in Figure 4.16(c) corresponds to the prefix
code γ2 defined earlier. Note also that the binary trees for the two prefix codes
γ1 and γ2 are identical in structure; only the labeling of the leaves is different.
The tree for γ0, on the other hand, has a different structure.

Thus the search for an optimal prefix code can be viewed as the search for
a binary tree T, together with a labeling of the leaves of T, that minimizes the
average number of bits per letter. Moreover, this average quantity has a natural
interpretation in the terms of the structure of T: the length of the encoding of
a letter x ∈ S is simply the length of the path from the root to the leaf labeled
x. We will refer to the length of this path as the depth of the leaf, and we will
denote the depth of a leaf v in T simply by depthT(v). (As two bits of notational
convenience, we will drop the subscript T when it is clear from context, and
we will often use a letter x ∈ S to also denote the leaf that is labeled by it.)
Thus we are seeking the labeled tree that minimizes the weighted average
of the depths of all leaves, where the average is weighted by the frequencies
of the letters that label the leaves:

∑
x∈S fx · depthT(x). We will use ABL(T) to

denote this quantity.

168 Chapter 4 Greedy Algorithms

a

e d c b

Code:
a→1
b→011
c→010
d→001
e→000

e c

b

Code:
a→11
b→01
c→001
d→10
e→000

d a

e d

c

Code:
a→11
b→10
c→01
d→001
e→000

b a

(a)

(c)

(b)

Figure 4.16 Parts (a), (b), and (c) of the figure depict three different prefix codes for
the alphabet S = {a, b, c, d, e}.

As a first step in considering algorithms for this problem, let’s note a simple
fact about the optimal tree. For this fact, we need a definition: we say that a
binary tree is full if each node that is not a leaf has two children. (In other
words, there are no nodes with exactly one child.) Note that all three binary
trees in Figure 4.16 are full.

(4.28) The binary tree corresponding to the optimal prefix code is full.

Proof. This is easy to prove using an exchange argument. Let T denote the
binary tree corresponding to the optimal prefix code, and suppose it contains

4.8 Huffman Codes and Data Compression 169

a node u with exactly one child v. Now convert T into a tree T ′ by replacing
node u with v.

To be precise, we need to distinguish two cases. If u was the root of the
tree, we simply delete node u and use v as the root. If u is not the root, let w
be the parent of u in T. Now we delete node u and make v be a child of w
in place of u. This change decreases the number of bits needed to encode any
leaf in the subtree rooted at node u, and it does not affect other leaves. So the
prefix code corresponding to T ′ has a smaller average number of bits per letter
than the prefix code for T, contradicting the optimality of T.

A First Attempt: The Top-Down Approach Intuitively, our goal is to produce
a labeled binary tree in which the leaves are as close to the root as possible.
This is what will give us a small average leaf depth.

A natural way to do this would be to try building a tree from the top down
by “packing” the leaves as tightly as possible. So suppose we try to split the
alphabet S into two sets S1 and S2, such that the total frequency of the letters
in each set is exactly 1

2. If such a perfect split is not possible, then we can try
for a split that is as nearly balanced as possible. We then recursively construct
prefix codes for S1 and S2 independently, and make these the two subtrees of
the root. (In terms of bit strings, this would mean sticking a 0 in front of the
encodings we produce for S1, and sticking a 1 in front of the encodings we
produce for S2.)

It is not entirely clear how we should concretely define this “nearly
balanced” split of the alphabet, but there are ways to make this precise.
The resulting encoding schemes are called Shannon-Fano codes, named after
Claude Shannon and Robert Fano, two of the major early figures in the area
of information theory, which deals with representing and encoding digital
information. These types of prefix codes can be fairly good in practice, but
for our present purposes they represent a kind of dead end: no version of this
top-down splitting strategy is guaranteed to always produce an optimal prefix
code. Consider again our example with the five-letter alphabet S= {a, b, c, d, e}
and frequencies

fa = .32, fb = .25, fc = .20, fd = .18, fe = .05.

There is a unique way to split the alphabet into two sets of equal frequency:
{a, d} and {b, c, e}. For {a, d}, we can use a single bit to encode each. For
{b, c, e}, we need to continue recursively, and again there is a unique way
to split the set into two subsets of equal frequency. The resulting code corre-
sponds to the code γ1, given by the labeled tree in Figure 4.16(b); and we’ve
already seen that γ1 is not as efficient as the prefix code γ2 corresponding to
the labeled tree in Figure 4.16(c).

170 Chapter 4 Greedy Algorithms

Shannon and Fano knew that their approach did not always yield the
optimal prefix code, but they didn’t see how to compute the optimal code
without brute-force search. The problem was solved a few years later by David
Huffman, at the time a graduate student who learned about the question in a
class taught by Fano.

We now describe the ideas leading up to the greedy approach that Huffman
discovered for producing optimal prefix codes.

What If We Knew the Tree Structure of the Optimal Prefix Code? A tech-
nique that is often helpful in searching for an efficient algorithm is to assume,
as a thought experiment, that one knows something partial about the optimal
solution, and then to see how one would make use of this partial knowledge
in finding the complete solution. (Later, in Chapter 6, we will see in fact that
this technique is a main underpinning of the dynamic programming approach
to designing algorithms.)

For the current problem, it is useful to ask: What if someone gave us the
binary tree T∗ that corresponded to an optimal prefix code, but not the labeling
of the leaves? To complete the solution, we would need to figure out which
letter should label which leaf of T∗, and then we’d have our code. How hard
is this?

In fact, this is quite easy. We begin by formulating the following basic fact.

(4.29) Suppose that u and v are leaves of T∗, such that depth(u) < depth(v).
Further, suppose that in a labeling of T∗ corresponding to an optimal prefix
code, leaf u is labeled with y ∈ S and leaf v is labeled with z ∈ S. Then fy ≥ fz.

Proof. This has a quick proof using an exchange argument. If fy < fz, then
consider the code obtained by exchanging the labels at the nodes u and
v. In the expression for the average number of bits per letter, ABL(T∗) =∑

x∈S fx depth(x), the effect of this exchange is as follows: the multiplier on fy
increases (from depth(u) to depth(v)), and the multiplier on fz decreases by
the same amount (from depth(v) to depth(u)).

Thus the change to the overall sum is (depth(v)− depth(u))(fy − fz). If
fy < fz, this change is a negative number, contradicting the supposed optimality
of the prefix code that we had before the exchange.

We can see the idea behind (4.29) in Figure 4.16(b): a quick way to see that
the code here is not optimal is to notice that it can be improved by exchanging
the positions of the labels c and d. Having a lower-frequency letter at a strictly
smaller depth than some other higher-frequency letter is precisely what (4.29)
rules out for an optimal solution.

4.8 Huffman Codes and Data Compression 171

Statement (4.29) gives us the following intuitively natural, and optimal,
way to label the tree T∗ if someone should give it to us. We first take all leaves
of depth 1 (if there are any) and label them with the highest-frequency letters
in any order. We then take all leaves of depth 2 (if there are any) and label them
with the next-highest-frequency letters in any order. We continue through the
leaves in order of increasing depth, assigning letters in order of decreasing
frequency. The point is that this can’t lead to a suboptimal labeling of T∗,
since any supposedly better labeling would be susceptible to the exchange in
(4.29). It is also crucial to note that, among the labels we assign to a block of
leaves all at the same depth, it doesn’t matter which label we assign to which
leaf. Since the depths are all the same, the corresponding multipliers in the
expression

∑
x∈S fx|γ (x)| are the same, and so the choice of assignment among

leaves of the same depth doesn’t affect the average number of bits per letter.

But how is all this helping us? We don’t have the structure of the optimal
tree T∗, and since there are exponentially many possible trees (in the size of
the alphabet), we aren’t going to be able to perform a brute-force search over
all of them.

In fact, our reasoning about T∗ becomes very useful if we think not about
the very beginning of this labeling process, with the leaves of minimum depth,
but about the very end, with the leaves of maximum depth—the ones that
receive the letters with lowest frequency. Specifically, consider a leaf v in T∗
whose depth is as large as possible. Leaf v has a parent u, and by (4.28) T∗ is
a full binary tree, so u has another child w. We refer to v and w as siblings,
since they have a common parent. Now, we have

(4.30) w is a leaf of T∗.

Proof. If w were not a leaf, there would be some leaf w′ in the subtree below
it. But then w′ would have a depth greater than that of v, contradicting our
assumption that v is a leaf of maximum depth in T∗.

So v and w are sibling leaves that are as deep as possible in T∗. Thus our
level-by-level process of labeling T∗, as justified by (4.29), will get to the level
containing v and w last. The leaves at this level will get the lowest-frequency
letters. Since we have already argued that the order in which we assign these
letters to the leaves within this level doesn’t matter, there is an optimal labeling
in which v and w get the two lowest-frequency letters of all.

We sum this up in the following claim.

(4.31) There is an optimal prefix code, with corresponding tree T∗, in which
the two lowest-frequency letters are assigned to leaves that are siblings in T∗.

172 Chapter 4 Greedy Algorithms

New merged letter
with sum of frequencies

Two lowest-frequency letters

Figure 4.17 There is an optimal solution in which the two lowest-frequency letters
label sibling leaves; deleting them and labeling their parent with a new letter having the
combined frequency yields an instance with a smaller alphabet.

An Algorithm to Construct an Optimal Prefix Code Suppose that y∗ and z∗
are the two lowest-frequency letters in S. (We can break ties in the frequencies
arbitrarily.) Statement (4.31) is important because it tells us something about
where y∗ and z∗ go in the optimal solution; it says that it is safe to “lock them
together” in thinking about the solution, because we know they end up as
sibling leaves below a common parent. In effect, this common parent acts like
a “meta-letter” whose frequency is the sum of the frequencies of y∗ and z∗.

This directly suggests an algorithm: we replace y∗ and z∗ with this meta-
letter, obtaining an alphabet that is one letter smaller. We recursively find a
prefix code for the smaller alphabet, and then “open up” the meta-letter back
into y∗ and z∗ to obtain a prefix code for S. This recursive strategy is depicted
in Figure 4.17.

A concrete description of the algorithm is as follows.

To construct a prefix code for an alphabet S, with given frequencies:

If S has two letters then

Encode one letter using 0 and the other letter using 1

Else

Let y∗ and z∗ be the two lowest-frequency letters
Form a new alphabet S′ by deleting y∗ and z∗ and
replacing them with a new letter ω of frequency fy∗ + fz∗

Recursively construct a prefix code γ ′ for S′, with tree T ′

Define a prefix code for S as follows:

Start with T ′

4.8 Huffman Codes and Data Compression 173

Take the leaf labeled ω and add two children below it

labeled y∗ and z∗

Endif

We refer to this as Huffman’s Algorithm, and the prefix code that it
produces for a given alphabet is accordingly referred to as a Huffman code.
In general, it is clear that this algorithm always terminates, since it simply
invokes a recursive call on an alphabet that is one letter smaller. Moreover,
using (4.31), it will not be difficult to prove that the algorithm in fact produces
an optimal prefix code. Before doing this, however, we pause to note some
further observations about the algorithm.

First let’s consider the behavior of the algorithm on our sample instance
with S = {a, b, c, d, e} and frequencies

fa = .32, fb = .25, fc = .20, fd = .18, fe = .05.

The algorithm would first merge d and e into a single letter—let’s denote it
(de)—of frequency .18+ .05= .23. We now have an instance of the problem
on the four letters S′ = {a, b, c, (de)}. The two lowest-frequency letters in S′ are
c and (de), so in the next step we merge these into the single letter (cde) of
frequency .20+ .23= .43. This gives us the three-letter alphabet {a, b, (cde)}.
Next we merge a and b, and this gives us a two-letter alphabet, at which point
we invoke the base case of the recursion. If we unfold the result back through
the recursive calls, we get the tree pictured in Figure 4.16(c).

It is interesting to note how the greedy rule underlying Huffman’s
Algorithm—the merging of the two lowest-frequency letters—fits into the
structure of the algorithm as a whole. Essentially, at the time we merge these
two letters, we don’t know exactly how they will fit into the overall code.
Rather, we simply commit to having them be children of the same parent, and
this is enough to produce a new, equivalent problem with one less letter.

Moreover, the algorithm forms a natural contrast with the earlier approach
that led to suboptimal Shannon-Fano codes. That approach was based on a
top-down strategy that worried first and foremost about the top-level split in
the binary tree—namely, the two subtrees directly below the root. Huffman’s
Algorithm, on the other hand, follows a bottom-up approach: it focuses on
the leaves representing the two lowest-frequency letters, and then continues
by recursion.

Analyzing the Algorithm
The Optimality of the Algorithm We first prove the optimality of Huffman’s
Algorithm. Since the algorithm operates recursively, invoking itself on smaller
and smaller alphabets, it is natural to try establishing optimality by induction

174 Chapter 4 Greedy Algorithms

on the size of the alphabet. Clearly it is optimal for all two-letter alphabets
(since it uses only one bit per letter). So suppose by induction that it is optimal
for all alphabets of size k − 1, and consider an input instance consisting of an
alphabet S of size k.

Let’s quickly recap the behavior of the algorithm on this instance. The
algorithm merges the two lowest-frequency letters y∗, z∗ ∈ S into a single letter
ω, calls itself recursively on the smaller alphabet S′ (in which y∗ and z∗ are
replaced by ω), and by induction produces an optimal prefix code for S′,
represented by a labeled binary tree T ′. It then extends this into a tree T for S,
by attaching leaves labeled y∗ and z∗ as children of the node in T ′ labeled ω.

There is a close relationship between ABL(T) and ABL(T ′). (Note that the
former quantity is the average number of bits used to encode letters in S, while
the latter quantity is the average number of bits used to encode letters in S′.)

(4.32) ABL(T ′)= ABL(T)− fω.

Proof. The depth of each letter x other than y∗, z∗ is the same in both T and
T ′. Also, the depths of y∗ and z∗ in T are each one greater than the depth of
ω in T ′. Using this, plus the fact that fω = fy∗ + fz∗, we have

ABL(T)=
∑
x∈S

fx · depthT(x)

= fy∗ · depthT(y∗)+ fz∗ · depthT(z∗)+
∑

x �=y∗ ,z∗
fx · depthT(x)

= (fy∗ + fz∗) · (1+ depthT ′(ω))+
∑

x �=y∗ ,z∗
fx · depthT ′(x)

= fω · (1+ depthT ′(ω))+
∑

x �=y∗ ,z∗
fx · depthT ′(x)

= fω + fω · depthT ′(ω)+
∑

x �=y∗ ,z∗
fx · depthT ′(x)

= fω +
∑
x∈S′

fx · depthT ′(x)

= fω + ABL(T ′).

Using this, we now prove optimality as follows.

(4.33) The Huffman code for a given alphabet achieves the minimum average
number of bits per letter of any prefix code.

Proof. Suppose by way of contradiction that the tree T produced by our greedy
algorithm is not optimal. This means that there is some labeled binary tree Z

4.8 Huffman Codes and Data Compression 175

such that ABL(Z) < ABL(T); and by (4.31), there is such a tree Z in which the
leaves representing y∗ and z∗ are siblings.

It is now easy to get a contradiction, as follows. If we delete the leaves
labeled y∗ and z∗ from Z, and label their former parent with ω, we get a tree
Z′ that defines a prefix code for S′. In the same way that T is obtained from
T ′, the tree Z is obtained from Z′ by adding leaves for y∗ and z∗ below ω; thus
the identity in (4.32) applies to Z and Z′ as well: ABL(Z′)= ABL(Z)− fω.

But we have assumed that ABL(Z) < ABL(T); subtracting fω from both sides
of this inequality we get ABL(Z′) < ABL(T ′), which contradicts the optimality
of T ′ as a prefix code for S′.

Implementation and Running Time It is clear that Huffman’s Algorithm can
be made to run in polynomial time in k, the number of letters in the alphabet.
The recursive calls of the algorithm define a sequence of k − 1 iterations over
smaller and smaller alphabets, and each iteration except the last consists
simply of identifying the two lowest-frequency letters and merging them into
a single letter that has the combined frequency. Even without being careful
about the implementation, identifying the lowest-frequency letters can be done
in a single scan of the alphabet, in time O(k), and so summing this over the
k − 1 iterations gives O(k2) time.

But in fact Huffman’s Algorithm is an ideal setting in which to use a
priority queue. Recall that a priority queue maintains a set of k elements,
each with a numerical key, and it allows for the insertion of new elements and
the extraction of the element with the minimum key. Thus we can maintain
the alphabet S in a priority queue, using each letter’s frequency as its key.
In each iteration we just extract the minimum twice (this gives us the two
lowest-frequency letters), and then we insert a new letter whose key is the
sum of these two minimum frequencies. Our priority queue now contains a
representation of the alphabet that we need for the next iteration.

Using an implementation of priority queues via heaps, as in Chapter 2, we
can make each insertion and extraction of the minimum run in time O(log k);
hence, each iteration—which performs just three of these operations—takes
time O(log k). Summing over all k iterations, we get a total running time of
O(k log k).

Extensions
The structure of optimal prefix codes, which has been our focus here, stands
as a fundamental result in the area of data compression. But it is important to
understand that this optimality result does not by any means imply that we
have found the best way to compress data under all circumstances.

176 Chapter 4 Greedy Algorithms

What more could we want beyond an optimal prefix code? First, consider
an application in which we are transmitting black-and-white images: each
image is a 1,000-by-1,000 array of pixels, and each pixel takes one of the two
values black or white. Further, suppose that a typical image is almost entirely
white: roughly 1,000 of the million pixels are black, and the rest are white. Now,
if we wanted to compress such an image, the whole approach of prefix codes
has very little to say: we have a text of length one million over the two-letter
alphabet {black, white}. As a result, the text is already encoded using one bit
per letter—the lowest possible in our framework.

It is clear, though, that such images should be highly compressible.
Intuitively, one ought to be able to use a “fraction of a bit” for each white pixel,
since they are so overwhelmingly frequent, at the cost of using multiple bits
for each black pixel. (In an extreme version, sending a list of (x, y) coordinates
for each black pixel would be an improvement over sending the image as a
text with a million bits.) The challenge here is to define an encoding scheme
where the notion of using fractions of bits is well-defined. There are results
in the area of data compression, however, that do just this; arithmetic coding
and a range of other techniques have been developed to handle settings like
this.

A second drawback of prefix codes, as defined here, is that they cannot
adapt to changes in the text. Again let’s consider a simple example. Suppose we
are trying to encode the output of a program that produces a long sequence
of letters from the set {a, b, c, d}. Further suppose that for the first half of
this sequence, the letters a and b occur equally frequently, while c and d do
not occur at all; but in the second half of this sequence, the letters c and d
occur equally frequently, while a and b do not occur at all. In the framework
developed in this section, we are trying to compress a text over the four-letter
alphabet {a, b, c, d}, and all letters are equally frequent. Thus each would be
encoded with two bits.

But what’s really happening in this example is that the frequency remains
stable for half the text, and then it changes radically. So one could get away
with just one bit per letter, plus a bit of extra overhead, as follows.

. Begin with an encoding in which the bit 0 represents a and the bit 1
represents b.

. Halfway into the sequence, insert some kind of instruction that says,
“We’re changing the encoding now. From now on, the bit 0 represents c
and the bit 1 represents d.”

. Use this new encoding for the rest of the sequence.

The point is that investing a small amount of space to describe a new encoding
can pay off many times over if it reduces the average number of bits per

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm 177

letter over a long run of text that follows. Such approaches, which change
the encoding in midstream, are called adaptive compression schemes, and
for many kinds of data they lead to significant improvements over the static
method we’ve considered here.

These issues suggest some of the directions in which work on data com-
pression has proceeded. In many of these cases, there is a trade-off between
the power of the compression technique and its computational cost. In partic-
ular, many of the improvements to Huffman codes just described come with
a corresponding increase in the computational effort needed both to produce
the compressed version of the data and also to decompress it and restore the
original text. Finding the right balance among these trade-offs is a topic of
active research.

* 4.9 Minimum-Cost Arborescences: A Multi-Phase
Greedy Algorithm

As we’ve seen more and more examples of greedy algorithms, we’ve come to
appreciate that there can be considerable diversity in the way they operate.
Many greedy algorithms make some sort of an initial “ordering” decision on
the input, and then process everything in a one-pass fashion. Others make
more incremental decisions—still local and opportunistic, but without a global
“plan” in advance. In this section, we consider a problem that stresses our
intuitive view of greedy algorithms still further.

The Problem
The problem is to compute a minimum-cost arborescence of a directed graph.
This is essentially an analogue of the Minimum Spanning Tree Problem for
directed, rather than undirected, graphs; we will see that the move to directed
graphs introduces significant new complications. At the same time, the style
of the algorithm has a strongly greedy flavor, since it still constructs a solution
according to a local, myopic rule.

We begin with the basic definitions. Let G = (V , E) be a directed graph in
which we’ve distinguished one node r ∈ V as a root. An arborescence (with
respect to r) is essentially a directed spanning tree rooted at r. Specifically, it
is a subgraph T = (V , F) such that T is a spanning tree of G if we ignore the
direction of edges; and there is a path in T from r to each other node v ∈ V if
we take the direction of edges into account. Figure 4.18 gives an example of
two different arborescences in the same directed graph.

There is a useful equivalent way to characterize arborescences, and this
is as follows.

178 Chapter 4 Greedy Algorithms

r

(a)

r

(b)

r

(c)

Figure 4.18 A directed graph can have many different arborescences. Parts (b) and (c)
depict two different aborescences, both rooted at node r, for the graph in part (a).

(4.34) A subgraph T = (V , F) of G is an arborescence with respect to root r if
and only if T has no cycles, and for each node v �= r, there is exactly one edge
in F that enters v.

Proof. If T is an arborescence with root r, then indeed every other node v
has exactly one edge entering it: this is simply the last edge on the unique r-v
path.

Conversely, suppose T has no cycles, and each node v �= r has exactly
one entering edge. In order to establish that T is an arborescence, we need
only show that there is a directed path from r to each other node v. Here is
how to construct such a path. We start at v and repeatedly follow edges in
the backward direction. Since T has no cycles, we can never return to a node
we’ve previously visited, and thus this process must terminate. But r is the
only node without incoming edges, and so the process must in fact terminate
by reaching r; the sequence of nodes thus visited yields a path (in the reverse
direction) from r to v.

It is easy to see that, just as every connected graph has a spanning tree, a
directed graph has an arborescence rooted at r provided that r can reach every
node. Indeed, in this case, the edges in a breadth-first search tree rooted at r
will form an arborescence.

(4.35) A directed graph G has an arborescence rooted at r if and only if there
is a directed path from r to each other node.

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm 179

The basic problem we consider here is the following. We are given a
directed graph G = (V , E), with a distinguished root node r and with a non-
negative cost ce ≥ 0 on each edge, and we wish to compute an arborescence
rooted at r of minimum total cost. (We will refer to this as an optimal arbores-
cence.) We will assume throughout that G at least has an arborescence rooted
at r; by (4.35), this can be easily checked at the outset.

Designing the Algorithm
Given the relationship between arborescences and trees, the minimum-cost
arborescence problem certainly has a strong initial resemblance to the Mini-
mum Spanning Tree Problem for undirected graphs. Thus it’s natural to start
by asking whether the ideas we developed for that problem can be carried
over directly to this setting. For example, must the minimum-cost arbores-
cence contain the cheapest edge in the whole graph? Can we safely delete the
most expensive edge on a cycle, confident that it cannot be in the optimal
arborescence?

Clearly the cheapest edge e in G will not belong to the optimal arborescence
if e enters the root, since the arborescence we’re seeking is not supposed to
have any edges entering the root. But even if the cheapest edge in G belongs
to some arborescence rooted at r, it need not belong to the optimal one, as
the example of Figure 4.19 shows. Indeed, including the edge of cost 1 in
Figure 4.19 would prevent us from including the edge of cost 2 out of the
root r (since there can only be one entering edge per node); and this in turn
would force us to incur an unacceptable cost of 10 when we included one of

r

(a)

10 10

8 4

2

1 4

2 2

r

(b)

4

2

4

2 2

Figure 4.19 (a) A directed graphwith costs on its edges, and (b) an optimal arborescence
rooted at r for this graph.

180 Chapter 4 Greedy Algorithms

the other edges out of r. This kind of argument never clouded our thinking in
the Minimum Spanning Tree Problem, where it was always safe to plunge
ahead and include the cheapest edge; it suggests that finding the optimal
arborescence may be a significantly more complicated task. (It’s worth noticing
that the optimal arborescence in Figure 4.19 also includes the most expensive
edge on a cycle; with a different construction, one can even cause the optimal
arborescence to include the most expensive edge in the whole graph.)

Despite this, it is possible to design a greedy type of algorithm for this
problem; it’s just that our myopic rule for choosing edges has to be a little
more sophisticated. First let’s consider a little more carefully what goes wrong
with the general strategy of including the cheapest edges. Here’s a particular
version of this strategy: for each node v �= r, select the cheapest edge entering
v (breaking ties arbitrarily), and let F∗ be this set of n− 1 edges. Now consider
the subgraph (V , F∗). Since we know that the optimal arborescence needs to
have exactly one edge entering each node v �= r, and (V , F∗) represents the
cheapest possible way of making these choices, we have the following fact.

(4.36) If (V , F∗) is an arborescence, then it is a minimum-cost arborescence.

So the difficulty is that (V , F∗) may not be an arborescence. In this case,
(4.34) implies that (V , F∗) must contain a cycle C, which does not include the
root. We now must decide how to proceed in this situation.

To make matters somewhat clearer, we begin with the following observa-
tion. Every arborescence contains exactly one edge entering each node v �= r;
so if we pick some node v and subtract a uniform quantity from the cost of
every edge entering v, then the total cost of every arborescence changes by
exactly the same amount. This means, essentially, that the actual cost of the
cheapest edge entering v is not important; what matters is the cost of all other
edges entering v relative to this. Thus let yv denote the minimum cost of any
edge entering v. For each edge e = (u, v), with cost ce ≥ 0, we define its modi-
fied cost c′e to be ce − yv. Note that since ce ≥ yv, all the modified costs are still
nonnegative. More crucially, our discussion motivates the following fact.

(4.37) T is an optimal arborescence in G subject to costs {ce} if and only if it
is an optimal arborescence subject to the modified costs {c′e}.

Proof. Consider an arbitrary arborescence T. The difference between its cost
with costs {ce} and {c′e} is exactly

∑
v �=r yv—that is,∑

e∈T

ce −
∑
e∈T

c′e =
∑
v �=r

yv.

4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm 181

This is because an arborescence has exactly one edge entering each node v
in the sum. Since the difference between the two costs is independent of the
choice of the arborescence T, we see that T has minimum cost subject to {ce}
if and only if it has minimum cost subject to {c′e}.

We now consider the problem in terms of the costs {c′e}. All the edges in
our set F∗ have cost 0 under these modified costs; and so if (V , F∗) contains
a cycle C, we know that all edges in C have cost 0. This suggests that we can
afford to use as many edges from C as we want (consistent with producing an
arborescence), since including edges from C doesn’t raise the cost.

Thus our algorithm continues as follows. We contract C into a single
supernode, obtaining a smaller graph G′ = (V ′, E′). Here, V ′ contains the nodes
of V−C, plus a single node c∗ representing C. We transform each edge e ∈ E to
an edge e′ ∈ E′ by replacing each end of e that belongs to C with the new node
c∗. This can result in G′ having parallel edges (i.e., edges with the same ends),
which is fine; however, we delete self-loops from E′—edges that have both
ends equal to c∗. We recursively find an optimal arborescence in this smaller
graph G′, subject to the costs {c′e}. The arborescence returned by this recursive
call can be converted into an arborescence of G by including all but one edge
on the cycle C.

In summary, here is the full algorithm.

For each node v �= r

Let yv be the minimum cost of an edge entering node v

Modify the costs of all edges e entering v to c′e = ce − yv

Choose one 0-cost edge entering each v �= r, obtaining a set F∗

If F∗ forms an arborescence, then return it
Else there is a directed cycle C ⊆ F∗

Contract C to a single supernode, yielding a graph G′ = (V ′, E′)
Recursively find an optimal arborescence (V ′, F ′) in G′

with costs {c′e}
Extend (V ′, F ′) to an arborescence (V , F) in G

by adding all but one edge of C

Analyzing the Algorithm
It is easy to implement this algorithm so that it runs in polynomial time. But
does it lead to an optimal arborescence? Before concluding that it does, we need
to worry about the following point: not every arborescence in G corresponds to
an arborescence in the contracted graph G′. Could we perhaps “miss” the true
optimal arborescence in G by focusing on G′? What is true is the following.

182 Chapter 4 Greedy Algorithms

The arborescences of G′ are in one-to-one correspondence with arborescences
of G that have exactly one edge entering the cycle C; and these corresponding
arborescences have the same cost with respect to {c′e}, since C consists of 0-
cost edges. (We say that an edge e = (u, v) enters C if v belongs to C but u does
not.) So to prove that our algorithm finds an optimal arborescence in G, we
must prove that G has an optimal arborescence with exactly one edge entering
C. We do this now.

(4.38) Let C be a cycle in G consisting of edges of cost 0, such that r �∈ C.
Then there is an optimal arborescence rooted at r that has exactly one edge
entering C.

Proof. Consider an optimal arborescence T in G. Since r has a path in T to
every node, there is at least one edge of T that enters C. If T enters C exactly
once, then we are done. Otherwise, suppose that T enters C more than once.
We show how to modify it to obtain an arborescence of no greater cost that
enters C exactly once.

Let e = (a, b) be an edge entering C that lies on as short a path as possible
from r; this means in particular that no edges on the path from r to a can enter
C. We delete all edges of T that enter C, except for the edge e. We add in all
edges of C except for the one edge that enters b, the head of edge e. Let T ′
denote the resulting subgraph of G.

We claim that T ′ is also an arborescence. This will establish the result,
since the cost of T ′ is clearly no greater than that of T: the only edges of
T ′ that do not also belong to T have cost 0. So why is T ′ an arborescence?
Observe that T ′ has exactly one edge entering each node v �= r, and no edge
entering r. So T ′ has exactly n− 1 edges; hence if we can show there is an r-v
path in T ′ for each v, then T ′ must be connected in an undirected sense, and
hence a tree. Thus it would satisfy our initial definition of an arborescence.

So consider any node v �= r; we must show there is an r-v path in T ′. If
v ∈ C, we can use the fact that the path in T from r to e has been preserved
in the construction of T ′; thus we can reach v by first reaching e and then
following the edges of the cycle C. Now suppose that v �∈ C, and let P denote
the r-v path in T. If P did not touch C, then it still exists in T ′. Otherwise,
let w be the last node in P ∩ C, and let P′ be the subpath of P from w to v.
Observe that all the edges in P′ still exist in T ′. We have already argued that
w is reachable from r in T ′, since it belongs to C. Concatenating this path
to w with the subpath P′ gives us a path to v as well.

We can now put all the pieces together to argue that our algorithm is
correct.

Solved Exercises 183

(4.39) The algorithm finds an optimal arborescence rooted at r in G.

Proof. The proof is by induction on the number of nodes in G. If the edges
of F form an arborescence, then the algorithm returns an optimal arborescence
by (4.36). Otherwise, we consider the problem with the modified costs {c′e},
which is equivalent by (4.37). After contracting a 0-cost cycle C to obtain a
smaller graph G′, the algorithm produces an optimal arborescence in G′ by the
inductive hypothesis. Finally, by (4.38), there is an optimal arborescence in G
that corresponds to the optimal arborescence computed for G′.

Solved Exercises

Solved Exercise 1
Suppose that three of your friends, inspired by repeated viewings of the
horror-movie phenomenon The Blair Witch Project, have decided to hike the
Appalachian Trail this summer. They want to hike as much as possible per
day but, for obvious reasons, not after dark. On a map they’ve identified a
large set of good stopping points for camping, and they’re considering the
following system for deciding when to stop for the day. Each time they come
to a potential stopping point, they determine whether they can make it to the
next one before nightfall. If they can make it, then they keep hiking; otherwise,
they stop.

Despite many significant drawbacks, they claim this system does have
one good feature. “Given that we’re only hiking in the daylight,” they claim,
“it minimizes the number of camping stops we have to make.”

Is this true? The proposed system is a greedy algorithm, and we wish to
determine whether it minimizes the number of stops needed.

To make this question precise, let’s make the following set of simplifying
assumptions. We’ll model the Appalachian Trail as a long line segment of
length L, and assume that your friends can hike d miles per day (independent
of terrain, weather conditions, and so forth). We’ll assume that the potential
stopping points are located at distances x1, x2, . . . , xn from the start of the
trail. We’ll also assume (very generously) that your friends are always correct
when they estimate whether they can make it to the next stopping point before
nightfall.

We’ll say that a set of stopping points is valid if the distance between each
adjacent pair is at most d, the first is at distance at most d from the start of
the trail, and the last is at distance at most d from the end of the trail. Thus
a set of stopping points is valid if one could camp only at these places and

184 Chapter 4 Greedy Algorithms

still make it across the whole trail. We’ll assume, naturally, that the full set of
n stopping points is valid; otherwise, there would be no way to make it the
whole way.

We can now state the question as follows. Is your friends’ greedy
algorithm—hiking as long as possible each day—optimal, in the sense that it
finds a valid set whose size is as small as possible?

Solution Often a greedy algorithm looks correct when you first encounter it,
so before succumbing too deeply to its intuitive appeal, it’s useful to ask: why
might it not work? What should we be worried about?

There’s a natural concern with this algorithm: Might it not help to stop
early on some day, so as to get better synchronized with camping opportunities
on future days? But if you think about it, you start to wonder whether this could
really happen. Could there really be an alternate solution that intentionally lags
behind the greedy solution, and then puts on a burst of speed and passes the
greedy solution? How could it pass it, given that the greedy solution travels as
far as possible each day?

This last consideration starts to look like the outline of an argument based
on the “staying ahead” principle from Section 4.1. Perhaps we can show that as
long as the greedy camping strategy is ahead on a given day, no other solution
can catch up and overtake it the next day.

We now turn this into a proof showing the algorithm is indeed optimal,
identifying a natural sense in which the stopping points it chooses “stay ahead”
of any other legal set of stopping points. Although we are following the style
of proof from Section 4.1, it’s worth noting an interesting contrast with the
Interval Scheduling Problem: there we needed to prove that a greedy algorithm
maximized a quantity of interest, whereas here we seek to minimize a certain
quantity.

Let R= {xp1
, . . . , xpk

} denote the set of stopping points chosen by the
greedy algorithm, and suppose by way of contradiction that there is a smaller
valid set of stopping points; let’s call this smaller set S = {xq1

, . . . , xqm
}, with

m < k.

To obtain a contradiction, we first show that the stopping point reached by
the greedy algorithm on each day j is farther than the stopping point reached
under the alternate solution. That is,

(4.40) For each j = 1, 2, . . . , m, we have xpj
≥ xqj

.

Proof. We prove this by induction on j. The case j = 1 follows directly from
the definition of the greedy algorithm: your friends travel as long as possible

Solved Exercises 185

on the first day before stopping. Now let j > 1 and assume that the claim is
true for all i < j. Then

xqj
− xqj−1

≤ d,

since S is a valid set of stopping points, and

xqj
− xpj−1

≤ xqj
− xqj−1

since xpj−1
≥ xqj−1

by the induction hypothesis. Combining these two inequal-
ities, we have

xqj
− xpj−1

≤ d.

This means that your friends have the option of hiking all the way from
xpj−1

to xqj
in one day; and hence the location xpj

at which they finally stop
can only be farther along than xqj

. (Note the similarity with the corresponding
proof for the Interval Scheduling Problem: here too the greedy algorithm is
staying ahead because, at each step, the choice made by the alternate solution
is one of its valid options.)

Statement (4.40) implies in particular that xqm
≤ xpm

. Now, if m < k, then
we must have xpm

< L− d, for otherwise your friends would never have needed
to stop at the location xpm+1

. Combining these two inequalities, we have
concluded that xqm

< L− d; but this contradicts the assumption that S is a
valid set of stopping points.

Consequently, we cannot have m < k, and so we have proved that the
greedy algorithm produces a valid set of stopping points of minimum possible
size.

Solved Exercise 2
Your friends are starting a security company that needs to obtain licenses for
n different pieces of cryptographic software. Due to regulations, they can only
obtain these licenses at the rate of at most one per month.

Each license is currently selling for a price of $100. However, they are
all becoming more expensive according to exponential growth curves: in
particular, the cost of license j increases by a factor of rj > 1each month, where
rj is a given parameter. This means that if license j is purchased t months from
now, it will cost 100 · rt

j . We will assume that all the price growth rates are
distinct; that is, ri �= rj for licenses i �= j (even though they start at the same
price of $100).

186 Chapter 4 Greedy Algorithms

The question is: Given that the company can only buy at most one license
a month, in which order should it buy the licenses so that the total amount of
money it spends is as small as possible?

Give an algorithm that takes the n rates of price growth r1, r2, . . . , rn, and
computes an order in which to buy the licenses so that the total amount of
money spent is minimized. The running time of your algorithm should be
polynomial in n.

Solution Two natural guesses for a good sequence would be to sort the ri in
decreasing order, or to sort them in increasing order. Faced with alternatives
like this, it’s perfectly reasonable to work out a small example and see if the
example eliminates at least one of them. Here we could try r1= 2, r2= 3, and
r3= 4. Buying the licenses in increasing order results in a total cost of

100(2+ 32+ 43)= 7,500,

while buying them in decreasing order results in a total cost of

100(4+ 32+ 23)= 2,100.

This tells us that increasing order is not the way to go. (On the other hand, it
doesn’t tell us immediately that decreasing order is the right answer, but our
goal was just to eliminate one of the two options.)

Let’s try proving that sorting the ri in decreasing order in fact always gives
the optimal solution. When a greedy algorithm works for problems like this,
in which we put a set of things in an optimal order, we’ve seen in the text that
it’s often effective to try proving correctness using an exchange argument.

To do this here, let’s suppose that there is an optimal solution O that
differs from our solution S. (In other words, S consists of the licenses sorted in
decreasing order.) So this optimal solution O must contain an inversion—that
is, there must exist two neighboring months t and t + 1 such that the price
increase rate of the license bought in month t (let us denote it by rt) is less
than that bought in month t + 1 (similarly, we use rt+1 to denote this). That
is, we have rt < rt+1.

We claim that by exchanging these two purchases, we can strictly improve
our optimal solution, which contradicts the assumption that O was optimal.
Therefore if we succeed in showing this, we will successfully show that our
algorithm is indeed the correct one.

Notice that if we swap these two purchases, the rest of the purchases
are identically priced. In O, the amount paid during the two months involved
in the swap is 100(rt

t + rt+1
t+1). On the other hand, if we swapped these two

purchases, we would pay 100(rt
t+1+ rt+1

t). Since the constant 100 is common

Solved Exercises 187

to both expressions, we want to show that the second term is less than the
first one. So we want to show that

rt
t+1+ rt+1

t < rt
t + rt+1

t+1

rt+1
t − rt

t < rt+1
t+1 − rt

t+1

rt
t (rt − 1) < rt

t+1(rt+1− 1).

But this last inequality is true simply because ri > 1 for all i and since rt < rt+1.

This concludes the proof of correctness. The running time of the algorithm
is O(n log n), since the sorting takes that much time and the rest (outputting)
is linear. So the overall running time is O(n log n).

Note: It’s interesting to note that things become much less straightforward
if we vary this question even a little. Suppose that instead of buying licenses
whose prices increase, you’re trying to sell off equipment whose cost is
depreciating. Item i depreciates at a factor of ri < 1 per month, starting from
$100, so if you sell it t months from now you will receive 100 · rt

i . (In other
words, the exponential rates are now less than 1, instead of greater than 1.) If
you can only sell one item per month, what is the optimal order in which to
sell them? Here, it turns out that there are cases in which the optimal solution
doesn’t put the rates in either increasing or decreasing order (as in the input
3
4 , 1

2 , 1
100).

Solved Exercise 3
Suppose you are given a connected graph G, with edge costs that you may
assume are all distinct. G has n vertices and m edges. A particular edge e of G
is specified. Give an algorithm with running time O(m+ n) to decide whether
e is contained in a minimum spanning tree of G.

Solution From the text, we know of two rules by which we can conclude
whether an edge e belongs to a minimum spanning tree: the Cut Property
(4.17) says that e is in every minimum spanning tree when it is the cheapest
edge crossing from some set S to the complement V − S; and the Cycle Property
(4.20) says that e is in no minimum spanning tree if it is the most expensive
edge on some cycle C. Let’s see if we can make use of these two rules as part
of an algorithm that solves this problem in linear time.

Both the Cut and Cycle Properties are essentially talking about how e
relates to the set of edges that are cheaper than e. The Cut Property can be
viewed as asking: Is there some set S⊆ V so that in order to get from S to V − S
without using e, we need to use an edge that is more expensive than e? And
if we think about the cycle C in the statement of the Cycle Property, going the

188 Chapter 4 Greedy Algorithms

“long way” around C (avoiding e) can be viewed as an alternate route between
the endpoints of e that only uses cheaper edges.

Putting these two observations together suggests that we should try prov-
ing the following statement.

(4.41) Edge e = (v, w) does not belong to a minimum spanning tree of G if
and only if v and w can be joined by a path consisting entirely of edges that
are cheaper than e.

Proof. First suppose that P is a v-w path consisting entirely of edges cheaper
than e. If we add e to P, we get a cycle on which e is the most expensive edge.
Thus, by the Cycle Property, e does not belong to a minimum spanning tree
of G.

On the other hand, suppose that v and w cannot be joined by a path
consisting entirely of edges cheaper than e. We will now identify a set S for
which e is the cheapest edge with one end in S and the other in V − S; if we can
do this, the Cut Property will imply that e belongs to every minimum spanning
tree. Our set S will be the set of all nodes that are reachable from v using a path
consisting only of edges that are cheaper than e. By our assumption, we have
w ∈ V − S. Also, by the definition of S, there cannot be an edge f = (x, y) that
is cheaper than e, and for which one end x lies in S and the other end y lies in
V − S. Indeed, if there were such an edge f , then since the node x is reachable
from v using only edges cheaper than e, the node y would be reachable as
well. Hence e is the cheapest edge with one end in S and the other in V − S,
as desired, and so we are done.

Given this fact, our algorithm is now simply the following. We form a graph
G′ by deleting from G all edges of weight greater than ce (as well as deleting
e itself). We then use one of the connectivity algorithms from Chapter 3 to
determine whether there is a path from v to w in G′. Statement (4.41) says that
e belongs to a minimum spanning tree if and only if there is no such path.

The running time of this algorithm is O(m+ n) to build G′, and O(m+ n)

to test for a path from v to w.

Exercises

1. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary connected, undirected graph with a distinct cost c(e) on

every edge e. Suppose e∗ is the cheapest edge in G; that is, c(e∗) < c(e) for every

Exercises 189

edge e �= e∗. Then there is a minimum spanning tree T of G that contains the

edge e∗.

2. For each of the following two statements, decidewhether it is true or false.

If it is true, give a short explanation. If it is false, give a counterexample.

(a) Suppose we are given an instance of the Minimum Spanning Tree

Problem on a graph G, with edge costs that are all positive and

distinct. Let T be a minimum spanning tree for this instance. Now

suppose we replace each edge cost ce by its square, c2
e , thereby

creating a new instance of the problem with the same graph but

different costs.

True or false? T must still be a minimum spanning tree for this

new instance.

(b) Suppose we are given an instance of the Shortest s-t Path Problem

on a directed graph G. We assume that all edge costs are positive

and distinct. Let P be a minimum-cost s-t path for this instance.

Now suppose we replace each edge cost ce by its square, c2
e , thereby

creating a new instance of the problem with the same graph but

different costs.

True or false? P must still be a minimum-cost s-t path for this

new instance.

3. You are consulting for a trucking company that does a large amount of

business shipping packages between NewYork and Boston. The volume is

high enough that they have to send a number of trucks each day between

the two locations. Trucks have a fixed limit W on the maximum amount

of weight they are allowed to carry. Boxes arrive at the New York station

one by one, and each package i has a weight wi. The trucking station

is quite small, so at most one truck can be at the station at any time.

Company policy requires that boxes are shipped in the order they arrive;

otherwise, a customer might get upset upon seeing a box that arrived

after his make it to Boston faster. At the moment, the company is using

a simple greedy algorithm for packing: they pack boxes in the order they

arrive, and whenever the next box does not fit, they send the truck on its

way.

But they wonder if they might be using too many trucks, and they

want your opinion on whether the situation can be improved. Here is

how they are thinking. Maybe one could decrease the number of trucks

needed by sometimes sending off a truck that was less full, and in this

way allow the next few trucks to be better packed.

190 Chapter 4 Greedy Algorithms

Prove that, for a given set of boxes with specified weights, the greedy

algorithm currently in use actually minimizes the number of trucks that

are needed. Your proof should follow the type of analysis we used for

the Interval Scheduling Problem: it should establish the optimality of this

greedy packing algorithm by identifying a measure under which it “stays

ahead” of all other solutions.

4. Some of your friends have gotten into the burgeoning field of time-series

data mining, in which one looks for patterns in sequences of events that

occur over time. Purchases at stock exchanges—what’s being bought—

are one source of data with a natural ordering in time. Given a long

sequence S of such events, your friends want an efficient way to detect

certain “patterns” in them—for example, they may want to know if the

four events

buy Yahoo, buy eBay, buy Yahoo, buy Oracle

occur in this sequence S, in order but not necessarily consecutively.

They begin with a collection of possible events (e.g., the possible

transactions) and a sequence S of n of these events. A given event may

occur multiple times in S (e.g., Yahoo stock may be bought many times

in a single sequence S). We will say that a sequence S′ is a subsequence

of S if there is a way to delete certain of the events from S so that the

remaining events, in order, are equal to the sequence S′. So, for example,

the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo,

buy Oracle

Their goal is to be able to dream up short sequences and quickly

detect whether they are subsequences of S. So this is the problem they

pose to you: Give an algorithm that takes two sequences of events—S′ of
length m and S of length n, each possibly containing an event more than

once—and decides in time O(m + n) whether S′ is a subsequence of S.

5. Let’s consider a long, quiet country road with houses scattered very

sparsely along it. (We can picture the road as a long line segment, with

an eastern endpoint and a western endpoint.) Further, let’s suppose that

despite the bucolic setting, the residents of all these houses are avid cell

phone users. You want to place cell phone base stations at certain points

along the road, so that every house is within four miles of one of the base

stations.

Give an efficient algorithm that achieves this goal, using as few base

stations as possible.

Exercises 191

6. Your friend is working as a camp counselor, and he is in charge of

organizing activities for a set of junior-high-school-age campers. One of

his plans is the following mini-triathalon exercise: each contestant must

swim 20 laps of a pool, then bike 10 miles, then run 3 miles. The plan is

to send the contestants out in a staggered fashion, via the following rule:

the contestants must use the pool one at a time. In other words, first one

contestant swims the 20 laps, gets out, and starts biking. As soon as this

first person is out of the pool, a second contestant begins swimming the

20 laps; as soon as he or she is out and starts biking, a third contestant

begins swimming . . . and so on.)

Each contestant has a projected swimming time (the expected time it

will take him or her to complete the 20 laps), a projected biking time (the

expected time it will take him or her to complete the 10miles of bicycling),

and a projected running time (the time it will take him or her to complete

the 3 miles of running). Your friend wants to decide on a schedule for the

triathalon: an order in which to sequence the starts of the contestants.

Let’s say that the completion time of a schedule is the earliest time at

which all contestants will be finished with all three legs of the triathalon,

assuming they each spend exactly their projected swimming, biking, and

running times on the three parts. (Again, note that participants can bike

and run simultaneously, but at most one person can be in the pool at

any time.) What’s the best order for sending people out, if one wants the

whole competition to be over as early as possible? More precisely, give

an efficient algorithm that produces a schedule whose completion time

is as small as possible.

7. The wildly popular Spanish-language search engine El Goog needs to do

a serious amount of computation every time it recompiles its index. For-

tunately, the company has at its disposal a single large supercomputer,

together with an essentially unlimited supply of high-end PCs.

They’ve broken the overall computation into n distinct jobs, labeled

J1, J2, . . . , Jn, which can be performed completely independently of one

another. Each job consists of two stages: first it needs to be preprocessed

on the supercomputer, and then it needs to be finished on one of the

PCs. Let’s say that job Ji needs pi seconds of time on the supercomputer,

followed by fi seconds of time on a PC.

Since there are at least n PCs available on the premises, the finishing

of the jobs can be performed fully in parallel—all the jobs can be pro-

cessed at the same time. However, the supercomputer can only work on

a single job at a time, so the system managers need to work out an order

in which to feed the jobs to the supercomputer. As soon as the first job

192 Chapter 4 Greedy Algorithms

in order is done on the supercomputer, it can be handed off to a PC for

finishing; at that point in time a second job can be fed to the supercom-

puter; when the second job is done on the supercomputer, it can proceed

to a PC regardless of whether or not the first job is done (since the PCs

work in parallel); and so on.

Let’s say that a schedule is an ordering of the jobs for the super-

computer, and the completion time of the schedule is the earliest time at

which all jobs will have finished processing on the PCs. This is an impor-

tant quantity to minimize, since it determines how rapidly El Goog can

generate a new index.

Give a polynomial-time algorithm that finds a schedule with as small

a completion time as possible.

8. Suppose you are given a connected graph G, with edge costs that are all

distinct. Prove that G has a unique minimum spanning tree.

9. One of the basicmotivations behind theMinimum Spanning Tree Problem

is the goal of designing a spanning network for a set of nodes with

minimum total cost. Here we explore another type of objective: designing

a spanning network for which the most expensive edge is as cheap as

possible.

Specifically, let G = (V , E) be a connected graph with n vertices, m

edges, and positive edge costs that you may assume are all distinct. Let

T = (V , E′) be a spanning tree of G; we define the bottleneck edge of T to

be the edge of T with the greatest cost.

A spanning tree T of G is aminimum-bottleneck spanning tree if there

is no spanning tree T ′ of G with a cheaper bottleneck edge.

(a) Is every minimum-bottleneck tree of G a minimum spanning tree of

G? Prove or give a counterexample.

(b) Is every minimum spanning tree of G a minimum-bottleneck tree of

G? Prove or give a counterexample.

10. Let G = (V , E) be an (undirected) graph with costs ce ≥ 0 on the edges e ∈ E.

Assume you are given a minimum-cost spanning tree T in G. Now assume

that a new edge is added to G, connecting two nodes v, w ∈ V with cost c.

(a) Give an efficient algorithm to test if T remains the minimum-cost

spanning tree with the new edge added to G (but not to the tree T).

Make your algorithm run in time O(|E|). Can you do it in O(|V|) time?

Please note any assumptions you make about what data structure is

used to represent the tree T and the graph G.

Exercises 193

(b) Suppose T is no longer the minimum-cost spanning tree. Give a

linear-time algorithm (time O(|E|)) to update the tree T to the new

minimum-cost spanning tree.

11. Suppose you are given a connected graph G = (V , E), with a cost ce on

each edge e. In an earlier problem, we saw that when all edge costs are

distinct, G has a unique minimum spanning tree. However, G may have

many minimum spanning trees when the edge costs are not all distinct.

Here we formulate the question: Can Kruskal’s Algorithm bemade to find

all the minimum spanning trees of G?

Recall that Kruskal’s Algorithm sorted the edges in order of increas-

ing cost, then greedily processed edges one by one, adding an edge e as

long as it did not form a cycle. When some edges have the same cost, the

phrase “in order of increasing cost” has to be specified a little more care-

fully: we’ll say that an ordering of the edges is valid if the corresponding

sequence of edge costs is nondecreasing. We’ll say that a valid execution

of Kruskal’s Algorithm is one that begins with a valid ordering of the

edges of G.

For any graph G, and any minimum spanning tree T of G, is there a

valid execution of Kruskal’s Algorithm on G that produces T as output?

Give a proof or a counterexample.

12. Suppose you have n video streams that need to be sent, one after another,

over a communication link. Stream i consists of a total of bi bits that need

to be sent, at a constant rate, over a period of ti seconds. You cannot send

two streams at the same time, so you need to determine a schedule for the

streams: an order in which to send them. Whichever order you choose,

there cannot be any delays between the end of one stream and the start

of the next. Suppose your schedule starts at time 0 (and therefore ends at

time
∑n

i=1 ti, whichever order you choose). We assume that all the values

bi and ti are positive integers.

Now, because you’re just one user, the link does not want you taking

up too much bandwidth, so it imposes the following constraint, using a

fixed parameter r:

(∗) For each natural number t > 0, the total number of bits you send over the

time interval from 0 to t cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at

0, not for time intervals that start at any other value.

We say that a schedule is valid if it satisfies the constraint (∗) imposed

by the link.

194 Chapter 4 Greedy Algorithms

The Problem. Given a set of n streams, each specified by its number of

bits bi and its time duration ti, as well as the link parameter r, determine

whether there exists a valid schedule.

Example. Suppose we have n = 3 streams, with

(b1, t1)= (2000, 1), (b2, t2)= (6000, 2), (b3, t3)= (2000, 1),

and suppose the link’s parameter is r = 5000. Then the schedule that runs

the streams in the order 1, 2, 3, is valid, since the constraint (∗) is satisfied:
t = 1: the whole first stream has been sent, and 2000 < 5000 · 1
t = 2: half of the second stream has also been sent,

and 2000+ 3000 < 5000 · 2
Similar calculations hold for t = 3 and t = 4.

(a) Consider the following claim:

Claim: There exists a valid schedule if and only if each stream i satisfies
bi ≤ rti.

Decide whether you think the claim is true or false, and give a proof

of either the claim or its negation.

(b) Give an algorithm that takes a set of n streams, each specified by its

number of bits bi and its time duration ti, as well as the link parameter

r, and determines whether there exists a valid schedule. The running

time of your algorithm should be polynomial in n.

13. A small business—say, a photocopying service with a single large

machine—faces the following scheduling problem. Each morning they

get a set of jobs from customers. They want to do the jobs on their single

machine in an order that keeps their customers happiest. Customer i’s

job will take ti time to complete. Given a schedule (i.e., an ordering of the

jobs), let Ci denote the finishing time of job i. For example, if job j is the

first to be done, we would have Cj = tj; and if job j is done right after job

i, we would have Cj = Ci + tj. Each customer i also has a given weight wi

that represents his or her importance to the business. The happiness of

customer i is expected to be dependent on the finishing time of i’s job.

So the company decides that they want to order the jobs to minimize the

weighted sum of the completion times,
∑n

i=1 wiCi.

Design an efficient algorithm to solve this problem. That is, you are

given a set of n jobs with a processing time ti and a weight wi for each

job. You want to order the jobs so as to minimize the weighted sum of

the completion times,
∑n

i=1 wiCi.

Example. Suppose there are two jobs: the first takes time t1= 1 and has

weight w1= 10, while the second job takes time t2 = 3 and has weight

Exercises 195

w2 = 2. Then doing job 1 first would yield a weighted completion time

of 10 · 1+ 2 · 4= 18, while doing the second job first would yield the larger

weighted completion time of 10 · 4+ 2 · 3= 46.

14. You’re working with a group of security consultants who are helping to

monitor a large computer system. There’s particular interest in keeping

track of processes that are labeled “sensitive.” Each such process has a

designated start time and finish time, and it runs continuously between

these times; the consultants have a list of the planned start and finish

times of all sensitive processes that will be run that day.

As a simple first step, they’ve written a program called status_check

that, when invoked, runs for a few seconds and records various pieces

of logging information about all the sensitive processes running on the

system at that moment. (We’ll model each invocation of status_check

as lasting for only this single point in time.) What they’d like to do is to

run status_check as few times as possible during the day, but enough

that for each sensitive process P, status_check is invoked at least once

during the execution of process P.

(a) Give an efficient algorithm that, given the start and finish times of

all the sensitive processes, finds as small a set of times as possi-

ble at which to invoke status_check, subject to the requirement

that status_check is invoked at least once during each sensitive

process P.

(b) While you were designing your algorithm, the security consultants

were engaging in a little back-of-the-envelope reasoning. “Suppose

we can find a set of k sensitive processes with the property that no

two are ever running at the same time. Then clearly your algorithm

will need to invoke status_check at least k times: no one invocation

of status_check can handle more than one of these processes.”

This is true, of course, and after some further discussion, you all

begin wondering whether something stronger is true as well, a kind

of converse to the above argument. Suppose that k∗ is the largest

value of k such that one can find a set of k sensitive processes with

no two ever running at the same time. Is it the case that there must

be a set of k∗ times at which you can run status_check so that some

invocation occurs during the execution of each sensitive process? (In

other words, the kind of argument in the previous paragraph is really

the only thing forcing you to need a lot of invocations of status_

check.) Decide whether you think this claim is true or false, and give

a proof or a counterexample.

196 Chapter 4 Greedy Algorithms

15. The manager of a large student union on campus comes to you with the

following problem. She’s in charge of a group of n students, each of whom

is scheduled to work one shift during the week. There are different jobs

associated with these shifts (tending themain desk, helping with package

delivery, rebooting cranky information kiosks, etc.), but we can view each

shift as a single contiguous interval of time. There can be multiple shifts

going on at once.

She’s trying to choose a subset of these n students to form a super-

vising committee that she can meet with once a week. She considers such

a committee to be complete if, for every student not on the committee,

that student’s shift overlaps (at least partially) the shift of some student

who is on the committee. In this way, each student’s performance can be

observed by at least one person who’s serving on the committee.

Give an efficient algorithm that takes the schedule of n shifts and

produces a complete supervising committee containing as few students

as possible.

Example. Suppose n = 3, and the shifts are

Monday 4 P.M.–Monday 8 P.M.,

Monday 6 P.M.–Monday 10 P.M.,

Monday 9 P.M.–Monday 11 P.M..

Then the smallest complete supervising committee would consist of just

the second student, since the second shift overlaps both the first and the

third.

16. Some security consultants working in the financial domain are cur-

rently advising a client who is investigating a potential money-laundering

scheme. The investigation thus far has indicated that n suspicious trans-

actions took place in recent days, each involvingmoney transferred into a

single account. Unfortunately, the sketchy nature of the evidence to date

means that they don’t know the identity of the account, the amounts of

the transactions, or the exact times at which the transactions took place.

What they do have is an approximate time-stamp for each transaction; the

evidence indicates that transaction i took place at time ti ± ei, for some

“margin of error” ei. (In other words, it took place sometime between ti − ei

and ti + ei.) Note that different transactions may have different margins

of error.

In the last day or so, they’ve come across a bank account that (for

other reasons we don’t need to go into here) they suspect might be the

one involved in the crime. There are n recent events involving the account,

which took place at times x1, x2, . . . , xn. To see whether it’s plausible

that this really is the account they’re looking for, they’re wondering

Exercises 197

whether it’s possible to associate each of the account’s n events with

a distinct one of the n suspicious transactions in such a way that, if the

account event at time xi is associated with the suspicious transaction that

occurred approximately at time tj, then |tj − xi| ≤ ej. (In other words, they

want to know if the activity on the account lines up with the suspicious

transactions to within the margin of error; the tricky part here is that

they don’t know which account event to associate with which suspicious

transaction.)

Give an efficient algorithm that takes the given data and decides

whether such an association exists. If possible, you should make the

running time be at most O(n2).

17. Consider the following variation on the Interval Scheduling Problem. You

have a processor that can operate 24 hours a day, every day. People

submit requests to run daily jobs on the processor. Each such job comes

with a start time and an end time; if the job is accepted to run on the

processor, it must run continuously, every day, for the period between

its start and end times. (Note that certain jobs can begin before midnight

and end after midnight; this makes for a type of situation different from

what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as

possible (regardless of their length), subject to the constraint that the

processor can run at most one job at any given point in time. Provide an

algorithm to do this with a running time that is polynomial in n. You may

assume for simplicity that no two jobs have the same start or end times.

Example. Consider the following four jobs, specified by (start-time, end-

time) pairs.

(6 P.M., 6 A.M.), (9 P.M., 4 A.M.), (3 A.M., 2 P.M.), (1 P.M., 7 P.M.).

The optimal solution would be to pick the two jobs (9 P.M., 4 A.M.) and (1

P.M., 7 P.M.), which can be scheduled without overlapping.

18. Your friends are planning an expedition to a small town deep in the Cana-

dian north next winter break. They’ve researched all the travel options

and have drawn up a directed graph whose nodes represent intermediate

destinations and edges represent the roads between them.

In the course of this, they’ve also learned that extremeweather causes

roads in this part of the world to become quite slow in the winter and

may cause large travel delays. They’ve found an excellent travel Web site

that can accurately predict how fast they’ll be able to travel along the

roads; however, the speed of travel depends on the time of year. More

precisely, the Web site answers queries of the following form: given an

198 Chapter 4 Greedy Algorithms

edge e= (v, w) connecting two sites v and w, and given a proposed starting

time t from location v, the site will return a value fe(t), the predicted

arrival time at w. The Web site guarantees that fe(t) ≥ t for all edges e

and all times t (you can’t travel backward in time), and that fe(t) is a

monotone increasing function of t (that is, you do not arrive earlier by

starting later). Other than that, the functions fe(t) may be arbitrary. For

example, in areas where the travel time does not vary with the season,

we would have fe(t)= t + �e, where �e is the time needed to travel from the

beginning to the end of edge e.

Your friends want to use the Web site to determine the fastest way

to travel through the directed graph from their starting point to their

intended destination. (You should assume that they start at time 0, and
that all predictions made by the Web site are completely correct.) Give a

polynomial-time algorithm to do this, where we treat a single query to

the Web site (based on a specific edge e and a time t) as taking a single

computational step.

19. A group of network designers at the communications company CluNet

find themselves facing the following problem. They have a connected

graph G = (V , E), in which the nodes represent sites that want to com-

municate. Each edge e is a communication link, with a given available

bandwidth be.

For each pair of nodes u, v ∈ V, they want to select a single u-v path P

onwhich this pair will communicate. The bottleneck rate b(P) of this path P

is theminimumbandwidth of any edge it contains; that is, b(P)=mine∈P be.

The best achievable bottleneck rate for the pair u, v in G is simply the

maximum, over all u-v paths P in G, of the value b(P).

It’s getting to be very complicated to keep track of a path for each pair

of nodes, and so one of the network designers makes a bold suggestion:

Maybe one can find a spanning tree T of G so that for every pair of nodes

u, v, the unique u-v path in the tree actually attains the best achievable

bottleneck rate for u, v in G. (In other words, even if you could choose

any u-v path in the whole graph, you couldn’t do better than the u-v path

in T .)

This idea is roundly heckled in the offices of CluNet for a few days,

and there’s a natural reason for the skepticism: each pair of nodes

might want a very different-looking path to maximize its bottleneck rate;

why should there be a single tree that simultaneously makes everybody

happy? But after some failed attempts to rule out the idea, people begin

to suspect it could be possible.

Exercises 199

Show that such a tree exists, and give an efficient algorithm to find

one. That is, give an algorithm constructing a spanning tree T in which,

for each u, v ∈ V, the bottleneck rate of the u-v path in T is equal to the

best achievable bottleneck rate for the pair u, v in G.

20. Every September, somewhere in a far-away mountainous part of the

world, the county highway crews get together and decide which roads to

keep clear through the coming winter. There are n towns in this county,

and the road system can be viewed as a (connected) graph G = (V , E) on

this set of towns, each edge representing a road joining two of them.

In the winter, people are high enough up in the mountains that they

stop worrying about the length of roads and start worrying about their

altitude—this is really what determines how difficult the trip will be.

So each road—each edge e in the graph—is annotated with a number

ae that gives the altitude of the highest point on the road. We’ll assume

that no two edges have exactly the same altitude value ae. The height of

a path P in the graph is then the maximum of ae over all edges e on P.

Finally, a path between towns i and j is declared to be winter-optimal if it

achieves the minimum possible height over all paths from i to j.

The highway crews are going to select a set E′ ⊆ E of the roads to keep

clear through the winter; the rest will be left unmaintained and kept off

limits to travelers. They all agree that whichever subset of roads E′ they
decide to keep clear, it should have the property that (V , E′) is a connected

subgraph; and more strongly, for every pair of towns i and j, the height

of the winter-optimal path in (V , E′) should be no greater than it is in the

full graph G = (V , E). We’ll say that (V , E′) is aminimum-altitude connected

subgraph if it has this property.

Given that they’re going to maintain this key property, however, they

otherwise want to keep as few roads clear as possible. One year, they hit

upon the following conjecture:

The minimum spanning tree of G, with respect to the edge weights ae, is a

minimum-altitude connected subgraph.

(In an earlier problem, we claimed that there is a unique minimum span-

ning tree when the edge weights are distinct. Thus, thanks to the assump-

tion that all ae are distinct, it is okay for us to speak of the minimum

spanning tree.)

Initially, this conjecture is somewhat counterintuitive, since the min-

imum spanning tree is trying to minimize the sum of the values ae, while

the goal of minimizing altitude seems to be asking for a fairly different

thing. But lacking an argument to the contrary, they begin considering an

even bolder second conjecture:

200 Chapter 4 Greedy Algorithms

A subgraph (V , E′) is a minimum-altitude connected subgraph if and only if

it contains the edges of the minimum spanning tree.

Note that this second conjecture would immediately imply the first one,

since a minimum spanning tree contains its own edges.

So here’s the question.

(a) Is the first conjecture true, for all choices of G and distinct altitudes

ae? Give a proof or a counterexample with explanation.

(b) Is the second conjecture true, for all choices of G and distinct alti-

tudes ae? Give a proof or a counterexample with explanation.

21. Let us say that a graph G = (V , E) is a near-tree if it is connected and has at

most n+ 8 edges, where n= |V|. Give an algorithm with running time O(n)

that takes a near-tree G with costs on its edges, and returns a minimum

spanning tree of G. You may assume that all the edge costs are distinct.

22. Consider the Minimum Spanning Tree Problem on an undirected graph

G = (V , E), with a cost ce ≥ 0 on each edge, where the costs may not all

be different. If the costs are not all distinct, there can in general be

many distinct minimum-cost solutions. Suppose we are given a spanning

tree T ⊆ E with the guarantee that for every e ∈ T , e belongs to some

minimum-cost spanning tree in G. Can we conclude that T itself must

be a minimum-cost spanning tree in G? Give a proof or a counterexample

with explanation.

23. Recall the problem of computing a minimum-cost arborescence in a

directed graph G = (V , E), with a cost ce ≥ 0 on each edge. Here we will

consider the case inwhichG is a directed acyclic graph—that is, it contains

no directed cycles.

As in general directed graphs, there can be many distinct minimum-

cost solutions. Suppose we are given a directed acyclic graph G = (V , E),

and an arborescence A⊆ E with the guarantee that for every e ∈ A, e

belongs to some minimum-cost arborescence in G. Can we conclude that

A itself must be a minimum-cost arborescence in G? Give a proof or a

counterexample with explanation.

24. Timing circuits are a crucial component of VLSI chips. Here’s a simple

model of such a timing circuit. Consider a complete balanced binary tree

with n leaves, where n is a power of two. Each edge e of the tree has an

associated length �e, which is a positive number. The distance from the

root to a given leaf is the sum of the lengths of all the edges on the path

from the root to the leaf.

Exercises 201

c dba

v�

v

v��

2

2 1 2 1

1

Figure 4.20 An instance of the zero-skew problem, described in Exercise 23.

The root generates a clock signal which is propagated along the edges

to the leaves. We’ll assume that the time it takes for the signal to reach a

given leaf is proportional to the distance from the root to the leaf.

Now, if all leaves do not have the same distance from the root, then

the signal will not reach the leaves at the same time, and this is a big

problem. We want the leaves to be completely synchronized, and all to

receive the signal at the same time. To make this happen, we will have to

increase the lengths of certain edges, so that all root-to-leaf paths have

the same length (we’re not able to shrink edge lengths). If we achieve this,

then the tree (with its new edge lengths) will be said to have zero skew .

Our goal is to achieve zero skew in a way that keeps the sum of all the

edge lengths as small as possible.

Give an algorithm that increases the lengths of certain edges so that

the resulting tree has zero skew and the total edge length is as small as

possible.

Example.Consider the tree in Figure 4.20, inwhich letters name the nodes

and numbers indicate the edge lengths.

The unique optimal solution for this instance would be to take the

three length-1 edges and increase each of their lengths to 2. The resulting

tree has zero skew, and the total edge length is 12, the smallest possible.

25. Suppose we are given a set of points P = {p1, p2, . . . , pn}, together with a

distance function d on the set P; d is simply a function on pairs of points in

P with the properties that d(pi, pj)= d(pj , pi) > 0 if i �= j, and that d(pi, pi)= 0
for each i.

We define a hierarchical metric on P to be any distance function τ that

can be constructed as follows. We build a rooted tree T with n leaves, and

we associate with each node v of T (both leaves and internal nodes) a

height hv. These heights must satisfy the properties that h(v)= 0 for each

202 Chapter 4 Greedy Algorithms

leaf v, and if u is the parent of v in T , then h(u)≥ h(v). We place each point

in P at a distinct leaf in T . Now, for any pair of points pi and pj, their

distance τ(pi, pj) is defined as follows. We determine the least common

ancestor v in T of the leaves containing pi and pj, and define τ(pi, pj)= hv.

We say that a hierarchical metric τ is consistent with our distance

function d if, for all pairs i, j, we have τ(pi, pj)≤ d(pi, pj).

Give a polynomial-time algorithm that takes the distance function d

and produces a hierarchical metric τ with the following properties.

(i) τ is consistent with d, and

(ii) if τ ′ is any other hierarchical metric consistent with d, then τ ′(pi, pj)≤
τ(pi, pj) for each pair of points pi and pj.

26. One of the first things you learn in calculus is how to minimize a dif-

ferentiable function such as y = ax2+ bx + c, where a > 0. The Minimum

Spanning Tree Problem, on the other hand, is a minimization problem of

a very different flavor: there are now just a finite number of possibilities

for how the minimum might be achieved—rather than a continuum of

possibilities—and we are interested in how to perform the computation

without having to exhaust this (huge) finite number of possibilities.

One can ask what happens when these two minimization issues

are brought together, and the following question is an example of this.

Supposewe have a connected graph G= (V , E). Each edge e nowhas a time-

varying edge cost given by a function fe :R→R. Thus, at time t, it has cost

fe(t). We’ll assume that all these functions are positive over their entire

range. Observe that the set of edges constituting the minimum spanning

tree of G may change over time. Also, of course, the cost of the minimum

spanning tree of G becomes a function of the time t; we’ll denote this

function cG(t). A natural problem then becomes: find a value of t at which

cG(t) is minimized.

Suppose each function fe is a polynomial of degree 2: fe(t)= aet
2 +

bet + ce , where ae > 0. Give an algorithm that takes the graph G and the

values {(ae , be , ce) : e ∈ E} and returns a value of the time t at which the

minimum spanning tree has minimum cost. Your algorithm should run

in time polynomial in the number of nodes and edges of the graph G. You

may assume that arithmetic operations on the numbers {(ae , be , ce)} can
be done in constant time per operation.

27. In trying to understand the combinatorial structure of spanning trees,

we can consider the space of all possible spanning trees of a given graph

and study the properties of this space. This is a strategy that has been

applied to many similar problems as well.

Exercises 203

Here is one way to do this. Let G be a connected graph, and T and T ′

two different spanning trees of G. We say that T and T ′ are neighbors if

T contains exactly one edge that is not in T ′, and T ′ contains exactly one

edge that is not in T .

Now, from any graph G, we can build a (large) graph H as follows.

The nodes of H are the spanning trees of G, and there is an edge between

two nodes of H if the corresponding spanning trees are neighbors.

Is it true that, for any connected graph G, the resulting graph H

is connected? Give a proof that H is always connected, or provide an

example (with explanation) of a connected graph G for which H is not

connected.

28. Suppose you’re a consultant for the networking company CluNet, and

they have the following problem. The network that they’re currently

working on is modeled by a connected graph G = (V , E) with n nodes.

Each edge e is a fiber-optic cable that is owned by one of two companies—

creatively named X and Y—and leased to CluNet.

Their plan is to choose a spanning tree T of G and upgrade the links

corresponding to the edges of T . Their business relations people have

already concluded an agreement with companies X and Y stipulating a

number k so that in the tree T that is chosen, k of the edges will be owned

by X and n − k − 1 of the edges will be owned by Y.

CluNet management now faces the following problem. It is not at all

clear to them whether there even exists a spanning tree T meeting these

conditions, or how to find one if it exists. So this is the problem they put

to you: Give a polynomial-time algorithm that takes G, with each edge

labeled X or Y, and either (i) returns a spanning tree with exactly k edges

labeled X, or (ii) reports correctly that no such tree exists.

29. Given a list of n natural numbers d1, d2, . . . , dn, show how to decide

in polynomial time whether there exists an undirected graph G = (V , E)

whose node degrees are precisely the numbers d1, d2, . . . , dn. (That is, if

V = {v1, v2, . . . , vn}, then the degree of vi should be exactly di.) G should not

contain multiple edges between the same pair of nodes, or “loop” edges

with both endpoints equal to the same node.

30. Let G = (V , E) be a graph with n nodes in which each pair of nodes is

joined by an edge. There is a positive weight wij on each edge (i, j); and

we will assume these weights satisfy the triangle inequality wik ≤wij +wjk.
For a subset V ′ ⊆ V, we will use G[V ′] to denote the subgraph (with edge

weights) induced on the nodes in V ′.

204 Chapter 4 Greedy Algorithms

We are given a set X ⊆ V of k terminals that must be connected by

edges. We say that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V, together

with a spanning subtree T of G[Z]. The weight of the Steiner tree is the

weight of the tree T .

Show that the problem of finding a minimum-weight Steiner tree on

X can be solved in time O(nO(k)).

31. Let’s go back to the original motivation for the Minimum Spanning Tree

Problem. We are given a connected, undirected graph G = (V , E) with

positive edge lengths {�e}, and we want to find a spanning subgraph of

it. Now suppose we are willing to settle for a subgraph H = (V , F) that is

“denser” than a tree, and we are interested in guaranteeing that, for each

pair of vertices u, v ∈ V, the length of the shortest u-v path in H is not

much longer than the length of the shortest u-v path in G. By the length

of a path P here, we mean the sum of �e over all edges e in P.

Here’s a variant of Kruskal’s Algorithm designed to produce such a

subgraph.

. First we sort all the edges in order of increasing length. (You may

assume all edge lengths are distinct.)

. We then construct a subgraph H = (V , F) by considering each edge in

order.

. When we come to edge e = (u, v), we add e to the subgraph H if there

is currently no u-v path in H. (This is what Kruskal’s Algorithm would

do as well.) On the other hand, if there is a u-v path in H, we let duv

denote the length of the shortest such path; again, length is with

respect to the values {�e}. We add e to H if 3�e < duv.

In other words, we add an edge even when u and v are already in the same

connected component, provided that the addition of the edge reduces

their shortest-path distance by a sufficient amount.

Let H = (V , F) be the subgraph of G returned by the algorithm.

(a) Prove that for every pair of nodes u, v ∈ V, the length of the shortest

u-v path in H is at most three times the length of the shortest u-v

path in G.

(b) Despite its ability to approximately preserve shortest-path distances,

the subgraph H produced by the algorithm cannot be too dense.

Let f (n) denote the maximum number of edges that can possibly

be produced as the output of this algorithm, over all n-node input

graphs with edge lengths. Prove that

lim
n→∞

f (n)

n2
= 0.

Notes and Further Reading 205

32. Consider a directed graph G = (V , E) with a root r ∈ V and nonnegative

costs on the edges. In this problem we consider variants of the minimum-

cost arborescence algorithm.

(a) The algorithm discussed in Section 4.9 works as follows. We modify

the costs, consider the subgraph of zero-cost edges, look for a

directed cycle in this subgraph, and contract it (if one exists). Argue

briefly that instead of looking for cycles, we can instead identify and

contract strong components of this subgraph.

(b) In the course of the algorithm, we defined yv to be the minimum

cost of an edge entering v, and we modified the costs of all edges e

entering node v to be c′e = ce − yv. Suppose we instead use the follow-

ing modified cost: c′′e =max(0, ce − 2yv). This new change is likely to

turn more edges to 0 cost. Suppose now we find an arborescence T

of 0 cost. Prove that this T has cost at most twice the cost of the

minimum-cost arborescence in the original graph.

(c) Assume you do not find an arborescence of 0 cost. Contract all 0-

cost strong components and recursively apply the same procedure

on the resulting graph until an arborescence is found. Prove that this

T has cost at most twice the cost of the minimum-cost arborescence

in the original graph.

33. Suppose you are given a directed graph G = (V , E) in which each edge has

a cost of either 0 or 1. Also suppose that G has a node r such that there is a

path from r to every other node in G. You are also given an integer k. Give a

polynomial-time algorithm that either constructs an arborescence rooted

at r of cost exactly k, or reports (correctly) that no such arborescence

exists.

Notes and Further Reading

Due to their conceptual cleanness and intuitive appeal, greedy algorithms have
a long history and many applications throughout computer science. In this
chapter we focused on cases in which greedy algorithms find the optimal
solution. Greedy algorithms are also often used as simple heuristics even when
they are not guaranteed to find the optimal solution. In Chapter 11 we will
discuss greedy algorithms that find near-optimal approximate solutions.

As discussed in Chapter 1, Interval Scheduling can be viewed as a special
case of the Independent Set Problem on a graph that represents the overlaps
among a collection of intervals. Graphs arising this way are called interval
graphs, and they have been extensively studied; see, for example, the book
by Golumbic (1980). Not just Independent Set but many hard computational

206 Chapter 4 Greedy Algorithms

problems become much more tractable when restricted to the special case of
interval graphs.

Interval Scheduling and the problem of scheduling to minimize the max-
imum lateness are two of a range of basic scheduling problems for which
a simple greedy algorithm can be shown to produce an optimal solution. A
wealth of related problems can be found in the survey by Lawler, Lenstra,
Rinnooy Kan, and Shmoys (1993).

The optimal algorithm for caching and its analysis are due to Belady
(1966). As we mentioned in the text, under real operating conditions caching
algorithms must make eviction decisions in real time without knowledge of
future requests. We will discuss such caching strategies in Chapter 13.

The algorithm for shortest paths in a graph with nonnegative edge lengths
is due to Dijkstra (1959). Surveys of approaches to the Minimum Spanning Tree
Problem, together with historical background, can be found in the reviews by
Graham and Hell (1985) and Nesetril (1997).

The single-link algorithm is one of the most widely used approaches to
the general problem of clustering; the books by Anderberg (1973), Duda, Hart,
and Stork (2001), and Jain and Dubes (1981) survey a variety of clustering
techniques.

The algorithm for optimal prefix codes is due to Huffman (1952); the ear-
lier approaches mentioned in the text appear in the books by Fano (1949) and
Shannon and Weaver (1949). General overviews of the area of data compres-
sion can be found in the book by Bell, Cleary, and Witten (1990) and the
survey by Lelewer and Hirschberg (1987). More generally, this topic belongs
to the area of information theory, which is concerned with the representation
and encoding of digital information. One of the founding works in this field
is the book by Shannon and Weaver (1949), and the more recent textbook by
Cover and Thomas (1991) provides detailed coverage of the subject.

The algorithm for finding minimum-cost arborescences is generally cred-
ited to Chu and Liu (1965) and to Edmonds (1967) independently. As discussed
in the chapter, this multi-phase approach stretches our notion of what consti-
tutes a greedy algorithm. It is also important from the perspective of linear
programming, since in that context it can be viewed as a fundamental ap-
plication of the pricing method, or the primal-dual technique, for designing
algorithms. The book by Nemhauser and Wolsey (1988) develops these con-
nections to linear programming. We will discuss this method in Chapter 11 in
the context of approximation algorithms.

More generally, as we discussed at the outset of the chapter, it is hard to
find a precise definition of what constitutes a greedy algorithm. In the search
for such a definition, it is not even clear that one can apply the analogue

Notes and Further Reading 207

of U.S. Supreme Court Justice Potter Stewart’s famous test for obscenity—
“I know it when I see it”—since one finds disagreements within the research
community on what constitutes the boundary, even intuitively, between greedy
and nongreedy algorithms. There has been research aimed at formalizing
classes of greedy algorithms: the theory of matroids is one very influential
example (Edmonds 1971; Lawler 2001); and the paper of Borodin, Nielsen, and
Rackoff (2002) formalizes notions of greedy and “greedy-type” algorithms, as
well as providing a comparison to other formal work on this question.

Notes on the Exercises Exercise 24 is based on results of M. Edahiro, T. Chao,
Y. Hsu, J. Ho, K. Boese, and A. Kahng; Exercise 31 is based on a result of Ingo
Althofer, Gautam Das, David Dobkin, and Deborah Joseph.

This page intentionally left blank

Chapter 5

Divide and Conquer

Divide and conquer refers to a class of algorithmic techniques in which one
breaks the input into several parts, solves the problem in each part recursively,
and then combines the solutions to these subproblems into an overall solution.
In many cases, it can be a simple and powerful method.

Analyzing the running time of a divide and conquer algorithm generally
involves solving a recurrence relation that bounds the running time recursively
in terms of the running time on smaller instances. We begin the chapter with
a general discussion of recurrence relations, illustrating how they arise in the
analysis and describing methods for working out upper bounds from them.

We then illustrate the use of divide and conquer with applications to
a number of different domains: computing a distance function on different
rankings of a set of objects; finding the closest pair of points in the plane;
multiplying two integers; and smoothing a noisy signal. Divide and conquer
will also come up in subsequent chapters, since it is a method that often works
well when combined with other algorithm design techniques. For example, in
Chapter 6 we will see it combined with dynamic programming to produce a
space-efficient solution to a fundamental sequence comparison problem, and
in Chapter 13 we will see it combined with randomization to yield a simple
and efficient algorithm for computing the median of a set of numbers.

One thing to note about many settings in which divide and conquer
is applied, including these, is that the natural brute-force algorithm may
already be polynomial time, and the divide and conquer strategy is serving
to reduce the running time to a lower polynomial. This is in contrast to most
of the problems in the previous chapters, for example, where brute force was
exponential and the goal in designing a more sophisticated algorithm was to
achieve any kind of polynomial running time. For example, we discussed in

210 Chapter 5 Divide and Conquer

Chapter 2 that the natural brute-force algorithm for finding the closest pair
among n points in the plane would simply measure all �(n2) distances, for
a (polynomial) running time of �(n2). Using divide and conquer, we will
improve the running time to O(n log n). At a high level, then, the overall theme
of this chapter is the same as what we’ve been seeing earlier: that improving on
brute-force search is a fundamental conceptual hurdle in solving a problem
efficiently, and the design of sophisticated algorithms can achieve this. The
difference is simply that the distinction between brute-force search and an
improved solution here will not always be the distinction between exponential
and polynomial.

5.1 A First Recurrence: The Mergesort Algorithm
To motivate the general approach to analyzing divide-and-conquer algorithms,
we begin with the Mergesort Algorithm. We discussed the Mergesort Algorithm
briefly in Chapter 2, when we surveyed common running times for algorithms.
Mergesort sorts a given list of numbers by first dividing them into two equal
halves, sorting each half separately by recursion, and then combining the
results of these recursive calls—in the form of the two sorted halves—using
the linear-time algorithm for merging sorted lists that we saw in Chapter 2.

To analyze the running time of Mergesort, we will abstract its behavior into
the following template, which describes many common divide-and-conquer
algorithms.

(†) Divide the input into two pieces of equal size; solve the two subproblems
on these pieces separately by recursion; and then combine the two results
into an overall solution, spending only linear time for the initial division
and final recombining.

In Mergesort, as in any algorithm that fits this style, we also need a base case
for the recursion, typically having it “bottom out” on inputs of some constant
size. In the case of Mergesort, we will assume that once the input has been
reduced to size 2, we stop the recursion and sort the two elements by simply
comparing them to each other.

Consider any algorithm that fits the pattern in (†), and let T(n) denote its
worst-case running time on input instances of size n. Supposing that n is even,
the algorithm spends O(n) time to divide the input into two pieces of size n/2
each; it then spends time T(n/2) to solve each one (since T(n/2) is the worst-
case running time for an input of size n/2); and finally it spends O(n) time
to combine the solutions from the two recursive calls. Thus the running time
T(n) satisfies the following recurrence relation.

5.1 A First Recurrence: The Mergesort Algorithm 211

(5.1) For some constant c,

T(n)≤ 2T(n/2)+ cn

when n > 2, and

T(2)≤ c.

The structure of (5.1) is typical of what recurrences will look like: there’s an
inequality or equation that bounds T(n) in terms of an expression involving
T(k) for smaller values k; and there is a base case that generally says that
T(n) is equal to a constant when n is a constant. Note that one can also write
(5.1) more informally as T(n) ≤ 2T(n/2) + O(n), suppressing the constant
c. However, it is generally useful to make c explicit when analyzing the
recurrence.

To keep the exposition simpler, we will generally assume that parameters
like n are even when needed. This is somewhat imprecise usage; without this
assumption, the two recursive calls would be on problems of size �n/2� and
�n/2, and the recurrence relation would say that

T(n)≤ T(�n/2�)+ T(�n/2)+ cn

for n ≥ 2. Nevertheless, for all the recurrences we consider here (and for most
that arise in practice), the asymptotic bounds are not affected by the decision
to ignore all the floors and ceilings, and it makes the symbolic manipulation
much cleaner.

Now (5.1) does not explicitly provide an asymptotic bound on the growth
rate of the function T; rather, it specifies T(n) implicitly in terms of its values
on smaller inputs. To obtain an explicit bound, we need to solve the recurrence
relation so that T appears only on the left-hand side of the inequality, not the
right-hand side as well.

Recurrence solving is a task that has been incorporated into a number
of standard computer algebra systems, and the solution to many standard
recurrences can now be found by automated means. It is still useful, however,
to understand the process of solving recurrences and to recognize which
recurrences lead to good running times, since the design of an efficient divide-
and-conquer algorithm is heavily intertwined with an understanding of how
a recurrence relation determines a running time.

Approaches to Solving Recurrences
There are two basic ways one can go about solving a recurrence, each of which
we describe in more detail below.

212 Chapter 5 Divide and Conquer

. The most intuitively natural way to search for a solution to a recurrence is
to “unroll” the recursion, accounting for the running time across the first
few levels, and identify a pattern that can be continued as the recursion
expands. One then sums the running times over all levels of the recursion
(i.e., until it “bottoms out” on subproblems of constant size) and thereby
arrives at a total running time.

. A second way is to start with a guess for the solution, substitute it into
the recurrence relation, and check that it works. Formally, one justifies
this plugging-in using an argument by induction on n. There is a useful
variant of this method in which one has a general form for the solution,
but does not have exact values for all the parameters. By leaving these
parameters unspecified in the substitution, one can often work them out
as needed.

We now discuss each of these approaches, using the recurrence in (5.1) as an
example.

Unrolling the Mergesort Recurrence
Let’s start with the first approach to solving the recurrence in (5.1). The basic
argument is depicted in Figure 5.1.

. Analyzing the first few levels: At the first level of recursion, we have a
single problem of size n, which takes time at most cn plus the time spent
in all subsequent recursive calls. At the next level, we have two problems
each of size n/2. Each of these takes time at most cn/2, for a total of at
most cn, again plus the time in subsequent recursive calls. At the third
level, we have four problems each of size n/4, each taking time at most
cn/4, for a total of at most cn.

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

cn
Level 0: cn

Level 1: cn/2 + cn/2 = cn total

Level 2: 4(cn/4) = cn total

Figure 5.1 Unrolling the recurrence T(n)≤ 2T(n/2)+ O(n).

5.1 A First Recurrence: The Mergesort Algorithm 213

. Identifying a pattern: What’s going on in general? At level j of the
recursion, the number of subproblems has doubled j times, so there are
now a total of 2j. Each has correspondingly shrunk in size by a factor
of two j times, and so each has size n/2j, and hence each takes time at
most cn/2j. Thus level j contributes a total of at most 2j(cn/2j)= cn to
the total running time.

. Summing over all levels of recursion: We’ve found that the recurrence
in (5.1) has the property that the same upper bound of cn applies to
total amount of work performed at each level. The number of times the
input must be halved in order to reduce its size from n to 2 is log2 n.
So summing the cn work over log n levels of recursion, we get a total
running time of O(n log n).

We summarize this in the following claim.

(5.2) Any function T(·) satisfying (5.1) is bounded by O(n log n), when
n > 1.

Substituting a Solution into the Mergesort Recurrence
The argument establishing (5.2) can be used to determine that the function
T(n) is bounded by O(n log n). If, on the other hand, we have a guess for
the running time that we want to verify, we can do so by plugging it into the
recurrence as follows.

Suppose we believe that T(n) ≤ cn log2 n for all n ≥ 2, and we want to
check whether this is indeed true. This clearly holds for n = 2, since in this
case cn log2 n = 2c, and (5.1) explicitly tells us that T(2) ≤ c. Now suppose,
by induction, that T(m) ≤ cm log2 m for all values of m less than n, and we
want to establish this for T(n). We do this by writing the recurrence for T(n)

and plugging in the inequality T(n/2)≤ c(n/2) log2(n/2). We then simplify the
resulting expression by noticing that log2(n/2)= (log2 n)− 1. Here is the full
calculation.

T(n)≤ 2T(n/2)+ cn

≤ 2c(n/2) log2(n/2)+ cn

= cn[(log2 n)− 1]+ cn

= (cn log2 n)− cn + cn

= cn log2 n.

This establishes the bound we want for T(n), assuming it holds for smaller
values m < n, and thus it completes the induction argument.

214 Chapter 5 Divide and Conquer

An Approach Using Partial Substitution
There is a somewhat weaker kind of substitution one can do, in which one
guesses the overall form of the solution without pinning down the exact values
of all the constants and other parameters at the outset.

Specifically, suppose we believe that T(n) = O(n log n), but we’re not
sure of the constant inside the O(·) notation. We can use the substitution
method even without being sure of this constant, as follows. We first write
T(n) ≤ kn logb n for some constant k and base b that we’ll determine later.
(Actually, the base and the constant we’ll end up needing are related to each
other, since we saw in Chapter 2 that one can change the base of the logarithm
by simply changing the multiplicative constant in front.)

Now we’d like to know whether there is any choice of k and b that will
work in an inductive argument. So we try out one level of the induction as
follows.

T(n)≤ 2T(n/2)+ cn ≤ 2k(n/2) logb(n/2)+ cn.

It’s now very tempting to choose the base b= 2 for the logarithm, since we see
that this will let us apply the simplification log2(n/2)= (log2 n)− 1. Proceeding
with this choice, we have

T(n)≤ 2k(n/2) log2(n/2)+ cn

= 2k(n/2)[(log2 n)− 1]+ cn

= kn[(log2 n)− 1]+ cn

= (kn log2 n)− kn + cn.

Finally, we ask: Is there a choice of k that will cause this last expression to be
bounded by kn log2 n? The answer is clearly yes; we just need to choose any
k that is at least as large as c, and we get

T(n)≤ (kn log2 n)− kn + cn ≤ kn log2 n,

which completes the induction.

Thus the substitution method can actually be useful in working out the
exact constants when one has some guess of the general form of the solution.

5.2 Further Recurrence Relations
We’ve just worked out the solution to a recurrence relation, (5.1), that will
come up in the design of several divide-and-conquer algorithms later in this
chapter. As a way to explore this issue further, we now consider a class
of recurrence relations that generalizes (5.1), and show how to solve the
recurrences in this class. Other members of this class will arise in the design
of algorithms both in this and in later chapters.

5.2 Further Recurrence Relations 215

This more general class of algorithms is obtained by considering divide-
and-conquer algorithms that create recursive calls on q subproblems of size
n/2 each and then combine the results in O(n) time. This corresponds to
the Mergesort recurrence (5.1) when q = 2 recursive calls are used, but other
algorithms find it useful to spawn q > 2 recursive calls, or just a single (q= 1)
recursive call. In fact, we will see the case q > 2 later in this chapter when we
design algorithms for integer multiplication; and we will see a variant on the
case q = 1 much later in the book, when we design a randomized algorithm
for median finding in Chapter 13.

If T(n) denotes the running time of an algorithm designed in this style,
then T(n) obeys the following recurrence relation, which directly generalizes
(5.1) by replacing 2 with q:

(5.3) For some constant c,

T(n)≤ qT(n/2)+ cn

when n > 2, and

T(2)≤ c.

We now describe how to solve (5.3) by the methods we’ve seen above:
unrolling, substitution, and partial substitution. We treat the cases q > 2 and
q = 1 separately, since they are qualitatively different from each other—and
different from the case q = 2 as well.

The Case of q > 2 Subproblems
We begin by unrolling (5.3) in the case q > 2, following the style we used
earlier for (5.1). We will see that the punch line ends up being quite different.

. Analyzing the first few levels: We show an example of this for the case
q = 3 in Figure 5.2. At the first level of recursion, we have a single
problem of size n, which takes time at most cn plus the time spent in all
subsequent recursive calls. At the next level, we have q problems, each
of size n/2. Each of these takes time at most cn/2, for a total of at most
(q/2)cn, again plus the time in subsequent recursive calls. The next level
yields q2 problems of size n/4 each, for a total time of (q2/4)cn. Since
q > 2, we see that the total work per level is increasing as we proceed
through the recursion.

. Identifying a pattern: At an arbitrary level j, we have qj distinct instances,
each of size n/2j. Thus the total work performed at level j is qj(cn/2j)=
(q/2)jcn.

216 Chapter 5 Divide and Conquer

Level 0: cn total

Level 1: cn/2 + cn/2 + cn/2 = (3/2)cn total

Level 2: 9(cn/4) = (9/4)cn total

cn/2

cn/4 cn/4 cn/4

cn/2

cn/4 cn/4 cn/4

cn/2

cn/4 cn/4 cn/4

cn time, plus
recursive calls

Figure 5.2 Unrolling the recurrence T(n)≤ 3T(n/2)+ O(n).

. Summing over all levels of recursion: As before, there are log2 n levels of
recursion, and the total amount of work performed is the sum over all
these:

T(n)≤
log2 n−1∑

j=0

(
q
2

)j

cn = cn
log2 n−1∑

j=0

(
q
2

)j

.

This is a geometric sum, consisting of powers of r = q/2. We can use the
formula for a geometric sum when r > 1, which gives us the formula

T(n)≤ cn

(
r log2 n − 1

r − 1

)
≤ cn

(
r log2 n

r − 1

)
.

Since we’re aiming for an asymptotic upper bound, it is useful to figure
out what’s simply a constant; we can pull out the factor of r − 1 from
the denominator, and write the last expression as

T(n)≤
(

c
r − 1

)
nr log2 n.

Finally, we need to figure out what r log2 n is. Here we use a very handy
identity, which says that, for any a > 1 and b > 1, we have alog b= blog a.
Thus

r log2 n = nlog2 r = nlog2(q/2) = n(log2 q)−1.

Thus we have

T(n)≤
(

c
r − 1

)
n · n(log2 q)−1≤

(
c

r − 1

)
nlog2 q = O(nlog2 q).

We sum this up as follows.

5.2 Further Recurrence Relations 217

(5.4) Any function T(·) satisfying (5.3) with q > 2 is bounded by O(nlog2 q).

So we find that the running time is more than linear, since log2 q > 1,
but still polynomial in n. Plugging in specific values of q, the running time
is O(nlog2 3)= O(n1.59) when q = 3; and the running time is O(nlog2 4)= O(n2)

when q = 4. This increase in running time as q increases makes sense, of
course, since the recursive calls generate more work for larger values of q.

Applying Partial Substitution The appearance of log2 q in the exponent
followed naturally from our solution to (5.3), but it’s not necessarily an
expression one would have guessed at the outset. We now consider how an
approach based on partial substitution into the recurrence yields a different
way of discovering this exponent.

Suppose we guess that the solution to (5.3), when q > 2, has the form
T(n)≤ knd for some constants k > 0 and d > 1. This is quite a general guess,
since we haven’t even tried specifying the exponent d of the polynomial. Now
let’s try starting the inductive argument and seeing what constraints we need
on k and d. We have

T(n)≤ qT(n/2)+ cn,

and applying the inductive hypothesis to T(n/2), this expands to

T(n)≤ qk
(

n
2

)d

+ cn

= q
2d

knd + cn.

This is remarkably close to something that works: if we choose d so that
q/2d = 1, then we have T(n)≤ knd + cn, which is almost right except for the
extra term cn. So let’s deal with these two issues: first, how to choose d so we
get q/2d = 1; and second, how to get rid of the cn term.

Choosing d is easy: we want 2d = q, and so d = log2 q. Thus we see that
the exponent log2 q appears very naturally once we decide to discover which
value of d works when substituted into the recurrence.

But we still have to get rid of the cn term. To do this, we change the
form of our guess for T(n) so as to explicitly subtract it off. Suppose we try
the form T(n) ≤ knd − �n, where we’ve now decided that d = log2 q but we
haven’t fixed the constants k or �. Applying the new formula to T(n/2), this
expands to

218 Chapter 5 Divide and Conquer

T(n)≤ qk
(

n
2

)d

− q�

(
n
2

)
+ cn

= q
2d

knd − q�

2
n + cn

= knd − q�

2
n + cn

= knd − (
q�

2
− c)n.

This now works completely, if we simply choose � so that (
q�
2 − c)= �: in other

words, �= 2c/(q − 2). This completes the inductive step for n. We also need
to handle the base case n = 2, and this we do using the fact that the value of
k has not yet been fixed: we choose k large enough so that the formula is a
valid upper bound for the case n = 2.

The Case of One Subproblem
We now consider the case of q= 1in (5.3), since this illustrates an outcome

of yet another flavor. While we won’t see a direct application of the recurrence
for q = 1 in this chapter, a variation on it comes up in Chapter 13, as we
mentioned earlier.

We begin by unrolling the recurrence to try constructing a solution.

. Analyzing the first few levels: We show the first few levels of the recursion
in Figure 5.3. At the first level of recursion, we have a single problem of
size n, which takes time at most cn plus the time spent in all subsequent
recursive calls. The next level has one problem of size n/2, which
contributes cn/2, and the level after that has one problem of size n/4,
which contributes cn/4. So we see that, unlike the previous case, the total
work per level when q = 1 is actually decreasing as we proceed through
the recursion.

. Identifying a pattern: At an arbitrary level j, we still have just one
instance; it has size n/2j and contributes cn/2j to the running time.

. Summing over all levels of recursion: There are log2 n levels of recursion,
and the total amount of work performed is the sum over all these:

T(n)≤
log2 n−1∑

j=0

cn
2j
= cn

log2 n−1∑
j=0

(
1
2j

)
.

This geometric sum is very easy to work out; even if we continued it to
infinity, it would converge to 2. Thus we have

T(n)≤ 2cn = O(n).

5.2 Further Recurrence Relations 219

cn/2

cn/4

cn time, plus
recursive calls Level 0: cn total

Level 1: cn/2 total

Level 2: cn/4 total

Figure 5.3 Unrolling the recurrence T(n)≤ T(n/2)+ O(n).

We sum this up as follows.

(5.5) Any function T(·) satisfying (5.3) with q = 1 is bounded by O(n).

This is counterintuitive when you first see it. The algorithm is performing
log n levels of recursion, but the overall running time is still linear in n. The
point is that a geometric series with a decaying exponent is a powerful thing:
fully half the work performed by the algorithm is being done at the top level
of the recursion.

It is also useful to see how partial substitution into the recurrence works
very well in this case. Suppose we guess, as before, that the form of the solution
is T(n)≤ knd. We now try to establish this by induction using (5.3), assuming
that the solution holds for the smaller value n/2:

T(n)≤ T(n/2)+ cn

≤ k
(

n
2

)d

+ cn

= k
2d

nd + cn.

If we now simply choose d = 1 and k = 2c, we have

T(n)≤ k
2

n + cn = (
k
2
+ c)n = kn,

which completes the induction.

The Effect of the Parameter q. It is worth reflecting briefly on the role of the
parameter q in the class of recurrences T(n)≤ qT(n/2)+O(n) defined by (5.3).
When q = 1, the resulting running time is linear; when q = 2, it’s O(n log n);
and when q > 2, it’s a polynomial bound with an exponent larger than 1 that
grows with q. The reason for this range of different running times lies in where

220 Chapter 5 Divide and Conquer

most of the work is spent in the recursion: when q= 1, the total running time
is dominated by the top level, whereas when q > 2 it’s dominated by the work
done on constant-size subproblems at the bottom of the recursion. Viewed this
way, we can appreciate that the recurrence for q= 2 really represents a “knife-
edge”—the amount of work done at each level is exactly the same, which is
what yields the O(n log n) running time.

A Related Recurrence: T(n)≤ 2T(n/2)+ O(n2)

We conclude our discussion with one final recurrence relation; it is illustrative
both as another application of a decaying geometric sum and as an interesting
contrast with the recurrence (5.1) that characterized Mergesort. Moreover, we
will see a close variant of it in Chapter 6, when we analyze a divide-and-
conquer algorithm for solving the Sequence Alignment Problem using a small
amount of working memory.

The recurrence is based on the following divide-and-conquer structure.

Divide the input into two pieces of equal size; solve the two subproblems
on these pieces separately by recursion; and then combine the two results
into an overall solution, spending quadratic time for the initial division
and final recombining.

For our purposes here, we note that this style of algorithm has a running time
T(n) that satisfies the following recurrence.

(5.6) For some constant c,

T(n)≤ 2T(n/2)+ cn2

when n > 2, and

T(2)≤ c.

One’s first reaction is to guess that the solution will be T(n)=O(n2 log n),
since it looks almost identical to (5.1) except that the amount of work per level
is larger by a factor equal to the input size. In fact, this upper bound is correct
(it would need a more careful argument than what’s in the previous sentence),
but it will turn out that we can also show a stronger upper bound.

We’ll do this by unrolling the recurrence, following the standard template
for doing this.

. Analyzing the first few levels: At the first level of recursion, we have a
single problem of size n, which takes time at most cn2 plus the time spent
in all subsequent recursive calls. At the next level, we have two problems,
each of size n/2. Each of these takes time at most c(n/2)2= cn2/4, for a

5.3 Counting Inversions 221

total of at most cn2/2, again plus the time in subsequent recursive calls.
At the third level, we have four problems each of size n/4, each taking
time at most c(n/4)2= cn2/16, for a total of at most cn2/4. Already we see
that something is different from our solution to the analogous recurrence
(5.1); whereas the total amount of work per level remained the same in
that case, here it’s decreasing.

. Identifying a pattern: At an arbitrary level j of the recursion, there are 2j

subproblems, each of size n/2j, and hence the total work at this level is
bounded by 2jc(n

2j)
2= cn2/2j.

. Summing over all levels of recursion: Having gotten this far in the calcu-
lation, we’ve arrived at almost exactly the same sum that we had for the
case q = 1 in the previous recurrence. We have

T(n)≤
log2 n−1∑

j=0

cn2

2j
= cn2

log2 n−1∑
j=0

(
1
2j

)
≤ 2cn2= O(n2),

where the second inequality follows from the fact that we have a con-
vergent geometric sum.

In retrospect, our initial guess of T(n)=O(n2 log n), based on the analogy
to (5.1), was an overestimate because of how quickly n2 decreases as we
replace it with (n

2)2, (n
4)2, (n

8)2, and so forth in the unrolling of the recurrence.
This means that we get a geometric sum, rather than one that grows by a fixed
amount over all n levels (as in the solution to (5.1)).

5.3 Counting Inversions
We’ve spent some time discussing approaches to solving a number of common
recurrences. The remainder of the chapter will illustrate the application of
divide-and-conquer to problems from a number of different domains; we will
use what we’ve seen in the previous sections to bound the running times
of these algorithms. We begin by showing how a variant of the Mergesort
technique can be used to solve a problem that is not directly related to sorting
numbers.

The Problem
We will consider a problem that arises in the analysis of rankings, which
are becoming important to a number of current applications. For example, a
number of sites on the Web make use of a technique known as collaborative
filtering, in which they try to match your preferences (for books, movies,
restaurants) with those of other people out on the Internet. Once the Web site
has identified people with “similar” tastes to yours—based on a comparison

222 Chapter 5 Divide and Conquer

2 4 1 3 5

1 2 3 4 5

Figure 5.4 Counting the
number of inversions in the
sequence 2, 4, 1, 3, 5. Each
crossing pair of line segments
corresponds to one pair that
is in the opposite order in
the input list and the ascend-
ing list—in other words, an
inversion.

of how you and they rate various things—it can recommend new things that
these other people have liked. Another application arises in meta-search tools
on the Web, which execute the same query on many different search engines
and then try to synthesize the results by looking for similarities and differences
among the various rankings that the search engines return.

A core issue in applications like this is the problem of comparing two
rankings. You rank a set of n movies, and then a collaborative filtering system
consults its database to look for other people who had “similar” rankings. But
what’s a good way to measure, numerically, how similar two people’s rankings
are? Clearly an identical ranking is very similar, and a completely reversed
ranking is very different; we want something that interpolates through the
middle region.

Let’s consider comparing your ranking and a stranger’s ranking of the
same set of n movies. A natural method would be to label the movies from
1 to n according to your ranking, then order these labels according to the
stranger’s ranking, and see how many pairs are “out of order.” More concretely,
we will consider the following problem. We are given a sequence of n numbers
a1, . . . , an; we will assume that all the numbers are distinct. We want to define
a measure that tells us how far this list is from being in ascending order; the
value of the measure should be 0 if a1 < a2 < . . . < an, and should increase as
the numbers become more scrambled.

A natural way to quantify this notion is by counting the number of
inversions. We say that two indices i < j form an inversion if ai > aj, that is,
if the two elements ai and aj are “out of order.” We will seek to determine the
number of inversions in the sequence a1, . . . , an.

Just to pin down this definition, consider an example in which the se-
quence is 2, 4, 1, 3, 5. There are three inversions in this sequence: (2, 1), (4, 1),
and (4, 3). There is also an appealing geometric way to visualize the inver-
sions, pictured in Figure 5.4: we draw the sequence of input numbers in the
order they’re provided, and below that in ascending order. We then draw a
line segment between each number in the top list and its copy in the lower
list. Each crossing pair of line segments corresponds to one pair that is in the
opposite order in the two lists—in other words, an inversion.

Note how the number of inversions is a measure that smoothly interpolates
between complete agreement (when the sequence is in ascending order, then
there are no inversions) and complete disagreement (if the sequence is in
descending order, then every pair forms an inversion, and so there are

(n
2

)
of

them).

5.3 Counting Inversions 223

Designing and Analyzing the Algorithm
What is the simplest algorithm to count inversions? Clearly, we could look
at every pair of numbers (ai, aj) and determine whether they constitute an
inversion; this would take O(n2) time.

We now show how to count the number of inversions much more quickly,
in O(n log n) time. Note that since there can be a quadratic number of inver-
sions, such an algorithm must be able to compute the total number without
ever looking at each inversion individually. The basic idea is to follow the
strategy (†) defined in Section 5.1. We set m = �n/2� and divide the list into
the two pieces a1, . . . , am and am+1, . . . , an. We first count the number of
inversions in each of these two halves separately. Then we count the number
of inversions (ai, aj), where the two numbers belong to different halves; the
trick is that we must do this part in O(n) time, if we want to apply (5.2). Note
that these first-half/second-half inversions have a particularly nice form: they
are precisely the pairs (ai, aj), where ai is in the first half, aj is in the second
half, and ai > aj.

To help with counting the number of inversions between the two halves,
we will make the algorithm recursively sort the numbers in the two halves as
well. Having the recursive step do a bit more work (sorting as well as counting
inversions) will make the “combining” portion of the algorithm easier.

So the crucial routine in this process is Merge-and-Count. Suppose we
have recursively sorted the first and second halves of the list and counted the
inversions in each. We now have two sorted lists A and B, containing the first
and second halves, respectively. We want to produce a single sorted list C from
their union, while also counting the number of pairs (a, b) with a ∈ A, b ∈ B,
and a > b. By our previous discussion, this is precisely what we will need
for the “combining” step that computes the number of first-half/second-half
inversions.

This is closely related to the simpler problem we discussed in Chapter 2,
which formed the corresponding “combining” step for Mergesort: there we had
two sorted lists A and B, and we wanted to merge them into a single sorted list
in O(n) time. The difference here is that we want to do something extra: not
only should we produce a single sorted list from A and B, but we should also
count the number of “inverted pairs” (a, b) where a ∈ A, b ∈ B, and a > b.

It turns out that we will be able to do this in very much the same style
that we used for merging. Our Merge-and-Count routine will walk through
the sorted lists A and B, removing elements from the front and appending
them to the sorted list C. In a given step, we have a Current pointer into each
list, showing our current position. Suppose that these pointers are currently

224 Chapter 5 Divide and Conquer

Elements inverted
with bj < ai

Merged result

bj///

ai

B

A//////

Figure 5.5 Merging two sorted lists while also counting the number of inversions
between them.

at elements ai and bj. In one step, we compare the elements ai and bj being
pointed to in each list, remove the smaller one from its list, and append it to
the end of list C.

This takes care of merging. How do we also count the number of inver-
sions? Because A and B are sorted, it is actually very easy to keep track of the
number of inversions we encounter. Every time the element ai is appended to
C, no new inversions are encountered, since ai is smaller than everything left
in list B, and it comes before all of them. On the other hand, if bj is appended
to list C, then it is smaller than all the remaining items in A, and it comes
after all of them, so we increase our count of the number of inversions by the
number of elements remaining in A. This is the crucial idea: in constant time,
we have accounted for a potentially large number of inversions. See Figure 5.5
for an illustration of this process.

To summarize, we have the following algorithm.

Merge-and-Count(A,B)

Maintain a Current pointer into each list, initialized to

point to the front elements

Maintain a variable Count for the number of inversions,

initialized to 0

While both lists are nonempty:

Let ai and bj be the elements pointed to by the Current pointer

Append the smaller of these two to the output list

If bj is the smaller element then

Increment Count by the number of elements remaining in A

Endif

Advance the Current pointer in the list from which the

smaller element was selected.

EndWhile

5.4 Finding the Closest Pair of Points 225

Once one list is empty, append the remainder of the other list

to the output

Return Count and the merged list

The running time of Merge-and-Count can be bounded by the analogue
of the argument we used for the original merging algorithm at the heart of
Mergesort: each iteration of the While loop takes constant time, and in each
iteration we add some element to the output that will never be seen again.
Thus the number of iterations can be at most the sum of the initial lengths of
A and B, and so the total running time is O(n).

We use this Merge-and-Count routine in a recursive procedure that
simultaneously sorts and counts the number of inversions in a list L.

Sort-and-Count(L)

If the list has one element then

there are no inversions

Else

Divide the list into two halves:

A contains the first �n/2� elements

B contains the remaining �n/2 elements
(rA, A) = Sort-and-Count(A)

(rB , B) = Sort-and-Count(B)

(r , L) = Merge-and-Count(A, B)

Endif

Return r = rA + rB + r, and the sorted list L

Since our Merge-and-Count procedure takes O(n) time, the running time
T(n) of the full Sort-and-Count procedure satisfies the recurrence (5.1). By
(5.2), we have

(5.7) The Sort-and-Count algorithm correctly sorts the input list and counts
the number of inversions; it runs in O(n log n) time for a list with n elements.

5.4 Finding the Closest Pair of Points
We now describe another problem that can be solved by an algorithm in the
style we’ve been discussing; but finding the right way to “merge” the solutions
to the two subproblems it generates requires quite a bit of ingenuity.

226 Chapter 5 Divide and Conquer

The Problem
The problem we consider is very simple to state: Given n points in the plane,
find the pair that is closest together.

The problem was considered by M. I. Shamos and D. Hoey in the early
1970s, as part of their project to work out efficient algorithms for basic com-
putational primitives in geometry. These algorithms formed the foundations
of the then-fledgling field of computational geometry, and they have found
their way into areas such as graphics, computer vision, geographic informa-
tion systems, and molecular modeling. And although the closest-pair problem
is one of the most natural algorithmic problems in geometry, it is surprisingly
hard to find an efficient algorithm for it. It is immediately clear that there is an
O(n2) solution—compute the distance between each pair of points and take
the minimum—and so Shamos and Hoey asked whether an algorithm asymp-
totically faster than quadratic could be found. It took quite a long time before
they resolved this question, and the O(n log n) algorithm we give below is
essentially the one they discovered. In fact, when we return to this problem in
Chapter 13, we will see that it is possible to further improve the running time
to O(n) using randomization.

Designing the Algorithm
We begin with a bit of notation. Let us denote the set of points by P =
{p1, . . . , pn}, where pi has coordinates (xi, yi); and for two points pi, pj ∈ P,
we use d(pi, pj) to denote the standard Euclidean distance between them. Our
goal is to find a pair of points pi, pj that minimizes d(pi, pj).

We will assume that no two points in P have the same x-coordinate or
the same y-coordinate. This makes the discussion cleaner; and it’s easy to
eliminate this assumption either by initially applying a rotation to the points
that makes it true, or by slightly extending the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for
a minute, since it is much simpler and the contrasts are revealing. How would
we find the closest pair of points on a line? We’d first sort them, in O(n log n)

time, and then we’d walk through the sorted list, computing the distance from
each point to the one that comes after it. It is easy to see that one of these
distances must be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate
(or x-coordinate) and hoping that the two closest points were near one another
in the order of this sorted list. But it is easy to construct examples in which they
are very far apart, preventing us from adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide and conquer used
in Mergesort: we find the closest pair among the points in the “left half” of

5.4 Finding the Closest Pair of Points 227

P and the closest pair among the points in the “right half” of P; and then we
use this information to get the overall solution in linear time. If we develop an
algorithm with this structure, then the solution of our basic recurrence from
(5.1) will give us an O(n log n) running time.

It is the last, “combining” phase of the algorithm that’s tricky: the distances
that have not been considered by either of our recursive calls are precisely those
that occur between a point in the left half and a point in the right half; there
are �(n2) such distances, yet we need to find the smallest one in O(n) time
after the recursive calls return. If we can do this, our solution will be complete:
it will be the smallest of the values computed in the recursive calls and this
minimum “left-to-right” distance.

Setting Up the Recursion Let’s get a few easy things out of the way first.
It will be very useful if every recursive call, on a set P′ ⊆ P, begins with two
lists: a list P′x in which all the points in P′ have been sorted by increasing x-
coordinate, and a list P′y in which all the points in P′ have been sorted by
increasing y-coordinate. We can ensure that this remains true throughout the
algorithm as follows.

First, before any of the recursion begins, we sort all the points in P by x-
coordinate and again by y-coordinate, producing lists Px and Py. Attached to
each entry in each list is a record of the position of that point in both lists.

The first level of recursion will work as follows, with all further levels
working in a completely analogous way. We define Q to be the set of points
in the first �n/2� positions of the list Px (the “left half”) and R to be the set of
points in the final �n/2 positions of the list Px (the “right half”). See Figure 5.6.
By a single pass through each of Px and Py, in O(n) time, we can create the

δ

Q RLine L

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by
the line L, and the closest pair is found on each side recursively.

228 Chapter 5 Divide and Conquer

following four lists: Qx, consisting of the points in Q sorted by increasing x-
coordinate; Qy, consisting of the points in Q sorted by increasing y-coordinate;
and analogous lists Rx and Ry. For each entry of each of these lists, as before,
we record the position of the point in both lists it belongs to.

We now recursively determine a closest pair of points in Q (with access
to the lists Qx and Qy). Suppose that q∗0 and q∗1 are (correctly) returned as a
closest pair of points in Q. Similarly, we determine a closest pair of points in
R, obtaining r∗0 and r∗1.

Combining the Solutions The general machinery of divide and conquer has
gotten us this far, without our really having delved into the structure of the
closest-pair problem. But it still leaves us with the problem that we saw
looming originally: How do we use the solutions to the two subproblems as
part of a linear-time “combining” operation?

Let δ be the minimum of d(q∗0,q∗1) and d(r∗0,r∗1). The real question is: Are
there points q ∈Q and r ∈ R for which d(q, r) < δ? If not, then we have already
found the closest pair in one of our recursive calls. But if there are, then the
closest such q and r form the closest pair in P.

Let x∗ denote the x-coordinate of the rightmost point in Q, and let L denote
the vertical line described by the equation x = x∗. This line L “separates” Q
from R. Here is a simple fact.

(5.8) If there exists q ∈ Q and r ∈ R for which d(q, r) < δ, then each of q and
r lies within a distance δ of L.

Proof. Suppose such q and r exist; we write q = (qx, qy) and r = (rx, ry). By
the definition of x∗, we know that qx ≤ x∗ ≤ rx. Then we have

x∗ − qx ≤ rx − qx ≤ d(q, r) < δ

and

rx − x∗ ≤ rx − qx ≤ d(q, r) < δ,

so each of q and r has an x-coordinate within δ of x∗ and hence lies within
distance δ of the line L.

So if we want to find a close q and r, we can restrict our search to the
narrow band consisting only of points in P within δ of L. Let S⊆ P denote this
set, and let Sy denote the list consisting of the points in S sorted by increasing
y-coordinate. By a single pass through the list Py, we can construct Sy in O(n)

time.

We can restate (5.8) as follows, in terms of the set S.

5.4 Finding the Closest Pair of Points 229

Boxes

δ/2

δ/2

Line L

Each box can
contain at most
one input point.

δδ

Figure 5.7 The portion of the
plane close to the dividing
line L, as analyzed in the
proof of (5.10).

(5.9) There exist q ∈ Q and r ∈ R for which d(q, r) < δ if and only if there
exist s, s′ ∈ S for which d(s, s′) < δ.

It’s worth noticing at this point that S might in fact be the whole set P, in
which case (5.8) and (5.9) really seem to buy us nothing. But this is actually
far from true, as the following amazing fact shows.

(5.10) If s, s′ ∈ S have the property that d(s, s′) < δ, then s and s′ are within
15 positions of each other in the sorted list Sy.

Proof. Consider the subset Z of the plane consisting of all points within
distance δ of L. We partition Z into boxes: squares with horizontal and vertical
sides of length δ/2. One row of Z will consist of four boxes whose horizontal
sides have the same y-coordinates. This collection of boxes is depicted in
Figure 5.7.

Suppose two points of S lie in the same box. Since all points in this box lie
on the same side of L, these two points either both belong to Q or both belong
to R. But any two points in the same box are within distance δ · √2/2 < δ,
which contradicts our definition of δ as the minimum distance between any
pair of points in Q or in R. Thus each box contains at most one point of S.

Now suppose that s, s′ ∈ S have the property that d(s, s′) < δ, and that they
are at least 16 positions apart in Sy. Assume without loss of generality that s
has the smaller y-coordinate. Then, since there can be at most one point per
box, there are at least three rows of Z lying between s and s′. But any two
points in Z separated by at least three rows must be a distance of at least 3δ/2
apart—a contradiction.

We note that the value of 15 can be reduced; but for our purposes at the
moment, the important thing is that it is an absolute constant.

In view of (5.10), we can conclude the algorithm as follows. We make one
pass through Sy, and for each s ∈ Sy, we compute its distance to each of the
next 15 points in Sy. Statement (5.10) implies that in doing so, we will have
computed the distance of each pair of points in S (if any) that are at distance
less than δ from each other. So having done this, we can compare the smallest
such distance to δ, and we can report one of two things: (i) the closest pair
of points in S, if their distance is less than δ; or (ii) the (correct) conclusion
that no pairs of points in S are within δ of each other. In case (i), this pair is
the closest pair in P; in case (ii), the closest pair found by our recursive calls
is the closest pair in P.

Note the resemblance between this procedure and the algorithm we re-
jected at the very beginning, which tried to make one pass through P in order

230 Chapter 5 Divide and Conquer

of y-coordinate. The reason such an approach works now is due to the ex-
tra knowledge (the value of δ) we’ve gained from the recursive calls, and the
special structure of the set S.

This concludes the description of the “combining” part of the algorithm,
since by (5.9) we have now determined whether the minimum distance
between a point in Q and a point in R is less than δ, and if so, we have
found the closest such pair.

A complete description of the algorithm and its proof of correctness are
implicitly contained in the discussion so far, but for the sake of concreteness,
we now summarize both.

Summary of the Algorithm A high-level description of the algorithm is the
following, using the notation we have developed above.

Closest-Pair(P)

Construct Px and Py (O(n log n) time)

(p∗0, p∗1) = Closest-Pair-Rec(Px,Py)

Closest-Pair-Rec(Px, Py)

If |P| ≤ 3 then

find closest pair by measuring all pairwise distances

Endif

Construct Qx, Qy, Rx, Ry (O(n) time)

(q∗0,q∗1) = Closest-Pair-Rec(Qx, Qy)

(r∗0,r∗1) = Closest-Pair-Rec(Rx, Ry)

δ = min(d(q∗0,q∗1), d(r∗0,r∗1))

x∗ = maximum x-coordinate of a point in set Q

L = {(x,y) : x = x∗}
S = points in P within distance δ of L.

Construct Sy (O(n) time)

For each point s ∈ Sy, compute distance from s

to each of next 15 points in Sy

Let s, s′ be pair achieving minimum of these distances
(O(n) time)

If d(s,s′) < δ then

Return (s,s′)
Else if d(q∗0,q∗1) < d(r∗0,r∗1) then

Return (q∗0,q∗1)

5.5 Integer Multiplication 231

Else

Return (r∗0,r∗1)

Endif

Analyzing the Algorithm
We first prove that the algorithm produces a correct answer, using the facts
we’ve established in the process of designing it.

(5.11) The algorithm correctly outputs a closest pair of points in P.

Proof. As we’ve noted, all the components of the proof have already been
worked out, so here we just summarize how they fit together.

We prove the correctness by induction on the size of P, the case of |P| ≤ 3
being clear. For a given P, the closest pair in the recursive calls is computed
correctly by induction. By (5.10) and (5.9), the remainder of the algorithm
correctly determines whether any pair of points in S is at distance less than
δ, and if so returns the closest such pair. Now the closest pair in P either has
both elements in one of Q or R, or it has one element in each. In the former
case, the closest pair is correctly found by the recursive call; in the latter case,
this pair is at distance less than δ, and it is correctly found by the remainder
of the algorithm.

We now bound the running time as well, using (5.2).

(5.12) The running time of the algorithm is O(n log n).

Proof. The initial sorting of P by x- and y-coordinate takes time O(n log n).
The running time of the remainder of the algorithm satisfies the recurrence
(5.1), and hence is O(n log n) by (5.2).

5.5 Integer Multiplication
We now discuss a different application of divide and conquer, in which the
“default” quadratic algorithm is improved by means of a different recurrence.
The analysis of the faster algorithm will exploit one of the recurrences con-
sidered in Section 5.2, in which more than two recursive calls are spawned at
each level.

The Problem
The problem we consider is an extremely basic one: the multiplication of two
integers. In a sense, this problem is so basic that one may not initially think of it

232 Chapter 5 Divide and Conquer

(a)

12
× 13

36
12
156

(b)

1100
× 1101

1100
0000

1100
1100

10011100

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal
and (b) binary representation.

even as an algorithmic question. But, in fact, elementary schoolers are taught a
concrete (and quite efficient) algorithm to multiply two n-digit numbers x and
y. You first compute a “partial product” by multiplying each digit of y separately
by x, and then you add up all the partial products. (Figure 5.8 should help you
recall this algorithm. In elementary school we always see this done in base-
10, but it works exactly the same way in base-2 as well.) Counting a single
operation on a pair of bits as one primitive step in this computation, it takes
O(n) time to compute each partial product, and O(n) time to combine it in
with the running sum of all partial products so far. Since there are n partial
products, this is a total running time of O(n2).

If you haven’t thought about this much since elementary school, there’s
something initially striking about the prospect of improving on this algorithm.
Aren’t all those partial products “necessary” in some way? But, in fact, it
is possible to improve on O(n2) time using a different, recursive way of
performing the multiplication.

Designing the Algorithm
The improved algorithm is based on a more clever way to break up the product
into partial sums. Let’s assume we’re in base-2 (it doesn’t really matter), and
start by writing x as x1 · 2n/2+ x0. In other words, x1 corresponds to the “high-
order” n/2 bits, and x0 corresponds to the “low-order” n/2 bits. Similarly, we
write y = y1 · 2n/2+ y0. Thus, we have

xy = (x1 · 2n/2+ x0)(y1 · 2n/2+ y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2+ x0y0. (5.1)

Equation (5.1) reduces the problem of solving a single n-bit instance
(multiplying the two n-bit numbers x and y) to the problem of solving four n/2-
bit instances (computing the products x1y1, x1y0, x0y1, and x0y0). So we have
a first candidate for a divide-and-conquer solution: recursively compute the
results for these four n/2-bit instances, and then combine them using Equation

5.5 Integer Multiplication 233

(5.1). The combining of the solution requires a constant number of additions
of O(n)-bit numbers, so it takes time O(n); thus, the running time T(n) is
bounded by the recurrence

T(n)≤ 4T(n/2)+ cn

for a constant c. Is this good enough to give us a subquadratic running time?

We can work out the answer by observing that this is just the case q= 4 of
the class of recurrences in (5.3). As we saw earlier in the chapter, the solution
to this is T(n)≤ O(nlog2 q)= O(n2).

So, in fact, our divide-and-conquer algorithm with four-way branching
was just a complicated way to get back to quadratic time! If we want to do
better using a strategy that reduces the problem to instances on n/2 bits, we
should try to get away with only three recursive calls. This will lead to the case
q = 3 of (5.3), which we saw had the solution T(n)≤ O(nlog2 q)= O(n1.59).

Recall that our goal is to compute the expression x1y1 · 2n + (x1y0+ x0y1) ·
2n/2+ x0y0 in Equation (5.1). It turns out there is a simple trick that lets us
determine all of the terms in this expression using just three recursive calls. The
trick is to consider the result of the single multiplication (x1+ x0)(y1+ y0)=
x1y1+ x1y0+ x0y1+ x0y0. This has the four products above added together, at
the cost of a single recursive multiplication. If we now also determine x1y1 and
x0y0 by recursion, then we get the outermost terms explicitly, and we get the
middle term by subtracting x1y1 and x0y0 away from (x1+ x0)(y1+ y0).

Thus, in full, our algorithm is

Recursive-Multiply(x,y):

Write x= x1 · 2n/2+ x0

y = y1 · 2n/2+ y0

Compute x1+ x0 and y1+ y0

p = Recursive-Multiply(x1+ x0, y1+ y0)

x1y1 = Recursive-Multiply(x1, y1)

x0y0 = Recursive-Multiply(x0, y0)

Return x1y1 · 2n + (p− x1y1− x0y0) · 2n/2+ x0y0

Analyzing the Algorithm
We can determine the running time of this algorithm as follows. Given two n-
bit numbers, it performs a constant number of additions on O(n)-bit numbers,
in addition to the three recursive calls. Ignoring for now the issue that x1+ x0
and y1+ y0 may have n/2+ 1 bits (rather than just n/2), which turns out not
to affect the asymptotic results, each of these recursive calls is on an instance
of size n/2. Thus, in place of our four-way branching recursion, we now have

234 Chapter 5 Divide and Conquer

a three-way branching one, with a running time that satisfies

T(n)≤ 3T(n/2)+ cn

for a constant c.

This is the case q= 3 of (5.3) that we were aiming for. Using the solution
to that recurrence from earlier in the chapter, we have

(5.13) The running time of Recursive-Multiply on two n-bit factors is
O(nlog2 3)= O(n1.59).

5.6 Convolutions and the Fast Fourier Transform
As a final topic in this chapter, we show how our basic recurrence from (5.1)
is used in the design of the Fast Fourier Transform, an algorithm with a wide
range of applications.

The Problem
Given two vectors a = (a0, a1, . . . , an−1) and b= (b0, b1, . . . , bn−1), there are
a number of common ways of combining them. For example, one can compute
the sum, producing the vector a + b= (a0 + b0, a1+ b1, . . . , an−1+ bn−1);
or one can compute the inner product, producing the real number a · b=
a0b0+ a1b1+ . . .+ an−1bn−1. (For reasons that will emerge shortly, it is useful
to write vectors in this section with coordinates that are indexed starting from
0 rather than 1.)

A means of combining vectors that is very important in applications, even
if it doesn’t always show up in introductory linear algebra courses, is the
convolution a ∗ b. The convolution of two vectors of length n (as a and b are)
is a vector with 2n − 1 coordinates, where coordinate k is equal to∑

(i, j):i+j=k
i, j<n

aibj.

In other words,

a ∗ b= (a0b0, a0b1+ a1b0, a0b2+ a1b1+ a2b0, . . . ,

an−2bn−1+ an−1bn−2, an−1bn−1).

This definition is a bit hard to absorb when you first see it. Another way to
think about the convolution is to picture an n × n table whose (i, j) entry is
aibj, like this,

5.6 Convolutions and the Fast Fourier Transform 235

a0b0 a0b1 . . . a0bn−2 a0bn−1
a1b0 a1b1 . . . a1bn−2 a1bn−1
a2b0 a2b1 . . . a2bn−2 a2bn−1
.

an−1b0 an−1b1 . . . an−1bn−2 an−1bn−1

and then to compute the coordinates in the convolution vector by summing
along the diagonals.

It’s worth mentioning that, unlike the vector sum and inner product,
the convolution can be easily generalized to vectors of different lengths,
a = (a0, a1, . . . , am−1) and b= (b0, b1, . . . , bn−1). In this more general case,
we define a ∗ b to be a vector with m + n − 1 coordinates, where coordinate
k is equal to ∑

(i, j):i+j=k
i<m, j<n

aibj.

We can picture this using the table of products aibj as before; the table is now
rectangular, but we still compute coordinates by summing along the diagonals.
(From here on, we’ll drop explicit mention of the condition i < m, j < n in the
summations for convolutions, since it will be clear from the context that we
only compute the sum over terms that are defined.)

It’s not just the definition of a convolution that is a bit hard to absorb at
first; the motivation for the definition can also initially be a bit elusive. What
are the circumstances where you’d want to compute the convolution of two
vectors? In fact, the convolution comes up in a surprisingly wide variety of
different contexts. To illustrate this, we mention the following examples here.

. A first example (which also proves that the convolution is something that
we all saw implicitly in high school) is polynomial multiplication. Any
polynomial A(x) = a0 + a1x + a2x

2 + . . . am−1x
m−1 can be represented

just as naturally using its vector of coefficients, a = (a0, a1, . . . , am−1).
Now, given two polynomials A(x)= a0+ a1x+ a2x

2+ . . . am−1x
m−1 and

B(x)= b0 + b1x + b2x
2+ . . . bn−1x

n−1, consider the polynomial C(x)=
A(x)B(x) that is equal to their product. In this polynomial C(x), the
coefficient on the xk term is equal to

ck =
∑

(i, j):i+j=k

aibj.

In other words, the coefficient vector c of C(x) is the convolution of the
coefficient vectors of A(x) and B(x).

. Arguably the most important application of convolutions in practice is
for signal processing. This is a topic that could fill an entire course, so

236 Chapter 5 Divide and Conquer

we’ll just give a simple example here to suggest one way in which the
convolution arises.

Suppose we have a vector a = (a0, a1, . . . , am−1) which represents
a sequence of measurements, such as a temperature or a stock price,
sampled at m consecutive points in time. Sequences like this are often
very noisy due to measurement error or random fluctuations, and so a
common operation is to “smooth” the measurements by averaging each
value ai with a weighted sum of its neighbors within k steps to the left
and right in the sequence, the weights decaying quickly as one moves
away from ai. For example, in Gaussian smoothing, one replaces ai with

a′i =
1
Z

i+k∑
j=i−k

aje
−(j−i)2,

for some “width” parameter k, and with Z chosen simply to normalize
the weights in the average to add up to 1. (There are some issues with
boundary conditions—what do we do when i− k < 0 or i+ k > m?—but
we could deal with these, for example, by discarding the first and last k
entries from the smoothed signal, or by scaling them differently to make
up for the missing terms.)

To see the connection with the convolution operation, we picture
this smoothing operation as follows. We first define a “mask”

w = (w−k, w−(k−1), . . . , w−1, w0, w1, . . . , wk−1, wk)

consisting of the weights we want to use for averaging each point with
its neighbors. (For example, w = 1

Z (e−k2
, e−(k−1)2, . . . , e−1, 1, e−1, . . . ,

e−(k−1)2, e−k2
) in the Gaussian case above.) We then iteratively position

this mask so it is centered at each possible point in the sequence a; and
for each positioning, we compute the weighted average. In other words,
we replace ai with a′i =

∑k
s=−k wsai+s.

This last expression is essentially a convolution; we just have to
warp the notation a bit so that this becomes clear. Let’s define b=
(b0, b1, . . . , b2k) by setting b� = wk−�. Then it’s not hard to check that
with this definition we have the smoothed value

a′i =
∑

(j ,�):j+�=i+k

ajb�.

In other words, the smoothed sequence is just the convolution of the
original signal and the reverse of the mask (with some meaningless
coordinates at the beginning and end).

5.6 Convolutions and the Fast Fourier Transform 237

. We mention one final application: the problem of combining histograms.
Suppose we’re studying a population of people, and we have the follow-
ing two histograms: One shows the annual income of all the men in the
population, and one shows the annual income of all the women. We’d
now like to produce a new histogram, showing for each k the number of
pairs (M , W) for which man M and woman W have a combined income
of k.

This is precisely a convolution. We can write the first histogram as a
vector a = (a0, . . . , am−1), to indicate that there are ai men with annual
income equal to i. We can similarly write the second histogram as a
vector b= (b0, . . . , bn−1). Now, let ck denote the number of pairs (m, w)

with combined income k; this is the number of ways of choosing a man
with income ai and a woman with income bj, for any pair (i, j) where
i + j = k. In other words,

ck =
∑

(i, j):i+j=k

aibj.

so the combined histogram c = (c0, . . . , cm+n−2) is simply the convolu-
tion of a and b.

(Using terminology from probability that we will develop in Chap-
ter 13, one can view this example as showing how convolution is the
underlying means for computing the distribution of the sum of two in-
dependent random variables.)

Computing the Convolution Having now motivated the notion of convolu-
tion, let’s discuss the problem of computing it efficiently. For simplicity, we
will consider the case of equal length vectors (i.e., m= n), although everything
we say carries over directly to the case of vectors of unequal lengths.

Computing the convolution is a more subtle question than it may first
appear. The definition of convolution, after all, gives us a perfectly valid way
to compute it: for each k, we just calculate the sum∑

(i, j):i+j=k

aibj

and use this as the value of the kth coordinate. The trouble is that this direct way
of computing the convolution involves calculating the product aibj for every
pair (i, j) (in the process of distributing over the sums in the different terms)
and this is �(n2) arithmetic operations. Spending O(n2) time on computing
the convolution seems natural, as the definition involves O(n2) multiplications
aibj. However, it’s not inherently clear that we have to spend quadratic time to
compute a convolution, since the input and output both only have size O(n).

238 Chapter 5 Divide and Conquer

Could one design an algorithm that bypasses the quadratic-size definition of
convolution and computes it in some smarter way?

In fact, quite surprisingly, this is possible. We now describe a method
that computes the convolution of two vectors using only O(n log n) arithmetic
operations. The crux of this method is a powerful technique known as the Fast
Fourier Transform (FFT). The FFT has a wide range of further applications in
analyzing sequences of numerical values; computing convolutions quickly,
which we focus on here, is just one of these applications.

Designing and Analyzing the Algorithm
To break through the quadratic time barrier for convolutions, we are going
to exploit the connection between the convolution and the multiplication of
two polynomials, as illustrated in the first example discussed previously. But
rather than use convolution as a primitive in polynomial multiplication, we
are going to exploit this connection in the opposite direction.

Suppose we are given the vectors a = (a0, a1, . . . , an−1) and b= (b0,
b1, . . . , bn−1). We will view them as the polynomials A(x)= a0+ a1x+ a2x

2+
. . . an−1x

n−1 and B(x)= b0+ b1x+ b2x
2+ . . . bn−1x

n−1, and we’ll seek to com-
pute their product C(x)= A(x)B(x) in O(n log n) time. If c = (c0, c1, . . . , c2n−2)

is the vector of coefficients of C, then we recall from our earlier discussion
that c is exactly the convolution a ∗ b, and so we can then read off the desired
answer directly from the coefficients of C(x).

Now, rather than multiplying A and B symbolically, we can treat them as
functions of the variable x and multiply them as follows.

(i) First we choose 2n values x1, x2, . . . , x2n and evaluate A(xj) and B(xj) for
each of j = 1, 2, . . . , 2n.

(ii) We can now compute C(xj) for each j very easily: C(xj) is simply the
product of the two numbers A(xj) and B(xj).

(iii) Finally, we have to recover C from its values on x1, x2, . . . , x2n. Here we
take advantage of a fundamental fact about polynomials: any polynomial
of degree d can be reconstructed from its values on any set of d + 1 or
more points. This is known as polynomial interpolation, and we’ll discuss
the mechanics of performing interpolation in more detail later. For the
moment, we simply observe that since A and B each have degree at
most n − 1, their product C has degree at most 2n − 2, and so it can be
reconstructed from the values C(x1), C(x2), . . . , C(x2n) that we computed
in step (ii).

This approach to multiplying polynomials has some promising aspects
and some problematic ones. First, the good news: step (ii) requires only

5.6 Convolutions and the Fast Fourier Transform 239

O(n) arithmetic operations, since it simply involves the multiplication of O(n)

numbers. But the situation doesn’t look as hopeful with steps (i) and (iii). In
particular, evaluating the polynomials A and B on a single value takes �(n)

operations, and our plan calls for performing 2n such evaluations. This seems
to bring us back to quadratic time right away.

The key idea that will make this all work is to find a set of 2n values
x1, x2, . . . , x2n that are intimately related in some way, such that the work in
evaluating A and B on all of them can be shared across different evaluations. A
set for which this will turn out to work very well is the complex roots of unity.

The Complex Roots of Unity At this point, we’re going to need to recall a
few facts about complex numbers and their role as solutions to polynomial
equations.

Recall that complex numbers can be viewed as lying in the “complex
plane,” with axes representing their real and imaginary parts. We can write
a complex number using polar coordinates with respect to this plane as reθ i,
where eπ i =−1 (and e2π i = 1). Now, for a positive integer k, the polynomial
equation xk = 1 has k distinct complex roots, and it is easy to identify them.
Each of the complex numbers ωj ,k = e2π ji/k (for j = 0, 1, 2, . . . , k − 1) satisfies
the equation, since

(e2π ji/k)k = e2π ji = (e2π i)j = 1j = 1,

and each of these numbers is distinct, so these are all the roots. We refer to
these numbers as the kth roots of unity. We can picture these roots as a set of k
equally spaced points lying on the unit circle in the complex plane, as shown
in Figure 5.9 for the case k = 8.

For our numbers x1, . . . , x2n on which to evaluate A and B, we will choose
the (2n)th roots of unity. It’s worth mentioning (although it’s not necessary for
understanding the algorithm) that the use of the complex roots of unity is the
basis for the name Fast Fourier Transform: the representation of a degree-d

i

–i

–1 1

Figure 5.9 The 8th roots of unity in the complex plane.

240 Chapter 5 Divide and Conquer

polynomial P by its values on the (d + 1)st roots of unity is sometimes referred
to as the discrete Fourier transform of P; and the heart of our procedure is a
method for making this computation fast.

A Recursive Procedure for Polynomial Evaluation We want to design an
algorithm for evaluating A on each of the (2n)th roots of unity recursively, so
as to take advantage of the familiar recurrence from (5.1)—namely, T(n) ≤
2T(n/2)+ O(n) where T(n) in this case denotes the number of operations
required to evaluate a polynomial of degree n − 1 on all the (2n)th roots of
unity. For simplicity in describing this algorithm, we will assume that n is a
power of 2.

How does one break the evaluation of a polynomial into two equal-sized
subproblems? A useful trick is to define two polynomials, Aeven(x) and Aodd(x),
that consist of the even and odd coefficients of A, respectively. That is,

Aeven(x)= a0 + a2x+ a4x
2+ . . .+ an−2x

(n−2)/2,

and

Aodd(x)= a1+ a3x+ a5x
2+ . . .+ a(n−1)x

(n−2)/2.

Simple algebra shows us that

A(x)= Aeven(x2)+ xAodd(x
2),

and so this gives us a way to compute A(x) in a constant number of operations,
given the evaluation of the two constituent polynomials that each have half
the degree of A.

Now suppose that we evaluate each of Aeven and Aodd on the nth roots of
unity. This is exactly a version of the problem we face with A and the (2n)th

roots of unity, except that the input is half as large: the degree is (n − 2)/2
rather than n − 1, and we have n roots of unity rather than 2n. Thus we can
perform these evaluations in time T(n/2) for each of Aeven and Aodd, for a total
time of 2T(n/2).

We’re now very close to having a recursive algorithm that obeys (5.1) and
gives us the running time we want; we just have to produce the evaluations
of A on the (2n)th roots of unity using O(n) additional operations. But this is
easy, given the results from the recursive calls on Aeven and Aodd. Consider
one of these roots of unity ωj ,2n = e2π ji/2n. The quantity ω2

j ,2n is equal to
(e2π ji/2n)2= e2π ji/n, and hence ω2

j ,2n is an nth root of unity. So when we go
to compute

A(ωj ,2n)= Aeven(ω2
j ,2n)+ ωj ,2nAodd(ω

2
j ,2n),

we discover that both of the evaluations on the right-hand side have been
performed in the recursive step, and so we can determine A(ωj ,2n) using a

5.6 Convolutions and the Fast Fourier Transform 241

constant number of operations. Doing this for all 2n roots of unity is therefore
O(n) additional operations after the two recursive calls, and so the bound
T(n) on the number of operations indeed satisfies T(n)≤ 2T(n/2)+ O(n). We
run the same procedure to evaluate the polynomial B on the (2n)th roots of
unity as well, and this gives us the desired O(n log n) bound for step (i) of our
algorithm outline.

Polynomial Interpolation We’ve now seen how to evaluate A and B on the
set of all (2n)th roots of unity using O(n log n) operations and, as noted above,
we can clearly compute the products C(ωj ,n)= A(ωj ,2n)B(ωj ,2n) in O(n) more
operations. Thus, to conclude the algorithm for multiplying A and B, we
need to execute step (iii) in our earlier outline using O(n log n) operations,
reconstructing C from its values on the (2n)th roots of unity.

In describing this part of the algorithm, it’s worth keeping track of the
following top-level point: it turns out that the reconstruction of C can be
achieved simply by defining an appropriate polynomial (the polynomial D
below) and evaluating it at the (2n)th roots of unity. This is exactly what
we’ve just seen how to do using O(n log n) operations, so we do it again here,
spending an additional O(n log n) operations and concluding the algorithms.

Consider a polynomial C(x) =∑2n−1
s=0 csx

s that we want to reconstruct
from its values C(ωs,2n) at the (2n)th roots of unity. Define a new polynomial
D(x)=∑2n−1

s=0 dsx
s, where ds = C(ωs,2n). We now consider the values of D(x)

at the (2n)th roots of unity.

D(ωj ,2n)=
2n−1∑
s=0

C(ωs,2n)ωs
j ,2n

=
2n−1∑
s=0

(

2n−1∑
t=0

ctω
t
s,2n)ωs

j ,2n

=
2n−1∑
t=0

ct(

2n−1∑
s=0

ωt
s,2nωs

j ,2n),

by definition. Now recall that ωs,2n = (e2π i/2n)s. Using this fact and extending
the notation to ωs,2n = (e2π i/2n)s even when s ≥ 2n, we get that

D(ωj ,2n)=
2n−1∑
t=0

ct(

2n−1∑
s=0

e(2π i)(st+js)/2n)

=
2n−1∑
t=0

ct(

2n−1∑
s=0

ωs
t+j ,2n).

242 Chapter 5 Divide and Conquer

To analyze the last line, we use the fact that for any (2n)th root of unity ω �= 1,
we have

∑2n−1
s=0 ωs = 0. This is simply because ω is by definition a root of

x2n − 1= 0; since x2n − 1= (x − 1)(
∑2n−1

t=0 xt) and ω �= 1, it follows that ω is
also a root of (

∑2n−1
t=0 xt).

Thus the only term of the last line’s outer sum that is not equal to 0 is
for ct such that ωt+j ,2n = 1; and this happens if t + j is a multiple of 2n, that
is, if t = 2n − j. For this value,

∑2n−1
s=0 ωs

t+j ,2n =
∑2n−1

s=0 1= 2n. So we get that

D(ωj ,2n)= 2nc2n−j. Evaluating the polynomial D(x) at the (2n)th roots of unity
thus gives us the coeffients of the polynomial C(x) in reverse order (multiplied
by 2n each). We sum this up as follows.

(5.14) For any polynomial C(x)=∑2n−1
s=0 csx

s, and corresponding polynomial
D(x)=∑2n−1

s=0 C(ωs,2n)xs, we have that cs = 1
2n D(ω2n−s,2n).

We can do all the evaluations of the values D(ω2n−s,2n) in O(n log n)

operations using the divide-and-conquer approach developed for step (i).

And this wraps everything up: we reconstruct the polynomial C from its
values on the (2n)th roots of unity, and then the coefficients of C are the
coordinates in the convolution vector c = a ∗ b that we were originally seeking.

In summary, we have shown the following.

(5.15) Using the Fast Fourier Transform to determine the product polynomial
C(x), we can compute the convolution of the original vectors a and b in
O(n log n) time.

Solved Exercises

Solved Exercise 1
Suppose you are given an array A with n entries, with each entry holding a
distinct number. You are told that the sequence of values A[1], A[2], . . . , A[n]
is unimodal: For some index p between 1 and n, the values in the array entries
increase up to position p in A and then decrease the remainder of the way
until position n. (So if you were to draw a plot with the array position j on the
x-axis and the value of the entry A[j] on the y-axis, the plotted points would
rise until x-value p, where they’d achieve their maximum, and then fall from
there on.)

You’d like to find the “peak entry” p without having to read the entire
array—in fact, by reading as few entries of A as possible. Show how to find
the entry p by reading at most O(log n) entries of A.

Solved Exercises 243

Solution Let’s start with a general discussion on how to achieve a running
time of O(log n) and then come back to the specific problem here. If one needs
to compute something using only O(log n) operations, a useful strategy that
we discussed in Chapter 2 is to perform a constant amount of work, throw
away half the input, and continue recursively on what’s left. This was the
idea, for example, behind the O(log n) running time for binary search.

We can view this as a divide-and-conquer approach: for some constant
c > 0, we perform at most c operations and then continue recursively on an
input of size at most n/2. As in the chapter, we will assume that the recursion
“bottoms out” when n = 2, performing at most c operations to finish the
computation. If T(n) denotes the running time on an input of size n, then
we have the recurrence

(5.16)

T(n)≤ T(n/2)+ c

when n > 2, and

T(2)≤ c.

It is not hard to solve this recurrence by unrolling it, as follows.

. Analyzing the first few levels: At the first level of recursion, we have a
single problem of size n, which takes time at most c plus the time spent
in all subsequent recursive calls. The next level has one problem of size
at most n/2, which contributes another c, and the level after that has
one problem of size at most n/4, which contributes yet another c.

. Identifying a pattern: No matter how many levels we continue, each level
will have just one problem: level j has a single problem of size at most
n/2j, which contributes c to the running time, independent of j.

. Summing over all levels of recursion: Each level of the recursion is
contributing at most c operations, and it takes log2 n levels of recursion to
reduce n to 2. Thus the total running time is at most c times the number
of levels of recursion, which is at most c log2 n = O(log n).

We can also do this by partial substitution. Suppose we guess that T(n)≤
k logb n, where we don’t know k or b. Assuming that this holds for smaller
values of n in an inductive argument, we would have

T(n)≤ T(n/2)+ c

≤ k logb(n/2)+ c

= k logb n − k logb 2+ c.

244 Chapter 5 Divide and Conquer

The first term on the right is exactly what we want, so we just need to choose k
and b to negate the added c at the end. This we can do by setting b= 2
and k = c, so that k logb 2= c log2 2= c. Hence we end up with the solution
T(n)≤ c log2 n, which is exactly what we got by unrolling the recurrence.

Finally, we should mention that one can get an O(log n) running time, by
essentially the same reasoning, in the more general case when each level of
the recursion throws away any constant fraction of the input, transforming an
instance of size n to one of size at most an, for some constant a < 1. It now
takes at most log1/a n levels of recursion to reduce n down to a constant size,
and each level of recursion involves at most c operations.

Now let’s get back to the problem at hand. If we wanted to set ourselves
up to use (5.16), we could probe the midpoint of the array and try to determine
whether the “peak entry” p lies before or after this midpoint.

So suppose we look at the value A[n/2]. From this value alone, we can’t
tell whether p lies before or after n/2, since we need to know whether entry
n/2 is sitting on an “up-slope” or on a “down-slope.” So we also look at the
values A[n/2− 1] and A[n/2+ 1]. There are now three possibilities.

. If A[n/2− 1]< A[n/2]< A[n/2+ 1], then entry n/2 must come strictly
before p, and so we can continue recursively on entries n/2+ 1through n.

. If A[n/2− 1]> A[n/2]> A[n/2+ 1], then entry n/2 must come strictly
after p, and so we can continue recursively on entries 1 through n/2− 1.

. Finally, if A[n/2] is larger than both A[n/2− 1] and A[n/2+ 1], we are
done: the peak entry is in fact equal to n/2 in this case.

In all these cases, we perform at most three probes of the array A and
reduce the problem to one of at most half the size. Thus we can apply (5.16)
to conclude that the running time is O(log n).

Solved Exercise 2
You’re consulting for a small computation-intensive investment company, and
they have the following type of problem that they want to solve over and over.
A typical instance of the problem is the following. They’re doing a simulation
in which they look at n consecutive days of a given stock, at some point in
the past. Let’s number the days i = 1, 2, . . . , n; for each day i, they have a
price p(i) per share for the stock on that day. (We’ll assume for simplicity that
the price was fixed during each day.) Suppose during this time period, they
wanted to buy 1,000 shares on some day and sell all these shares on some
(later) day. They want to know: When should they have bought and when
should they have sold in order to have made as much money as possible? (If

Solved Exercises 245

there was no way to make money during the n days, you should report this
instead.)

For example, suppose n= 3, p(1)= 9, p(2)= 1, p(3)= 5. Then you should
return “buy on 2, sell on 3” (buying on day 2 and selling on day 3 means they
would have made $4 per share, the maximum possible for that period).

Clearly, there’s a simple algorithm that takes time O(n2): try all possible
pairs of buy/sell days and see which makes them the most money. Your
investment friends were hoping for something a little better.

Show how to find the correct numbers i and j in time O(n log n).

Solution We’ve seen a number of instances in this chapter where a brute-
force search over pairs of elements can be reduced to O(n log n) by divide and
conquer. Since we’re faced with a similar issue here, let’s think about how we
might apply a divide-and-conquer strategy.

A natural approach would be to consider the first n/2 days and the final
n/2 days separately, solving the problem recursively on each of these two
sets, and then figure out how to get an overall solution from this in O(n) time.
This would give us the usual recurrence T(n) ≤ 2T

(n
2

) + O(n), and hence
O(n log n) by (5.1).

Also, to make things easier, we’ll make the usual assumption that n is a
power of 2. This is no loss of generality: if n′ is the next power of 2 greater
than n, we can set p(i)= p(n) for all i between n and n′. In this way, we do
not change the answer, and we at most double the size of the input (which
will not affect the O() notation).

Now, let S be the set of days 1, . . . , n/2, and S′ be the set of days n/2+
1, . . . , n. Our divide-and-conquer algorithm will be based on the following
observation: either there is an optimal solution in which the investors are
holding the stock at the end of day n/2, or there isn’t. Now, if there isn’t, then
the optimal solution is the better of the optimal solutions on the sets S and S′.
If there is an optimal solution in which they hold the stock at the end of day
n/2, then the value of this solution is p(j)− p(i) where i ∈ S and j ∈ S′. But
this value is maximized by simply choosing i ∈ S which minimizes p(i), and
choosing j ∈ S′ which maximizes p(j).

Thus our algorithm is to take the best of the following three possible
solutions.

. The optimal solution on S.

. The optimal solution on S′.

. The maximum of p(j)− p(i), over i ∈ S and j ∈ S′.

The first two alternatives are computed in time T(n/2), each by recursion,
and the third alternative is computed by finding the minimum in S and the

246 Chapter 5 Divide and Conquer

maximum in S′, which takes time O(n). Thus the running time T(n) satisfies

T(n)≤ 2T
(

n
2

)
+ O(n),

as desired.

We note that this is not the best running time achievable for this problem.
In fact, one can find the optimal pair of days in O(n) time using dynamic
programming, the topic of the next chapter; at the end of that chapter, we will
pose this question as Exercise 7.

Exercises

1. You are interested in analyzing some hard-to-obtain data from two sepa-

rate databases. Each database contains n numerical values—so there are

2n values total—and you may assume that no two values are the same.

You’d like to determine the median of this set of 2n values, which we will

define here to be the nth smallest value.

However, the only way you can access these values is through queries

to the databases. In a single query, you can specify a value k to one of the

two databases, and the chosen database will return the kth smallest value

that it contains. Since queries are expensive, you would like to compute

the median using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n)

queries.

2. Recall the problem of finding the number of inversions. As in the text,

we are given a sequence of n numbers a1, . . . , an, which we assume are all

distinct, and we define an inversion to be a pair i < j such that ai > aj.

We motivated the problem of counting inversions as a good measure

of how different two orderings are. However, one might feel that this

measure is too sensitive. Let’s call a pair a significant inversion if i < j and

ai > 2aj. Give an O(n log n) algorithm to count the number of significant

inversions between two orderings.

3. Suppose you’re consulting for a bank that’s concerned about fraud de-

tection, and they come to you with the following problem. They have a

collection of n bank cards that they’ve confiscated, suspecting them of

being used in fraud. Each bank card is a small plastic object, contain-

ing a magnetic stripe with some encrypted data, and it corresponds to

a unique account in the bank. Each account can have many bank cards

Exercises 247

corresponding to it, and we’ll say that two bank cards are equivalent if

they correspond to the same account.

It’s very difficult to read the account number off a bank card directly,

but the bank has a high-tech “equivalence tester” that takes two bank

cards and, after performing some computations, determines whether

they are equivalent.

Their question is the following: among the collection of n cards, is

there a set ofmore than n/2of them that are all equivalent to one another?

Assume that the only feasible operations you can do with the cards are

to pick two of them and plug them in to the equivalence tester. Show how

to decide the answer to their question with only O(n log n) invocations of

the equivalence tester.

4. You’ve been working with some physicists who need to study, as part of

their experimental design, the interactions among large numbers of very

small charged particles. Basically, their setup works as follows. They have

an inert lattice structure, and they use this for placing charged particles

at regular spacing along a straight line. Thus we canmodel their structure

as consisting of the points {1, 2, 3, . . . , n} on the real line; and at each of

these points j, they have a particle with charge qj. (Each charge can be

either positive or negative.)

They want to study the total force on each particle, by measuring it

and then comparing it to a computational prediction. This computational

part is where they need your help. The total net force on particle j, by

Coulomb’s Law, is equal to

Fj =
∑
i<j

Cqiqj

(j − i)2
−
∑
i>j

Cqiqj

(j − i)2

They’ve written the following simple program to compute Fj for all j:

For j = 1, 2, . . . , n

Initialize Fj to 0

For i = 1, 2, . . . , n

If i < j then

Add
C qi qj

(j − i)2
to Fj

Else if i > j then

Add − C qi qj

(j − i)2
to Fj

Endif

Endfor

Output Fj

Endfor

248 Chapter 5 Divide and Conquer

It’s not hard to analyze the running time of this program: each

invocation of the inner loop, over i, takes O(n) time, and this inner loop

is invoked O(n) times total, so the overall running time is O(n2).

The trouble is, for the large values of n they’re working with, the pro-

gram takes several minutes to run. On the other hand, their experimental

setup is optimized so that they can throw down n particles, perform the

measurements, and be ready to handle n more particles within a few sec-

onds. So they’d really like it if there were a way to compute all the forces

Fj much more quickly, so as to keep up with the rate of the experiment.

Help them out by designing an algorithm that computes all the forces

Fj in O(n log n) time.

5. Hidden surface removal is a problem in computer graphics that scarcely

needs an introduction: when Woody is standing in front of Buzz, you

should be able to see Woody but not Buzz; when Buzz is standing in

front of Woody, . . . well, you get the idea.

The magic of hidden surface removal is that you can often compute

things faster than your intuition suggests. Here’s a clean geometric ex-

ample to illustrate a basic speed-up that can be achieved. You are given n

nonvertical lines in the plane, labeled L1, . . . , Ln, with the ith line specified

by the equation y= aix+ bi. We will make the assumption that no three of

the lines all meet at a single point. We say line Li is uppermost at a given

x-coordinate x0 if its y-coordinate at x0 is greater than the y-coordinates

of all the other lines at x0: aix0 + bi > ajx0 + bj for all j �= i. We say line Li is

visible if there is some x-coordinate at which it is uppermost—intuitively,

some portion of it can be seen if you look down from “y =∞.”

Give an algorithm that takes n lines as input and in O(n log n) time

returns all of the ones that are visible. Figure 5.10 gives an example.

6. Consider an n-node complete binary tree T , where n = 2d − 1 for some d.

Each node v of T is labeled with a real number xv. You may assume that

the real numbers labeling the nodes are all distinct. A node v of T is a

local minimum if the label xv is less than the label xw for all nodes w that

are joined to v by an edge.

You are given such a complete binary tree T , but the labeling is only

specified in the following implicit way: for each node v, you can determine

the value xv by probing the node v. Show how to find a local minimum of

T using only O(log n) probes to the nodes of T .

7. Suppose now that you’re given an n× n grid graph G. (An n× n grid graph

is just the adjacency graph of an n × n chessboard. To be completely

precise, it is a graph whose node set is the set of all ordered pairs of

Notes and Further Reading 249

51

2

3

4

Figure 5.10 An instance of hidden surface removal with five lines (labeled 1–5 in the
figure). All the lines except for 2 are visible.

natural numbers (i, j), where 1≤ i ≤ n and 1≤ j ≤ n; the nodes (i, j) and

(k, �) are joined by an edge if and only if |i − k| + |j − �| = 1.)

We use some of the terminology of the previous question. Again,

each node v is labeled by a real number xv; you may assume that all these

labels are distinct. Show how to find a local minimum of G using only

O(n) probes to the nodes of G. (Note that G has n2 nodes.)

Notes and Further Reading

The militaristic coinage “divide and conquer” was introduced somewhat after
the technique itself. Knuth (1998) credits John von Neumann with one early
explicit application of the approach, the development of the Mergesort Algo-
rithm in 1945. Knuth (1997b) also provides further discussion of techniques
for solving recurrences.

The algorithm for computing the closest pair of points in the plane is due
to Michael Shamos, and is one of the earliest nontrivial algorithms in the field
of computational geometry; the survey paper by Smid (1999) discusses a wide
range of results on closest-point problems. A faster randomized algorithm for
this problem will be discussed in Chapter 13. (Regarding the nonobviousness
of the divide-and-conquer algorithm presented here, Smid also makes the in-
teresting historical observation that researchers originally suspected quadratic
time might be the best one could do for finding the closest pair of points in
the plane.) More generally, the divide-and-conquer approach has proved very
useful in computational geometry, and the books by Preparata and Shamos

250 Chapter 5 Divide and Conquer

(1985) and de Berg et al. (1997) give many further examples of this technique
in the design of geometric algorithms.

The algorithm for multiplying two n-bit integers in subquadratic time is
due to Karatsuba and Ofman (1962). Further background on asymptotically fast
multiplication algorithms is given by Knuth (1997b). Of course, the number
of bits in the input must be sufficiently large for any of these subquadratic
methods to improve over the standard algorithm.

Press et al. (1988) provide further coverage of the Fast Fourier Transform,
including background on its applications in signal processing and related areas.

Notes on the Exercises Exercise 7 is based on a result of Donna Llewellyn,
Craig Tovey, and Michael Trick.

Chapter 6

Dynamic Programming

We began our study of algorithmic techniques with greedy algorithms, which
in some sense form the most natural approach to algorithm design. Faced with
a new computational problem, we’ve seen that it’s not hard to propose multiple
possible greedy algorithms; the challenge is then to determine whether any of
these algorithms provides a correct solution to the problem in all cases.

The problems we saw in Chapter 4 were all unified by the fact that, in the
end, there really was a greedy algorithm that worked. Unfortunately, this is far
from being true in general; for most of the problems that one encounters, the
real difficulty is not in determining which of several greedy strategies is the
right one, but in the fact that there is no natural greedy algorithm that works.
For such problems, it is important to have other approaches at hand. Divide
and conquer can sometimes serve as an alternative approach, but the versions
of divide and conquer that we saw in the previous chapter are often not strong
enough to reduce exponential brute-force search down to polynomial time.
Rather, as we noted in Chapter 5, the applications there tended to reduce a
running time that was unnecessarily large, but already polynomial, down to a
faster running time.

We now turn to a more powerful and subtle design technique, dynamic
programming. It will be easier to say exactly what characterizes dynamic pro-
gramming after we’ve seen it in action, but the basic idea is drawn from the
intuition behind divide and conquer and is essentially the opposite of the
greedy strategy: one implicitly explores the space of all possible solutions, by
carefully decomposing things into a series of subproblems, and then build-
ing up correct solutions to larger and larger subproblems. In a way, we can
thus view dynamic programming as operating dangerously close to the edge of

252 Chapter 6 Dynamic Programming

brute-force search: although it’s systematically working through the exponen-
tially large set of possible solutions to the problem, it does this without ever
examining them all explicitly. It is because of this careful balancing act that
dynamic programming can be a tricky technique to get used to; it typically
takes a reasonable amount of practice before one is fully comfortable with it.

With this in mind, we now turn to a first example of dynamic program-
ming: the Weighted Interval Scheduling Problem that we defined back in
Section 1.2. We are going to develop a dynamic programming algorithm for
this problem in two stages: first as a recursive procedure that closely resembles
brute-force search; and then, by reinterpreting this procedure, as an iterative
algorithm that works by building up solutions to larger and larger subproblems.

6.1 Weighted Interval Scheduling:
A Recursive Procedure

We have seen that a particular greedy algorithm produces an optimal solution
to the Interval Scheduling Problem, where the goal is to accept as large a
set of nonoverlapping intervals as possible. The Weighted Interval Scheduling
Problem is a strictly more general version, in which each interval has a certain
value (or weight), and we want to accept a set of maximum value.

Designing a Recursive Algorithm
Since the original Interval Scheduling Problem is simply the special case in
which all values are equal to 1, we know already that most greedy algorithms
will not solve this problem optimally. But even the algorithm that worked
before (repeatedly choosing the interval that ends earliest) is no longer optimal
in this more general setting, as the simple example in Figure 6.1 shows.

Indeed, no natural greedy algorithm is known for this problem, which is
what motivates our switch to dynamic programming. As discussed above, we
will begin our introduction to dynamic programming with a recursive type of
algorithm for this problem, and then in the next section we’ll move to a more
iterative method that is closer to the style we use in the rest of this chapter.

Index

1

2

3

Value = 1

Value = 3

Value = 1

Figure 6.1 A simple instance of weighted interval scheduling.

6.1 Weighted Interval Scheduling: A Recursive Procedure 253

We use the notation from our discussion of Interval Scheduling in Sec-
tion 1.2. We have n requests labeled 1, . . . , n, with each request i specifying a
start time si and a finish time fi. Each interval i now also has a value, or weight
vi. Two intervals are compatible if they do not overlap. The goal of our current
problem is to select a subset S ⊆ {1, . . . , n} of mutually compatible intervals,
so as to maximize the sum of the values of the selected intervals,

∑
i∈S vi.

Let’s suppose that the requests are sorted in order of nondecreasing finish
time: f1≤ f2≤ . . .≤ fn. We’ll say a request i comes before a request j if i < j.
This will be the natural left-to-right order in which we’ll consider intervals.
To help in talking about this order, we define p(j), for an interval j, to be the
largest index i < j such that intervals i and j are disjoint. In other words, i
is the leftmost interval that ends before j begins. We define p(j) = 0 if no
request i < j is disjoint from j. An example of the definition of p(j) is shown
in Figure 6.2.

Now, given an instance of the Weighted Interval Scheduling Problem, let’s
consider an optimal solution O, ignoring for now that we have no idea what
it is. Here’s something completely obvious that we can say about O: either
interval n (the last one) belongs to O, or it doesn’t. Suppose we explore both
sides of this dichotomy a little further. If n ∈O, then clearly no interval indexed
strictly between p(n) and n can belong to O, because by the definition of p(n),
we know that intervals p(n)+ 1, p(n)+ 2, . . . , n − 1 all overlap interval n.
Moreover, if n ∈ O, then O must include an optimal solution to the problem
consisting of requests {1, . . . , p(n)}—for if it didn’t, we could replace O’s
choice of requests from {1, . . . , p(n)} with a better one, with no danger of
overlapping request n.

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

v1 = 2

v3 = 4

v2 = 4

v5 = 2

v6 = 1

v4 = 7

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

254 Chapter 6 Dynamic Programming

On the other hand, if n �∈O, then O is simply equal to the optimal solution
to the problem consisting of requests {1, . . . , n − 1}. This is by completely
analogous reasoning: we’re assuming that O does not include request n; so if
it does not choose the optimal set of requests from {1, . . . , n − 1}, we could
replace it with a better one.

All this suggests that finding the optimal solution on intervals {1, 2, . . . , n}
involves looking at the optimal solutions of smaller problems of the form
{1, 2, . . . , j}. Thus, for any value of j between 1and n, let Oj denote the optimal
solution to the problem consisting of requests {1, . . . , j}, and let OPT(j) denote
the value of this solution. (We define OPT(0)= 0, based on the convention
that this is the optimum over an empty set of intervals.) The optimal solution
we’re seeking is precisely On, with value OPT(n). For the optimal solution Oj
on {1, 2, . . . , j}, our reasoning above (generalizing from the case in which
j = n) says that either j ∈ Oj, in which case OPT(j)= vj + OPT(p(j)), or j �∈ Oj,
in which case OPT(j)= OPT(j − 1). Since these are precisely the two possible
choices (j ∈ Oj or j �∈ Oj), we can further say that

(6.1) OPT(j)=max(vj + OPT(p(j)), OPT(j − 1)).

And how do we decide whether n belongs to the optimal solution Oj? This
too is easy: it belongs to the optimal solution if and only if the first of the
options above is at least as good as the second; in other words,

(6.2) Request j belongs to an optimal solution on the set {1, 2, . . . , j} if and
only if

vj + OPT(p(j))≥ OPT(j − 1).

These facts form the first crucial component on which a dynamic pro-
gramming solution is based: a recurrence equation that expresses the optimal
solution (or its value) in terms of the optimal solutions to smaller subproblems.

Despite the simple reasoning that led to this point, (6.1) is already a
significant development. It directly gives us a recursive algorithm to compute
OPT(n), assuming that we have already sorted the requests by finishing time
and computed the values of p(j) for each j.

Compute-Opt(j)

If j = 0 then

Return 0

Else

Return max(vj+Compute-Opt(p(j)), Compute-Opt(j − 1))

Endif

6.1 Weighted Interval Scheduling: A Recursive Procedure 255

The correctness of the algorithm follows directly by induction on j:

(6.3) Compute-Opt(j) correctly computes OPT(j) for each j = 1, 2, . . . , n.

Proof. By definition OPT(0)= 0. Now, take some j > 0, and suppose by way
of induction that Compute-Opt(i) correctly computes OPT(i) for all i < j. By
the induction hypothesis, we know that Compute-Opt(p(j))= OPT(p(j)) and
Compute-Opt(j − 1)= OPT(j − 1); and hence from (6.1) it follows that

OPT(j)=max(vj + Compute-Opt(p(j)), Compute-Opt(j − 1))

= Compute-Opt(j).

Unfortunately, if we really implemented the algorithm Compute-Opt as
just written, it would take exponential time to run in the worst case. For
example, see Figure 6.3 for the tree of calls issued for the instance of Figure 6.2:
the tree widens very quickly due to the recursive branching. To take a more
extreme example, on a nicely layered instance like the one in Figure 6.4, where
p(j)= j − 2 for each j = 2, 3, 4, . . . , n, we see that Compute-Opt(j) generates
separate recursive calls on problems of sizes j − 1 and j − 2. In other words,
the total number of calls made to Compute-Opt on this instance will grow

OPT(6)

OPT(5)

OPT(4) OPT(3)

OPT(1)OPT(2)

OPT(2)

OPT(2) OPT(1)

OPT(1)

OPT(1)

OPT(3)

OPT(1)

OPT(3)

OPT(1)

The tree of subproblems
grows very quickly.

Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance
of Figure 6.2.

256 Chapter 6 Dynamic Programming

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-
Opt recursion will take exponential time. The values of all intervals in this instance
are 1.

like the Fibonacci numbers, which increase exponentially. Thus we have not
achieved a polynomial-time solution.

Memoizing the Recursion
In fact, though, we’re not so far from having a polynomial-time algorithm.
A fundamental observation, which forms the second crucial component of a
dynamic programming solution, is that our recursive algorithm Compute-
Opt is really only solving n + 1 different subproblems: Compute-Opt(0),
Compute-Opt(1), . . . , Compute-Opt(n). The fact that it runs in exponential
time as written is simply due to the spectacular redundancy in the number of
times it issues each of these calls.

How could we eliminate all this redundancy? We could store the value of
Compute-Opt in a globally accessible place the first time we compute it and
then simply use this precomputed value in place of all future recursive calls.
This technique of saving values that have already been computed is referred
to as memoization.

We implement the above strategy in the more “intelligent” procedure M-
Compute-Opt. This procedure will make use of an array M[0 . . . n]; M[j] will
start with the value “empty,” but will hold the value of Compute-Opt(j) as
soon as it is first determined. To determine OPT(n), we invoke M-Compute-
Opt(n).

M-Compute-Opt(j)

If j = 0 then

Return 0

Else if M[j] is not empty then

Return M[j]

Else

6.1 Weighted Interval Scheduling: A Recursive Procedure 257

Define M[j] = max(vj+M-Compute-Opt(p(j)), M-Compute-Opt(j − 1))

Return M[j]

Endif

Analyzing the Memoized Version
Clearly, this looks very similar to our previous implementation of the algo-
rithm; however, memoization has brought the running time way down.

(6.4) The running time of M-Compute-Opt(n) is O(n) (assuming the input
intervals are sorted by their finish times).

Proof. The time spent in a single call to M-Compute-Opt is O(1), excluding the
time spent in recursive calls it generates. So the running time is bounded by a
constant times the number of calls ever issued to M-Compute-Opt. Since the
implementation itself gives no explicit upper bound on this number of calls,
we try to find a bound by looking for a good measure of “progress.”

The most useful progress measure here is the number of entries in M that
are not “empty.” Initially this number is 0; but each time the procedure invokes
the recurrence, issuing two recursive calls to M-Compute-Opt, it fills in a new
entry, and hence increases the number of filled-in entries by 1. Since M has
only n+ 1entries, it follows that there can be at most O(n) calls to M-Compute-
Opt, and hence the running time of M-Compute-Opt(n) is O(n), as desired.

Computing a Solution in Addition to Its Value
So far we have simply computed the value of an optimal solution; presumably
we want a full optimal set of intervals as well. It would be easy to extend
M-Compute-Opt so as to keep track of an optimal solution in addition to its
value: we could maintain an additional array S so that S[i] contains an optimal
set of intervals among {1, 2, . . . , i}. Naively enhancing the code to maintain
the solutions in the array S, however, would blow up the running time by an
additional factor of O(n): while a position in the M array can be updated in
O(1) time, writing down a set in the S array takes O(n) time. We can avoid
this O(n) blow-up by not explicitly maintaining S, but rather by recovering the
optimal solution from values saved in the array M after the optimum value
has been computed.

We know from (6.2) that j belongs to an optimal solution for the set
of intervals {1, . . . , j} if and only if vj + OPT(p(j)) ≥ OPT(j − 1). Using this
observation, we get the following simple procedure, which “traces back”
through the array M to find the set of intervals in an optimal solution.

258 Chapter 6 Dynamic Programming

Find-Solution(j)

If j = 0 then

Output nothing

Else

If vj +M[p(j)]≥M[j − 1] then

Output j together with the result of Find-Solution(p(j))

Else

Output the result of Find-Solution(j − 1)

Endif

Endif

Since Find-Solution calls itself recursively only on strictly smaller val-
ues, it makes a total of O(n) recursive calls; and since it spends constant time
per call, we have

(6.5) Given the array M of the optimal values of the sub-problems, Find-
Solution returns an optimal solution in O(n) time.

6.2 Principles of Dynamic Programming:
Memoization or Iteration over Subproblems

We now use the algorithm for the Weighted Interval Scheduling Problem
developed in the previous section to summarize the basic principles of dynamic
programming, and also to offer a different perspective that will be fundamental
to the rest of the chapter: iterating over subproblems, rather than computing
solutions recursively.

In the previous section, we developed a polynomial-time solution to the
Weighted Interval Scheduling Problem by first designing an exponential-time
recursive algorithm and then converting it (by memoization) to an efficient
recursive algorithm that consulted a global array M of optimal solutions to
subproblems. To really understand what is going on here, however, it helps
to formulate an essentially equivalent version of the algorithm. It is this new
formulation that most explicitly captures the essence of the dynamic program-
ming technique, and it will serve as a general template for the algorithms we
develop in later sections.

Designing the Algorithm
The key to the efficient algorithm is really the array M. It encodes the notion
that we are using the value of optimal solutions to the subproblems on intervals
{1, 2, . . . , j} for each j, and it uses (6.1) to define the value of M[j] based on

6.2 Principles of Dynamic Programming 259

values that come earlier in the array. Once we have the array M, the problem
is solved: M[n] contains the value of the optimal solution on the full instance,
and Find-Solution can be used to trace back through M efficiently and return
an optimal solution itself.

The point to realize, then, is that we can directly compute the entries in
M by an iterative algorithm, rather than using memoized recursion. We just
start with M[0]= 0 and keep incrementing j; each time we need to determine
a value M[j], the answer is provided by (6.1). The algorithm looks as follows.

Iterative-Compute-Opt

M[0]= 0

For j = 1, 2, . . . , n

M[j]=max(vj +M[p(j)], M[j − 1])

Endfor

Analyzing the Algorithm
By exact analogy with the proof of (6.3), we can prove by induction on j that
this algorithm writes OPT(j) in array entry M[j]; (6.1) provides the induction
step. Also, as before, we can pass the filled-in array M to Find-Solution to
get an optimal solution in addition to the value. Finally, the running time
of Iterative-Compute-Opt is clearly O(n), since it explicitly runs for n
iterations and spends constant time in each.

An example of the execution of Iterative-Compute-Opt is depicted in
Figure 6.5. In each iteration, the algorithm fills in one additional entry of the
array M, by comparing the value of vj +M[p(j)] to the value of M[j − 1].

A Basic Outline of Dynamic Programming
This, then, provides a second efficient algorithm to solve the Weighted In-
terval Scheduling Problem. The two approaches clearly have a great deal of
conceptual overlap, since they both grow from the insight contained in the
recurrence (6.1). For the remainder of the chapter, we will develop dynamic
programming algorithms using the second type of approach—iterative build-
ing up of subproblems—because the algorithms are often simpler to express
this way. But in each case that we consider, there is an equivalent way to
formulate the algorithm as a memoized recursion.

Most crucially, the bulk of our discussion about the particular problem of
selecting intervals can be cast more generally as a rough template for designing
dynamic programming algorithms. To set about developing an algorithm based
on dynamic programming, one needs a collection of subproblems derived from
the original problem that satisfies a few basic properties.

260 Chapter 6 Dynamic Programming

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

w1 = 2

w2 = 4

w3 = 4

w4 = 7

w5 = 2

w6 = 1

20

0 1 2 3 4 5 6

M =

20 4

20 4 6

20 4 6 7

20 4 6 7 8

20 4 6 7 8 8

(a) (b)

Figure 6.5 Part (b) shows the iterations of Iterative-Compute-Opt on the sample
instance of Weighted Interval Scheduling depicted in part (a).

(i) There are only a polynomial number of subproblems.

(ii) The solution to the original problem can be easily computed from the
solutions to the subproblems. (For example, the original problem may
actually be one of the subproblems.)

(iii) There is a natural ordering on subproblems from “smallest” to “largest,”
together with an easy-to-compute recurrence (as in (6.1) and (6.2)) that
allows one to determine the solution to a subproblem from the solutions
to some number of smaller subproblems.

Naturally, these are informal guidelines. In particular, the notion of “smaller”
in part (iii) will depend on the type of recurrence one has.

We will see that it is sometimes easier to start the process of designing
such an algorithm by formulating a set of subproblems that looks natural, and
then figuring out a recurrence that links them together; but often (as happened
in the case of weighted interval scheduling), it can be useful to first define a
recurrence by reasoning about the structure of an optimal solution, and then
determine which subproblems will be necessary to unwind the recurrence.
This chicken-and-egg relationship between subproblems and recurrences is a
subtle issue underlying dynamic programming. It’s never clear that a collection
of subproblems will be useful until one finds a recurrence linking them
together; but it can be difficult to think about recurrences in the absence of
the “smaller” subproblems that they build on. In subsequent sections, we will
develop further practice in managing this design trade-off.

6.3 Segmented Least Squares: Multi-way Choices 261

6.3 Segmented Least Squares: Multi-way Choices
We now discuss a different type of problem, which illustrates a slightly
more complicated style of dynamic programming. In the previous section,
we developed a recurrence based on a fundamentally binary choice: either
the interval n belonged to an optimal solution or it didn’t. In the problem
we consider here, the recurrence will involve what might be called “multi-
way choices”: at each step, we have a polynomial number of possibilities to
consider for the structure of the optimal solution. As we’ll see, the dynamic
programming approach adapts to this more general situation very naturally.

As a separate issue, the problem developed in this section is also a nice
illustration of how a clean algorithmic definition can formalize a notion that
initially seems too fuzzy and nonintuitive to work with mathematically.

The Problem
Often when looking at scientific or statistical data, plotted on a two-
dimensional set of axes, one tries to pass a “line of best fit” through the
data, as in Figure 6.6.

This is a foundational problem in statistics and numerical analysis, formu-
lated as follows. Suppose our data consists of a set P of n points in the plane,
denoted (x1, y1), (x2, y2), . . . , (xn, yn); and suppose x1 < x2 < . . . < xn. Given
a line L defined by the equation y = ax + b, we say that the error of L with
respect to P is the sum of its squared “distances” to the points in P:

Error(L, P)=
n∑

i=1

(yi − axi − b)2.

Figure 6.6 A “line of best fit.”

262 Chapter 6 Dynamic Programming

Figure 6.7 A set of points that lie approximately on two lines.

A natural goal is then to find the line with minimum error; this turns out to
have a nice closed-form solution that can be easily derived using calculus.
Skipping the derivation here, we simply state the result: The line of minimum
error is y = ax+ b, where

a = n
∑

i xiyi −
(∑

i xi
) (∑

i yi
)

n
∑

i x2
i −

(∑
i xi
)2 and b=

∑
i yi − a

∑
i xi

n
.

Now, here’s a kind of issue that these formulas weren’t designed to cover.
Often we have data that looks something like the picture in Figure 6.7. In this
case, we’d like to make a statement like: “The points lie roughly on a sequence
of two lines.” How could we formalize this concept?

Essentially, any single line through the points in the figure would have a
terrible error; but if we use two lines, we could achieve quite a small error. So
we could try formulating a new problem as follows: Rather than seek a single
line of best fit, we are allowed to pass an arbitrary set of lines through the
points, and we seek a set of lines that minimizes the error. But this fails as a
good problem formulation, because it has a trivial solution: if we’re allowed
to fit the points with an arbitrarily large set of lines, we could fit the points
perfectly by having a different line pass through each pair of consecutive points
in P.

At the other extreme, we could try “hard-coding” the number two into the
problem; we could seek the best fit using at most two lines. But this too misses
a crucial feature of our intuition: We didn’t start out with a preconceived idea
that the points lay approximately on two lines; we concluded that from looking
at the picture. For example, most people would say that the points in Figure 6.8
lie approximately on three lines.

6.3 Segmented Least Squares: Multi-way Choices 263

Figure 6.8 A set of points that lie approximately on three lines.

Thus, intuitively, we need a problem formulation that requires us to fit
the points well, using as few lines as possible. We now formulate a problem—
the Segmented Least Squares Problem—that captures these issues quite cleanly.
The problem is a fundamental instance of an issue in data mining and statistics
known as change detection: Given a sequence of data points, we want to
identify a few points in the sequence at which a discrete change occurs (in
this case, a change from one linear approximation to another).

Formulating the Problem As in the discussion above, we are given a set of
points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, with x1 < x2 < . . . < xn. We will use
pi to denote the point (xi, yi). We must first partition P into some number
of segments. Each segment is a subset of P that represents a contiguous set
of x-coordinates; that is, it is a subset of the form {pi, pi+1, . . . , pj−1, pj} for
some indices i≤ j. Then, for each segment S in our partition of P, we compute
the line minimizing the error with respect to the points in S, according to the
formulas above.

The penalty of a partition is defined to be a sum of the following terms.

(i) The number of segments into which we partition P, times a fixed, given
multiplier C > 0.

(ii) For each segment, the error value of the optimal line through that
segment.

Our goal in the Segmented Least Squares Problem is to find a partition of
minimum penalty. This minimization captures the trade-offs we discussed
earlier. We are allowed to consider partitions into any number of segments; as
we increase the number of segments, we reduce the penalty terms in part (ii) of
the definition, but we increase the term in part (i). (The multiplier C is provided

264 Chapter 6 Dynamic Programming

with the input, and by tuning C, we can penalize the use of additional lines
to a greater or lesser extent.)

There are exponentially many possible partitions of P, and initially it is not
clear that we should be able to find the optimal one efficiently. We now show
how to use dynamic programming to find a partition of minimum penalty in
time polynomial in n.

Designing the Algorithm
To begin with, we should recall the ingredients we need for a dynamic program-
ming algorithm, as outlined at the end of Section 6.2.We want a polynomial
number of subproblems, the solutions of which should yield a solution to the
original problem; and we should be able to build up solutions to these subprob-
lems using a recurrence. As with the Weighted Interval Scheduling Problem,
it helps to think about some simple properties of the optimal solution. Note,
however, that there is not really a direct analogy to weighted interval sched-
uling: there we were looking for a subset of n objects, whereas here we are
seeking to partition n objects.

For segmented least squares, the following observation is very useful:
The last point pn belongs to a single segment in the optimal partition, and
that segment begins at some earlier point pi. This is the type of observation
that can suggest the right set of subproblems: if we knew the identity of the
last segment pi, . . . , pn (see Figure 6.9), then we could remove those points
from consideration and recursively solve the problem on the remaining points
p1, . . . , pi−1.

OPT(i – 1) i
n

Figure 6.9 A possible solution: a single line segment fits points pi, pi+1, . . . , pn, and then
an optimal solution is found for the remaining points p1, p2, . . . , pi−1.

6.3 Segmented Least Squares: Multi-way Choices 265

Suppose we let OPT(i) denote the optimum solution for the points
p1, . . . , pi, and we let ei, j denote the minimum error of any line with re-
spect to pi, pi+1, . . . , pj. (We will write OPT(0)= 0 as a boundary case.) Then
our observation above says the following.

(6.6) If the last segment of the optimal partition is pi, . . . , pn, then the value
of the optimal solution is OPT(n)= ei,n + C + OPT(i − 1).

Using the same observation for the subproblem consisting of the points
p1, . . . , pj, we see that to get OPT(j) we should find the best way to produce a
final segment pi, . . . , pj—paying the error plus an additive C for this segment—
together with an optimal solution OPT(i− 1) for the remaining points. In other
words, we have justified the following recurrence.

(6.7) For the subproblem on the points p1, . . . , pj,

OPT(j)= min
1≤i≤j

(ei,j + C + OPT(i − 1)),

and the segment pi, . . . , pj is used in an optimum solution for the subproblem
if and only if the minimum is obtained using index i.

The hard part in designing the algorithm is now behind us. From here, we
simply build up the solutions OPT(i) in order of increasing i.

Segmented-Least-Squares(n)

Array M[0 . . . n]

Set M[0]= 0

For all pairs i ≤ j

Compute the least squares error ei, j for the segment pi , . . . , pj

Endfor

For j = 1, 2, . . . , n

Use the recurrence (6.7) to compute M[j]

Endfor

Return M[n]

By analogy with the arguments for weighted interval scheduling, the
correctness of this algorithm can be proved directly by induction, with (6.7)
providing the induction step.

And as in our algorithm for weighted interval scheduling, we can trace
back through the array M to compute an optimum partition.

266 Chapter 6 Dynamic Programming

Find-Segments(j)

If j = 0 then

Output nothing

Else

Find an i that minimizes ei, j + C +M[i − 1]

Output the segment {pi , . . . , pj} and the result of
Find-Segments(i − 1)

Endif

Analyzing the Algorithm
Finally, we consider the running time of Segmented-Least-Squares. First
we need to compute the values of all the least-squares errors ei, j. To perform
a simple accounting of the running time for this, we note that there are O(n2)

pairs (i, j) for which this computation is needed; and for each pair (i, j), we
can use the formula given at the beginning of this section to compute ei, j in
O(n) time. Thus the total running time to compute all ei, j values is O(n3).

Following this, the algorithm has n iterations, for values j = 1, . . . , n. For
each value of j, we have to determine the minimum in the recurrence (6.7) to
fill in the array entry M[j]; this takes time O(n) for each j, for a total of O(n2).
Thus the running time is O(n2) once all the ei, j values have been determined.1

6.4 Subset Sums and Knapsacks: Adding a Variable
We’re seeing more and more that issues in scheduling provide a rich source of
practically motivated algorithmic problems. So far we’ve considered problems
in which requests are specified by a given interval of time on a resource, as
well as problems in which requests have a duration and a deadline but do not
mandate a particular interval during which they need to be done.

In this section, we consider a version of the second type of problem,
with durations and deadlines, which is difficult to solve directly using the
techniques we’ve seen so far. We will use dynamic programming to solve the
problem, but with a twist: the “obvious” set of subproblems will turn out not
to be enough, and so we end up creating a richer collection of subproblems. As

1 In this analysis, the running time is dominated by the O(n3) needed to compute all ei, j values. But,

in fact, it is possible to compute all these values in O(n2) time, which brings the running time of the

full algorithm down to O(n2). The idea, whose details we will leave as an exercise for the reader, is to

first compute ei, j for all pairs (i, j) where j − i = 1, then for all pairs where j − i = 2, then j − i = 3, and

so forth. This way, when we get to a particular ei, j value, we can use the ingredients of the calculation

for ei, j−1 to determine ei, j in constant time.

6.4 Subset Sums and Knapsacks: Adding a Variable 267

we will see, this is done by adding a new variable to the recurrence underlying
the dynamic program.

The Problem
In the scheduling problem we consider here, we have a single machine that
can process jobs, and we have a set of requests {1, 2, . . . , n}. We are only
able to use this resource for the period between time 0 and time W, for some
number W. Each request corresponds to a job that requires time wi to process.
If our goal is to process jobs so as to keep the machine as busy as possible up
to the “cut-off” W, which jobs should we choose?

More formally, we are given n items {1, . . . , n}, and each has a given
nonnegative weight wi (for i = 1, . . . , n). We are also given a bound W. We
would like to select a subset S of the items so that

∑
i∈S wi ≤W and, subject

to this restriction,
∑

i∈S wi is as large as possible. We will call this the Subset
Sum Problem.

This problem is a natural special case of a more general problem called the
Knapsack Problem, where each request i has both a value vi and a weight wi.
The goal in this more general problem is to select a subset of maximum total
value, subject to the restriction that its total weight not exceed W. Knapsack
problems often show up as subproblems in other, more complex problems. The
name knapsack refers to the problem of filling a knapsack of capacity W as
full as possible (or packing in as much value as possible), using a subset of the
items {1, . . . , n}. We will use weight or time when referring to the quantities
wi and W.

Since this resembles other scheduling problems we’ve seen before, it’s
natural to ask whether a greedy algorithm can find the optimal solution. It
appears that the answer is no—at least, no efficient greedy rule is known that
always constructs an optimal solution. One natural greedy approach to try
would be to sort the items by decreasing weight—or at least to do this for all
items of weight at most W—and then start selecting items in this order as long
as the total weight remains below W. But if W is a multiple of 2, and we have
three items with weights {W/2+ 1, W/2, W/2}, then we see that this greedy
algorithm will not produce the optimal solution. Alternately, we could sort by
increasing weight and then do the same thing; but this fails on inputs like
{1, W/2, W/2}.

The goal of this section is to show how to use dynamic programming to
solve this problem. Recall the main principles of dynamic programming: We
have to come up with a small number of subproblems so that each subproblem
can be solved easily from “smaller” subproblems, and the solution to the
original problem can be obtained easily once we know the solutions to all

268 Chapter 6 Dynamic Programming

the subproblems. The tricky issue here lies in figuring out a good set of
subproblems.

Designing the Algorithm
A False Start One general strategy, which worked for us in the case of
Weighted Interval Scheduling, is to consider subproblems involving only the
first i requests. We start by trying this strategy here. We use the notation
OPT(i), analogously to the notation used before, to denote the best possible
solution using a subset of the requests {1, . . . , i}. The key to our method for
the Weighted Interval Scheduling Problem was to concentrate on an optimal
solution O to our problem and consider two cases, depending on whether or
not the last request n is accepted or rejected by this optimum solution. Just
as in that case, we have the first part, which follows immediately from the
definition of OPT(i).

. If n �∈ O, then OPT(n)= OPT(n − 1).

Next we have to consider the case in which n ∈ O. What we’d like here
is a simple recursion, which tells us the best possible value we can get for
solutions that contain the last request n. For Weighted Interval Scheduling
this was easy, as we could simply delete each request that conflicted with
request n. In the current problem, this is not so simple. Accepting request n
does not immediately imply that we have to reject any other request. Instead,
it means that for the subset of requests S⊆ {1, . . . , n− 1} that we will accept,
we have less available weight left: a weight of wn is used on the accepted
request n, and we only have W − wn weight left for the set S of remaining
requests that we accept. See Figure 6.10.

A Better Solution This suggests that we need more subproblems: To find out
the value for OPT(n) we not only need the value of OPT(n− 1), but we also need
to know the best solution we can get using a subset of the first n − 1 items
and total allowed weight W − wn. We are therefore going to use many more
subproblems: one for each initial set {1, . . . , i} of the items, and each possible

W

wn

Figure 6.10 After item n is included in the solution, a weight of wn is used up and there
is W − wn available weight left.

6.4 Subset Sums and Knapsacks: Adding a Variable 269

value for the remaining available weight w. Assume that W is an integer, and
all requests i = 1, . . . , n have integer weights wi. We will have a subproblem
for each i = 0, 1, . . . , n and each integer 0≤ w ≤W. We will use OPT(i, w) to
denote the value of the optimal solution using a subset of the items {1, . . . , i}
with maximum allowed weight w, that is,

OPT(i, w)=max
S

∑
j∈S

wj ,

where the maximum is over subsets S ⊆ {1, . . . , i} that satisfy
∑

j∈S wj ≤ w.
Using this new set of subproblems, we will be able to express the value
OPT(i, w) as a simple expression in terms of values from smaller problems.
Moreover, OPT(n, W) is the quantity we’re looking for in the end. As before,
let O denote an optimum solution for the original problem.

. If n �∈ O, then OPT(n, W)= OPT(n − 1, W), since we can simply ignore
item n.

. If n ∈O, then OPT(n, W)=wn + OPT(n− 1, W −wn), since we now seek
to use the remaining capacity of W −wn in an optimal way across items
1, 2, . . . , n − 1.

When the nth item is too big, that is, W < wn, then we must have OPT(n, W)=
OPT(n− 1, W). Otherwise, we get the optimum solution allowing all n requests
by taking the better of these two options. Using the same line of argument for
the subproblem for items {1, . . . , i}, and maximum allowed weight w, gives
us the following recurrence.

(6.8) If w < wi then OPT(i, w)= OPT(i − 1, w). Otherwise

OPT(i, w)=max(OPT(i − 1, w), wi + OPT(i − 1, w − wi)).

As before, we want to design an algorithm that builds up a table of all
OPT(i, w) values while computing each of them at most once.

Subset-Sum(n, W)

Array M[0 . . . n, 0 . . . W]

Initialize M[0, w]= 0 for each w = 0, 1, . . . , W

For i = 1, 2, . . . , n

For w = 0, . . . , W

Use the recurrence (6.8) to compute M[i, w]

Endfor

Endfor

Return M[n, W]

270 Chapter 6 Dynamic Programming

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n

i

i – 1

2

1

0

0 1 2 w–wi w W

Figure 6.11 The two-dimensional table of OPT values. The leftmost column and bottom
row is always 0. The entry for OPT(i, w) is computed from the two other entries
OPT(i − 1, w) and OPT(i − 1, w − wi), as indicated by the arrows.

Using (6.8) one can immediately prove by induction that the returned
value M[n, W] is the optimum solution value for the requests 1, . . . , n and
available weight W.

Analyzing the Algorithm
Recall the tabular picture we considered in Figure 6.5, associated with
weighted interval scheduling, where we also showed the way in which the ar-
ray M for that algorithm was iteratively filled in. For the algorithm we’ve
just designed, we can use a similar representation, but we need a two-
dimensional table, reflecting the two-dimensional array of subproblems that
is being built up. Figure 6.11 shows the building up of subproblems in this
case: the value M[i, w] is computed from the two other values M[i− 1, w] and
M[i − 1, w − wi].

As an example of this algorithm executing, consider an instance with
weight limit W = 6, and n = 3 items of sizes w1=w2= 2 and w3= 3. We find
that the optimal value OPT(3, 6)= 5 (which we get by using the third item and
one of the first two items). Figure 6.12 illustrates the way the algorithm fills
in the two-dimensional table of OPT values row by row.

Next we will worry about the running time of this algorithm. As before in
the case of weighted interval scheduling, we are building up a table of solutions
M, and we compute each of the values M[i, w] in O(1) time using the previous
values. Thus the running time is proportional to the number of entries in the
table.

6.4 Subset Sums and Knapsacks: Adding a Variable 271

00 0 0 0 0 0

0 1 2 3

Initial values

4 5 6

3

2

1

0 00 0 0 0 0 0

00 2 2 2 2 2

0 1 2 3

Filling in values for i = 1

4 5 6

3

2

1

0

00 0 0 0 0 0

00 2 2 2 2 2 00 2 2 2 2 2

00 2 3 4 5 5

00 2 2 4 4 4 00 2 2 4 4 4

0 1 2 3

Filling in values for i = 2

4 5 6

3

2

1

0 00 0 0 0 0 0

0 1 2 3

Filling in values for i = 3

4 5 6

3

2

1

0

Knapsack size W = 6, items w1 = 2, w2 = 2, w3 = 3

Figure 6.12 The iterations of the algorithm on a sample instance of the Subset Sum
Problem.

(6.9) The Subset-Sum(n, W) Algorithm correctly computes the optimal
value of the problem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for
the Weighted Interval Scheduling Problem. Indeed, its running time is not
a polynomial function of n; rather, it is a polynomial function of n and W,
the largest integer involved in defining the problem. We call such algorithms
pseudo-polynomial. Pseudo-polynomial algorithms can be reasonably efficient
when the numbers {wi} involved in the input are reasonably small; however,
they become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array
M by a procedure similar to those we developed in the previous sections.

(6.10) Given a table M of the optimal values of the subproblems, the optimal
set S can be found in O(n) time.

Extension: The Knapsack Problem
The Knapsack Problem is a bit more complex than the scheduling problem we
discussed earlier. Consider a situation in which each item i has a nonnegative
weight wi as before, and also a distinct value vi. Our goal is now to find a

272 Chapter 6 Dynamic Programming

subset S of maximum value
∑

i∈S vi, subject to the restriction that the total
weight of the set should not exceed W:

∑
i∈S wi ≤W.

It is not hard to extend our dynamic programming algorithm to this more
general problem. We use the analogous set of subproblems, OPT(i, w), to denote
the value of the optimal solution using a subset of the items {1, . . . , i} and
maximum available weight w. We consider an optimal solution O, and identify
two cases depending on whether or not n ∈ O.

. If n �∈ O, then OPT(n, W)= OPT(n − 1, W).

. If n ∈ O, then OPT(n, W)= vn + OPT(n − 1, W − wn).

Using this line of argument for the subproblems implies the following analogue
of (6.8).

(6.11) If w < wi then OPT(i, w)= OPT(i − 1, w). Otherwise

OPT(i, w)=max(OPT(i − 1, w), vi + OPT(i − 1, w − wi)).

Using this recurrence, we can write down a completely analogous dynamic
programming algorithm, and this implies the following fact.

(6.12) The Knapsack Problem can be solved in O(nW) time.

6.5 RNA Secondary Structure: Dynamic
Programming over Intervals

In the Knapsack Problem, we were able to formulate a dynamic programming
algorithm by adding a new variable. A different but very common way by
which one ends up adding a variable to a dynamic program is through
the following scenario. We start by thinking about the set of subproblems
on {1, 2, . . . , j}, for all choices of j, and find ourselves unable to come up
with a natural recurrence. We then look at the larger set of subproblems on
{i, i + 1, . . . , j} for all choices of i and j (where i ≤ j), and find a natural
recurrence relation on these subproblems. In this way, we have added the
second variable i; the effect is to consider a subproblem for every contiguous
interval in {1, 2, . . . , n}.

There are a few canonical problems that fit this profile; those of you who
have studied parsing algorithms for context-free grammars have probably seen
at least one dynamic programming algorithm in this style. Here we focus on
the problem of RNA secondary structure prediction, a fundamental issue in
computational biology.

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 273

U A
C

G

G

C

A
G C

A G

C

A U

G

G

A

C

C

U

G

C

A

U
C

A

G
G

CG
A

U

A

U

U

A
G

G

A
C

U

A
G C

A

A

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

The Problem
As one learns in introductory biology classes, Watson and Crick posited that
double-stranded DNA is “zipped” together by complementary base-pairing.
Each strand of DNA can be viewed as a string of bases, where each base is
drawn from the set {A, C , G, T}.2 The bases A and T pair with each other, and
the bases C and G pair with each other; it is these A-T and C-G pairings that
hold the two strands together.

Now, single-stranded RNA molecules are key components in many of
the processes that go on inside a cell, and they follow more or less the
same structural principles. However, unlike double-stranded DNA, there’s no
“second strand” for the RNA to stick to; so it tends to loop back and form
base pairs with itself, resulting in interesting shapes like the one depicted in
Figure 6.13. The set of pairs (and resulting shape) formed by the RNA molecule
through this process is called the secondary structure, and understanding
the secondary structure is essential for understanding the behavior of the
molecule.

2 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.

274 Chapter 6 Dynamic Programming

For our purposes, a single-stranded RNA molecule can be viewed as a
sequence of n symbols (bases) drawn from the alphabet {A, C , G, U}.3 Let B=
b1b2 . . . bn be a single-stranded RNA molecule, where each bi ∈ {A, C , G, U}.
To a first approximation, one can model its secondary structure as follows. As
usual, we require that A pairs with U, and C pairs with G; we also require
that each base can pair with at most one other base—in other words, the set
of base pairs forms a matching. It also turns out that secondary structures are
(again, to a first approximation) “knot-free,” which we will formalize as a kind
of noncrossing condition below.

Thus, concretely, we say that a secondary structure on B is a set of pairs
S = {(i, j)}, where i, j ∈ {1, 2, . . . , n}, that satisfies the following conditions.

(i) (No sharp turns.) The ends of each pair in S are separated by at least four
intervening bases; that is, if (i, j) ∈ S, then i < j − 4.

(ii) The elements of any pair in S consist of either {A, U} or {C , G} (in either
order).

(iii) S is a matching: no base appears in more than one pair.

(iv) (The noncrossing condition.) If (i, j) and (k, �) are two pairs in S, then
we cannot have i < k < j < �. (See Figure 6.14 for an illustration.)

Note that the RNA secondary structure in Figure 6.13 satisfies properties (i)
through (iv). From a structural point of view, condition (i) arises simply
because the RNA molecule cannot bend too sharply; and conditions (ii) and
(iii) are the fundamental Watson-Crick rules of base-pairing. Condition (iv) is
the striking one, since it’s not obvious why it should hold in nature. But while
there are sporadic exceptions to it in real molecules (via so-called pseudo-
knotting), it does turn out to be a good approximation to the spatial constraints
on real RNA secondary structures.

Now, out of all the secondary structures that are possible for a single
RNA molecule, which are the ones that are likely to arise under physiological
conditions? The usual hypothesis is that a single-stranded RNA molecule will
form the secondary structure with the optimum total free energy. The correct
model for the free energy of a secondary structure is a subject of much debate;
but a first approximation here is to assume that the free energy of a secondary
structure is proportional simply to the number of base pairs that it contains.

Thus, having said all this, we can state the basic RNA secondary structure
prediction problem very simply: We want an efficient algorithm that takes

3 Note that the symbol T from the alphabet of DNA has been replaced by a U, but this is not important

for us here.

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 275

C

C A

G
G

(a) (b)

A

U

G

U

A C A U G A U G G C C A U G U

U

G

U

A

C

A

Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the
string has been “stretched” lengthwise, and edges connecting matched pairs appear as
noncrossing “bubbles” over the string.

a single-stranded RNA molecule B = b1b2 . . . bn and determines a secondary
structure S with the maximum possible number of base pairs.

Designing and Analyzing the Algorithm
A First Attempt at Dynamic Programming The natural first attempt to
apply dynamic programming would presumably be based on the following
subproblems: We say that OPT(j) is the maximum number of base pairs in a
secondary structure on b1b2 . . . bj. By the no-sharp-turns condition above, we
know that OPT(j)= 0 for j ≤ 5; and we know that OPT(n) is the solution we’re
looking for.

The trouble comes when we try writing down a recurrence that expresses
OPT(j) in terms of the solutions to smaller subproblems. We can get partway
there: in the optimal secondary structure on b1b2 . . . bj, it’s the case that either

. j is not involved in a pair; or

. j pairs with t for some t < j − 4.

In the first case, we just need to consult our solution for OPT(j − 1). The second
case is depicted in Figure 6.15(a); because of the noncrossing condition,
we now know that no pair can have one end between 1 and t − 1 and the
other end between t + 1 and j − 1. We’ve therefore effectively isolated two
new subproblems: one on the bases b1b2 . . . bt−1, and the other on the bases
bt+1 . . . bj−1. The first is solved by OPT(t − 1), but the second is not on our list
of subproblems, because it does not begin with b1.

276 Chapter 6 Dynamic Programming

(a)

1 2 t – 1 t t + 1 j – 1 j

(b)

i t – 1 t t + 1 j – 1 j

Including the pair (t, j) results in
two independent subproblems.

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.

This is the insight that makes us realize we need to add a variable. We
need to be able to work with subproblems that do not begin with b1; in other
words, we need to consider subproblems on bibi+1 . . . bj for all choices of i≤ j.

Dynamic Programming over Intervals Once we make this decision, our
previous reasoning leads straight to a successful recurrence. Let OPT(i, j) denote
the maximum number of base pairs in a secondary structure on bibi+1 . . . bj.
The no-sharp-turns condition lets us initialize OPT(i, j)= 0 whenever i≥ j − 4.
(For notational convenience, we will also allow ourselves to refer to OPT(i, j)
even when i > j; in this case, its value is 0.)

Now, in the optimal secondary structure on bibi+1 . . . bj, we have the same
alternatives as before:

. j is not involved in a pair; or

. j pairs with t for some t < j − 4.

In the first case, we have OPT(i, j)= OPT(i, j − 1). In the second case, depicted
in Figure 6.15(b), we recur on the two subproblems OPT(i, t − 1) and OPT(t +
1, j − 1); as argued above, the noncrossing condition has isolated these two
subproblems from each other.

We have therefore justified the following recurrence.

(6.13) OPT(i, j)=max(OPT(i, j− 1), max(1+ OPT(i, t − 1)+ OPT(t + 1, j− 1))),
where the max is taken over t such that bt and bj are an allowable base pair
(under conditions (i) and (ii) from the definition of a secondary structure).

Now we just have to make sure we understand the proper order in which
to build up the solutions to the subproblems. The form of (6.13) reveals that
we’re always invoking the solution to subproblems on shorter intervals: those

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 277

00 0

00

0

1

00 0 0

00 1

00

11

00 0 0

00 1 1

00 1

j = 6 7 8 9

Initial values

4

3

2

i = 1

j = 6 7 8 9

Filling in the values
for k = 5

4

3

2

i = 1

11 1

00 0 0

00 1 1

00 1 1

1 1 1 2

00 0 0

00 1

0 1

1

10

j = 6 7 8 9

Filling in the values
for k = 7

4

3

2

i = 1

j = 6 7 8 9

Filling in the values
for k = 8

4

3

2

i = 1

RNA sequence ACCGGUAGU

j = 6 7 8 9

Filling in the values
for k = 6

4

3

2

i = 1

Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary
Structure Prediction Problem.

for which k = j − i is smaller. Thus things will work without any trouble if we
build up the solutions in order of increasing interval length.

Initialize OPT(i, j)= 0 whenever i ≥ j − 4

For k = 5, 6, . . . , n − 1

For i = 1, 2, . . . n − k

Set j = i + k

Compute OPT(i, j) using the recurrence in (6.13)

Endfor

Endfor

Return OPT(1, n)

As an example of this algorithm executing, we consider the input
ACCGGUAGU, a subsequence of the sequence in Figure 6.14. As with the
Knapsack Problem, we need two dimensions to depict the array M: one for
the left endpoint of the interval being considered, and one for the right end-
point. In the figure, we only show entries corresponding to [i, j] pairs with
i < j − 4, since these are the only ones that can possibly be nonzero.

It is easy to bound the running time: there are O(n2) subproblems to solve,
and evaluating the recurrence in (6.13) takes time O(n) for each. Thus the
running time is O(n3).

278 Chapter 6 Dynamic Programming

As always, we can recover the secondary structure itself (not just its value)
by recording how the minima in (6.13) are achieved and tracing back through
the computation.

6.6 Sequence Alignment
For the remainder of this chapter, we consider two further dynamic program-
ming algorithms that each have a wide range of applications. In the next two
sections we discuss sequence alignment, a fundamental problem that arises
in comparing strings. Following this, we turn to the problem of computing
shortest paths in graphs when edges have costs that may be negative.

The Problem
Dictionaries on the Web seem to get more and more useful: often it seems easier
to pull up a bookmarked online dictionary than to get a physical dictionary
down from the bookshelf. And many online dictionaries offer functions that
you can’t get from a printed one: if you’re looking for a definition and type in a
word it doesn’t contain—say, ocurrance—it will come back and ask, “Perhaps
you mean occurrence?” How does it do this? Did it truly know what you had
in mind?

Let’s defer the second question to a different book and think a little about
the first one. To decide what you probably meant, it would be natural to search
the dictionary for the word most “similar” to the one you typed in. To do this,
we have to answer the question: How should we define similarity between
two words or strings?

Intuitively, we’d like to say that ocurrance and occurrence are similar
because we can make the two words identical if we add a c to the first word
and change the a to an e. Since neither of these changes seems so large, we
conclude that the words are quite similar. To put it another way, we can nearly
line up the two words letter by letter:

o-currance

occurrence

The hyphen (-) indicates a gap where we had to add a letter to the second
word to get it to line up with the first. Moreover, our lining up is not perfect
in that an e is lined up with an a.

We want a model in which similarity is determined roughly by the number
of gaps and mismatches we incur when we line up the two words. Of course,
there are many possible ways to line up the two words; for example, we could
have written

6.6 Sequence Alignment 279

o-curr-ance

occurre-nce

which involves three gaps and no mismatches. Which is better: one gap and
one mismatch, or three gaps and no mismatches?

This discussion has been made easier because we know roughly what
the correspondence ought to look like. When the two strings don’t look like
English words—for example, abbbaabbbbaab and ababaaabbbbbab—it may
take a little work to decide whether they can be lined up nicely or not:

abbbaa--bbbbaab

ababaaabbbbba-b

Dictionary interfaces and spell-checkers are not the most computationally
intensive application for this type of problem. In fact, determining similarities
among strings is one of the central computational problems facing molecular
biologists today.

Strings arise very naturally in biology: an organism’s genome—its full set
of genetic material—is divided up into giant linear DNA molecules known
as chromosomes, each of which serves conceptually as a one-dimensional
chemical storage device. Indeed, it does not obscure reality very much to
think of it as an enormous linear tape, containing a string over the alphabet
{A, C , G, T}. The string of symbols encodes the instructions for building
protein molecules; using a chemical mechanism for reading portions of the
chromosome, a cell can construct proteins that in turn control its metabolism.

Why is similarity important in this picture? To a first approximation, the
sequence of symbols in an organism’s genome can be viewed as determining
the properties of the organism. So suppose we have two strains of bacteria,
X and Y, which are closely related evolutionarily. Suppose further that we’ve
determined that a certain substring in the DNA of X codes for a certain kind
of toxin. Then, if we discover a very “similar” substring in the DNA of Y,
we might be able to hypothesize, before performing any experiments at all,
that this portion of the DNA in Y codes for a similar kind of toxin. This use
of computation to guide decisions about biological experiments is one of the
hallmarks of the field of computational biology.

All this leaves us with the same question we asked initially, while typing
badly spelled words into our online dictionary: How should we define the
notion of similarity between two strings?

In the early 1970s, the two molecular biologists Needleman and Wunsch
proposed a definition of similarity, which, basically unchanged, has become

280 Chapter 6 Dynamic Programming

the standard definition in use today. Its position as a standard was reinforced by
its simplicity and intuitive appeal, as well as through its independent discovery
by several other researchers around the same time. Moreover, this definition of
similarity came with an efficient dynamic programming algorithm to compute
it. In this way, the paradigm of dynamic programming was independently
discovered by biologists some twenty years after mathematicians and computer
scientists first articulated it.

The definition is motivated by the considerations we discussed above, and
in particular by the notion of “lining up” two strings. Suppose we are given two
strings X and Y, where X consists of the sequence of symbols x1x2 . . . xm and Y
consists of the sequence of symbols y1y2 . . . yn. Consider the sets {1, 2, . . . , m}
and {1, 2, . . . , n} as representing the different positions in the strings X and Y,
and consider a matching of these sets; recall that a matching is a set of ordered
pairs with the property that each item occurs in at most one pair. We say that a
matching M of these two sets is an alignment if there are no “crossing” pairs:
if (i, j), (i′, j′) ∈M and i < i′, then j < j′. Intuitively, an alignment gives a way
of lining up the two strings, by telling us which pairs of positions will be lined
up with one another. Thus, for example,

stop-

-tops

corresponds to the alignment {(2, 1), (3, 2), (4, 3)}.
Our definition of similarity will be based on finding the optimal alignment

between X and Y, according to the following criteria. Suppose M is a given
alignment between X and Y.

. First, there is a parameter δ > 0 that defines a gap penalty. For each
position of X or Y that is not matched in M—it is a gap—we incur a
cost of δ.

. Second, for each pair of letters p, q in our alphabet, there is a mismatch
cost of αpq for lining up p with q. Thus, for each (i, j) ∈M, we pay the
appropriate mismatch cost αxiyj

for lining up xi with yj. One generally
assumes that αpp = 0 for each letter p—there is no mismatch cost to line
up a letter with another copy of itself—although this will not be necessary
in anything that follows.

. The cost of M is the sum of its gap and mismatch costs, and we seek an
alignment of minimum cost.

The process of minimizing this cost is often referred to as sequence alignment
in the biology literature. The quantities δ and {αpq} are external parameters
that must be plugged into software for sequence alignment; indeed, a lot of
work goes into choosing the settings for these parameters. From our point of

6.6 Sequence Alignment 281

view, in designing an algorithm for sequence alignment, we will take them as
given. To go back to our first example, notice how these parameters determine
which alignment of ocurrance and occurrence we should prefer: the first is
strictly better if and only if δ + αae < 3δ.

Designing the Algorithm
We now have a concrete numerical definition for the similarity between
strings X and Y: it is the minimum cost of an alignment between X and Y. The
lower this cost, the more similar we declare the strings to be. We now turn to
the problem of computing this minimum cost, and an optimal alignment that
yields it, for a given pair of strings X and Y.

One of the approaches we could try for this problem is dynamic program-
ming, and we are motivated by the following basic dichotomy.

. In the optimal alignment M, either (m, n) ∈M or (m, n) �∈M. (That is,
either the last symbols in the two strings are matched to each other, or
they aren’t.)

By itself, this fact would be too weak to provide us with a dynamic program-
ming solution. Suppose, however, that we compound it with the following
basic fact.

(6.14) Let M be any alignment of X and Y. If (m, n) �∈M, then either the
mth position of X or the nth position of Y is not matched in M.

Proof. Suppose by way of contradiction that (m, n) �∈M, and there are num-
bers i < m and j < n so that (m, j) ∈M and (i, n) ∈M. But this contradicts our
definition of alignment: we have (i, n), (m, j) ∈M with i < m, but n > i so the
pairs (i, n) and (m, j) cross.

There is an equivalent way to write (6.14) that exposes three alternative
possibilities, and leads directly to the formulation of a recurrence.

(6.15) In an optimal alignment M, at least one of the following is true:

(i) (m, n) ∈M; or

(ii) the mth position of X is not matched; or

(iii) the nth position of Y is not matched.

Now, let OPT(i, j) denote the minimum cost of an alignment between
x1x2 . . . xi and y1y2 . . . yj. If case (i) of (6.15) holds, we pay αxmyn

and then
align x1x2 . . . xm−1 as well as possible with y1y2 . . . yn−1; we get OPT(m, n)=
αxmyn

+ OPT(m − 1, n − 1). If case (ii) holds, we pay a gap cost of δ since the
mth position of X is not matched, and then we align x1x2 . . . xm−1 as well as

282 Chapter 6 Dynamic Programming

possible with y1y2 . . . yn. In this way, we get OPT(m, n)= δ + OPT(m − 1, n).
Similarly, if case (iii) holds, we get OPT(m, n)= δ + OPT(m, n − 1).

Using the same argument for the subproblem of finding the minimum-cost
alignment between x1x2 . . . xi and y1y2 . . . yj, we get the following fact.

(6.16) The minimum alignment costs satisfy the following recurrence for i≥ 1
and j ≥ 1:

OPT(i, j)=min[αxiyj
+ OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i, j − 1)].

Moreover, (i, j) is in an optimal alignment M for this subproblem if and only
if the minimum is achieved by the first of these values.

We have maneuvered ourselves into a position where the dynamic pro-
gramming algorithm has become clear: We build up the values of OPT(i, j) using
the recurrence in (6.16). There are only O(mn) subproblems, and OPT(m, n)

is the value we are seeking.

We now specify the algorithm to compute the value of the optimal align-
ment. For purposes of initialization, we note that OPT(i, 0)= OPT(0, i)= iδ for
all i, since the only way to line up an i-letter word with a 0-letter word is to
use i gaps.

Alignment(X,Y)

Array A[0 . . . m, 0 . . . n]

Initialize A[i, 0]= iδ for each i

Initialize A[0, j]= jδ for each j

For j = 1, . . . , n

For i = 1, . . . , m

Use the recurrence (6.16) to compute A[i, j]

Endfor

Endfor

Return A[m, n]

As in previous dynamic programming algorithms, we can trace back
through the array A, using the second part of fact (6.16), to construct the
alignment itself.

Analyzing the Algorithm
The correctness of the algorithm follows directly from (6.16). The running time
is O(mn), since the array A has O(mn) entries, and at worst we spend constant
time on each.

6.6 Sequence Alignment 283

x3

x2

x1

y1 y2 y3 y4

Figure 6.17 A graph-based picture of sequence alignment.

There is an appealing pictorial way in which people think about this
sequence alignment algorithm. Suppose we build a two-dimensional m × n
grid graph GXY, with the rows labeled by symbols in the string X, the columns
labeled by symbols in Y, and directed edges as in Figure 6.17.

We number the rows from 0 to m and the columns from 0 to n; we denote
the node in the ith row and the jth column by the label (i, j). We put costs on
the edges of GXY: the cost of each horizontal and vertical edge is δ, and the
cost of the diagonal edge from (i − 1, j − 1) to (i, j) is αxiyj

.

The purpose of this picture now emerges: the recurrence in (6.16) for
OPT(i, j) is precisely the recurrence one gets for the minimum-cost path in GXY
from (0, 0) to (i, j). Thus we can show

(6.17) Let f (i, j) denote the minimum cost of a path from (0, 0) to (i, j) in
GXY. Then for all i, j, we have f (i, j)= OPT(i, j).

Proof. We can easily prove this by induction on i+ j. When i+ j = 0, we have
i = j = 0, and indeed f (i, j)= OPT(i, j)= 0.

Now consider arbitrary values of i and j, and suppose the statement is
true for all pairs (i′, j′) with i′ + j′ < i+ j. The last edge on the shortest path to
(i, j) is either from (i − 1, j − 1), (i − 1, j), or (i, j − 1). Thus we have

f (i, j)=min[αxiyj
+ f (i − 1, j − 1), δ + f (i − 1, j), δ + f (i, j − 1)]

=min[αxiyj
+ OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i, j − 1)]

= OPT(i, j),

where we pass from the first line to the second using the induction hypothesis,
and we pass from the second to the third using (6.16).

284 Chapter 6 Dynamic Programming

68 5

3

4

55

2 43

3 41

6

4

4 6

6

5

4

6

820

a m en—

2

n

a

e

m

—

Figure 6.18 The OPT values
for the problem of aligning
the words mean to name.

Thus the value of the optimal alignment is the length of the shortest path
in GXY from (0, 0) to (m, n). (We’ll call any path in GXY from (0, 0) to (m, n)

a corner-to-corner path.) Moreover, the diagonal edges used in a shortest path
correspond precisely to the pairs used in a minimum-cost alignment. These
connections to the Shortest-Path Problem in the graph GXY do not directly yield
an improvement in the running time for the sequence alignment problem;
however, they do help one’s intuition for the problem and have been useful in
suggesting algorithms for more complex variations on sequence alignment.

For an example, Figure 6.18 shows the value of the shortest path from (0, 0)

to each node (i, j) for the problem of aligning the words mean and name. For
the purpose of this example, we assume that δ = 2; matching a vowel with
a different vowel, or a consonant with a different consonant, costs 1; while
matching a vowel and a consonant with each other costs 3. For each cell in
the table (representing the corresponding node), the arrow indicates the last
step of the shortest path leading to that node—in other words, the way that
the minimum is achieved in (6.16). Thus, by following arrows backward from
node (4, 4), we can trace back to construct the alignment.

6.7 Sequence Alignment in Linear Space via
Divide and Conquer

In the previous section, we showed how to compute the optimal alignment
between two strings X and Y of lengths m and n, respectively. Building up the
two-dimensional m-by-n array of optimal solutions to subproblems, OPT(·, ·),
turned out to be equivalent to constructing a graph GXY with mn nodes laid
out in a grid and looking for the cheapest path between opposite corners. In
either of these ways of formulating the dynamic programming algorithm, the
running time is O(mn), because it takes constant time to determine the value
in each of the mn cells of the array OPT; and the space requirement is O(mn)

as well, since it was dominated by the cost of storing the array (or the graph
GXY).

The Problem
The question we ask in this section is: Should we be happy with O(mn)

as a space bound? If our application is to compare English words, or even
English sentences, it is quite reasonable. In biological applications of sequence
alignment, however, one often compares very long strings against one another;
and in these cases, the �(mn) space requirement can potentially be a more
severe problem than the �(mn) time requirement. Suppose, for example, that
we are comparing two strings of 100,000 symbols each. Depending on the
underlying processor, the prospect of performing roughly 10 billion primitive

6.7 Sequence Alignment in Linear Space via Divide and Conquer 285

operations might be less cause for worry than the prospect of working with a
single 10-gigabyte array.

Fortunately, this is not the end of the story. In this section we describe a
very clever enhancement of the sequence alignment algorithm that makes it
work in O(mn) time using only O(m+ n) space. In other words, we can bring
the space requirement down to linear while blowing up the running time by
at most an additional constant factor. For ease of presentation, we’ll describe
various steps in terms of paths in the graph GXY, with the natural equivalence
back to the sequence alignment problem. Thus, when we seek the pairs in
an optimal alignment, we can equivalently ask for the edges in a shortest
corner-to-corner path in GXY.

The algorithm itself will be a nice application of divide-and-conquer ideas.
The crux of the technique is the observation that, if we divide the problem
into several recursive calls, then the space needed for the computation can be
reused from one call to the next. The way in which this idea is used, however,
is fairly subtle.

Designing the Algorithm
We first show that if we only care about the value of the optimal alignment,
and not the alignment itself, it is easy to get away with linear space. The
crucial observation is that to fill in an entry of the array A, the recurrence in
(6.16) only needs information from the current column of A and the previous
column of A. Thus we will “collapse” the array A to an m × 2 array B: as the
algorithm iterates through values of j, entries of the form B[i, 0] will hold the
“previous” column’s value A[i, j − 1], while entries of the form B[i, 1]will hold
the “current” column’s value A[i, j].

Space-Efficient-Alignment(X,Y)

Array B[0 . . . m, 0 . . . 1]

Initialize B[i, 0]= iδ for each i (just as in column 0 of A)

For j = 1, . . . , n

B[0, 1]= jδ (since this corresponds to entry A[0, j])

For i = 1, . . . , m

B[i, 1]=min[αxiyj
+ B[i − 1, 0],

δ + B[i − 1, 1], δ + B[i, 0]]

Endfor

Move column 1 of B to column 0 to make room for next iteration:

Update B[i, 0]= B[i, 1] for each i

Endfor

286 Chapter 6 Dynamic Programming

It is easy to verify that when this algorithm completes, the array entry
B[i, 1]holds the value of OPT(i, n) for i= 0, 1, . . . , m. Moreover, it uses O(mn)

time and O(m) space. The problem is: where is the alignment itself? We
haven’t left enough information around to be able to run a procedure like
Find-Alignment. Since B at the end of the algorithm only contains the last
two columns of the original dynamic programming array A, if we were to try
tracing back to get the path, we’d run out of information after just these two
columns. We could imagine getting around this difficulty by trying to “predict”
what the alignment is going to be in the process of running our space-efficient
procedure. In particular, as we compute the values in the jth column of the
(now implicit) array A, we could try hypothesizing that a certain entry has a
very small value, and hence that the alignment that passes through this entry
is a promising candidate to be the optimal one. But this promising alignment
might run into big problems later on, and a different alignment that currently
looks much less attractive could turn out to be the optimal one.

There is, in fact, a solution to this problem—we will be able to recover
the alignment itself using O(m + n) space—but it requires a genuinely new
idea. The insight is based on employing the divide-and-conquer technique
that we’ve seen earlier in the book. We begin with a simple alternative way to
implement the basic dynamic programming solution.

A Backward Formulation of the Dynamic Program Recall that we use f (i, j)
to denote the length of the shortest path from (0, 0) to (i, j) in the graph GXY.
(As we showed in the initial sequence alignment algorithm, f (i, j) has the
same value as OPT(i, j).) Now let’s define g(i, j) to be the length of the shortest
path from (i, j) to (m, n) in GXY. The function g provides an equally natural
dynamic programming approach to sequence alignment, except that we build
it up in reverse: we start with g(m, n)= 0, and the answer we want is g(0, 0).
By strict analogy with (6.16), we have the following recurrence for g.

(6.18) For i < m and j < n we have

g(i, j)=min[αxi+1yj+1
+ g(i + 1, j + 1), δ + g(i, j + 1), δ + g(i + 1, j)].

This is just the recurrence one obtains by taking the graph GXY, “rotating”
it so that the node (m, n) is in the lower left corner, and using the previous ap-
proach. Using this picture, we can also work out the full dynamic programming
algorithm to build up the values of g, backward starting from (m, n). Similarly,
there is a space-efficient version of this backward dynamic programming al-
gorithm, analogous to Space-Efficient-Alignment, which computes the
value of the optimal alignment using only O(m + n) space. We will refer to

6.7 Sequence Alignment in Linear Space via Divide and Conquer 287

this backward version, naturally enough, as Backward-Space-Efficient-
Alignment.

Combining the Forward and Backward Formulations So now we have
symmetric algorithms which build up the values of the functions f and g.
The idea will be to use these two algorithms in concert to find the optimal
alignment. First, here are two basic facts summarizing some relationships
between the functions f and g.

(6.19) The length of the shortest corner-to-corner path in GXY that passes
through (i, j) is f (i, j)+ g(i, j).

Proof. Let �ij denote the length of the shortest corner-to-corner path in GXY
that passes through (i, j). Clearly, any such path must get from (0, 0) to (i, j)
and then from (i, j) to (m, n). Thus its length is at least f (i, j)+ g(i, j), and so
we have �ij ≥ f (i, j)+ g(i, j). On the other hand, consider the corner-to-corner
path that consists of a minimum-length path from (0, 0) to (i, j), followed by a
minimum-length path from (i, j) to (m, n). This path has length f (i, j)+ g(i, j),
and so we have �ij ≤ f (i, j)+ g(i, j). It follows that �ij = f (i, j)+ g(i, j).

(6.20) Let k be any number in {0, . . . , n}, and let q be an index that
minimizes the quantity f (q, k)+ g(q, k). Then there is a corner-to-corner path
of minimum length that passes through the node (q, k).

Proof. Let �∗ denote the length of the shortest corner-to-corner path in GXY.
Now fix a value of k ∈ {0, . . . , n}. The shortest corner-to-corner path must use
some node in the kth column of GXY—let’s suppose it is node (p, k)—and thus
by (6.19)

�∗ = f (p, k)+ g(p, k)≥min
q

f (q, k)+ g(q, k).

Now consider the index q that achieves the minimum in the right-hand side
of this expression; we have

�∗ ≥ f (q, k)+ g(q, k).

By (6.19) again, the shortest corner-to-corner path using the node (q, k) has
length f (q, k)+ g(q, k), and since �∗ is the minimum length of any corner-to-
corner path, we have

�∗ ≤ f (q, k)+ g(q, k).

It follows that �∗ = f (q, k)+ g(q, k). Thus the shortest corner-to-corner path
using the node (q, k) has length �∗, and this proves (6.20).

288 Chapter 6 Dynamic Programming

Using (6.20) and our space-efficient algorithms to compute the value of the
optimal alignment, we will proceed as follows. We divide GXY along its center
column and compute the value of f (i, n/2) and g(i, n/2) for each value of i,
using our two space-efficient algorithms. We can then determine the minimum
value of f (i, n/2)+ g(i, n/2), and conclude via (6.20) that there is a shortest
corner-to-corner path passing through the node (i, n/2). Given this, we can
search for the shortest path recursively in the portion of GXY between (0, 0)

and (i, n/2) and in the portion between (i, n/2) and (m, n). The crucial point
is that we apply these recursive calls sequentially and reuse the working space
from one call to the next. Thus, since we only work on one recursive call at a
time, the total space usage is O(m + n). The key question we have to resolve
is whether the running time of this algorithm remains O(mn).

In running the algorithm, we maintain a globally accessible list P which
will hold nodes on the shortest corner-to-corner path as they are discovered.
Initially, P is empty. P need only have m+ n entries, since no corner-to-corner
path can use more than this many edges. We also use the following notation:
X[i : j], for 1≤ i ≤ j ≤m, denotes the substring of X consisting of xixi+1 . . . xj;
and we define Y[i : j] analogously. We will assume for simplicity that n is a
power of 2; this assumption makes the discussion much cleaner, although it
can be easily avoided.

Divide-and-Conquer-Alignment(X,Y)

Let m be the number of symbols in X

Let n be the number of symbols in Y

If m ≤ 2 or n ≤ 2 then

Compute optimal alignment using Alignment(X,Y)

Call Space-Efficient-Alignment(X,Y[1 : n/2])

Call Backward-Space-Efficient-Alignment(X,Y[n/2+ 1 : n])

Let q be the index minimizing f (q, n/2)+ g(q, n/2)

Add (q, n/2) to global list P

Divide-and-Conquer-Alignment(X[1 : q],Y[1 : n/2])

Divide-and-Conquer-Alignment(X[q + 1 : n],Y[n/2+ 1 : n])

Return P

As an example of the first level of recursion, consider Figure 6.19. If the
minimizing index q turns out to be 1, we get the two subproblems pictured.

Analyzing the Algorithm
The previous arguments already establish that the algorithm returns the correct
answer and that it uses O(m + n) space. Thus, we need only verify the
following fact.

6.7 Sequence Alignment in Linear Space via Divide and Conquer 289

x3

x2

x1

y1 y2 y3 y4

Second recursive call

First recursive call

Figure 6.19 The first level of recurrence for the space-efficient Divide-and-Conquer-
Alignment. The two boxed regions indicate the input to the two recursive cells.

(6.21) The running time of Divide-and-Conquer-Alignment on strings of
length m and n is O(mn).

Proof. Let T(m, n) denote the maximum running time of the algorithm on
strings of length m and n. The algorithm performs O(mn) work to build up
the arrays B and B′; it then runs recursively on strings of size q and n/2, and
on strings of size m− q and n/2. Thus, for some constant c, and some choice
of index q, we have

T(m, n)≤ cmn + T(q, n/2)+ T(m − q, n/2)

T(m, 2)≤ cm

T(2, n)≤ cn.

This recurrence is more complex than the ones we’ve seen in our earlier
applications of divide-and-conquer in Chapter 5. First of all, the running time
is a function of two variables (m and n) rather than just one; also, the division
into subproblems is not necessarily an “even split,” but instead depends on
the value q that is found through the earlier work done by the algorithm.

So how should we go about solving such a recurrence? One way is to
try guessing the form by considering a special case of the recurrence, and
then using partial substitution to fill out the details of this guess. Specifically,
suppose that we were in a case in which m = n, and in which the split point
q were exactly in the middle. In this (admittedly restrictive) special case, we
could write the function T(·) in terms of the single variable n, set q = n/2
(since we’re assuming a perfect bisection), and have

T(n)≤ 2T(n/2)+ cn2.

290 Chapter 6 Dynamic Programming

This is a useful expression, since it’s something that we solved in our earlier
discussion of recurrences at the outset of Chapter 5. Specifically, this recur-
rence implies T(n)= O(n2).

So when m= n and we get an even split, the running time grows like the
square of n. Motivated by this, we move back to the fully general recurrence
for the problem at hand and guess that T(m, n) grows like the product of m and
n. Specifically, we’ll guess that T(m, n)≤ kmn for some constant k, and see if
we can prove this by induction. To start with the base cases m ≤ 2 and n ≤ 2,
we see that these hold as long as k ≥ c/2. Now, assuming T(m′, n′) ≤ km′n′
holds for pairs (m′, n′) with a smaller product, we have

T(m, n)≤ cmn + T(q, n/2)+ T(m − q, n/2)

≤ cmn + kqn/2+ k(m − q)n/2

= cmn + kqn/2+ kmn/2− kqn/2

= (c + k/2)mn.

Thus the inductive step will work if we choose k = 2c, and this completes the
proof.

6.8 Shortest Paths in a Graph
For the final three sections, we focus on the problem of finding shortest paths
in a graph, together with some closely related issues.

The Problem
Let G = (V , E) be a directed graph. Assume that each edge (i, j) ∈ E has an
associated weight cij. The weights can be used to model a number of different
things; we will picture here the interpretation in which the weight cij represents
a cost for going directly from node i to node j in the graph.

Earlier we discussed Dijkstra’s Algorithm for finding shortest paths in
graphs with positive edge costs. Here we consider the more complex problem
in which we seek shortest paths when costs may be negative. Among the
motivations for studying this problem, here are two that particularly stand
out. First, negative costs turn out to be crucial for modeling a number of
phenomena with shortest paths. For example, the nodes may represent agents
in a financial setting, and cij represents the cost of a transaction in which
we buy from agent i and then immediately sell to agent j. In this case, a
path would represent a succession of transactions, and edges with negative
costs would represent transactions that result in profits. Second, the algorithm
that we develop for dealing with edges of negative cost turns out, in certain
crucial ways, to be more flexible and decentralized than Dijkstra’s Algorithm.
As a consequence, it has important applications for the design of distributed

6.8 Shortest Paths in a Graph 291

routing algorithms that determine the most efficient path in a communication
network.

In this section and the next two, we will consider the following two related
problems.

. Given a graph G with weights, as described above, decide if G has a
negative cycle—that is, a directed cycle C such that∑

ij∈C

cij < 0.

. If the graph has no negative cycles, find a path P from an origin node s
to a destination node t with minimum total cost:∑

ij∈P

cij

should be as small as possible for any s-t path. This is generally called
both the Minimum-Cost Path Problem and the Shortest-Path Problem.

In terms of our financial motivation above, a negative cycle corresponds to a
profitable sequence of transactions that takes us back to our starting point: we
buy from i1, sell to i2, buy from i2, sell to i3, and so forth, finally arriving back
at i1 with a net profit. Thus negative cycles in such a network can be viewed
as good arbitrage opportunities.

It makes sense to consider the minimum-cost s-t path problem under the
assumption that there are no negative cycles. As illustrated by Figure 6.20, if
there is a negative cycle C, a path Ps from s to the cycle, and another path Pt
from the cycle to t, then we can build an s-t path of arbitrarily negative cost:
we first use Ps to get to the negative cycle C, then we go around C as many
times as we want, and then we use Pt to get from C to the destination t.

Designing and Analyzing the Algorithm
A Few False Starts Let’s begin by recalling Dijkstra’s Algorithm for the
Shortest-Path Problem when there are no negative costs. That method

CPs –1–2

1

11 212 ts

Pt

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going
around the cycle C many times).

292 Chapter 6 Dynamic Programming

(a)

v

ws

u

1 –6

(b)

ts

–3

3 3

2 3

2 2

Figure 6.21 (a) With negative
edge costs, Dijkstra’s Algo-
rithm can give the wrong
answer for the Shortest-Path
Problem. (b) Adding 3 to the
cost of each edge will make
all edges nonnegative, but it
will change the identity of the
shortest s-t path.

computes a shortest path from the origin s to every other node v in the graph,
essentially using a greedy algorithm. The basic idea is to maintain a set S
with the property that the shortest path from s to each node in S is known.
We start with S = {s}—since we know the shortest path from s to s has cost 0
when there are no negative edges—and we add elements greedily to this set S.
As our first greedy step, we consider the minimum-cost edge leaving node s,
that is, mini∈V csi. Let v be a node on which this minimum is obtained. A key
observation underlying Dijkstra’s Algorithm is that the shortest path from s
to v is the single-edge path {s, v}. Thus we can immediately add the node v
to the set S. The path {s, v} is clearly the shortest to v if there are no negative
edge costs: any other path from s to v would have to start on an edge out of s
that is at least as expensive as edge (s, v).

The above observation is no longer true if we can have negative edge
costs. As suggested by the example in Figure 6.21(a), a path that starts on an
expensive edge, but then compensates with subsequent edges of negative cost,
can be cheaper than a path that starts on a cheap edge. This suggests that the
Dijkstra-style greedy approach will not work here.

Another natural idea is to first modify the costs cij by adding some large
constant M to each; that is, we let c′ij = cij +M for each edge (i, j) ∈ E. If the
constant M is large enough, then all modified costs are nonnegative, and we
can use Dijkstra’s Algorithm to find the minimum-cost path subject to costs
c′. However, this approach fails to find the correct minimum-cost paths with
respect to the original costs c. The problem here is that changing the costs from
c to c′ changes the minimum-cost path. For example (as in Figure 6.21(b)), if
a path P consisting of three edges is only slightly cheaper than another path
P′ that has two edges, then after the change in costs, P′ will be cheaper, since
we only add 2M to the cost of P′ while adding 3M to the cost of P.

A Dynamic Programming Approach We will try to use dynamic program-
ming to solve the problem of finding a shortest path from s to t when there
are negative edge costs but no negative cycles. We could try an idea that has
worked for us so far: subproblem i could be to find a shortest path using only
the first i nodes. This idea does not immediately work, but it can be made
to work with some effort. Here, however, we will discuss a simpler and more
efficient solution, the Bellman-Ford Algorithm. The development of dynamic
programming as a general algorithmic technique is often credited to the work
of Bellman in the 1950’s; and the Bellman-Ford Shortest-Path Algorithm was
one of the first applications.

The dynamic programming solution we develop will be based on the
following crucial observation.

6.8 Shortest Paths in a Graph 293

w
t

v

P

Figure 6.22 The minimum-cost path P from v to t using at most i edges.

(6.22) If G has no negative cycles, then there is a shortest path from s to t
that is simple (i.e., does not repeat nodes), and hence has at most n− 1 edges.

Proof. Since every cycle has nonnegative cost, the shortest path P from s to
t with the fewest number of edges does not repeat any vertex v. For if P did
repeat a vertex v, we could remove the portion of P between consecutive visits
to v, resulting in a path of no greater cost and fewer edges.

Let’s use OPT(i, v) to denote the minimum cost of a v-t path using at most
i edges. By (6.22), our original problem is to compute OPT(n− 1, s). (We could
instead design an algorithm whose subproblems correspond to the minimum
cost of an s-v path using at most i edges. This would form a more natural
parallel with Dijkstra’s Algorithm, but it would not be as natural in the context
of the routing protocols we discuss later.)

We now need a simple way to express OPT(i, v) using smaller subproblems.
We will see that the most natural approach involves the consideration of
many different options; this is another example of the principle of “multi-
way choices” that we saw in the algorithm for the Segmented Least Squares
Problem.

Let’s fix an optimal path P representing OPT(i, v) as depicted in Figure 6.22.

. If the path P uses at most i − 1 edges, then OPT(i, v)= OPT(i − 1, v).

. If the path P uses i edges, and the first edge is (v, w), then OPT(i, v)=
cvw + OPT(i − 1, w).

This leads to the following recursive formula.

(6.23) If i > 0 then

OPT(i, v)=min(OPT(i − 1, v), min
w∈V

(OPT(i − 1, w)+ cvw)).

Using this recurrence, we get the following dynamic programming algo-
rithm to compute the value OPT(n − 1, s).

294 Chapter 6 Dynamic Programming

8

–4 d

e

tb

6

–1 4

2

–2

–3

–3

3

a

c

4∞ 3 3 2 0

∞∞ 0 –2 –2 –2

3∞ 3 3 3 3

00 0 0 0 0

10 2 3 4 5

–3∞ –3 –4 –6 –6

2∞ 0 0 0 0

d

b

c

t

a

e

(b)

(a)

Figure 6.23 For the directed
graph in (a), the Shortest-
Path Algorithm constructs
the dynamic programming
table in (b).

Shortest-Path(G, s, t)

n = number of nodes in G

Array M[0 . . . n − 1, V]

Define M[0, t]= 0 and M[0, v]=∞ for all other v ∈ V

For i = 1, . . . , n − 1

For v ∈ V in any order

Compute M[i, v] using the recurrence (6.23)

Endfor

Endfor

Return M[n − 1, s]

The correctness of the method follows directly by induction from (6.23).
We can bound the running time as follows. The table M has n2 entries; and
each entry can take O(n) time to compute, as there are at most n nodes w ∈ V
we have to consider.

(6.24) The Shortest-Pathmethod correctly computes the minimum cost of
an s-t path in any graph that has no negative cycles, and runs in O(n3) time.

Given the table M containing the optimal values of the subproblems, the
shortest path using at most i edges can be obtained in O(in) time, by tracing
back through smaller subproblems.

As an example, consider the graph in Figure 6.23(a), where the goal is to
find a shortest path from each node to t. The table in Figure 6.23(b) shows the
array M, with entries corresponding to the values M[i, v] from the algorithm.
Thus a single row in the table corresponds to the shortest path from a particular
node to t, as we allow the path to use an increasing number of edges. For
example, the shortest path from node d to t is updated four times, as it changes
from d-t, to d-a-t, to d-a-b-e-t, and finally to d-a-b-e-c-t.

Extensions: Some Basic Improvements to the Algorithm
An Improved Running-Time Analysis We can actually provide a better
running-time analysis for the case in which the graph G does not have too
many edges. A directed graph with n nodes can have close to n2 edges, since
there could potentially be an edge between each pair of nodes, but many
graphs are much sparser than this. When we work with a graph for which
the number of edges m is significantly less than n2, we’ve already seen in a
number of cases earlier in the book that it can be useful to write the running-
time in terms of both m and n; this way, we can quantify our speed-up on
graphs with relatively fewer edges.

6.8 Shortest Paths in a Graph 295

If we are a little more careful in the analysis of the method above, we can
improve the running-time bound to O(mn) without significantly changing the
algorithm itself.

(6.25) The Shortest-Path method can be implemented in O(mn) time.

Proof. Consider the computation of the array entry M[i, v] according to the
recurrence (6.23); we have

M[i, v]=min(M[i − 1, v], min
w∈V

(M[i − 1, w]+ cvw)).

We assumed it could take up to O(n) time to compute this minimum, since
there are n possible nodes w. But, of course, we need only compute this
minimum over all nodes w for which v has an edge to w; let us use nv to denote
this number. Then it takes time O(nv) to compute the array entry M[i, v]. We
have to compute an entry for every node v and every index 0≤ i ≤ n − 1, so
this gives a running-time bound of

O

(
n
∑
v∈V

nv

)
.

In Chapter 3, we performed exactly this kind of analysis for other graph
algorithms, and used (3.9) from that chapter to bound the expression

∑
v∈V nv

for undirected graphs. Here we are dealing with directed graphs, and nv denotes
the number of edges leaving v. In a sense, it is even easier to work out the
value of

∑
v∈V nv for the directed case: each edge leaves exactly one of the

nodes in V, and so each edge is counted exactly once by this expression. Thus
we have

∑
v∈V nv =m. Plugging this into our expression

O

(
n
∑
v∈V

nv

)

for the running time, we get a running-time bound of O(mn).

Improving the Memory Requirements We can also significantly improve the
memory requirements with only a small change to the implementation. A
common problem with many dynamic programming algorithms is the large
space usage, arising from the M array that needs to be stored. In the Bellman-
Ford Algorithm as written, this array has size n2; however, we now show how
to reduce this to O(n). Rather than recording M[i, v] for each value i, we will
use and update a single value M[v] for each node v, the length of the shortest
path from v to t that we have found so far. We still run the algorithm for

296 Chapter 6 Dynamic Programming

iterations i= 1, 2, . . . , n− 1, but the role of i will now simply be as a counter;
in each iteration, and for each node v, we perform the update

M[v]=min(M[v], min
w∈V

(cvw +M[w])).

We now observe the following fact.

(6.26) Throughout the algorithm M[v] is the length of some path from v to
t, and after i rounds of updates the value M[v] is no larger than the length of
the shortest path from v to t using at most i edges.

Given (6.26), we can then use (6.22) as before to show that we are done after
n − 1 iterations. Since we are only storing an M array that indexes over the
nodes, this requires only O(n) working memory.

Finding the Shortest Paths One issue to be concerned about is whether this
space-efficient version of the algorithm saves enough information to recover
the shortest paths themselves. In the case of the Sequence Alignment Problem
in the previous section, we had to resort to a tricky divide-and-conquer method
to recover the solution from a similar space-efficient implementation. Here,
however, we will be able to recover the shortest paths much more easily.

To help with recovering the shortest paths, we will enhance the code by
having each node v maintain the first node (after itself) on its path to the
destination t; we will denote this first node by first[v]. To maintain first[v],
we update its value whenever the distance M[v] is updated. In other words,
whenever the value of M[v] is reset to the minimum min

w∈V
(cvw +M[w]), we set

first[v] to the node w that attains this minimum.

Now let P denote the directed “pointer graph” whose nodes are V, and
whose edges are {(v, first[v])}. The main observation is the following.

(6.27) If the pointer graph P contains a cycle C, then this cycle must have
negative cost.

Proof. Notice that if first[v]= w at any time, then we must have M[v]≥
cvw +M[w]. Indeed, the left- and right-hand sides are equal after the update
that sets first[v] equal to w; and since M[w] may decrease, this equation may
turn into an inequality.

Let v1, v2, . . . , vk be the nodes along the cycle C in the pointer graph,
and assume that (vk, v1) is the last edge to have been added. Now, consider
the values right before this last update. At this time we have M[vi]≥ cvivi+1

+
M[vi+1] for all i = 1, . . . , k − 1, and we also have M[vk]> cvkv1

+M[v1] since
we are about to update M[vk] and change first[vk] to v1. Adding all these
inequalities, the M[vi] values cancel, and we get 0 >

∑k−1
i=1 cvivi+1

+ cvkv1
: a

negative cycle, as claimed.

6.9 Shortest Paths and Distance Vector Protocols 297

Now note that if G has no negative cycles, then (6.27) implies that the
pointer graph P will never have a cycle. For a node v, consider the path we
get by following the edges in P, from v to first[v]= v1, to first[v1]= v2, and so
forth. Since the pointer graph has no cycles, and the sink t is the only node
that has no outgoing edge, this path must lead to t. We claim that when the
algorithm terminates, this is in fact a shortest path in G from v to t.

(6.28) Suppose G has no negative cycles, and consider the pointer graph P
at the termination of the algorithm. For each node v, the path in P from v to t
is a shortest v-t path in G.

Proof. Consider a node v and let w = first[v]. Since the algorithm terminated,
we must have M[v]= cvw +M[w]. The value M[t]= 0, and hence the length
of the path traced out by the pointer graph is exactly M[v], which we know is
the shortest-path distance.

Note that in the more space-efficient version of Bellman-Ford, the path
whose length is M[v] after i iterations can have substantially more edges than
i. For example, if the graph is a single path from s to t, and we perform updates
in the reverse of the order the edges appear on the path, then we get the final
shortest-path values in just one iteration. This does not always happen, so we
cannot claim a worst-case running-time improvement, but it would be nice to
be able to use this fact opportunistically to speed up the algorithm on instances
where it does happen. In order to do this, we need a stopping signal in the
algorithm—something that tells us it’s safe to terminate before iteration n− 1
is reached.

Such a stopping signal is a simple consequence of the following observa-
tion: If we ever execute a complete iteration i in which no M[v] value changes,
then no M[v] value will ever change again, since future iterations will begin
with exactly the same set of array entries. Thus it is safe to stop the algorithm.
Note that it is not enough for a particular M[v] value to remain the same; in
order to safely terminate, we need for all these values to remain the same for
a single iteration.

6.9 Shortest Paths and Distance Vector Protocols
One important application of the Shortest-Path Problem is for routers in a
communication network to determine the most efficient path to a destination.
We represent the network using a graph in which the nodes correspond to
routers, and there is an edge between v and w if the two routers are connected
by a direct communication link. We define a cost cvw representing the delay on
the link (v, w); the Shortest-Path Problem with these costs is to determine the
path with minimum delay from a source node s to a destination t. Delays are

298 Chapter 6 Dynamic Programming

naturally nonnegative, so one could use Dijkstra’s Algorithm to compute the
shortest path. However, Dijkstra’s shortest-path computation requires global
knowledge of the network: it needs to maintain a set S of nodes for which
shortest paths have been determined, and make a global decision about which
node to add next to S. While routers can be made to run a protocol in the
background that gathers enough global information to implement such an
algorithm, it is often cleaner and more flexible to use algorithms that require
only local knowledge of neighboring nodes.

If we think about it, the Bellman-Ford Algorithm discussed in the previous
section has just such a “local” property. Suppose we let each node v maintain
its value M[v]; then to update this value, v needs only obtain the value M[w]
from each neighbor w, and compute

min
w∈V

(cvw +M[w])

based on the information obtained.

We now discuss an improvement to the Bellman-Ford Algorithm that
makes it better suited for routers and, at the same time, a faster algorithm
in practice. Our current implementation of the Bellman-Ford Algorithm can be
thought of as a pull-based algorithm. In each iteration i, each node v has to
contact each neighbor w, and “pull” the new value M[w] from it. If a node w
has not changed its value, then there is no need for v to get the value again;
however, v has no way of knowing this fact, and so it must execute the pull
anyway.

This wastefulness suggests a symmetric push-based implementation,
where values are only transmitted when they change. Specifically, each node
w whose distance value M[w] changes in an iteration informs all its neighbors
of the new value in the next iteration; this allows them to update their values
accordingly. If M[w] has not changed, then the neighbors of w already have
the current value, and there is no need to “push” it to them again. This leads
to savings in the running time, as not all values need to be pushed in each iter-
ation. We also may terminate the algorithm early, if no value changes during
an iteration. Here is a concrete description of the push-based implementation.

Push-Based-Shortest-Path(G, s, t)

n = number of nodes in G

Array M[V]

Initialize M[t]= 0 and M[v]=∞ for all other v ∈ V

For i = 1, . . . , n − 1

For w ∈ V in any order

If M[w] has been updated in the previous iteration then

6.9 Shortest Paths and Distance Vector Protocols 299

For all edges (v, w) in any order

M[v]=min(M[v], cvw +M[w])

If this changes the value of M[v], then first[v]= w

Endfor

Endfor

If no value changed in this iteration, then end the algorithm

Endfor

Return M[s]

In this algorithm, nodes are sent updates of their neighbors’ distance
values in rounds, and each node sends out an update in each iteration in which
it has changed. However, if the nodes correspond to routers in a network, then
we do not expect everything to run in lockstep like this; some routers may
report updates much more quickly than others, and a router with an update to
report may sometimes experience a delay before contacting its neighbors. Thus
the routers will end up executing an asynchronous version of the algorithm:
each time a node w experiences an update to its M[w] value, it becomes
“active” and eventually notifies its neighbors of the new value. If we were
to watch the behavior of all routers interleaved, it would look as follows.

Asynchronous-Shortest-Path(G, s, t)

n = number of nodes in G

Array M[V]

Initialize M[t]= 0 and M[v]=∞ for all other v ∈ V

Declare t to be active and all other nodes inactive

While there exists an active node

Choose an active node w

For all edges (v, w) in any order

M[v]=min(M[v], cvw +M[w])

If this changes the value of M[v], then

first[v]= w

v becomes active

Endfor

w becomes inactive

EndWhile

One can show that even this version of the algorithm, with essentially no
coordination in the ordering of updates, will converge to the correct values of
the shortest-path distances to t, assuming only that each time a node becomes
active, it eventually contacts its neighbors.

The algorithm we have developed here uses a single destination t, and
all nodes v ∈ V compute their shortest path to t. More generally, we are

300 Chapter 6 Dynamic Programming

presumably interested in finding distances and shortest paths between all pairs
of nodes in a graph. To obtain such distances, we effectively use n separate
computations, one for each destination. Such an algorithm is referred to as
a distance vector protocol, since each node maintains a vector of distances to
every other node in the network.

Problems with the Distance Vector Protocol
One of the major problems with the distributed implementation of Bellman-
Ford on routers (the protocol we have been discussing above) is that it’s derived
from an initial dynamic programming algorithm that assumes edge costs will
remain constant during the execution of the algorithm. Thus far we’ve been
designing algorithms with the tacit understanding that a program executing
the algorithm will be running on a single computer (or a centrally managed
set of computers), processing some specified input. In this context, it’s a rather
benign assumption to require that the input not change while the program is
actually running. Once we start thinking about routers in a network, however,
this assumption becomes troublesome. Edge costs may change for all sorts of
reasons: links can become congested and experience slow-downs; or a link
(v, w) may even fail, in which case the cost cvw effectively increases to ∞.

Here’s an indication of what can go wrong with our shortest-path algo-
rithm when this happens. If an edge (v, w) is deleted (say the link goes down),
it is natural for node v to react as follows: it should check whether its shortest
path to some node t used the edge (v, w), and, if so, it should increase the
distance using other neighbors. Notice that this increase in distance from v can
now trigger increases at v’s neighbors, if they were relying on a path through v,
and these changes can cascade through the network. Consider the extremely
simple example in Figure 6.24, in which the original graph has three edges
(s, v), (v, s) and (v, t), each of cost 1.

Now suppose the edge (v, t) in Figure 6.24 is deleted. How does node v
react? Unfortunately, it does not have a global map of the network; it only
knows the shortest-path distances of each of its neighbors to t. Thus it does

s v t
1 1

1 Deleted

The deleted edge causes an unbounded
sequence of updates by s and v.

Figure 6.24 When the edge (v, t) is deleted, the distributed Bellman-Ford Algorithm
will begin “counting to infinity.”

6.10 Negative Cycles in a Graph 301

not know that the deletion of (v, t) has eliminated all paths from s to t. Instead,
it sees that M[s]= 2, and so it updates M[v]= cvs +M[s]= 3, assuming that
it will use its cost-1 edge to s, followed by the supposed cost-2 path from s
to t. Seeing this change, node s will update M[s]= csv +M[v]= 4, based on
its cost-1 edge to v, followed by the supposed cost-3 path from v to t. Nodes
s and v will continue updating their distance to t until one of them finds an
alternate route; in the case, as here, that the network is truly disconnected,
these updates will continue indefinitely—a behavior known as the problem of
counting to infinity.

To avoid this problem and related difficulties arising from the limited
amount of information available to nodes in the Bellman-Ford Algorithm, the
designers of network routing schemes have tended to move from distance
vector protocols to more expressive path vector protocols, in which each node
stores not just the distance and first hop of their path to a destination, but
some representation of the entire path. Given knowledge of the paths, nodes
can avoid updating their paths to use edges they know to be deleted; at the
same time, they require significantly more storage to keep track of the full
paths. In the history of the Internet, there has been a shift from distance vector
protocols to path vector protocols; currently, the path vector approach is used
in the Border Gateway Protocol (BGP) in the Internet core.

* 6.10 Negative Cycles in a Graph
So far in our consideration of the Bellman-Ford Algorithm, we have assumed
that the underlying graph has negative edge costs but no negative cycles. We
now consider the more general case of a graph that may contain negative
cycles.

The Problem
There are two natural questions we will consider.

. How do we decide if a graph contains a negative cycle?

. How do we actually find a negative cycle in a graph that contains one?

The algorithm developed for finding negative cycles will also lead to an
improved practical implementation of the Bellman-Ford Algorithm from the
previous sections.

It turns out that the ideas we’ve seen so far will allow us to find negative
cycles that have a path reaching a sink t. Before we develop the details of this,
let’s compare the problem of finding a negative cycle that can reach a given t
with the seemingly more natural problem of finding a negative cycle anywhere
in the graph, regardless of its position related to a sink. It turns out that if we

302 Chapter 6 Dynamic Programming

t

G

Any negative cycle in G will be able to reach t.

Figure 6.25 The augmented graph.

develop a solution to the first problem, we’ll be able to obtain a solution to
the second problem as well, in the following way. Suppose we start with a
graph G, add a new node t to it, and connect each other node v in the graph
to node t via an edge of cost 0, as shown in Figure 6.25. Let us call the new
“augmented graph” G′.

(6.29) The augmented graph G′ has a negative cycle C such that there is a
path from C to the sink t if and only if the original graph has a negative cycle.

Proof. Assume G has a negative cycle. Then this cycle C clearly has an edge
to t in G′, since all nodes have an edge to t.

Now suppose G′ has a negative cycle with a path to t. Since no edge leaves
t in G′, this cycle cannot contain t. Since G′ is the same as G aside from the
node t, it follows that this cycle is also a negative cycle of G.

So it is really enough to solve the problem of deciding whether G has a
negative cycle that has a path to a given sink node t, and we do this now.

Designing and Analyzing the Algorithm
To get started thinking about the algorithm, we begin by adopting the original
version of the Bellman-Ford Algorithm, which was less efficient in its use
of space. We first extend the definitions of OPT(i, v) from the Bellman-Ford
Algorithm, defining them for values i ≥ n. With the presence of a negative
cycle in the graph, (6.22) no longer applies, and indeed the shortest path may

6.10 Negative Cycles in a Graph 303

get shorter and shorter as we go around a negative cycle. In fact, for any node
v on a negative cycle that has a path to t, we have the following.

(6.30) If node v can reach node t and is contained in a negative cycle, then

lim
i→∞ OPT(i, v)=−∞.

If the graph has no negative cycles, then (6.22) implies following statement.

(6.31) If there are no negative cycles in G, then OPT(i, v)= OPT(n − 1, v) for
all nodes v and all i ≥ n.

But for how large an i do we have to compute the values OPT(i, v) before
concluding that the graph has no negative cycles? For example, a node v may
satisfy the equation OPT(n, v)= OPT(n − 1, v), and yet still lie on a negative
cycle. (Do you see why?) However, it turns out that we will be in good shape
if this equation holds for all nodes.

(6.32) There is no negative cycle with a path to t if and only if OPT(n, v)=
OPT(n − 1, v) for all nodes v.

Proof. Statement (6.31) has already proved the forward direction. For the other
direction, we use an argument employed earlier for reasoning about when it’s
safe to stop the Bellman-Ford Algorithm early. Specifically, suppose OPT(n, v)=
OPT(n − 1, v) for all nodes v. The values of OPT(n + 1, v) can be computed
from OPT(n, v); but all these values are the same as the corresponding OPT(n−
1, v). It follows that we will have OPT(n+ 1, v)= OPT(n− 1, v). Extending this
reasoning to future iterations, we see that none of the values will ever change
again, that is, OPT(i, v)= OPT(n− 1, v) for all nodes v and all i ≥ n. Thus there
cannot be a negative cycle C that has a path to t; for any node w on this cycle
C, (6.30) implies that the values OPT(i, w) would have to become arbitrarily
negative as i increased.

Statement (6.32) gives an O(mn) method to decide if G has a negative
cycle that can reach t. We compute values of OPT(i, v) for nodes of G and for
values of i up to n. By (6.32), there is no negative cycle if and only if there is
some value of i ≤ n at which OPT(i, v)= OPT(i − 1, v) for all nodes v.

So far we have determined whether or not the graph has a negative cycle
with a path from the cycle to t, but we have not actually found the cycle. To
find a negative cycle, we consider a node v such that OPT(n, v) �= OPT(n− 1, v):
for this node, a path P from v to t of cost OPT(n, v) must use exactly n edges.
We find this minimum-cost path P from v to t by tracing back through the
subproblems. As in our proof of (6.22), a simple path can only have n − 1

304 Chapter 6 Dynamic Programming

edges, so P must contain a cycle C. We claim that this cycle C has negative
cost.

(6.33) If G has n nodes and OPT(n, v) �= OPT(n − 1, v), then a path P from v
to t of cost OPT(n, v) contains a cycle C, and C has negative cost.

Proof. First observe that the path P must have n edges, as OPT(n, v) �= OPT(n−
1, v), and so every path using n − 1 edges has cost greater than that of the
path P. In a graph with n nodes, a path consisting of n edges must repeat
a node somewhere; let w be a node that occurs on P more than once. Let C
be the cycle on P between two consecutive occurrences of node w. If C were
not a negative cycle, then deleting C from P would give us a v-t path with
fewer than n edges and no greater cost. This contradicts our assumption that
OPT(n, v) �= OPT(n − 1, v), and hence C must be a negative cycle.

(6.34) The algorithm above finds a negative cycle in G, if such a cycle exists,
and runs in O(mn) time.

Extensions: Improved Shortest Paths and Negative Cycle
Detection Algorithms
At the end of Section 6.8 we discussed a space-efficient implementation of the
Bellman-Ford algorithm for graphs with no negative cycles. Here we implement
the detection of negative cycles in a comparably space-efficient way. In addition
to the savings in space, this will also lead to a considerable speedup in practice
even for graphs with no negative cycles. The implementation will be based on
the same pointer graph P derived from the “first edges” (v, first[v]) that we
used for the space-efficient implementation in Section 6.8. By (6.27), we know
that if the pointer graph ever has a cycle, then the cycle has negative cost, and
we are done. But if G has a negative cycle, does this guarantee that the pointer
graph will ever have a cycle? Furthermore, how much extra computation time
do we need for periodically checking whether P has a cycle?

Ideally, we would like to determine whether a cycle is created in the pointer
graph P every time we add a new edge (v, w) with first[v]=w. An additional
advantage of such “instant” cycle detection will be that we will not have to wait
for n iterations to see that the graph has a negative cycle: We can terminate
as soon as a negative cycle is found. Earlier we saw that if a graph G has no
negative cycles, the algorithm can be stopped early if in some iteration the
shortest path values M[v] remain the same for all nodes v. Instant negative
cycle detection will be an analogous early termination rule for graphs that
have negative cycles.

6.10 Negative Cycles in a Graph 305

Consider a new edge (v, w), with first[v]=w, that is added to the pointer
graph P. Before we add (v, w) the pointer graph has no cycles, so it consists of
paths from each node v to the sink t. The most natural way to check whether
adding edge (v, w) creates a cycle in P is to follow the current path from w to
the terminal t in time proportional to the length of this path. If we encounter
v along this path, then a cycle has been formed, and hence, by (6.27), the
graph has a negative cycle. Consider Figure 6.26, for example, where in both
(a) and (b) the pointer first[v] is being updated from u to w; in (a), this does
not result in a (negative) cycle, but in (b) it does. However, if we trace out the
sequence of pointers from v like this, then we could spend as much as O(n)

time following the path to t and still not find a cycle. We now discuss a method
that does not require an O(n) blow-up in the running time.

We know that before the new edge (v, w) was added, the pointer graph
was a directed tree. Another way to test whether the addition of (v, w) creates
a cycle is to consider all nodes in the subtree directed toward v. If w is in this
subtree, then (v, w) forms a cycle; otherwise it does not. (Again, consider the
two sample cases in Figure 6.26.) To be able to find all nodes in the subtree
directed toward v, we need to have each node v maintain a list of all other
nodes whose selected edges point to v. Given these pointers, we can find
the subtree in time proportional to the size of the subtree pointing to v, at
most O(n) as before. However, here we will be able to make additional use
of the work done. Notice that the current distance value M[x] for all nodes x
in the subtree was derived from node v’s old value. We have just updated v’s
distance, and hence we know that the distance values of all these nodes will
be updated again. We’ll mark each of these nodes x as “dormant,” delete the

t

v

w

u

Update to
f irst[v] = w

t

w

v u

Update to
f irst[v] = w

(a) (b)

Figure 6.26 Changing the pointer graph P when first[v] is updated from u to w. In (b),
this creates a (negative) cycle, whereas in (a) it does not.

306 Chapter 6 Dynamic Programming

edge (x, first[x]) from the pointer graph, and not use x for future updates until
its distance value changes.

This can save a lot of future work in updates, but what is the effect on the
worst-case running time? We can spend as much as O(n) extra time marking
nodes dormant after every update in distances. However, a node can be marked
dormant only if a pointer had been defined for it at some point in the past, so
the time spent on marking nodes dormant is at most as much as the time the
algorithm spends updating distances.

Now consider the time the algorithm spends on operations other than
marking nodes dormant. Recall that the algorithm is divided into iterations,
where iteration i + 1 processes nodes whose distance has been updated in
iteration i. For the original version of the algorithm, we showed in (6.26) that
after i iterations, the value M[v] is no larger than the value of the shortest path
from v to t using at most i edges. However, with many nodes dormant in each
iteration, this may not be true anymore. For example, if the shortest path from
v to t using at most i edges starts on edge e = (v, w), and w is dormant in
this iteration, then we may not update the distance value M[v], and so it stays
at a value higher than the length of the path through the edge (v, w). This
seems like a problem—however, in this case, the path through edge (v, w) is
not actually the shortest path, so M[v] will have a chance to get updated later
to an even smaller value.

So instead of the simpler property that held for M[v]in the original versions
of the algorithm, we now have the the following claim.

(6.35) Throughout the algorithm M[v] is the length of some simple path from
v to t; the path has at least i edges if the distance value M[v] is updated in
iteration i; and after i iterations, the value M[v] is the length of the shortest
path for all nodes v where there is a shortest v-t path using at most i edges.

Proof. The first pointers maintain a tree of paths to t, which implies that all
paths used to update the distance values are simple. The fact that updates in
iteration i are caused by paths with at least i edges is easy to show by induction
on i. Similarly, we use induction to show that after iteration i the value M[v]
is the distance on all nodes v where the shortest path from v to t uses at most
i edges. Note that nodes v where M[v] is the actual shortest-path distance
cannot be dormant, as the value M[v] will be updated in the next iteration for
all dormant nodes.

Using this claim, we can see that the worst-case running time of the
algorithm is still bounded by O(mn): Ignoring the time spent on marking
nodes dormant, each iteration is implemented in O(m) time, and there can
be at most n − 1 iterations that update values in the array M without finding

Solved Exercises 307

a negative cycle, as simple paths can have at most n − 1 edges. Finally, the
time spent marking nodes dormant is bounded by the time spent on updates.
We summarize the discussion with the following claim about the worst-case
performance of the algorithm. In fact, as mentioned above, this new version
is in practice the fastest implementation of the algorithm even for graphs that
do not have negative cycles, or even negative-cost edges.

(6.36) The improved algorithm outlined above finds a negative cycle in G if
such a cycle exists. It terminates immediately if the pointer graph P of first[v]
pointers contains a cycle C, or if there is an iteration in which no update occurs
to any distance value M[v]. The algorithm uses O(n) space, has at most n
iterations, and runs in O(mn) time in the worst case.

Solved Exercises

Solved Exercise 1
Suppose you are managing the construction of billboards on the Stephen
Daedalus Memorial Highway, a heavily traveled stretch of road that runs
west-east for M miles. The possible sites for billboards are given by numbers
x1, x2, . . . , xn, each in the interval [0, M] (specifying their position along the
highway, measured in miles from its western end). If you place a billboard at
location xi, you receive a revenue of ri > 0.

Regulations imposed by the county’s Highway Department require that
no two of the billboards be within less than or equal to 5 miles of each other.
You’d like to place billboards at a subset of the sites so as to maximize your
total revenue, subject to this restriction.

Example. Suppose M = 20, n = 4,

{x1, x2, x3, x4} = {6, 7, 12, 14},
and

{r1, r2, r3, r4} = {5, 6, 5, 1}.
Then the optimal solution would be to place billboards at x1 and x3, for a total
revenue of 10.

Give an algorithm that takes an instance of this problem as input and
returns the maximum total revenue that can be obtained from any valid subset
of sites. The running time of the algorithm should be polynomial in n.

Solution We can naturally apply dynamic programming to this problem if
we reason as follows. Consider an optimal solution for a given input instance;
in this solution, we either place a billboard at site xn or not. If we don’t, the
optimal solution on sites x1, . . . , xn is really the same as the optimal solution

308 Chapter 6 Dynamic Programming

on sites x1, . . . , xn−1; if we do, then we should eliminate xn and all other sites
that are within 5 miles of it, and find an optimal solution on what’s left. The
same reasoning applies when we’re looking at the problem defined by just the
first j sites, x1, . . . , xj: we either include xj in the optimal solution or we don’t,
with the same consequences.

Let’s define some notation to help express this. For a site xj, we let e(j)
denote the easternmost site xi that is more than 5 miles from xj. Since sites
are numbered west to east, this means that the sites x1, x2, . . . , xe(j) are still
valid options once we’ve chosen to place a billboard at xj, but the sites
xe(j)+1, . . . , xj−1 are not.

Now, our reasoning above justifies the following recurrence. If we let OPT(j)
denote the revenue from the optimal subset of sites among x1, . . . , xj, then we
have

OPT(j)=max(rj + OPT(e(j)), OPT(j − 1)).

We now have most of the ingredients we need for a dynamic programming
algorithm. First, we have a set of n subproblems, consisting of the first j sites
for j = 0, 1, 2, . . . , n. Second, we have a recurrence that lets us build up the
solutions to subproblems, given by OPT(j)=max(rj + OPT(e(j)), OPT(j − 1)).

To turn this into an algorithm, we just need to define an array M that will
store the OPT values and throw a loop around the recurrence that builds up
the values M[j] in order of increasing j.

Initialize M[0]= 0 and M[1]= r1

For j = 2, 3, . . . , n:

Compute M[j] using the recurrence

Endfor

Return M[n]

As with all the dynamic programming algorithms we’ve seen in this chapter,
an optimal set of billboards can be found by tracing back through the values
in array M.

Given the values e(j) for all j, the running time of the algorithm is O(n),
since each iteration of the loop takes constant time. We can also compute all e(j)
values in O(n) time as follows. For each site location xi, we define x′i = xi − 5.
We then merge the sorted list x1, . . . , xn with the sorted list x′1, . . . , x′n in linear
time, as we saw how to do in Chapter 2. We now scan through this merged list;
when we get to the entry x′j, we know that anything from this point onward
to xj cannot be chosen together with xj (since it’s within 5 miles), and so we

Solved Exercises 309

simply define e(j) to be the largest value of i for which we’ve seen xi in our
scan.

Here’s a final observation on this problem. Clearly, the solution looks
very much like that of the Weighted Interval Scheduling Problem, and there’s
a fundamental reason for that. In fact, our billboard placement problem
can be directly encoded as an instance of Weighted Interval Scheduling, as
follows. Suppose that for each site xi, we define an interval with endpoints
[xi − 5, xi] and weight ri. Then, given any nonoverlapping set of intervals, the
corresponding set of sites has the property that no two lie within 5 miles of
each other. Conversely, given any such set of sites (no two within 5 miles), the
intervals associated with them will be nonoverlapping. Thus the collections
of nonoverlapping intervals correspond precisely to the set of valid billboard
placements, and so dropping the set of intervals we’ve just defined (with their
weights) into an algorithm for Weighted Interval Scheduling will yield the
desired solution.

Solved Exercise 2
Through some friends of friends, you end up on a consulting visit to the
cutting-edge biotech firm Clones ‘R’ Us (CRU). At first you’re not sure how
your algorithmic background will be of any help to them, but you soon find
yourself called upon to help two identical-looking software engineers tackle a
perplexing problem.

The problem they are currently working on is based on the concatenation
of sequences of genetic material. If X and Y are each strings over a fixed
alphabet S, then XY denotes the string obtained by concatenating them—
writing X followed by Y. CRU has identified a target sequence A of genetic
material, consisting of m symbols, and they want to produce a sequence that
is as similar to A as possible. For this purpose, they have a library L consisting
of k (shorter) sequences, each of length at most n. They can cheaply produce
any sequence consisting of copies of the strings in L concatenated together
(with repetitions allowed).

Thus we say that a concatenation over L is any sequence of the form
B1B2 . . . B�, where each Bi belongs the set L. (Again, repetitions are allowed,
so Bi and Bj could be the same string in L, for different values of i and j.)
The problem is to find a concatenation over {Bi} for which the sequence
alignment cost is as small as possible. (For the purpose of computing the
sequence alignment cost, you may assume that you are given a gap cost δ and
a mismatch cost αpq for each pair p, q ∈ S.)

Give a polynomial-time algorithm for this problem.

310 Chapter 6 Dynamic Programming

Solution This problem is vaguely reminiscent of Segmented Least Squares:
we have a long sequence of “data” (the string A) that we want to “fit” with
shorter segments (the strings in L).

If we wanted to pursue this analogy, we could search for a solution as
follows. Let B= B1B2 . . . B� denote a concatenation over L that aligns as well
as possible with the given string A. (That is, B is an optimal solution to the
input instance.) Consider an optimal alignment M of A with B, let t be the first
position in A that is matched with some symbol in B�, and let A� denote the
substring of A from position t to the end. (See Figure 6.27 for an illustration
of this with �= 3.) Now, the point is that in this optimal alignment M, the
substring A� is optimally aligned with B�; indeed, if there were a way to better
align A� with B�, we could substitute it for the portion of M that aligns A� with
B� and obtain a better overall alignment of A with B.

This tells us that we can look at the optimal solution as follows. There’s
some final piece of A� that is aligned with one of the strings in L, and for this
piece all we’re doing is finding the string in L that aligns with it as well as
possible. Having found this optimal alignment for A�, we can break it off and
continue to find the optimal solution for the remainder of A.

Thinking about the problem this way doesn’t tell us exactly how to
proceed—we don’t know how long A� is supposed to be, or which string in
L it should be aligned with. But this is the kind of thing we can search over
in a dynamic programming algorithm. Essentially, we’re in about the same
spot we were in with the Segmented Least Squares Problem: there we knew
that we had to break off some final subsequence of the input points, fit them
as well as possible with one line, and then iterate on the remaining input
points.

So let’s set up things to make the search for A� possible. First, let A[x : y]
denote the substring of A consisting of its symbols from position x to position
y, inclusive. Let c(x, y) denote the cost of the optimal alignment of A[x :y]with
any string in L. (That is, we search over each string in L and find the one that

A3A

B1

t

B2 B3

Figure 6.27 In the optimal concatentation of strings to align with A, there is a final
string (B3 in the figure) that aligns with a substring of A (A3 in the figure) that extends
from some position t to the end.

Solved Exercises 311

aligns best with A[x : y].) Let OPT(j) denote the alignment cost of the optimal
solution on the string A[1 : j].

The argument above says that an optimal solution on A[1 : j] consists of
identifying a final “segment boundary” t < j, finding the optimal alignment
of A[t : j] with a single string in L, and iterating on A[1 : t − 1]. The cost of
this alignment of A[t : j] is just c(t , j), and the cost of aligning with what’s left
is just OPT(t − 1). This suggests that our subproblems fit together very nicely,
and it justifies the following recurrence.

(6.37) OPT(j)=mint<j c(t , j)+ OPT(t − 1) for j ≥ 1, and OPT(0)= 0.

The full algorithm consists of first computing the quantities c(t , j), for t < j,
and then building up the values OPT(j) in order of increasing j. We hold these
values in an array M.

Set M[0]= 0

For all pairs 1≤ t ≤ j ≤m

Compute the cost c(t , j) as follows:

For each string B ∈ L

Compute the optimal alignment of B with A[t : j]

Endfor

Choose the B that achieves the best alignment, and use

this alignment cost as c(t , j)

Endfor

For j = 1, 2, . . . , n

Use the recurrence (6.37) to compute M[j]

Endfor

Return M[n]

As usual, we can get a concatentation that achieves it by tracing back over
the array of OPT values.

Let’s consider the running time of this algorithm. First, there are O(m2)

values c(t , j) that need to be computed. For each, we try each string of the
k strings B ∈ L, and compute the optimal alignment of B with A[t : j] in
time O(n(j − t))= O(mn). Thus the total time to compute all c(t , j) values
is O(km3n).

This dominates the time to compute all OPT values: Computing OPT(j) uses
the recurrence in (6.37), and this takes O(m) time to compute the minimum.
Summing this over all choices of j = 1, 2, . . . , m, we get O(m2) time for this
portion of the algorithm.

312 Chapter 6 Dynamic Programming

Exercises

1. Let G = (V , E) be an undirected graph with n nodes. Recall that a subset

of the nodes is called an independent set if no two of them are joined by

an edge. Finding large independent sets is difficult in general; but here

we’ll see that it can be done efficiently if the graph is “simple” enough.

Call a graphG= (V , E) apath if its nodes can bewritten as v1, v2, . . . , vn,

with an edge between vi and vj if and only if the numbers i and j differ by

exactly 1. With each node vi, we associate a positive integer weight wi.

Consider, for example, the five-node path drawn in Figure 6.28. The

weights are the numbers drawn inside the nodes.

The goal in this question is to solve the following problem:

Find an independent set in a path G whose total weight is as large as possible.

(a) Give an example to show that the following algorithm does not always

find an independent set of maximum total weight.

The "heaviest-first" greedy algorithm

Start with S equal to the empty set

While some node remains in G

Pick a node vi of maximum weight

Add vi to S

Delete vi and its neighbors from G

Endwhile

Return S

(b) Give an example to show that the following algorithm also does not

always find an independent set of maximum total weight.

Let S1 be the set of all vi where i is an odd number

Let S2 be the set of all vi where i is an even number

(Note that S1 and S2 are both independent sets)

Determine which of S1 or S2 has greater total weight,

and return this one

1 8 6 3 6

Figure 6.28 Apaths with weights on the nodes. Themaximumweight of an independent
set is 14.

Exercises 313

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running

time should be polynomial in n, independent of the values of the

weights.

2. Suppose you’re managing a consulting team of expert computer hackers,

and each week you have to choose a job for them to undertake. Now, as

you can well imagine, the set of possible jobs is divided into those that

are low-stress (e.g., setting up aWeb site for a class at the local elementary

school) and those that are high-stress (e.g., protecting the nation’s most

valuable secrets, or helping a desperate group of Cornell students finish

a project that has something to do with compilers). The basic question,

each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a

revenue of �i > 0 dollars; if you select a high-stress job, you get a revenue

of hi > 0 dollars. The catch, however, is that in order for the team to take

on a high-stress job in week i, it’s required that they do no job (of either

type) in week i− 1; they need a full week of prep time to get ready for the

crushing stress level. On the other hand, it’s okay for them to take a low-

stress job in week i even if they have done a job (of either type) in week

i − 1.

So, given a sequence of n weeks, a plan is specified by a choice of

“low-stress,” “high-stress,” or “none” for each of the n weeks, with the

property that if “high-stress” is chosen for week i > 1, then “none” has to

be chosen for week i− 1. (It’s okay to choose a high-stress job in week 1.)
The value of the plan is determined in the natural way: for each i, you

add �i to the value if you choose “low-stress” in week i, and you add hi to

the value if you choose “high-stress” in week i. (You add 0 if you choose

“none” in week i.)

The problem. Given sets of values �1, �2, . . . , �n and h1, h2, . . . , hn, find a

plan of maximum value. (Such a plan will be called optimal .)

Example. Suppose n = 4, and the values of �i and hi are given by the

following table. Then the plan of maximum value would be to choose

“none” in week 1, a high-stress job in week 2, and low-stress jobs in weeks

3 and 4. The value of this plan would be 0+ 50+ 10+ 10= 70.

Week 1 Week 2 Week 3 Week 4

� 10 1 10 10

h 5 50 5 1

314 Chapter 6 Dynamic Programming

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

For iterations i = 1 to n

If hi+1 > �i + �i+1 then

Output "Choose no job in week i"

Output "Choose a high-stress job in week i + 1"

Continue with iteration i + 2

Else

Output "Choose a low-stress job in week i"

Continue with iteration i + 1

Endif

End

To avoid problems with overflowing array bounds, we define

hi = �i = 0 when i > n.

In your example, say what the correct answer is and also what

the above algorithm finds.

(b) Give an efficient algorithm that takes values for �1, �2, . . . , �n and

h1, h2, . . . , hn and returns the value of an optimal plan.

3. Let G = (V , E) be a directed graph with nodes v1, . . . , vn. We say that G is

an ordered graph if it has the following properties.

(i) Each edge goes from a node with a lower index to a node with a higher

index. That is, every directed edge has the form (vi, vj) with i < j.

(ii) Each node except vn has at least one edge leaving it. That is, for every

node vi, i= 1, 2, . . . , n− 1, there is at least one edge of the form (vi, vj).

The length of a path is the number of edges in it. The goal in this

question is to solve the following problem (see Figure 6.29 for an exam-

ple).

Given an ordered graph G, find the length of the longest path that begins at

v1 and ends at vn.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an example of an ordered graph on which it does

not return the correct answer.

Set w = v1

Set L= 0

Exercises 315

v3 v4 v5v1 v2

Figure 6.29 The correct answer for this ordered graph is 3: The longest path from v1 to
vn uses the three edges (v1, v2),(v2, v4), and (v4, v5).

While there is an edge out of the node w

Choose the edge (w, vj)

for which j is as small as possible

Set w = vj

Increase L by 1

end while

Return L as the length of the longest path

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes an ordered graph G and returns

the length of the longest path that begins at v1 and ends at vn. (Again,

the length of a path is the number of edges in the path.)

4. Suppose you’re running a lightweight consulting business—just you, two

associates, and some rented equipment. Your clients are distributed

between the East Coast and theWest Coast, and this leads to the following

question.

Each month, you can either run your business from an office in New

York (NY) or from an office in San Francisco (SF). In month i, you’ll incur

an operating cost of Ni if you run the business out of NY; you’ll incur an

operating cost of Si if you run the business out of SF. (It depends on the

distribution of client demands for that month.)

However, if you run the business out of one city in month i, and then

out of the other city in month i+ 1, then you incur a fixed moving cost of

M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations—

each one equal to either NY or SF—such that the ith location indicates the

city in which you will be based in the ith month. The cost of a plan is the

sum of the operating costs for each of the n months, plus a moving cost

of M for each time you switch cities. The plan can begin in either city.

316 Chapter 6 Dynamic Programming

The problem. Given a value for the moving cost M, and sequences of

operating costs N1, . . . , Nn and S1, . . . , Sn, find a plan of minimum cost.

(Such a plan will be called optimal .)

Example. Suppose n= 4, M = 10, and the operating costs are given by the

following table.

Month 1 Month 2 Month 3 Month 4

NY 1 3 20 30

SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations

[NY , NY , SF , SF],

with a total cost of 1+ 3+ 2+ 4+ 10= 20, where the final term of 10 arises

because you change locations once.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

For i = 1 to n

If Ni < Si then

Output "NY in Month i"

Else

Output "SF in Month i"

End

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an example of an instance in which every optimal plan must

move (i.e., change locations) at least three times.

Provide a brief explanation, saying why your example has this

property.

(c) Give an efficient algorithm that takes values for n, M, and sequences

of operating costs N1, . . . , Nn and S1, . . . , Sn, and returns the cost of

an optimal plan.

5. As some of you know well, and others of you may be interested to learn,

a number of languages (including Chinese and Japanese) are written

without spaces between the words. Consequently, software that works

with text written in these languages must address theword segmentation

problem—inferring likely boundaries between consecutive words in the

Exercises 317

text. If Englishwere writtenwithout spaces, the analogous problemwould

consist of taking a string like “meetateight” and deciding that the best

segmentation is “meet at eight” (and not “me et at eight,” or “meet ate

ight,” or any of a huge number of even less plausible alternatives). How

could we automate this process?

A simple approach that is at least reasonably effective is to find a

segmentation that simply maximizes the cumulative “quality” of its indi-

vidual constituent words. Thus, suppose you are given a black box that,

for any string of letters x= x1x2 . . . xk, will return a number quality(x). This

number can be either positive or negative; larger numbers correspond to

more plausible English words. (So quality(“me”) would be positive, while

quality(“ght”) would be negative.)

Given a long string of letters y = y1y2 . . . yn, a segmentation of y is a

partition of its letters into contiguous blocks of letters; each block corre-

sponds to a word in the segmentation. The total quality of a segmentation

is determined by adding up the qualities of each of its blocks. (So we’d

get the right answer above provided that quality(“meet”) + quality(“at”) +
quality(“eight”) was greater than the total quality of any other segmenta-

tion of the string.)

Give an efficient algorithm that takes a string y and computes a

segmentation of maximum total quality. (You can treat a single call to

the black box computing quality(x) as a single computational step.)

(A final note, not necessary for solving the problem: To achieve better

performance, word segmentation software in practice works with a more

complex formulation of the problem—for example, incorporating the

notion that solutions should not only be reasonable at the word level, but

also form coherent phrases and sentences. If we consider the example

“theyouthevent,” there are at least three valid ways to segment this

into common English words, but one constitutes a much more coherent

phrase than the other two. If we think of this in the terminology of formal

languages, this broader problem is like searching for a segmentation

that also can be parsed well according to a grammar for the underlying

language. But evenwith these additional criteria and constraints, dynamic

programming approaches lie at the heart of a number of successful

segmentation systems.)

6. In a word processor, the goal of “pretty-printing” is to take text with a

ragged right margin, like this,

Call me Ishmael.

Some years ago,

never mind how long precisely,

318 Chapter 6 Dynamic Programming

having little or no money in my purse,

and nothing particular to interest me on shore,

I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is as “even” as possible, like this.

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

particular to interest me on shore, I

thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to

write a pretty-printer for text, we need to figure out what it means for the

right margins to be “even.” So suppose our text consists of a sequence of

words, W = {w1, w2, . . . , wn}, where wi consists of ci characters. We have

a maximum line length of L. We will assume we have a fixed-width font

and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines.

In the words assigned to a single line, there should be a space after each

word except the last; and so if wj , wj+1, . . . , wk are assigned to one line,

then we should have ⎡
⎣k−1∑

i=j

(ci + 1)

⎤
⎦+ ck ≤ L.

We will call an assignment of words to a line valid if it satisfies this

inequality. The difference between the left-hand side and the right-hand

side will be called the slack of the line—that is, the number of spaces left

at the right margin.

Give an efficient algorithm to find a partition of a set of words W

into valid lines, so that the sum of the squares of the slacks of all lines

(including the last line) is minimized.

7. As a solved exercise in Chapter 5, we gave an algorithm with O(n log n)

running time for the following problem. We’re looking at the price of a

given stock over n consecutive days, numbered i = 1, 2, . . . , n. For each

day i, we have a price p(i) per share for the stock on that day. (We’ll

assume for simplicity that the price was fixed during each day.) We’d like

to know: How should we choose a day i on which to buy the stock and a

later day j > i on which to sell it, if we want to maximize the profit per

Exercises 319

share, p(j)− p(i)? (If there is no way to make money during the n days, we

should conclude this instead.)

In the solved exercise, we showed how to find the optimal pair of

days i and j in time O(n log n). But, in fact, it’s possible to do better than

this. Show how to find the optimal numbers i and j in time O(n).

8. The residents of the underground city of Zion defend themselves through

a combination of kung fu, heavy artillery, and efficient algorithms. Re-

cently they have become interested in automated methods that can help

fend off attacks by swarms of robots.

Here’s what one of these robot attacks looks like.

. A swarm of robots arrives over the course of n seconds; in the ith

second, xi robots arrive. Based on remote sensing data, you know

this sequence x1, x2, . . . , xn in advance.

. You have at your disposal an electromagnetic pulse (EMP), which can

destroy some of the robots as they arrive; the EMP’s power depends

on how long it’s been allowed to charge up. To make this precise,

there is a function f (·) so that if j seconds have passed since the EMP

was last used, then it is capable of destroying up to f (j) robots.

. So specifically, if it is used in the kth second, and it has been j seconds

since it was previously used, then it will destroy min(xk , f (j)) robots.

(After this use, it will be completely drained.)

. We will also assume that the EMP starts off completely drained, so

if it is used for the first time in the jth second, then it is capable of

destroying up to f (j) robots.

The problem. Given the data on robot arrivals x1, x2, . . . , xn, and given the

recharging function f (·), choose the points in time at which you’re going

to activate the EMP so as to destroy as many robots as possible.

Example. Suppose n = 4, and the values of xi and f (i) are given by the

following table.

i 1 2 3 4

xi 1 10 10 1

f (i) 1 2 4 8

The best solution would be to activate the EMP in the 3rd and the 4th

seconds. In the 3rd second, the EMP has gotten to charge for 3 seconds,

and so it destroys min(10, 4)= 4 robots; In the 4th second, the EMP has only

gotten to charge for 1 second since its last use, and it destroysmin(1, 1)= 1
robot. This is a total of 5.

320 Chapter 6 Dynamic Programming

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

Schedule-EMP(x1, . . . , xn)

Let j be the smallest number for which f (j) ≥ xn

(If no such j exists then set j = n)

Activate the EMP in the nth second

If n − j ≥ 1 then

Continue recursively on the input x1, . . . , xn−j

(i.e., invoke Schedule-EMP(x1, . . . , xn−j))

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes the data on robot arrivals

x1, x2, . . . , xn, and the recharging function f (·), and returns the maxi-

mum number of robots that can be destroyed by a sequence of EMP

activations.

9. You’re helping to run a high-performance computing system capable of

processing several terabytes of data per day. For each of n days, you’re

presented with a quantity of data; on day i, you’re presented with xi

terabytes. For each terabyte you process, you receive a fixed revenue,

but any unprocessed data becomes unavailable at the end of the day (i.e.,

you can’t work on it in any future day).

You can’t always process everything each day because you’re con-

strained by the capabilities of your computing system, which can only

process a fixed number of terabytes in a given day. In fact, it’s running

some one-of-a-kind software that, while very sophisticated, is not totally

reliable, and so the amount of data you can process goes down with each

day that passes since the most recent reboot of the system. On the first

day after a reboot, you can process s1 terabytes, on the second day after

a reboot, you can process s2 terabytes, and so on, up to sn; we assume

s1 > s2 > s3 > . . . > sn > 0. (Of course, on day i you can only process up to xi

terabytes, regardless of how fast your system is.) To get the system back

to peak performance, you can choose to reboot it; but on any day you

choose to reboot the system, you can’t process any data at all.

The problem. Given the amounts of available data x1, x2, . . . , xn for the

next n days, and given the profile of your system as expressed by

s1, s2, . . . , sn (and starting froma freshly rebooted systemonday 1), choose

Exercises 321

the days on which you’re going to reboot so as to maximize the total

amount of data you process.

Example. Suppose n = 4, and the values of xi and si are given by the

following table.

Day 1 Day 2 Day 3 Day 4

x 10 1 7 7

s 8 4 2 1

The best solution would be to reboot on day 2 only; this way, you process

8 terabytes on day 1, then 0 on day 2, then 7 on day 3, then 4 on day

4, for a total of 19. (Note that if you didn’t reboot at all, you’d process

8+ 1+ 2+ 1= 12; and other rebooting strategies give you less than 19 as

well.)

(a) Give an example of an instance with the following properties.

– There is a “surplus” of data in the sense that xi > s1 for every i.

– The optimal solution reboots the system at least twice.

In addition to the example, you should say what the optimal solution

is. You do not need to provide a proof that it is optimal.

(b) Give an efficient algorithm that takes values for x1, x2, . . . , xn and

s1, s2, . . . , sn and returns the total number of terabytes processed by

an optimal solution.

10. You’re trying to run a large computing job in which you need to simulate

a physical system for as many discrete steps as you can. The lab you’re

working in has two large supercomputers (which we’ll call A and B) which

are capable of processing this job. However, you’re not one of the high-

priority users of these supercomputers, so at any given point in time,

you’re only able to use as many spare cycles as these machines have

available.

Here’s the problem you face. Your job can only run on one of the

machines in any given minute. Over each of the next n minutes, you have

a “profile” of how much processing power is available on each machine.

In minute i, you would be able to run ai > 0 steps of the simulation if

your job is on machine A, and bi > 0 steps of the simulation if your job

is on machine B. You also have the ability to move your job from one

machine to the other; but doing this costs you a minute of time in which

no processing is done on your job.

So, given a sequence of n minutes, a plan is specified by a choice

of A, B, or “move” for each minute, with the property that choices A and

322 Chapter 6 Dynamic Programming

B cannot appear in consecutive minutes. For example, if your job is on

machine A in minute i, and you want to switch to machine B, then your

choice forminute i+ 1must be move, and then your choice forminute i+ 2
can be B. The value of a plan is the total number of steps that youmanage

to execute over the n minutes: so it’s the sum of ai over all minutes in

which the job is on A, plus the sum of bi over all minutes in which the job

is on B.

The problem. Given values a1, a2, . . . , an and b1, b2, . . . , bn, find a plan of

maximum value. (Such a strategy will be called optimal .) Note that your

plan can start with either of the machines A or B in minute 1.

Example. Suppose n = 4, and the values of ai and bi are given by the

following table.

Minute 1 Minute 2 Minute 3 Minute 4

A 10 1 1 10

B 5 1 20 20

Then the plan of maximum value would be to choose A for minute 1,
then move for minute 2, and then B for minutes 3 and 4. The value of this

plan would be 10+ 0+ 20+ 20= 50.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

In minute 1, choose the machine achieving the larger of a1, b1

Set i = 2

While i ≤ n

What was the choice in minute i − 1?

If A:

If bi+1 > ai + ai+1 then

Choose move in minute i and B in minute i + 1

Proceed to iteration i + 2

Else

Choose A in minute i

Proceed to iteration i + 1

Endif

If B: behave as above with roles of A and B reversed

EndWhile

Exercises 323

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes values for a1, a2, . . . , an and

b1, b2, . . . , bn and returns the value of an optimal plan.

11. Suppose you’re consulting for a company that manufactures PC equip-

ment and ships it to distributors all over the country. For each of the

next n weeks, they have a projected supply si of equipment (measured in

pounds), which has to be shipped by an air freight carrier.

Eachweek’s supply can be carried by one of two air freight companies,

A or B.

. Company A charges a fixed rate r per pound (so it costs r · si to ship

a week’s supply si).

. Company B makes contracts for a fixed amount c per week, indepen-

dent of the weight. However, contracts with company Bmust bemade

in blocks of four consecutive weeks at a time.

A schedule, for the PC company, is a choice of air freight company

(A or B) for each of the n weeks, with the restriction that company B,

whenever it is chosen, must be chosen for blocks of four contiguous

weeks at a time. The cost of the schedule is the total amount paid to

company A and B, according to the description above.

Give a polynomial-time algorithm that takes a sequence of supply

values s1, s2, . . . , sn and returns a schedule of minimum cost.

Example. Suppose r = 1, c = 10, and the sequence of values is

11, 9, 9, 12, 12, 12, 12, 9, 9, 11.

Then the optimal schedule would be to choose company A for the first

three weeks, then company B for a block of four consecutive weeks, and

then company A for the final three weeks.

12. Suppose we want to replicate a file over a collection of n servers, labeled

S1, S2, . . . , Sn. To place a copy of the file at server Si results in a placement

cost of ci, for an integer ci > 0.

Now, if a user requests the file from server Si, and no copy of the file is

present at Si, then the servers Si+1, Si+2, Si+3 . . . are searched in order until

a copy of the file is finally found, say at server Sj, where j > i. This results

in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, . . .
are not consulted in this search.) The access cost is 0 if Si holds a copy of

the file. We will require that a copy of the file be placed at server Sn, so

that all such searches will terminate, at the latest, at Sn.

324 Chapter 6 Dynamic Programming

We’d like to place copies of the files at the servers so as to minimize

the sum of placement and access costs. Formally, we say that a configu-

ration is a choice, for each server Si with i = 1, 2, . . . , n − 1, of whether to

place a copy of the file at Si or not. (Recall that a copy is always placed at

Sn.) The total cost of a configuration is the sum of all placement costs for

servers with a copy of the file, plus the sum of all access costs associated

with all n servers.

Give a polynomial-time algorithm to find a configuration ofminimum

total cost.

13. The problem of searching for cycles in graphs arises naturally in financial

trading applications. Consider a firm that trades shares in n different

companies. For each pair i �= j, they maintain a trade ratio rij, meaning

that one share of i trades for rij shares of j. Here we allow the rate r to be

fractional; that is, rij = 2
3 means that you can trade three shares of i to get

two shares of j.

A trading cycle for a sequence of shares i1, i2, . . . , ik consists of

successively trading shares in company i1 for shares in company i2, then

shares in company i2 for shares i3, and so on, finally trading shares in ik
back to shares in company i1. After such a sequence of trades, one ends up

with shares in the same company i1 that one starts with. Trading around a

cycle is usually a bad idea, as you tend to end up with fewer shares than

you started with. But occasionally, for short periods of time, there are

opportunities to increase shares. We will call such a cycle an opportunity

cycle, if trading along the cycle increases the number of shares. This

happens exactly if the product of the ratios along the cycle is above 1. In

analyzing the state of the market, a firm engaged in trading would like

to know if there are any opportunity cycles.

Give a polynomial-time algorithm that finds such an opportunity

cycle, if one exists.

14. A large collection ofmobile wireless devices can naturally form a network

in which the devices are the nodes, and two devices x and y are connected

by an edge if they are able to directly communicate with each other (e.g.,

by a short-range radio link). Such a network of wireless devices is a highly

dynamic object, in which edges can appear and disappear over time as

the devices move around. For instance, an edge (x, y) might disappear as x

and y move far apart from each other and lose the ability to communicate

directly.

In a network that changes over time, it is natural to look for efficient

ways of maintaining a path between certain designated nodes. There are

Exercises 325

two opposing concerns inmaintaining such a path: wewant paths that are

short, but we also do not want to have to change the path frequently as the

network structure changes. (That is, we’d like a single path to continue

working, if possible, even as the network gains and loses edges.) Here is

a way we might model this problem.

Suppose we have a set of mobile nodes V, and at a particular point in

time there is a set E0 of edges among these nodes. As the nodes move, the

set of edges changes from E0 to E1, then to E2, then to E3, and so on, to an

edge set Eb. For i= 0, 1, 2, . . . , b, let Gi denote the graph (V , Ei). So if wewere

to watch the structure of the network on the nodes V as a “time lapse,” it

would look precisely like the sequence of graphs G0, G1, G2, . . . , Gb−1, Gb.

We will assume that each of these graphs Gi is connected.

Now consider two particular nodes s, t ∈ V. For an s-t path P in one

of the graphs Gi, we define the length of P to be simply the number of

edges in P, and we denote this �(P). Our goal is to produce a sequence of

paths P0, P1, . . . , Pb so that for each i, Pi is an s-t path in Gi. We want the

paths to be relatively short. We also do not want there to be too many

changes—points at which the identity of the path switches. Formally, we

define changes(P0, P1, . . . , Pb) to be the number of indices i (0≤ i ≤ b− 1)
for which Pi �= Pi+1.

Fix a constant K > 0. We define the cost of the sequence of paths

P0, P1, . . . , Pb to be

cost(P0, P1, . . . , Pb)=
b∑

i=0

�(Pi)+ K · changes(P0, P1, . . . , Pb).

(a) Suppose it is possible to choose a single path P that is an s-t path in

each of the graphs G0, G1, . . . , Gb. Give a polynomial-time algorithm

to find the shortest such path.

(b) Give a polynomial-time algorithm to find a sequence of paths

P0, P1, . . . , Pb of minimum cost, where Pi is an s-t path in Gi for

i = 0, 1, . . . , b.

15. Onmost clear days, a group of your friends in the AstronomyDepartment

gets together to plan out the astronomical events they’re going to try

observing that night. We’ll make the following assumptions about the

events.

. There are n events, which for simplicity we’ll assume occur in se-

quence separated by exactly one minute each. Thus event j occurs

at minute j; if they don’t observe this event at exactly minute j, then

they miss out on it.

326 Chapter 6 Dynamic Programming

. The sky ismapped according to a one-dimensional coordinate system

(measured in degrees from some central baseline); event j will be

taking place at coordinate dj, for some integer value dj. The telescope

starts at coordinate 0 at minute 0.

. The last event, n, is much more important than the others; so it is

required that they observe event n.

The Astronomy Department operates a large telescope that can be

used for viewing these events. Because it is such a complex instrument, it

can only move at a rate of one degree per minute. Thus they do not expect

to be able to observe all n events; they just want to observe as many as

possible, limited by the operation of the telescope and the requirement

that event n must be observed.

We say that a subset S of the events is viewable if it is possible to

observe each event j ∈ S at its appointed time j, and the telescope has

adequate time (moving at itsmaximumof one degree perminute) tomove

between consecutive events in S.

The problem. Given the coordinates of each of the n events, find a

viewable subset of maximum size, subject to the requirement that it

should contain event n. Such a solution will be called optimal .

Example. Suppose the one-dimensional coordinates of the events are as

shown here.

Event 1 2 3 4 5 6 7 8 9

Coordinate 1 –4 –1 4 5 –4 6 7 –2

Then the optimal solution is to observe events 1, 3, 6, 9. Note that the

telescope has time to move from one event in this set to the next, even

moving at one degree per minute.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

Mark all events j with |dn − dj|> n − j as illegal (as

observing them would prevent you from observing event n)

Mark all other events as legal

Initialize current position to coordinate 0 at minute 0

While not at end of event sequence

Find the earliest legal event j that can be reached without

exceeding the maximum movement rate of the telescope

Add j to the set S

Exercises 327

A

B

C

D

A should call B before D.

Figure 6.30 A hierarchy with
four people. The fastest
broadcast scheme is for A
to call B in the first round.
In the second round, A calls
D and B calls C. If A were to
call D first, then C could not
learn the news until the third
round.

Update current position to be coord.~dj at minute j

Endwhile

Output the set S

In your example, say what the correct answer is and also what

the algorithm above finds.

(b) Give an efficient algorithm that takes values for the coordinates

d1, d2, . . . , dn of the events and returns the size of an optimal solution.

16. There are many sunny days in Ithaca, New York; but this year, as it

happens, the spring ROTC picnic at Cornell has fallen on a rainy day. The

ranking officer decides to postpone the picnic and must notify everyone

by phone. Here is the mechanism she uses to do this.

Each ROTC person on campus except the ranking officer reports to

a unique superior officer . Thus the reporting hierarchy can be described

by a tree T , rooted at the ranking officer, in which each other node v

has a parent node u equal to his or her superior officer. Conversely, we

will call v a direct subordinate of u. See Figure 6.30, in which A is the

ranking officer, B and D are the direct subordinates of A, and C is the

direct subordinate of B.

To notify everyone of the postponement, the ranking officer first

calls each of her direct subordinates, one at a time. As soon as each

subordinate gets the phone call, he or she must notify each of his or

her direct subordinates, one at a time. The process continues this way

until everyone has been notified. Note that each person in this process

can only call direct subordinates on the phone; for example, in Figure

6.30, A would not be allowed to call C.

We can picture this process as being divided into rounds. In one

round, each person who has already learned of the postponement can

call one of his or her direct subordinates on the phone. The number of

rounds it takes for everyone to be notified depends on the sequence in

which each person calls their direct subordinates. For example, in Figure

6.30, it will take only two rounds if A starts by calling B, but it will take

three rounds if A starts by calling D.

Give an efficient algorithm that determines the minimum number of

rounds needed for everyone to be notified, and outputs a sequence of

phone calls that achieves this minimum number of rounds.

17. Your friends have been studying the closing prices of tech stocks, looking

for interesting patterns. They’ve defined something called a rising trend ,

as follows.

328 Chapter 6 Dynamic Programming

They have the closing price for a given stock recorded for n days in

succession; let these prices be denoted P[1], P[2], . . . , P[n]. A rising trend

in these prices is a subsequence of the prices P[i1], P[i2], . . . , P[ik], for days
i1 < i2 < . . . < ik, so that

. i1= 1, and

. P[ij]< P[ij+1] for each j = 1, 2, . . . , k − 1.

Thus a rising trend is a subsequence of the days—beginning on the first

day and not necessarily contiguous—so that the price strictly increases

over the days in this subsequence.

They are interested in finding the longest rising trend in a given

sequence of prices.

Example. Suppose n = 7, and the sequence of prices is

10, 1, 2, 11, 3, 4, 12.

Then the longest rising trend is given by the prices on days 1, 4, and 7.
Note that days 2, 3, 5, and 6 consist of increasing prices; but because this

subsequence does not begin on day 1, it does not fit the definition of a

rising trend.

(a) Show that the following algorithm does not correctly return the

length of the longest rising trend, by giving an instance on which

it fails to return the correct answer.

Define i = 1

L= 1

For j = 2 to n

If P[j]> P[i] then

Set i = j.

Add 1 to L

Endif

Endfor

In your example, give the actual length of the longest rising trend,

and say what the algorithm above returns.

(b) Give an efficient algorithm that takes a sequence of prices P[1],
P[2], . . . , P[n] and returns the length of the longest rising trend.

18. Consider the sequence alignment problem over a four-letter alphabet

{z1, z2, z3, z4}, with a given gap cost and given mismatch costs. Assume

that each of these parameters is a positive integer.

Exercises 329

Suppose you are given two strings A= a1a2 . . . am and B = b1b2 . . . bn

and a proposed alignment between them. Give an O(mn) algorithm to

decide whether this alignment is the unique minimum-cost alignment

between A and B.

19. You’re consulting for a group of people (who would prefer not to be

mentioned here by name) whose jobs consist ofmonitoring and analyzing

electronic signals coming from ships in coastal Atlantic waters. Theywant

a fast algorithm for a basic primitive that arises frequently: “untangling”

a superposition of two known signals. Specifically, they’re picturing a

situation in which each of two ships is emitting a short sequence of 0s
and 1s over and over, and they want to make sure that the signal they’re

hearing is simply an interleaving of these two emissions, with nothing

extra added in.

This describes thewhole problem; we canmake it a littlemore explicit

as follows. Given a string x consisting of 0s and 1s, we write xk to denote k

copies of x concatenated together. We say that a string x′ is a repetition

of x if it is a prefix of xk for some number k. So x′ = 10110110110 is a repetition
of x= 101.

We say that a string s is an interleaving of x and y if its symbols can be

partitioned into two (not necessarily contiguous) subsequences s′ and s′′,
so that s′ is a repetition of x and s′′ is a repetition of y. (So each symbol in

s must belong to exactly one of s′ or s′′.) For example, if x= 101 and y = 00,
then s= 100010101 is an interleaving of x and y, since characters 1,2,5,7,8,9

form 101101—a repetition of x—and the remaining characters 3,4,6 form

000—a repetition of y.

In terms of our application, x and y are the repeating sequences from

the two ships, and s is the signal we’re listening to: We want to make sure

s “unravels” into simple repetitions of x and y. Give an efficient algorithm

that takes strings s, x, and y and decides if s is an interleaving of x and y.

20. Suppose it’s nearing the end of the semester and you’re taking n courses,

each with a final project that still has to be done. Each project will be

graded on the following scale: It will be assigned an integer number on

a scale of 1 to g > 1, higher numbers being better grades. Your goal, of

course, is to maximize your average grade on the n projects.

You have a total of H > n hours in which to work on the n projects

cumulatively, and you want to decide how to divide up this time. For

simplicity, assume H is a positive integer, and you’ll spend an integer

number of hours on each project. To figure out how best to divide up

your time, you’ve come upwith a set of functions {fi : i= 1, 2, . . . , n} (rough

330 Chapter 6 Dynamic Programming

estimates, of course) for each of your n courses; if you spend h ≤H hours

on the project for course i, you’ll get a grade of fi(h). (You may assume

that the functions fi are nondecreasing: if h < h′, then fi(h)≤ fi(h
′).)

So the problem is: Given these functions {fi}, decide how many hours

to spend on each project (in integer values only) so that your average

grade, as computed according to the fi, is as large as possible. In order

to be efficient, the running time of your algorithm should be polynomial

in n, g, and H; none of these quantities should appear as an exponent in

your running time.

21. Some time back, you helped a group of friends who were doing sim-

ulations for a computation-intensive investment company, and they’ve

come back to you with a new problem. They’re looking at n consecutive

days of a given stock, at some point in the past. The days are numbered

i= 1, 2, . . . , n; for each day i, they have a price p(i) per share for the stock

on that day.

For certain (possibly large) values of k, they want to study what they

call k-shot strategies. A k-shot strategy is a collection of m pairs of days

(b1, s1), . . . , (bm, sm), where 0≤m ≤ k and

1≤ b1 < s1 < b2 < s2 . . . < bm < sm ≤ n.

We view these as a set of up to k nonoverlapping intervals, during each

of which the investors buy 1,000 shares of the stock (on day bi) and then

sell it (on day si). The return of a given k-shot strategy is simply the profit

obtained from the m buy-sell transactions, namely,

1,000
m∑

i=1

p(si)− p(bi).

The investors want to assess the value of k-shot strategies by running

simulations on their n-day trace of the stock price. Your goal is to design

an efficient algorithm that determines, given the sequence of prices, the k-

shot strategy with themaximumpossible return. Since k may be relatively

large in these simulations, your running time should be polynomial in

both n and k; it should not contain k in the exponent.

22. To assess how “well-connected” two nodes in a directed graph are, one

can not only look at the length of the shortest path between them, but

can also count the number of shortest paths.

This turns out to be a problem that can be solved efficiently, subject

to some restrictions on the edge costs. Suppose we are given a directed

graph G = (V , E), with costs on the edges; the costs may be positive or

Exercises 331

negative, but every cycle in the graph has strictly positive cost. We are

also given two nodes v, w ∈ V. Give an efficient algorithm that computes

the number of shortest v-w paths in G. (The algorithm should not list all

the paths; just the number suffices.)

23. Suppose you are given a directed graph G = (V , E) with costs on the edges

ce for e ∈ E and a sink t (costs may be negative). Assume that you also have

finite values d(v) for v ∈ V. Someone claims that, for each node v ∈ V, the

quantity d(v) is the cost of the minimum-cost path from node v to the

sink t.

(a) Give a linear-time algorithm (time O(m) if the graph has m edges) that

verifies whether this claim is correct.

(b) Assume that the distances are correct, and d(v) is finite for all v ∈ V.

Now you need to compute distances to a different sink t′. Give an

O(m log n) algorithm for computing distances d′(v) for all nodes v ∈ V

to the sink node t′. (Hint: It is useful to consider a new cost function

defined as follows: for edge e = (v, w), let c′e = ce − d(v)+ d(w). Is there

a relation between costs of paths for the two different costs c and c′?)

24. Gerrymandering is the practice of carving up electoral districts in very

careful ways so as to lead to outcomes that favor a particular political

party. Recent court challenges to the practice have argued that through

this calculated redistricting, large numbers of voters are being effectively

(and intentionally) disenfranchised.

Computers, it turns out, have been implicated as the source of some

of the “villainy” in the news coverage on this topic: Thanks to powerful

software, gerrymandering has changed from an activity carried out by a

bunch of people with maps, pencil, and paper into the industrial-strength

process that it is today.Why is gerrymandering a computational problem?

There are database issues involved in tracking voter demographics down

to the level of individual streets and houses; and there are algorithmic

issues involved in grouping voters into districts. Let’s think a bit about

what these latter issues look like.

Suppose we have a set of n precincts P1, P2, . . . , Pn, each containing

m registered voters. We’re supposed to divide these precincts into two

districts, each consisting of n/2 of the precincts. Now, for each precinct,

we have information on how many voters are registered to each of two

political parties. (Suppose, for simplicity, that every voter is registered

to one of these two.) We’ll say that the set of precincts is susceptible to

gerrymandering if it is possible to perform the division into two districts

in such a way that the same party holds a majority in both districts.

332 Chapter 6 Dynamic Programming

Give an algorithm to determine whether a given set of precincts

is susceptible to gerrymandering; the running time of your algorithm

should be polynomial in n and m.

Example. Suppose we have n= 4 precincts, and the following information

on registered voters.

Precinct 1 2 3 4

Number registered for party A 55 43 60 47

Number registered for party B 45 57 40 53

This set of precincts is susceptible since, if we grouped precincts 1
and 4 into one district, and precincts 2 and 3 into the other, then party

A would have a majority in both districts. (Presumably, the “we” who are

doing the grouping here are members of party A.) This example is a quick

illustration of the basic unfairness in gerrymandering: Although party A

holds only a slim majority in the overall population (205 to 195), it ends

up with a majority in not one but both districts.

25. Consider the problem faced by a stockbroker trying to sell a large number

of shares of stock in a company whose stock price has been steadily

falling in value. It is always hard to predict the right moment to sell stock,

but owning a lot of shares in a single company adds an extra complication:

the mere act of selling many shares in a single day will have an adverse

effect on the price.

Since future market prices, and the effect of large sales on these

prices, are very hard to predict, brokerage firms usemodels of themarket

to help them make such decisions. In this problem, we will consider the

following simple model. Suppose we need to sell x shares of stock in a

company, and suppose that we have an accurate model of the market:

it predicts that the stock price will take the values p1, p2, . . . , pn over the

next n days. Moreover, there is a function f (·) that predicts the effect

of large sales: if we sell y shares on a single day, it will permanently

decrease the price by f (y) from that day onward. So, if we sell y1 shares

on day 1, we obtain a price per share of p1− f (y1), for a total income of

y1 · (p1− f (y1)). Having sold y1 shares on day 1, we can then sell y2 shares

on day 2 for a price per share of p2− f (y1)− f (y2); this yields an additional

income of y2 · (p2− f (y1)− f (y2)). This process continues over all n days.

(Note, as in our calculation for day 2, that the decreases from earlier days

are absorbed into the prices for all later days.)

Design an efficient algorithm that takes the prices p1, . . . , pn and the

function f (·) (written as a list of values f (1), f (2), . . . , f (x)) and determines

Exercises 333

the best way to sell x shares by day n. In otherwords, find natural numbers

y1, y2, . . . , yn so that x = y1+ . . .+ yn, and selling yi shares on day i for

i= 1, 2, . . . , n maximizes the total income achievable. You should assume

that the share value pi is monotone decreasing, and f (·) is monotone

increasing; that is, selling a larger number of shares causes a larger

drop in the price. Your algorithm’s running time can have a polynomial

dependence on n (the number of days), x (the number of shares), and p1

(the peak price of the stock).

Example Consider the case when n = 3; the prices for the three days are

90, 80, 40; and f (y)= 1 for y ≤ 40,000 and f (y)= 20 for y > 40, 000. Assume

you start with x= 100, 000 shares. Selling all of them on day 1 would yield

a price of 70 per share, for a total income of 7,000,000. On the other hand,

selling 40,000 shares on day 1 yields a price of 89 per share, and selling

the remaining 60,000 shares on day 2 results in a price of 59 per share,

for a total income of 7,100,000.

26. Consider the following inventory problem. You are running a company

that sells some large product (let’s assume you sell trucks), and predic-

tions tell you the quantity of sales to expect over the next n months. Let

di denote the number of sales you expect in month i. We’ll assume that

all sales happen at the beginning of the month, and trucks that are not

sold are stored until the beginning of the next month. You can store at

most S trucks, and it costs C to store a single truck for a month. You

receive shipments of trucks by placing orders for them, and there is a

fixed ordering fee of K each time you place an order (regardless of the

number of trucks you order). You start out with no trucks. The problem

is to design an algorithm that decides how to place orders so that you

satisfy all the demands {di}, and minimize the costs. In summary:

. There are two parts to the cost: (1) storage—it costs C for every truck

on hand that is not needed that month; (2) ordering fees—it costs K

for every order placed.

. In each month you need enough trucks to satisfy the demand di,

but the number left over after satisfying the demand for the month

should not exceed the inventory limit S.

Give an algorithm that solves this problem in time that is polynomial in

n and S.

27. The owners of an independently operated gas station are faced with the

following situation. They have a large underground tank in which they

store gas; the tank can hold up to L gallons at one time. Ordering gas is

quite expensive, so they want to order relatively rarely. For each order,

334 Chapter 6 Dynamic Programming

they need to pay a fixed price P for delivery in addition to the cost of the

gas ordered. However, it costs c to store a gallon of gas for an extra day,

so ordering too much ahead increases the storage cost.

They are planning to close for a week in the winter, and they want

their tank to be empty by the time they close. Luckily, based on years of

experience, they have accurate projections for how much gas they will

need each day until this point in time. Assume that there are n days left

until they close, and they need gi gallons of gas for each of the days

i = 1, . . . , n. Assume that the tank is empty at the end of day 0. Give an

algorithm to decide on which days they should place orders, and how

much to order so as to minimize their total cost.

28. Recall the scheduling problem from Section 4.2 in which we sought to

minimize the maximum lateness. There are n jobs, each with a deadline

di and a required processing time ti, and all jobs are available to be

scheduled starting at time s. For a job i to be done, it needs to be assigned

a period from si ≥ s to fi = si + ti, and different jobs should be assigned

nonoverlapping intervals. As usual, such an assignment of times will be

called a schedule.

In this problem, we consider the same setup, but want to optimize a

different objective. In particular, we consider the case in which each job

must either be done by its deadline or not at all. We’ll say that a subset J of

the jobs is schedulable if there is a schedule for the jobs in J so that each

of them finishes by its deadline. Your problem is to select a schedulable

subset of maximum possible size and give a schedule for this subset that

allows each job to finish by its deadline.

(a) Prove that there is an optimal solution J (i.e., a schedulable set of

maximum size) in which the jobs in J are scheduled in increasing

order of their deadlines.

(b) Assume that all deadlines di and required times ti are integers. Give

an algorithm to find an optimal solution. Your algorithm should

run in time polynomial in the number of jobs n, and the maximum

deadline D =maxi di.

29. Let G = (V , E) be a graph with n nodes in which each pair of nodes is

joined by an edge. There is a positive weight wij on each edge (i, j); and

we will assume these weights satisfy the triangle inequality wik ≤wij +wjk.
For a subset V ′ ⊆ V, we will use G[V ′] to denote the subgraph (with edge

weights) induced on the nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by

edges. We say that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V, together

Notes and Further Reading 335

with a spanning subtree T of G[Z]. The weight of the Steiner tree is the

weight of the tree T .

Show that there is function f (·) and a polynomial function p(·) so that

the problem of finding a minimum-weight Steiner tree on X can be solved

in time O(f (k) · p(n)).

Notes and Further Reading

Richard Bellman is credited with pioneering the systematic study of dynamic
programming (Bellman 1957); the algorithm in this chapter for segmented least
squares is based on Bellman’s work from this early period (Bellman 1961).
Dynamic programming has since grown into a technique that is widely used
across computer science, operations research, control theory, and a number
of other areas. Much of the recent work on this topic has been concerned with
stochastic dynamic programming: Whereas our problem formulations tended
to tacitly assume that all input is known at the outset, many problems in
scheduling, production and inventory planning, and other domains involve
uncertainty, and dynamic programming algorithms for these problems encode
this uncertainty using a probabilistic formulation. The book by Ross (1983)
provides an introduction to stochastic dynamic programming.

Many extensions and variations of the Knapsack Problem have been
studied in the area of combinatorial optimization. As we discussed in the
chapter, the pseudo-polynomial bound arising from dynamic programming
can become prohibitive when the input numbers get large; in these cases,
dynamic programming is often combined with other heuristics to solve large
instances of Knapsack Problems in practice. The book by Martello and Toth
(1990) is devoted to computational approaches to versions of the Knapsack
Problem.

Dynamic programming emerged as a basic technique in computational bi-
ology in the early 1970s, in a flurry of activity on the problem of sequence
comparison. Sankoff (2000) gives an interesting historical account of the early
work in this period. The books by Waterman (1995) and Gusfield (1997) pro-
vide extensive coverage of sequence alignment algorithms (as well as many
related algorithms in computational biology); Mathews and Zuker (2004) dis-
cuss further approaches to the problem of RNA secondary structure prediction.
The space-efficient algorithm for sequence alignment is due to Hirschberg
(1975).

The algorithm for the Shortest-Path Problem described in this chapter is
based originally on the work of Bellman (1958) and Ford (1956). Many op-
timizations, motivated both by theoretical and experimental considerations,

336 Chapter 6 Dynamic Programming

have been added to this basic approach to shortest paths; a Web site main-
tained by Andrew Goldberg contains state-of-the-art code that he has de-
veloped for this problem (among a number of others), based on work by
Cherkassky, Goldberg and Radzik (1994). The applications of shortest-path
methods to Internet routing, and the trade-offs among the different algorithms
for networking applications, are covered in books by Bertsekas and Gallager
(1992), Keshav (1997), and Stewart (1998).

Notes on the Exercises Exercise 5 is based on discussions with Lillian Lee;
Exercise 6 is based on a result of Donald Knuth; Exercise 25 is based on results
of Dimitris Bertsimas and Andrew Lo; and Exercise 29 is based on a result of
S. Dreyfus and R. Wagner.

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

Figure 7.1 A bipartite graph.

Chapter 7

Network Flow

In this chapter, we focus on a rich set of algorithmic problems that grow, in a
sense, out of one of the original problems we formulated at the beginning of
the course: Bipartite Matching.

Recall the set-up of the Bipartite Matching Problem. A bipartite graph
G = (V , E) is an undirected graph whose node set can be partitioned as
V = X ∪ Y, with the property that every edge e ∈ E has one end in X and
the other end in Y. We often draw bipartite graphs as in Figure 7.1, with the
nodes in X in a column on the left, the nodes in Y in a column on the right,
and each edge crossing from the left column to the right column.

Now, we’ve already seen the notion of a matching at several points in
the course: We’ve used the term to describe collections of pairs over a set,
with the property that no element of the set appears in more than one pair.
(Think of men (X) matched to women (Y) in the Stable Matching Problem,
or characters in the Sequence Alignment Problem.) In the case of a graph, the
edges constitute pairs of nodes, and we consequently say that a matching in
a graph G = (V , E) is a set of edges M ⊆ E with the property that each node
appears in at most one edge of M. A set of edges M is a perfect matching if
every node appears in exactly one edge of M.

Matchings in bipartite graphs can model situations in which objects are
being assigned to other objects. We have seen a number of such situations in
our earlier discussions of graphs and bipartite graphs. One natural example
arises when the nodes in X represent jobs, the nodes in Y represent machines,
and an edge (xi, yj) indicates that machine yj is capable of processing job xi. A
perfect matching is, then, a way of assigning each job to a machine that can
process it, with the property that each machine is assigned exactly one job.
Bipartite graphs can represent many other relations that arise between two

338 Chapter 7 Network Flow

distinct sets of objects, such as the relation between customers and stores; or
houses and nearby fire stations; and so forth.

One of the oldest problems in combinatorial algorithms is that of deter-
mining the size of the largest matching in a bipartite graph G. (As a special
case, note that G has a perfect matching if and only if |X| = |Y| and it has a
matching of size |X|.) This problem turns out to be solvable by an algorithm
that runs in polynomial time, but the development of this algorithm needs
ideas fundamentally different from the techniques that we’ve seen so far.

Rather than developing the algorithm directly, we begin by formulating a
general class of problems—network flow problems—that includes the Bipartite
Matching Problem as a special case. We then develop a polynomial-time
algorithm for a general problem, the Maximum-Flow Problem, and show how
this provides an efficient algorithm for Bipartite Matching as well. While the
initial motivation for network flow problems comes from the issue of traffic in
a network, we will see that they have applications in a surprisingly diverse set
of areas and lead to efficient algorithms not just for Bipartite Matching, but
for a host of other problems as well.

7.1 The Maximum-Flow Problem and the
Ford-Fulkerson Algorithm

The Problem
One often uses graphs to model transportation networks—networks whose
edges carry some sort of traffic and whose nodes act as “switches” passing
traffic between different edges. Consider, for example, a highway system in
which the edges are highways and the nodes are interchanges; or a computer
network in which the edges are links that can carry packets and the nodes are
switches; or a fluid network in which edges are pipes that carry liquid, and
the nodes are junctures where pipes are plugged together. Network models
of this type have several ingredients: capacities on the edges, indicating how
much they can carry; source nodes in the graph, which generate traffic; sink
(or destination) nodes in the graph, which can “absorb” traffic as it arrives;
and finally, the traffic itself, which is transmitted across the edges.

Flow Networks We’ll be considering graphs of this form, and we refer to the
traffic as flow—an abstract entity that is generated at source nodes, transmitted
across edges, and absorbed at sink nodes. Formally, we’ll say that a flow
network is a directed graph G = (V , E) with the following features.

. Associated with each edge e is a capacity, which is a nonnegative number
that we denote ce.

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 339

20 10

30

10 20

ts

u

v

Figure 7.2 A flow network,
with source s and sink t. The
numbers next to the edges
are the capacities.

. There is a single source node s ∈ V.

. There is a single sink node t ∈ V.

Nodes other than s and t will be called internal nodes.

We will make two assumptions about the flow networks we deal with: first,
that no edge enters the source s and no edge leaves the sink t; second, that
there is at least one edge incident to each node; and third, that all capacities
are integers. These assumptions make things cleaner to think about, and while
they eliminate a few pathologies, they preserve essentially all the issues we
want to think about.

Figure 7.2 illustrates a flow network with four nodes and five edges, and
capacity values given next to each edge.

Defining Flow Next we define what it means for our network to carry traffic,
or flow. We say that an s-t flow is a function f that maps each edge e to a
nonnegative real number, f : E → R+; the value f (e) intuitively represents the
amount of flow carried by edge e. A flow f must satisfy the following two
properties.1

(i) (Capacity conditions) For each e ∈ E, we have 0≤ f (e)≤ ce.

(ii) (Conservation conditions) For each node v other than s and t, we have∑
e into v

f (e)=
∑

e out of v

f (e).

Here
∑

e into v f (e) sums the flow value f (e) over all edges entering node v,
while

∑
e out of v f (e) is the sum of flow values over all edges leaving node v.

Thus the flow on an edge cannot exceed the capacity of the edge. For
every node other than the source and the sink, the amount of flow entering
must equal the amount of flow leaving. The source has no entering edges (by
our assumption), but it is allowed to have flow going out; in other words, it
can generate flow. Symmetrically, the sink is allowed to have flow coming in,
even though it has no edges leaving it. The value of a flow f , denoted ν(f), is
defined to be the amount of flow generated at the source:

ν(f)=
∑

e out of s

f (e).

To make the notation more compact, we define f out(v)=∑
e out of v f (e)

and f in(v)=∑
e into v f (e). We can extend this to sets of vertices; if S ⊆ V, we

1 Our notion of flow models traffic as it goes through the network at a steady rate. We have a single

variable f (e) to denote the amount of flow on edge e. We do not model bursty traffic, where the flow

fluctuates over time.

340 Chapter 7 Network Flow

define f out(S)=∑
e out of S f (e) and f in(S)=∑

e into S f (e). In this terminology,
the conservation condition for nodes v �= s, t becomes f in(v)= f out(v); and we
can write ν(f)= f out(s).

The Maximum-Flow Problem Given a flow network, a natural goal is to
arrange the traffic so as to make as efficient use as possible of the available
capacity. Thus the basic algorithmic problem we will consider is the following:
Given a flow network, find a flow of maximum possible value.

As we think about designing algorithms for this problem, it’s useful to
consider how the structure of the flow network places upper bounds on the
maximum value of an s-t flow. Here is a basic “obstacle” to the existence of
large flows: Suppose we divide the nodes of the graph into two sets, A and
B, so that s ∈ A and t ∈ B. Then, intuitively, any flow that goes from s to t
must cross from A into B at some point, and thereby use up some of the edge
capacity from A to B. This suggests that each such “cut” of the graph puts a
bound on the maximum possible flow value. The maximum-flow algorithm
that we develop here will be intertwined with a proof that the maximum-flow
value equals the minimum capacity of any such division, called the minimum
cut. As a bonus, our algorithm will also compute the minimum cut. We will
see that the problem of finding cuts of minimum capacity in a flow network
turns out to be as valuable, from the point of view of applications, as that of
finding a maximum flow.

Designing the Algorithm
Suppose we wanted to find a maximum flow in a network. How should we
go about doing this? It takes some testing out to decide that an approach
such as dynamic programming doesn’t seem to work—at least, there is no
algorithm known for the Maximum-Flow Problem that could really be viewed
as naturally belonging to the dynamic programming paradigm. In the absence
of other ideas, we could go back and think about simple greedy approaches,
to see where they break down.

Suppose we start with zero flow: f (e)= 0 for all e. Clearly this respects the
capacity and conservation conditions; the problem is that its value is 0. We
now try to increase the value of f by “pushing” flow along a path from s to t,
up to the limits imposed by the edge capacities. Thus, in Figure 7.3, we might
choose the path consisting of the edges {(s, u), (u, v), (v, t)} and increase the
flow on each of these edges to 20, and leave f (e)= 0 for the other two. In this
way, we still respect the capacity conditions—since we only set the flow as
high as the edge capacities would allow—and the conservation conditions—
since when we increase flow on an edge entering an internal node, we also
increase it on an edge leaving the node. Now, the value of our flow is 20, and
we can ask: Is this the maximum possible for the graph in the figure? If we

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 341

20 10

30

(a)

10 20

u

v

ts

20 10

30

10 20

u

v

ts

20 10

30

10 20

u

v

ts

(b) (c)

Figure 7.3 (a) The network of Figure 7.2. (b) Pushing 20 units of flow along the path
s, u, v, t. (c) The new kind of augmenting path using the edge (u, v) backward.

think about it, we see that the answer is no, since it is possible to construct
a flow of value 30. The problem is that we’re now stuck—there is no s-t path
on which we can directly push flow without exceeding some capacity—and
yet we do not have a maximum flow. What we need is a more general way of
pushing flow from s to t, so that in a situation such as this, we have a way to
increase the value of the current flow.

Essentially, we’d like to perform the following operation denoted by a
dotted line in Figure 7.3(c). We push 10 units of flow along (s, v); this now
results in too much flow coming into v. So we “undo” 10 units of flow on
(u, v); this restores the conservation condition at v but results in too little
flow leaving u. So, finally, we push 10 units of flow along (u, t), restoring the
conservation condition at u. We now have a valid flow, and its value is 30. See
Figure 7.3, where the dark edges are carrying flow before the operation, and
the dashed edges form the new kind of augmentation.

This is a more general way of pushing flow: We can push forward on
edges with leftover capacity, and we can push backward on edges that are
already carrying flow, to divert it in a different direction. We now define
the residual graph, which provides a systematic way to search for forward-
backward operations such as this.

The Residual Graph Given a flow network G, and a flow f on G, we define
the residual graph Gf of G with respect to f as follows. (See Figure 7.4 for the
residual graph of the flow on Figure 7.3 after pushing 20 units of flow along
the path s, u, v, t.)

. The node set of Gf is the same as that of G.

. For each edge e = (u, v) of G on which f (e) < ce, there are ce − f (e)
“leftover” units of capacity on which we could try pushing flow forward.

342 Chapter 7 Network Flow

20 10

30

10 20

u

v

ts

20 10

20 10

10 20

v

ts

20 10

10 20

10 20

ts

u

v

u

(a) (b) (c)

Figure 7.4 (a) The graph G with the path s, u, v, t used to push the first 20 units of flow.
(b) The residual graph of the resulting flow f , with the residual capacity next to each
edge. The dotted line is the new augmenting path. (c) The residual graph after pushing
an additional 10 units of flow along the new augmenting path s, v, u, t.

So we include the edge e = (u, v) in Gf , with a capacity of ce − f (e). We
will call edges included this way forward edges.

. For each edge e = (u, v) of G on which f (e) > 0, there are f (e) units of
flow that we can “undo” if we want to, by pushing flow backward. So
we include the edge e′ = (v, u) in Gf , with a capacity of f (e). Note that
e′ has the same ends as e, but its direction is reversed; we will call edges
included this way backward edges.

This completes the definition of the residual graph Gf . Note that each edge e
in G can give rise to one or two edges in Gf : If 0 < f (e) < ce it results in both
a forward edge and a backward edge being included in Gf . Thus Gf has at
most twice as many edges as G. We will sometimes refer to the capacity of an
edge in the residual graph as a residual capacity, to help distinguish it from
the capacity of the corresponding edge in the original flow network G.

Augmenting Paths in a Residual Graph Now we want to make precise the
way in which we push flow from s to t in Gf . Let P be a simple s-t path in Gf—
that is, P does not visit any node more than once. We define bottleneck(P , f)
to be the minimum residual capacity of any edge on P, with respect to the
flow f . We now define the following operation augment(f , P), which yields a
new flow f ′ in G.

augment(f , P)

Let b= bottleneck(P , f)

For each edge (u, v) ∈ P

If e = (u, v) is a forward edge then

increase f (e) in G by b

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 343

Else ((u, v) is a backward edge, and let e = (v, u))

decrease f (e) in G by b

Endif

Endfor

Return(f)

It was purely to be able to perform this operation that we defined the residual
graph; to reflect the importance of augment, one often refers to any s-t path
in the residual graph as an augmenting path.

The result of augment(f , P) is a new flow f ′ in G, obtained by increasing
and decreasing the flow values on edges of P. Let us first verify that f ′ is indeed
a flow.

(7.1) f ′ is a flow in G.

Proof. We must verify the capacity and conservation conditions.

Since f ′ differs from f only on edges of P, we need to check the capacity
conditions only on these edges. Thus, let (u, v) be an edge of P. Informally,
the capacity condition continues to hold because if e = (u, v) is a forward
edge, we specifically avoided increasing the flow on e above ce; and if (u, v)

is a backward edge arising from edge e = (v, u) ∈ E, we specifically avoided
decreasing the flow on e below 0. More concretely, note that bottleneck(P , f)
is no larger than the residual capacity of (u, v). If e = (u, v) is a forward edge,
then its residual capacity is ce − f (e); thus we have

0≤ f (e)≤ f ′(e)= f (e)+ bottleneck(P , f)≤ f (e)+ (ce − f (e))= ce ,

so the capacity condition holds. If (u, v) is a backward edge arising from edge
e = (v, u) ∈ E, then its residual capacity is f (e), so we have

ce ≥ f (e)≥ f ′(e)= f (e)− bottleneck(P , f)≥ f (e)− f (e)= 0,

and again the capacity condition holds.

We need to check the conservation condition at each internal node that
lies on the path P. Let v be such a node; we can verify that the change in
the amount of flow entering v is the same as the change in the amount of
flow exiting v; since f satisfied the conservation condition at v, so must f ′.
Technically, there are four cases to check, depending on whether the edge of
P that enters v is a forward or backward edge, and whether the edge of P that
exits v is a forward or backward edge. However, each of these cases is easily
worked out, and we leave them to the reader.

344 Chapter 7 Network Flow

This augmentation operation captures the type of forward and backward
pushing of flow that we discussed earlier. Let’s now consider the following
algorithm to compute an s-t flow in G.

Max-Flow

Initially f (e)= 0 for all e in G

While there is an s-t path in the residual graph Gf

Let P be a simple s-t path in Gf

f ′ = augment(f , P)

Update f to be f ′

Update the residual graph Gf to be Gf ′

Endwhile

Return f

We’ll call this the Ford-Fulkerson Algorithm, after the two researchers who
developed it in 1956. See Figure 7.4 for a run of the algorithm. The Ford-
Fulkerson Algorithm is really quite simple. What is not at all clear is whether
its central While loop terminates, and whether the flow returned is a maximum
flow. The answers to both of these questions turn out to be fairly subtle.

Analyzing the Algorithm: Termination and Running Time
First we consider some properties that the algorithm maintains by induction
on the number of iterations of the While loop, relying on our assumption that
all capacities are integers.

(7.2) At every intermediate stage of the Ford-Fulkerson Algorithm, the flow
values {f (e)} and the residual capacities in Gf are integers.

Proof. The statement is clearly true before any iterations of the While loop.
Now suppose it is true after j iterations. Then, since all residual capacities in
Gf are integers, the value bottleneck(P , f) for the augmenting path found in
iteration j + 1 will be an integer. Thus the flow f ′ will have integer values, and
hence so will the capacities of the new residual graph.

We can use this property to prove that the Ford-Fulkerson Algorithm
terminates. As at previous points in the book we will look for a measure of
progress that will imply termination.

First we show that the flow value strictly increases when we apply an
augmentation.

(7.3) Let f be a flow in G, and let P be a simple s-t path in Gf . Then
ν(f ′) = ν(f) + bottleneck(P , f); and since bottleneck(P , f) > 0, we have
ν(f ′) > ν(f).

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 345

Proof. The first edge e of P must be an edge out of s in the residual graph
Gf ; and since the path is simple, it does not visit s again. Since G has no
edges entering s, the edge e must be a forward edge. We increase the flow
on this edge by bottleneck(P , f), and we do not change the flow on any
other edge incident to s. Therefore the value of f ′ exceeds the value of f by
bottleneck(P , f).

We need one more observation to prove termination: We need to be able
to bound the maximum possible flow value. Here’s one upper bound: If all the
edges out of s could be completely saturated with flow, the value of the flow
would be

∑
e out of s ce. Let C denote this sum. Thus we have ν(f) ≤ C for all

s-t flows f . (C may be a huge overestimate of the maximum value of a flow
in G, but it’s handy for us as a finite, simply stated bound.) Using statement
(7.3), we can now prove termination.

(7.4) Suppose, as above, that all capacities in the flow network G are integers.
Then the Ford-Fulkerson Algorithm terminates in at most C iterations of the
While loop.

Proof. We noted above that no flow in G can have value greater than C, due to
the capacity condition on the edges leaving s. Now, by (7.3), the value of the
flow maintained by the Ford-Fulkerson Algorithm increases in each iteration;
so by (7.2), it increases by at least 1 in each iteration. Since it starts with the
value 0, and cannot go higher than C, the While loop in the Ford-Fulkerson
Algorithm can run for at most C iterations.

Next we consider the running time of the Ford-Fulkerson Algorithm. Let n
denote the number of nodes in G, and m denote the number of edges in G. We
have assumed that all nodes have at least one incident edge, hence m ≥ n/2,
and so we can use O(m + n)= O(m) to simplify the bounds.

(7.5) Suppose, as above, that all capacities in the flow network G are integers.
Then the Ford-Fulkerson Algorithm can be implemented to run in O(mC) time.

Proof. We know from (7.4) that the algorithm terminates in at most C itera-
tions of the While loop. We therefore consider the amount of work involved
in one iteration when the current flow is f .

The residual graph Gf has at most 2m edges, since each edge of G gives
rise to at most two edges in the residual graph. We will maintain Gf using an
adjacency list representation; we will have two linked lists for each node v,
one containing the edges entering v, and one containing the edges leaving v.
To find an s-t path in Gf , we can use breadth-first search or depth-first search,

346 Chapter 7 Network Flow

which run in O(m+ n) time; by our assumption that m≥ n/2, O(m+ n) is the
same as O(m). The procedure augment(f , P) takes time O(n), as the path P
has at most n− 1 edges. Given the new flow f ′, we can build the new residual
graph in O(m) time: For each edge e of G, we construct the correct forward
and backward edges in Gf ′.

A somewhat more efficient version of the algorithm would maintain the
linked lists of edges in the residual graph Gf as part of the augment procedure
that changes the flow f via augmentation.

7.2 Maximum Flows and Minimum Cuts in a
Network

We now continue with the analysis of the Ford-Fulkerson Algorithm, an activity
that will occupy this whole section. In the process, we will not only learn a
lot about the algorithm, but also find that analyzing the algorithm provides us
with considerable insight into the Maximum-Flow Problem itself.

Analyzing the Algorithm: Flows and Cuts
Our next goal is to show that the flow that is returned by the Ford-Fulkerson
Algorithm has the maximum possible value of any flow in G. To make progress
toward this goal, we return to an issue that we raised in Section 7.1: the way in
which the structure of the flow network places upper bounds on the maximum
value of an s-t flow. We have already seen one upper bound: the value ν(f) of
any s-t-flow f is at most C =∑

e out of s ce. Sometimes this bound is useful, but
sometimes it is very weak. We now use the notion of a cut to develop a much
more general means of placing upper bounds on the maximum-flow value.

Consider dividing the nodes of the graph into two sets, A and B, so that
s ∈ A and t ∈ B. As in our discussion in Section 7.1, any such division places
an upper bound on the maximum possible flow value, since all the flow must
cross from A to B somewhere. Formally, we say that an s-t cut is a partition
(A, B) of the vertex set V, so that s ∈ A and t ∈ B. The capacity of a cut (A, B),
which we will denote c(A, B), is simply the sum of the capacities of all edges
out of A: c(A, B)=∑

e out of A ce.

Cuts turn out to provide very natural upper bounds on the values of flows,
as expressed by our intuition above. We make this precise via a sequence of
facts.

(7.6) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f)= f out(A)−
f in(A).

7.2 Maximum Flows and Minimum Cuts in a Network 347

This statement is actually much stronger than a simple upper bound. It
says that by watching the amount of flow f sends across a cut, we can exactly
measure the flow value: It is the total amount that leaves A, minus the amount
that “swirls back” into A. This makes sense intuitively, although the proof
requires a little manipulation of sums.

Proof. By definition ν(f)= f out(s). By assumption we have f in(s)= 0, as the
source s has no entering edges, so we can write ν(f)= f out(s)− f in(s). Since
every node v in A other than s is internal, we know that f out(v)− f in(v)= 0
for all such nodes. Thus

ν(f)=
∑
v∈A

(f out(v)− f in(v)),

since the only term in this sum that is nonzero is the one in which v is set to s.

Let’s try to rewrite the sum on the right as follows. If an edge e has both
ends in A, then f (e) appears once in the sum with a “+” and once with a “−”,
and hence these two terms cancel out. If e has only its tail in A, then f (e)
appears just once in the sum, with a “+”. If e has only its head in A, then f (e)
also appears just once in the sum, with a “−”. Finally, if e has neither end in
A, then f (e) doesn’t appear in the sum at all. In view of this, we have∑

v∈A

f out(v)− f in(v)=
∑

e out of A

f (e)−
∑

e into A

f (e)= f out(A)− f in(A).

Putting together these two equations, we have the statement of (7.6).

If A= {s}, then f out(A) = f out(s), and f in(A) = 0 as there are no edges
entering the source by assumption. So the statement for this set A= {s} is
exactly the definition of the flow value ν(f).

Note that if (A, B) is a cut, then the edges into B are precisely the edges
out of A. Similarly, the edges out of B are precisely the edges into A. Thus we
have f out(A)= f in(B) and f in(A)= f out(B), just by comparing the definitions
for these two expressions. So we can rephrase (7.6) in the following way.

(7.7) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f)= f in(B)− f out(B).

If we set A= V − {t} and B= {t} in (7.7), we have ν(f)= f in(B)− f out(B)=
f in(t)− f out(t). By our assumption the sink t has no leaving edges, so we have
f out(t)= 0. This says that we could have originally defined the value of a flow
equally well in terms of the sink t: It is f in(t), the amount of flow arriving at
the sink.

A very useful consequence of (7.6) is the following upper bound.

(7.8) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f)≤ c(A, B).

348 Chapter 7 Network Flow

Proof.
ν(f)= f out(A)− f in(A)

≤ f out(A)

=
∑

e out of A

f (e)

≤
∑

e out of A

ce

= c(A, B).

Here the first line is simply (7.6); we pass from the first to the second since
f in(A)≥ 0, and we pass from the third to the fourth by applying the capacity
conditions to each term of the sum.

In a sense, (7.8) looks weaker than (7.6), since it is only an inequality
rather than an equality. However, it will be extremely useful for us, since its
right-hand side is independent of any particular flow f . What (7.8) says is that
the value of every flow is upper-bounded by the capacity of every cut. In other
words, if we exhibit any s-t cut in G of some value c∗, we know immediately by
(7.8) that there cannot be an s-t flow in G of value greater than c∗. Conversely,
if we exhibit any s-t flow in G of some value ν∗, we know immediately by (7.8)
that there cannot be an s-t cut in G of value less than ν∗.

Analyzing the Algorithm: Max-Flow Equals Min-Cut
Let f denote the flow that is returned by the Ford-Fulkerson Algorithm. We
want to show that f has the maximum possible value of any flow in G, and
we do this by the method discussed above: We exhibit an s-t cut (A∗, B∗) for
which ν(f)= c(A∗, B∗). This immediately establishes that f has the maximum
value of any flow, and that (A∗, B∗) has the minimum capacity of any s-t cut.

The Ford-Fulkerson Algorithm terminates when the flow f has no s-t path
in the residual graph Gf . This turns out to be the only property needed for
proving its maximality.

(7.9) If f is an s-t-flow such that there is no s-t path in the residual graph Gf ,
then there is an s-t cut (A∗, B∗) in G for which ν(f)= c(A∗, B∗). Consequently,
f has the maximum value of any flow in G, and (A∗, B∗) has the minimum
capacity of any s-t cut in G.

Proof. The statement claims the existence of a cut satisfying a certain desirable
property; thus we must now identify such a cut. To this end, let A∗ denote the
set of all nodes v in G for which there is an s-v path in Gf . Let B∗ denote the
set of all other nodes: B∗ = V − A∗.

7.2 Maximum Flows and Minimum Cuts in a Network 349

s

u

u�

v

A* B*

Residual graph

t

v�

(u, v) is saturated
with flow.

(u�, v�) carries
no flow.

Figure 7.5 The (A∗, B∗) cut in the proof of (7.9).

First we establish that (A∗, B∗) is indeed an s-t cut. It is clearly a partition
of V. The source s belongs to A∗ since there is always a path from s to s.
Moreover, t �∈ A∗ by the assumption that there is no s-t path in the residual
graph; hence t ∈ B∗ as desired.

Next, suppose that e= (u, v) is an edge in G for which u ∈A∗ and v ∈ B∗, as
shown in Figure 7.5. We claim that f (e)= ce. For if not, e would be a forward
edge in the residual graph Gf , and since u ∈ A∗, there is an s-u path in Gf ;
appending e to this path, we would obtain an s-v path in Gf , contradicting our
assumption that v ∈ B∗.

Now suppose that e′ = (u′, v′) is an edge in G for which u′ ∈ B∗ and v′ ∈A∗.
We claim that f (e′) = 0. For if not, e′ would give rise to a backward edge
e′′ = (v′, u′) in the residual graph Gf , and since v′ ∈ A∗, there is an s-v′ path in
Gf ; appending e′′ to this path, we would obtain an s-u′ path in Gf , contradicting
our assumption that u′ ∈ B∗.

So all edges out of A∗ are completely saturated with flow, while all edges
into A∗ are completely unused. We can now use (7.6) to reach the desired
conclusion:

ν(f)= f out(A∗)− f in(A∗)

=
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
ce − 0

= c(A∗, B∗).

350 Chapter 7 Network Flow

Note how, in retrospect, we can see why the two types of residual edges—
forward and backward—are crucial in analyzing the two terms in the expres-
sion from (7.6).

Given that the Ford-Fulkerson Algorithm terminates when there is no s-t
in the residual graph, (7.6) immediately implies its optimality.

(7.10) The flow f returned by the Ford-Fulkerson Algorithm is a maximum
flow.

We also observe that our algorithm can easily be extended to compute a
minimum s-t cut (A∗, B∗), as follows.

(7.11) Given a flow f of maximum value, we can compute an s-t cut of
minimum capacity in O(m) time.

Proof. We simply follow the construction in the proof of (7.9). We construct
the residual graph Gf , and perform breadth-first search or depth-first search to
determine the set A∗ of all nodes that s can reach. We then define B∗ = V −A∗,
and return the cut (A∗, B∗).

Note that there can be many minimum-capacity cuts in a graph G; the
procedure in the proof of (7.11) is simply finding a particular one of these
cuts, starting from a maximum flow f .

As a bonus, we have obtained the following striking fact through the
analysis of the algorithm.

(7.12) In every flow network, there is a flow f and a cut (A, B) so that
ν(f)= c(A, B).

The point is that f in (7.12) must be a maximum s-t flow; for if there were
a flow f ′ of greater value, the value of f ′ would exceed the capacity of (A, B),
and this would contradict (7.8). Similarly, it follows that (A, B) in (7.12) is
a minimum cut—no other cut can have smaller capacity—for if there were a
cut (A′, B′) of smaller capacity, it would be less than the value of f , and this
again would contradict (7.8). Due to these implications, (7.12) is often called
the Max-Flow Min-Cut Theorem, and is phrased as follows.

(7.13) In every flow network, the maximum value of an s-t flow is equal to
the minimum capacity of an s-t cut.

7.2 Maximum Flows and Minimum Cuts in a Network 351

Further Analysis: Integer-Valued Flows
Among the many corollaries emerging from our analysis of the Ford-Fulkerson
Algorithm, here is another extremely important one. By (7.2), we maintain an
integer-valued flow at all times, and by (7.9), we conclude with a maximum
flow. Thus we have

(7.14) If all capacities in the flow network are integers, then there is a
maximum flow f for which every flow value f (e) is an integer.

Note that (7.14) does not claim that every maximum flow is integer-valued,
only that some maximum flow has this property. Curiously, although (7.14)
makes no reference to the Ford-Fulkerson Algorithm, our algorithmic approach
here provides what is probably the easiest way to prove it.

Real Numbers as Capacities? Finally, before moving on, we can ask how
crucial our assumption of integer capacities was (ignoring (7.4), (7.5) and
(7.14), which clearly needed it). First we notice that allowing capacities to be
rational numbers does not make the situation any more general, since we can
determine the least common multiple of all capacities, and multiply them all
by this value to obtain an equivalent problem with integer capacities.

But what if we have real numbers as capacities? Where in the proof did we
rely on the capacities being integers? In fact, we relied on it quite crucially: We
used (7.2) to establish, in (7.4), that the value of the flow increased by at least 1
in every step. With real numbers as capacities, we should be concerned that the
value of our flow keeps increasing, but in increments that become arbitrarily
smaller and smaller; and hence we have no guarantee that the number of
iterations of the loop is finite. And this turns out to be an extremely real worry,
for the following reason: With pathological choices for the augmenting path,
the Ford-Fulkerson Algorithm with real-valued capacities can run forever.

However, one can still prove that the Max-Flow Min-Cut Theorem (7.12) is
true even if the capacities may be real numbers. Note that (7.9) assumed only
that the flow f has no s-t path in its residual graph Gf , in order to conclude that
there is an s-t cut of equal value. Clearly, for any flow f of maximum value, the
residual graph has no s-t-path; otherwise there would be a way to increase the
value of the flow. So one can prove (7.12) in the case of real-valued capacities
by simply establishing that for every flow network, there exists a maximum
flow.

Of course, the capacities in any practical application of network flow would
be integers or rational numbers. However, the problem of pathological choices
for the augmenting paths can manifest itself even with integer capacities: It
can make the Ford-Fulkerson Algorithm take a gigantic number of iterations.

352 Chapter 7 Network Flow

In the next section, we discuss how to select augmenting paths so as to avoid
the potential bad behavior of the algorithm.

7.3 Choosing Good Augmenting Paths
In the previous section, we saw that any way of choosing an augmenting path
increases the value of the flow, and this led to a bound of C on the number of
augmentations, where C =∑

e out of s ce. When C is not very large, this can be
a reasonable bound; however, it is very weak when C is large.

To get a sense for how bad this bound can be, consider the example graph
in Figure 7.2; but this time assume the capacities are as follows: The edges
(s, v), (s, u), (v, t) and (u, t) have capacity 100, and the edge (u, v) has capacity
1, as shown in Figure 7.6. It is easy to see that the maximum flow has value 200,
and has f (e)= 100 for the edges (s, v), (s, u), (v, t) and (u, t) and value 0 on the
edge (u, v). This flow can be obtained by a sequence of two augmentations,
using the paths of nodes s, u, t and path s, v, t. But consider how bad the
Ford-Fulkerson Algorithm can be with pathological choices for the augmenting
paths. Suppose we start with augmenting path P1 of nodes s, u, v, t in this
order (as shown in Figure 7.6). This path has bottleneck(P1, f)= 1. After
this augmentation, we have f (e)= 1 on the edge e = (u, v), so the reverse
edge is in the residual graph. For the next augmenting path, we choose the
path P2 of the nodes s, v, u, t in this order. In this second augmentation, we
get bottleneck(P2, f)= 1 as well. After this second augmentation, we have
f (e)= 0 for the edge e = (u, v), so the edge is again in the residual graph.
Suppose we alternate between choosing P1 and P2 for augmentation. In this
case, each augmentation will have 1 as the bottleneck capacity, and it will
take 200 augmentations to get the desired flow of value 200. This is exactly
the bound we proved in (7.4), since C = 200 in this example.

Designing a Faster Flow Algorithm
The goal of this section is to show that with a better choice of paths, we can
improve this bound significantly. A large amount of work has been devoted
to finding good ways of choosing augmenting paths in the Maximum-Flow
Problem so as to minimize the number of iterations. We focus here on one
of the most natural approaches and will mention other approaches at the end
of the section. Recall that augmentation increases the value of the maximum
flow by the bottleneck capacity of the selected path; so if we choose paths
with large bottleneck capacity, we will be making a lot of progress. A natural
idea is to select the path that has the largest bottleneck capacity. Having to
find such paths can slow down each individual iteration by quite a bit. We will
avoid this slowdown by not worrying about selecting the path that has exactly

7.3 Choosing Good Augmenting Paths 353

100 100

1

100 100

u

ts

P1 1

99 100

1

100 1

u

v

ts

P2

P1

P2

1

1

99 99
1

1

99

99 1

u

v

ts

2

1

98 99
1

1

98

99 2

u

v

ts

(b)(a)

(d)(c)

v

Figure 7.6 Parts (a) through (d) depict four iterations of the Ford-Fulkerson Algorithm
using a bad choice of augmenting paths: The augmentations alternate between the path
P1 through the nodes s, u, v, t in order and the path P2 through the nodes s, v, u, t in
order.

the largest bottleneck capacity. Instead, we will maintain a so-called scaling
parameter �, and we will look for paths that have bottleneck capacity of at
least �.

Let Gf (�) be the subset of the residual graph consisting only of edges with
residual capacity of at least �. We will work with values of � that are powers
of 2. The algorithm is as follows.

Scaling Max-Flow

Initially f (e)= 0 for all e in G

Initially set � to be the largest power of 2 that is no larger

than the maximum capacity out of s: �≤maxe out of s ce

While �≥ 1

While there is an s-t path in the graph Gf (�)

Let P be a simple s-t path in Gf (�)

354 Chapter 7 Network Flow

f ′ = augment(f , P)

Update f to be f ′ and update Gf (�)

Endwhile

�=�/2

Endwhile

Return f

Analyzing the Algorithm
First observe that the new Scaling Max-Flow Algorithm is really just an
implementation of the original Ford-Fulkerson Algorithm. The new loops, the
value �, and the restricted residual graph Gf (�) are only used to guide the
selection of residual path—with the goal of using edges with large residual
capacity for as long as possible. Hence all the properties that we proved
about the original Max-Flow Algorithm are also true for this new version: the
flow remains integer-valued throughout the algorithm, and hence all residual
capacities are integer-valued.

(7.15) If the capacities are integer-valued, then throughout the Scaling Max-
Flow Algorithm the flow and the residual capacities remain integer-valued. This
implies that when �= 1, Gf (�) is the same as Gf , and hence when the algorithm
terminates the flow, f is of maximum value.

Next we consider the running time. We call an iteration of the outside
While loop—with a fixed value of �—the �-scaling phase. It is easy to give
an upper bound on the number of different �-scaling phases, in terms of the
value C =∑

e out of s ce that we also used in the previous section. The initial
value of � is at most C, it drops by factors of 2, and it never gets below 1.
Thus,

(7.16) The number of iterations of the outer While loop is at most 1+
�log2 C�.

The harder part is to bound the number of augmentations done in each
scaling phase. The idea here is that we are using paths that augment the flow
by a lot, and so there should be relatively few augmentations. During the �-
scaling phase, we only use edges with residual capacity of at least �. Using
(7.3), we have

(7.17) During the �-scaling phase, each augmentation increases the flow
value by at least �.

7.3 Choosing Good Augmenting Paths 355

The key insight is that at the end of the �-scaling phase, the flow f cannot be
too far from the maximum possible value.

(7.18) Let f be the flow at the end of the �-scaling phase. There is an s-t
cut (A, B) in G for which c(A, B)≤ ν(f)+m�, where m is the number of edges
in the graph G. Consequently, the maximum flow in the network has value at
most ν(f)+m�.

Proof. This proof is analogous to our proof of (7.9), which established that
the flow returned by the original Max-Flow Algorithm is of maximum value.

As in that proof, we must identify a cut (A, B) with the desired property.
Let A denote the set of all nodes v in G for which there is an s-v path in Gf (�).
Let B denote the set of all other nodes: B = V − A. We can see that (A, B) is
indeed an s-t cut as otherwise the phase would not have ended.

Now consider an edge e = (u, v) in G for which u ∈ A and v ∈ B. We claim
that ce < f (e)+�. For if this were not the case, then e would be a forward
edge in the graph Gf (�), and since u ∈ A, there is an s-u path in Gf (�);
appending e to this path, we would obtain an s-v path in Gf (�), contradicting
our assumption that v ∈ B. Similarly, we claim that for any edge e′ = (u′, v′) in
G for which u′ ∈ B and v′ ∈ A, we have f (e′) < �. Indeed, if f (e′)≥�, then e′
would give rise to a backward edge e′′ = (v′, u′) in the graph Gf (�), and since
v′ ∈ A, there is an s-v′ path in Gf (�); appending e′′ to this path, we would
obtain an s-u′ path in Gf (�), contradicting our assumption that u′ ∈ B.

So all edges e out of A are almost saturated—they satisfy ce < f (e)+�—
and all edges into A are almost empty—they satisfy f (e) < �. We can now use
(7.6) to reach the desired conclusion:

ν(f)=
∑

e out of A

f (e)−
∑

e into A

f (e)

≥
∑

e out of A

(ce −�)−
∑

e into A

�

=
∑

e out of A

ce −
∑

e out of A

�−
∑

e into A

�

≥ c(A, B)−m�.

Here the first inequality follows from our bounds on the flow values of edges
across the cut, and the second inequality follows from the simple fact that the
graph only contains m edges total.

The maximum-flow value is bounded by the capacity of any cut by (7.8).
We use the cut (A, B) to obtain the bound claimed in the second statement.

356 Chapter 7 Network Flow

(7.19) The number of augmentations in a scaling phase is at most 2m.

Proof. The statement is clearly true in the first scaling phase: we can use
each of the edges out of s only for at most one augmentation in that phase.
Now consider a later scaling phase �, and let fp be the flow at the end of the
previous scaling phase. In that phase, we used �′ = 2� as our parameter. By
(7.18), the maximum flow f ∗ is at most ν(f ∗)≤ ν(fp)+m�′ = ν(fp)+ 2m�. In
the �-scaling phase, each augmentation increases the flow by at least �, and
hence there can be at most 2m augmentations.

An augmentation takes O(m) time, including the time required to set up
the graph and find the appropriate path. We have at most 1+ �log2 C� scaling
phases and at most 2m augmentations in each scaling phase. Thus we have
the following result.

(7.20) The Scaling Max-Flow Algorithm in a graph with m edges and integer
capacities finds a maximum flow in at most 2m(1+ �log2 C�) augmentations.
It can be implemented to run in at most O(m2 log2 C) time.

When C is large, this time bound is much better than the O(mC) bound
that applied to an arbitrary implementation of the Ford-Fulkerson Algorithm.
In our example at the beginning of this section, we had capacities of size
100, but we could just as well have used capacities of size 2100; in this case,
the generic Ford-Fulkerson Algorithm could take time proportional to 2100,
while the scaling algorithm will take time proportional to log2(2

100) = 100.
One way to view this distinction is as follows: The generic Ford-Fulkerson
Algorithm requires time proportional to the magnitude of the capacities, while
the scaling algorithm only requires time proportional to the number of bits
needed to specify the capacities in the input to the problem. As a result, the
scaling algorithm is running in time polynomial in the size of the input (i.e., the
number of edges and the numerical representation of the capacities), and so
it meets our traditional goal of achieving a polynomial-time algorithm. Bad
implementations of the Ford-Fulkerson Algorithm, which can require close
to C iterations, do not meet this standard of polynomiality. (Recall that in
Section 6.4 we used the term pseudo-polynomial to describe such algorithms,
which are polynomial in the magnitudes of the input numbers but not in the
number of bits needed to represent them.)

Extensions: Strongly Polynomial Algorithms
Could we ask for something qualitatively better than what the scaling algo-
rithm guarantees? Here is one thing we could hope for: Our example graph
(Figure 7.6) had four nodes and five edges; so it would be nice to use a

7.4 The Preflow-Push Maximum-Flow Algorithm 357

number of iterations that is polynomial in the numbers 4 and 5, completely
independently of the values of the capacities. Such an algorithm, which is
polynomial in |V| and |E| only, and works with numbers having a polyno-
mial number of bits, is called a strongly polynomial algorithm. In fact, there
is a simple and natural implementation of the Ford-Fulkerson Algorithm that
leads to such a strongly polynomial bound: each iteration chooses the aug-
menting path with the fewest number of edges. Dinitz, and independently
Edmonds and Karp, proved that with this choice the algorithm terminates in
at most O(mn) iterations. In fact, these were the first polynomial algorithms
for the Maximum-Flow Problem. There has since been a huge amount of work
devoted to improving the running times of maximum-flow algorithms. There
are currently algorithms that achieve running times of O(mn log n), O(n3), and
O(min(n2/3, m1/2)m log n log U), where the last bound assumes that all capac-
ities are integral and at most U. In the next section, we’ll discuss a strongly
polynomial maximum-flow algorithm based on a different principle.

* 7.4 The Preflow-Push Maximum-Flow Algorithm
From the very beginning, our discussion of the Maximum-Flow Problem has
been centered around the idea of an augmenting path in the residual graph.
However, there are some very powerful techniques for maximum flow that are
not explicitly based on augmenting paths. In this section we study one such
technique, the Preflow-Push Algorithm.

Designing the Algorithm
Algorithms based on augmenting paths maintain a flow f , and use the augment
procedure to increase the value of the flow. By way of contrast, the Preflow-
Push Algorithm will, in essence, increase the flow on an edge-by-edge basis.
Changing the flow on a single edge will typically violate the conservation con-
dition, and so the algorithm will have to maintain something less well behaved
than a flow—something that does not obey conservation—as it operates.

Preflows We say that an s-t preflow (preflow, for short) is a function f that
maps each edge e to a nonnegative real number, f : E→ R+. A preflow f must
satisfy the capacity conditions:

(i) For each e ∈ E, we have 0≤ f (e)≤ ce.

In place of the conservation conditions, we require only inequalities: Each
node other than s must have at least as much flow entering as leaving.

(ii) For each node v other than the source s, we have∑
e into v

f (e)≥
∑

e out of v

f (e).

358 Chapter 7 Network Flow

We will call the difference

ef (v)=
∑

e into v

f (e)−
∑

e out of v

f (e)

the excess of the preflow at node v. Notice that a preflow where all nodes
other than s and t have zero excess is a flow, and the value of the flow is
exactly ef (t)=−ef (s). We can still define the concept of a residual graph Gf
for a preflow f , just as we did for a flow. The algorithm will “push” flow along
edges of the residual graph (using both forward and backward edges).

Preflows and Labelings The Preflow-Push Algorithm will maintain a preflow
and work on converting the preflow into a flow. The algorithm is based on the
physical intuition that flow naturally finds its way “downhill.” The “heights”
for this intuition will be labels h(v) for each node v that the algorithm will
define and maintain, as shown in Figure 7.7. We will push flow from nodes
with higher labels to those with lower labels, following the intuition that fluid
flows downhill. To make this precise, a labeling is a function h : V → Z≥0 from
the nodes to the nonnegative integers. We will also refer to the labels as heights
of the nodes. We will say that a labeling h and an s-t preflow f are compatible if

(i) (Source and sink conditions) h(t)= 0 and h(s)= n,

(ii) (Steepness conditions) For all edges (v, w) ∈ Ef in the residual graph, we
have h(v)≤ h(w)+ 1.

Edges in the residual graph
may not be too steep.

4

3

2

1

0

Heights

Nodes

t

Figure 7.7 A residual graph and a compatible labeling. No edge in the residual graph
can be too “steep”—its tail can be at most one unit above its head in height. The source
node s must have h(s)= n and is not drawn in the figure.

7.4 The Preflow-Push Maximum-Flow Algorithm 359

Intuitively, the height difference n between the source and the sink is meant to
ensure that the flow starts high enough to flow from s toward the sink t, while
the steepness condition will help by making the descent of the flow gradual
enough to make it to the sink.

The key property of a compatible preflow and labeling is that there can be
no s-t path in the residual graph.

(7.21) If s-t preflow f is compatible with a labeling h, then there is no s-t
path in the residual graph Gf .

Proof. We prove the statement by contradiction. Let P be a simple s-t path in
the residual graph G. Assume that the nodes along P are s, v1, . . . , vk = t. By
definition of a labeling compatible with preflow f , we have that h(s)= n. The
edge (s, v1) is in the residual graph, and hence h(v1)≥ h(s)− 1= n− 1. Using
induction on i and the steepness condition for the edge (vi−1, vi), we get that
for all nodes vi in path P the height is at least h(vi)≥ n− i. Notice that the last
node of the path is vk = t; hence we get that h(t)≥ n − k. However, h(t)= 0
by definition; and k < n as the path P is simple. This contradiction proves the
claim.

Recall from (7.9) that if there is no s-t path in the residual graph Gf of a
flow f , then the flow has maximum value. This implies the following corollary.

(7.22) If s-t flow f is compatible with a labeling h, then f is a flow of
maximum value.

Note that (7.21) applies to preflows, while (7.22) is more restrictive in
that it applies only to flows. Thus the Preflow-Push Algorithm will maintain a
preflow f and a labeling h compatible with f , and it will work on modifying f
and h so as to move f toward being a flow. Once f actually becomes a flow, we
can invoke (7.22) to conclude that it is a maximum flow. In light of this, we
can view the Preflow-Push Algorithm as being in a way orthogonal to the Ford-
Fulkerson Algorithm. The Ford-Fulkerson Algorithm maintains a feasible flow
while changing it gradually toward optimality. The Preflow-Push Algorithm,
on the other hand, maintains a condition that would imply the optimality of a
preflow f , if it were to be a feasible flow, and the algorithm gradually transforms
the preflow f into a flow.

To start the algorithm, we will need to define an initial preflow f and
labeling h that are compatible. We will use h(v)= 0 for all v �= s, and h(s)= n,
as our initial labeling. To make a preflow f compatible with this labeling, we
need to make sure that no edges leaving s are in the residual graph (as these
edges do not satisfy the steepness condition). To this end, we define the initial

360 Chapter 7 Network Flow

preflow as f (e)= ce for all edges e = (s, v) leaving the source, and f (e)= 0 for
all other edges.

(7.23) The initial preflow f and labeling h are compatible.

Pushing and Relabeling Next we will discuss the steps the algorithm makes
toward turning the preflow f into a feasible flow, while keeping it compatible
with some labeling h. Consider any node v that has excess—that is, ef (v) > 0.
If there is any edge e in the residual graph Gf that leaves v and goes to a node
w at a lower height (note that h(w) is at most 1 less than h(v) due to the
steepness condition), then we can modify f by pushing some of the excess
flow from v to w. We will call this a push operation.

push(f , h, v, w)

Applicable if ef (v) > 0, h(w) < h(v) and (v, w) ∈ Ef

If e = (v, w) is a forward edge then

let δ =min(ef (v), ce − f (e)) and

increase f (e) by δ

If (v, w) is a backward edge then

let e = (w, v), δ =min(ef (v), f (e)) and

decrease f (e) by δ

Return(f , h)

If we cannot push the excess of v along any edge leaving v, then we will
need to raise v’s height. We will call this a relabel operation.

relabel(f , h, v)

Applicable if ef (v) > 0, and

for all edges (v, w) ∈ Ef we have h(w)≥ h(v)

Increase h(v) by 1

Return(f , h)

The Full Preflow-Push Algorithm So, in summary, the Preflow-Push Algo-
rithm is as follows.

Preflow-Push

Initially h(v)= 0 for all v �= s and h(s)= n and

f (e)= ce for all e = (s, v) and f (e)= 0 for all other edges

While there is a node v �= t with excess ef (v) > 0

Let v be a node with excess

If there is w such that push(f , h, v, w) can be applied then

push(f , h, v, w)

7.4 The Preflow-Push Maximum-Flow Algorithm 361

Else

relabel(f , h, v)

Endwhile

Return(f)

Analyzing the Algorithm
As usual, this algorithm is somewhat underspecified. For an implementation
of the algorithm, we will have to specify which node with excess to choose,
and how to efficiently select an edge on which to push. However, it is clear
that each iteration of this algorithm can be implemented in polynomial time.
(We’ll discuss later how to implement it reasonably efficiently.) Further, it is
not hard to see that the preflow f and the labeling h are compatible throughout
the algorithm. If the algorithm terminates—something that is far from obvious
based on its description—then there are no nodes other than t with positive
excess, and hence the preflow f is in fact a flow. It then follows from (7.22)
that f would be a maximum flow at termination.

We summarize a few simple observations about the algorithm.

(7.24) Throughout the Preflow-Push Algorithm:

(i) the labels are nonnegative integers;

(ii) f is a preflow, and if the capacities are integral, then the preflow f is
integral; and

(iii) the preflow f and labeling h are compatible.

If the algorithm returns a preflow f , then f is a flow of maximum value.

Proof. By (7.23) the initial preflow f and labeling h are compatible. We will
show using induction on the number of push and relabel operations that
f and h satisfy the properties of the statement. The push operation modifies
the preflow f , but the bounds on δ guarantee that the f returned satisfies
the capacity constraints, and that excesses all remain nonnegative, so f is a
preflow. To see that the preflow f and the labeling h are compatible, note that
push(f , h, v, w) can add one edge to the residual graph, the reverse edge (v, w),
and this edge does satisfy the steepness condition. The relabel operation
increases the label of v, and hence increases the steepness of all edges leaving
v. However, it only applies when no edge leaving v in the residual graph is
going downward, and hence the preflow f and the labeling h are compatible
after relabeling.

The algorithm terminates if no node other than s or t has excess. In this
case, f is a flow by definition; and since the preflow f and the labeling h

362 Chapter 7 Network Flow

remain compatible throughout the algorithm, (7.22) implies that f is a flow of
maximum value.

Next we will consider the number of push and relabel operations. First
we will prove a limit on the relabel operations, and this will help prove a
limit on the maximum number of push operations possible. The algorithm
never changes the label of s (as the source never has positive excess). Each
other node v starts with h(v)= 0, and its label increases by 1 every time it
changes. So we simply need to give a limit on how high a label can get. We
only consider a node v for relabelwhen v has excess. The only source of flow
in the network is the source s; hence, intuitively, the excess at v must have
originated at s. The following consequence of this fact will be key to bounding
the labels.

(7.25) Let f be a preflow. If the node v has excess, then there is a path in Gf
from v to the source s.

Proof. Let A denote all the nodes w such that there is a path from w to s in
the residual graph Gf , and let B= V−A. We need to show that all nodes with
excess are in A.

Notice that s ∈ A. Further, no edges e = (x, y) leaving A can have positive
flow, as an edge with f (e) > 0 would give rise to a reverse edge (y, x) in the
residual graph, and then y would have been in A. Now consider the sum of
excesses in the set B, and recall that each node in B has nonnegative excess,
as s �∈ B.

0≤
∑
v∈B

ef (v)=
∑
v∈B

(f in(v)− f out(v))

Let’s rewrite the sum on the right as follows. If an edge e has both ends
in B, then f (e) appears once in the sum with a “+” and once with a “−”, and
hence these two terms cancel out. If e has only its head in B, then e leaves A,
and we saw above that all edges leaving A have f (e)= 0. If e has only its tail
in B, then f (e) appears just once in the sum, with a “−”. So we get

0≤
∑
v∈B

ef (v)=−f out(B).

Since flows are nonnegative, we see that the sum of the excesses in B is zero;
since each individual excess in B is nonnegative, they must therefore all be 0.

Now we are ready to prove that the labels do not change too much. Recall
that n denotes the number of nodes in V.

7.4 The Preflow-Push Maximum-Flow Algorithm 363

(7.26) Throughout the algorithm, all nodes have h(v)≤ 2n − 1.

Proof. The initial labels h(t) = 0 and h(s) = n do not change during the
algorithm. Consider some other node v �= s, t. The algorithm changes v’s label
only when applying the relabel operation, so let f and h be the preflow and
labeling returned by a relabel(f , h, v) operation. By (7.25) there is a path P in
the residual graph Gf from v to s. Let |P| denote the number of edges in P, and
note that |P| ≤ n− 1. The steepness condition implies that heights of the nodes
can decrease by at most 1 along each edge in P, and hence h(v)− h(s)≤ |P|,
which proves the statement.

Labels are monotone increasing throughout the algorithm, so this state-
ment immediately implies a limit on the number of relabeling operations.

(7.27) Throughout the algorithm, each node is relabeled at most 2n− 1 times,
and the total number of relabeling operations is less than 2n2.

Next we will bound the number of push operations. We will distinguish two
kinds of push operations. A push(f , h, v, w) operation is saturating if either
e = (v, w) is a forward edge in Ef and δ = ce − f (e), or (v, w) is a backward
edge with e = (w, v) and δ = f (e). In other words, the push is saturating if,
after the push, the edge (v, w) is no longer in the residual graph. All other
push operations will be referred to as nonsaturating.

(7.28) Throughout the algorithm, the number of saturating push operations
is at most 2nm.

Proof. Consider an edge (v, w) in the residual graph. After a saturating
push(f , h, v, w) operation, we have h(v)= h(w)+ 1, and the edge (v, w) is no
longer in the residual graph Gf , as shown in Figure 7.8. Before we can push
again along this edge, first we have to push from w to v to make the edge
(v, w) appear in the residual graph. However, in order to push from w to v,
we first need for w’s label to increase by at least 2 (so that w is above v). The
label of w can increase by 2 at most n − 1 times, so a saturating push from v
to w can occur at most n times. Each edge e ∈ E can give rise to two edges in
the residual graph, so overall we can have at most 2nm saturating pushes.

The hardest part of the analysis is proving a bound on the number of
nonsaturating pushes, and this also will be the bottleneck for the theoretical
bound on the running time.

(7.29) Throughout the algorithm, the number of nonsaturating push opera-
tions is at most 2n2m.

364 Chapter 7 Network Flow

Heights

Nodes

4

3

2

1

0

v

w

t

The height of node w has to
increase by 2 before it can
push flow back to node v.

Figure 7.8 After a saturating push(f , h, v, w), the height of v exceeds the height of w
by 1.

Proof. For this proof, we will use a so-called potential function method. For a
preflow f and a compatible labeling h, we define

�(f , h)=
∑

v:ef (v)>0

h(v)

to be the sum of the heights of all nodes with positive excess. (� is often called
a potential since it resembles the “potential energy” of all nodes with positive
excess.)

In the initial preflow and labeling, all nodes with positive excess are at
height 0, so �(f , h)= 0. �(f , h) remains nonnegative throughout the algo-
rithm. A nonsaturating push(f , h, v, w) operation decreases �(f , h) by at least
1, since after the push the node v will have no excess, and w, the only node
that gets new excess from the operation, is at a height 1 less than v. How-
ever, each saturating push and each relabel operation can increase �(f , h).
A relabel operation increases �(f , h) by exactly 1. There are at most 2n2

relabel operations, so the total increase in �(f , h) due to relabel opera-
tions is 2n2. A saturating push(f , h, v, w) operation does not change labels,
but it can increase �(f , h), since the node w may suddenly acquire positive
excess after the push. This would increase �(f , h) by the height of w, which
is at most 2n − 1. There are at most 2nm saturating push operations, so the
total increase in �(f , h) due to push operations is at most 2mn(2n − 1). So,
between the two causes, �(f , h) can increase by at most 4mn2 during the
algorithm.

7.4 The Preflow-Push Maximum-Flow Algorithm 365

But since � remains nonnegative throughout, and it decreases by at least
1 on each nonsaturating push operation, it follows that there can be at most
4mn2 nonsaturating push operations.

Extensions: An Improved Version of the Algorithm
There has been a lot of work devoted to choosing node selection rules for
the Preflow-Push Algorithm to improve the worst-case running time. Here we
consider a simple rule that leads to an improved O(n3) bound on the number
of nonsaturating push operations.

(7.30) If at each step we choose the node with excess at maximum height,
then the number of nonsaturating push operations throughout the algorithm is
at most 4n3.

Proof. Consider the maximum height H =maxv:ef (v)>0 h(v) of any node with
excess as the algorithm proceeds. The analysis will use this maximum height
H in place of the potential function � in the previous O(n2m) bound.

This maximum height H can only increase due to relabeling (as flow
is always pushed to nodes at lower height), and so the total increase in H
throughout the algorithm is at most 2n2 by (7.26). H starts out 0 and remains
nonnegative, so the number of times H changes is at most 4n2.

Now consider the behavior of the algorithm over a phase of time in
which H remains constant. We claim that each node can have at most one
nonsaturating push operation during this phase. Indeed, during this phase,
flow is being pushed from nodes at height H to nodes at height H − 1; and
after a nonsaturating push operation from v, it must receive flow from a node
at height H + 1 before we can push from it again.

Since there are at most n nonsaturating push operations between each
change to H, and H changes at most 4n2 times, the total number of nonsatu-
rating push operations is at most 4n3.

As a follow-up to (7.30), it is interesting to note that experimentally the
computational bottleneck of the method is the number of relabeling operations,
and a better experimental running time is obtained by variants that work on
increasing labels faster than one by one. This is a point that we pursue further
in some of the exercises.

Implementing the Preflow-Push Algorithm
Finally, we need to briefly discuss how to implement this algorithm efficiently.
Maintaining a few simple data structures will allow us to effectively implement

366 Chapter 7 Network Flow

the operations of the algorithm in constant time each, and overall to imple-
ment the algorithm in time O(mn) plus the number of nonsaturating push
operations. Hence the generic algorithm will run in O(mn2) time, while the
version that always selects the node at maximum height will run in O(n3) time.

We can maintain all nodes with excess on a simple list, and so we will be
able to select a node with excess in constant time. One has to be a bit more
careful to be able to select a node with maximum height H in constant time. In
order to do this, we will maintain a linked list of all nodes with excess at every
possible height. Note that whenever a node v gets relabeled, or continues to
have positive excess after a push, it remains a node with maximum height H.
Thus we only have to select a new node after a push when the current node v
no longer has positive excess. If node v was at height H, then the new node at
maximum height will also be at height H or, if no node at height H has excess,
then the maximum height will be H − 1, since the previous push operation
out of v pushed flow to a node at height H − 1.

Now assume we have selected a node v, and we need to select an edge
(v, w) on which to apply push(f , h, v, w) (or relabel(f , h, v) if no such w
exists). To be able to select an edge quickly, we will use the adjacency list
representation of the graph. More precisely, we will maintain, for each node v,
all possible edges leaving v in the residual graph (both forward and backward
edges) in a linked list, and with each edge we keep its capacity and flow value.
Note that this way we have two copies of each edge in our data structure: a
forward and a backward copy. These two copies will have pointers to each
other, so that updates done at one copy can be carried over to the other one
in O(1) time. We will select edges leaving a node v for push operations in the
order they appear on node v’s list. To facilitate this selection, we will maintain
a pointer current(v) for each node v to the last edge on the list that has been
considered for a push operation. So, if node v no longer has excess after a
nonsaturating push operation out of node v, the pointer current(v) will stay
at this edge, and we will use the same edge for the next push operation out of
v. After a saturating push operation out of node v, we advance current(v) to
the next edge on the list.

The key observation is that, after advancing the pointer current(v) from
an edge (v, w), we will not want to apply push to this edge again until we
relabel v.

(7.31) After the current(v) pointer is advanced from an edge (v, w), we
cannot apply push to this edge until v gets relabeled.

Proof. At the moment current(v) is advanced from the edge (v, w), there is
some reason push cannot be applied to this edge. Either h(w)≥ h(v), or the

7.5 A First Application: The Bipartite Matching Problem 367

edge is not in the residual graph. In the first case, we clearly need to relabel v
before applying a push on this edge. In the latter case, one needs to apply push
to the reverse edge (w, v) to make (v, w) reenter the residual graph. However,
when we apply push to edge (w, v), then w is above v, and so v needs to be
relabeled before one can push flow from v to w again.

Since edges do not have to be considered again for push before relabeling,
we get the following.

(7.32) When the current(v) pointer reaches the end of the edge list for v,
the relabel operation can be applied to node v.

After relabeling node v, we reset current(v) to the first edge on the list and
start considering edges again in the order they appear on v’s list.

(7.33) The running time of the Preflow-Push Algorithm, implemented using
the above data structures, is O(mn) plus O(1) for each nonsaturating push
operation. In particular, the generic Preflow-Push Algorithm runs in O(n2m)

time, while the version where we always select the node at maximum height
runs in O(n3) time.

Proof. The initial flow and relabeling is set up in O(m) time. Both push and
relabel operations can be implemented in O(1) time, once the operation
has been selected. Consider a node v. We know that v can be relabeled at
most 2n times throughout the algorithm. We will consider the total time the
algorithm spends on finding the right edge on which to push flow out of node v,
between two times that node v gets relabeled. If node v has dv adjacent edges,
then by (7.32) we spend O(dv) time on advancing the current(v) pointer
between consecutive relabelings of v. Thus the total time spent on advancing
the current pointers throughout the algorithm is O(

∑
v∈V ndv)= O(mn), as

claimed.

7.5 A First Application: The Bipartite Matching
Problem

Having developed a set of powerful algorithms for the Maximum-Flow Prob-
lem, we now turn to the task of developing applications of maximum flows
and minimum cuts in graphs. We begin with two very basic applications. First,
in this section, we discuss the Bipartite Matching Problem mentioned at the
beginning of this chapter. In the next section, we discuss the more general
Disjoint Paths Problem.

368 Chapter 7 Network Flow

The Problem
One of our original goals in developing the Maximum-Flow Problem was to
be able to solve the Bipartite Matching Problem, and we now show how to
do this. Recall that a bipartite graph G = (V , E) is an undirected graph whose
node set can be partitioned as V = X ∪ Y, with the property that every edge
e ∈ E has one end in X and the other end in Y. A matching M in G is a subset
of the edges M ⊆ E such that each node appears in at most one edge in M.
The Bipartite Matching Problem is that of finding a matching in G of largest
possible size.

Designing the Algorithm
The graph defining a matching problem is undirected, while flow networks are
directed; but it is actually not difficult to use an algorithm for the Maximum-
Flow Problem to find a maximum matching.

Beginning with the graph G in an instance of the Bipartite Matching
Problem, we construct a flow network G′ as shown in Figure 7.9. First we
direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node
in Y to t. Finally, we give each edge in G′ a capacity of 1.

We now compute a maximum s-t flow in this network G′. We will discover
that the value of this maximum is equal to the size of the maximum matching
in G. Moreover, our analysis will show how one can use the flow itself to
recover the matching.

s t

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities
equal to 1.

7.5 A First Application: The Bipartite Matching Problem 369

Analyzing the Algorithm
The analysis is based on showing that integer-valued flows in G′ encode
matchings in G in a fairly transparent fashion. First, suppose there is a
matching in G consisting of k edges (xi1, yi1), . . . , (xik , yik). Then consider the
flow f that sends one unit along each path of the form s, xij , yij , t—that is,
f (e)= 1 for each edge on one of these paths. One can verify easily that the
capacity and conservation conditions are indeed met and that f is an s-t flow
of value k.

Conversely, suppose there is a flow f ′ in G′ of value k. By the integrality
theorem for maximum flows (7.14), we know there is an integer-valued flow f
of value k; and since all capacities are 1, this means that f (e) is equal to either
0 or 1 for each edge e. Now, consider the set M ′ of edges of the form (x, y) on
which the flow value is 1.

Here are three simple facts about the set M ′.

(7.34) M ′ contains k edges.

Proof. To prove this, consider the cut (A, B) in G′ with A= {s} ∪ X. The value
of the flow is the total flow leaving A, minus the total flow entering A. The
first of these terms is simply the cardinality of M ′, since these are the edges
leaving A that carry flow, and each carries exactly one unit of flow. The second
of these terms is 0, since there are no edges entering A. Thus, M ′ contains k
edges.

(7.35) Each node in X is the tail of at most one edge in M ′.

Proof. To prove this, suppose x ∈ X were the tail of at least two edges in M ′.
Since our flow is integer-valued, this means that at least two units of flow
leave from x. By conservation of flow, at least two units of flow would have
to come into x—but this is not possible, since only a single edge of capacity 1
enters x. Thus x is the tail of at most one edge in M ′.

By the same reasoning, we can show

(7.36) Each node in Y is the head of at most one edge in M ′.

Combining these facts, we see that if we view M ′ as a set of edges in the
original bipartite graph G, we get a matching of size k. In summary, we have
proved the following fact.

(7.37) The size of the maximum matching in G is equal to the value of the
maximum flow in G′; and the edges in such a matching in G are the edges that
carry flow from X to Y in G′.

370 Chapter 7 Network Flow

Note the crucial way in which the integrality theorem (7.14) figured in
this construction: we needed to know if there is a maximum flow in G′ that
takes only the values 0 and 1.

Bounding the Running Time Now let’s consider how quickly we can com-
pute a maximum matching in G. Let n = |X| = |Y|, and let m be the number
of edges of G. We’ll tacitly assume that there is at least one edge incident to
each node in the original problem, and hence m ≥ n/2. The time to compute
a maximum matching is dominated by the time to compute an integer-valued
maximum flow in G′, since converting this to a matching in G is simple. For
this flow problem, we have that C =∑

e out of s ce = |X| = n, as s has an edge
of capacity 1 to each node of X. Thus, by using the O(mC) bound in (7.5), we
get the following.

(7.38) The Ford-Fulkerson Algorithm can be used to find a maximum match-
ing in a bipartite graph in O(mn) time.

It’s interesting that if we were to use the “better” bounds of O(m2 log2 C) or
O(n3) that we developed in the previous sections, we’d get the inferior running
times of O(m2 log n) or O(n3) for this problem. There is nothing contradictory
in this. These bounds were designed to be good for all instances, even when C
is very large relative to m and n. But C = n for the Bipartite Matching Problem,
and so the cost of this extra sophistication is not needed.

It is worthwhile to consider what the augmenting paths mean in the
network G′. Consider the matching M consisting of edges (x2, y2), (x3, y3),
and (x5, y5) in the bipartite graph in Figure 7.1; see also Figure 7.10. Let f
be the corresponding flow in G′. This matching is not maximum, so f is not
a maximum s-t flow, and hence there is an augmenting path in the residual
graph G′f . One such augmenting path is marked in Figure 7.10(b). Note that
the edges (x2, y2) and (x3, y3) are used backward, and all other edges are used
forward. All augmenting paths must alternate between edges used backward
and forward, as all edges of the graph G′ go from X to Y. Augmenting paths
are therefore also called alternating paths in the context of finding a maximum
matching. The effect of this augmentation is to take the edges used backward
out of the matching, and replace them with the edges going forward. Because
the augmenting path goes from s to t, there is one more forward edge than
backward edge; thus the size of the matching increases by one.

7.5 A First Application: The Bipartite Matching Problem 371

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

(a) (b) (c)

Figure 7.10 (a) A bipartite graph, with a matching M. (b) The augmenting path in the
corresponding residual graph. (c) The matching obtained by the augmentation.

Extensions: The Structure of Bipartite Graphs with
No Perfect Matching
Algorithmically, we’ve seen how to find perfect matchings: We use the algo-
rithm above to find a maximum matching and then check to see if this matching
is perfect.

But let’s ask a slightly less algorithmic question. Not all bipartite graphs
have perfect matchings. What does a bipartite graph without a perfect match-
ing look like? Is there an easy way to see that a bipartite graph does not have a
perfect matching—or at least an easy way to convince someone the graph has
no perfect matching, after we run the algorithm? More concretely, it would be
nice if the algorithm, upon concluding that there is no perfect matching, could
produce a short “certificate” of this fact. The certificate could allow someone
to be quickly convinced that there is no perfect matching, without having to
look over a trace of the entire execution of the algorithm.

One way to understand the idea of such a certificate is as follows. We can
decide if the graph G has a perfect matching by checking if the maximum flow
in a related graph G′ has value at least n. By the Max-Flow Min-Cut Theorem,
there will be an s-t cut of capacity less than n if the maximum-flow value in
G′ has value less than n. So, in a way, a cut with capacity less than n provides
such a certificate. However, we want a certificate that has a natural meaning
in terms of the original graph G.

What might such a certificate look like? For example, if there are nodes
x1, x2 ∈ X that have only one incident edge each, and the other end of each
edge is the same node y, then clearly the graph has no perfect matching: both
x1 and x2 would need to get matched to the same node y. More generally,
consider a subset of nodes A⊆ X, and let �(A)⊆ Y denote the set of all nodes

372 Chapter 7 Network Flow

that are adjacent to nodes in A. If the graph has a perfect matching, then each
node in A has to be matched to a different node in �(A), so �(A) has to be at
least as large as A. This gives us the following fact.

(7.39) If a bipartite graph G = (V , E) with two sides X and Y has a perfect
matching, then for all A⊆ X we must have |�(A)| ≥ |A|.

This statement suggests a type of certificate demonstrating that a graph
does not have a perfect matching: a set A⊆ X such that |�(A)|< |A|. But is the
converse of (7.39) also true? Is it the case that whenever there is no perfect
matching, there is a set A like this that proves it? The answer turns out to
be yes, provided we add the obvious condition that |X| = |Y| (without which
there could certainly not be a perfect matching). This statement is known
in the literature as Hall’s Theorem, though versions of it were discovered
independently by a number of different people—perhaps first by König—in
the early 1900s. The proof of the statement also provides a way to find such a
subset A in polynomial time.

(7.40) Assume that the bipartite graph G = (V , E) has two sides X and Y
such that |X| = |Y|. Then the graph G either has a perfect matching or there is
a subset A⊆ X such that |�(A)|< |A|. A perfect matching or an appropriate
subset A can be found in O(mn) time.

Proof. We will use the same graph G′ as in (7.37). Assume that |X| = |Y| = n.
By (7.37) the graph G has a maximum matching if and only if the value of the
maximum flow in G′ is n.

We need to show that if the value of the maximum flow is less than n,
then there is a subset A such that |�(A)|< |A|, as claimed in the statement.
By the Max-Flow Min-Cut Theorem (7.12), if the maximum-flow value is less
than n, then there is a cut (A′, B′) with capacity less than n in G′. Now the
set A′ contains s, and may contain nodes from both X and Y as shown in
Figure 7.11. We claim that the set A= X ∩ A′ has the claimed property. This
will prove both parts of the statement, as we’ve seen in (7.11) that a minimum
cut (A′, B′) can also be found by running the Ford-Fulkerson Algorithm.

First we claim that one can modify the minimum cut (A′, B′) so as to
ensure that �(A)⊆A′, where A= X ∩A′ as before. To do this, consider a node
y ∈ �(A) that belongs to B′ as shown in Figure 7.11(a). We claim that by moving
y from B′ to A′, we do not increase the capacity of the cut. For what happens
when we move y from B′ to A′? The edge (y, t) now crosses the cut, increasing
the capacity by one. But previously there was at least one edge (x, y) with
x ∈ A, since y ∈ �(A); all edges from A and y used to cross the cut, and don’t
anymore. Thus, overall, the capacity of the cut cannot increase. (Note that we

7.6 Disjoint Paths in Directed and Undirected Graphs 373

s tyx

A

A� A�

s tyx

(a) (b)

Node y can be moved
to the s-side of the cut.

Figure 7.11 (a) A minimum cut in proof of (7.40). (b) The same cut after moving node
y to the A′ side. The edges crossing the cut are dark.

don’t have to be concerned about nodes x ∈ X that are not in A. The two ends
of the edge (x, y) will be on different sides of the cut, but this edge does not
add to the capacity of the cut, as it goes from B′ to A′.)

Next consider the capacity of this minimum cut (A′, B′) that has �(A)⊆A′
as shown in Figure 7.11(b). Since all neighbors of A belong to A′, we see that
the only edges out of A′ are either edges that leave the source s or that enter
the sink t. Thus the capacity of the cut is exactly

c(A′, B′)= |X ∩ B′| + |Y ∩ A′|.
Notice that |X ∩ B′| = n− |A|, and |Y ∩ A′| ≥ |�(A)|. Now the assumption that
c(A′, B′) < n implies that

n − |A| + |�(A)| ≤ |X ∩ B′| + |Y ∩ A′| = c(A′, B′) < n.

Comparing the first and the last terms, we get the claimed inequality |A|>
|�(A)|.

7.6 Disjoint Paths in Directed and
Undirected Graphs

In Section 7.1, we described a flow f as a kind of “traffic” in the network.
But our actual definition of a flow has a much more static feel to it: For each
edge e, we simply specify a number f (e) saying the amount of flow crossing e.
Let’s see if we can revive the more dynamic, traffic-oriented picture a bit, and
try formalizing the sense in which units of flow “travel” from the source to

374 Chapter 7 Network Flow

the sink. From this more dynamic view of flows, we will arrive at something
called the s-t Disjoint Paths Problem.

The Problem
In defining this problem precisely, we will deal with two issues. First, we will
make precise this intuitive correspondence between units of flow traveling
along paths, and the notion of flow we’ve studied so far. Second, we will
extend the Disjoint Paths Problem to undirected graphs. We’ll see that, despite
the fact that the Maximum-Flow Problem was defined for a directed graph, it
can naturally be used also to handle related problems on undirected graphs.

We say that a set of paths is edge-disjoint if their edge sets are disjoint, that
is, no two paths share an edge, though multiple paths may go through some
of the same nodes. Given a directed graph G = (V , E) with two distinguished
nodes s, t ∈V, the Directed Edge-Disjoint Paths Problem is to find the maximum
number of edge-disjoint s-t paths in G. The Undirected Edge-Disjoint Paths
Problem is to find the maximum number of edge-disjoint s-t paths in an
undirected graph G. The related question of finding paths that are not only
edge-disjoint, but also node-disjoint (of course, other than at nodes s and t)
will be considered in the exercises to this chapter.

Designing the Algorithm
Both the directed and the undirected versions of the problem can be solved
very naturally using flows. Let’s start with the directed problem. Given the
graph G = (V , E), with its two distinguished nodes s and t, we define a flow
network in which s and t are the source and sink, respectively, and with a
capacity of 1 on each edge. Now suppose there are k edge-disjoint s-t paths.
We can make each of these paths carry one unit of flow: We set the flow to be
f (e)= 1 for each edge e on any of the paths, and f (e′)= 0 on all other edges,
and this defines a feasible flow of value k.

(7.41) If there are k edge-disjoint paths in a directed graph G from s to t, then
the value of the maximum s-t flow in G is at least k.

Suppose we could show the converse to (7.41) as well: If there is a flow
of value k, then there exist k edge-disjoint s-t paths. Then we could simply
compute a maximum s-t flow in G and declare (correctly) this to be the
maximum number of edge-disjoint s-t paths.

We now proceed to prove this converse statement, confirming that this
approach using flow indeed gives us the correct answer. Our analysis will
also provide a way to extract k edge-disjoint paths from an integer-valued
flow sending k units from s to t. Thus computing a maximum flow in G will

7.6 Disjoint Paths in Directed and Undirected Graphs 375

not only give us the maximum number of edge-disjoint paths, but the paths
as well.

Analyzing the Algorithm
Proving the converse direction of (7.41) is the heart of the analysis, since it
will immediately establish the optimality of the flow-based algorithm to find
disjoint paths.

To prove this, we will consider a flow of value at least k, and construct k
edge-disjoint paths. By (7.14), we know that there is a maximum flow f with
integer flow values. Since all edges have a capacity bound of 1, and the flow
is integer-valued, each edge that carries flow under f has exactly one unit of
flow on it. Thus we just need to show the following.

(7.42) If f is a 0-1 valued flow of value ν, then the set of edges with flow
value f (e)= 1 contains a set of ν edge-disjoint paths.

Proof. We prove this by induction on the number of edges in f that carry flow.
If ν = 0, there is nothing to prove. Otherwise, there must be an edge (s, u) that
carries one unit of flow. We now “trace out” a path of edges that must also
carry flow: Since (s, u) carries a unit of flow, it follows by conservation that
there is some edge (u, v) that carries one unit of flow, and then there must be
an edge (v, w) that carries one unit of flow, and so forth. If we continue in this
way, one of two things will eventually happen: Either we will reach t, or we
will reach a node v for the second time.

If the first case happens—we find a path P from s to t—then we’ll use this
path as one of our ν paths. Let f ′ be the flow obtained by decreasing the flow
values on the edges along P to 0. This new flow f ′ has value ν − 1, and it has
fewer edges that carry flow. Applying the induction hypothesis for f ′, we get
ν − 1 edge-disjoint paths, which, along with path P, form the ν paths claimed.

If P reaches a node v for the second time, then we have a situation like
the one pictured in Figure 7.12. (The edges in the figure all carry one unit of
flow, and the dashed edges indicate the path traversed so far, which has just
reached a node v for the second time.) In this case, we can make progress in
a different way.

Consider the cycle C of edges visited between the first and second appear-
ances of v. We obtain a new flow f ′ from f by decreasing the flow values on
the edges along C to 0. This new flow f ′ has value ν, but it has fewer edges that
carry flow. Applying the induction hypothesis for f ′, we get the ν edge-disjoint
paths as claimed.

376 Chapter 7 Network Flow

P

v

s

t

Flow around a cycle
can be zeroed out.

Figure 7.12 The edges in the figure all carry one unit of flow. The path P of dashed
edges is one possible path in the proof of (7.42).

We can summarize (7.41) and (7.42) in the following result.

(7.43) There are k edge-disjoint paths in a directed graph G from s to t if and
only if the value of the maximum value of an s-t flow in G is at least k.

Notice also how the proof of (7.42) provides an actual procedure for
constructing the k paths, given an integer-valued maximum flow in G. This
procedure is sometimes referred to as a path decomposition of the flow, since it
“decomposes” the flow into a constituent set of paths. Hence we have shown
that our flow-based algorithm finds the maximum number of edge-disjoint s-t
paths and also gives us a way to construct the actual paths.

Bounding the Running Time For this flow problem, C =∑
e out of s ce ≤

|V| = n, as there are at most |V| edges out of s, each of which has capac-
ity 1. Thus, by using the O(mC) bound in (7.5), we get an integer maximum
flow in O(mn) time.

The path decomposition procedure in the proof of (7.42), which produces
the paths themselves, can also be made to run in O(mn) time. To see this, note
that this procedure, with a little care, can produce a single path from s to t
using at most constant work per edge in the graph, and hence in O(m) time.
Since there can be at most n − 1 edge-disjoint paths from s to t (each must
use a different edge out of s), it therefore takes time O(mn) to produce all the
paths.

In summary, we have shown

(7.44) The Ford-Fulkerson Algorithm can be used to find a maximum set of
edge-disjoint s-t paths in a directed graph G in O(mn) time.

A Version of the Max-Flow Min-Cut Theorem for Disjoint Paths The Max-
Flow Min-Cut Theorem (7.13) can be used to give the following characteri-

7.6 Disjoint Paths in Directed and Undirected Graphs 377

zation of the maximum number of edge-disjoint s-t paths. We say that a set
F ⊆ E of edges separates s from t if, after removing the edges F from the graph
G, no s-t paths remain in the graph.

(7.45) In every directed graph with nodes s and t, the maximum number of
edge-disjoint s-t paths is equal to the minimum number of edges whose removal
separates s from t.

Proof. If the removal of a set F ⊆ E of edges separates s from t, then each s-t
path must use at least one edge from F , and hence the number of edge-disjoint
s-t paths is at most |F |.

To prove the other direction, we will use the Max-Flow Min-Cut Theorem
(7.13). By (7.43) the maximum number of edge-disjoint paths is the value ν

of the maximum s-t flow. Now (7.13) states that there is an s-t cut (A, B) with
capacity ν. Let F be the set of edges that go from A to B. Each edge has capacity
1, so |F | = ν and, by the definition of an s-t cut, removing these ν edges from
G separates s from t.

This result, then, can be viewed as the natural special case of the Max-
Flow Min-Cut Theorem in which all edge capacities are equal to 1. In fact,
this special case was proved by Menger in 1927, much before the full Max-
Flow Min-Cut Theorem was formulated and proved; for this reason, (7.45)
is often called Menger’s Theorem. If we think about it, the proof of Hall’s
Theorem (7.40) for bipartite matchings involves a reduction to a graph with
unit-capacity edges, and so it can be proved using Menger’s Theorem rather
than the general Max-Flow Min-Cut Theorem. In other words, Hall’s Theorem
is really a special case of Menger’s Theorem, which in turn is a special case
of the Max-Flow Min-Cut Theorem. And the history follows this progression,
since they were discovered in this order, a few decades apart.2

Extensions: Disjoint Paths in Undirected Graphs
Finally, we consider the disjoint paths problem in an undirected graph G.
Despite the fact that our graph G is now undirected, we can use the maximum-
flow algorithm to obtain edge-disjoint paths in G. The idea is quite simple: We
replace each undirected edge (u, v) in G by two directed edges (u, v) and

2 In fact, in an interesting retrospective written in 1981, Menger relates his version of the story of how

he first explained his theorem to König, one of the independent discoverers of Hall’s Theorem. You

might think that König, having thought a lot about these problems, would have immediately grasped

why Menger’s generalization of his theorem was true, and perhaps even considered it obvious. But, in

fact, the opposite happened; König didn’t believe it could be right and stayed up all night searching

for a counterexample. The next day, exhausted, he sought out Menger and asked him for the proof.

378 Chapter 7 Network Flow

(v, u), and in this way create a directed version G′ of G. (We may delete the
edges into s and out of t, since they are not useful.) Now we want to use the
Ford-Fulkerson Algorithm in the resulting directed graph. However, there is an
important issue we need to deal with first. Notice that two paths P1 and P2 may
be edge-disjoint in the directed graph and yet share an edge in the undirected
graph G: This happens if P1 uses directed edge (u, v) while P2 uses edge (v, u).
However, it is not hard to see that there always exists a maximum flow in any
network that uses at most one out of each pair of oppositely directed edges.

(7.46) In any flow network, there is a maximum flow f where for all opposite
directed edges e = (u, v) and e′ = (v, u), either f (e) = 0 or f (e′) = 0. If the
capacities of the flow network are integral, then there also is such an integral
maximum flow.

Proof. We consider any maximum flow f , and we modify it to satisfy the
claimed condition. Assume e = (u, v) and e′ = (v, u) are opposite directed
edges, and f (e) �= 0, f (e′) �= 0. Let δ be the smaller of these values, and modify
f by decreasing the flow value on both e and e′ by δ. The resulting flow f ′ is
feasible, has the same value as f , and its value on one of e and e′ is 0.

Now we can use the Ford-Fulkerson Algorithm and the path decomposition
procedure from (7.42) to obtain edge-disjoint paths in the undirected graph G.

(7.47) There are k edge-disjoint paths in an undirected graph G from s to t
if and only if the maximum value of an s-t flow in the directed version G′ of G
is at least k. Furthermore, the Ford-Fulkerson Algorithm can be used to find a
maximum set of disjoint s-t paths in an undirected graph G in O(mn) time.

The undirected analogue of (7.45) is also true, as in any s-t cut, at most
one of the two oppositely directed edges can cross from the s-side to the t-
side of the cut (for if one crosses, then the other must go from the t-side to
the s-side).

(7.48) In every undirected graph with nodes s and t, the maximum number of
edge-disjoint s-t paths is equal to the minimum number of edges whose removal
separates s from t.

7.7 Extensions to the Maximum-Flow Problem
Much of the power of the Maximum-Flow Problem has essentially nothing to
do with the fact that it models traffic in a network. Rather, it lies in the fact
that many problems with a nontrivial combinatorial search component can

7.7 Extensions to the Maximum-Flow Problem 379

be solved in polynomial time because they can be reduced to the problem of
finding a maximum flow or a minimum cut in a directed graph.

Bipartite Matching is a natural first application in this vein; in the coming
sections, we investigate a range of further applications. To begin with, we
stay with the picture of flow as an abstract kind of “traffic,” and look for
more general conditions we might impose on this traffic. These more general
conditions will turn out to be useful for some of our further applications.

In particular, we focus on two generalizations of maximum flow. We will
see that both can be reduced to the basic Maximum-Flow Problem.

The Problem: Circulations with Demands
One simplifying aspect of our initial formulation of the Maximum-Flow Prob-
lem is that we had only a single source s and a single sink t. Now suppose
that there can be a set S of sources generating flow, and a set T of sinks that
can absorb flow. As before, there is an integer capacity on each edge.

With multiple sources and sinks, it is a bit unclear how to decide which
source or sink to favor in a maximization problem. So instead of maximizing
the flow value, we will consider a problem where sources have fixed supply
values and sinks have fixed demand values, and our goal is to ship flow
from nodes with available supply to those with given demands. Imagine, for
example, that the network represents a system of highways or railway lines in
which we want to ship products from factories (which have supply) to retail
outlets (which have demand). In this type of problem, we will not be seeking to
maximize a particular value; rather, we simply want to satisfy all the demand
using the available supply.

Thus we are given a flow network G = (V , E) with capacities on the edges.
Now, associated with each node v ∈ V is a demand dv. If dv > 0, this indicates
that the node v has a demand of dv for flow; the node is a sink, and it wishes
to receive dv units more flow than it sends out. If dv < 0, this indicates that v
has a supply of −dv; the node is a source, and it wishes to send out −dv units
more flow than it receives. If dv = 0, then the node v is neither a source nor a
sink. We will assume that all capacities and demands are integers.

We use S to denote the set of all nodes with negative demand and T to
denote the set of all nodes with positive demand. Although a node v in S wants
to send out more flow than it receives, it will be okay for it to have flow that
enters on incoming edges; it should just be more than compensated by the flow
that leaves v on outgoing edges. The same applies (in the opposite direction)
to the set T.

380 Chapter 7 Network Flow

(a) (b)

3

2

–3

4

2–3

1

3

2

2
2

2
2

2

3

2

–3

4

2–3

t*

1

3

2

2

2

2
2

s*

3
3

2
2

2

3 3

4 4

Figure 7.13 (a) An instance of theCirculation Problem togetherwith a solution: Numbers
inside the nodes are demands; numbers labeling the edges are capacities and flow
values, with the flow values inside boxes. (b) The result of reducing this instance to an
equivalent instance of the Maximum-Flow Problem.

In this setting, we say that a circulation with demands {dv} is a function f
that assigns a nonnegative real number to each edge and satisfies the following
two conditions.

(i) (Capacity conditions) For each e ∈ E, we have 0≤ f (e)≤ ce.

(ii) (Demand conditions) For each v ∈ V, we have v, f in(v)− f out(v)= dv.

Now, instead of considering a maximization problem, we are concerned with
a feasibility problem: We want to know whether there exists a circulation that
meets conditions (i) and (ii).

For example, consider the instance in Figure 7.13(a). Two of the nodes
are sources, with demands −3 and −3; and two of the nodes are sinks, with
demands 2 and 4. The flow values in the figure constitute a feasible circulation,
indicating how all demands can be satisfied while respecting the capacities.

If we consider an arbitrary instance of the Circulation Problem, here is a
simple condition that must hold in order for a feasible circulation to exist: The
total supply must equal the total demand.

(7.49) If there exists a feasible circulation with demands {dv}, then
∑

v dv = 0.

Proof. Suppose there exists a feasible circulation f in this setting. Then∑
v dv =

∑
v f in(v)− f out(v). Now, in this latter expression, the value f (e) for

each edge e = (u, v) is counted exactly twice: once in f out(u) and once in f in(v).
These two terms cancel out; and since this holds for all values f (e), the overall
sum is 0.

7.7 Extensions to the Maximum-Flow Problem 381

u v

S

s*

T

t*

t* siphons flow
out of sinks.

s* supplies sources
with flow.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

Thanks to (7.49), we know that∑
v:dv>0

dv =
∑

v:dv<0

−dv.

Let D denote this common value.

Designing and Analyzing an Algorithm for Circulations
It turns out that we can reduce the problem of finding a feasible circulation
with demands {dv} to the problem of finding a maximum s-t flow in a different
network, as shown in Figure 7.14.

The reduction looks very much like the one we used for Bipartite Matching:
we attach a “super-source” s∗ to each node in S, and a “super-sink” t∗ to each
node in T. More specifically, we create a graph G′ from G by adding new nodes
s∗ and t∗ to G. For each node v ∈ T—that is, each node v with dv > 0—we add
an edge (v, t∗) with capacity dv. For each node u ∈ S—that is, each node with
du < 0—we add an edge (s∗, u) with capacity −du. We carry the remaining
structure of G over to G′ unchanged.

In this graph G′, we will be seeking a maximum s∗-t∗ flow. Intuitively,
we can think of this reduction as introducing a node s∗ that “supplies” all the
sources with their extra flow, and a node t∗ that “siphons” the extra flow out
of the sinks. For example, part (b) of Figure 7.13 shows the result of applying
this reduction to the instance in part (a).

Note that there cannot be an s∗-t∗ flow in G′ of value greater than D, since
the cut (A, B) with A= {s∗} only has capacity D. Now, if there is a feasible
circulation f with demands {dv} in G, then by sending a flow value of −dv on
each edge (s∗, v), and a flow value of dv on each edge (v, t∗), we obtain an s∗-
t∗ flow in G′ of value D, and so this is a maximum flow. Conversely, suppose
there is a (maximum) s∗-t∗ flow in G′ of value D. It must be that every edge

382 Chapter 7 Network Flow

out of s∗, and every edge into t∗, is completely saturated with flow. Thus, if
we delete these edges, we obtain a circulation f in G with f in(v)− f out(v)= dv
for each node v. Further, if there is a flow of value D in G′, then there is such
a flow that takes integer values.

In summary, we have proved the following.

(7.50) There is a feasible circulation with demands {dv} in G if and only if the
maximum s∗-t∗ flow in G′ has value D. If all capacities and demands in G are
integers, and there is a feasible circulation, then there is a feasible circulation
that is integer-valued.

At the end of Section 7.5, we used the Max-Flow Min-Cut Theorem to
derive the characterization (7.40) of bipartite graphs that do not have perfect
matchings. We can give an analogous characterization for graphs that do not
have a feasible circulation. The characterization uses the notion of a cut,
adapted to the present setting. In the context of circulation problems with
demands, a cut (A, B) is any partition of the node set V into two sets, with no
restriction on which side of the partition the sources and sinks fall. We include
the characterization here without a proof.

(7.51) The graph G has a feasible circulation with demands {dv} if and only
if for all cuts (A, B), ∑

v∈B

dv ≤ c(A, B).

It is important to note that our network has only a single “kind” of flow.
Although the flow is supplied from multiple sources, and absorbed at multiple
sinks, we cannot place restrictions on which source will supply the flow to
which sink; we have to let our algorithm decide this. A harder problem is
the Multicommodity Flow Problem; here sink ti must be supplied with flow
that originated at source si, for each i. We will discuss this issue further in
Chapter 11.

The Problem: Circulations with Demands and
Lower Bounds
Finally, let us generalize the previous problem a little. In many applications, we
not only want to satisfy demands at various nodes; we also want to force the
flow to make use of certain edges. This can be enforced by placing lower bounds
on edges, as well as the usual upper bounds imposed by edge capacities.

Consider a flow network G = (V , E) with a capacity ce and a lower bound
�e on each edge e. We will assume 0≤ �e ≤ ce for each e. As before, each node
v will also have a demand dv, which can be either positive or negative. We
will assume that all demands, capacities, and lower bounds are integers.

7.7 Extensions to the Maximum-Flow Problem 383

The given quantities have the same meaning as before, and now a lower
bound �e means that the flow value on e must be at least �e. Thus a circulation
in our flow network must satisfy the following two conditions.

(i) (Capacity conditions) For each e ∈ E, we have �e ≤ f (e)≤ ce.

(ii) (Demand conditions) For every v ∈ V, we have f in(v)− f out(v)= dv.

As before, we wish to decide whether there exists a feasible circulation—one
that satisfies these conditions.

Designing and Analyzing an Algorithm with
Lower Bounds
Our strategy will be to reduce this to the problem of finding a circulation
with demands but no lower bounds. (We’ve seen that this latter problem, in
turn, can be reduced to the standard Maximum-Flow Problem.) The idea is
as follows. We know that on each edge e, we need to send at least �e units of
flow. So suppose that we define an initial circulation f0 simply by f0(e)= �e.
f0 satisfies all the capacity conditions (both lower and upper bounds); but it
presumably does not satisfy all the demand conditions. In particular,

f0
in(v)− f0

out(v)=
∑

e into v

�e −
∑

e out of v

�e.

Let us denote this quantity by Lv. If Lv = dv, then we have satisfied the
demand condition at v; but if not, then we need to superimpose a circulation
f1 on top of f0 that will clear the remaining “imbalance” at v. So we need
f1

in(v)− f1
out(v)= dv − Lv. And how much capacity do we have with which to

do this? Having already sent �e units of flow on each edge e, we have ce − �e
more units to work with.

These considerations directly motivate the following construction. Let the
graph G′ have the same nodes and edges, with capacities and demands, but
no lower bounds. The capacity of edge e will be ce − �e. The demand of node
v will be dv − Lv.

For example, consider the instance in Figure 7.15(a). This is the same as
the instance we saw in Figure 7.13, except that we have now given one of the
edges a lower bound of 2. In part (b) of the figure, we eliminate this lower
bound by sending two units of flow across the edge. This reduces the upper
bound on the edge and changes the demands at the two ends of the edge. In
the process, it becomes clear that there is no feasible circulation, since after
applying the construction there is a node with a demand of −5, and a total of
only four units of capacity on its outgoing edges.

We now claim that our general construction produces an equivalent in-
stance with demands but no lower bounds; we can therefore use our algorithm
for this latter problem.

384 Chapter 7 Network Flow

3 3

2

2 2

–3

4

2–3

Lower bound of 2

1 3

2

2 2

–1

4

2–5

(a) (b)

Eliminating a lower
bound from an edge

Figure 7.15 (a) An instance of the Circulation Problem with lower bounds: Numbers
inside the nodes are demands, and numbers labeling the edges are capacities. We also
assign a lower bound of 2 to one of the edges. (b) The result of reducing this instance
to an equivalent instance of the Circulation Problem without lower bounds.

(7.52) There is a feasible circulation in G if and only if there is a feasible
circulation in G′. If all demands, capacities, and lower bounds in G are integers,
and there is a feasible circulation, then there is a feasible circulation that is
integer-valued.

Proof. First suppose there is a circulation f ′ in G′. Define a circulation f in G
by f (e)= f ′(e)+ �e. Then f satisfies the capacity conditions in G, and

f in(v)− f out(v)=
∑

e into v

(�e + f ′(e))−
∑

e out of v

(�e + f ′(e))= Lv + (dv − Lv)= dv,

so it satisfies the demand conditions in G as well.

Conversely, suppose there is a circulation f in G, and define a circulation
f ′ in G′ by f ′(e)= f (e)− �e. Then f ′ satisfies the capacity conditions in G′, and

(f ′)in
(v)− (f ′)out

(v)=
∑

e into v

(f (e)− �e)−
∑

e out of v

(f (e)− �e)= dv − Lv,

so it satisfies the demand conditions in G′ as well.

7.8 Survey Design
Many problems that arise in applications can, in fact, be solved efficiently by
a reduction to Maximum Flow, but it is often difficult to discover when such
a reduction is possible. In the next few sections, we give several paradigmatic
examples of such problems. The goal is to indicate what such reductions tend

7.8 Survey Design 385

to look like and to illustrate some of the most common uses of flows and cuts
in the design of efficient combinatorial algorithms. One point that will emerge
is the following: Sometimes the solution one wants involves the computation
of a maximum flow, and sometimes it involves the computation of a minimum
cut; both flows and cuts are very useful algorithmic tools.

We begin with a basic application that we call survey design, a simple
version of a task faced by many companies wanting to measure customer
satisfaction. More generally, the problem illustrates how the construction used
to solve the Bipartite Matching Problem arises naturally in any setting where
we want to carefully balance decisions across a set of options—in this case,
designing questionnaires by balancing relevant questions across a population
of consumers.

The Problem
A major issue in the burgeoning field of data mining is the study of consumer
preference patterns. Consider a company that sells k products and has a
database containing the purchase histories of a large number of customers.
(Those of you with “Shopper’s Club” cards may be able to guess how this data
gets collected.) The company wishes to conduct a survey, sending customized
questionnaires to a particular group of n of its customers, to try determining
which products people like overall.

Here are the guidelines for designing the survey.

. Each customer will receive questions about a certain subset of the
products.

. A customer can only be asked about products that he or she has pur-
chased.

. To make each questionnaire informative, but not too long so as to dis-
courage participation, each customer i should be asked about a number
of products between ci and c′i.

. Finally, to collect sufficient data about each product, there must be
between pj and p′j distinct customers asked about each product j.

More formally, the input to the Survey Design Problem consists of a bipartite
graph G whose nodes are the customers and the products, and there is an edge
between customer i and product j if he or she has ever purchased product j.
Further, for each customer i = 1, . . . , n, we have limits ci ≤ c′i on the number
of products he or she can be asked about; for each product j = 1, . . . , k, we
have limits pj ≤ p′j on the number of distinct customers that have to be asked
about it. The problem is to decide if there is a way to design a questionnaire
for each customer so as to satisfy all these conditions.

386 Chapter 7 Network Flow

s

i j

t

Customers Products

ci,c�i pj,p�j

0,1

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a
feasible circulation: Flow passes from customers (with capacity bounds indicating how
many questions they can be asked) to products (with capacity bounds indicating how
many questions should be asked about each product).

Designing the Algorithm
We will solve this problem by reducing it to a circulation problem on a flow
network G′ with demands and lower bounds as shown in Figure 7.16. To obtain
the graph G′ from G, we orient the edges of G from customers to products, add
nodes s and t with edges (s, i) for each customer i = 1, . . . , n, edges (j, t) for
each product j = 1, . . . , k, and an edge (t , s). The circulation in this network
will correspond to the way in which questions are asked. The flow on the edge
(s, i) is the number of products included on the questionnaire for customer i,
so this edge will have a capacity of c′i and a lower bound of ci. The flow on the
edge (j, t) will correspond to the number of customers who were asked about
product j, so this edge will have a capacity of p′j and a lower bound of pj. Each
edge (i, j) going from a customer to a product he or she bought has capacity
1, and 0 as the lower bound. The flow carried by the edge (t , s) corresponds
to the overall number of questions asked. We can give this edge a capacity of∑

i c′i and a lower bound of
∑

i ci. All nodes have demand 0.

Our algorithm is simply to construct this network G′ and check whether
it has a feasible circulation. We now formulate a claim that establishes the
correctness of this algorithm.

Analyzing the Algorithm

(7.53) The graph G′ just constructed has a feasible circulation if and only if
there is a feasible way to design the survey.

7.9 Airline Scheduling 387

Proof. The construction above immediately suggests a way to turn a survey
design into the corresponding flow. The edge (i, j) will carry one unit of flow
if customer i is asked about product j in the survey, and will carry no flow
otherwise. The flow on the edges (s, i) is the number of questions asked
from customer i, the flow on the edge (j, t) is the number of customers who
were asked about product j, and finally, the flow on edge (t , s) is the overall
number of questions asked. This flow satisfies the 0 demand, that is, there is
flow conservation at every node. If the survey satisfies these rules, then the
corresponding flow satisfies the capacities and lower bounds.

Conversely, if the Circulation Problem is feasible, then by (7.52) there
is a feasible circulation that is integer-valued, and such an integer-valued
circulation naturally corresponds to a feasible survey design. Customer i will
be surveyed about product j if and only if the edge (i, j) carries a unit of flow.

7.9 Airline Scheduling
The computational problems faced by the nation’s large airline carriers are
almost too complex to even imagine. They have to produce schedules for thou-
sands of routes each day that are efficient in terms of equipment usage, crew
allocation, customer satisfaction, and a host of other factors—all in the face
of unpredictable issues like weather and breakdowns. It’s not surprising that
they’re among the largest consumers of high-powered algorithmic techniques.

Covering these computational problems in any realistic level of detail
would take us much too far afield. Instead, we’ll discuss a “toy” problem that
captures, in a very clean way, some of the resource allocation issues that arise
in a context such as this. And, as is common in this book, the toy problem will
be much more useful for our purposes than the “real” problem, for the solution
to the toy problem involves a very general technique that can be applied in a
wide range of situations.

The Problem
Suppose you’re in charge of managing a fleet of airplanes and you’d like to
create a flight schedule for them. Here’s a very simple model for this. Your
market research has identified a set of m particular flight segments that would
be very lucrative if you could serve them; flight segment j is specified by four
parameters: its origin airport, its destination airport, its departure time, and
its arrival time. Figure 7.17(a) shows a simple example, consisting of six flight
segments you’d like to serve with your planes over the course of a single day:

(1) Boston (depart 6 A.M.) – Washington DC (arrive 7 A.M.)
(2) Philadelphia (depart 7 A.M.) – Pittsburgh (arrive 8 A.M.)

388 Chapter 7 Network Flow

BOS 6 DCA 7 LAS 5 SEA 6

PHL 7 PIT 8 SFO
2:15

SEA
3:15

DCA 8 LAX 11

PHL 11 SFO 2

BOS 6 DCA 7 LAS 5 SEA 6

PHL 7
PIT 8 SFO

2:15

SEA
3:15

DCA 8 LAX 11

PHL 11 SFO 2

(a)

(b)

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An
expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) – Los Angeles (arrive 11 A.M.)
(4) Philadelphia (depart 11 A.M.) – San Francisco (arrive 2 P.M.)
(5) San Francisco (depart 2:15 P.M.) – Seattle (arrive 3:15 P.M.)
(6) Las Vegas (depart 5 P.M.) – Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well
as the airports.

It is possible to use a single plane for a flight segment i, and then later for
a flight segment j, provided that

(a) the destination of i is the same as the origin of j, and there’s enough time
to perform maintenance on the plane in between; or

(b) you can add a flight segment in between that gets the plane from the
destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could
use a single plane for flights (1), (3), and (6) by having the plane sit in
Washington, DC, between flights (1) and (3), and then inserting the flight

7.9 Airline Scheduling 389

Los Angeles (depart 12 noon) – Las Vegas (1 P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general
way as follows, abstracting away from specific rules about maintenance times
and intermediate flight segments: We will simply say that flight j is reachable
from flight i if it is possible to use the same plane for flight i, and then later
for flight j as well. So under our specific rules (a) and (b) above, we can
easily determine for each pair i, j whether flight j is reachable from flight
i. (Of course, one can easily imagine more complex rules for reachability.
For example, the length of maintenance time needed in (a) might depend on
the airport; or in (b) we might require that the flight segment you insert be
sufficiently profitable on its own.) But the point is that we can handle any
set of rules with our definition: The input to the problem will include not just
the flight segments, but also a specification of the pairs (i, j) for which a later
flight j is reachable from an earlier flight i. These pairs can form an arbitrary
directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all
m flights on your original list, using at most k planes total. In order to do this,
you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we
have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)
as proposed above, we wouldn’t be able to serve all of flights (2), (4), and
(5) with the other (since there wouldn’t be enough maintenance time in San
Francisco between flights (4) and (5)). However, there is a way to serve all six
flights using two planes, via a different solution: One plane serves flights (1),
(3), and (5) (splicing in an LAX–SFO flight), while the other serves (2), (4),
and (6) (splicing in PIT–PHL and SFO–LAS).

Designing the Algorithm
We now discuss an efficient algorithm that can solve arbitrary instances of
the Airline Scheduling Problem, based on network flow. We will see that flow
techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of flow will correspond
to airplanes. We will have an edge for each flight, and upper and lower capacity
bounds of 1 on these edges to require that exactly one unit of flow crosses this
edge. In other words, each flight must be served by one of the planes. If (ui, vi)

is the edge representing flight i, and (uj , vj) is the edge representing flight j,
and flight j is reachable from flight i, then we will have an edge from vi to uj

390 Chapter 7 Network Flow

with capacity 1; in this way, a unit of flow can traverse (ui, vi) and then move
directly to (uj , vj). Such a construction of edges is shown in Figure 7.17(b).

We extend this to a flow network by including a source and sink; we now
give the full construction in detail. The node set of the underlying graph G is
defined as follows.

. For each flight i, the graph G will have the two nodes ui and vi.

. G will also have a distinct source node s and sink node t.

The edge set of G is defined as follows.

. For each i, there is an edge (ui, vi) with a lower bound of 1 and a capacity
of 1. (Each flight on the list must be served.)

. For each i and j so that flight j is reachable from flight i, there is an edge
(vi, uj) with a lower bound of 0 and a capacity of 1. (The same plane can
perform flights i and j.)

. For each i, there is an edge (s, ui) with a lower bound of 0 and a capacity
of 1. (Any plane can begin the day with flight i.)

. For each j, there is an edge (vj , t) with a lower bound of 0 and a capacity
of 1. (Any plane can end the day with flight j.)

. There is an edge (s, t) with lower bound 0 and capacity k. (If we have
extra planes, we don’t need to use them for any of the flights.)

Finally, the node s will have a demand of −k, and the node t will have a
demand of k. All other nodes will have a demand of 0.

Our algorithm is to construct the network G and search for a feasible
circulation in it. We now prove the correctness of this algorithm.

Analyzing the Algorithm

(7.54) There is a way to perform all flights using at most k planes if and only
if there is a feasible circulation in the network G.

Proof. First, suppose there is a way to perform all flights using k′ ≤ k planes.
The set of flights performed by each individual plane defines a path P in the
network G, and we send one unit of flow on each such path P. To satisfy the full
demands at s and t, we send k− k′ units of flow on the edge (s, t). The resulting
circulation satisfies all demand, capacity, and lower bound conditions.

Conversely, consider a feasible circulation in the network G. By (7.52),
we know that there is a feasible circulation with integer flow values. Suppose
that k′ units of flow are sent on edges other than (s, t). Since all other edges
have a capacity bound of 1, and the circulation is integer-valued, each such
edge that carries flow has exactly one unit of flow on it.

7.10 Image Segmentation 391

We now convert this to a schedule using the same kind of construction we
saw in the proof of (7.42), where we converted a flow to a collection of paths.
In fact, the situation is easier here since the graph has no cycles. Consider an
edge (s, ui) that carries one unit of flow. It follows by conservation that (ui, vi)

carries one unit of flow, and that there is a unique edge out of vi that carries
one unit of flow. If we continue in this way, we construct a path P from s to
t, so that each edge on this path carries one unit of flow. We can apply this
construction to each edge of the form (s, uj) carrying one unit of flow; in this
way, we produce k′ paths from s to t, each consisting of edges that carry one
unit of flow. Now, for each path P we create in this way, we can assign a single
plane to perform all the flights contained in this path.

Extensions: Modeling Other Aspects of the Problem
Airline scheduling consumes countless hours of CPU time in real life. We
mentioned at the beginning, however, that our formulation here is really a
toy problem; it ignores several obvious factors that would have to be taken
into account in these applications. First of all, it ignores the fact that a given
plane can only fly a certain number of hours before it needs to be temporarily
taken out of service for more significant maintenance. Second, we are making
up an optimal schedule for a single day (or at least for a single span of time) as
though there were no yesterday or tomorrow; in fact we also need the planes
to be optimally positioned for the start of day N + 1 at the end of day N. Third,
all these planes need to be staffed by flight crews, and while crews are also
reused across multiple flights, a whole different set of constraints operates here,
since human beings and airplanes experience fatigue at different rates. And
these issues don’t even begin to cover the fact that serving any particular flight
segment is not a hard constraint; rather, the real goal is to optimize revenue,
and so we can pick and choose among many possible flights to include in our
schedule (not to mention designing a good fare structure for passengers) in
order to achieve this goal.

Ultimately, the message is probably this: Flow techniques are useful for
solving problems of this type, and they are genuinely used in practice. Indeed,
our solution above is a general approach to the efficient reuse of a limited set
of resources in many settings. At the same time, running an airline efficiently
in real life is a very difficult problem.

7.10 Image Segmentation
A central problem in image processing is the segmentation of an image into
various coherent regions. For example, you may have an image representing
a picture of three people standing in front of a complex background scene. A

392 Chapter 7 Network Flow

natural but difficult goal is to identify each of the three people as coherent
objects in the scene.

The Problem
One of the most basic problems to be considered along these lines is that

of foreground/background segmentation: We wish to label each pixel in an
image as belonging to either the foreground of the scene or the background. It
turns out that a very natural model here leads to a problem that can be solved
efficiently by a minimum cut computation.

Let V be the set of pixels in the underlying image that we’re analyzing.
We will declare certain pairs of pixels to be neighbors, and use E to denote
the set of all pairs of neighboring pixels. In this way, we obtain an undirected
graph G = (V , E). We will be deliberately vague on what exactly we mean by
a “pixel,” or what we mean by the “neighbor” relation. In fact, any graph
G will yield an efficiently solvable problem, so we are free to define these
notions in any way that we want. Of course, it is natural to picture the pixels
as constituting a grid of dots, and the neighbors of a pixel to be those that are
directly adjacent to it in this grid, as shown in Figure 7.18(a).

s

t
(a) (b)

Figure 7.18 (a) A pixel graph. (b) A sketch of the corresponding flow graph. Not all
edges from the source or to the sink are drawn.

7.10 Image Segmentation 393

For each pixel i, we have a likelihood ai that it belongs to the foreground,
and a likelihood bi that it belongs to the background. For our purposes, we
will assume that these likelihood values are arbitrary nonnegative numbers
provided as part of the problem, and that they specify how desirable it is to
have pixel i in the background or foreground. Beyond this, it is not crucial
precisely what physical properties of the image they are measuring, or how
they were determined.

In isolation, we would want to label pixel i as belonging to the foreground
if ai > bi, and to the background otherwise. However, decisions that we
make about the neighbors of i should affect our decision about i. If many
of i’s neighbors are labeled “background,” for example, we should be more
inclined to label i as “background” too; this makes the labeling “smoother” by
minimizing the amount of foreground/background boundary. Thus, for each
pair (i, j) of neighboring pixels, there is a separation penalty pij ≥ 0 for placing
one of i or j in the foreground and the other in the background.

We can now specify our Segmentation Problem precisely, in terms of the
likelihood and separation parameters: It is to find a partition of the set of pixels
into sets A and B (foreground and background, respectively) so as to maximize

q(A, B)=
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

Thus we are rewarded for having high likelihood values and penalized for
having neighboring pairs (i, j) with one pixel in A and the other in B. The
problem, then, is to compute an optimal labeling—a partition (A, B) that
maximizes q(A, B).

Designing and Analyzing the Algorithm
We notice right away that there is clearly a resemblance between the minimum-
cut problem and the problem of finding an optimal labeling. However, there
are a few significant differences. First, we are seeking to maximize an objective
function rather than minimizing one. Second, there is no source and sink in the
labeling problem; and, moreover, we need to deal with values ai and bi on the
nodes. Third, we have an undirected graph G, whereas for the minimum-cut
problem we want to work with a directed graph. Let’s address these problems
in order.

We deal with the fact that our Segmentation Problem is a maximization
problem through the following observation. Let Q =∑

i(ai + bi). The sum∑
i∈A ai +

∑
j∈B bj is the same as the sum Q −∑

i∈A bi −
∑

j∈B aj, so we can
write

394 Chapter 7 Network Flow

q(A, B)= Q −
∑
i∈A

bi −
∑
j∈B

aj −
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

Thus we see that the maximization of q(A, B) is the same problem as the
minimization of the quantity

q′(A, B)=
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

As for the missing source and the sink, we work by analogy with our con-
structions in previous sections: We create a new “super-source” s to represent
the foreground, and a new “super-sink” t to represent the background. This
also gives us a way to deal with the values ai and bi that reside at the nodes
(whereas minimum cuts can only handle numbers associated with edges).
Specifically, we will attach each of s and t to every pixel, and use ai and bi to
define appropriate capacities on the edges between pixel i and the source and
sink respectively.

Finally, to take care of the undirected edges, we model each neighboring
pair (i, j) with two directed edges, (i, j) and (j, i), as we did in the undirected
Disjoint Paths Problem. We will see that this works very well here too, since
in any s-t cut, at most one of these two oppositely directed edges can cross
from the s-side to the t-side of the cut (for if one does, then the other must go
from the t-side to the s-side).

Specifically, we define the following flow network G′ = (V ′, E′) shown in
Figure 7.18(b). The node set V ′ consists of the set V of pixels, together with
two additional nodes s and t. For each neighboring pair of pixels i and j, we
add directed edges (i, j) and (j, i), each with capacity pij. For each pixel i, we
add an edge (s, i) with capacity ai and an edge (i, t) with capacity bi.

Now, an s-t cut (A, B) corresponds to a partition of the pixels into sets A
and B. Let’s consider how the capacity of the cut c(A, B) relates to the quantity
q′(A, B) that we are trying to minimize. We can group the edges that cross the
cut (A, B) into three natural categories.

. Edges (s, j), where j ∈ B; this edge contributes aj to the capacity of the
cut.

. Edges (i, t), where i ∈ A; this edge contributes bi to the capacity of the
cut.

. Edges (i, j) where i ∈A and j ∈ B; this edge contributes pij to the capacity
of the cut.

Figure 7.19 illustrates what each of these three kinds of edges looks like relative
to a cut, on an example with four pixels.

7.10 Image Segmentation 395

u

v

w

x

t

s

bu

bv

ax
aw

puw

pvx

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three
types of terms in the expression for q′(A, B) are captured by the cut.

If we add up the contributions of these three kinds of edges, we get

c(A, B)=
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i, j)∈E
|A∩{i, j}|=1

pij

= q′(A, B).

So everything fits together perfectly. The flow network is set up so that the
capacity of the cut (A, B) exactly measures the quantity q′(A, B): The three
kinds of edges crossing the cut (A, B), as we have just defined them (edges
from the source, edges to the sink, and edges involving neither the source nor
the sink), correspond to the three kinds of terms in the expression for q′(A, B).

Thus, if we want to minimize q′(A, B) (since we have argued earlier that
this is equivalent to maximizing q(A, B)), we just have to find a cut of minimum
capacity. And this latter problem, of course, is something that we know how
to solve efficiently.

Thus, through solving this minimum-cut problem, we have an optimal
algorithm in our model of foreground/background segmentation.

(7.55) The solution to the Segmentation Problem can be obtained by a
minimum-cut algorithm in the graph G′ constructed above. For a minimum
cut (A′, B′), the partition (A, B) obtained by deleting s∗ and t∗ maximizes the
segmentation value q(A, B).

396 Chapter 7 Network Flow

7.11 Project Selection
Large (and small) companies are constantly faced with a balancing act between
projects that can yield revenue, and the expenses needed for activities that can
support these projects. Suppose, for example, that the telecommunications
giant CluNet is assessing the pros and cons of a project to offer some new
type of high-speed access service to residential customers. Marketing research
shows that the service will yield a good amount of revenue, but it must be
weighed against some costly preliminary projects that would be needed in
order to make this service possible: increasing the fiber-optic capacity in the
core of their network, and buying a newer generation of high-speed routers.

What makes these types of decisions particularly tricky is that they interact
in complex ways: in isolation, the revenue from the high-speed access service
might not be enough to justify modernizing the routers; however, once the
company has modernized the routers, they’ll also be in a position to pursue
a lucrative additional project with their corporate customers; and maybe this
additional project will tip the balance. And these interactions chain together:
the corporate project actually would require another expense, but this in
turn would enable two other lucrative projects—and so forth. In the end, the
question is: Which projects should be pursued, and which should be passed
up? It’s a basic issue of balancing costs incurred with profitable opportunities
that are made possible.

The Problem
Here’s a very general framework for modeling a set of decisions such as this.
There is an underlying set P of projects, and each project i ∈ P has an associated
revenue pi, which can either be positive or negative. (In other words, each
of the lucrative opportunities and costly infrastructure-building steps in our
example above will be referred to as a separate project.) Certain projects are
prerequisites for other projects, and we model this by an underlying directed
acyclic graph G = (P , E). The nodes of G are the projects, and there is an edge
(i, j) to indicate that project i can only be selected if project j is selected as
well. Note that a project i can have many prerequisites, and there can be many
projects that have project j as one of their prerequisites. A set of projects A⊆ P
is feasible if the prerequisite of every project in A also belongs to A: for each
i ∈A, and each edge (i, j) ∈ E, we also have j ∈A. We will refer to requirements
of this form as precedence constraints. The profit of a set of projects is defined
to be

profit(A)=
∑
i∈A

pi.

7.11 Project Selection 397

The Project Selection Problem is to select a feasible set of projects with maxi-
mum profit.

This problem also became a hot topic of study in the mining literature,
starting in the early 1960s; here it was called the Open-Pit Mining Problem.3

Open-pit mining is a surface mining operation in which blocks of earth are
extracted from the surface to retrieve the ore contained in them. Before the
mining operation begins, the entire area is divided into a set P of blocks,
and the net value pi of each block is estimated: This is the value of the ore
minus the processing costs, for this block considered in isolation. Some of
these net values will be positive, others negative. The full set of blocks has
precedence constraints that essentially prevent blocks from being extracted
before others on top of them are extracted. The Open-Pit Mining Problem is to
determine the most profitable set of blocks to extract, subject to the precedence
constraints. This problem falls into the framework of project selection—each
block corresponds to a separate project.

Designing the Algorithm
Here we will show that the Project Selection Problem can be solved by reducing
it to a minimum-cut computation on an extended graph G′, defined analogously
to the graph we used in Section 7.10 for image segmentation. The idea is to
construct G′ from G in such a way that the source side of a minimum cut in
G′ will correspond to an optimal set of projects to select.

To form the graph G′, we add a new source s and a new sink t to the graph
G as shown in Figure 7.20. For each node i ∈ P with pi > 0, we add an edge
(s, i) with capacity pi. For each node i ∈ P with pi < 0, we add an edge (i, t)
with capacity −pi. We will set the capacities on the edges in G later. However,
we can already see that the capacity of the cut ({s}, P ∪ {t}) is C =∑

i∈P:pi>0 pi,
so the maximum-flow value in this network is at most C.

We want to ensure that if (A′, B′) is a minimum cut in this graph, then
A= A′−{s} obeys the precedence constraints; that is, if the node i ∈ A has
an edge (i, j) ∈ E, then we must have j ∈ A. The conceptually cleanest way
to ensure this is to give each of the edges in G capacity of ∞. We haven’t
previously formalized what an infinite capacity would mean, but there is no
problem in doing this: it is simply an edge for which the capacity condition
imposes no upper bound at all. The algorithms of the previous sections, as well
as the Max-Flow Min-Cut Theorem, carry over to handle infinite capacities.
However, we can also avoid bringing in the notion of infinite capacities by

3 In contrast to the field of data mining, which has motivated several of the problems we considered

earlier, we’re talking here about actual mining, where you dig things out of the ground.

398 Chapter 7 Network Flow

Projects

An
optimal
subset of
projects

Projects with
negative value

Projects with
positive value

t

Projects

s

t

s

Figure 7.20 The flow graph used to solve the Project Selection Problem. A possible
minimum-capacity cut is shown on the right.

simply assigning each of these edges a capacity that is “effectively infinite.” In
our context, giving each of these edges a capacity of C + 1 would accomplish
this: The maximum possible flow value in G′ is at most C, and so no minimum
cut can contain an edge with capacity above C. In the description below, it
will not matter which of these options we choose.

We can now state the algorithm: We compute a minimum cut (A′, B′) in
G′, and we declare A′−{s} to be the optimal set of projects. We now turn to
proving that this algorithm indeed gives the optimal solution.

Analyzing the Algorithm
First consider a set of projects A that satisfies the precedence constraints. Let
A′ = A ∪ {s} and B′ = (P−A) ∪ {t}, and consider the s-t cut (A′, B′). If the set
A satisfies the precedence constraints, then no edge (i, j) ∈ E crosses this cut,
as shown in Figure 7.20. The capacity of the cut can be expressed as follows.

7.11 Project Selection 399

(7.56) The capacity of the cut (A′, B′), as defined from a project set A
satisfying the precedence constraints, is c(A′, B′)= C −∑

i∈A pi.

Proof. Edges of G′ can be divided into three categories: those corresponding
to the edge set E of G, those leaving the source s, and those entering the sink
t. Because A satisfies the precedence constraints, the edges in E do not cross
the cut (A′, B′), and hence do not contribute to its capacity. The edges entering
the sink t contribute ∑

i∈A and pi<0

−pi

to the capacity of the cut, and the edges leaving the source s contribute∑
i �∈A and pi>0

pi.

Using the definition of C, we can rewrite this latter quantity as C−∑
i∈A and pi>0 pi. The capacity of the cut (A′, B′) is the sum of these two terms,

which is

∑
i∈A and pi<0

(−pi)+
⎛
⎝C −

∑
i∈A and pi>0

pi

⎞
⎠= C −

∑
i∈A

pi,

as claimed.

Next, recall that edges of G have capacity more than C =∑
i∈P:pi>0 pi, and

so these edges cannot cross a cut of capacity at most C. This implies that such
cuts define feasible sets of projects.

(7.57) If (A′, B′) is a cut with capacity at most C, then the set A= A′−{s}
satisfies the precedence constraints.

Now we can prove the main goal of our construction, that the minimum
cut in G′ determines the optimum set of projects. Putting the previous two
claims together, we see that the cuts (A′, B′) of capacity at most C are in one-
to-one correspondence with feasible sets of project A= A′−{s}. The capacity
of such a cut (A′, B′) is

c(A′, B′)= C − profit(A).

The capacity value C is a constant, independent of the cut (A′, B′), so the cut
with minimum capacity corresponds to the set of projects A with maximum
profit. We have therefore proved the following.

(7.58) If (A′, B′) is a minimum cut in G′ then the set A= A′−{s} is an
optimum solution to the Project Selection Problem.

400 Chapter 7 Network Flow

7.12 Baseball Elimination
Over on the radio side the producer’s saying, “See that thing in the

paper last week about Einstein? . . . Some reporter asked him to figure
out the mathematics of the pennant race. You know, one team wins so
many of their remaining games, the other teams win this number or
that number. What are the myriad possibilities? Who’s got the edge?”

“The hell does he know?”

“Apparently not much. He picked the Dodgers to eliminate the
Giants last Friday.”

—Don DeLillo, Underworld

The Problem
Suppose you’re a reporter for the Algorithmic Sporting News, and the following
situation arises late one September. There are four baseball teams trying to
finish in first place in the American League Eastern Division; let’s call them
New York, Baltimore, Toronto, and Boston. Currently, each team has the
following number of wins:

New York: 92, Baltimore: 91, Toronto: 91, Boston: 90.

There are five games left in the season: These consist of all possible pairings
of the four teams above, except for New York and Boston.

The question is: Can Boston finish with at least as many wins as every
other team in the division (that is, finish in first place, possibly in a tie)?

If you think about it, you realize that the answer is no. One argument is
the following. Clearly, Boston must win both its remaining games and New
York must lose both its remaining games. But this means that Baltimore and
Toronto will both beat New York; so then the winner of the Baltimore-Toronto
game will end up with the most wins.

Here’s an argument that avoids this kind of cases analysis. Boston can
finish with at most 92 wins. Cumulatively, the other three teams have 274
wins currently, and their three games against each other will produce exactly
three more wins, for a final total of 277. But 277 wins over three teams means
that one of them must have ended up with more than 92 wins.

So now you might start wondering: (i) Is there an efficient algorithm
to determine whether a team has been eliminated from first place? And (ii)
whenever a team has been eliminated from first place, is there an “averaging”
argument like this that proves it?

In more concrete notation, suppose we have a set S of teams, and for each
x ∈ S, its current number of wins is wx. Also, for two teams x, y ∈ S, they still

7.12 Baseball Elimination 401

have to play gxy games against one another. Finally, we are given a specific
team z.

We will use maximum-flow techniques to achieve the following two things.
First, we give an efficient algorithm to decide whether z has been eliminated
from first place—or, to put it in positive terms, whether it is possible to choose
outcomes for all the remaining games in such a way that the team z ends with
at least as many wins as every other team in S. Second, we prove the following
clean characterization theorem for baseball elimination—essentially, that there
is always a short “proof” when a team has been eliminated.

(7.59) Suppose that team z has indeed been eliminated. Then there exists a
“proof” of this fact of the following form:

. z can finish with at most m wins.

. There is a set of teams T ⊆ S so that∑
x∈T

wx +
∑

x,y∈T

gxy > m|T|.

(And hence one of the teams in T must end with strictly more than m
wins.)

As a second, more complex illustration of how the averaging argument in
(7.59) works, consider the following example. Suppose we have the same four
teams as before, but now the current number of wins is

New York: 90, Baltimore: 88, Toronto: 87, Boston: 79.

The remaining games are as follows. Boston still has four games against each
of the other three teams. Baltimore has one more game against each of New
York and Toronto. And finally, New York and Toronto still have six games left
to play against each other. Clearly, things don’t look good for Boston, but is it
actually eliminated?

The answer is yes; Boston has been eliminated. To see this, first note
that Boston can end with at most 91 wins; and now consider the set of teams
T = {New York, Toronto}. Together New York and Toronto already have 177
wins; their six remaining games will result in a total of 183; and 183

2 > 91.
This means that one of them must end up with more than 91 wins, and so
Boston can’t finish in first. Interestingly, in this instance the set of all three
teams ahead of Boston cannot constitute a similar proof: All three teams taken
togeher have a total of 265 wins with 8 games left among them; this is a total
of 273, and 273

3 = 91 — not enough by itself to prove that Boston couldn’t end
up in a multi-way tie for first. So it’s crucial for the averaging argument that we
choose the set T consisting just of New York and Toronto, and omit Baltimore.

402 Chapter 7 Network Flow

Designing and Analyzing the Algorithm
We begin by constructing a flow network that provides an efficient algorithm
for determining whether z has been eliminated. Then, by examining the
minimum cut in this network, we will prove (7.59).

Clearly, if there’s any way for z to end up in first place, we should have
z win all its remaining games. Let’s suppose that this leaves it with m wins.
We now want to carefully allocate the wins from all remaining games so that
no other team ends with more than m wins. Allocating wins in this way can
be solved by a maximum-flow computation, via the following basic idea. We
have a source s from which all wins emanate. The ith win can pass through
one of the two teams involved in the ith game. We then impose a capacity
constraint saying that at most m − wx wins can pass through team x.

More concretely, we construct the following flow network G, as shown in
Figure 7.21. First, let S′ = S − {z}, and let g∗ =∑

x,y∈S′ gxy—the total number
of games left between all pairs of teams in S′. We include nodes s and t, a
node vx for each team x ∈ S′, and a node uxy for each pair of teams x, y ∈ S′
with a nonzero number of games left to play against each other. We have the
following edges.

. Edges (s, uxy) (wins emanate from s);

. Edges (uxy, vx) and (uxy, vy) (only x or y can win a game that they play
against each other); and

. Edges (vx, t) (wins are absorbed at t).

Let’s consider what capacities we want to place on these edges. We want gxy
wins to flow from s to uxy at saturation, so we give (s, uxy) a capacity of gxy.
We want to ensure that team x cannot win more than m − wx games, so we

s t

NY–Tor NY

NY–Balt Tor

Balt–Tor Balt

6 1

1

1 4

3

The set T={NY, Toronto}
proves Boston is
eliminated.

Figure 7.21 The flow network for the second example. As the minimum cut indicates,
there is no flow of value g∗, and so Boston has been eliminated.

7.12 Baseball Elimination 403

give the edge (vx, t) a capacity of m−wx. Finally, an edge of the form (uxy, vy)

should have at least gxy units of capacity, so that it has the ability to transport
all the wins from uxy on to vx; in fact, our analysis will be the cleanest if we
give it infinite capacity. (We note that the construction still works even if this
edge is given only gxy units of capacity, but the proof of (7.59) will become a
little more complicated.)

Now, if there is a flow of value g∗, then it is possible for the outcomes
of all remaining games to yield a situation where no team has more than m
wins; and hence, if team z wins all its remaining games, it can still achieve at
least a tie for first place. Conversely, if there are outcomes for the remaining
games in which z achieves at least a tie, we can use these outcomes to define
a flow of value g∗. For example, in Figure 7.21, which is based on our second
example, the indicated cut shows that the maximum flow has value at most
7, whereas g∗ = 6+ 1+ 1= 8.

In summary, we have shown

(7.60) Team z has been eliminated if and only if the maximum flow in G
has value strictly less than g∗. Thus we can test in polynomial time whether z
has been eliminated.

Characterizing When a Team Has Been Eliminated
Our network flow construction can also be used to prove (7.59). The idea is that
the Max-Flow Min-Cut Theorem gives a nice “if and only if” characterization
for the existence of flow, and if we interpret this characterization in terms
of our application, we get the comparably nice characterization here. This
illustrates a general way in which one can generate characterization theorems
for problems that are reducible to network flow.

Proof of (7.59). Suppose that z has been eliminated from first place. Then
the maximum s-t flow in G has value g′ < g∗; so there is an s-t cut (A, B) of
capacity g′, and (A, B) is a minimum cut. Let T be the set of teams x for which
vx ∈ A. We will now prove that T can be used in the “averaging argument” in
(7.59).

First, consider the node uxy, and suppose one of x or y is not in T, but
uxy ∈ A. Then the edge (uxy, vx) would cross from A into B, and hence the
cut (A, B) would have infinite capacity. This contradicts the assumption that
(A, B) is a minimum cut of capacity less than g∗. So if one of x or y is not in
T, then uxy ∈ B. On the other hand, suppose both x and y belong to T, but
uxy ∈ B. Consider the cut (A′, B′) that we would obtain by adding uxy to the set
A and deleting it from the set B. The capacity of (A′, B′) is simply the capacity
of (A, B), minus the capacity gxy of the edge (s, uxy)—for this edge (s, uxy) used

404 Chapter 7 Network Flow

to cross from A to B, and now it does not cross from A′ to B′. But since gxy > 0,
this means that (A′, B′) has smaller capacity than (A, B), again contradicting
our assumption that (A, B) is a minimum cut. So, if both x and y belong to T,
then uxy ∈ A.

Thus we have established the following conclusion, based on the fact that
(A, B) is a minimum cut: uxy ∈ A if and only if both x, y ∈ T.

Now we just need to work out the minimum-cut capacity c(A, B) in terms
of its constituent edge capacities. By the conclusion in the previous paragraph,
we know that edges crossing from A to B have one of the following two forms:

. edges of the form (vx, t), where x ∈ T, and

. edges of the form (s, uxy), where at least one of x or y does not belong
to T (in other words, {x, y} �⊂ T).

Thus we have

c(A, B)=
∑
x∈T

(m − wx)+
∑

{x,y}�⊂T

gxy

=m|T| −
∑
x∈T

wx + (g∗ −
∑

x,y∈T

gxy).

Since we know that c(A, B)= g′ < g∗, this last inequality implies

m|T| −
∑
x∈T

wx −
∑

x,y∈T

gxy < 0,

and hence ∑
x∈T

wx +
∑

x,y∈T

gxy > m|T|.

For example, applying the argument in the proof of (7.59) to the instance
in Figure 7.21, we see that the nodes for New York and Toronto are on the
source side of the minimum cut, and, as we saw earlier, these two teams
indeed constitute a proof that Boston has been eliminated.

* 7.13 A Further Direction: Adding Costs to the
Matching Problem

Let’s go back to the first problem we discussed in this chapter, Bipartite
Matching. Perfect matchings in a bipartite graph formed a way to model the
problem of pairing one kind of object with another—jobs with machines, for
example. But in many settings, there are a large number of possible perfect
matchings on the same set of objects, and we’d like a way to express the idea
that some perfect matchings may be “better” than others.

7.13 A Further Direction: Adding Costs to the Matching Problem 405

The Problem
A natural way to formulate a problem based on this notion is to introduce
costs. It may be that we incur a certain cost to perform a given job on a given
machine, and we’d like to match jobs with machines in a way that minimizes
the total cost. Or there may be n fire trucks that must be sent to n distinct
houses; each house is at a given distance from each fire station, and we’d
like a matching that minimizes the average distance each truck drives to its
associated house. In short, it is very useful to have an algorithm that finds a
perfect matching of minimum total cost.

Formally, we consider a bipartite graph G = (V , E) whose node set, as
usual, is partitioned as V = X ∪ Y so that every edge e ∈ E has one end in X
and the other end in Y. Furthermore, each edge e has a nonnegative cost ce.
For a matching M, we say that the cost of the matching is the total cost of all
edges in M, that is, cost(M)=∑

e∈M ce. The Minimum-Cost Perfect Matching
Problem assumes that |X| = |Y| = n, and the goal is to find a perfect matching
of minimum cost.

Designing and Analyzing the Algorithm
We now describe an efficient algorithm to solve this problem, based on the
idea of augmenting paths but adapted to take the costs into account. Thus, the
algorithm will iteratively construct matchings using i edges, for each value of i
from 1 to n. We will show that when the algorithm concludes with a matching
of size n, it is a minimum-cost perfect matching. The high-level structure of the
algorithm is quite simple. If we have a minimum-cost matching of size i, then
we seek an augmenting path to produce a matching of size i + 1; and rather
than looking for any augmenting path (as was sufficient in the case without
costs), we use the cheapest augmenting path so that the larger matching will
also have minimum cost.

Recall the construction of the residual graph used for finding augmenting
paths. Let M be a matching. We add two new nodes s and t to the graph. We
add edges (s, x) for all nodes x ∈ X that are unmatched and edges (y, t) for all
nodes y ∈ Y that are unmatched. An edge e = (x, y) ∈ E is oriented from x to
y if e is not in the matching M and from y to x if e ∈M. We will use GM to
denote this residual graph. Note that all edges going from Y to X are in the
matching M, while the edges going from X to Y are not. Any directed s-t path
P in the graph GM corresponds to a matching one larger than M by swapping
edges along P, that is, the edges in P from X to Y are added to M and all edges
in P that go from Y to X are deleted from M. As before, we will call a path P in
GM an augmenting path, and we say that we augment the matching M using
the path P.

406 Chapter 7 Network Flow

Now we would like the resulting matching to have as small a cost as
possible. To achieve this, we will search for a cheap augmenting path with
respect to the following natural costs. The edges leaving s and entering t will
have cost 0; an edge e oriented from X to Y will have cost ce (as including this
edge in the path means that we add the edge to M); and an edge e oriented
from Y to X will have cost −ce (as including this edge in the path means that
we delete the edge from M). We will use cost(P) to denote the cost of a path
P in GM. The following statement summarizes this construction.

(7.61) Let M be a matching and P be a path in GM from s to t. Let M ′ be the
matching obtained from M by augmenting along P. Then |M ′| = |M| + 1 and
cost(M ′)= cost(M)+ cost(P).

Given this statement, it is natural to suggest an algorithm to find a
minimum-cost perfect matching: We iteratively find minimum-cost paths in
GM, and use the paths to augment the matchings. But how can we be sure
that the perfect matching we find is of minimum cost? Or even worse, is this
algorithm even meaningful? We can only find minimum-cost paths if we know
that the graph GM has no negative cycles.

Analyzing Negative Cycles In fact, understanding the role of negative cycles
in GM is the key to analyzing the algorithm. First consider the case in which M
is a perfect matching. Note that in this case the node s has no leaving edges,
and t has no entering edges in GM (as our matching is perfect), and hence no
cycle in GM contains s or t.

(7.62) Let M be a perfect matching. If there is a negative-cost directed cycle
C in GM, then M is not minimum cost.

Proof. To see this, we use the cycle C for augmentation, just the same way
we used directed paths to obtain larger matchings. Augmenting M along C
involves swapping edges along C in and out of M. The resulting new perfect
matching M ′ has cost cost(M ′)= cost(M)+ cost(C); but cost(C) < 0, and hence
M is not of minimum cost.

More importantly, the converse of this statement is true as well; so in fact
a perfect matching M has minimum cost precisely when there is no negative
cycle in GM.

(7.63) Let M be a perfect matching. If there are no negative-cost directed
cycles C in GM, then M is a minimum-cost perfect matching.

Proof. Suppose the statement is not true, and let M ′ be a perfect matching of
smaller cost. Consider the set of edges in one of M and M ′ but not in both.

7.13 A Further Direction: Adding Costs to the Matching Problem 407

Observe that this set of edges corresponds to a set of node-disjoint directed
cycles in GM. The cost of the set of directed cycles is exactly cost(M ′)− cost(M).
Assuming M ′ has smaller cost than M, it must be that at least one of these
cycles has negative cost.

Our plan is thus to iterate through matchings of larger and larger size,
maintaining the property that the graph GM has no negative cycles in any
iteration. In this way, our computation of a minimum-cost path will always
be well defined; and when we terminate with a perfect matching, we can use
(7.63) to conclude that it has minimum cost.

Maintaining Prices on the Nodes It will help to think about a numerical price
p(v) associated with each node v. These prices will help both in understanding
how the algorithm runs, and they will also help speed up the implementation.
One issue we have to deal with is to maintain the property that the graph
GM has no negative cycles in any iteration. How do we know that after an
augmentation, the new residual graph still has no negative cycles? The prices
will turn out to serve as a compact proof to show this.

To understand prices, it helps to keep in mind an economic interpretation
of them. For this purpose, consider the following scenario. Assume that the
set X represents people who need to be assigned to do a set of jobs Y. For an
edge e = (x, y), the cost ce is a cost associated with having person x doing job
y. Now we will think of the price p(x) as an extra bonus we pay for person x to
participate in this system, like a “signing bonus.” With this in mind, the cost
for assigning person x to do job y will become p(x)+ ce. On the other hand,
we will think of the price p(y) for nodes y ∈ Y as a reward, or value gained by
taking care of job y (no matter which person in X takes care of it). This way
the “net cost” of assigning person x to do job y becomes p(x)+ ce − p(y): this
is the cost of hiring x for a bonus of p(x), having him do job y for a cost of ce,
and then cashing in on the reward p(y). We will call this the reduced cost of an
edge e = (x, y) and denote it by cp

e = p(x)+ ce − p(y). However, it is important
to keep in mind that only the costs ce are part of the problem description; the
prices (bonuses and rewards) will be a way to think about our solution.

Specifically, we say that a set of numbers {p(v) : v ∈ V} forms a set of
compatible prices with respect to a matching M if

(i) for all unmatched nodes x ∈ X we have p(x)= 0 (that is, people not asked
to do any job do not need to be paid);

(ii) for all edges e = (x, y) we have p(x)+ ce ≥ p(y) (that is, every edge has
a nonnegative reduced cost); and

(iii) for all edges e = (x, y) ∈M we have p(x)+ ce = p(y) (every edge used in
the assignment has a reduced cost of 0).

408 Chapter 7 Network Flow

Why are such prices useful? Intuitively, compatible prices suggest that the
matching is cheap: Along the matched edges reward equals cost, while on
all other edges the reward is no bigger than the cost. For a partial matching,
this may not imply that the matching has the smallest possible cost for its
size (it may be taking care of expensive jobs). However, we claim that if M
is any matching for which there exists a set of compatible prices, then GM
has no negative cycles. For a perfect matching M, this will imply that M is of
minimum cost by (7.63).

To see why GM can have no negative cycles, we extend the definition of
reduced cost to edges in the residual graph by using the same expression
cp
e = p(v) + ce − p(w) for any edge e = (v, w). Observe that the definition

of compatible prices implies that all edges in the residual graph GM have
nonnegative reduced costs. Now, note that for any cycle C, we have

cost(C)=
∑
e∈C

ce =
∑
e∈C

cp
e ,

since all the terms on the right-hand side corresponding to prices cancel out.
We know that each term on the right-hand side is nonnegative, and so clearly
cost(C) is nonnegative.

There is a second, algorithmic reason why it is useful to have prices on
the nodes. When you have a graph with negative-cost edges but no negative
cycles, you can compute shortest paths using the Bellman-Ford Algorithm in
O(mn) time. But if the graph in fact has no negative-cost edges, then you can
use Dijkstra’s Algorithm instead, which only requires time O(m log n)—almost
a full factor of n faster.

In our case, having the prices around allows us to compute shortest paths
with respect to the nonnegative reduced costs cp

e , arriving at an equivalent
answer. Indeed, suppose we use Dijkstra’s Algorithm to find the minimum
cost dp,M(v) of a directed path from s to every node v ∈ X ∪ Y subject to the
costs cp

e . Given the minimum costs dp,M(y) for an unmatched node y ∈ Y, the
(nonreduced) cost of the path from s to t through y is dp,M(y)+ p(y), and so
we find the minimum cost in O(n) additional time. In summary, we have the
following fact.

(7.64) Let M be a matching, and p be compatible prices. We can use one
run of Dijkstra’s Algorithm and O(n) extra time to find the minimum-cost path
from s to t.

Updating the Node Prices We took advantage of the prices to improve one
iteration of the algorithm. In order to be ready for the next iteration, we need
not only the minimum-cost path (to get the next matching), but also a way to
produce a set of compatible prices with respect to the new matching.

7.13 A Further Direction: Adding Costs to the Matching Problem 409

x

x� e�

e

s ty

y�

Figure 7.22 A matching M (the dark edges), and a residual graph used to increase the
size of the matching.

To get some intuition on how to do this, consider an unmatched node x
with respect to a matching M, and an edge e = (x, y), as shown in Figure 7.22.
If the new matching M ′ includes edge e (that is, if e is on the augmenting
path we use to update the matching), then we will want to have the reduced
cost of this edge to be zero. However, the prices p we used with matching M
may result in a reduced cost cp

e > 0 — that is, the assignment of person x to
job y, in our economic interpretation, may not be viewed as cheap enough.
We can arrange the zero reduced cost by either increasing the price p(y) (y’s
reward) by cp

e , or by decreasing the price p(x) by the same amount. To keep
prices nonnegative, we will increase the price p(y). However, node y may be
matched in the matching M to some other node x′ via an edge e′ = (x′, y), as
shown in Figure 7.22. Increasing the reward p(y) decreases the reduced cost
of edge e′ to negative, and hence the prices are no longer compatible. To keep
things compatible, we can increase p(x′) by the same amount. However, this
change might cause problems on other edges. Can we update all prices and
keep the matching and the prices compatible on all edges? Surprisingly, this
can be done quite simply by using the distances from s to all other nodes
computed by Dijkstra’s Algorithm.

(7.65) Let M be a matching, let p be compatible prices, and let M ′ be a
matching obtained by augmenting along the minimum-cost path from s to t.
Then p′(v)= dp,M(v)+ p(v) is a compatible set of prices for M ′.

Proof. To prove compatibility, consider first an edge e = (x′, y) ∈M. The only
edge entering x′ is the directed edge (y, x′), and hence dp,M(x′)= dp,M(y)−
cp
e , where cp

e = p(y) + ce − p(x′), and thus we get the desired equation on
such edges. Next consider edges (x, y) in M ′−M. These edges are along the
minimum-cost path from s to t, and hence they satisfy dp,M(y)= dp,M(x)+ cp

e

as desired. Finally, we get the required inequality for all other edges since all
edges e = (x, y) �∈M must satisfy dp,M(y)≤ dp,M(x)+ cp

e .

410 Chapter 7 Network Flow

Finally, we have to consider how to initialize the algorithm, so as to get it
underway. We initialize M to be the empty set, define p(x)= 0 for all x ∈ X,
and define p(y), for y ∈ Y, to be the minimum cost of an edge entering y. Note
that these prices are compatible with respect to M = φ.

We summarize the algorithm below.

Start with M equal to the empty set

Define p(x)= 0 for x ∈ X, and p(y)= min
e into y

ce for y ∈ Y

While M is not a perfect matching

Find a minimum-cost s-t path P in GM using (7.64) with prices p

Augment along P to produce a new matching M ′

Find a set of compatible prices with respect to M ′ via (7.65)
Endwhile

The final set of compatible prices yields a proof that GM has no negative
cycles; and by (7.63), this implies that M has minimum cost.

(7.66) The minimum-cost perfect matching can be found in the time required
for n shortest-path computations with nonegative edge lengths.

Extensions: An Economic Interpretation of the Prices
To conclude our discussion of the Minimum-Cost Perfect Matching Problem,
we develop the economic interpretation of the prices a bit further. We consider
the following scenario. Assume X is a set of n people each looking to buy a
house, and Y is a set of n houses that they are all considering. Let v(x, y) denote
the value of house y to buyer x. Since each buyer wants one of the houses,
one could argue that the best arrangement would be to find a perfect matching
M that maximizes

∑
(x,y)∈M v(x, y). We can find such a perfect matching by

using our minimum-cost perfect matching algorithm with costs ce =−v(x, y)

if e = (x, y).

The question we will ask now is this: Can we convince these buyers to
buy the house they are allocated? On her own, each buyer x would want to
buy the house y that has maximum value v(x, y) to her. How can we convince
her to buy instead the house that our matching M allocated? We will use prices
to change the incentives of the buyers. Suppose we set a price P(y) for each
house y, that is, the person buying the house y must pay P(y). With these
prices in mind, a buyer will be interested in buying the house with maximum
net value, that is, the house y that maximizes v(x, y)− P(y). We say that a

Solved Exercises 411

perfect matching M and house prices P are in equilibrium if, for all edges
(x, y) ∈M and all other houses y′, we have

v(x, y)− P(y)≥ v(x, y′)− P(y′).

But can we find a perfect matching and a set of prices so as to achieve this
state of affairs, with every buyer ending up happy? In fact, the minimum-cost
perfect matching and an associated set of compatible prices provide exactly
what we’re looking for.

(7.67) Let M be a perfect matching of minimum cost, where ce =−v(x, y) for
each edge e = (x, y), and let p be a compatible set of prices. Then the matching
M and the set of prices {P(y)=−p(y) : y ∈ Y} are in equilibrium.

Proof. Consider an edge e = (x, y) ∈M, and let e′ = (x, y′). Since M and p are
compatible, we have p(x)+ ce = p(y) and p(x)+ ce′ ≥ p(y′). Subtracting these
two inequalities to cancel p(x), and substituting the values of p and c, we get
the desired inequality in the definition of equilibrium.

Solved Exercises

Solved Exercise 1
Suppose you are given a directed graph G = (V , E), with a positive integer
capacity ce on each edge e, a designated source s ∈ V, and a designated sink
t ∈ V. You are also given an integer maximum s-t flow in G, defined by a flow
value fe on each edge e.

Now suppose we pick a specific edge e ∈ E and increase its capacity by
one unit. Show how to find a maximum flow in the resulting capacitated graph
in time O(m + n), where m is the number of edges in G and n is the number
of nodes.

Solution The point here is that O(m + n) is not enough time to compute a
new maximum flow from scratch, so we need to figure out how to use the flow
f that we are given. Intuitively, even after we add 1 to the capacity of edge e,
the flow f can’t be that far from maximum; after all, we haven’t changed the
network very much.

In fact, it’s not hard to show that the maximum flow value can go up by
at most 1.

(7.68) Consider the flow network G′ obtained by adding 1 to the capacity of
e. The value of the maximum flow in G′ is either ν(f) or ν(f)+ 1.

412 Chapter 7 Network Flow

Proof. The value of the maximum flow in G′ is at least ν(f), since f is still a
feasible flow in this network. It is also integer-valued. So it is enough to show
that the maximum-flow value in G′ is at most ν(f)+ 1.

By the Max-Flow Min-Cut Theorem, there is some s-t cut (A, B) in the
original flow network G of capacity ν(f). Now we ask: What is the capacity of
(A, B) in the new flow network G′? All the edges crossing (A, B) have the same
capacity in G′ that they did in G, with the possible exception of e (in case e
crosses (A, B)). But ce only increased by 1, and so the capacity of (A, B) in the
new flow network G′ is at most ν(f)+ 1.

Statement (7.68) suggests a natural algorithm. Starting with the feasible
flow f in G′, we try to find a single augmenting path from s to t in the residual
graph G′f . This takes time O(m+ n). Now one of two things will happen. Either
we will fail to find an augmenting path, and in this case we know that f is
a maximum flow. Otherwise the augmentation succeeds, producing a flow f ′
of value at least ν(f)+ 1. In this case, we know by (7.68) that f ′ must be a
maximum flow. So either way, we produce a maximum flow after a single
augmenting path computation.

Solved Exercise 2
You are helping the medical consulting firm Doctors Without Weekends set up
the work schedules of doctors in a large hospital. They’ve got the regular daily
schedules mainly worked out. Now, however, they need to deal with all the
special cases and, in particular, make sure that they have at least one doctor
covering each vacation day.

Here’s how this works. There are k vacation periods (e.g., the week of
Christmas, the July 4th weekend, the Thanksgiving weekend, . . .), each
spanning several contiguous days. Let Dj be the set of days included in the
jth vacation period; we will refer to the union of all these days, ∪jDj, as the set
of all vacation days.

There are n doctors at the hospital, and doctor i has a set of vacation days
Si when he or she is available to work. (This may include certain days from a
given vacation period but not others; so, for example, a doctor may be able to
work the Friday, Saturday, or Sunday of Thanksgiving weekend, but not the
Thursday.)

Give a polynomial-time algorithm that takes this information and deter-
mines whether it is possible to select a single doctor to work on each vacation
day, subject to the following constraints.

Solved Exercises 413

. For a given parameter c, each doctor should be assigned to work at most
c vacation days total, and only days when he or she is available.

. For each vacation period j, each doctor should be assigned to work at
most one of the days in the set Dj. (In other words, although a particular
doctor may work on several vacation days over the course of a year, he or
she should not be assigned to work two or more days of the Thanksgiving
weekend, or two or more days of the July 4th weekend, etc.)

The algorithm should either return an assignment of doctors satisfying these
constraints or report (correctly) that no such assignment exists.

Solution This is a very natural setting in which to apply network flow, since
at a high level we’re trying to match one set (the doctors) with another set
(the vacation days). The complication comes from the requirement that each
doctor can work at most one day in each vacation period.

So to begin, let’s see how we’d solve the problem without that require-
ment, in the simpler case where each doctor i has a set Si of days when he or
she can work, and each doctor should be scheduled for at most c days total.
The construction is pictured in Figure 7.23(a). We have a node ui representing
each doctor attached to a node v� representing each day when he or she can

Doctors

Holidays

Sink SinkSource

Doctors
Gadgets

Holidays

(a) (b)

Source

Figure 7.23 (a) Doctors are assigned to holiday days without restricting how many
days in one holiday a doctor can work. (b) The flow network is expanded with “gadgets”
that prevent a doctor from working more than one day from each vacation period. The
shaded sets correspond to the different vacation periods.

414 Chapter 7 Network Flow

work; this edge has a capacity of 1. We attach a super-source s to each doctor
node ui by an edge of capacity c, and we attach each day node v� to a super-
sink t by an edge with upper and lower bounds of 1. This way, assigned days
can “flow” through doctors to days when they can work, and the lower bounds
on the edges from the days to the sink guarantee that each day is covered. Fi-
nally, suppose there are d vacation days total; we put a demand of +d on the
sink and −d on the source, and we look for a feasible circulation. (Recall that
once we’ve introduced lower bounds on some edges, the algorithms in the text
are phrased in terms of circulations with demands, not maximum flow.)

But now we have to handle the extra requirement, that each doctor can
work at most one day from each vacation period. To do this, we take each pair
(i, j) consisting of a doctor i and a vacation period j, and we add a “vacation
gadget” as follows. We include a new node wij with an incoming edge of
capacity 1 from the doctor node ui, and with outgoing edges of capacity 1 to
each day in vacation period j when doctor i is available to work. This gadget
serves to “choke off” the flow from ui into the days associated with vacation
period j, so that at most one unit of flow can go to them collectively. The
construction is pictured in Figure 7.23(b). As before, we put a demand of +d
on the sink and −d on the source, and we look for a feasible circulation. The
total running time is the time to construct the graph, which is O(nd), plus the
time to check for a single feasible circulation in this graph.

The correctness of the algorithm is a consequence of the following claim.

(7.69) There is a way to assign doctors to vacation days in a way that respects
all constraints if and only if there is a feasible circulation in the flow network
we have constructed.

Proof. First, if there is a way to assign doctors to vacation days in a way
that respects all constraints, then we can construct the following circulation.
If doctor i works on day � of vacation period j, then we send one unit of
flow along the path s, ui, wij, v�, t; we do this for all such (i, �) pairs. Since
the assignment of doctors satisfied all the constraints, the resulting circulation
respects all capacities; and it sends d units of flow out of s and into t, so it
meets the demands.

Conversely, suppose there is a feasible circulation. For this direction of
the proof, we will show how to use the circulation to construct a schedule
for all the doctors. First, by (7.52), there is a feasible circulation in which all
flow values are integers. We now construct the following schedule: If the edge
(wij , v�) carries a unit of flow, then we have doctor i work on day �. Because
of the capacities, the resulting schedule has each doctor work at most c days,
at most one in each vacation period, and each day is covered by one doctor.

Exercises 415

1

1

v

u

ts

1

1

1

Figure 7.24 What are the
minimum s-t cuts in this flow
network?

2

4

v

u

ts

4

6

2

Figure 7.25 What is the min-
imum capacity of an s-t cut in
this flow network?

Exercises

1. (a) List all the minimum s-t cuts in the flow network pictured in Fig-

ure 7.24. The capacity of each edge appears as a label next to the

edge.

(b) What is the minimum capacity of an s-t cut in the flow network in

Figure 7.25? Again, the capacity of each edge appears as a label next

to the edge.

2. Figure 7.26 shows a flow network onwhich an s-t flow has been computed.

The capacity of each edge appears as a label next to the edge, and the

numbers in boxes give the amount of flow sent on each edge. (Edges

without boxed numbers—specifically, the four edges of capacity 3—have

no flow being sent on them.)

(a) What is the value of this flow? Is this a maximum (s,t) flow in this

graph?

(b) Find a minimum s-t cut in the flow network pictured in Figure 7.26,

and also say what its capacity is.

3. Figure 7.27 shows a flow network onwhich an s-t flow has been computed.

The capacity of each edge appears as a label next to the edge, and the

numbers in boxes give the amount of flow sent on each edge. (Edges

without boxed numbers have no flow being sent on them.)

(a) What is the value of this flow? Is this a maximum (s,t) flow in this

graph?

10

d

s t

5

10
5

5 5

5
5

3 3

8 8 8 810 8

3 3

Figure 7.26 What is the value of the depicted flow? Is it a maximum flow? What is the
minimum cut?

416 Chapter 7 Network Flow

10

1

a

d

s b c t

6 5
2 5

1

1 10
1

3

3

6

5

1 3 3

5

5

Figure 7.27 What is the value of the depicted flow? Is it a maximum flow? What is the
minimum cut?

(b) Find a minimum s-t cut in the flow network pictured in Figure 7.27,

and also say what its capacity is.

4. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive

integer capacity ce on every edge e. If f is a maximum s-t flow in G, then f

saturates every edge out of s with flow (i.e., for all edges e out of s, we have

f (e)= ce).

5. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive

integer capacity ce on every edge e; and let (A, B) be a mimimum s-t cut with

respect to these capacities {ce : e ∈ E}. Now suppose we add 1 to every capacity;

then (A, B) is still a minimum s-t cut with respect to these new capacities

{1+ ce : e ∈ E}.

6. Suppose you’re a consultant for the Ergonomic Architecture Commission,

and they come to you with the following problem.

They’re really concerned about designing houses that are “user-

friendly,” and they’ve been having a lot of trouble with the setup of light

fixtures and switches in newly designed houses. Consider, for example,

a one-floor house with n light fixtures and n locations for light switches

mounted in the wall. You’d like to be able to wire up one switch to control

each light fixture, in such a way that a person at the switch can see the

light fixture being controlled.

Exercises 417

a a

b b

c c

2

1

3 32

1

(a) Ergonomic (b) Not ergonomic

Figure 7.28 The floor plan in (a) is ergonomic, because we can wire switches to fixtures
in such a way that each fixture is visible from the switch that controls it. (This can be
done by wiring switch 1 to a, switch 2 to b, and switch 3 to c.) The floor plan in (b) is not
ergonomic, because no such wiring is possible.

Sometimes this is possible and sometimes it isn’t. Consider the two

simple floor plans for houses in Figure 7.28. There are three light fixtures

(labeled a, b, c) and three switches (labeled 1, 2, 3). It is possible to wire

switches to fixtures in Figure 7.28(a) so that every switch has a line of

sight to the fixture, but this is not possible in Figure 7.28(b).

Let’s call a floor plan, together with n light fixture locations and n

switch locations, ergonomic if it’s possible to wire one switch to each

fixture so that every fixture is visible from the switch that controls it.

A floor plan will be represented by a set of m horizontal or vertical

line segments in the plane (the walls), where the ith wall has endpoints

(xi, yi), (x′i, y′i). Each of the n switches and each of the n fixtures is given by

its coordinates in the plane. A fixture is visible from a switch if the line

segment joining them does not cross any of the walls.

Give an algorithm to decide if a given floor plan is ergonomic. The

running time should be polynomial in m and n. You may assume that you

have a subroutine with O(1) running time that takes two line segments as

input and decides whether or not they cross in the plane.

7. Consider a set of mobile computing clients in a certain town who each

need to be connected to one of several possible base stations. We’ll

suppose there are n clients, with the position of each client specified

by its (x, y) coordinates in the plane. There are also k base stations; the

position of each of these is specified by (x, y) coordinates as well.

For each client, we wish to connect it to exactly one of the base

stations. Our choice of connections is constrained in the following ways.

418 Chapter 7 Network Flow

There is a range parameter r—a client can only be connected to a base

station that is within distance r. There is also a load parameter L—no

more than L clients can be connected to any single base station.

Your goal is to design a polynomial-time algorithm for the following

problem. Given the positions of a set of clients and a set of base stations,

as well as the range and load parameters, decide whether every client can

be connected simultaneously to a base station, subject to the range and

load conditions in the previous paragraph.

8. Statistically, the arrival of spring typically results in increased accidents

and increased need for emergency medical treatment, which often re-

quires blood transfusions. Consider the problem faced by a hospital that

is trying to evaluate whether its blood supply is sufficient.

The basic rule for blood donation is the following. A person’s own

blood supply has certain antigens present (we can think of antigens as a

kind of molecular signature); and a person cannot receive blood with a

particular antigen if their own blood does not have this antigen present.

Concretely, this principle underpins the division of blood into four types:

A, B, AB, andO. Blood of type A has the A antigen, blood of type B has the B

antigen, blood of type AB has both, and blood of type O has neither. Thus,

patients with type A can receive only blood types A or O in a transfusion,

patients with type B can receive only B or O, patients with type O can

receive only O, and patients with type AB can receive any of the four

types.4

(a) Let sO, sA, sB, and sAB denote the supply in whole units of the different

blood types on hand. Assume that the hospital knows the projected

demand for each blood type dO, dA, dB, and dAB for the coming week.

Give a polynomial-time algorithm to evaluate if the blood on hand

would suffice for the projected need.

(b) Consider the following example. Over the next week, they expect to

need at most 100 units of blood. The typical distribution of blood

types in U.S. patients is roughly 45 percent type O, 42 percent type

A, 10 percent type B, and 3 percent type AB. The hospital wants to

know if the blood supply it has on hand would be enough if 100

patients arrive with the expected type distribution. There is a total

of 105 units of blood on hand. The table below gives these demands,

and the supply on hand.

4 The Austrian scientist Karl Landsteiner received the Nobel Prize in 1930 for his discovery of the

blood types A, B, O, and AB.

Exercises 419

blood type supply demand

O 50 45

A 36 42

B 11 8

AB 8 3

Is the 105 units of blood on hand enough to satisfy the 100 units

of demand? Find an allocation that satisfies the maximum possible

number of patients. Use an argument based on a minimum-capacity

cut to show why not all patients can receive blood. Also, provide an

explanation for this fact that would be understandable to the clinic

administrators, who have not taken a course on algorithms. (So, for

example, this explanation should not involve the words flow , cut , or

graph in the sense we use them in this book.)

9. Network flow issues come up in dealing with natural disasters and other

crises, since major unexpected events often require the movement and

evacuation of large numbers of people in a short amount of time.

Consider the following scenario. Due to large-scale flooding in a re-

gion, paramedics have identified a set of n injured people distributed

across the region who need to be rushed to hospitals. There are k hos-

pitals in the region, and each of the n people needs to be brought to a

hospital that is within a half-hour’s driving time of their current location

(so different people will have different options for hospitals, depending

on where they are right now).

At the same time, one doesn’t want to overload any one of the

hospitals by sending too many patients its way. The paramedics are in

touch by cell phone, and they want to collectively work out whether they

can choose a hospital for each of the injured people in such a way that

the load on the hospitals is balanced : Each hospital receives at most �n/k�
people.

Give a polynomial-time algorithm that takes the given information

about the people’s locations and determines whether this is possible.

10. Suppose you are given a directed graph G = (V , E), with a positive integer

capacity ce on each edge e, a source s ∈ V, and a sink t ∈ V. You are also

given a maximum s-t flow in G, defined by a flow value fe on each edge

e. The flow f is acyclic: There is no cycle in G on which all edges carry

positive flow. The flow f is also integer-valued.

420 Chapter 7 Network Flow

Now suppose we pick a specific edge e∗ ∈ E and reduce its capacity

by 1 unit. Show how to find a maximum flow in the resulting capacitated

graph in time O(m+ n), where m is the number of edges in G and n is the

number of nodes.

11. Your friends have written a very fast piece of maximum-flow code based

on repeatedly finding augmenting paths as in Section 7.1. However, after

you’ve looked at a bit of output from it, you realize that it’s not always

finding a flow of maximum value. The bug turns out to be pretty easy

to find; your friends hadn’t really gotten into the whole backward-edge

thing when writing the code, and so their implementation builds a variant

of the residual graph that only includes the forward edges. In other words,

it searches for s-t paths in a graph G̃f consisting only of edges e for which

f (e) < ce, and it terminates when there is no augmenting path consisting

entirely of such edges. We’ll call this the Forward-Edge-Only Algorithm.

(Note that we do not try to prescribe how this algorithm chooses its

forward-edge paths; it may choose them in any fashion it wants, provided

that it terminates only when there are no forward-edge paths.)

It’s hard to convince your friends they need to reimplement the

code. In addition to its blazing speed, they claim, in fact, that it never

returns a flow whose value is less than a fixed fraction of optimal. Do you

believe this? The crux of their claim can be made precise in the following

statement.

There is an absolute constant b > 1 (independent of the particular input

flow network), so that on every instance of the Maximum-Flow Problem, the

Forward-Edge-Only Algorithm is guaranteed to find a flow of value at least 1/b

times the maximum-flow value (regardless of how it chooses its forward-edge

paths).

Decide whether you think this statement is true or false, and give a proof

of either the statement or its negation.

12. Consider the following problem. You are given a flow network with unit-

capacity edges: It consists of a directed graph G = (V , E), a source s ∈ V,

and a sink t ∈ V; and ce = 1 for every e ∈ E. You are also given a parameter k.

The goal is to delete k edges so as to reduce the maximum s-t flow in

G by as much as possible. In other words, you should find a set of edges

F ⊆ E so that |F | = k and the maximum s-t flow in G′ = (V , E − F) is as small

as possible subject to this.

Give a polynomial-time algorithm to solve this problem.

13. In a standard s-t Maximum-Flow Problem, we assume edges have capaci-

ties, and there is no limit on how much flow is allowed to pass through a

Exercises 421

node. In this problem, we consider the variant of the Maximum-Flow and

Minimum-Cut problems with node capacities.

Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

nonnegative node capacities {cv ≥ 0} for each v ∈ V. Given a flow f in this

graph, the flow though a node v is defined as f in(v). We say that a flow

is feasible if it satisfies the usual flow-conservation constraints and the

node-capacity constraints: f in(v)≤ cv for all nodes.

Give a polynomial-time algorithm to find an s-t maximum flow in

such a node-capacitated network. Define an s-t cut for node-capacitated

networks, and show that the analogue of the Max-Flow Min-Cut Theorem

holds true.

14. We define the Escape Problem as follows. We are given a directed graph

G = (V , E) (picture a network of roads). A certain collection of nodes X ⊂ V

are designated as populated nodes, and a certain other collection S ⊂ V

are designated as safe nodes. (Assume that X and S are disjoint.) In case

of an emergency, we want evacuation routes from the populated nodes

to the safe nodes. A set of evacuation routes is defined as a set of paths

in G so that (i) each node in X is the tail of one path, (ii) the last node on

each path lies in S, and (iii) the paths do not share any edges. Such a set of

paths gives a way for the occupants of the populated nodes to “escape”

to S, without overly congesting any edge in G.

(a) Given G, X, and S, show how to decide in polynomial time whether

such a set of evacuation routes exists.

(b) Suppose we have exactly the same problem as in (a), but we want to

enforce an even stronger version of the “no congestion” condition

(iii). Thus we change (iii) to say “the paths do not share any nodes.”

With this new condition, show how to decide in polynomial time

whether such a set of evacuation routes exists.

Also, provide an example with the same G, X, and S, in which the

answer is yes to the question in (a) but no to the question in (b).

15. Suppose you and your friend Alanis live, together with n− 2 other people,

at a popular off-campus cooperative apartment, the Upson Collective.

Over the next n nights, each of you is supposed to cook dinner for the

co-op exactly once, so that someone cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights

(e.g., exams, concerts, etc.), so deciding who should cook on which night

becomes a tricky task. For concreteness, let’s label the people

{p1, . . . , pn},

422 Chapter 7 Network Flow

the nights

{d1, . . . , dn};
and for person pi, there’s a set of nights Si ⊂ {d1, . . . , dn} when they are

not able to cook.

A feasible dinner schedule is an assignment of each person in the co-

op to a different night, so that each person cooks on exactly one night,

there is someone cooking on each night, and if pi cooks on night dj, then

dj �∈ Si.

(a) Describe a bipartite graph G so that G has a perfect matching if and

only if there is a feasible dinner schedule for the co-op.

(b) Your friend Alanis takes on the task of trying to construct a feasible

dinner schedule. After great effort, she constructs what she claims

is a feasible schedule and then heads off to class for the day.

Unfortunately, when you look at the schedule she created, you

notice a big problem. n− 2 of the people at the co-op are assigned to

different nights on which they are available: no problem there. But

for the other two people, pi and pj, and the other two days, dk and

d�, you discover that she has accidentally assigned both pi and pj to

cook on night dk, and assigned no one to cook on night d�.

You want to fix Alanis’s mistake but without having to recom-

pute everything from scratch. Show that it’s possible, using her “al-

most correct” schedule, to decide in only O(n2) time whether there

exists a feasible dinner schedule for the co-op. (If one exists, you

should also output it.)

16. Back in the euphoric early days of the Web, people liked to claim that

much of the enormous potential in a company like Yahoo! was in the

“eyeballs”—the simple fact that millions of people look at its pages every

day. Further, by convincing people to register personal data with the site,

a site like Yahoo! can show each user an extremely targeted advertisement

whenever he or she visits the site, in a way that TV networks ormagazines

couldn’t hope to match. So if a user has told Yahoo! that he or she is a

20-year-old computer science major from Cornell University, the site can

present a banner ad for apartments in Ithaca, New York; on the other

hand, if he or she is a 50-year-old investment banker from Greenwich,

Connecticut, the site can display a banner ad pitching Lincoln Town Cars

instead.

But deciding on which ads to show to which people involves some

serious computation behind the scenes. Suppose that the managers

of a popular Web site have identified k distinct demographic groups

Exercises 423

G1, G2, . . . , Gk. (These groups can overlap; for example, G1 can be equal to

all residents of New York State, and G2 can be equal to all people with

a degree in computer science.) The site has contracts with m different

advertisers, to show a certain number of copies of their ads to users of

the site. Here’s what the contract with the ith advertiser looks like.

. For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser

i wants its ads shown only to users who belong to at least one of the

demographic groups in the set Xi.

. For a number ri, advertiser i wants its ads shown to at least ri users

each minute.

Now consider the problem of designing a good advertising policy—

a way to show a single ad to each user of the site. Suppose at a given

minute, there are n users visiting the site. Because we have registration

information on each of these users, we know that user j (for j = 1, 2, . . . , n)

belongs to a subset Uj ⊆ {G1, . . . , Gk} of the demographic groups. The

problem is: Is there a way to show a single ad to each user so that the site’s

contracts with each of the m advertisers is satisfied for this minute? (That

is, for each i = 1, 2, . . . , m, can at least ri of the n users, each belonging

to at least one demographic group in Xi, be shown an ad provided by

advertiser i?)

Give an efficient algorithm to decide if this is possible, and if so, to

actually choose an ad to show each user.

17. You’ve been called in to help some network administrators diagnose the

extent of a failure in their network. The network is designed to carry

traffic from a designated source node s to a designated target node t, so

we will model the network as a directed graph G = (V , E), in which the

capacity of each edge is 1 and in which each node lies on at least one path

from s to t.

Now, when everything is running smoothly in the network, the max-

imum s-t flow in G has value k. However, the current situation (and the

reason you’re here) is that an attacker has destroyed some of the edges in

the network, so that there is now no path from s to t using the remaining

(surviving) edges. For reasons that we won’t go into here, they believe

the attacker has destroyed only k edges, the minimum number needed

to separate s from t (i.e., the size of a minimum s-t cut); and we’ll assume

they’re correct in believing this.

The network administrators are running a monitoring tool on node s,

which has the following behavior. If you issue the command ping(v), for

a given node v, it will tell you whether there is currently a path from s

to v. (So ping(t) reports that no path currently exists; on the other hand,

424 Chapter 7 Network Flow

y1

y2x1

x2

y3

y4

y5

Figure 7.29 An instance of
Coverage Expansion.

ping(s) always reports a path from s to itself.) Since it’s not practical to go

out and inspect every edge of the network, they’d like to determine the

extent of the failure using this monitoring tool, through judicious use of

the ping command.

So here’s the problem you face: Give an algorithm that issues a

sequence of ping commands to various nodes in the network and then

reports the full set of nodes that are not currently reachable from s. You

could do this by pinging every node in the network, of course, but you’d

like to do it using many fewer pings (given the assumption that only

k edges have been deleted). In issuing this sequence, your algorithm is

allowed to decide which node to ping next based on the outcome of earlier

ping operations.

Give an algorithm that accomplishes this task using only O(k log n)

pings.

18. We consider the Bipartite Matching Problem on a bipartite graph G =
(V , E). As usual, we say that V is partitioned into sets X and Y, and each

edge has one end in X and the other in Y.

If M is a matching in G, we say that a node y ∈ Y is covered by M if y

is an end of one of the edges in M.

(a) Consider the following problem. We are given G and a matching M in

G. For a given number k, we want to decide if there is a matching M ′

in G so that

(i) M ′ has k more edges than M does, and

(ii) every node y ∈ Y that is covered by M is also covered by M ′.
We call this the Coverage Expansion Problem, with input G, M, and k.

and we will say that M ′ is a solution to the instance.

Give a polynomial-time algorithm that takes an instance of Cov-

erage Expansion and either returns a solutionM ′ or reports (correctly)
that there is no solution. (You should include an analysis of the run-

ning time and a brief proof of why it is correct.)

Note: You may wish to also look at part (b) to help in thinking about

this.

Example. Consider Figure 7.29, and suppose M is the matching con-

sisting of the edge (x1, y2). Suppose we are asked the above question

with k = 1.

Then the answer to this instance of Coverage Expansion is yes.

We can let M ′ be the matching consisting (for example) of the two

edges (x1, y2) and (x2, y4); M ′ has one more edge than M, and y2 is still

covered by M ′.

Exercises 425

(b) Give an example of an instance of Coverage Expansion, specified by

G, M, and k, so that the following situation happens.

The instance has a solution; but in any solution M ′, the edges of M do

not form a subset of the edges of M ′.

(c) Let G be a bipartite graph, and let M be any matching in G. Consider

the following two quantities.

– K1 is the size of the largest matching M ′ so that every node y that

is covered by M is also covered by M ′.
– K2 is the size of the largest matching M ′′ in G.

Clearly K1≤ K2, since K2 is obtained by considering all possible match-

ings in G.

Prove that in fact K1= K2; that is, we can obtain a maximum

matching even if we’re constrained to cover all the nodes covered

by our initial matching M.

19. You’ve periodically helped the medical consulting firm Doctors Without

Weekends on various hospital scheduling issues, and they’ve just come

to you with a new problem. For each of the next n days, the hospital has

determined the number of doctors they want on hand; thus, on day i,

they have a requirement that exactly pi doctors be present.

There are k doctors, and each is asked to provide a list of days on

which he or she is willing to work. Thus doctor j provides a set Lj of days

on which he or she is willing to work.

The system produced by the consulting firm should take these lists

and try to return to each doctor j a list L′j with the following properties.

(A) L′j is a subset of Lj, so that doctor j only works on days he or she finds

acceptable.

(B) If we consider the whole set of lists L′1, . . . , L′k, it causes exactly pi

doctors to be present on day i, for i = 1, 2, . . . , n.

(a) Describe a polynomial-time algorithm that implements this system.

Specifically, give a polynomial-time algorithm that takes the num-

bers p1, p2, . . . , pn, and the lists L1, . . . , Lk, and does one of the fol-

lowing two things.

– Return lists L′1, L′2, . . . , L′k satisfying properties (A) and (B); or

– Report (correctly) that there is no set of lists L′1, L′2, . . . , L′k that

satisfies both properties (A) and (B).

(b) The hospital finds that the doctors tend to submit lists that aremuch

too restrictive, and so it often happens that the system reports (cor-

rectly, but unfortunately) that no acceptable set of lists L′1, L′2, . . . , L′k
exists.

426 Chapter 7 Network Flow

Thus the hospital relaxes the requirements as follows. They add

a new parameter c > 0, and the system now should try to return to

each doctor j a list L′j with the following properties.

(A*) L′j contains at most c days that do not appear on the list Lj.

(B) (Same as before) If we consider the whole set of lists L′1, . . . , L′k,
it causes exactly pi doctors to be present on day i, for i = 1, 2, . . . , n.

Describe a polynomial-time algorithm that implements this re-

vised system. It should take the numbers p1, p2, . . . , pn, the lists

L1, . . . , Lk, and the parameter c > 0, and do one of the following two

things.

– Return lists L′1, L′2, . . . , L′k satisfying properties (A∗) and (B); or

– Report (correctly) that there is no set of lists L′1, L′2, . . . , L′k that

satisfies both properties (A∗) and (B).

20. Your friends are involved in a large-scale atmospheric science experi-

ment. They need to get good measurements on a set S of n different

conditions in the atmosphere (such as the ozone level at various places),

and they have a set of m balloons that they plan to send up to make these

measurements. Each balloon can make at most two measurements.

Unfortunately, not all balloons are capable of measuring all condi-

tions, so for each balloon i = 1, . . . , m, they have a set Si of conditions

that balloon i canmeasure. Finally, tomake the results more reliable, they

plan to take each measurement from at least k different balloons. (Note

that a single balloon should not measure the same condition twice.) They

are having trouble figuring out which conditions to measure on which

balloon.

Example. Suppose that k= 2, there are n= 4 conditions labeled c1, c2, c3, c4,

and there are m = 4 balloons that can measure conditions, subject to

the limitation that S1= S2 = {c1, c2, c3}, and S3= S4 = {c1, c3, c4}. Then one

possible way to make sure that each condition is measured at least k = 2
times is to have

. balloon 1 measure conditions c1, c2,

. balloon 2 measure conditions c2, c3,

. balloon 3 measure conditions c3, c4, and

. balloon 4 measure conditions c1, c4.

(a) Give a polynomial-time algorithm that takes the input to an instance

of this problem (the n conditions, the sets Si for each of the m

balloons, and the parameter k) and decides whether there is a way to

measure each condition by k different balloons, while each balloon

only measures at most two conditions.

Exercises 427

(b) You show your friends a solution computed by your algorithm from

(a), and to your surprise they reply, “This won’t do at all—one of the

conditions is only being measured by balloons from a single subcon-

tractor.” You hadn’t heard anything about subcontractors before; it

turns out there’s an extra wrinkle they forgot to mention. . . .

Each of the balloons is produced by one of three different sub-

contractors involved in the experiment. A requirement of the exper-

iment is that there be no condition for which all k measurements

come from balloons produced by a single subcontractor.

For example, suppose balloon 1 comes from the first subcon-

tractor, balloons 2 and 3 come from the second subcontractor, and

balloon 4 comes from the third subcontractor. Then our previous so-

lution no longer works, as both of the measurements for condition

c3 were done by balloons from the second subcontractor. However,

we could use balloons 1 and 2 to each measure conditions c1, c2, and

use balloons 3 and 4 to each measure conditions c3, c4.

Explain how to modify your polynomial-time algorithm for part

(a) into a new algorithm that decides whether there exists a solution

satisfying all the conditions from (a), plus the new requirement about

subcontractors.

21. You’re helping to organize a class on campus that has decided to give all

its students wireless laptops for the semester. Thus there is a collection

of n wireless laptops; there is also have a collection of n wireless access

points, to which a laptop can connect when it is in range.

The laptops are currently scattered across campus; laptop � is within

range of a set S� of access points. Wewill assume that each laptop is within

range of at least one access point (so the sets S� are nonempty); we will

also assume that every access point p has at least one laptop within range

of it.

To make sure that all the wireless connectivity software is working

correctly, you need to try having laptops make contact with access points

in such a way that each laptop and each access point is involved in at

least one connection. Thus we will say that a test set T is a collection of

ordered pairs of the form (�, p), for a laptop � and access point p, with

the properties that

(i) If (�, p) ∈ T , then � is within range of p (i.e., p ∈ S�).

(ii) Each laptop appears in at least one ordered pair in T .

(iii) Each access point appears in at least one ordered pair in T .

428 Chapter 7 Network Flow

This way, by trying out all the connections specified by the pairs in T ,

we can be sure that each laptop and each access point have correctly

functioning software.

The problem is: Given the sets S� for each laptop (i.e., which laptops

are within range of which access points), and a number k, decide whether

there is a test set of size at most k.

Example. Suppose that n = 3; laptop 1 is within range of access points 1
and 2; laptop 2 is within range of access point 2; and laptop 3 is within

range of access points 2 and 3. Then the set of pairs

(laptop 1, access point 1), (laptop 2, access point 2),

(laptop 3, access point 3)

would form a test set of size 3.

(a) Give an example of an instance of this problem for which there is no

test set of size n. (Recall that we assume each laptop is within range

of at least one access point, and each access point p has at least one

laptop within range of it.)

(b) Give a polynomial-time algorithm that takes the input to an instance

of this problem (including the parameter k) and decides whether

there is a test set of size at most k.

22. Let M be an n × n matrix with each entry equal to either 0 or 1. Let mij

denote the entry in row i and column j. A diagonal entry is one of the

form mii for some i.

Swapping rows i and j of the matrix M denotes the following action:

we swap the values mik and mjk for k = 1, 2, . . . , n. Swapping two columns

is defined analogously.

We say that M is rearrangeable if it is possible to swap some of the

pairs of rows and some of the pairs of columns (in any sequence) so that,

after all the swapping, all the diagonal entries of M are equal to 1.

(a) Give an example of a matrix M that is not rearrangeable, but for

which at least one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix

M with 0-1 entries is rearrangeable.

23. Suppose you’re looking at a flow network G with source s and sink t, and

you want to be able to express something like the following intuitive no-

tion: Some nodes are clearly on the “source side” of the main bottlenecks;

some nodes are clearly on the “sink side” of the main bottlenecks; and

some nodes are in the middle. However, G can have many minimum cuts,

so we have to be careful in how we try making this idea precise.

Exercises 429

Here’s one way to divide the nodes of G into three categories of this

sort.

. We say a node v is upstream if, for all minimum s-t cuts (A, B), we

have v ∈ A—that is, v lies on the source side of every minimum cut.

. We say a node v is downstream if, for all minimum s-t cuts (A, B), we

have v ∈ B—that is, v lies on the sink side of every minimum cut.

. We say a node v is central if it is neither upstream nor downstream;

there is at least one minimum s-t cut (A, B) for which v ∈ A, and at

least one minimum s-t cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of

its nodes as being upstream, downstream, or central. The running time

of your algorithm should be within a constant factor of the time required

to compute a single maximum flow.

24. Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

nonnegative edge capacities {ce}. Give a polynomial-time algorithm to

decide whether G has a unique minimum s-t cut (i.e., an s-t of capacity

strictly less than that of all other s-t cuts).

25. Suppose you live in a big apartment with a lot of friends. Over the

course of a year, there are many occasions when one of you pays for an

expense shared by some subset of the apartment, with the expectation

that everything will get balanced out fairly at the end of the year. For

example, one of you may pay the whole phone bill in a given month,

another will occasionally make communal grocery runs to the nearby

organic food emporium, and a third might sometimes use a credit card

to cover the whole bill at the local Italian-Indian restaurant, Little Idli.

In any case, it’s now the end of the year and time to settle up. There

are n people in the apartment; and for each ordered pair (i, j) there’s an

amount aij ≥ 0 that i owes j, accumulated over the course of the year. We

will require that for any two people i and j, at least one of the quantities

aij or aji is equal to 0. This can be easily made to happen as follows: If it

turns out that i owes j a positive amount x, and j owes i a positive amount

y < x, then we will subtract off y from both sides and declare aij = x − y

while aji = 0. In terms of all these quantities, we now define the imbalance

of a person i to be the sum of the amounts that i is owed by everyone

else, minus the sum of the amounts that i owes everyone else. (Note that

an imbalance can be positive, negative, or zero.)

In order to restore all imbalances to 0, so that everyone departs on

good terms, certain people will write checks to others; in other words, for

certain ordered pairs (i, j), i will write a check to j for an amount bij > 0.

430 Chapter 7 Network Flow

We will say that a set of checks constitutes a reconciliation if, for each

person i, the total value of the checks received by i, minus the total value

of the checks written by i, is equal to the imbalance of i. Finally, you and

your friends feel it is bad form for i to write j a check if i did not actually

owe j money, so we say that a reconciliation is consistent if, whenever i

writes a check to j, it is the case that aij > 0.

Show that, for any set of amounts aij, there is always a consistent

reconciliation in which at most n − 1 checks get written, by giving a

polynomial-time algorithm to compute such a reconciliation.

26. You can tell that cellular phones are at work in rural communities, from

the giant microwave towers you sometimes see sprouting out of corn

fields and cow pastures. Let’s consider a very simplified model of a

cellular phone network in a sparsely populated area.

We are given the locations of n base stations, specified as points

b1, . . . , bn in the plane. We are also given the locations of n cellular phones,

specified as points p1, . . . , pn in the plane. Finally, we are given a range

parameter � > 0. We call the set of cell phones fully connected if it is

possible to assign each phone to a base station in such a way that

. Each phone is assigned to a different base station, and

. If a phone at pi is assigned to a base station at bj, then the straight-line

distance between the points pi and bj is at most �.

Suppose that the owner of the cell phone at point p1 decides to go

for a drive, traveling continuously for a total of z units of distance due

east. As this cell phone moves, we may have to update the assignment of

phones to base stations (possibly several times) in order to keep the set

of phones fully connected.

Give a polynomial-time algorithm to decide whether it is possible to

keep the set of phones fully connected at all times during the travel of

this one cell phone. (You should assume that all other phones remain sta-

tionary during this travel.) If it is possible, you should report a sequence

of assignments of phones to base stations that will be sufficient in order

to maintain full connectivity; if it is not possible, you should report a

point on the traveling phone’s path at which full connectivity cannot be

maintained.

You should try to make your algorithm run in O(n3) time if possible.

Example. Suppose we have phones at p1= (0, 0) and p2= (2, 1); we have

base stations at b1= (1, 1) and b2= (3, 1); and �= 2. Now consider the case

in which the phone at p1 moves due east a distance of 4 units, ending at

(4, 0). Then it is possible to keep the phones fully connected during this

Exercises 431

motion: We begin by assigning p1 to b1 and p2 to b2, and we reassign p1 to

b2 and p2 to b1 during the motion (for example, when p1 passes the point

(2, 0)).

27. Some of your friends with jobs out West decide they really need some

extra time each day to sit in front of their laptops, and the morning

commute from Woodside to Palo Alto seems like the only option. So they

decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that

any carpool arrangement they agree upon is fair and doesn’t overload

any individual with too much driving. Some sort of simple round-robin

scheme is out, because none of them goes to work every day, and so the

subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S =
{p1, . . . , pk}. We say that the total driving obligation of pj over a set of

days is the expected number of times that pj would have driven, had a

driver been chosen uniformly at random from among the people going

to work each day. More concretely, suppose the carpool plan lasts for d

days, and on the ith day a subset Si ⊆ S of the people go to work. Then the

above definition of the total driving obligation �j for pj can be written as

�j =
∑

i:pj∈Si
1
|Si| . Ideally, we’d like to require that pj drives at most �j times;

unfortunately, �j may not be an integer.

So let’s say that a driving schedule is a choice of a driver for each

day—that is, a sequence pi1, pi2, . . . , pid with pit ∈ St—and that a fair driving

schedule is one in which each pj is chosen as the driver on at most ��j�
days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair

driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running

time polynomial in k and d.

28. A group of students has decided to add some features to Cornell’s on-line

Course Management System (CMS), to handle aspects of course planning

that are not currently covered by the software. They’re beginning with a

module that helps schedule office hours at the start of the semester.

Their initial prototype works as follows. The office hour schedule will

be the same from one week to the next, so it’s enough to focus on the

scheduling problem for a single week. The course administrator enters

a collection of nonoverlapping one-hour time intervals I1, I2, . . . , Ik when

it would be possible for teaching assistants (TAs) to hold office hours;

the eventual office-hour schedule will consist of a subset of some, but

432 Chapter 7 Network Flow

generally not all, of these time slots. Then each of the TAs enters his or

her weekly schedule, showing the timeswhen he or shewould be available

to hold office hours.

Finally, the course administrator specifies, for parameters a, b, and

c, that they would like each TA to hold between a and b office hours per

week, and they would like a total of exactly c office hours to be held over

the course of the week.

The problem, then, is how to assign each TA to some of the office-

hour time slots, so that each TA is available for each of his or her office-

hour slots, and so that the right number of office hours gets held. (There

should be only one TA at each office hour.)

Example. Suppose there are five possible time slots for office hours:

I1 = Mon 3–4 P.M.; I2 = Tue 1–2 P.M.; I3 = Wed 10–11 A.M.; I4 = Wed 3–4

P.M.; and I5 = Thu 10–11 A.M..

There are two TAs; the first would be able to hold office hours at any

time on Monday or Wednesday afternoons, and the second would be able

to hold office hours at any time on Tuesday, Wednesday, or Thursday.

(In general, TA availability might be more complicated to specify than

this, but we’re keeping this example simple.) Finally, each TA should hold

between a= 1and b= 2office hours, andwewant exactly c = 3office hours
per week total.

One possible solution would be to have the first TA hold office hours

in time slot I1, and the second TA to hold office hours in time slots I2
and I5.

(a) Give a polynomial-time algorithm that takes the input to an instance

of this problem (the time slots, the TA schedules, and the parameters

a, b, and c) and does one of the following two things:

– Constructs a valid schedule for office hours, specifying which

TA will cover which time slots, or

– Reports (correctly) that there is no valid way to schedule office

hours.

(b) This office-hour scheduling feature becomes very popular, and so

course staffs begin to demand more. In particular, they observe that

it’s good to have a greater density of office hours closer to the due

date of a homework assignment.

So what they want to be able to do is to specify an office-hour

density parameter for each day of the week: The number di specifies

that they want to have at least di office hours on a given day i of the

week.

Exercises 433

For example, suppose that in our previous example, we add the

constraint that we want at least one office hour onWednesday and at

least one office hour on Thursday. Then the previous solution does

not work; but there is a possible solution in which we have the first

TA hold office hours in time slot I1, and the second TA hold office

hours in time slots I3 and I5. (Another solution would be to have the

first TA hold office hours in time slots I1 and I4, and the second TA

hold office hours in time slot I5.)

Give a polynomial-time algorithm that computes office-hour

schedules under this more complex set of constraints. The algo-

rithm should either construct a schedule or report (correctly) that

none exists.

29. Some of your friends have recently graduated and started a small com-

pany, which they are currently running out of their parents’ garages in

Santa Clara. They’re in the process of porting all their software from an

old system to a new, revved-up system; and they’re facing the following

problem.

They have a collection of n software applications, {1, 2, . . . , n}, run-
ning on their old system; and they’d like to port some of these to the new

system. If they move application i to the new system, they expect a net

(monetary) benefit of bi ≥ 0. The different software applications interact

with one another; if applications i and j have extensive interaction, then

the company will incur an expense if they move one of i or j to the new

system but not both; let’s denote this expense by xij ≥ 0.

So, if the situation were really this simple, your friends would just

port all n applications, achieving a total benefit of
∑

i bi. Unfortunately,

there’s a problem. . . .

Due to small but fundamental incompatibilities between the two

systems, there’s no way to port application 1 to the new system; it will

have to remain on the old system. Nevertheless, it might still pay off to

port some of the other applications, accruing the associated benefit and

incurring the expense of the interaction between applications on different

systems.

So this is the question they pose to you: Which of the remaining

applications, if any, should be moved? Give a polynomial-time algorithm

to find a set S ⊆ {2, 3, . . . , n} for which the sum of the benefits minus the

expenses of moving the applications in S to the new system is maximized.

30. Consider a variation on the previous problem. In the new scenario, any

application can potentially be moved, but now some of the benefits bi for

434 Chapter 7 Network Flow

moving to the new systemare in factnegative: If bi < 0, then it is preferable

(by an amount quantified in bi) to keep i on the old system. Again, give

a polynomial-time algorithm to find a set S ⊆ {1, 2, . . . , n} for which the

sum of the benefits minus the expenses of moving the applications in S

to the new system is maximized.

31. Some of your friends are interning at the small high-tech company Web-

Exodus. A running joke among the employees there is that the back room

has less space devoted to high-end servers than it does to empty boxes

of computer equipment, piled up in case something needs to be shipped

back to the supplier for maintainence.

A few days ago, a large shipment of computer monitors arrived, each

in its own large box; and since there are many different kinds of monitors

in the shipment, the boxes do not all have the same dimensions. A bunch

of people spent some time in the morning trying to figure out how to

store all these things, realizing of course that less space would be taken

up if some of the boxes could be nested inside others.

Suppose each box i is a rectangular parallelepiped with side lengths

equal to (i1, i2, i3); and suppose each side length is strictly between half a

meter and one meter. Geometrically, you know what it means for one box

to nest inside another: It’s possible if you can rotate the smaller so that

it fits inside the larger in each dimension. Formally, we can say that box

i with dimensions (i1, i2, i3) nests inside box j with dimensions (j1, j2, j3) if

there is a permutation a, b, c of the dimensions {1, 2, 3} so that ia < j1, and

ib < j2, and ic < j3. Of course, nesting is recursive: If i nests in j, and j nests

in k, then by putting i inside j inside k, only box k is visible. We say that

a nesting arrangement for a set of n boxes is a sequence of operations

in which a box i is put inside another box j in which it nests; and if there

were already boxes nested inside i, then these end up inside j as well.

(Also notice the following: Since the side lengths of i are more than half

a meter each, and since the side lengths of j are less than a meter each,

box i will take up more than half of each dimension of j, and so after i is

put inside j, nothing else can be put inside j.) We say that a box k is visible

in a nesting arrangement if the sequence of operations does not result in

its ever being put inside another box.

Here is the problem faced by the people at WebExodus: Since only the

visible boxes are taking up any space, how should a nesting arrangement

be chosen so as to minimize the number of visible boxes?

Give a polynomial-time algorithm to solve this problem.

Example. Suppose there are three boxes with dimensions (.6, .6, .6),

(.75, .75, .75), and (.9, .7, .7). The first box can be put into either of the

Exercises 435

second or third boxes; but in any nesting arrangement, both the second

and third boxes will be visible. So the minimum possible number of vis-

ible boxes is two, and one solution that achieves this is to nest the first

box inside the second.

32. Given a graph G = (V , E), and a natural number k, we can define a relation
G , k−→ on pairs of vertices of G as follows. If x, y ∈ V, we say that x

G , k−→ y if

there exist k mutually edge-disjoint paths from x to y in G.

Is it true that for every G and every k≥ 0, the relation
G , k−→ is transitive?

That is, is it always the case that if x
G , k−→ y and y

G , k−→ z, thenwe have x
G , k−→ z?

Give a proof or a counterexample.

33. Let G = (V , E) be a directed graph, and suppose that for each node v, the

number of edges into v is equal to the number of edges out of v. That is,

for all v,

|{(u, v) : (u, v) ∈ E}| = |{(v, w) : (v, w) ∈ E}|.

Let x, y be two nodes of G, and suppose that there exist k mutually edge-

disjoint paths from x to y. Under these conditions, does it follow that

there exist k mutually edge-disjoint paths from y to x? Give a proof or a

counterexample with explanation.

34. Ad hoc networks, made up of low-powered wireless devices, have been

proposed for situations like natural disasters in which the coordinators

of a rescue effort might want to monitor conditions in a hard-to-reach

area. The idea is that a large collection of these wireless devices could be

dropped into such an area from an airplane and then configured into a

functioning network.

Note that we’re talking about (a) relatively inexpensive devices that

are (b) being dropped from an airplane into (c) dangerous territory; and

for the combination of reasons (a), (b), and (c), it becomes necessary to

include provisions for dealing with the failure of a reasonable number of

the nodes.

We’d like it to be the case that if one of the devices v detects that it is in

danger of failing, it should transmit a representation of its current state to

some other device in the network. Each device has a limited transmitting

range—say it can communicate with other devices that lie within d meters

of it. Moreover, since we don’t want it to try transmitting its state to a

device that has already failed, we should include some redundancy: A

device v should have a set of k other devices that it can potentially contact,

each within d meters of it. We’ll call this a back-up set for device v.

436 Chapter 7 Network Flow

(a) Suppose you’re given a set of n wireless devices, with positions

represented by an (x, y) coordinate pair for each. Design an algorithm

that determines whether it is possible to choose a back-up set for

each device (i.e., k other devices, each within d meters), with the

further property that, for some parameter b, no device appears in

the back-up set of more than b other devices. The algorithm should

output the back-up sets themselves, provided they can be found.

(b) The idea that, for each pair of devices v and w, there’s a strict

dichotomy between being “in range” or “out of range” is a simplified

abstraction. More accurately, there’s a power decay function f (·) that
specifies, for a pair of devices at distance δ, the signal strength f (δ)

that they’ll be able to achieve on their wireless connection. (We’ll

assume that f (δ) decreases with increasing δ.)

We might want to build this into our notion of back-up sets as

follows: among the k devices in the back-up set of v, there should

be at least one that can be reached with very high signal strength,

at least one other that can be reached with moderately high signal

strength, and so forth. More concretely, we have values p1≥ p2≥ . . .≥
pk, so that if the back-up set for v consists of devices at distances

d1≤ d2≤ . . .≤ dk, then we should have f (dj)≥ pj for each j.

Give an algorithm that determines whether it is possible to

choose a back-up set for each device subject to this more detailed

condition, still requiring that no device should appear in the back-up

set of more than b other devices. Again, the algorithm should output

the back-up sets themselves, provided they can be found.

35. You’re designing an interactive image segmentation tool that works as

follows. You start with the image segmentation setup described in Section

7.10, with n pixels, a set of neighboring pairs, and parameters {ai}, {bi},
and {pij}. We will make two assumptions about this instance. First, we will

suppose that each of the parameters {ai}, {bi}, and {pij} is a nonnegative

integer between 0 and d, for some number d. Second, we will suppose that

the neighbor relation among the pixels has the property that each pixel

is a neighbor of at most four other pixels (so in the resulting graph, there

are at most four edges out of each node).

You first perform an initial segmentation (A0, B0) so as to maximize

the quantity q(A0, B0). Now, this might result in certain pixels being

assigned to the background when the user knows that they ought to be

in the foreground. So, when presented with the segmentation, the user

has the option of mouse-clicking on a particular pixel v1, thereby bringing

it to the foreground. But the tool should not simply bring this pixel into

Exercises 437

the foreground; rather, it should compute a segmentation (A1, B1) that

maximizes the quantity q(A1, B1) subject to the condition that v1 is in the

foreground. (In practice, this is useful for the following kind of operation:

In segmenting a photo of a group of people, perhaps someone is holding

a bag that has been accidentally labeled as part of the background. By

clicking on a single pixel belonging to the bag, and recomputing an

optimal segmentation subject to the new condition, the whole bag will

often become part of the foreground.)

In fact, the system should allow the user to perform a sequence

of such mouse-clicks v1, v2, . . . , vt; and after mouse-click vi, the sys-

tem should produce a segmentation (Ai, Bi) that maximizes the quantity

q(Ai, Bi) subject to the condition that all of v1, v2, . . . , vi are in the fore-

ground.

Give an algorithm that performs these operations so that the initial

segmentation is computedwithin a constant factor of the time for a single

maximum flow, and then the interaction with the user is handled in O(dn)

time per mouse-click.

(Note: Solved Exercise 1 from this chapter is a useful primitive for

doing this. Also, the symmetric operation of forcing a pixel to belong to

the background can be handled by analogous means, but you do not have

to work this out here.)

36. We now consider a different variation of the image segmentation problem

in Section 7.10. We will develop a solution to an image labeling problem,

where the goal is to label each pixel with a rough estimate of its distance

from the camera (rather than the simple foreground/background labeling

used in the text). The possible labels for each pixel will be 0, 1, 2, . . . , M

for some integer M.

Let G = (V , E) denote the graph whose nodes are pixels, and edges

indicate neighboring pairs of pixels. A labeling of the pixels is a partition

of V into sets A0, A1, . . . , AM , where Ak is the set of pixels that is labeled

with distance k for k = 0, . . . , M. We will seek a labeling of minimum cost ;

the cost will come from two types of terms. By analogy with the fore-

ground/background segmentation problem, we will have an assignment

cost : for each pixel i and label k, the cost ai,k is the cost of assigning label

k to pixel i. Next, if two neighboring pixels (i, j) ∈ E are assigned different

labels, there will be a separation cost. In Section 7.10, we used a sepa-

ration penalty pij. In our current problem, the separation cost will also

depend on how far the two pixels are separated; specifically, it will be

proportional to the difference in value between their two labels.

Thus the overall cost q′ of a labeling is defined as follows:

438 Chapter 7 Network Flow

vi,1 vi,2 vi,3 vi,4 vi,5s t

ai,0

L L L L L L

ai,1 ai,2 ai,3 ai,5ai,4

Figure 7.30 The set of nodes corresponding to a single pixel i in Exercise 36 (shown
together with the source s and sink t).

q′(A0, . . . , AM)=
M∑

k=0

∑
i∈Ai

ai,k +
∑
k<�

∑
(i, j)∈E

i∈Ak , j∈A�

(�− k)pij.

The goal of this problem is to develop a polynomial-time algorithm

that finds the optimal labeling given the graph G and the penalty pa-

rameters ai,k and pij. The algorithm will be based on constructing a flow

network, andwewill start you off on designing the algorithmby providing

a portion of the construction.

The flow network will have a source s and a sink t. In addition, for

each pixel i ∈ V wewill have nodes vi,k in the flow network for k= 1, . . . , M,

as shown in Figure 7.30. (M = 5 in the example in the figure.)

For notational convenience, the nodes vi,0 and vi,M+1 will refer to s

and t, respectively, for any choice of i ∈ V.

We now add edges (vi,k , vi,k+1) with capacity ai,k for k = 0, . . . , M; and

edges (vi,k+1, vi,k) in the opposite direction with very large capacity L. We

will refer to this collection of nodes and edges as the chain associated

with pixel i.

Notice that if we make this very large capacity L large enough, then

there will be no minimum cut (A, B) so that an edge of capacity L leaves

the set A. (How large do we have tomake it for this to happen?). Hence, for

any minimum cut (A, B), and each pixel i, there will be exactly one low-

capacity edge in the chain associated with i that leaves the set A. (You

should check that if there were two such edges, then a large-capacity

edge would also have to leave the set A.)

Finally, here’s the question: Use the nodes and edges defined so far

to complete the construction of a flow network with the property that a

minimum-cost labeling can be efficiently computed from a minimum s-t

cut. You should prove that your construction has the desired property,

and show how to recover the minimum-cost labeling from the cut.

37. In a standard minimum s-t cut problem, we assume that all capacities are

nonnegative; allowing an arbitrary set of positive and negative capacities

results in a problem that is computationally much more difficult. How-

Exercises 439

ever, as we’ll see here, it is possible to relax the nonnegativity requirement

a little and still have a problem that can be solved in polynomial time.

Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

edge capacities {ce}. Suppose that for every edge e that has neither s nor t

as an endpoint, we have ce ≥ 0. Thus ce can be negative for edges e that have

at least one end equal to either s or t. Give a polynomial-time algorithm

to find an s-t cut of minimum value in such a graph. (Despite the new

nonnegativity requirements, we still define the value of an s-t cut (A, B)

to be the sum of the capacities of all edges e for which the tail of e is in

A and the head of e is in B.)

38. You’re working with a large database of employee records. For the pur-

poses of this question, we’ll picture the database as a two-dimensional

table T with a set R of m rows and a set C of n columns; the rows corre-

spond to individual employees, and the columns correspond to different

attributes.

To take a simple example, we may have four columns labeled

name, phone number, start date, manager′s name

and a table with five employees as shown here.

name phone number start date manager’s name

Alanis 3-4563 6/13/95 Chelsea

Chelsea 3-2341 1/20/93 Lou

Elrond 3-2345 12/19/01 Chelsea

Hal 3-9000 1/12/97 Chelsea

Raj 3-3453 7/1/96 Chelsea

Given a subset S of the columns, we can obtain a new, smaller table

by keeping only the entries that involve columns from S. We will call this

new table the projection of T onto S, and denote it by T[S]. For example,

if S = {name, start date}, then the projection T[S] would be the table

consisting of just the first and third columns.

There’s a different operation on tables that is also useful, which is

to permute the columns. Given a permutation p of the columns, we can

obtain a new table of the same size as T by simply reordering the columns

according to p. We will call this new table the permutation of T by p, and

denote it by Tp.

All of this comes into play for your particular application, as follows.

You have k different subsets of the columns S1, S2, . . . , Sk that you’re

440 Chapter 7 Network Flow

going to be working with a lot, so you’d like to have them available in a

readily accessible format. One choice would be to store the k projections

T[S1], T[S2], . . . , T[Sk], but this would take up a lot of space. In considering

alternatives to this, you learn that you may not need to explicitly project

onto each subset, because the underlying database system can deal with

a subset of the columns particularly efficiently if (in some order) the

members of the subset constitute a prefix of the columns in left-to-right

order. So, in our example, the subsets {name, phone number} and {name,

start date, phone number,} constitute prefixes (they’re the first two and

first three columns from the left, respectively); and as such, they can

be processed much more efficiently in this table than a subset such as

{name, start date}, which does not constitute a prefix. (Again, note that

a given subset Si does not come with a specified order, and so we are

interested in whether there is some order under which it forms a prefix

of the columns.)

So here’s the question: Given a parameter � < k, can you find � per-

mutations of the columns p1, p2, . . . , p� so that for every one of the given

subsets Si (for i = 1, 2, . . . , k), it’s the case that the columns in Si consti-

tute a prefix of at least one of the permuted tables Tp1
, Tp2

, . . . , Tp�
? We’ll

say that such a set of permutations constitutes a valid solution to the

problem; if a valid solution exists, it means you only need to store the

� permuted tables rather than all k projections. Give a polynomial-time

algorithm to solve this problem; for instances on which there is a valid

solution, your algorithm should return an appropriate set of � permuta-

tions.

Example. Suppose the table is as above, the given subsets are

S1= {name, phone number},
S2= {name, start date},
S3= {name, manager′s name, start date},

and �= 2. Then there is a valid solution to the instance, and it could be

achieved by the two permutations

p1= {name, phone number, start date, manager′s name},
p2= {name, start date, manager′s name, phone number}.

This way, S1 constitutes a prefix of the permuted table Tp1
, and both S2

and S3 constitute prefixes of the permuted table Tp2
.

39. You are consulting for an environmental statistics firm. They collect

statistics and publish the collected data in a book. The statistics are

about populations of different regions in the world and are recorded in

Exercises 441

multiples of one million. Examples of such statistics would look like the

following table.

Country A B C Total

grown-up men 11.998 9.083 2.919 24.000

grown-up women 12.983 10.872 3.145 27.000

children 1.019 2.045 0.936 4.000

Total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all

row and column sums are integers. The Census Rounding Problem is to

round all data to integers without changing any row or column sum. Each

fractional number can be rounded either up or down. For example, a good

rounding for our table data would be as follows.

Country A B C Total

grown-up men 11.000 10.000 3.000 24.000

grown-up women 13.000 10.000 4.000 27.000

children 2.000 2.000 0.000 4.000

Total 26.000 22.000 7.000 55.000

(a) Consider first the special case when all data are between 0 and 1.

So you have a matrix of fractional numbers between 0 and 1, and

your problem is to round each fraction that is between 0 and 1 to

either 0 or 1 without changing the row or column sums. Use a flow

computation to check if the desired rounding is possible.

(b) Consider the Census Rounding Problem as defined above, where row

and column sums are integers, and youwant to round each fractional

number α to either �α or �α�. Use a flow computation to check if the

desired rounding is possible.

(c) Prove that the rounding we are looking for in (a) and (b) always exists.

40. In a lot of numerical computations, we can ask about the “stability”

or “robustness” of the answer. This kind of question can be asked for

combinatorial problems as well; here’s one way of phrasing the question

for the Minimum Spanning Tree Problem.

Suppose you are given a graph G= (V , E), with a cost ce on each edge e.

We view the costs as quantities that have been measured experimentally,

subject to possible errors in measurement. Thus, the minimum spanning

442 Chapter 7 Network Flow

tree one computes for G may not in fact be the “real” minimum spanning

tree.

Given error parameters ε > 0 and k > 0, and a specific edge e′ = (u, v),

you would like to be able to make a claim of the following form.

(∗) Even if the cost of each edge were to be changed by at most ε (either

increased or decreased), and the costs of k of the edges other than e′ were

further changed to arbitrarily different values, the edge e′would still not belong

to any minimum spanning tree of G.

Such a property provides a type of guarantee that e′ is not likely to belong

to the minimum spanning tree, even assuming significant measurement

error.

Give a polynomial-time algorithm that takesG, e′, ε, and k, and decides

whether or not property (∗) holds for e′.

41. Suppose you’re managing a collection of processors and must schedule

a sequence of jobs over time.

The jobs have the following characteristics. Each job j has an arrival

time aj when it is first available for processing, a length �j which indicates

how much processing time it needs, and a deadline dj by which it must

be finished. (We’ll assume 0 < �j ≤ dj − aj.) Each job can be run on any

of the processors, but only on one at a time; it can also be preempted

and resumed from where it left off (possibly after a delay) on another

processor.

Moreover, the collection of processors is not entirely static either:

You have an overall pool of k possible processors; but for each processor

i, there is an interval of time [ti, t′i] during which it is available; it is

unavailable at all other times.

Given all this data about job requirements and processor availability,

you’d like to decide whether the jobs can all be completed or not. Give a

polynomial-time algorithm that either produces a schedule completing all

jobs by their deadlines or reports (correctly) that no such schedule exists.

You may assume that all the parameters associated with the problem are

integers.

Example. Suppose we have two jobs J1 and J2. J1 arrives at time 0, is due

at time 4, and has length 3. J2 arrives at time 1, is due at time 3, and has

length 2. We also have two processors P1 and P2. P1 is available between

times 0 and 4; P2 is available between times 2 and 3. In this case, there is

a schedule that gets both jobs done.

. At time 0, we start job J1 on processor P1.

Exercises 443

. At time 1, we preempt J1 to start J2 on P1.

. At time 2, we resume J1 on P2. (J2 continues processing on P1.)

. At time 3, J2 completes by its deadline. P2 ceases to be available, so

we move J1 back to P1 to finish its remaining one unit of processing

there.

. At time 4, J1 completes its processing on P1.

Notice that there is no solution that does not involve preemption and

moving of jobs.

42. Give a polynomial-time algorithm for the following minimization ana-

logue of the Maximum-Flow Problem. You are given a directed graph

G = (V , E), with a source s ∈ V and sink t ∈ V, and numbers (capacities)

�(v, w) for each edge (v, w) ∈ E. We define a flow f , and the value of a flow,

as usual, requiring that all nodes except s and t satisfy flow conserva-

tion. However, the given numbers are lower bounds on edge flow—that

is, they require that f (v, w)≥ �(v, w) for every edge (v, w) ∈ E, and there is

no upper bound on flow values on edges.

(a) Give a polynomial-time algorithm that finds a feasible flow of mini-

mum possible value.

(b) Prove an analogue of theMax-FlowMin-Cut Theorem for this problem

(i.e., does min-flow = max-cut?).

43. You are trying to solve a circulation problem, but it is not feasible. The

problem has demands, but no capacity limits on the edges. More formally,

there is a graph G = (V , E), and demands dv for each node v (satisfying∑
v∈V dv = 0), and the problem is to decide if there is a flow f such that

f (e)≥ 0 and f in(v)− f out(v)= dv for all nodes v ∈ V. Note that this problem

can be solved via the circulation algorithm from Section 7.7 by setting

ce =+∞ for all edges e ∈ E. (Alternately, it is enough to set ce to be an

extremely large number for each edge—say, larger than the total of all

positive demands dv in the graph.)

You want to fix up the graph to make the problem feasible, so it

would be very useful to know why the problem is not feasible as it stands

now. On a closer look, you see that there is a subset U of nodes such that

there is no edge into U , and yet
∑

v∈U dv > 0. You quickly realize that the

existence of such a set immediately implies that the flow cannot exist:

The set U has a positive total demand, and so needs incoming flow, and

yet U has no edges into it. In trying to evaluate how far the problem is

from being solvable, you wonder how big the demand of a set with no

incoming edges can be.

444 Chapter 7 Network Flow

Give a polynomial-time algorithm to find a subset S⊂ V of nodes such

that there is no edge into S and for which
∑

v∈S dv is as large as possible

subject to this condition.

44. Suppose we are given a directed network G = (V , E) with a root node r and

a set of terminals T ⊆ V. We’d like to disconnect many terminals from r,

while cutting relatively few edges.

We make this trade-off precise as follows. For a set of edges F ⊆ E, let

q(F) denote the number of nodes v ∈ T such that there is no r-v path in

the subgraph (V , E − F). Give a polynomial-time algorithm to find a set F

of edges that maximizes the quantity q(F)− |F |. (Note that setting F equal

to the empty set is an option.)

45. Consider the following definition. We are given a set of n countries that

are engaged in trade with one another. For each country i, we have the

value si of its budget surplus; this number may be positive or negative,

with a negative number indicating a deficit. For each pair of countries i, j,

we have the total value eij of all exports from i to j; this number is always

nonnegative. We say that a subset S of the countries is free-standing if the

sum of the budget surpluses of the countries in S, minus the total value

of all exports from countries in S to countries not in S, is nonnegative.

Give a polynomial-time algorithm that takes this data for a set of

n countries and decides whether it contains a nonempty free-standing

subset that is not equal to the full set.

46. In sociology, one often studies a graph G in which nodes represent people

and edges represent those who are friends with each other. Let’s assume

for purposes of this question that friendship is symmetric, so we can

consider an undirected graph.

Now suppose we want to study this graph G, looking for a “close-knit”

group of people. One way to formalize this notion would be as follows.

For a subset S of nodes, let e(S) denote the number of edges in S—that is,

the number of edges that have both ends in S. We define the cohesiveness

of S as e(S)/|S|. A natural thing to search for would be a set S of people

achieving the maximum cohesiveness.

(a) Give a polynomial-time algorithm that takes a rational number α and

determines whether there exists a set S with cohesiveness at least α.

(b) Give a polynomial-time algorithm to find a set S of nodes with

maximum cohesiveness.

Exercises 445

47. The goal of this problem is to suggest variants of the Preflow-Push

Algorithm that speed up the practical running time without ruining its

worst-case complexity. Recall that the algorithm maintains the invariant

that h(v)≤ h(w)+ 1 for all edges (v, w) in the residual graph of the current

preflow. We proved that if f is a flow (not just a preflow) with this

invariant, then it is a maximum flow. Heights were monotone increasing,

and the running-time analysis depended on bounding the number of

times nodes can increase their heights. Practical experience shows that

the algorithm is almost always much faster than suggested by the worst

case, and that the practical bottleneck of the algorithm is relabeling

nodes (and not the nonsaturating pushes that lead to the worst case in

the theoretical analysis). The goal of the problems below is to decrease

the number of relabelings by increasing heights faster than one by one.

Assume you have a graph G with n nodes, m edges, capacities c, source s,

and sink t.

(a) The Preflow-Push Algorithm, as described in Section 7.4, starts by

setting the flow equal to the capacity ce on all edges e leaving the

source, setting the flow to 0 on all other edges, setting h(s)= n, and

setting h(v)= 0 for all other nodes v ∈ V. Give an O(m) procedure for

initializing node heights that is better than the one we constructed

in Section 7.4. Your method should set the height of each node v to

be as high as possible given the initial flow.

(b) In this part we will add a new step, called gap relabeling, to Preflow-

Push, which will increase the labels of lots of nodes bymore than one

at a time. Consider a preflow f and heights h satisfying the invariant.

A gap in the heights is an integer 0 < h < n so that no node has

height exactly h. Assume h is a gap value, and let A be the set of

nodes v with heights n > h(v) > h. Gap relabeling is the process of

changing the heights of all nodes in A so they are equal to n. Prove

that the Preflow-Push Algorithm with gap relabeling is a valid max-

flow algorithm. Note that the only new thing that you need to prove is

that gap relabeling preserves the invariant above, that h(v)≤ h(w)+ 1
for all edges (v, w) in the residual graph.

(c) In Section 7.4 we proved that h(v)≤ 2n− 1 throughout the algorithm.

Here we will have a variant that has h(v)≤ n throughout. The idea is

that we “freeze” all nodes when they get to height n; that is, nodes at

height n are no longer considered active, and hence are not used for

push and relabel. This way, at the end of the algorithm we have a

preflow and height function that satisfies the invariant above, and so

that all excess is at height n. Let B be the set of nodes v so that there

446 Chapter 7 Network Flow

is a path from v to t in the residual graph of the current preflow. Let

A= V−B. Prove that at the end of the algorithm, (A, B) is a minimum-

capacity s-t cut.

(d) The algorithm in part (c) computes aminimum s-t cut but fails to find

a maximum flow (as it ends with a preflow that has excesses). Give

an algorithm that takes the preflow f at the end of the algorithm of

part (c) and converts it into a maximum flow in at most O(mn) time.

(Hint: Consider nodes with excess, and try to send the excess back

to s using only edges that the flow came on.)

48. In Section 7.4 we considered the Preflow-Push Algorithm, and discussed

one particular selection rule for considering vertices. Here we will explore

a different selection rule. We will also consider variants of the algorithm

that terminate early (and find a cut that is close to theminimumpossible).

(a) Let f be any preflow. As f is not necessarily a valid flow, it is possible

that the value f out(s) is much higher than the maximum-flow value in

G. Show, however, that f in(t) is a lower bound on the maximum-flow

value.

(b) Consider a preflow f and a compatible labeling h. Recall that the set

A= {v : There is an s-v path in the residual graph Gf }, and B = V−A

defines an s-t cut for any preflow f that has a compatible labeling h.

Show that the capacity of the cut (A, B) is equal to c(A, B)=∑
v∈B ef (v).

Combining (a) and (b) allows the algorithm to terminate early and

return (A, B) as an approximately minimum-capacity cut, assuming

c(A, B)− f in(t) is sufficiently small. Next we consider an implementa-

tion that will work on decreasing this value by trying to push flow

out of nodes that have a lot of excess.

(c) The scaling version of the Preflow-Push Algorithm maintains a scal-

ing parameter �. We set � initially to be a large power of 2. The

algorithm at each step selects a node with excess at least � with as

small a height as possible. When no nodes (other than t) have ex-

cess at least �, we divide � by 2, and continue. Note that this is

a valid implementation of the generic Preflow-Push Algorithm. The

algorithm runs in phases. A single phase continues as long as � is

unchanged. Note that � starts out at the largest capacity, and the

algorithm terminates when �= 1. So there are at most O(log C) scal-

ing phases. Show how to implement this variant of the algorithm so

that the running time can be bounded by O(mn + n log C + K) if the

algorithm has K nonsaturating push operations.

Exercises 447

(d) Show that the number of nonsaturating push operations in the above

algorithm is at most O(n2 log C). Recall that O(log C) bounds the num-

ber of scaling phases. To bound the number of nonsaturating push

operations in a single scaling phase, consider the potential function

�=∑
v∈V h(v)ef (v)/�. What is the effect of a nonsaturating push on

�? Which operation(s) can make � increase?

49. Consider an assignment problem where we have a set of n stations that

can provide service, and there is a set of k requests for service. Say, for

example, that the stations are cell towers and the requests are cell phones.

Each request can be served by a given set of stations. The problem so far

can be represented by a bipartite graph G: one side is the stations, the

other the customers, and there is an edge (x, y) between customer x and

station y if customer x can be served from station y. Assume that each

station can serve at most one customer. Using a max-flow computation,

we can decide whether or not all customers can be served, or can get an

assignment of a subset of customers to stations maximizing the number

of served customers.

Here we consider a version of the problem with an additional compli-

cation: Each customer offers a different amount of money for the service.

Let U be the set of customers, and assume that customer x ∈ U is willing

to pay vx ≥ 0 for being served. Now the goal is to find a subset X ⊂ U max-

imizing
∑

x∈X vx such that there is an assignment of the customers in X

to stations.

Consider the following greedy approach. We process customers in

order of decreasing value (breaking ties arbitrarily). When considering

customer x the algorithm will either “promise” service to x or reject x in

the following greedy fashion. Let X be the set of customers that so far

have been promised service. We add x to the set X if and only if there is

a way to assign X ∪ {x} to servers, and we reject x otherwise. Note that

rejected customers will not be considered later. (This is viewed as an

advantage: If we need to reject a high-paying customer, at least we can tell

him/her early.) However, we do not assign accepted customers to servers

in a greedy fashion: we only fix the assignment after the set of accepted

customers is fixed. Does this greedy approach produce an optimal set of

customers? Prove that it does, or provide a counterexample.

50. Consider the following scheduling problem. There are m machines, each

of which can process jobs, one job at a time. The problem is to assign

jobs to machines (each job needs to be assigned to exactly one machine)

and order the jobs on machines so as to minimize a cost function.

448 Chapter 7 Network Flow

The machines run at different speeds, but jobs are identical in their

processing needs. More formally, each machine i has a parameter �i, and

each job requires �i time if assigned to machine i.

There are n jobs. Jobs have identical processing needs but different

levels of urgency. For each job j, we are given a cost function cj(t) that

is the cost of completing job j at time t. We assume that the costs are

nonnegative, and monotone in t.

A schedule consists of an assignment of jobs to machines, and on

each machine the schedule gives the order in which the jobs are done.

The job assigned to machine i as the first job will complete at time �i,

the second job at time 2�i and so on. For a schedule S, let tS(j) denote

the completion time of job j in this schedule. The cost of the schedule is

cost(S)=∑
j cj(tS(j)).

Give a polynomial-time algorithm to find a schedule ofminimumcost.

51. Some friends of yours have grown tired of the game “Six Degrees of Kevin

Bacon” (after all, they ask, isn’t it just breadth-first search?) and decide to

invent a game with a little more punch, algorithmically speaking. Here’s

how it works.

You start with a set X of n actresses and a set Y of n actors, and two

players P0 and P1. Player P0 names an actress x1 ∈ X, player P1 names an

actor y1who has appeared in amovie with x1, player P0 names an actress x2

whohas appeared in amovie with y1, and so on. Thus, P0 and P1 collectively

generate a sequence x1, y1, x2, y2, . . . such that each actor/actress in the

sequence has costarred with the actress/actor immediately preceding. A

player Pi (i = 0, 1) loses when it is Pi’s turn to move, and he/she cannot

name a member of his/her set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with

complete information onwhohas appeared in amoviewithwhom.A strat-

egy for Pi, in our setting, is an algorithm that takes a current sequence

x1, y1, x2, y2, . . . and generates a legal next move for Pi (assuming it’s Pi’s

turn to move). Give a polynomial-time algorithm that decides which of

the two players can force a win, in a particular instance of this game.

Notes and Further Reading

Network flow emerged as a cohesive subject through the work of Ford and
Fulkerson (1962). It is now a field of research in itself, and one can easily

Notes and Further Reading 449

devote an entire course to the topic; see, for example, the survey by Goldberg,
Tardos, and Tarjan (1990) and the book by Ahuja, Magnanti, and Orlin (1993).

Schrijver (2002) provides an interesting historical account of the early
work by Ford and Fulkerson on the flow problem. Lending further support
to those of us who always felt that the Minimum-Cut Problem had a slightly
destructive overtone, this survey cites a recently declassified U.S. Air Force
report to show that in the original motivating application for minimum cuts,
the network was a map of rail lines in the Soviet Union, and the goal was to
disrupt transportation through it.

As we mention in the text, the formulations of the Bipartite Matching
and Disjoint Paths Problems predate the Maximum-Flow Problem by several
decades; it was through the development of network flows that these were all
placed on a common methodological footing. The rich structure of matchings
in bipartite graphs has many independent discoverers; P. Hall (1935) and
König (1916) are perhaps the most frequently cited. The problem of finding
edge-disjoint paths from a source to a sink is equivalent to the Maximum-
Flow Problem with all capacities equal to 1; this special case was solved (in
essentially equivalent form) by Menger (1927).

The Preflow-Push Maximum-Flow Algorithm is due to Goldberg (1986),
and its efficient implementation is due to Goldberg and Tarjan (1986). High-
performance code for this and other network flow algorithms can be found at
a Web site maintained by Andrew Goldberg.

The algorithm for image segmentation using minimum cuts is due to
Greig, Porteous, and Seheult (1989), and the use of minimum cuts has be-
come an active theme in computer vision research (see, e.g., Veksler (1999)
and Kolmogorov and Zabih (2004) for overviews); we will discuss some fur-
ther extensions of this approach in Chapter 12. Wayne (2001) presents further
results on baseball elimination and credits Alan Hoffman with initially popu-
larizing this example in the 1960s. Many further applications of network flows
and cuts are discussed in the book by Ahuja, Magnanti, and Orlin (1993).

The problem of finding a minimum-cost perfect matching is a special case
of the Minimum-Cost Flow Problem, which is beyond the scope of our coverage
here. There are a number of equivalent ways to state the Minimum-Cost Flow
Problem; in one formulation, we are given a flow network with both capacities
ce and costs Ce on the edges; the cost of a flow f is equal to the sum of the edge
costs weighted by the amount of flow they carry,

∑
e Cef (e), and the goal is

to produce a maximum flow of minimum total cost. The Minimum-Cost Flow
Problem can be solved in polynomial time, and it too has many applications;

450 Chapter 7 Network Flow

Cook et al. (1998) and Ahuja, Magnanti, and Orlin (1993) discuss algorithms
for this problem.

While network flow models routing problems that can be reduced to the
task of constructing a number of paths from a single source to a single sink,
there is a more general, and harder, class of routing problems in which paths
must be simultaneously constructed between different pairs of senders and
receivers. The relationship among these classes of problems is a bit subtle;
we discuss this issue, as well as algorithms for some of these harder types of
routing problems, in Chapter 11.

Notes on the Exercises Exercise 8 is based on a problem we learned from Bob
Bland; Exercise 16 is based on discussions with Udi Manber; Exercise 25 is
based on discussions with Jordan Erenrich; Exercise 35 is based on discussions
with Yuri Boykov, Olga Veksler, and Ramin Zabih; Exercise 36 is based on
results of Hiroshi Ishikawa and Davi Geiger, and of Boykov, Veksler, and Zabih;
Exercise 38 is based on a problem we learned from Al Demers; and Exercise 46
is based on a result of J. Picard and H. Ratliff.

Chapter 8

NP and Computational
Intractability

We now arrive at a major transition point in the book. Up until now, we’ve de-
veloped efficient algorithms for a wide range of problems and have even made
some progress on informally categorizing the problems that admit efficient
solutions—for example, problems expressible as minimum cuts in a graph, or
problems that allow a dynamic programming formulation. But although we’ve
often paused to take note of other problems that we don’t see how to solve, we
haven’t yet made any attempt to actually quantify or characterize the range of
problems that can’t be solved efficiently.

Back when we were first laying out the fundamental definitions, we settled
on polynomial time as our working notion of efficiency. One advantage of
using a concrete definition like this, as we noted earlier, is that it gives us the
opportunity to prove mathematically that certain problems cannot be solved
by polynomial-time—and hence “efficient”—algorithms.

When people began investigating computational complexity in earnest,
there was some initial progress in proving that certain extremely hard problems
cannot be solved by efficient algorithms. But for many of the most funda-
mental discrete computational problems—arising in optimization, artificial
intelligence, combinatorics, logic, and elsewhere—the question was too dif-
ficult to resolve, and it has remained open since then: We do not know of
polynomial-time algorithms for these problems, and we cannot prove that no
polynomial-time algorithm exists.

In the face of this formal ambiguity, which becomes increasingly hardened
as years pass, people working in the study of complexity have made significant
progress. A large class of problems in this “gray area” has been characterized,
and it has been proved that they are equivalent in the following sense: a
polynomial-time algorithm for any one of them would imply the existence of a

452 Chapter 8 NP and Computational Intractability

polynomial-time algorithm for all of them. These are the NP-complete problems,
a name that will make more sense as we proceed a little further. There are
literally thousands of NP-complete problems, arising in numerous areas, and
the class seems to contain a large fraction of the fundamental problems whose
complexity we can’t resolve. So the formulation of NP-completeness, and the
proof that all these problems are equivalent, is a powerful thing: it says that
all these open questions are really a single open question, a single type of
complexity that we don’t yet fully understand.

From a pragmatic point of view, NP-completeness essentially means “com-
putationally hard for all practical purposes, though we can’t prove it.” Discov-
ering that a problem is NP-complete provides a compelling reason to stop
searching for an efficient algorithm—you might as well search for an efficient
algorithm for any of the famous computational problems already known to
be NP-complete, for which many people have tried and failed to find efficient
algorithms.

8.1 Polynomial-Time Reductions
Our plan is to explore the space of computationally hard problems, eventually
arriving at a mathematical characterization of a large class of them. Our basic
technique in this exploration is to compare the relative difficulty of different
problems; we’d like to formally express statements like, “Problem X is at least
as hard as problem Y.” We will formalize this through the notion of reduction:
we will show that a particular problem X is at least as hard as some other
problem Y by arguing that, if we had a “black box” capable of solving X,
then we could also solve Y. (In other words, X is powerful enough to let us
solve Y.)

To make this precise, we add the assumption that X can be solved in
polynomial time directly to our model of computation. Suppose we had a
black box that could solve instances of a problem X; if we write down the
input for an instance of X, then in a single step, the black box will return the
correct answer. We can now ask the following question:

(∗) Can arbitrary instances of problem Y be solved using a polynomial
number of standard computational steps, plus a polynomial number of
calls to a black box that solves problem X?

If the answer to this question is yes, then we write Y ≤P X; we read this as
“Y is polynomial-time reducible to X,” or “X is at least as hard as Y (with
respect to polynomial time).” Note that in this definition, we still pay for the
time it takes to write down the input to the black box solving X, and to read
the answer that the black box provides.

8.1 Polynomial-Time Reductions 453

This formulation of reducibility is very natural. When we ask about reduc-
tions to a problem X, it is as though we’ve supplemented our computational
model with a piece of specialized hardware that solves instances of X in a
single step. We can now explore the question: How much extra power does
this piece of hardware give us?

An important consequence of our definition of≤P is the following. Suppose
Y ≤P X and there actually exists a polynomial-time algorithm to solve X. Then
our specialized black box for X is actually not so valuable; we can replace
it with a polynomial-time algorithm for X. Consider what happens to our
algorithm for problem Y that involved a polynomial number of steps plus
a polynomial number of calls to the black box. It now becomes an algorithm
that involves a polynomial number of steps, plus a polynomial number of calls
to a subroutine that runs in polynomial time; in other words, it has become a
polynomial-time algorithm. We have therefore proved the following fact.

(8.1) Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be
solved in polynomial time.

We’ve made use of precisely this fact, implicitly, at a number of earlier
points in the book. Recall that we solved the Bipartite Matching Problem using
a polynomial amount of preprocessing plus the solution of a single instance
of the Maximum-Flow Problem. Since the Maximum-Flow Problem can be
solved in polynomial time, we concluded that Bipartite Matching could as well.
Similarly, we solved the foreground/background Image Segmentation Problem
using a polynomial amount of preprocessing plus the solution of a single
instance of the Minimum-Cut Problem, with the same consequences. Both of
these can be viewed as direct applications of (8.1). Indeed, (8.1) summarizes
a great way to design polynomial-time algorithms for new problems: by
reduction to a problem we already know how to solve in polynomial time.

In this chapter, however, we will be using (8.1) to establish the computa-
tional intractability of various problems. We will be engaged in the somewhat
subtle activity of relating the tractability of problems even when we don’t know
how to solve either of them in polynomial time. For this purpose, we will really
be using the contrapositive of (8.1), which is sufficiently valuable that we’ll
state it as a separate fact.

(8.2) Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

Statement (8.2) is transparently equivalent to (8.1), but it emphasizes our
overall plan: If we have a problem Y that is known to be hard, and we show

454 Chapter 8 NP and Computational Intractability

1

3

6

2

4 5

7

Figure 8.1 A graph whose
largest independent set has
size 4, and whose smallest
vertex cover has size 3.

that Y ≤P X, then the hardness has “spread” to X; X must be hard or else it
could be used to solve Y.

In reality, given that we don’t actually know whether the problems we’re
studying can be solved in polynomial time or not, we’ll be using≤P to establish
relative levels of difficulty among problems.

With this in mind, we now establish some reducibilities among an initial
collection of fundamental hard problems.

A First Reduction: Independent Set and Vertex Cover
The Independent Set Problem, which we introduced as one of our five repre-
sentative problems in Chapter 1, will serve as our first prototypical example
of a hard problem. We don’t know a polynomial-time algorithm for it, but we
also don’t know how to prove that none exists.

Let’s review the formulation of Independent Set, because we’re going to
add one wrinkle to it. Recall that in a graph G = (V , E), we say a set of nodes
S ⊆ V is independent if no two nodes in S are joined by an edge. It is easy
to find small independent sets in a graph (for example, a single node forms
an independent set); the hard part is to find a large independent set, since
you need to build up a large collection of nodes without ever including two
neighbors. For example, the set of nodes {3, 4, 5} is an independent set of
size 3 in the graph in Figure 8.1, while the set of nodes {1, 4, 5, 6} is a larger
independent set.

In Chapter 1, we posed the problem of finding the largest independent set
in a graph G. For purposes of our current exploration in terms of reducibility,
it will be much more convenient to work with problems that have yes/no
answers only, and so we phrase Independent Set as follows.

Given a graph G and a number k, does G contain an independent set of
size at least k?

In fact, from the point of view of polynomial-time solvability, there is not a
significant difference between the optimization version of the problem (find
the maximum size of an independent set) and the decision version (decide, yes
or no, whether G has an independent set of size at least a given k). Given a
method to solve the optimization version, we automatically solve the decision
version (for any k) as well. But there is also a slightly less obvious converse
to this: If we can solve the decision version of Independent Set for every k,
then we can also find a maximum independent set. For given a graph G on n
nodes, we simply solve the decision version of Independent Set for each k; the
largest k for which the answer is “yes” is the size of the largest independent
set in G. (And using binary search, we need only solve the decision version

8.1 Polynomial-Time Reductions 455

for O(log n) different values of k.) This simple equivalence between decision
and optimization will also hold in the problems we discuss below.

Now, to illustrate our basic strategy for relating hard problems to one an-
other, we consider another fundamental graph problem for which no efficient
algorithm is known: Vertex Cover. Given a graph G = (V , E), we say that a set
of nodes S ⊆ V is a vertex cover if every edge e ∈ E has at least one end in S.
Note the following fact about this use of terminology: In a vertex cover, the
vertices do the “covering,” and the edges are the objects being “covered.” Now,
it is easy to find large vertex covers in a graph (for example, the full vertex
set is one); the hard part is to find small ones. We formulate the Vertex Cover
Problem as follows.

Given a graph G and a number k, does G contain a vertex cover of size at
most k?

For example, in the graph in Figure 8.1, the set of nodes {1, 2, 6, 7} is a vertex
cover of size 4, while the set {2, 3, 7} is a vertex cover of size 3.

We don’t know how to solve either Independent Set or Vertex Cover in
polynomial time; but what can we say about their relative difficulty? We now
show that they are equivalently hard, by establishing that Independent Set ≤P
Vertex Cover and also that Vertex Cover ≤P Independent Set. This will be a
direct consequence of the following fact.

(8.3) Let G = (V , E) be a graph. Then S is an independent set if and only if
its complement V − S is a vertex cover.

Proof. First, suppose that S is an independent set. Consider an arbitrary edge
e = (u, v). Since S is independent, it cannot be the case that both u and v are
in S; so one of them must be in V − S. It follows that every edge has at least
one end in V − S, and so V − S is a vertex cover.

Conversely, suppose that V − S is a vertex cover. Consider any two nodes
u and v in S. If they were joined by edge e, then neither end of e would lie
in V − S, contradicting our assumption that V − S is a vertex cover. It follows
that no two nodes in S are joined by an edge, and so S is an independent set.

Reductions in each direction between the two problems follow immedi-
ately from (8.3).

(8.4) Independent Set ≤P Vertex Cover.

456 Chapter 8 NP and Computational Intractability

Proof. If we have a black box to solve Vertex Cover, then we can decide
whether G has an independent set of size at least k by asking the black box
whether G has a vertex cover of size at most n − k.

(8.5) Vertex Cover ≤P Independent Set.

Proof. If we have a black box to solve Independent Set, then we can decide
whether G has a vertex cover of size at most k by asking the black box whether
G has an independent set of size at least n − k.

To sum up, this type of analysis illustrates our plan in general: although
we don’t know how to solve either Independent Set or Vertex Cover efficiently,
(8.4) and (8.5) tell us how we could solve either given an efficient solution to
the other, and hence these two facts establish the relative levels of difficulty
of these problems.

We now pursue this strategy for a number of other problems.

Reducing to a More General Case: Vertex Cover to Set Cover
Independent Set and Vertex Cover represent two different genres of problems.
Independent Set can be viewed as a packing problem: The goal is to “pack
in” as many vertices as possible, subject to conflicts (the edges) that try to
prevent one from doing this. Vertex Cover, on the other hand, can be viewed
as a covering problem: The goal is to parsimoniously “cover” all the edges in
the graph using as few vertices as possible.

Vertex Cover is a covering problem phrased specifically in the language
of graphs; there is a more general covering problem, Set Cover, in which you
seek to cover an arbitrary set of objects using a collection of smaller sets. We
can phrase Set Cover as follows.

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U, and
a number k, does there exist a collection of at most k of these sets whose
union is equal to all of U?

Imagine, for example, that we have m available pieces of software, and a
set U of n capabilities that we would like our system to have. The ith piece
of software includes the set Si ⊆ U of capabilities. In the Set Cover Problem,
we seek to include a small number of these pieces of software on our system,
with the property that our system will then have all n capabilities.

Figure 8.2 shows a sample instance of the Set Cover Problem: The ten
circles represent the elements of the underlying set U, and the seven ovals and
polygons represent the sets S1, S2, . . . , S7. In this instance, there is a collection

8.1 Polynomial-Time Reductions 457

Figure 8.2 An instance of the Set Cover Problem.

of three of the sets whose union is equal to all of U: We can choose the tall
thin oval on the left, together with the two polygons.

Intuitively, it feels like Vertex Cover is a special case of Set Cover: in the
latter case, we are trying to cover an arbitrary set using arbitrary subsets, while
in the former case, we are specifically trying to cover edges of a graph using
sets of edges incident to vertices. In fact, we can show the following reduction.

(8.6) Vertex Cover ≤P Set Cover.

Proof. Suppose we have access to a black box that can solve Set Cover, and
consider an arbitrary instance of Vertex Cover, specified by a graph G = (V , E)

and a number k. How can we use the black box to help us?

458 Chapter 8 NP and Computational Intractability

Our goal is to cover the edges in E, so we formulate an instance of Set
Cover in which the ground set U is equal to E. Each time we pick a vertex in
the Vertex Cover Problem, we cover all the edges incident to it; thus, for each
vertex i ∈ V, we add a set Si ⊆ U to our Set Cover instance, consisting of all
the edges in G incident to i.

We now claim that U can be covered with at most k of the sets S1, . . . , Sn
if and only if G has a vertex cover of size at most k. This can be proved very
easily. For if Si1, . . . , Si� are � ≤ k sets that cover U, then every edge in G is
incident to one of the vertices i1, . . . , i�, and so the set {i1, . . . , i�} is a vertex
cover in G of size �≤ k. Conversely, if {i1, . . . , i�} is a vertex cover in G of size
�≤ k, then the sets Si1, . . . , Si� cover U.

Thus, given our instance of Vertex Cover, we formulate the instance of
Set Cover described above, and pass it to our black box. We answer yes if and
only if the black box answers yes.

(You can check that the instance of Set Cover pictured in Figure 8.2 is
actually the one you’d get by following the reduction in this proof, starting
from the graph in Figure 8.1.)

Here is something worth noticing, both about this proof and about the
previous reductions in (8.4) and (8.5). Although the definition of ≤P allows us
to issue many calls to our black box for Set Cover, we issued only one. Indeed,
our algorithm for Vertex Cover consisted simply of encoding the problem as
a single instance of Set Cover and then using the answer to this instance as
our overall answer. This will be true of essentially all the reductions that we
consider; they will consist of establishing Y ≤P X by transforming our instance
of Y to a single instance of X, invoking our black box for X on this instance,
and reporting the box’s answer as our answer for the instance of Y.

Just as Set Cover is a natural generalization of Vertex Cover, there is a
natural generalization of Independent Set as a packing problem for arbitrary
sets. Specifically, we define the Set Packing Problem as follows.

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U, and a
number k, does there exist a collection of at least k of these sets with the
property that no two of them intersect?

In other words, we wish to “pack” a large number of sets together, with the
constraint that no two of them are overlapping.

As an example of where this type of issue might arise, imagine that we
have a set U of n non-sharable resources, and a set of m software processes.
The ith process requires the set Si ⊆U of resources in order to run. Then the Set
Packing Problem seeks a large collection of these processes that can be run

8.2 Reductions via “Gadgets”: The Satisfiability Problem 459

simultaneously, with the property that none of their resource requirements
overlap (i.e., represent a conflict).

There is a natural analogue to (8.6), and its proof is almost the same as
well; we will leave the details as an exercise.

(8.7) Independent Set ≤P Set Packing.

8.2 Reductions via “Gadgets”: The Satisfiability
Problem

We now introduce a somewhat more abstract set of problems, which are for-
mulated in Boolean notation. As such, they model a wide range of problems
in which we need to set decision variables so as to satisfy a given set of con-
straints; such formalisms are common, for example, in artificial intelligence.
After introducing these problems, we will relate them via reduction to the
graph- and set-based problems that we have been considering thus far.

The SAT and 3-SAT Problems
Suppose we are given a set X of n Boolean variables x1, . . . , xn; each can take
the value 0 or 1 (equivalently, “false” or “true”). By a term over X, we mean
one of the variables xi or its negation xi. Finally, a clause is simply a disjunction
of distinct terms

t1∨ t2 ∨ . . .∨ t�.

(Again, each ti ∈ {x1, x2, . . . , xn, x1, . . . , xn}.) We say the clause has length �

if it contains � terms.

We now formalize what it means for an assignment of values to satisfy a
collection of clauses. A truth assignment for X is an assignment of the value 0
or 1 to each xi; in other words, it is a function ν : X → {0, 1}. The assignment
ν implicitly gives xi the opposite truth value from xi. An assignment satisfies
a clause C if it causes C to evaluate to 1 under the rules of Boolean logic; this
is equivalent to requiring that at least one of the terms in C should receive the
value 1. An assignment satisfies a collection of clauses C1, . . . , Ck if it causes
all of the Ci to evaluate to 1; in other words, if it causes the conjunction

C1∧ C2 ∧ . . .∧ Ck

to evaluate to 1. In this case, we will say that ν is a satisfying assignment with
respect to C1, . . . , Ck; and that the set of clauses C1, . . . , Ck is satisfiable.

Here is a simple example. Suppose we have the three clauses

(x1∨ x2), (x1∨ x3), (x2 ∨ x3).

460 Chapter 8 NP and Computational Intractability

Then the truth assignment ν that sets all variables to 1 is not a satisfying
assignment, because it does not satisfy the second of these clauses; but the
truth assignment ν′ that sets all variables to 0 is a satisfying assignment.

We can now state the Satisfiability Problem, also referred to as SAT:

Given a set of clauses C1, . . . , Ck over a set of variables X = {x1, . . . , xn},
does there exist a satisfying truth assignment?

There is a special case of SAT that will turn out to be equivalently difficult and
is somewhat easier to think about; this is the case in which all clauses contain
exactly three terms (corresponding to distinct variables). We call this problem
3-Satisfiability, or 3-SAT:

Given a set of clauses C1, . . . , Ck, each of length 3, over a set of variables
X = {x1, . . . , xn}, does there exist a satisfying truth assignment?

Satisfiability and 3-Satisfiability are really fundamental combinatorial
search problems; they contain the basic ingredients of a hard computational
problem in very “bare-bones” fashion. We have to make n independent deci-
sions (the assignments for each xi) so as to satisfy a set of constraints. There
are several ways to satisfy each constraint in isolation, but we have to arrange
our decisions so that all constraints are satisfied simultaneously.

Reducing 3-SAT to Independent Set
We now relate the type of computational hardness embodied in SAT and 3-
SAT to the superficially different sort of hardness represented by the search for
independent sets and vertex covers in graphs. Specifically, we will show that
3-SAT ≤P Independent Set. The difficulty in proving a thing like this is clear;
3-SAT is about setting Boolean variables in the presence of constraints, while
Independent Set is about selecting vertices in a graph. To solve an instance of
3-SAT using a black box for Independent Set, we need a way to encode all these
Boolean constraints in the nodes and edges of a graph, so that satisfiability
corresponds to the existence of a large independent set.

Doing this illustrates a general principle for designing complex reductions
Y ≤P X: building “gadgets” out of components in problem X to represent what
is going on in problem Y.

(8.8) 3-SAT ≤P Independent Set.

Proof. We have a black box for Independent Set and want to solve an instance
of 3-SAT consisting of variables X = {x1, . . . , xn} and clauses C1, . . . , Ck.

The key to thinking about the reduction is to realize that there are two
conceptually distinct ways of thinking about an instance of 3-SAT.

8.2 Reductions via “Gadgets”: The Satisfiability Problem 461

v11

v12 v13

v21

v22 v23

vk1

vk2 vk3

Conflict

Any independent set
contains at most one
node from each triangle.

Conflict

Conflict

.

Figure 8.3 The reduction from 3-SAT to Independent Set.

. One way to picture the 3-SAT instance was suggested earlier: You have to
make an independent 0/1 decision for each of the n variables, and you
succeed if you manage to achieve one of three ways of satisfying each
clause.

. A different way to picture the same 3-SAT instance is as follows: You have
to choose one term from each clause, and then find a truth assignment
that causes all these terms to evaluate to 1, thereby satisfying all clauses.
So you succeed if you can select a term from each clause in such a way
that no two selected terms “conflict”; we say that two terms conflict if
one is equal to a variable xi and the other is equal to its negation xi. If
we avoid conflicting terms, we can find a truth assignment that makes
the selected terms from each clause evaluate to 1.

Our reduction will be based on this second view of the 3-SAT instance;
here is how we encode it using independent sets in a graph. First, construct a
graph G = (V , E) consisting of 3k nodes grouped into k triangles as shown in
Figure 8.3. That is, for i = 1, 2, . . . , k, we construct three vertices vi1, vi2, vi3
joined to one another by edges. We give each of these vertices a label; vij is
labeled with the jth term from the clause Ci of the 3-SAT instance.

Before proceeding, consider what the independent sets of size k look like
in this graph: Since two vertices cannot be selected from the same triangle,
they consist of all ways of choosing one vertex from each of the triangles. This
is implementing our goal of choosing a term in each clause that will evaluate
to 1; but we have so far not prevented ourselves from choosing two terms that
conflict.

462 Chapter 8 NP and Computational Intractability

We encode conflicts by adding some more edges to the graph: For each
pair of vertices whose labels correspond to terms that conflict, we add an edge
between them. Have we now destroyed all the independent sets of size k, or
does one still exist? It’s not clear; it depends on whether we can still select one
node from each triangle so that no conflicting pairs of vertices are chosen. But
this is precisely what the 3-SAT instance required.

Let’s claim, precisely, that the original 3-SAT instance is satisfiable if and
only if the graph G we have constructed has an independent set of size at least
k. First, if the 3-SAT instance is satisfiable, then each triangle in our graph
contains at least one node whose label evaluates to 1. Let S be a set consisting
of one such node from each triangle. We claim S is independent; for if there
were an edge between two nodes u, v ∈ S, then the labels of u and v would
have to conflict; but this is not possible, since they both evaluate to 1.

Conversely, suppose our graph G has an independent set S of size at least
k. Then, first of all, the size of S is exactly k, and it must consist of one node
from each triangle. Now, we claim that there is a truth assignment ν for the
variables in the 3-SAT instance with the property that the labels of all nodes
in S evaluate to 1. Here is how we could construct such an assignment ν. For
each variable xi, if neither xi nor xi appears as a label of a node in S, then we
arbitrarily set ν(xi)= 1. Otherwise, exactly one of xi or xi appears as a label
of a node in S; for if one node in S were labeled xi and another were labeled
xi, then there would be an edge between these two nodes, contradicting our
assumption that S is an independent set. Thus, if xi appears as a label of a
node in S, we set ν(xi)= 1, and otherwise we set ν(xi)= 0. By constructing ν

in this way, all labels of nodes in S will evaluate to 1.

Since G has an independent set of size at least k if and only if the original
3-SAT instance is satisfiable, the reduction is complete.

Some Final Observations: Transitivity of Reductions
We’ve now seen a number of different hard problems, of various flavors, and
we’ve discovered that they are closely related to one another. We can infer a
number of additional relationships using the following fact: ≤P is a transitive
relation.

(8.9) If Z ≤P Y, and Y ≤P X, then Z ≤P X.

Proof. Given a black box for X, we show how to solve an instance of Z;
essentially, we just compose the two algorithms implied by Z ≤P Y and Y ≤P X.
We run the algorithm for Z using a black box for Y; but each time the black
box for Y is called, we simulate it in a polynomial number of steps using the
algorithm that solves instances of Y using a black box for X.

8.3 Efficient Certification and the Definition of NP 463

Transitivity can be quite useful. For example, since we have proved

3-SAT≤P Independent Set≤P Vertex Cover≤P Set Cover,

we can conclude that 3-SAT ≤P Set Cover.

8.3 Efficient Certification and the Definition of NP
Reducibility among problems was the first main ingredient in our study of
computational intractability. The second ingredient is a characterization of the
class of problems that we are dealing with. Combining these two ingredients,
together with a powerful theorem of Cook and Levin, will yield some surprising
consequences.

Recall that in Chapter 1, when we first encountered the Independent Set
Problem, we asked: Can we say anything good about it, from a computational
point of view? And, indeed, there was something: If a graph does contain an
independent set of size at least k, then we could give you an easy proof of this
fact by exhibiting such an independent set. Similarly, if a 3-SAT instance is
satisfiable, we can prove this to you by revealing the satisfying assignment. It
may be an enormously difficult task to actually find such an assignment; but
if we’ve done the hard work of finding one, it’s easy for you to plug it into the
clauses and check that they are all satisfied.

The issue here is the contrast between finding a solution and check-
ing a proposed solution. For Independent Set or 3-SAT, we do not know a
polynomial-time algorithm to find solutions; but checking a proposed solution
to these problems can be easily done in polynomial time. To see that this is
not an entirely trivial issue, consider the problem we’d face if we had to prove
that a 3-SAT instance was not satisfiable. What “evidence” could we show that
would convince you, in polynomial time, that the instance was unsatisfiable?

Problems and Algorithms
This will be the crux of our characterization; we now proceed to formalize
it. The input to a computational problem will be encoded as a finite binary
string s. We denote the length of a string s by |s|. We will identify a decision
problem X with the set of strings on which the answer is “yes.” An algorithm
A for a decision problem receives an input string s and returns the value “yes”
or “no”—we will denote this returned value by A(s). We say that A solves the
problem X if for all strings s, we have A(s)= yes if and only if s ∈ X.

As always, we say that A has a polynomial running time if there is a
polynomial function p(·) so that for every input string s, the algorithm A
terminates on s in at most O(p(|s|)) steps. Thus far in the book, we have
been concerned with problems solvable in polynomial time. In the notation

464 Chapter 8 NP and Computational Intractability

above, we can express this as the set P of all problems X for which there exists
an algorithm A with a polynomial running time that solves X.

Efficient Certification
Now, how should we formalize the idea that a solution to a problem can
be checked efficiently, independently of whether it can be solved efficiently?
A “checking algorithm” for a problem X has a different structure from an
algorithm that actually seeks to solve the problem; in order to “check” a
solution, we need the input string s, as well as a separate “certificate” string t
that contains the evidence that s is a “yes” instance of X.

Thus we say that B is an efficient certifier for a problem X if the following
properties hold.

. B is a polynomial-time algorithm that takes two input arguments s and t.

. There is a polynomial function p so that for every string s, we have s ∈ X
if and only if there exists a string t such that |t| ≤ p(|s|) and B(s, t)= yes.

It takes some time to really think through what this definition is saying.
One should view an efficient certifier as approaching a problem X from a
“managerial” point of view. It will not actually try to decide whether an input
s belongs to X on its own. Rather, it is willing to efficiently evaluate proposed
“proofs” t that s belongs to X—provided they are not too long—and it is a
correct algorithm in the weak sense that s belongs to X if and only if there
exists a proof that will convince it.

An efficient certifier B can be used as the core component of a “brute-
force” algorithm for a problem X: On an input s, try all strings t of length
≤ p(|s|), and see if B(s, t)= yes for any of these strings. But the existence of
B does not provide us with any clear way to design an efficient algorithm that
actually solves X; after all, it is still up to us to find a string t that will cause
B(s, t) to say “yes,” and there are exponentially many possibilities for t.

NP: A Class of Problems
We define NP to be the set of all problems for which there exists an efficient
certifier.1 Here is one thing we can observe immediately.

(8.10) P ⊆NP.

1 The act of searching for a string t that will cause an efficient certifier to accept the input s is often

viewed as a nondeterministic search over the space of possible proofs t; for this reason, NP was

named as an acronym for “nondeterministic polynomial time.”

8.3 Efficient Certification and the Definition of NP 465

Proof. Consider a problem X ∈ P; this means that there is a polynomial-time
algorithm A that solves X. To show that X ∈NP, we must show that there is
an efficient certifier B for X.

This is very easy; we design B as follows. When presented with the input
pair (s, t), the certifier B simply returns the value A(s). (Think of B as a
very “hands-on” manager that ignores the proposed proof t and simply solves
the problem on its own.) Why is B an efficient certifier for X? Clearly it has
polynomial running time, since A does. If a string s ∈ X, then for every t of
length at most p(|s|), we have B(s, t)= yes. On the other hand, if s �∈ X, then
for every t of length at most p(|s|), we have B(s, t)= no.

We can easily check that the problems introduced in the first two sections
belong to NP: it is a matter of determining how an efficient certifier for each
of them will make use of a “certificate” string t. For example:

. For the 3-Satisfiability Problem, the certificate t is an assignment of truth
values to the variables; the certifier B evaluates the given set of clauses
with respect to this assignment.

. For the Independent Set Problem, the certificate t is the identity of a set
of at least k vertices; the certifier B checks that, for these vertices, no
edge joins any pair of them.

. For the Set Cover Problem, the certificate t is a list of k sets from the
given collection; the certifier checks that the union of these sets is equal
to the underlying set U.

Yet we cannot prove that any of these problems require more than poly-
nomial time to solve. Indeed, we cannot prove that there is any problem in
NP that does not belong to P. So in place of a concrete theorem, we can only
ask a question:

(8.11) Is there a problem in NP that does not belong to P? Does P =NP?

The question of whether P =NP is fundamental in the area of algorithms,
and it is one of the most famous problems in computer science. The general
belief is that P �=NP—and this is taken as a working hypothesis throughout
the field—but there is not a lot of hard technical evidence for it. It is more based
on the sense that P =NP would be too amazing to be true. How could there
be a general transformation from the task of checking a solution to the much
harder task of actually finding a solution? How could there be a general means
for designing efficient algorithms, powerful enough to handle all these hard
problems, that we have somehow failed to discover? More generally, a huge
amount of effort has gone into failed attempts at designing polynomial-time
algorithms for hard problems in NP; perhaps the most natural explanation

466 Chapter 8 NP and Computational Intractability

for this consistent failure is that these problems simply cannot be solved in
polynomial time.

8.4 NP-Complete Problems
In the absence of progress on the P =NP question, people have turned to a
related but more approachable question: What are the hardest problems in
NP? Polynomial-time reducibility gives us a way of addressing this question
and gaining insight into the structure of NP.

Arguably the most natural way to define a “hardest” problem X is via the
following two properties: (i) X ∈NP; and (ii) for all Y ∈NP, Y ≤P X. In other
words, we require that every problem in NP can be reduced to X. We will call
such an X an NP-complete problem.

The following fact helps to further reinforce our use of the term hardest.

(8.12) Suppose X is an NP-complete problem. Then X is solvable in polyno-
mial time if and only if P =NP.

Proof. Clearly, if P =NP, then X can be solved in polynomial time since it
belongs to NP. Conversely, suppose that X can be solved in polynomial time.
If Y is any other problem in NP, then Y ≤P X, and so by (8.1), it follows that
Y can be solved in polynomial time. Hence NP ⊆ P; combined with (8.10),
we have the desired conclusion.

A crucial consequence of (8.12) is the following: If there is any problem in
NP that cannot be solved in polynomial time, then no NP-complete problem
can be solved in polynomial time.

Circuit Satisfiability: A First NP-Complete Problem
Our definition of NP-completeness has some very nice properties. But before
we get too carried away in thinking about this notion, we should stop to notice
something: it is not at all obvious that NP-complete problems should even
exist. Why couldn’t there exist two incomparable problems X ′ and X ′′, so that
there is no X ∈NP with the property that X ′ ≤P X and X ′′ ≤P X? Why couldn’t
there exist an infinite sequence of problems X1, X2, X3, . . . in NP, each strictly
harder than the previous one? To prove a problem is NP-complete, one must
show how it could encode any problem in NP. This is a much trickier matter
than what we encountered in Sections 8.1 and 8.2, where we sought to encode
specific, individual problems in terms of others.

8.4 NP-Complete Problems 467

In 1971, Cook and Levin independently showed how to do this for very
natural problems in NP. Maybe the most natural problem choice for a first
NP-complete problem is the following Circuit Satisfiability Problem.

To specify this problem, we need to make precise what we mean by a
circuit. Consider the standard Boolean operators that we used to define the
Satisfiability Problem: ∧ (AND), ∨ (OR), and ¬ (NOT). Our definition of a circuit
is designed to represent a physical circuit built out of gates that implement
these operators. Thus we define a circuit K to be a labeled, directed acyclic
graph such as the one shown in the example of Figure 8.4.

. The sources in K (the nodes with no incoming edges) are labeled either
with one of the constants 0 or 1, or with the name of a distinct variable.
The nodes of the latter type will be referred to as the inputs to the circuit.

. Every other node is labeled with one of the Boolean operators ∧, ∨, or
¬; nodes labeled with ∧ or ∨ will have two incoming edges, and nodes
labeled with ¬ will have one incoming edge.

. There is a single node with no outgoing edges, and it will represent the
output: the result that is computed by the circuit.

A circuit computes a function of its inputs in the following natural way. We
imagine the edges as “wires” that carry the 0/1value at the node they emanate
from. Each node v other than the sources will take the values on its incoming
edge(s) and apply the Boolean operator that labels it. The result of this ∧, ∨,
or ¬ operation will be passed along the edge(s) leaving v. The overall value
computed by the circuit will be the value computed at the output node.

For example, consider the circuit in Figure 8.4. The leftmost two sources
are preassigned the values 1 and 0, and the next three sources constitute the

∨

⎦

1

∨

∨

∨

∨

0

Inputs:

Output:

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth
values, and one output.

468 Chapter 8 NP and Computational Intractability

inputs. If the inputs are assigned the values 1, 0, 1 from left to right, then we
get values 0, 1, 1 for the gates in the second row, values 1, 1 for the gates in
the third row, and the value 1 for the output.

Now, the Circuit Satisfiability Problem is the following. We are given a
circuit as input, and we need to decide whether there is an assignment of
values to the inputs that causes the output to take the value 1. (If so, we will
say that the given circuit is satisfiable, and a satisfying assignment is one
that results in an output of 1.) In our example, we have just seen—via the
assignment 1, 0, 1 to the inputs—that the circuit in Figure 8.4 is satisfiable.

We can view the theorem of Cook and Levin as saying the following.

(8.13) Circuit Satisfiability is NP-complete.

As discussed above, the proof of (8.13) requires that we consider an
arbitrary problem X in NP, and show that X ≤P Circuit Satisfiability. We won’t
describe the proof of (8.13) in full detail, but it is actually not so hard to
follow the basic idea that underlies it. We use the fact that any algorithm that
takes a fixed number n of bits as input and produces a yes/no answer can
be represented by a circuit of the type we have just defined: This circuit is
equivalent to the algorithm in the sense that its output is 1 on precisely the
inputs for which the algorithm outputs yes. Moreover, if the algorithm takes
a number of steps that is polynomial in n, then the circuit has polynomial
size. This transformation from an algorithm to a circuit is the part of the proof
of (8.13) that we won’t go into here, though it is quite natural given the fact
that algorithms implemented on physical computers can be reduced to their
operations on an underlying set of ∧, ∨, and ¬ gates. (Note that fixing the
number of input bits is important, since it reflects a basic distinction between
algorithms and circuits: an algorithm typically has no trouble dealing with
different inputs of varying lengths, but a circuit is structurally hard-coded with
the size of the input.)

How should we use this relationship between algorithms and circuits? We
are trying to show that X ≤P Circuit Satisfiability—that is, given an input s,
we want to decide whether s ∈ X using a black box that can solve instances
of Circuit Satisfiability. Now, all we know about X is that it has an efficient
certifier B(·, ·). So to determine whether s ∈ X, for some specific input s of
length n, we need to answer the following question: Is there a t of length p(n)

so that B(s, t)= yes?
We will answer this question by appealing to a black box for Circuit

Satisfiability as follows. Since we only care about the answer for a specific
input s, we view B(·, ·) as an algorithm on n + p(n) bits (the input s and the

8.4 NP-Complete Problems 469

certificate t), and we convert it to a polynomial-size circuit K with n + p(n)

sources. The first n sources will be hard-coded with the values of the bits in
s, and the remaining p(n) sources will be labeled with variables representing
the bits of t; these latter sources will be the inputs to K .

Now we simply observe that s ∈ X if and only if there is a way to set the
input bits to K so that the circuit produces an output of 1—in other words,
if and only if K is satisfiable. This establishes that X ≤P Circuit Satisfiability,
and completes the proof of (8.13).

An Example To get a better sense for what’s going on in the proof of (8.13),
we consider a simple, concrete example. Suppose we have the following
problem.

Given a graph G, does it contain a two-node independent set?

Note that this problem belongs to NP. Let’s see how an instance of this problem
can be solved by constructing an equivalent instance of Circuit Satisfiability.

Following the proof outline above, we first consider an efficient certifier
for this problem. The input s is a graph on n nodes, which will be specified
by

(n
2

)
bits: For each pair of nodes, there will be a bit saying whether there is

an edge joining this pair. The certificate t can be specified by n bits: For each
node, there will be a bit saying whether this node belongs to the proposed
independent set. The efficient certifier now needs to check two things: that at
least two of the bits in t are set to 1, and that no two bits in t are both set to 1
if they form the two ends of an edge (as determined by the corresponding bit
in s).

Now, for the specific input length n corresponding to the s that we are
interested in, we construct an equivalent circuit K . Suppose, for example, that
we are interested in deciding the answer to this problem for a graph G on the
three nodes u, v, w, in which v is joined to both u and w. This means that
we are concerned with an input of length n = 3. Figure 8.5 shows a circuit
that is equivalent to an efficient certifier for our problem on arbitrary three-
node graphs. (Essentially, the right-hand side of the circuit checks that at least
two nodes have been selected, and the left-hand side checks that we haven’t
selected both ends of any edge.) We encode the edges of G as constants in the
first three sources, and we leave the remaining three sources (representing the
choice of nodes to put in the independent set) as variables. Now observe that
this instance of Circuit Satisfiability is satisfiable, by the assignment 1, 0, 1 to
the inputs. This corresponds to choosing nodes u and w, which indeed form
a two-node independent set in our three-node graph G.

470 Chapter 8 NP and Computational Intractability

1

∨

∨

0

∨

∨ ∨

u,v

1

∨

v,wu,w

∨

∨ ∨ ∨

u wv

Have both ends
of some edge
been chosen?

Have at least
two nodes
been chosen?

∨

⎦

Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent
set.

Proving Further Problems NP-Complete
Statement (8.13) opens the door to a much fuller understanding of hard
problems in NP: Once we have our hands on a first NP-complete problem,
we can discover many more via the following simple observation.

(8.14) If Y is an NP-complete problem, and X is a problem in NP with the
property that Y ≤P X, then X is NP-complete.

Proof. Since X ∈NP, we need only verify property (ii) of the definition. So
let Z be any problem in NP. We have Z ≤P Y, by the NP-completeness of Y,
and Y ≤P X by assumption. By (8.9), it follows that Z ≤P X.

So while proving (8.13) required the hard work of considering any pos-
sible problem in NP, proving further problems NP-complete only requires a
reduction from a single problem already known to be NP-complete, thanks to
(8.14).

8.4 NP-Complete Problems 471

In earlier sections, we have seen a number of reductions among some
basic hard problems. To establish their NP-completeness, we need to connect
Circuit Satisfiability to this set of problems. The easiest way to do this is by
relating it to the problem it most closely resembles, 3-Satisfiability.

(8.15) 3-Satisfiability is NP-complete.

Proof. Clearly 3-Satisfiability is in NP, since we can verify in polynomial time
that a proposed truth assignment satisfies the given set of clauses. We will
prove that it is NP-complete via the reduction Circuit Satisfiability ≤P 3-SAT.

Given an arbitrary instance of Circuit Satisfiability, we will first construct
an equivalent instance of SAT in which each clause contains at most three
variables. Then we will convert this SAT instance to an equivalent one in
which each clause has exactly three variables. This last collection of clauses
will thus be an instance of 3-SAT, and hence will complete the reduction.

So consider an arbitrary circuit K . We associate a variable xv with each
node v of the circuit, to encode the truth value that the circuit holds at that
node. Now we will define the clauses of the SAT problem. First we need to
encode the requirement that the circuit computes values correctly at each gate
from the input values. There will be three cases depending on the three types
of gates.

. If node v is labeled with ¬, and its only entering edge is from node u,
then we need to have xv = xu. We guarantee this by adding two clauses
(xv ∨ xu), and (xv ∨ xu).

. If node v is labeled with ∨, and its two entering edges are from nodes u
and w, we need to have xv = xu ∨ xw. We guarantee this by adding the
following clauses: (xv ∨ xu), (xv ∨ xw), and (xv ∨ xu ∨ xw).

. If node v is labeled with ∧, and its two entering edges are from nodes u
and w, we need to have xv = xu ∧ xw. We guarantee this by adding the
following clauses: (xv ∨ xu), (xv ∨ xw), and (xv ∨ xu ∨ xw).

Finally, we need to guarantee that the constants at the sources have their
specified values, and that the output evaluates to 1. Thus, for a source v that
has been labeled with a constant value, we add a clause with the single variable
xv or xv, which forces xv to take the designated value. For the output node o,
we add the single-variable clause xo, which requires that o take the value 1.
This concludes the construction.

It is not hard to show that the SAT instance we just constructed is equiva-
lent to the given instance of Circuit Satisfiability. To show the equivalence, we
need to argue two things. First suppose that the given circuit K is satisfiable.
The satisfying assignment to the circuit inputs can be propagated to create

472 Chapter 8 NP and Computational Intractability

values at all nodes in K (as we did in the example of Figure 8.4). This set of
values clearly satisfies the SAT instance we constructed.

To argue the other direction, we suppose that the SAT instance we con-
structed is satisfiable. Consider a satisfying assignment for this instance, and
look at the values of the variables corresponding to the circuit K ’s inputs. We
claim that these values constitute a satisfying assignment for the circuit K . To
see this, simply note that the SAT clauses ensure that the values assigned to
all nodes of K are the same as what the circuit computes for these nodes. In
particular, a value of 1 will be assigned to the output, and so the assignment
to inputs satisfies K .

Thus we have shown how to create a SAT instance that is equivalent to
the Circuit Satisfiability Problem. But we are not quite done, since our goal
was to create an instance of 3-SAT, which requires that all clauses have length
exactly 3—in the instance we constructed, some clauses have lengths of 1 or 2.
So to finish the proof, we need to convert this instance of SAT to an equivalent
instance in which each clause has exactly three variables.

To do this, we create four new variables: z1, z2, z3, z4. The idea is to ensure
that in any satisfying assignment, we have z1= z2= 0, and we do this by adding
the clauses (zi ∨ z3∨ z4), (zi ∨ z3∨ z4), (zi ∨ z3∨ z4), and (zi ∨ z3∨ z4) for each
of i = 1 and i = 2. Note that there is no way to satisfy all these clauses unless
we set z1= z2= 0.

Now consider a clause in the SAT instance we constructed that has a single
term t (where the term t can be either a variable or the negation of a variable).
We replace each such term by the clause (t ∨ z1∨ z2). Similarly, we replace
each clause that has two terms, say, (t ∨ t′), with the clause (t ∨ t′ ∨ z1). The
resulting 3-SAT formula is clearly equivalent to the SAT formula with at most
three variables in each clause, and this finishes the proof.

Using this NP-completeness result, and the sequence of reductions

3-SAT≤P Independent Set≤P Vertex Cover≤P Set Cover,

summarized earlier, we can use (8.14) to conclude the following.

(8.16) All of the following problems are NP-complete: Independent Set, Set
Packing, Vertex Cover, and Set Cover.

Proof. Each of these problems has the property that it is in NP and that 3-SAT
(and hence Circuit Satisfiability) can be reduced to it.

8.5 Sequencing Problems 473

General Strategy for Proving New Problems NP-Complete
For most of the remainder of this chapter, we will take off in search of further
NP-complete problems. In particular, we will discuss further genres of hard
computational problems and prove that certain examples of these genres are
NP-complete. As we suggested initially, there is a very practical motivation
in doing this: since it is widely believed that P �=NP, the discovery that a
problem is NP-complete can be taken as a strong indication that it cannot be
solved in polynomial time.

Given a new problem X, here is the basic strategy for proving it is NP-
complete.

1. Prove that X ∈NP.

2. Choose a problem Y that is known to be NP-complete.

3. Prove that Y ≤P X.

We noticed earlier that most of our reductions Y ≤P X consist of transform-
ing a given instance of Y into a single instance of X with the same answer. This
is a particular way of using a black box to solve X; in particular, it requires only
a single invocation of the black box. When we use this style of reduction, we
can refine the strategy above to the following outline of an NP-completeness
proof.

1. Prove that X ∈NP.

2. Choose a problem Y that is known to be NP-complete.

3. Consider an arbitrary instance sY of problem Y, and show how to
construct, in polynomial time, an instance sX of problem X that satisfies
the following properties:

(a) If sY is a “yes” instance of Y, then sX is a “yes” instance of X.

(b) If sX is a “yes” instance of X, then sY is a “yes” instance of Y.

In other words, this establishes that sY and sX have the same answer.

There has been research aimed at understanding the distinction between
polynomial-time reductions with this special structure—asking the black box
a single question and using its answer verbatim—and the more general notion
of polynomial-time reduction that can query the black box multiple times.
(The more restricted type of reduction is known as a Karp reduction, while the
more general type is known as a Cook reduction and also as a polynomial-time
Turing reduction.) We will not be pursuing this distinction further here.

8.5 Sequencing Problems
Thus far we have seen problems that (like Independent Set and Vertex Cover)
have involved searching over subsets of a collection of objects; we have also

474 Chapter 8 NP and Computational Intractability

1

6

5

2

3

4

Figure 8.6 A directed graph
containing a Hamiltonian
cycle.

seen problems that (like 3-SAT) have involved searching over 0/1 settings to a
collection of variables. Another type of computationally hard problem involves
searching over the set of all permutations of a collection of objects.

The Traveling Salesman Problem
Probably the most famous such sequencing problem is the Traveling Salesman
Problem. Consider a salesman who must visit n cities labeled v1, v2, . . . , vn.
The salesman starts in city v1, his home, and wants to find a tour—an order
in which to visit all the other cities and return home. His goal is to find a tour
that causes him to travel as little total distance as possible.

To formalize this, we will take a very general notion of distance: for each
ordered pair of cities (vi, vj), we will specify a nonnegative number d(vi, vj)

as the distance from vi to vj. We will not require the distance to be symmetric
(so it may happen that d(vi, vj) �= d(vj , vi)), nor will we require it to satisfy
the triangle inequality (so it may happen that d(vi, vj) plus d(vj , vk) is actually
less than the “direct” distance d(vi, vk)). The reason for this is to make our
formulation as general as possible. Indeed, Traveling Salesman arises naturally
in many applications where the points are not cities and the traveler is not a
salesman. For example, people have used Traveling Salesman formulations for
problems such as planning the most efficient motion of a robotic arm that drills
holes in n points on the surface of a VLSI chip; or for serving I/O requests on
a disk; or for sequencing the execution of n software modules to minimize the
context-switching time.

Thus, given the set of distances, we ask: Order the cities into a tour
vi1, vi2, . . . , vin, with i1= 1, so as to minimize the total distance

∑
j d(vij , vij+1

)+
d(vin , vi1). The requirement i1= 1 simply “orients” the tour so that it starts at
the home city, and the terms in the sum simply give the distance from each city
on the tour to the next one. (The last term in the sum is the distance required
for the salesman to return home at the end.)

Here is a decision version of the Traveling Salesman Problem.

Given a set of distances on n cities, and a bound D, is there a tour of length
at most D?

The Hamiltonian Cycle Problem
The Traveling Salesman Problem has a natural graph-based analogue, which
forms one of the fundamental problems in graph theory. Given a directed graph
G = (V , E), we say that a cycle C in G is a Hamiltonian cycle if it visits each
vertex exactly once. In other words, it constitutes a “tour” of all the vertices,
with no repetitions. For example, the directed graph pictured in Figure 8.6 has

8.5 Sequencing Problems 475

several Hamiltonian cycles; one visits the nodes in the order 1, 6, 4, 3, 2, 5, 1,
while another visits the nodes in the order 1, 2, 4, 5, 6, 3, 1.

The Hamiltonian Cycle Problem is then simply the following:

Given a directed graph G, does it contain a Hamiltonian cycle?

Proving Hamiltonian Cycle is NP-Complete
We now show that both these problems are NP-complete. We do this by first
establishing the NP-completeness of Hamiltonian Cycle, and then proceeding
to reduce from Hamiltonian Cycle to Traveling Salesman.

(8.17) Hamiltonian Cycle is NP-complete.

Proof. We first show that Hamiltonian Cycle is in NP. Given a directed graph
G = (V , E), a certificate that there is a solution would be the ordered list of
the vertices on a Hamiltonian cycle. We could then check, in polynomial time,
that this list of vertices does contain each vertex exactly once, and that each
consecutive pair in the ordering is joined by an edge; this would establish that
the ordering defines a Hamiltonian cycle.

We now show that 3-SAT ≤P Hamiltonian Cycle. Why are we reducing
from 3-SAT? Essentially, faced with Hamiltonian Cycle, we really have no idea
what to reduce from; it’s sufficiently different from all the problems we’ve
seen so far that there’s no real basis for choosing. In such a situation, one
strategy is to go back to 3-SAT, since its combinatorial structure is very basic.
Of course, this strategy guarantees at least a certain level of complexity in the
reduction, since we need to encode variables and clauses in the language of
graphs.

So consider an arbitrary instance of 3-SAT, with variables x1, . . . , xn and
clauses C1, . . . , Ck. We must show how to solve it, given the ability to detect
Hamiltonian cycles in directed graphs. As always, it helps to focus on the
essential ingredients of 3-SAT: We can set the values of the variables however
we want, and we are given three chances to satisfy each clause.

We begin by describing a graph that contains 2n different Hamiltonian
cycles that correspond very naturally to the 2n possible truth assignments to
the variables. After this, we will add nodes to model the constraints imposed
by the clauses.

We construct n paths P1, . . . , Pn, where Pi consists of nodes vi1, vi2, . . . , vib
for a quantity b that we take to be somewhat larger than the number of clauses
k; say, b= 3k + 3. There are edges from vij to vi, j+1 and in the other direction
from vi, j+1 to vij. Thus Pi can be traversed “left to right,” from vi1 to vib, or
“right to left,” from vib to vi1.

476 Chapter 8 NP and Computational Intractability

P1

P2

P3

Hamiltonian cycles correspond to
the 2n possible truth assignments.

s

t

Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we
define edges from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to
vi+1,1 and to vi+1,b. We add two extra nodes s and t; we define edges from s
to v11 and v1b; from vn1 and vnb to t; and from t to s.

The construction up to this point is pictured in Figure 8.7. It’s important
to pause here and consider what the Hamiltonian cycles in our graph look like.
Since only one edge leaves t, we know that any Hamiltonian cycle C must use
the edge (t , s). After entering s, the cycle C can then traverse P1 either left to
right or right to left; regardless of what it does here, it can then traverse P2
either left to right or right to left; and so forth, until it finishes traversing Pn
and enters t. In other words, there are exactly 2n different Hamiltonian cycles,
and they correspond to the n independent choices of how to traverse each Pi.

8.5 Sequencing Problems 477

This naturally models the n independent choices of how to set each vari-
ables x1, . . . , xn in the 3-SAT instance. Thus we will identify each Hamiltonian
cycle uniquely with a truth assignment as follows: If C traverses Pi left to right,
then xi is set to 1; otherwise, xi is set to 0.

Now we add nodes to model the clauses; the 3-SAT instance will turn out
to be satisfiable if and only if any Hamiltonian cycle survives. Let’s consider,
as a concrete example, a clause

C1= x1∨ x2 ∨ x3.

In the language of Hamiltonian cycles, this clause says, “The cycle should
traverse P1 left to right; or it should traverse P2 right to left; or it should traverse
P3 left to right.” So we add a node c1, as in Figure 8.8, that does just this. (Note
that certain edges have been eliminated from this drawing, for the sake of
clarity.) For some value of �, node c1 will have edges from v1�, v2,�+1, and
v3�; it will have edges to v1,�+1, v2,�, and v3,�+1. Thus it can be easily spliced
into any Hamiltonian cycle that traverses P1 left to right by visiting node c1
between v1� and v1,�+1; similarly, c1 can be spliced into any Hamiltonian cycle
that traverses P2 right to left, or P3 left to right. It cannot be spliced into a
Hamiltonian cycle that does not do any of these things.

More generally, we will define a node cj for each clause Cj. We will reserve
node positions 3j and 3j + 1 in each path Pi for variables that participate in
clause Cj. Suppose clause Cj contains a term t. Then if t = xi, we will add
edges (vi,3j , cj) and (cj , vi,3j+1); if t = xi, we will add edges (vi,3j+1, cj) and
(cj , vi,3j).

This completes the construction of the graph G. Now, following our
generic outline for NP-completeness proofs, we claim that the 3-SAT instance
is satisfiable if and only if G has a Hamiltonian cycle.

First suppose there is a satisfying assignment for the 3-SAT instance. Then
we define a Hamiltonian cycle following our informal plan above. If xi is
assigned 1 in the satisfying assignment, then we traverse the path Pi left to
right; otherwise we traverse Pi right to left. For each clause Cj, since it is
satisfied by the assignment, there will be at least one path Pi in which we will
be going in the “correct” direction relative to the node cj, and we can splice it
into the tour there via edges incident on vi,3j and vi,3j+1.

Conversely, suppose that there is a Hamiltonian cycle C in G. The crucial
thing to observe is the following. If C enters a node cj on an edge from vi,3j,
it must depart on an edge to vi,3j+1. For if not, then vi,3j+1 will have only one
unvisited neighbor left, namely, vi,3j+2, and so the tour will not be able to
visit this node and still maintain the Hamiltonian property. Symmetrically, if it
enters from vi,3j+1, it must depart immediately to vi,3j. Thus, for each node cj,

478 Chapter 8 NP and Computational Intractability

s

P1

P2

P3

c1 can only be visited if the
cycle traverses some path
in the correct direction.

t

c1

Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

the nodes immediately before and after cj in the cycle C are joined by an edge e
in G; thus, if we remove cj from the cycle and insert this edge e for each j, then
we obtain a Hamiltonian cycle C′ on the subgraph G − {c1, . . . , ck}. This is our
original subgraph, before we added the clause nodes; as we noted above, any
Hamiltonian cycle in this subgraph must traverse each Pi fully in one direction
or the other. We thus use C′ to define the following truth assignment for the
3-SAT instance. If C′ traverses Pi left to right, then we set xi = 1; otherwise we
set xi = 0. Since the larger cycle C was able to visit each clause node cj, at least
one of the paths was traversed in the “correct” direction relative to the node
cj, and so the assignment we have defined satisfies all the clauses.

8.5 Sequencing Problems 479

Having established that the 3-SAT instance is satisfiable if and only if G
has a Hamiltonian cycle, our proof is complete.

Proving Traveling Salesman is NP-Complete
Armed with our basic hardness result for Hamiltonian Cycle, we can move on
to show the hardness of Traveling Salesman.

(8.18) Traveling Salesman is NP-complete.

Proof. It is easy to see that Traveling Salesman is in NP: The certificate
is a permutation of the cities, and a certifier checks that the length of the
corresponding tour is at most the given bound.

We now show that Hamiltonian Cycle ≤P Traveling Salesman. Given
a directed graph G = (V , E), we define the following instance of Traveling
Salesman. We have a city v′i for each node vi of the graph G. We define d(v′i, v′j)
to be 1 if there is an edge (vi, vj) in G, and we define it to be 2 otherwise.

Now we claim that G has a Hamiltonian cycle if and only if there is tour of
length at most n in our Traveling Salesman instance. For if G has a Hamiltonian
cycle, then this ordering of the corresponding cities defines a tour of length
n. Conversely, suppose there is a tour of length at most n. The expression for
the length of this tour is a sum of n terms, each of which is at least 1; thus it
must be the case that all the terms are equal to 1. Hence each pair of nodes
in G that correspond to consecutive cities on the tour must be connected by
an edge; it follows that the ordering of these corresponding nodes must form
a Hamiltonian cycle.

Note that allowing asymmetric distances in the Traveling Salesman Prob-
lem (d(v′i, v′j) �= d(v′j , v′i)) played a crucial role; since the graph in the Hamil-
tonian Cycle instance is directed, our reduction yielded a Traveling Salesman
instance with asymmetric distances.

In fact, the analogue of the Hamiltonian Cycle Problem for undirected
graphs is also NP-complete; although we will not prove this here, it follows
via a not-too-difficult reduction from directed Hamiltonian Cycle. Using this
undirected Hamiltonian Cycle Problem, an exact analogue of (8.18) can be
used to prove that the Traveling Salesman Problem with symmetric distances
is also NP-complete.

Of course, the most famous special case of the Traveling Salesman Problem
is the one in which the distances are defined by a set of n points in the plane.
It is possible to reduce Hamiltonian Cycle to this special case as well, though
this is much trickier.

480 Chapter 8 NP and Computational Intractability

Extensions: The Hamiltonian Path Problem
It is also sometimes useful to think about a variant of Hamiltonian Cycle in
which it is not necessary to return to one’s starting point. Thus, given a directed
graph G = (V , E), we say that a path P in G is a Hamiltonian path if it contains
each vertex exactly once. (The path is allowed to start at any node and end
at any node, provided it respects this constraint.) Thus such a path consists
of distinct nodes vi1, vi2, . . . , vin in order, such that they collectively constitute
the entire vertex set V; by way of contrast with a Hamiltonian cycle, it is not
necessary for there to be an edge from vin back to vi1. Now, the Hamiltonian
Path Problem asks:

Given a directed graph G, does it contain a Hamiltonian path?

Using the hardness of Hamiltonian Cycle, we show the following.

(8.19) Hamiltonian Path is NP-complete.

Proof. First of all, Hamiltonian Path is in NP: A certificate could be a path in
G, and a certifier could then check that it is indeed a path and that it contains
each node exactly once.

One way to show that Hamiltonian Path is NP-complete is to use a reduc-
tion from 3-SAT that is almost identical to the one we used for Hamiltonian
Cycle: We construct the same graph that appears in Figure 8.7, except that we
do not include an edge from t to s. If there is any Hamiltonian path in this
modified graph, it must begin at s (since s has no incoming edges) and end
at t (since t has no outgoing edges). With this one change, we can adapt the
argument used in the Hamiltonian Cycle reduction more or less word for word
to argue that there is a satisfying assignment for the instance of 3-SAT if and
only if there is a Hamiltonian path.

An alternate way to show that Hamiltonian Path is NP-complete is to prove
that Hamiltonian Cycle≤P Hamiltonian Path. Given an instance of Hamiltonian
Cycle, specified by a directed graph G, we construct a graph G′ as follows. We
choose an arbitrary node v in G and replace it with two new nodes v′ and v′′.
All edges out of v in G are now out of v′; and all edges into v in G are now
into v′′. More precisely, each edge (v, w) in G is replaced by an edge (v′, w);
and each edge (u, v) in G is replaced by an edge (u, v′′). This completes the
construction of G′.

We claim that G′ contains a Hamiltonian path if and only if G contains a
Hamiltonian cycle. Indeed, suppose C is a Hamiltonian cycle in G, and consider
traversing it beginning and ending at node v. It is easy to see that the same
ordering of nodes forms a Hamiltonian path in G′ that begins at v′ and ends at
v′′. Conversely, suppose P is a Hamiltonian path in G′. Clearly P must begin

8.6 Partitioning Problems 481

at v′ (since v′ has no incoming edges) and end at v′′ (since v′′ has no outgoing
edges). If we replace v′ and v′′ with v, then this ordering of nodes forms a
Hamiltonian cycle in G.

8.6 Partitioning Problems
In the next two sections, we consider two fundamental partitioning problems,
in which we are searching over ways of dividing a collection of objects into
subsets. Here we show the NP-completeness of a problem that we call 3-
Dimensional Matching. In the next section we consider Graph Coloring, a
problem that involves partitioning the nodes of a graph.

The 3-Dimensional Matching Problem
We begin by discussing the 3-Dimensional Matching Problem, which can
be motivated as a harder version of the Bipartite Matching Problem that
we considered earlier. We can view the Bipartite Matching Problem in the
following way: We are given two sets X and Y , each of size n, and a set P of
pairs drawn from X × Y. The question is: Does there exist a set of n pairs in P
so that each element in X ∪ Y is contained in exactly one of these pairs? The
relation to Bipartite Matching is clear: the set P of pairs is simply the edges of
the bipartite graph.

Now Bipartite Matching is a problem we know how to solve in polynomial
time. But things get much more complicated when we move from ordered pairs
to ordered triples. Consider the following 3-Dimensional Matching Problem:

Given disjoint sets X, Y, and Z, each of size n, and given a set T ⊆
X × Y × Z of ordered triples, does there exist a set of n triples in T so
that each element of X ∪ Y ∪ Z is contained in exactly one of these triples?

Such a set of triples is called a perfect three-dimensional matching.

An interesting thing about 3-Dimensional Matching, beyond its relation to
Bipartite Matching, is that it simultaneously forms a special case of both Set
Cover and Set Packing: we are seeking to cover the ground set X ∪ Y ∪ Z with a
collection of disjoint sets. More concretely, 3-Dimensional Matching is a special
case of Set Cover since we seek to cover the ground set U = X ∪ Y ∪ Z using
at most n sets from a given collection (the triples). Similarly, 3-Dimensional
Matching is a special case of Set Packing, since we are seeking n disjoint
subsets of the ground set U = X ∪ Y ∪ Z.

Proving 3-Dimensional Matching Is NP-Complete
The arguments above can be turned quite easily into proofs that 3-Dimensional
Matching ≤P Set Cover and that 3-Dimensional Matching ≤P Set Packing.

482 Chapter 8 NP and Computational Intractability

But this doesn’t help us establish the NP-completeness of 3-Dimensional
Matching, since these reductions simply show that 3-Dimensional Matching
can be reduced to some very hard problems. What we need to show is the other
direction: that a known NP-complete problem can be reduced to 3-Dimensional
Matching.

(8.20) 3-Dimensional Matching is NP-complete.

Proof. Not surprisingly, it is easy to prove that 3-Dimensional Matching is in
NP. Given a collection of triples T ⊂ X × Y × Z, a certificate that there is a
solution could be a collection of triples T ′ ⊆ T. In polynomial time, one could
verify that each element in X ∪ Y ∪ Z belongs to exactly one of the triples in T ′.

For the reduction, we again return all the way to 3-SAT. This is perhaps a
little more curious than in the case of Hamiltonian Cycle, since 3-Dimensional
Matching is so closely related to both Set Packing and Set Cover; but in fact the
partitioning requirement is very hard to encode using either of these problems.

Thus, consider an arbitrary instance of 3-SAT, with n variables x1, . . . , xn
and k clauses C1, . . . , Ck. We will show how to solve it, given the ability to
detect perfect three-dimensional matchings.

The overall strategy in this reduction will be similar (at a very high level)
to the approach we followed in the reduction from 3-SAT to Hamiltonian Cycle.
We will first design gadgets that encode the independent choices involved in
the truth assignment to each variable; we will then add gadgets that encode
the constraints imposed by the clauses. In performing this construction, we
will initially describe all the elements in the 3-Dimensional Matching instance
simply as “elements,” without trying to specify for each one whether it comes
from X, Y, or Z. At the end, we will observe that they naturally decompose
into these three sets.

Here is the basic gadget associated with variable xi. We define elements
Ai = {ai1, ai2, . . . , ai,2k} that constitute the core of the gadget; we define
elements Bi = {bi1, . . . , bi,2k} at the tips of the gadget. For each j = 1, 2, . . . , 2k,
we define a triple tij = (aij , ai, j+1, bij), where we interpret addition modulo 2k.
Three of these gadgets are pictured in Figure 8.9. In gadget i, we will call a
triple tij even if j is even, and odd if j is odd. In an analogous way, we will
refer to a tip bij as being either even or odd.

These will be the only triples that contain the elements in Ai, so we
can already say something about how they must be covered in any perfect
matching: we must either use all the even triples in gadget i, or all the odd
triples in gadget i. This will be our basic way of encoding the idea that xi can

8.6 Partitioning Problems 483

Clause 1

The clause elements can only be
matched if some variable gadget
leaves the corresponding tip free.

Core

Variable 1 Variable 2 Variable 3

Tips

Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.

be set to either 0 or 1; if we select all the even triples, this will represent setting
xi = 0, and if we select all the odd triples, this will represent setting xi = 1.

Here is another way to view the odd/even decision, in terms of the tips of
the gadget. If we decide to use the even triples, we cover the even tips of the
gadget and leave the odd tips free. If we decide to use the odd triples, we cover
the odd tips of the gadget and leave the even tips free. Thus our decision of
how to set xi can be viewed as follows: Leaving the odd tips free corresponds
to 0, while leaving the even tips free corresponds to 1. This will actually be the
more useful way to think about things in the remainder of the construction.

So far we can make this even/odd choice independently for each of the n
variable gadgets. We now add elements to model the clauses and to constrain
the assignments we can choose. As in the proof of (8.17), let’s consider the
example of a clause

C1= x1∨ x2 ∨ x3.

In the language of three-dimensional matchings, it tells us, “The matching on
the cores of the gadgets should leave the even tips of the first gadget free; or it
should leave the odd tips of the second gadget free; or it should leave the even
tips of the third gadget free.” So we add a clause gadget that does precisely

484 Chapter 8 NP and Computational Intractability

this. It consists of a set of two core elements P1= {p1, p′1}, and three triples
that contain them. One has the form (p1, p′1, b1j) for an even tip b1j; another
includes p1, p′1, and an odd tip b2, j′; and a third includes p1, p′1, and an even
tip b3, j′′. These are the only three triples that cover P1, so we know that one of
them must be used; this enforces the clause constraint exactly.

In general, for clause Cj, we create a gadget with two core elements
Pj = {pj , p′j}, and we define three triples containing Pj as follows. Suppose clause
Cj contains a term t. If t = xi, we define a triple (pj , p′j , bi,2j); if t = xi, we define
a triple (pj , p′j , bi,2j−1). Note that only clause gadget j makes use of tips bim with
m= 2j or m= 2j − 1; thus, the clause gadgets will never “compete” with each
other for free tips.

We are almost done with the construction, but there’s still one problem.
Suppose the set of clauses has a satisfying assignment. Then we make the
corresponding choices of odd/even for each variable gadget; this leaves at
least one free tip for each clause gadget, and so all the core elements of the
clause gadgets get covered as well. The problem is that we haven’t covered all
the tips. We started with n · 2k = 2nk tips; the triples {tij} covered nk of them;
and the clause gadgets covered an additional k of them. This leaves (n − 1)k
tips left to be covered.

We handle this problem with a very simple trick: we add (n− 1)k “cleanup
gadgets” to the construction. Cleanup gadget i consists of two core elements
Qi = {qi, q′i}, and there is a triple (qi, qi, b) for every tip b in every variable
gadget. This is the final piece of the construction.

Thus, if the set of clauses has a satisfying assignment, then we make the
corresponding choices of odd/even for each variable gadget; as before, this
leaves at least one free tip for each clause gadget. Using the cleanup gadgets
to cover the remaining tips, we see that all core elements in the variable, clause,
and cleanup gadgets have been covered, and all tips have been covered as well.

Conversely, suppose there is a perfect three-dimensional matching in the
instance we have constructed. Then, as we argued above, in each variable
gadget the matching chooses either all the even {tij} or all the odd {tij}. In the
former case, we set xi = 0 in the 3-SAT instance; and in the latter case, we
set xi = 1. Now consider clause Cj; has it been satisfied? Because the two core
elements in Pj have been covered, at least one of the three variable gadgets
corresponding to a term in Cj made the “correct” odd/even decision, and this
induces a variable assignment that satisfies Cj.

This concludes the proof, except for one last thing to worry about: Have
we really constructed an instance of 3-Dimensional Matching? We have a
collection of elements, and triples containing certain of them, but can the
elements really be partitioned into appropriate sets X, Y, and Z of equal size?

8.7 Graph Coloring 485

Fortunately, the answer is yes. We can define X to be set of all aij with j
even, the set of all pj, and the set of all qi. We can define Y to be set of all aij
with j odd, the set of all p′j, and the set of all q′i. Finally, we can define Z to
be the set of all tips bij. It is now easy to check that each triple consists of one
element from each of X, Y, and Z.

8.7 Graph Coloring
When you color a map (say, the states in a U.S. map or the countries on a
globe), the goal is to give neighboring regions different colors so that you can
see their common borders clearly while minimizing visual distraction by using
only a few colors. In the middle of the 19th century, Francis Guthrie noticed
that you could color a map of the counties of England this way with only
four colors, and he wondered whether the same was true for every map. He
asked his brother, who relayed the question to one of his professors, and thus
a famous mathematical problem was born: the Four-Color Conjecture.

The Graph Coloring Problem
Graph coloring refers to the same process on an undirected graph G, with the
nodes playing the role of the regions to be colored, and the edges representing
pairs that are neighbors. We seek to assign a color to each node of G so
that if (u, v) is an edge, then u and v are assigned different colors; and
the goal is to do this while using a small set of colors. More formally, a k-
coloring of G is a function f : V → {1, 2, . . . , k} so that for every edge (u, v),
we have f (u) �= f (v). (So the available colors here are named 1, 2, . . . , k, and
the function f represents our choice of a color for each node.) If G has a
k-coloring, then we will say that it is a k-colorable graph.

In contrast with the case of maps in the plane, it’s clear that there’s not
some fixed constant k so that every graph has a k-coloring: For example, if
we take a set of n nodes and join each pair of them by an edge, the resulting
graph needs n colors. However, the algorithmic version of the problem is very
interesting:

Given a graph G and a bound k, does G have a k-coloring?

We will refer to this as the Graph Coloring Problem, or as k-Coloring when we
wish to emphasize a particular choice of k.

Graph Coloring turns out to be a problem with a wide range of appli-
cations. While it’s not clear there’s ever been much genuine demand from
cartographers, the problem arises naturally whenever one is trying to allocate
resources in the presence of conflicts.

486 Chapter 8 NP and Computational Intractability

. Suppose, for example, that we have a collection of n processes on a
system that can run multiple jobs concurrently, but certain pairs of jobs
cannot be scheduled at the same time because they both need a particular
resource. Over the next k time steps of the system, we’d like to schedule
each process to run in at least one of them. Is this possible? If we construct
a graph G on the set of processes, joining two by an edge if they have a
conflict, then a k-coloring of G represents a conflict-free schedule of the
processes: all nodes colored j can be scheduled in step j, and there will
never be contention for any of the resources.

. Another well-known application arises in the design of compilers. Sup-
pose we are compiling a program and are trying to assign each variable
to one of k registers. If two variables are in use at a common point in
time, then they cannot be assigned to the same register. (Otherwise one
would end up overwriting the other.) Thus we can build a graph G on
the set of variables, joining two by an edge if they are both in use at the
same time. Now a k-coloring of G corresponds to a safe way of allocating
variables to registers: All nodes colored j can be assigned to register j,
since no two of them are in use at the same time.

. A third application arises in wavelength assignment for wireless commu-
nication devices: We’d like to assign one of k transmitting wavelengths
to each of n devices; but if two devices are sufficiently close to each
other, then they need to be assigned different wavelengths to prevent
interference. To deal with this, we build a graph G on the set of devices,
joining two nodes if they’re close enough to interfere with each other;
a k-coloring of this graph is now an assignment of wavelengths so that
any nodes assigned the same wavelength are far enough apart that in-
terference won’t be a problem. (Interestingly, this is an application of
graph coloring where the “colors” being assigned to nodes are positions
on the electromagnetic spectrum—in other words, under a slightly liberal
interpretation, they’re actually colors.)

The Computational Complexity of Graph Coloring
What is the complexity of k-Coloring? First of all, the case k = 2 is a problem
we’ve already seen in Chapter 3. Recall, there, that we considered the problem
of determining whether a graph G is bipartite, and we showed that this is
equivalent to the following question: Can one color the nodes of G red and
blue so that every edge has one red end and one blue end?

But this latter question is precisely the Graph Coloring Problem in the case
when there are k= 2 colors (i.e., red and blue) available. Thus we have argued
that

8.7 Graph Coloring 487

Figure 8.10 A graph that is
not 3-colorable.

(8.21) A graph G is 2-colorable if and only if it is bipartite.

This means we can use the algorithm from Section 3.4 to decide whether
an input graph G is 2-colorable in O(m + n) time, where n is the number of
nodes of G and m is the number of edges.

As soon as we move up to k = 3 colors, things become much harder. No
simple efficient algorithm for the 3-Coloring Problem suggests itself, as it did
for 2-Coloring, and it is also a very difficult problem to reason about. For
example, one might initially suspect that any graph that is not 3-colorable will
contain a “proof” in the form of four nodes that are all mutually adjacent
(and hence would need four different colors)—but this is not true. The graph
in Figure 8.10, for instance, is not 3-colorable for a somewhat more subtle
(though still explainable) reason, and it is possible to draw much more
complicated graphs that are not 3-colorable for reasons that seem very hard to
state succinctly.

In fact, the case of three colors is already a very hard problem, as we show
now.

Proving 3-Coloring Is NP-Complete

(8.22) 3-Coloring is NP-complete.

Proof. It is easy to see why the problem is in NP. Given G and k, one certificate
that the answer is yes is simply a k-coloring: One can verify in polynomial time
that at most k colors are used, and that no pair of nodes joined by an edge
receive the same color.

Like the other problems in this section, 3-Coloring is a problem that is hard
to relate at a superficial level to other NP-complete problems we’ve seen. So
once again, we’re going to reach all the way back to 3-SAT. Given an arbitrary
instance of 3-SAT, with variables x1, . . . , xn and clauses C1, . . . , Ck, we will
solve it using a black box for 3-Coloring.

The beginning of the reduction is quite intuitive. Perhaps the main power
of 3-Coloring for encoding Boolean expressions lies in the fact that we can
associate graph nodes with particular terms, and by joining them with edges
we ensure that they get different colors; this can be used to set one true and
the other false. So with this in mind, we define nodes vi and vi corresponding
to each variable xi and its negation xi. We also define three “special nodes”
T, F , and B, which we refer to as True, False, and Base.

To begin, we join each pair of nodes vi, vi to each other by an edge, and
we join both these nodes to Base. (This forms a triangle on vi, vi, and Base,
for each i.) We also join True, False, and Base into a triangle. The simple graph

488 Chapter 8 NP and Computational Intractability

v3

False

v1

True

v2

v3v1

v2

BaseB

FT

– –

–

Figure 8.11 The beginning of the reduction for 3-Coloring.

G we have defined thus far is pictured in Figure 8.11, and it already has some
useful properties.

. In any 3-coloring of G, the nodes vi and vi must get different colors, and
both must be different from Base.

. In any 3-coloring of G, the nodes True, False, and Base must get all three
colors in some permutation. Thus we can refer to the three colors as the
True color, the False color, and the Base color, based on which of these
three nodes gets which color. In particular, this means that for each i,
one of vi or vi gets the True color, and the other gets the False color. For
the remainder of the construction, we will consider the variable xi to
be set to 1 in the given instance of 3-SAT if and only if the node vi gets
assigned the True color.

So in summary, we now have a graph G in which any 3-coloring implicitly
determines a truth assignment for the variables in the 3-SAT instance. We
now need to grow G so that only satisfying assignments can be extended to
3-colorings of the full graph. How should we do this?

As in other 3-SAT reductions, let’s consider a clause like x1∨ x2 ∨ x3. In
the language of 3-colorings of G, it says, “At least one of the nodes v1, v2, or
v3 should get the True color.” So what we need is a little subgraph that we can
plug into G, so that any 3-coloring that extends into this subgraph must have
the property of assigning the True color to at least one of v1, v2, or v3. It takes
some experimentation to find such a subgraph, but one that works is depicted
in Figure 8.12.

8.7 Graph Coloring 489

v3v1

v2

T F

–

The top node can only be
colored if one of v1, v2, or v3
does not get the False color.

–

Figure 8.12 Attaching a subgraph to represent the clause x1∨ x2 ∨ x3.

This six-node subgraph “attaches” to the rest of G at five existing nodes:
True, False, and those corresponding to the three terms in the clause that we’re
trying to represent (in this case, v1, v2, and v3.) Now suppose that in some 3-
coloring of G all three of v1, v2, and v3 are assigned the False color. Then the
lowest two shaded nodes in the subgraph must receive the Base color, the three
shaded nodes above them must receive, respectively, the False, Base, and True
colors, and hence there’s no color that can be assigned to the topmost shaded
node. In other words, a 3-coloring in which none of v1, v2, or v3 is assigned
the True color cannot be extended to a 3-coloring of this subgraph.2

Finally, and conversely, some hand-checking of cases shows that as long
as one of v1, v2, or v3 is assigned the True color, the full subgraph can be
3-colored.

So from this, we can complete the construction: We start with the graph G
defined above, and for each clause in the 3-SAT instance, we attach a six-node
subgraph as shown in Figure 8.12. Let us call the resulting graph G′.

2 This argument actually gives considerable insight into how one comes up with this subgraph in

the first place. The goal is to have a node like the topmost one that cannot receive any color. So we

start by “plugging in” three nodes corresponding to the terms, all colored False, at the bottom. For

each one, we then work upward, pairing it off with a node of a known color to force the node above

to have the third color. Proceeding in this way, we can arrive at a node that is forced to have any

color we want. So we force each of the three different colors, starting from each of the three different

terms, and then we plug all three of these differently colored nodes into our topmost node, arriving

at the impossibility.

490 Chapter 8 NP and Computational Intractability

We now claim that the given 3-SAT instance is satisfiable if and only if G′
has a 3-coloring. First, suppose that there is a satisfying assignment for the
3-SAT instance. We define a coloring of G′ by first coloring Base, True, and
False arbitrarily with the three colors, then, for each i, assigning vi the True
color if xi = 1 and the False color if xi = 0. We then assign vi the only available
color. Finally, as argued above, it is now possible to extend this 3-coloring into
each six-node clause subgraph, resulting in a 3-coloring of all of G′.

Conversely, suppose G′ has a 3-coloring. In this coloring, each node vi
is assigned either the True color or the False color; we set the variable xi
correspondingly. Now we claim that in each clause of the 3-SAT instance, at
least one of the terms in the clause has the truth value 1. For if not, then all
three of the corresponding nodes has the False color in the 3-coloring of G′
and, as we have seen above, there is no 3-coloring of the corresponding clause
subgraph consistent with this—a contradiction.

When k > 3, it is very easy to reduce the 3-Coloring Problem to k-Coloring.
Essentially, all we do is to take an instance of 3-Coloring, represented by a
graph G, add k − 3 new nodes, and join these new nodes to each other and to
every node in G. The resulting graph is k-colorable if and only if the original
graph G is 3-colorable. Thus k-Coloring for any k > 3 is NP-complete as well.

Coda: The Resolution of the Four-Color Conjecture
To conclude this section, we should finish off the story of the Four-Color
Conjecture for maps in the plane as well. After more than a hundred years,
the conjecture was finally proved by Appel and Haken in 1976. The structure
of the proof was a simple induction on the number of regions, but the
induction step involved nearly two thousand fairly complicated cases, and
the verification of these cases had to be carried out by a computer. This was
not a satisfying outcome for most mathematicians: Hoping for a proof that
would yield some insight into why the result was true, they instead got a case
analysis of enormous complexity whose proof could not be checked by hand.
The problem of finding a reasonably short, human-readable proof still remains
open.

8.8 Numerical Problems
We now consider some computationally hard problems that involve arithmetic
operations on numbers. We will see that the intractability here comes from the
way in which some of the problems we have seen earlier in the chapter can
be encoded in the representations of very large integers.

8.8 Numerical Problems 491

The Subset Sum Problem
Our basic problem in this genre will be Subset Sum, a special case of the
Knapsack Problem that we saw before in Section 6.4 when we covered dynamic
programming. We can formulate a decision version of this problem as follows.

Given natural numbers w1, . . . , wn, and a target number W, is there a
subset of {w1, . . . , wn} that adds up to precisely W?

We have already seen an algorithm to solve this problem; why are we now
including it on our list of computationally hard problems? This goes back to an
issue that we raised the first time we considered Subset Sum in Section 6.4. The
algorithm we developed there has running time O(nW), which is reasonable
when W is small, but becomes hopelessly impractical as W (and the numbers
wi) grow large. Consider, for example, an instance with 100 numbers, each of
which is 100 bits long. Then the input is only 100× 100= 10,000 digits, but
W is now roughly 2100.

To phrase this more generally, since integers will typically be given in bit
representation, or base-10 representation, the quantity W is really exponential
in the size of the input; our algorithm was not a polynomial-time algorithm.
(We referred to it as pseudo-polynomial, to indicate that it ran in time polyno-
mial in the magnitude of the input numbers, but not polynomial in the size of
their representation.)

This is an issue that comes up in many settings; for example, we encoun-
tered it in the context of network flow algorithms, where the capacities had
integer values. Other settings may be familiar to you as well. For example, the
security of a cryptosystem such as RSA is motivated by the sense that factoring
a 1,000-bit number is difficult. But if we considered a running time of 21000

steps feasible, factoring such a number would not be difficult at all.

It is worth pausing here for a moment and asking: Is this notion of
polynomial time for numerical operations too severe a restriction? For example,
given two natural numbers w1 and w2 represented in base-d notation for some
d > 1, how long does it take to add, subtract, or multiply them? This is an
issue we touched on in Section 5.5, where we noted that the standard ways
that kids in elementary school learn to perform these operations have (low-
degree) polynomial running times. Addition and subtraction (with carries) take
O(log w1+ log w2) time, while the standard multiplication algorithm runs in
O(log w1 · log w2) time. (Recall that in Section 5.5 we discussed the design of an
asymptotically faster multiplication algorithm that elementary schoolchildren
are unlikely to invent on their own.)

So a basic question is: Can Subset Sum be solved by a (genuinely)
polynomial-time algorithm? In other words, could there be an algorithm with
running time polynomial in n and log W? Or polynomial in n alone?

492 Chapter 8 NP and Computational Intractability

Proving Subset Sum Is NP-Complete
The following result suggests that this is not likely to be the case.

(8.23) Subset Sum is NP-complete.

Proof. We first show that Subset Sum is in NP. Given natural numbers
w1, . . . , wn, and a target W, a certificate that there is a solution would be
the subset wi1, . . . , wik that is purported to add up to W. In polynomial time,
we can compute the sum of these numbers and verify that it is equal to W.

We now reduce a known NP-complete problem to Subset Sum. Since we
are seeking a set that adds up to exactly a given quantity (as opposed to being
bounded above or below by this quantity), we look for a combinatorial problem
that is based on meeting an exact bound. The 3-Dimensional Matching Problem
is a natural choice; we show that 3-Dimensional Matching≤P Subset Sum. The
trick will be to encode the manipulation of sets via the addition of integers.

So consider an instance of 3-Dimensional Matching specified by sets
X , Y , Z, each of size n, and a set of m triples T ⊆ X × Y × Z. A common
way to represent sets is via bit-vectors: Each entry in the vector corresponds to
a different element, and it holds a 1 if and only if the set contains that element.
We adopt this type of approach for representing each triple t = (xi, yj , zk) ∈ T:
we construct a number wt with 3n digits that has a 1 in positions i, n+ j, and
2n + k, and a 0 in all other positions. In other words, for some base d > 1,
wt = di−1+ dn+j−1+ d2n+k−1.

Note how taking the union of triples almost corresponds to integer ad-
dition: The 1s fill in the places where there is an element in any of the sets.
But we say almost because addition includes carries: too many 1s in the same
column will “roll over” and produce a nonzero entry in the next column. This
has no analogue in the context of the union operation.

In the present situation, we handle this problem by a simple trick. We have
only m numbers in all, and each has digits equal to 0 or 1; so if we assume
that our numbers are written in base d =m + 1, then there will be no carries
at all.

Thus we construct the following instance of Subset Sum. For each triple
t = (xi, yj , zk) ∈ T, we construct a number wt in base m + 1 as defined above.
We define W to be the number in base m + 1 with 3n digits, each of which is
equal to 1, that is, W =∑3n−1

i=0 (m + 1)i.

We claim that the set T of triples contains a perfect three-dimensional
matching if and only if there is a subset of the numbers {wt} that adds up to
W. For suppose there is a perfect three-dimensional matching consisting of

8.8 Numerical Problems 493

triples t1, . . . , tn. Then in the sum wt1+ . . .+ wtn, there is a single 1 in each
of the 3n digit positions, and so the result is equal to W.

Conversely, suppose there exists a set of numbers wt1, . . . , wtk that adds
up to W. Then since each wti has three 1s in its representation, and there are no
carries, we know that k = n. It follows that for each of the 3n digit positions,
exactly one of the wti has a 1 in that position. Thus, t1, . . . , tk constitute a
perfect three-dimensional matching.

Extensions: The Hardness of Certain Scheduling Problems
The hardness of Subset Sum can be used to establish the hardness of a range
of scheduling problems—including some that do not obviously involve the
addition of numbers. Here is a nice example, a natural (but much harder)
generalization of a scheduling problem we solved in Section 4.2 using a greedy
algorithm.

Suppose we are given a set of n jobs that must be run on a single machine.
Each job i has a release time ri when it is first available for processing; a
deadline di by which it must be completed; and a processing duration ti. We
will assume that all of these parameters are natural numbers. In order to be
completed, job i must be allocated a contiguous slot of ti time units somewhere
in the interval [ri, di]. The machine can run only one job at a time. The question
is: Can we schedule all jobs so that each completes by its deadline? We will
call this an instance of Scheduling with Release Times and Deadlines.

(8.24) Scheduling with Release Times and Deadlines is NP-complete.

Proof. Given an instance of the problem, a certificate that it is solvable would
be a specification of the starting time for each job. We could then check that
each job runs for a distinct interval of time, between its release time and
deadline. Thus the problem is in NP.

We now show that Subset Sum is reducible to this scheduling problem.
Thus, consider an instance of Subset Sum with numbers w1, . . . , wn and a
target W. In constructing an equivalent scheduling instance, one is struck
initially by the fact that we have so many parameters to manage: release
times, deadlines, and durations. The key is to sacrifice most of this flexibility,
producing a “skeletal” instance of the problem that still encodes the Subset
Sum Problem.

Let S =∑n
i=1 wi. We define jobs 1, 2, . . . , n; job i has a release time of

0, a deadline of S + 1, and a duration of wi. For this set of jobs, we have the
freedom to arrange them in any order, and they will all finish on time.

494 Chapter 8 NP and Computational Intractability

We now further constrain the instance so that the only way to solve it will
be to group together a subset of the jobs whose durations add up precisely to
W. To do this, we define an (n+ 1)st job; it has a release time of W, a deadline
of W + 1, and a duration of 1.

Now consider any feasible solution to this instance of the scheduling
problem. The (n+ 1)st job must be run in the interval [W , W + 1]. This leaves
S available time units between the common release time and the common
deadline; and there are S time units worth of jobs to run. Thus the machine
must not have any idle time, when no jobs are running. In particular, if jobs
i1, . . . , ik are the ones that run before time W, then the corresponding numbers
wi1, . . . , wik in the Subset Sum instance add up to exactly W.

Conversely, if there are numbers wi1, . . . , wik that add up to exactly W,
then we can schedule these before job n+ 1 and the remainder after job n+ 1;
this is a feasible solution to the scheduling instance.

Caveat: Subset Sum with Polynomially Bounded Numbers
There is a very common source of pitfalls involving the Subset Sum Problem,
and while it is closely connected to the issues we have been discussing already,
we feel it is worth discussing explicitly. The pitfall is the following.

Consider the special case of Subset Sum, with n input numbers, in which W
is bounded by a polynomial function of n. Assuming P �=NP, this special
case is not NP-complete.

It is not NP-complete for the simple reason that it can be solved in time O(nW),
by our dynamic programming algorithm from Section 6.4; when W is bounded
by a polynomial function of n, this is a polynomial-time algorithm.

All this is very clear; so you may ask: Why dwell on it? The reason is that
there is a genre of problem that is often wrongly claimed to be NP-complete
(even in published papers) via reduction from this special case of Subset Sum.
Here is a basic example of such a problem, which we will call Component
Grouping.

Given a graph G that is not connected, and a number k, does there exist a
subset of its connected components whose union has size exactly k?

Incorrect Claim. Component Grouping is NP-complete.

Incorrect Proof. Component Grouping is in NP, and we’ll skip the proof
of this. We now attempt to show that Subset Sum ≤P Component Grouping.
Given an instance of Subset Sum with numbers w1, . . . , wn and target W,
we construct an instance of Component Grouping as follows. For each i, we
construct a path Pi of length wi. The graph G will be the union of the paths

8.9 Co-NP and the Asymmetry of NP 495

P1, . . . , Pn, each of which is a separate connected component. We set k =W.
It is clear that G has a set of connected components whose union has size k if
and only if some subset of the numbers w1, . . . , wn adds up to W.

The error here is subtle; in particular, the claim in the last sentence
is correct. The problem is that the construction described above does not
establish that Subset Sum ≤P Component Grouping, because it requires more
than polynomial time. In constructing the input to our black box that solves
Component Grouping, we had to build the encoding of a graph of size w1+
. . .+wn, and this takes time exponential in the size of the input to the Subset
Sum instance. In effect, Subset Sum works with the numbers w1, . . . , wn
in a very compact representation, but Component Grouping does not accept
“compact” encodings of graphs.

The problem is more fundamental than the incorrectness of this proof; in
fact, Component Grouping is a problem that can be solved in polynomial time.
If n1, n2, . . . , nc denote the sizes of the connected components of G, we simply
use our dynamic programming algorithm for Subset Sum to decide whether
some subset of these numbers {ni} adds up to k. The running time required
for this is O(ck); and since c and k are both bounded by n, this is O(n2) time.

Thus we have discovered a new polynomial-time algorithm by reducing in
the other direction, to a polynomial-time solvable special case of Subset Sum.

8.9 Co-NP and the Asymmetry of NP
As a further perspective on this general class of problems, let’s return to the
definitions underlying the class NP. We’ve seen that the notion of an efficient
certifier doesn’t suggest a concrete algorithm for actually solving the problem
that’s better than brute-force search.

Now here’s another observation: The definition of efficient certification,
and hence of NP, is fundamentally asymmetric. An input string s is a “yes”
instance if and only if there exists a short t so that B(s, t)= yes. Negating this
statement, we see that an input string s is a “no” instance if and only if for all
short t, it’s the case that B(s, t)= no.

This relates closely to our intuition about NP: When we have a “yes”
instance, we can provide a short proof of this fact. But when we have a “no”
instance, no correspondingly short proof is guaranteed by the definition; the
answer is no simply because there is no string that will serve as a proof. In
concrete terms, recall our question from Section 8.3: Given an unsatisfiable set
of clauses, what evidence could we show to quickly convince you that there
is no satisfying assignment?

496 Chapter 8 NP and Computational Intractability

For every problem X, there is a natural complementary problem X: For all
input strings s, we say s ∈ X if and only if s �∈ X. Note that if X ∈ P, then X ∈ P,
since from an algorithm A that solves X, we can simply produce an algorithm
A that runs A and then flips its answer.

But it is far from clear that if X ∈NP, it should follow that X ∈NP. The
problem X, rather, has a different property: for all s, we have s ∈ X if and only
if for all t of length at most p(|s|), B(s, t)= no. This is a fundamentally different
definition, and it can’t be worked around by simply “inverting” the output of
the efficient certifier B to produce B. The problem is that the “exists t” in the
definition of NP has become a “for all t,” and this is a serious change.

There is a class of problems parallel to NP that is designed to model this
issue; it is called, naturally enough, co-NP. A problem X belongs to co-NP if
and only if the complementary problem X belongs to NP. We do not know for
sure that NP and co-NP are different; we can only ask

(8.25) Does NP = co-NP?

Again, the widespread belief is that NP �= co-NP: Just because the “yes”
instances of a problem have short proofs, it is not clear why we should believe
that the “no” instances have short proofs as well.

Proving NP �= co-NP would be an even bigger step than proving P �=NP,
for the following reason:

(8.26) If NP �= co-NP, then P �=NP.

Proof. We’ll actually prove the contrapositive statement: P = NP implies
NP = co-NP. Essentially, the point is that P is closed under complementation;
so if P =NP, then NP would be closed under complementation as well. More
formally, starting from the assumption P =NP, we have

X ∈NP �⇒ X ∈ P �⇒ X ∈ P �⇒ X ∈NP �⇒ X ∈ co-NP

and

X ∈ co-NP�⇒ X ∈NP �⇒ X ∈ P �⇒ X ∈ P �⇒ X ∈NP.

Hence it would follow that NP ⊆ co-NP and co-NP ⊆ NP, whence NP =
co-NP.

Good Characterizations: The Class NP ∩ co-NP
If a problem X belongs to both NP and co-NP, then it has the following nice
property: When the answer is yes, there is a short proof; and when the answer
is no, there is also a short proof. Thus problems that belong to this intersection

8.10 A Partial Taxonomy of Hard Problems 497

NP ∩ co-NP are said to have a good characterization, since there is always a
nice certificate for the solution.

This notion corresponds directly to some of the results we have seen earlier.
For example, consider the problem of determining whether a flow network
contains a flow of value at least ν, for some quantity ν. To prove that the
answer is yes, we could simply exhibit a flow that achieves this value; this
is consistent with the problem belonging to NP. But we can also prove the
answer is no: We can exhibit a cut whose capacity is strictly less than ν. This
duality between “yes” and “no” instances is the crux of the Max-Flow Min-Cut
Theorem.

Similarly, Hall’s Theorem for matchings from Section 7.5 proved that the
Bipartite Perfect Matching Problem is in NP ∩ co-NP: We can exhibit either
a perfect matching, or a set of vertices A⊆ X such that the total number of
neighbors of A is strictly less than |A|.

Now, if a problem X is in P, then it belongs to both NP and co-NP;
thus, P ⊆NP ∩ co-NP. Interestingly, both our proof of the Max-Flow Min-Cut
Theorem and our proof of Hall’s Theorem came hand in hand with proofs of
the stronger results that Maximum Flow and Bipartite Matching are problems
in P. Nevertheless, the good characterizations themselves are so clean that
formulating them separately still gives us a lot of conceptual leverage in
reasoning about these problems.

Naturally, one would like to know whether there’s a problem that has a
good characterization but no polynomial-time algorithm. But this too is an
open question:

(8.27) Does P =NP ∩ co-NP?

Unlike questions (8.11) and (8.25), general opinion seems somewhat
mixed on this one. In part, this is because there are many cases in which
a problem was found to have a nontrivial good characterization; and then
(sometimes many years later) it was also discovered to have a polynomial-
time algorithm.

8.10 A Partial Taxonomy of Hard Problems
We’ve now reached the end of the chapter, and we’ve encountered a fairly rich
array of NP-complete problems. In a way, it’s useful to know a good number
of different NP-complete problems: When you encounter a new problem X
and want to try proving it’s NP-complete, you want to show Y ≤P X for some
known NP-complete problem Y—so the more options you have for Y, the
better.

498 Chapter 8 NP and Computational Intractability

At the same time, the more options you have for Y, the more bewildering it
can be to try choosing the right one to use in a particular reduction. Of course,
the whole point of NP-completeness is that one of these problems will work in
your reduction if and only if any of them will (since they’re all equivalent with
respect to polynomial-time reductions); but the reduction to a given problem
X can be much, much easier starting from some problems than from others.

With this in mind, we spend this concluding section on a review of the NP-
complete problems we’ve come across in the chapter, grouped into six basic
genres. Together with this grouping, we offer some suggestions as to how to
choose a starting problem for use in a reduction.

Packing Problems
Packing problems tend to have the following structure: You’re given a collection
of objects, and you want to choose at least k of them; making your life difficult
is a set of conflicts among the objects, preventing you from choosing certain
groups simultaneously.

We’ve seen two basic packing problems in this chapter.

. Independent Set: Given a graph G and a number k, does G contain an
independent set of size at least k?

. Set Packing: Given a set U of n elements, a collection S1, . . . , Sm of
subsets of U, and a number k, does there exist a collection of at least k
of these sets with the property that no two of them intersect?

Covering Problems
Covering problems form a natural contrast to packing problems, and one
typically recognizes them as having the following structure: you’re given a
collection of objects, and you want to choose a subset that collectively achieves
a certain goal; the challenge is to achieve this goal while choosing only k of
the objects.

We’ve seen two basic covering problems in this chapter.

. Vertex Cover: Given a graph G and a number k, does G contain a vertex
cover of size at most k?

. Set Cover: Given a set U of n elements, a collection S1, . . . , Sm of subsets
of U, and a number k, does there exist a collection of at most k of these
sets whose union is equal to all of U?

Partitioning Problems
Partitioning problems involve a search over all ways to divide up a collection
of objects into subsets so that each object appears in exactly one of the subsets.

8.10 A Partial Taxonomy of Hard Problems 499

One of our two basic partitioning problems, 3-Dimensional Matching,
arises naturally whenever you have a collection of sets and you want to solve a
covering problem and a packing problem simultaneously: Choose some of the
sets in such a way that they are disjoint, yet completely cover the ground set.

. 3-Dimensional Matching: Given disjoint sets X, Y, and Z, each of size n,
and given a set T ⊆ X × Y × Z of ordered triples, does there exist a set of
n triples in T so that each element of X ∪ Y ∪ Z is contained in exactly
one of these triples?

Our other basic partitioning problem, Graph Coloring, is at work whenever
you’re seeking to partition objects in the presence of conflicts, and conflicting
objects aren’t allowed to go into the same set.

. Graph Coloring: Given a graph G and a bound k, does G have a k-coloring?

Sequencing Problems
Our first three types of problems have involved searching over subsets of a
collection of objects. Another type of computationally hard problem involves
searching over the set of all permutations of a collection of objects.

Two of our basic sequencing problems draw their difficulty from the fact
that you are required to order n objects, but there are restrictions preventing
you from placing certain objects after certain others.

. Hamiltonian Cycle: Given a directed graph G, does it contain a Hamilto-
nian cycle?

. Hamiltonian Path: Given a directed graph G, does it contain a Hamilto-
nian path?

Our third basic sequencing problem is very similar; it softens these restric-
tions by simply imposing a cost for placing one object after another.

. Traveling Salesman: Given a set of distances on n cities, and a bound D,
is there a tour of length at most D?

Numerical Problems
The hardness of the numerical problems considered in this chapter flowed
principally from Subset Sum, the special case of the Knapsack Problem that
we considered in Section 8.8.

. Subset Sum: Given natural numbers w1, . . . , wn, and a target number W,
is there a subset of {w1, . . . , wn} that adds up to precisely W?

It is natural to try reducing from Subset Sum whenever one has a problem with
weighted objects and the goal is to select objects conditioned on a constraint on

500 Chapter 8 NP and Computational Intractability

the total weight of the objects selected. This, for example, is what happened in
the proof of (8.24), showing that Scheduling with Release Times and Deadlines
is NP-complete.

At the same time, one must heed the warning that Subset Sum only
becomes hard with truly large integers; when the magnitudes of the input
numbers are bounded by a polynomial function of n, the problem is solvable
in polynomial time by dynamic programming.

Constraint Satisfaction Problems
Finally, we considered basic constraint satisfaction problems, including Circuit
Satisfiability, SAT, and 3-SAT. Among these, the most useful for the purpose of
designing reductions is 3-SAT.

. 3-SAT: Given a set of clauses C1, . . . , Ck, each of length 3, over a set of
variables X = {x1, . . . , xn}, does there exist a satisfying truth assignment?

Because of its expressive flexibility, 3-SAT is often a useful starting point for
reductions where none of the previous five categories seem to fit naturally onto
the problem being considered. In designing 3-SAT reductions, it helps to recall
the advice given in the proof of (8.8), that there are two distinct ways to view
an instance of 3-SAT: (a) as a search over assignments to the variables, subject
to the constraint that all clauses must be satisfied, and (b) as a search over
ways to choose a single term (to be satisfied) from each clause, subject to the
constraint that one mustn’t choose conflicting terms from different clauses.
Each of these perspectives on 3-SAT is useful, and each forms the key idea
behind a large number of reductions.

Solved Exercises

Solved Exercise 1
You’re consulting for a small high-tech company that maintains a high-security
computer system for some sensitive work that it’s doing. To make sure this
system is not being used for any illicit purposes, they’ve set up some logging
software that records the IP addresses that all their users are accessing over
time. We’ll assume that each user accesses at most one IP address in any given
minute; the software writes a log file that records, for each user u and each
minute m, a value I(u, m) that is equal to the IP address (if any) accessed by
user u during minute m. It sets I(u, m) to the null symbol ⊥ if u did not access
any IP address during minute m.

The company management just learned that yesterday the system was
used to launch a complex attack on some remote sites. The attack was carried
out by accessing t distinct IP addresses over t consecutive minutes: In minute

Solved Exercises 501

1, the attack accessed address i1; in minute 2, it accessed address i2; and so
on, up to address it in minute t.

Who could have been responsible for carrying out this attack? The com-
pany checks the logs and finds to its surprise that there’s no single user u who
accessed each of the IP addresses involved at the appropriate time; in other
words, there’s no u so that I(u, m)= im for each minute m from 1 to t.

So the question becomes: What if there were a small coalition of k users
that collectively might have carried out the attack? We will say a subset S of
users is a suspicious coalition if, for each minute m from 1 to t, there is at least
one user u ∈ S for which I(u, m)= im. (In other words, each IP address was
accessed at the appropriate time by at least one user in the coalition.)

The Suspicious Coalition Problem asks: Given the collection of all values
I(u, m), and a number k, is there a suspicious coalition of size at most k?

Solution First of all, Suspicious Coalition is clearly in NP: If we were to be
shown a set S of users, we could check that S has size at most k, and that
for each minute m from 1 to t, at least one of the users in S accessed the IP
address im.

Now we want to find a known NP-complete problem and reduce it to
Suspicious Coalition. Although Suspicious Coalition has lots of features (users,
minutes, IP addresses), it’s very clearly a covering problem (following the
taxonomy described in the chapter): We need to explain all t suspicious
accesses, and we’re allowed a limited number of users (k) with which to do
this. Once we’ve decided it’s a covering problem, it’s natural to try reducing
Vertex Cover or Set Cover to it. And in order to do this, it’s useful to push most
of its complicated features into the background, leaving just the bare-bones
features that will be used to encode Vertex Cover or Set Cover.

Let’s focus on reducing Vertex Cover to it. In Vertex Cover, we need to cover
every edge, and we’re only allowed k nodes. In Suspicious Coalition, we need
to “cover” all the accesses, and we’re only allowed k users. This parallelism
strongly suggests that, given an instance of Vertex Cover consisting of a graph
G = (V , E) and a bound k, we should construct an instance of Suspicious
Coalition in which the users represent the nodes of G and the suspicious
accesses represent the edges.

So suppose the graph G for the Vertex Cover instance has m edges
e1, . . . , em, and ej = (vj , wj). We construct an instance of Suspicious Coali-
tion as follows. For each node of G we construct a user, and for each edge
et = (vt , wt) we construct a minute t. (So there will be m minutes total.) In
minute t, the users associated with the two ends of et access an IP address it,
and all other users access nothing. Finally, the attack consists of accesses to
addresses i1, i2, . . . , im in minutes 1, 2, . . . , m, respectively.

502 Chapter 8 NP and Computational Intractability

The following claim will establish that Vertex Cover ≤P Suspicious Coali-
tion and hence will conclude the proof that Suspicious Coalition is NP-
complete. Given how closely our construction of the instance shadows the
original Vertex Cover instance, the proof is completely straightforward.

(8.28) In the instance constructed, there is a suspicious coalition of size at
most k if and only if the graph G contains a vertex cover of size at most k.

Proof. First, suppose that G contains a vertex cover C of size at most k.
Then consider the corresponding set S of users in the instance of Suspicious
Coalition. For each t from 1 to m, at least one element of C is an end of the
edge et, and the corresponding user in S accessed the IP address it. Hence the
set S is a suspicious coalition.

Conversely, suppose that there is a suspicious coalition S of size at most
k, and consider the corresponding set of nodes C in G. For each t from 1 to m,
at least one user in S accessed the IP address it, and the corresponding node
in C is an end of the edge et. Hence the set C is a vertex cover.

Solved Exercise 2
You’ve been asked to organize a freshman-level seminar that will meet once
a week during the next semester. The plan is to have the first portion of the
semester consist of a sequence of � guest lectures by outside speakers, and
have the second portion of the semester devoted to a sequence of p hands-on
projects that the students will do.

There are n options for speakers overall, and in week number i (for
i = 1, 2, . . . , �) a subset Li of these speakers is available to give a lecture.

On the other hand, each project requires that the students have seen certain
background material in order for them to be able to complete the project
successfully. In particular, for each project j (for j = 1, 2, . . . , p), there is a
subset Pj of relevant speakers so that the students need to have seen a lecture
by at least one of the speakers in the set Pj in order to be able to complete the
project.

So this is the problem: Given these sets, can you select exactly one speaker
for each of the first � weeks of the seminar, so that you only choose speakers
who are available in their designated week, and so that for each project j, the
students will have seen at least one of the speakers in the relevant set Pj? We’ll
call this the Lecture Planning Problem.

To make this clear, let’s consider the following sample instance. Suppose
that �= 2, p= 3, and there are n = 4 speakers that we denote A, B, C , D. The
availability of the speakers is given by the sets L1= {A, B, C} and L2= {A, D}.
The relevant speakers for each project are given by the sets P1= {B, C},

Solved Exercises 503

P2= {A, B, D}, and P3= {C , D}. Then the answer to this instance of the problem
is yes, since we can choose speaker B in the first week and speaker D in the
second week; this way, for each of the three projects, students will have seen
at least one of the relevant speakers.

Prove that Lecture Planning is NP-complete.

Solution The problem is in NP since, given a sequence of speakers, we can
check (a) all speakers are available in the weeks when they’re scheduled,
and (b) that for each project, at least one of the relevant speakers has been
scheduled.

Now we need to find a known NP-complete problem that we can reduce to
Lecture Planning. This is less clear-cut than in the previous exercise, because
the statement of the Lecture Planning Problem doesn’t immediately map into
the taxonomy from the chapter.

There is a useful intuitive view of Lecture Planning, however, that is
characteristic of a wide range of constraint satisfaction problems. This intuition
is captured, in a strikingly picturesque way, by a description that appeared in
the New Yorker of the lawyer David Boies’s cross-examination style:

During a cross-examination, David takes a friendly walk down the hall
with you while he’s quietly closing doors. They get to the end of the hall
and David turns on you and there’s no place to go. He’s closed all the doors.3

What does constraint satisfaction have to do with cross-examination? In
Lecture Planning, as in many similar problems, there are two conceptual
phases. There’s a first phase in which you walk through a set of choices,
selecting some and thereby closing the door on others; this is followed by a
second phase in which you find out whether your choices have left you with
a valid solution or not.

In the case of Lecture Planning, the first phase consists of choosing a
speaker for each week, and the second phase consists of verifying that you’ve
picked a relevant speaker for each project. But there are many NP-complete
problems that fit this description at a high level, and so viewing Lecture
Planning this way helps us search for a plausible reduction. We will in fact
describe two reductions, first from 3-SAT and then from Vertex Cover. Of
course, either one of these by itself is enough to prove NP-completeness, but
both make for useful examples.

3-SAT is the canonical example of a problem with the two-phase structure
described above: We first walk through the variables, setting each one to
true or false; we then look over each clause and see whether our choices

3 Ken Auletta quoting Jeffrey Blattner, The New Yorker , 16 August 1999.

504 Chapter 8 NP and Computational Intractability

have satisfied it. This parallel to Lecture Planning already suggests a natural
reduction showing that 3-SAT ≤P Lecture Planning: We set things up so that
the choice of lecturers sets the variables, and then the feasibility of the projects
represents the satisfaction of the clauses.

More concretely, suppose we are given an instance of 3-SAT consisting of
clauses C1, . . . , Ck over the variables x1, x2, . . . , xn. We construct an instance
of Lecture Planning as follows. For each variable xi, we create two lecturers
zi and z′i that will correspond to xi and its negation. We begin with n weeks
of lectures; in week i, the only two lecturers available are zi and z′i. Then
there is a sequence of k projects; for project j, the set of relevant lecturers Pj
consists of the three lecturers corresponding to the terms in clause Cj. Now,
if there is a satisfying assignment ν for the 3-SAT instance, then in week i we
choose the lecturer among zi, z′i that corresponds to the value assigned to xi
by ν; in this case, we will select at least one speaker from each relevant set Pj.
Conversely, if we find a way to choose speakers so that there is at least one
from each relevant set, then we can set the variables xi as follows: xi is set
to 1 if zi is chosen, and it is set to 0 if z′i is chosen. In this way, at least one
of the three variables in each clause Cj is set in a way that satisfies it, and so
this is a satisfying assignment. This concludes the reduction and its proof of
correctness.

Our intuitive view of Lecture Planning leads naturally to a reduction from
Vertex Cover as well. (What we describe here could be easily modified to work
from Set Cover or 3-Dimensional Matching too.) The point is that we can view
Vertex Cover as having a similar two-phase structure: We first choose a set
of k nodes from the input graph, and we then verify for each edge that these
choices have covered all the edges.

Given an input to Vertex Cover, consisting of a graph G = (V , E) and a
number k, we create a lecturer zv for each node v. We set �= k, and define
L1= L2 = . . .= Lk = {zv : v ∈ V}. In other words, for the first k weeks, all
lecturers are available. After this, we create a project j for each edge ej = (v, w),
with set Pj = {zv, zw}.

Now, if there is a vertex cover S of at most k nodes, then consider the
set of lecturers ZS = {zv : v ∈ S}. For each project Pj, at least one of the relevant
speakers belongs to ZS, since S covers all edges in G. Moreover, we can schedule
all the lecturers in ZS during the first k weeks. Thus it follows that there is a
feasible solution to the instance of Lecture Planning.

Conversely, suppose there is a feasible solution to the instance of Lecture
Planning, and let T be the set of all lecturers who speak in the first k weeks.
Let X be the set of nodes in G that correspond to lecturers in T. For each project
Pj, at least one of the two relevant speakers appears in T, and hence at least

Exercises 505

one end of each edge ej is in the set X. Thus X is a vertex cover with at most
k nodes.

This concludes the proof that Vertex Cover ≤P Lecture Planning.

Exercises

1. For each of the two questions below, decide whether the answer is

(i) “Yes,” (ii) “No,” or (iii) “Unknown, because it would resolve the question

of whether P =NP.” Give a brief explanation of your answer.

(a) Let’s define the decision version of the Interval Scheduling Prob-

lem from Chapter 4 as follows: Given a collection of intervals on

a time-line, and a bound k, does the collection contain a subset of

nonoverlapping intervals of size at least k?

Question: Is it the case that Interval Scheduling ≤P Vertex Cover?

(b) Question: Is it the case that Independent Set ≤P Interval Scheduling?

2. A store trying to analyze the behavior of its customers will oftenmaintain

a two-dimensional array A, where the rows correspond to its customers

and the columns correspond to the products it sells. The entry A[i, j]
specifies the quantity of product j that has been purchased by customer i.

Here’s a tiny example of such an array A.

liquid detergent beer diapers cat litter

Raj 0 6 0 3

Alanis 2 3 0 0

Chelsea 0 0 0 7

One thing that a storemight want to dowith this data is the following.

Let us say that a subset S of the customers is diverse if no two of the

of the customers in S have ever bought the same product (i.e., for each

product, at most one of the customers in S has ever bought it). A diverse

set of customers can be useful, for example, as a target pool for market

research.

We can now define the Diverse Subset Problem as follows: Given an

m× n array A as defined above, and a number k ≤m, is there a subset of

at least k of customers that is diverse?

Show that Diverse Subset is NP-complete.

3. Suppose you’re helping to organize a summer sports camp, and the

following problem comes up. The camp is supposed to have at least

506 Chapter 8 NP and Computational Intractability

one counselor who’s skilled at each of the n sports covered by the camp

(baseball, volleyball, and so on). They have received job applications from

m potential counselors. For each of the n sports, there is some subset

of the m applicants qualified in that sport. The question is: For a given

number k < m, is it possible to hire at most k of the counselors and have

at least one counselor qualified in each of the n sports? We’ll call this the

Efficient Recruiting Problem.

Show that Efficient Recruiting is NP-complete.

4. Suppose you’re consulting for a group that manages a high-performance

real-time system in which asynchronous processes make use of shared

resources. Thus the system has a set of n processes and a set of m

resources. At any given point in time, each process specifies a set of

resources that it requests to use. Each resource might be requested by

many processes at once; but it can only be used by a single process at

a time. Your job is to allocate resources to processes that request them.

If a process is allocated all the resources it requests, then it is active;

otherwise it is blocked . Youwant to perform the allocation so that asmany

processes as possible are active. Thus we phrase theResource Reservation

Problem as follows: Given a set of processes and resources, the set of

requested resources for each process, and a number k, is it possible to

allocate resources to processes so that at least k processes will be active?

Consider the following list of problems, and for each problem ei-

ther give a polynomial-time algorithm or prove that the problem is NP-

complete.

(a) The general Resource Reservation Problem defined above.

(b) The special case of the problem when k = 2.

(c) The special case of the problem when there are two types of re-

sources—say, people and equipment—and each process requires

at most one resource of each type (In other words, each process

requires one specific person and one specific piece of equipment.)

(d) The special case of the problem when each resource is requested by

at most two processes.

5. Consider a set A= {a1, . . . , an} and a collection B1, B2, . . . , Bm of subsets of

A (i.e., Bi ⊆ A for each i).

We say that a set H ⊆ A is a hitting set for the collection B1, B2, . . . , Bm

if H contains at least one element from each Bi—that is, if H ∩ Bi is not

empty for each i (so H “hits” all the sets Bi).

We now define the Hitting Set Problem as follows. We are given a set

A= {a1, . . . , an}, a collection B1, B2, . . . , Bm of subsets of A, and a number

Exercises 507

k. We are asked: Is there a hitting set H ⊆ A for B1, B2, . . . , Bm so that the

size of H is at most k?

Prove that Hitting Set is NP-complete.

6. Consider an instance of the Satisfiability Problem, specified by clauses

C1, . . . , Ck over a set of Boolean variables x1, . . . , xn. We say that the

instance ismonotone if each term in each clause consists of a nonnegated

variable; that is, each term is equal to xi, for some i, rather than xi.

Monotone instances of Satisfiability are very easy to solve: They are

always satisfiable, by setting each variable equal to 1.

For example, suppose we have the three clauses

(x1∨ x2), (x1∨ x3), (x2 ∨ x3).

This is monotone, and indeed the assignment that sets all three variables

to 1 satisfies all the clauses. But we can observe that this is not the only

satisfying assignment; we could also have set x1 and x2 to 1, and x3 to 0.
Indeed, for any monotone instance, it is natural to ask how few variables

we need to set to 1 in order to satisfy it.

Given a monotone instance of Satisfiability, together with a number

k, the problem of Monotone Satisfiability with Few True Variables asks: Is

there a satisfying assignment for the instance in which atmost k variables

are set to 1? Prove this problem is NP-complete.

7. Since the 3-Dimensional Matching Problem is NP-complete, it is natural

to expect that the corresponding 4-Dimensional Matching Problem is at

least as hard. Let us define 4-Dimensional Matching as follows. Given sets

W, X, Y, and Z, each of size n, and a collection C of ordered 4-tuples of the
form (wi, xj , yk , z�), do there exist n 4-tuples from C so that no two have

an element in common?

Prove that 4-Dimensional Matching is NP-complete.

8. Your friends’ preschool-age daughter Madison has recently learned to

spell some simple words. To help encourage this, her parents got her a

colorful set of refrigerator magnets featuring the letters of the alphabet

(some number of copies of the letter A, some number of copies of the

letter B, and so on), and the last time you saw her the two of you spent a

while arranging the magnets to spell out words that she knows.

Somehow with you and Madison, things always end up getting more

elaborate than originally planned, and soon the two of you were trying

to spell out words so as to use up all the magnets in the full set—that

is, picking words that she knows how to spell, so that once they were all

spelled out, each magnet was participating in the spelling of exactly one

508 Chapter 8 NP and Computational Intractability

of the words. (Multiple copies of words are okay here; so for example, if

the set of refrigerator magnets includes two copies each of C, A, and T ,

it would be okay to spell out CAT twice.)

This turned out to be pretty difficult, and it was only later that you

realized a plausible reason for this. Supposewe consider a general version

of the problem ofUsing UpAll the Refrigerator Magnets, where we replace

the English alphabet by an arbitrary collection of symbols, and we model

Madison’s vocabulary as an arbitrary set of strings over this collection of

symbols. The goal is the same as in the previous paragraph.

Prove that the problem of Using Up All the Refrigerator Magnets is

NP-complete.

9. Consider the following problem. You are managing a communication

network, modeled by a directed graph G = (V , E). There are c users who

are interested inmaking use of this network. User i (for each i= 1, 2, . . . , c)

issues a request to reserve a specific path Pi in G on which to transmit

data.

You are interested in accepting as many of these path requests as

possible, subject to the following restriction: if you accept both Pi and Pj,

then Pi and Pj cannot share any nodes.

Thus, the Path Selection Problem asks: Given a directed graph G =
(V , E), a set of requests P1, P2, . . . , Pc—each of which must be a path in

G—and a number k, is it possible to select at least k of the paths so that

no two of the selected paths share any nodes?

Prove that Path Selection is NP-complete.

10. Your friends at WebExodus have recently been doing some consulting

work for companies that maintain large, publicly accessible Web sites—

contractual issues prevent them from saying which ones—and they’ve

come across the following Strategic Advertising Problem.

A company comes to them with the map of a Web site, which we’ll

model as a directed graph G = (V , E). The company also provides a set of

t trails typically followed by users of the site; we’ll model these trails as

directed paths P1, P2, . . . , Pt in the graph G (i.e., each Pi is a path in G).

The company wants WebExodus to answer the following question

for them: Given G, the paths {Pi}, and a number k, is it possible to place

advertisements on at most k of the nodes in G, so that each path Pi

includes at least one node containing an advertisement? We’ll call this

the Strategic Advertising Problem, with input G, {Pi : i = 1, . . . , t}, and k.

Your friends figure that a good algorithm for this will make them all

rich; unfortunately, things are never quite this simple.

Exercises 509

(a) Prove that Strategic Advertising is NP-complete.

(b) Your friends at WebExodus forge ahead and write a pretty fast algo-

rithm S that produces yes/no answers to arbitrary instances of the

Strategic Advertising Problem. You may assume that the algorithm

S is always correct.

Using the algorithm S as a black box, design an algorithm that

takes input G, {Pi}, and k as in part (a), and does one of the following

two things:

– Outputs a set of atmost k nodes in G so that each path Pi includes

at least one of these nodes, or

– Outputs (correctly) that no such set of at most k nodes exists.

Your algorithm should use at most a polynomial number of steps, to-

gether with at most a polynomial number of calls to the algorithm S.

11. As some people remember, and many have been told, the idea of hyper-

text predates the World Wide Web by decades. Even hypertext fiction is

a relatively old idea: Rather than being constrained by the linearity of

the printed page, you can plot a story that consists of a collection of

interlocked virtual “places” joined by virtual “passages.”4 So a piece of

hypertext fiction is really riding on an underlying directed graph; to be

concrete (though narrowing the full range of what the domain can do),

we’ll model this as follows.

Let’s view the structure of a piece of hypertext fiction as a directed

graph G = (V , E). Each node u ∈ V contains some text; when the reader is

currently at u, he or she can choose to follow any edge out of u; and if the

reader chooses e = (u, v), he or she arrives next at the node v. There is a

start node s ∈ V where the reader begins, and an end node t ∈ V; when the

reader first reaches t, the story ends. Thus any path from s to t is a valid

plot of the story. Note that, unlike one’s experience using a Web browser,

there is not necessarily a way to go back; once you’ve gone from u to v,

you might not be able to ever return to u.

In this way, the hypertext structure defines a huge number of differ-

ent plots on the same underlying content; and the relationships among

all these possibilities can grow very intricate. Here’s a type of problem

one encounters when reasoning about a structure like this. Consider a

piece of hypertext fiction built on a graph G = (V , E) in which there are

certain crucial thematic elements: love, death, war, an intense desire to

major in computer science, and so forth. Each thematic element i is rep-

resented by a set Ti ⊆ V consisting of the nodes in G at which this theme

4 See, e.g., http://www.eastgate.com.

http://www.eastgate.com

510 Chapter 8 NP and Computational Intractability

appears. Now, given a particular set of thematic elements, we may ask: Is

there a valid plot of the story in which each of these elements is encoun-

tered? More concretely, given a directed graph G, with start node s and

end node t, and thematic elements represented by sets T1, T2, . . . , Tk, the

Plot Fulfillment Problem asks: Is there a path from s to t that contains at

least one node from each of the sets Ti?

Prove that Plot Fulfillment is NP-complete.

12. Some friends of yours maintain a popular news and discussion site on

the Web, and the traffic has reached a level where they want to begin

differentiating their visitors into paying and nonpaying customers. A

standard way to do this is to make all the content on the site available to

customers who pay a monthly subscription fee; meanwhile, visitors who

don’t subscribe can still view a subset of the pages (all the while being

bombarded with ads asking them to become subscribers).

Here are two simple ways to control access for nonsubscribers: You

could (1) designate a fixed subset of pages as viewable by nonsubscribers,

or (2) allow any page in principle to be viewable, but specify a maximum

number of pages that can be viewed by a nonsubscriber in a single session.

(We’ll assume the site is able to track the path followed by a visitor

through the site.)

Your friends are experimenting with a way of restricting access that

is different from and more subtle than either of these two options.

They want nonsubscribers to be able to sample different sections of the

Web site, so they designate certain subsets of the pages as constituting

particular zones—for example, there can be a zone for pages on politics,

a zone for pages on music, and so forth. It’s possible for a page to belong

to more than one zone. Now, as a nonsubscribing user passes through

the site, the access policy allows him or her to visit one page from each

zone, but an attempt by the user to access a second page from the same

zone later in the browsing session will be disallowed. (Instead, the user

will be directed to an ad suggesting that he or she become a subscriber.)

More formally, we canmodel the site as a directed graph G = (V , E), in

which the nodes represent Web pages and the edges represent directed

hyperlinks. There is a distinguished entry node s ∈ V, and there are zones

Z1, . . . , Zk ⊆ V. A path P taken by a nonsubscriber is restricted to include

at most one node from each zone Zi.

One issue with this more complicated access policy is that it gets

difficult to answer even basic questions about reachability, including: Is

it possible for a nonsubscriber to visit a given node t? More precisely, we

define the Evasive Path Problem as follows: Given G, Z1, . . . , Zk, s ∈ V, and

Exercises 511

a destination node t ∈ V, is there an s-t path in G that includes at most one

node from each zone Zi? Prove that Evasive Path is NP-complete.

13. A combinatorial auction is a particular mechanism developed by econo-

mists for selling a collection of items to a collection of potential buyers.

(The Federal Communications Commission has studied this type of auc-

tion for assigning stations on the radio spectrum to broadcasting com-

panies.)

Here’s a simple type of combinatorial auction. There are n items for

sale, labeled I1, . . . , In. Each item is indivisible and can only be sold to one

person. Now, m different people place bids: The ith bid specifies a subset

Si of the items, and an offering price xi that the bidder is willing to pay

for the items in the set Si, as a single unit. (We’ll represent this bid as the

pair (Si, xi).)

An auctioneer now looks at the set of all m bids; she chooses to

accept some of these bids and to reject the others. Each person whose

bid i is accepted gets to take all the items in the corresponding set Si.

Thus the rule is that no two accepted bids can specify sets that contain

a common item, since this would involve giving the same item to two

different people.

The auctioneer collects the sum of the offering prices of all accepted

bids. (Note that this is a “one-shot” auction; there is no opportunity to

place further bids.) The auctioneer’s goal is to collect as much money as

possible.

Thus, the problem of Winner Determination for Combinatorial Auc-

tions asks: Given items I1, . . . , In, bids (S1, x1), . . . , (Sm, xm), and a bound B,

is there a collection of bids that the auctioneer can accept so as to collect

an amount of money that is at least B?

Example. Suppose an auctioneer decides to use this method to sell some

excess computer equipment. There are four items labeled “PC,” “moni-

tor,” “printer”, and “scanner”; and three people place bids. Define

S1= {PC, monitor}, S2= {PC, printer}, S3= {monitor, printer, scanner}

and

x1= x2= x3= 1.

The bids are (S1, x1), (S2, x2), (S3, x3), and the bound B is equal to 2.

Then the answer to this instance is no: The auctioneer can accept at

most one of the bids (since any two bids have a desired item in common),

and this results in a total monetary value of only 1.

512 Chapter 8 NP and Computational Intractability

Prove that the problem of Winner Determination in Combinatorial

Auctions is NP-complete.

14. We’ve seen the Interval Scheduling Problem in Chapters 1 and 4. Here

we consider a computationally much harder version of it that we’ll call

Multiple Interval Scheduling. As before, you have a processor that is

available to run jobs over some period of time (e.g., 9 A.M. to 5 P.M).

People submit jobs to run on the processor; the processor can only

work on one job at any single point in time. Jobs in this model, however,

are more complicated than we’ve seen in the past: each job requires a

set of intervals of time during which it needs to use the processor. Thus,

for example, a single job could require the processor from 10 A.M. to

11 A.M., and again from 2 P.M. to 3 P.M.. If you accept this job, it ties up

your processor during those two hours, but you could still accept jobs

that need any other time periods (including the hours from 11 A.M. to

2 A.M.).

Now you’re given a set of n jobs, each specified by a set of time

intervals, and you want to answer the following question: For a given

number k, is it possible to accept at least k of the jobs so that no two of

the accepted jobs have any overlap in time?

Show that Multiple Interval Scheduling is NP-complete.

15. You’re sitting at your desk one day when a FedEx package arrives for

you. Inside is a cell phone that begins to ring, and you’re not entirely

surprised to discover that it’s your friend Neo, whom you haven’t heard

from in quite a while. Conversations with Neo all seem to go the same

way: He starts out with some big melodramatic justification for why he’s

calling, but in the end it always comes down to him trying to get you to

volunteer your time to help with some problem he needs to solve.

This time, for reasons he can’t go into (something having to do

with protecting an underground city from killer robot probes), he and

a few associates need to monitor radio signals at various points on the

electromagnetic spectrum. Specifically, there are n different frequencies

that need monitoring, and to do this they have available a collection of

sensors.

There are two components to the monitoring problem.

. A set L of m geographic locations at which sensors can be placed; and

. A set S of b interference sources, each of which blocks certain fre-

quencies at certain locations. Specifically, each interference source i

is specified by a pair (Fi, Li), where Fi is a subset of the frequencies

and Li is a subset of the locations; it signifies that (due to radio inter-

Exercises 513

ference) a sensor placed at any location in the set Li will not be able

to receive signals on any frequency in the set Fi.

We say that a subset L′ ⊆ L of locations is sufficient if, for each of the n

frequencies j, there is some location in L′ where frequency j is not blocked

by any interference source. Thus, by placing a sensor at each location in

a sufficient set, you can successfully monitor each of the n frequencies.

They have k sensors, and hence they want to know whether there is

a sufficient set of locations of size at most k. We’ll call this an instance

of the Nearby Electromagnetic Observation Problem: Given frequencies,

locations, interference sources, and a parameter k, is there a sufficient

set of size at most k?

Example. Supposewehave four frequencies {f1, f2, f3, f4} and four locations

{�1, �2, �3, �4}. There are three interference sources, with

(F1, L1)= ({f1, f2}, {�1, �2, �3})
(F2, L2)= ({f3, f4}, {�3, �4})
(F3, L3)= ({f2, f3}, {�1})

Then there is a sufficient set of size 2: We can choose locations �2 and �4

(since f1 and f2 are not blocked at �4, and f3 and f4 are not blocked at �2).

Prove that Nearby Electromagnetic Observation is NP-complete.

16. Consider the problem of reasoning about the identity of a set from the

size of its intersections with other sets. You are given a finite set U of size

n, and a collection A1, . . . , Am of subsets of U . You are also given numbers

c1, . . . , cm. The question is: Does there exist a set X ⊂ U so that for each

i = 1, 2, . . . , m, the cardinality of X ∩ Ai is equal to ci? We will call this an

instance of the Intersection Inference Problem, with input U , {Ai}, and {ci}.
Prove that Intersection Inference is NP-complete.

17. You are given a directed graph G= (V , E)withweightswe on its edges e ∈ E.

The weights can be negative or positive. The Zero-Weight-Cycle Problem

is to decide if there is a simple cycle in G so that the sum of the edge

weights on this cycle is exactly 0. Prove that this problem is NP-complete.

18. You’ve been asked to help some organizational theorists analyze data on

group decision-making. In particular, they’ve been looking at a dataset

that consists of decisions made by a particular governmental policy

committee, and they’re trying to decide whether it’s possible to identify

a small set of influential members of the committee.

Here’s how the committee works. It has a set M = {m1, . . . , mn} of n

members, and over the past year it’s voted on t different issues. On each

issue, each member can vote either “Yes,” “No,” or “Abstain”; the overall

514 Chapter 8 NP and Computational Intractability

effect is that the committee presents an affirmative decision on the issue

if the number of “Yes” votes is strictly greater than the number of “No”

votes (the “Abstain” votes don’t count for either side), and it delivers a

negative decision otherwise.

Nowwe have a big table consisting of the vote cast by each committee

member on each issue, and we’d like to consider the following definition.

We say that a subset of the members M ′ ⊆M is decisive if, had we looked

just at the votes cast by the members in M ′, the committee’s decision

on every issue would have been the same. (In other words, the overall

outcome of the voting among the members in M ′ is the same on every

issue as the overall outcome of the voting by the entire committee.) Such

a subset can be viewed as a kind of “inner circle” that reflects the behavior

of the committee as a whole.

Here’s the question: Given the votes cast by each member on each

issue, and given a parameter k, we want to know whether there is a deci-

sive subset consisting of at most k members. We’ll call this an instance

of the Decisive Subset Problem.

Example. Suppose we have four committee members and three issues.

We’re looking for a decisive set of size at most k = 2, and the voting went

as follows.

Issue # m1 m2 m3 m4

Issue 1 Yes Yes Abstain No

Issue 2 Abstain No No Abstain

Issue 3 Yes Abstain Yes Yes

Then the answer to this instance is “Yes,” since members m1 and m3

constitute a decisive subset.

Prove that Decisive Subset is NP-complete.

19. Suppose you’re acting as a consultant for the port authority of a small

Pacific Rim nation. They’re currently doing amulti-billion-dollar business

per year, and their revenue is constrained almost entirely by the rate at

which they can unload ships that arrive in the port.

Handling hazardous materials adds additional complexity to what is,

for them, an already complicated task. Suppose a convoy of ships arrives

in the morning and delivers a total of n cannisters, each containing a

different kind of hazardous material. Standing on the dock is a set of m

trucks, each of which can hold up to k containers.

Exercises 515

Here are two related problems, which arise from different types of

constraints that might be placed on the handling of hazardous materials.

For each of the two problems, give one of the following two answers:

. A polynomial-time algorithm to solve it; or

. A proof that it is NP-complete.

(a) For each cannister, there is a specified subset of the trucks in which

it may be safely carried. Is there a way to load all n cannisters into

the m trucks so that no truck is overloaded, and each container goes

in a truck that is allowed to carry it?

(b) In this different version of the problem, any cannister can be placed

in any truck; however, there are certain pairs of cannisters that

cannot be placed together in the same truck. (The chemicals they

contain may react explosively if brought into contact.) Is there a

way to load all n cannisters into the m trucks so that no truck is

overloaded, and no two cannisters are placed in the same truck when

they are not supposed to be?

20. There are many different ways to formalize the intuitive problem of

clustering, where the goal is to divide up a collection of objects into

groups that are “similar” to one another.

First, a natural way to express the input to a clustering problem is via

a set of objects p1, p2, . . . , pn, with a numerical distance d(pi, pj) defined on

each pair. (We require only that d(pi, pi)= 0; that d(pi, pj) > 0 for distinct

pi and pj; and that distances are symmetric: d(pi, pj)= d(pj , pi).)

In Section 4.7, earlier in the book, we considered one reasonable

formulation of the clustering problem: Divide the objects into k sets so

as to maximize the minimum distance between any pair of objects in

distinct clusters. This turns out to be solvable by a nice application of

the Minimum Spanning Tree Problem.

A different but seemingly related way to formalize the clustering

problem would be as follows: Divide the objects into k sets so as to

minimize the maximum distance between any pair of objects in the

same cluster. Note the change. Where the formulation in the previous

paragraph sought clusters so that no two were “close together,” this new

formulation seeks clusters so that none of them is too “wide”—that is,

no cluster contains two points at a large distance from each other.

Given the similarities, it’s perhaps surprising that this new formula-

tion is computationally hard to solve optimally. To be able to think about

this in terms of NP-completeness, let’s write it first as a yes/no decision

problem. Given n objects p1, p2, . . . , pn with distances on them as above,

516 Chapter 8 NP and Computational Intractability

and a bound B, we define the Low-Diameter Clustering Problem as fol-

lows: Can the objects be partitioned into k sets, so that no two points in

the same set are at a distance greater than B from each other?

Prove that Low-Diameter Clustering is NP-complete.

21. After a few too many days immersed in the popular entrepreneurial self-

help book Mine Your Own Business, you’ve come to the realization that

you need to upgrade your office computing system. This, however, leads

to some tricky problems.

In configuring your new system, there are k components that must

be selected: the operating system, the text editing software, the e-mail

program, and so forth; each is a separate component. For the jth compo-

nent of the system, you have a set Aj of options; and a configuration of

the system consists of a selection of one element from each of the sets

of options A1, A2, . . . , Ak.

Now the trouble arises because certain pairs of options fromdifferent

sets may not be compatible. We say that option xi ∈ Ai and option xj ∈ Aj

form an incompatible pair if a single system cannot contain them both.

(For example, Linux (as an option for the operating system) and Microsoft

Word (as an option for the text-editing software) form an incompatible

pair.) We say that a configuration of the system is fully compatible if it

consists of elements x1∈ A1, x2 ∈ A2, . . . xk ∈ Ak such that none of the pairs

(xi, xj) is an incompatible pair.

We can now define the Fully Compatible Configuration (FCC) Problem.

An instance of FCC consists of disjoint sets of optionsA1, A2, . . . , Ak, and a

set P of incompatible pairs (x, y), where x and y are elements of different

sets of options. The problem is to decide whether there exists a fully

compatible configuration: a selection of an element from each option set

so that no pair of selected elements belongs to the set P.

Example. Suppose k = 3, and the sets A1, A2, A3 denote options for the

operating system, the text-editing software, and the e-mail program,

respectively. We have

A1= {Linux, Windows NT},
A2= {emacs, Word},
A3= {Outlook, Eudora, rmail},

with the set of incompatible pairs equal to

P = {(Linux, Word), (Linux, Outlook), (Word, rmail)}.

Exercises 517

Then the answer to the decision problem in this instance of FCC is

yes—for example, the choices Linux ∈A1, emacs∈A2, rmail∈A3 is a fully

compatible configuration according to the definitions above.

Prove that Fully Compatible Configuration is NP-complete.

22. Suppose that someone gives you a black-box algorithm A that takes an

undirected graph G = (V , E), and a number k, and behaves as follows.

. If G is not connected, it simply returns “G is not connected.”

. If G is connected and has an independent set of size at least k, it

returns “yes.”

. If G is connected and does not have an independent set of size at

least k, it returns “no.”

Suppose that the algorithm A runs in time polynomial in the size of G

and k.

Show how, using calls to A, you could then solve the Independent Set

Problem in polynomial time: Given an arbitrary undirected graph G, and

a number k, does G contain an independent set of size at least k?

23. Given a set of finite binary strings S = {s1, . . . , sk}, we say that a string

u is a concatenation over S if it is equal to si1si2
. . . sit for some indices

i1, . . . , it ∈ {1, . . . , k}.
A friend of yours is considering the following problem: Given two

sets of finite binary strings, A= {a1, . . . , am} and B = {b1, . . . , bn}, does

there exist any string u so that u is both a concatenation over A and a

concatenation over B?

Your friend announces, “At least the problem is in NP, since I would

just have to exhibit such a string u in order to prove the answer is yes.”

You point out (politely, of course) that this is a completely inadequate

explanation; how do we know that the shortest such string u doesn’t

have length exponential in the size of the input, in which case it would

not be a polynomial-size certificate?

However, it turns out that this claim can be turned into a proof of

membership in NP. Specifically, prove the following statement.

If there is a string u that is a concatenation over both A and B, then there

is such a string whose length is bounded by a polynomial in the sum of the

lengths of the strings in A ∪ B.

24. Let G = (V , E) be a bipartite graph; suppose its nodes are partitioned into

sets X and Y so that each edge has one end in X and the other in Y. We

define an (a, b)-skeleton of G to be a set of edges E′ ⊆ E so that at most

518 Chapter 8 NP and Computational Intractability

a nodes in X are incident to an edge in E′, and at least b nodes in Y are

incident to an edge in E′.

Show that, given a bipartite graph G and numbers a and b, it is NP-

complete to decide whether G has an (a, b)-skeleton.

25. For functions g1, . . . , g�, we define the function max(g1, . . . , g�) via

[max(g1, . . . , g�)](x)=max(g1(x), . . . , g�(x)).

Consider the following problem. You are given n piecewise linear,

continuous functions f1, . . . , fn defined over the interval [0, t] for some

integer t. You are also given an integer B. You want to decide: Do there

exist k of the functions fi1, . . . , fik so that

∫ t

0
[max(fi1, . . . , fik)](x) dx ≥ B?

Prove that this problem is NP-complete.

26. You and a friend have been trekking through various far-off parts of

the world and have accumulated a big pile of souvenirs. At the time you

weren’t really thinking about which of these you were planning to keep

and which your friend was going to keep, but now the time has come to

divide everything up.

Here’s a way you could go about doing this. Suppose there are n

objects, labeled 1, 2, . . . , n, and object i has an agreed-upon value xi. (We

could think of this, for example, as a monetary resale value; the case in

which you and your friend don’t agree on the value is something we won’t

pursue here.) One reasonable way to divide things would be to look for a

partition of the objects into two sets, so that the total value of the objects

in each set is the same.

This suggests solving the following Number Partitioning Problem.

You are given positive integers x1, . . . , xn; you want to decide whether

the numbers can be partitioned into two sets S1 and S2 with the same

sum: ∑
xi∈S1

xi =
∑
xj∈S2

xj.

Show that Number Partitioning is NP-complete.

27. Consider the following problem. You are given positive integers x1, . . . , xn,

and numbers k and B. You want to knowwhether it is possible to partition

Exercises 519

the numbers {xi} into k sets S1, . . . , Sk so that the squared sums of the sets

add up to at most B:

k∑
i=1

⎛
⎝∑

xj∈Si

xj

⎞
⎠

2

≤ B.

Show that this problem is NP-complete.

28. The following is a version of the Independent Set Problem. You are given

a graph G = (V , E) and an integer k. For this problem, we will call a set

I ⊂ V strongly independent if, for any two nodes v, u ∈ I, the edge (v, u)

does not belong to E, and there is also no path of two edges from u to

v, that is, there is no node w such that both (u, w) ∈ E and (w, v) ∈ E. The

Strongly Independent Set Problem is to decide whether G has a strongly

independent set of size at least k.

Prove that the Strongly Independent Set Problem is NP-complete.

29. You’re configuring a large network of workstations, which we’ll model as

an undirected graph G; the nodes of G represent individual workstations

and the edges represent direct communication links. The workstations all

need access to a common core database, which contains data necessary

for basic operating system functions.

You could replicate this database on each workstation; this would

make lookups very fast from any workstation, but you’d have to manage

a huge number of copies. Alternately, you could keep a single copy of the

database on one workstation and have the remaining workstations issue

requests for data over the network G; but this could result in large delays

for a workstation that’s many hops away from the site of the database.

So you decide to look for the following compromise: You want to

maintain a small number of copies, but place them so that any worksta-

tion either has a copy of the database or is connected by a direct link to a

workstation that has a copy of the database. In graph terminology, such

a set of locations is called a dominating set .

Thus we phrase the Dominating Set Problem as follows. Given the

network G, and a number k, is there a way to place k copies of the database

at k different nodes so that every node either has a copy of the database

or is connected by a direct link to a node that has a copy of the database?

Show that Dominating Set is NP-complete.

30. One thing that’s not always apparent when thinking about traditional

“continuous math” problems is the way discrete, combinatorial issues

520 Chapter 8 NP and Computational Intractability

of the kind we’re studying here can creep into what look like standard

calculus questions.

Consider, for example, the traditional problem of minimizing a one-

variable function like f (x) = 3+ x − 3x2 over an interval like x ∈ [0, 1].
The derivative has a zero at x = 1/6, but this in fact is a maximum of

the function, not a minimum; to get the minimum, one has to heed

the standard warning to check the values on the boundary of the in-

terval as well. (The minimum is in fact achieved on the boundary, at

x= 1.)

Checking the boundary isn’t such a problemwhen youhave a function

in one variable; but suppose we’re now dealing with the problem of

minimizing a function in n variables x1, x2, . . . , xn over the unit cube,

where each of x1, x2, . . . , xn ∈ [0, 1]. The minimum may be achieved on

the interior of the cube, but it may be achieved on the boundary; and

this latter prospect is rather daunting, since the boundary consists of 2n

“corners” (where each xi is equal to either 0or 1) aswell as various pieces of

other dimensions. Calculus books tend to get suspiciously vague around

here, when trying to describe how to handle multivariable minimization

problems in the face of this complexity.

It turns out there’s a reason for this: Minimizing an n-variable func-

tion over the unit cube in n dimensions is as hard as an NP-complete

problem. To make this concrete, let’s consider the special case of poly-

nomials with integer coefficients over n variables x1, x2, . . . , xn. To review

some terminology, we say a monomial is a product of a real-number co-

efficient c and each variable xi raised to some nonnegative integer power

ai; we can write this as cxa1
1 xa2

2
. . . xan

n . (For example, 2x2
1x2x

4
3 is a monomial.)

A polynomial is then a sum of a finite set of monomials. (For example,

2x2
1x2x

4
3 + x1x3− 6x2

2x
2
3 is a polynomial.)

We define the Multivariable Polynomial Minimization Problem as fol-

lows: Given a polynomial in n variableswith integer coefficients, and given

an integer bound B, is there a choice of real numbers x1, x2, . . . , xn ∈ [0, 1]
that causes the polynomial to achieve a value that is ≤ B?

Choose a problem Y from this chapter that is known to be NP-

complete and show that

Y ≤P Multivariable Polynomial Minimization.

31. Given an undirected graph G = (V , E), a feedback set is a set X ⊆ V with the

property that G − X has no cycles. The Undirected Feedback Set Problem

asks: Given G and k, does G contain a feedback set of size at most k? Prove

that Undirected Feedback Set is NP-complete.

Exercises 521

32. Themapping of genomes involves a large array of difficult computational

problems. At the most basic level, each of an organism’s chromosomes

can be viewed as an extremely long string (generally containing millions

of symbols) over the four-letter alphabet {A, C , G, T}. One family of ap-

proaches to genome mapping is to generate a large number of short,

overlapping snippets from a chromosome, and then to infer the full long

string representing the chromosome from this set of overlapping sub-

strings.

While we won’t go into these string assembly problems in full detail,

here’s a simplified problem that suggests some of the computational dif-

ficulty one encounters in this area. Supposewe have a set S= {s1, s2, . . . , sn}
of short DNA strings over a q-letter alphabet; and each string si has length

2�, for some number � ≥ 1. We also have a library of additional strings

T = {t1, t2, . . . , tm} over the same alphabet; each of these also has length

2�. In trying to assess whether the string sb might come directly after the

string sa in the chromosome, we will look to see whether the library T

contains a string tk so that the first � symbols in tk are equal to the last �

symbols in sa, and the last � symbols in tk are equal to the first � symbols

in sb. If this is possible, we will say that tk corroborates the pair (sa , sb).

(In other words, tk could be a snippet of DNA that straddled the region

in which sb directly followed sa.)

Now we’d like to concatenate all the strings in S in some order,

one after the other with no overlaps, so that each consecutive pair is

corroborated by some string in the library T . That is, we’d like to order

the strings in S as si1, si2, . . . , sin, where i1, i2, . . . , in is a permutation of

{1, 2, . . . , n}, so that for each j = 1, 2, . . . , n − 1, there is a string tk that

corroborates the pair (sij , sij+1
). (The same string tk can be used for more

than one consecutive pair in the concatenation.) If this is possible, we will

say that the set S has a perfect assembly .

Given sets S and T , the Perfect Assembly Problem asks: Does S have

a perfect assembly with respect to T? Prove that Perfect Assembly is NP-

complete.

Example. Suppose the alphabet is {A, C , G, T}, the set S= {AG, TC , TA}, and
the set T = {AC , CA, GC , GT} (so each string has length 2�= 2). Then the

answer to this instance of Perfect Assembly is yes: We can concatenate

the three strings in S in the order TCAGTA (so si1= s2, si2 = s1, and si3= s3). In

this order, the pair (si1, si2) is corroborated by the string CA in the library

T , and the pair (si2, si3) is corroborated by the string GT in the library T .

33. In a barter economy, people trade goods and services directly, without

money as an intermediate step in the process. Trades happen when each

522 Chapter 8 NP and Computational Intractability

party views the set of goods they’re getting as more valuable than the set

of goods they’re giving in return. Historically, societies tend tomove from

barter-based to money-based economies; thus various online systems

that have been experimenting with barter can be viewed as intentional

attempts to regress to this earlier form of economic interaction. In doing

this, they’ve rediscovered some of the inherent difficulties with barter

relative to money-based systems. One such difficulty is the complexity

of identifying opportunities for trading, even when these opportunities

exist.

To model this complexity, we need a notion that each person assigns

a value to each object in the world, indicating howmuch this object would

be worth to them. Thus we assume there is a set of n people p1, . . . , pn,

and a set of m distinct objects a1, . . . , am. Each object is owned by one

of the people. Now each person pi has a valuation function vi, defined so

that vi(aj) is a nonnegative number that specifies how much object aj is

worth to pi—the larger the number, the more valuable the object is to the

person. Note that everyone assigns a valuation to each object, including

the ones they don’t currently possess, and different people can assign

very different valuations to the same object.

A two-person trade is possible in a system like this when there are

people pi and pj, and subsets of objects Ai and Aj possessed by pi and pj,

respectively, so that each person would prefer the objects in the subset

they don’t currently have. More precisely,

. pi’s total valuation for the objects in Aj exceeds his or her total

valuation for the objects in Ai, and

. pj’s total valuation for the objects in Ai exceeds his or her total

valuation for the objects in Aj.

(Note that Ai doesn’t have to be all the objects possessed by pi (and

likewise for Aj); Ai and Aj can be arbitrary subsets of their possessions

that meet these criteria.)

Suppose you are given an instance of a barter economy, specified

by the above data on people’s valuations for objects. (To prevent prob-

lems with representing real numbers, we’ll assume that each person’s

valuation for each object is a natural number.) Prove that the problem of

determining whether a two-person trade is possible is NP-complete.

34. In the 1970s, researchers including Mark Granovetter and Thomas

Schelling in the mathematical social sciences began trying to develop

models of certain kinds of collective human behaviors: Why do particu-

lar fads catch on while others die out? Why do particular technological

innovations achieve widespread adoption, while others remain focused

Exercises 523

on a small group of users? What are the dynamics by which rioting and

looting behavior sometimes (but only rarely) emerges from a crowd of

angry people? They proposed that these are all examples of cascade

processes, in which an individual’s behavior is highly influenced by the

behaviors of his or her friends, and so if a few individuals instigate the

process, it can spread to more and more people and eventually have a

very wide impact. We can think of this process as being like the spread

of an illness, or a rumor, jumping from person to person.

Themost basic version of their models is the following. There is some

underlying behavior (e.g., playing ice hockey, owning a cell phone, taking

part in a riot), and at any point in time each person is either an adopter of

the behavior or a nonadopter . We represent the population by a directed

graph G = (V , E) in which the nodes correspond to people and there is

an edge (v, w) if person v has influence over the behavior of person w: If

person v adopts the behavior, then this helps induce person w to adopt

it as well. Each person w also has a given threshold θ(w) ∈ [0, 1], and this

has the following meaning: At any time when at least a θ(w) fraction of

the nodes with edges to w are adopters of the behavior, the node w will

become an adopter as well.

Note that nodes with lower thresholds are more easily convinced

to adopt the behavior, while nodes with higher thresholds are more

conservative. A node w with threshold θ(w)= 0 will adopt the behavior

immediately, with no inducement from friends. Finally, we need a conven-

tion about nodes with no incoming edges: We will say that they become

adopters if θ(w)= 0, and cannot become adopters if they have any larger

threshold.

Given an instance of this model, we can simulate the spread of the

behavior as follows.

Initially, set all nodes w with θ(w)= 0 to be adopters

(All other nodes start out as nonadopters)

Until there is no change in the set of adopters:

For each nonadopter w simultaneously:

If at least a θ(w) fraction of nodes with edges to w are

adopters then

w becomes an adopter

Endif

Endfor

End

Output the final set of adopters

524 Chapter 8 NP and Computational Intractability

Note that this process terminates, since there are only n individuals total,

and at least one new person becomes an adopter in each iteration.

Now, in the last few years, researchers in marketing and data min-

ing have looked at how a model like this could be used to investigate

“word-of-mouth” effects in the success of new products (the so-called

viral marketing phenomenon). The idea here is that the behavior we’re

concerned with is the use of a new product; we may be able to convince

a few key people in the population to try out this product, and hope to

trigger as large a cascade as possible.

Concretely, suppose we choose a set of nodes S⊆ V and we reset the

threshold of each node in S to 0. (By convincing them to try the product,

we’ve ensured that they’re adopters.) We then run the process described

above, and see how large the final set of adopters is. Let’s denote the size

of this final set of adopters by f (S) (note that we write it as a function of

S, since it naturally depends on our choice of S). We could think of f (S)

as the influence of the set S, since it captures how widely the behavior

spreads when “seeded” at S.

The goal, if we’re marketing a product, is to find a small set S

whose influence f (S) is as large as possible. We thus define the Influence

Maximization Problem as follows: Given a directed graph G = (V , E), with

a threshold value at each node, and parameters k and b, is there a set S

of at most k nodes for which f (S)≥ b?

Prove that Influence Maximization is NP-complete.

Example. Suppose our graph G = (V , E) has five nodes {a, b, c, d, e}, four
edges (a, b), (b, c), (e, d), (d, c), and all node thresholds equal to 2/3. Then
the answer to the Influence Maximization instance defined by G, with

k = 2 and b= 5, is yes: We can choose S = {a, e}, and this will cause the

other three nodes to become adopters as well. (This is the only choice of

S that will work here. For example, if we choose S = {a, d}, then b and c

will become adopters, but e won’t; if we choose S= {a, b}, then none of c,

d, or e will become adopters.)

35. Three of your friends work for a large computer-game company, and

they’ve been working hard for several months now to get their proposal

for a new game, Droid Trader! , approved by higher management. In

the process, they’ve had to endure all sorts of discouraging comments,

ranging from “You’re really going to have to work with Marketing on the

name” to “Why don’t you emphasize the parts where people get to kick

each other in the head?”

At this point, though, it’s all but certain that the game is really

heading into production, and your friends come to you with one final

Exercises 525

issue that’s been worrying them: What if the overall premise of the game

is too simple, so that players get really good at it and become bored too

quickly?

It takes you awhile, listening to their detailed description of the game,

to figure out what’s going on; but once you strip away the space battles,

kick-boxing interludes, and Stars-Wars-inspired pseudo-mysticism, the

basic idea is as follows. A player in the game controls a spaceship and

is trying to make money buying and selling droids on different planets.

There are n different types of droids and k different planets. Each planet p

has the following properties: there are s(j, p)≥ 0 droids of type j available

for sale, at a fixed price of x(j, p) ≥ 0 each, for j = 1, 2, . . . , n; and there

is a demand for d(j, p) ≥ 0 droids of type j, at a fixed price of y(j, p) ≥ 0
each. (We will assume that a planet does not simultaneously have both a

positive supply and a positive demand for a single type of droid; so for

each j, at least one of s(j, p) or d(j, p) is equal to 0.)

The player begins on planet s with z units of money and must end

at planet t; there is a directed acyclic graph G on the set of planets, such

that s-t paths in G correspond to valid routes by the player. (G is chosen

to be acyclic to prevent arbitrarily long games.) For a given s-t path P in

G, the player can engage in transactions as follows. Whenever the player

arrives at a planet p on the path P, she can buy up to s(j, p) droids of type

j for x(j, p) units of money each (provided she has sufficient money on

hand) and/or sell up to d(j, p) droids of type j for y(j, p) units of money

each (for j = 1, 2, . . . , n). The player’s final score is the total amount of

money she has on handwhen she arrives at planet t. (There are also bonus

points based on space battles and kick-boxing, which we’ll ignore for the

purposes of formulating this question.)

So basically, the underlying problem is to achieve a high score. In

other words, given an instance of this game, with a directed acyclic graph

G on a set of planets, all the other parameters described above, and also

a target bound B, is there a path P in G and a sequence of transactions

on P so that the player ends with a final score that is at least B? We’ll call

this an instance of the High-Score-on-Droid-Trader! Problem, or HSoDT!

for short.

Prove that HSoDT! is NP-complete, thereby guaranteeing (assuming

P �= NP) that there isn’t a simple strategy for racking up high scores on

your friends’ game.

36. Sometimes you can know people for years and never really understand

them. Take your friends Raj and Alanis, for example. Neither of them is

a morning person, but now they’re getting up at 6 AM every day to visit

526 Chapter 8 NP and Computational Intractability

local farmers’ markets, gathering fresh fruits and vegetables for the new

health-food restaurant they’ve opened, Chez Alanisse.

In the course of trying to save money on ingredients, they’ve come

across the following thorny problem. There is a large set of n possible raw

ingredients they could buy, I1, I2, . . . , In (e.g., bundles of dandelion greens,

jugs of rice vinegar, and so forth). Ingredient Ij must be purchased in units

of size s(j) grams (any purchase must be for a whole number of units),

and it costs c(j) dollars per unit. Also, it remains safe to use for t(j) days

from the date of purchase.

Now, over the next k days, they want to make a set of k different daily

specials, one each day. (The order in which they schedule the specials

is up to them.) The ith daily special uses a subset Si ⊆ {I1, I2, . . . , In} of
the raw ingredients. Specifically, it requires a(i, j) grams of ingredient Ij.

And there’s a final constraint: The restaurant’s rabidly loyal customer

base only remains rabidly loyal if they’re being served the freshest meals

available; so for each daily special, the ingredients Si are partitioned into

two subsets: those that must be purchased on the very day when the daily

special is being offered, and those that can be used any day while they’re

still safe. (For example, the mesclun-basil salad special needs to be made

with basil that has been purchased that day; but the arugula-basil pesto

with Cornell dairy goat cheese special can use basil that is several days

old, as long as it is still safe.)

This is where the opportunity to save money on ingredients comes

up. Often, when they buy a unit of a certain ingredient Ij, they don’t need

the whole thing for the special they’re making that day. Thus, if they can

follow up quickly with another special that uses Ij but doesn’t require it to

be fresh that day, then they can save money by not having to purchase Ij
again. Of course, scheduling the basil recipes close together may make it

harder to schedule the goat cheese recipes close together, and so forth—

this is where the complexity comes in.

So we define the Daily Special Scheduling Problem as follows: Given

data on ingredients and recipes as above, and a budget x, is there a way to

schedule the k daily specials so that the total money spent on ingredients

over the course of all k days is at most x?

Prove that Daily Special Scheduling is NP-complete.

37. There are those who insist that the initial working title for Episode XXVII

of the Star Wars series was “P=NP”—but this is surely apocryphal. In any

case, if you’re so inclined, it’s easy to find NP-complete problems lurking

just below the surface of the original Star Wars movies.

Exercises 527

Consider the problem faced by Luke, Leia, and friends as they tried to

make their way from the Death Star back to the hidden Rebel base. We can

view the galaxy as an undirected graph G = (V , E), where each node is a

star system and an edge (u, v) indicates that one can travel directly from u

to v. The Death Star is represented by a node s, the hidden Rebel base by a

node t. Certain edges in this graph represent longer distances than others;

thus each edge e has an integer length �e ≥ 0. Also, certain edges represent

routes that are more heavily patrolled by evil Imperial spacecraft; so each

edge e also has an integer risk re ≥ 0, indicating the expected amount

of damage incurred from special-effects-intensive space battles if one

traverses this edge.

It would be safest to travel through the outer rim of the galaxy, from

one quiet upstate star system to another; but then one’s ship would run

out of fuel long before getting to its destination. Alternately, it would be

quickest to plunge through the cosmopolitan core of the galaxy; but then

there would be far too many Imperial spacecraft to deal with. In general,

for any path P from s to t, we can define its total length to be the sum of

the lengths of all its edges; and we can define its total risk to be the sum

of the risks of all its edges.

So Luke, Leia, and company are looking at a complex type of shortest-

path problem in this graph: they need to get from s to t along a path whose

total length and total risk are both reasonably small. In concrete terms, we

can phrase the Galactic Shortest-Path Problem as follows: Given a setup

as above, and integer bounds L and R, is there a path from s to t whose

total length is at most L, and whose total risk is at most R?

Prove that Galactic Shortest Path is NP-complete.

38. Consider the following version of the Steiner Tree Problem, which we’ll

refer to as Graphical Steiner Tree. You are given an undirected graph

G = (V , E), a set X ⊆ V of vertices, and a number k. You want to decide

whether there is a set F ⊆ E of at most k edges so that in the graph (V , F),

X belongs to a single connected component.

Show that Graphical Steiner Tree is NP-complete.

39. The Directed Disjoint Paths Problem is defined as follows. We are given

a directed graph G and k pairs of nodes (s1, t1), (s2, t2), . . . , (sk , tk). The

problem is to decide whether there exist node-disjoint paths P1, P2, . . . , Pk

so that Pi goes from si to ti.

Show that Directed Disjoint Paths is NP-complete.

40. Consider the following problem that arises in the design of broadcasting

schemes for networks. We are given a directed graph G = (V , E), with a

528 Chapter 8 NP and Computational Intractability

designated node r ∈ V and a designated set of “target nodes” T ⊆ V − {r}.
Each node v has a switching time sv, which is a positive integer.

At time 0, the node r generates amessage that it would like every node

in T to receive. To accomplish this, we want to find a scheme whereby r

tells some of its neighbors (in sequence), who in turn tell some of their

neighbors, and so on, until every node in T has received themessage.More

formally, a broadcast scheme is defined as follows. Node r may send a

copy of the message to one of its neighbors at time 0; this neighbor will

receive the message at time 1. In general, at time t ≥ 0, any node v that

has already received the message may send a copy of the message to

one of its neighbors, provided it has not sent a copy of the message in

any of the time steps t − sv + 1, t − sv + 2, . . . , t − 1. (This reflects the role

of the switching time; v needs a pause of sv − 1 steps between successive

sendings of themessage. Note that if sv = 1, then no restriction is imposed

by this.)

The completion time of the broadcast scheme is the minimum time t

by which all nodes in T have received the message. The Broadcast Time

Problem is the following: Given the input described above, and a bound

b, is there a broadcast scheme with completion time at most b?

Prove that Broadcast Time is NP-complete.

Example. Suppose we have a directed graph G = (V , E), with V =
{r , a, b, c}; edges (r , a), (a, b), (r , c); the set T = {b, c}; and switching time

sv = 2 for each v ∈ V. Then a broadcast scheme with minimum completion

time would be as follows: r sends the message to a at time 0; a sends

the message to b at time 1; r sends the message to c at time 2; and the

scheme completes at time 3when c receives the message. (Note that a can

send the message as soon as it receives it at time 1, since this is its first

sending of the message; but r cannot send the message at time 1 since

sr = 2 and it sent the message at time 0.)

41. Given a directed graph G, a cycle cover is a set of node-disjoint cycles

so that each node of G belongs to a cycle. The Cycle Cover Problem asks

whether a given directed graph has a cycle cover.

(a) Show that the Cycle Cover Problem can be solved in polynomial time.

(Hint: Use Bipartite Matching.)

(b) Suppose we require each cycle to have atmost three edges. Show that

determiningwhether a graphG has such a cycle cover is NP-complete.

42. Suppose you’re consulting for a company in northern New Jersey that

designs communication networks, and they come to you with the follow-

Notes and Further Reading 529

ing problem. They’re studying a specific n-node communication network,

modeled as a directed graphG= (V , E). For reasons of fault tolerance, they

want to divide up G into as many virtual “domains” as possible: A domain

in G is a set X of nodes, of size at least 2, so that for each pair of nodes

u, v ∈ X there are directed paths from u to v and v to u that are contained

entirely in X.

Show that the following Domain Decomposition Problem is NP-com-

plete. Given a directed graph G = (V , E) and a number k, can V be parti-

tioned into at least k sets, each of which is a domain?

Notes and Further Reading

In the notes to Chapter 2, we described some of the early work on formalizing
computational efficiency using polynomial time; NP-completeness evolved
out of this work and grew into its central role in computer science following
the papers of Cook (1971), Levin (1973), and Karp (1972). Edmonds (1965)
is credited with drawing particular attention to the class of problems in
NP ∩ co-NP—those with “good characterizations.” His paper also contains
the explicit conjecture that the Traveling Salesman Problem cannot be solved
in polynomial time, thereby prefiguring the P �= NP question. Sipser (1992) is
a useful guide to all of this historical context.

The book by Garey and Johnson (1979) provides extensive material on NP-
completeness and concludes with a very useful catalog of known NP-complete
problems. While this catalog, necessarily, only covers what was known at the
time of the book’s publication, it is still a very useful reference when one
encounters a new problem that looks like it might be NP-complete. In the
meantime, the space of known NP-complete problems has continued to expand
dramatically; as Christos Papadimitriou said in a lecture, “Roughly 6,000
papers every year contain an NP-completeness result. That means another
NP-complete problem has been discovered since lunch.” (His lecture was at
2:00 in the afternoon.)

One can interpret NP-completeness as saying that each individual NP-
complete problem contains the entire complexity of NP hidden inside it. A
concrete reflection of this is the fact that several of the NP-complete problems
we discuss here are the subject of entire books: the Traveling Salesman is the
subject of Lawler et al. (1985); Graph Coloring is the subject of Jensen and Toft
(1995); and the Knapsack Problem is the subject of Martello and Toth (1990).
NP-completeness results for scheduling problems are discussed in the survey
by Lawler et al. (1993).

530 Chapter 8 NP and Computational Intractability

Notes on the Exercises A number of the exercises illustrate further problems
that emerged as paradigmatic examples early in the development of NP-
completeness; these include Exercises 5, 26, 29, 31, 38, 39, 40, and 41.
Exercise 33 is based on discussions with Daniel Golovin, and Exercise 34
is based on our work with David Kempe. Exercise 37 is an example of the
class of Bicriteria Shortest-Path problems; its motivating application here was
suggested by Maverick Woo.

Chapter 9

PSPACE: A Class of Problems
beyond NP

Throughout the book, one of the main issues has been the notion of time as a
computational resource. It was this notion that formed the basis for adopting
polynomial time as our working definition of efficiency; and, implicitly, it
underlies the distinction between P and NP. To some extent, we have also
been concerned with the space (i.e., memory) requirements of algorithms. In
this chapter, we investigate a class of problems defined by treating space as
the fundamental computational resource. In the process, we develop a natural
class of problems that appear to be even harder than NP and co-NP.

9.1 PSPACE
The basic class we study is PSPACE, the set of all problems that can be solved
by an algorithm with polynomial space complexity—that is, an algorithm that
uses an amount of space that is polynomial in the size of the input.

We begin by considering the relationship of PSPACE to classes of problems
we have considered earlier. First of all, in polynomial time, an algorithm can
consume only a polynomial amount of space; so we can say

(9.1) P ⊆ PSPACE.

But PSPACE is much broader than this. Consider, for example, an algorithm
that just counts from 0 to 2n − 1 in base-2 notation. It simply needs to
implement an n-bit counter, which it maintains in exactly the same way one
increments an odometer in a car. Thus this algorithm runs for an exponential
amount of time, and then halts; in the process, it has used only a polynomial
amount of space. Although this algorithm is not doing anything particularly

532 Chapter 9 PSPACE: A Class of Problems beyond NP

interesting, it illustrates an important principle: Space can be reused during a
computation in ways that time, by definition, cannot.

Here is a more striking application of this principle.

(9.2) There is an algorithm that solves 3-SAT using only a polynomial amount
of space.

Proof. We simply use a brute-force algorithm that tries all possible truth
assignments; each assignment is plugged into the set of clauses to see if it
satisfies them. The key is to implement this all in polynomial space.

To do this, we increment an n-bit counter from 0 to 2n − 1 just as described
above. The values in the counter correspond to truth assignments in the
following way: When the counter holds a value q, we interpret it as a truth
assignment ν that sets xi to be the value of the ith bit of q.

Thus we devote a polynomial amount of space to enumerating all possible
truth assignments ν. For each truth assignment, we need only polynomial
space to plug it into the set of clauses and see if it satisfies them. If it does
satisfy the clauses, we can stop the algorithm immediately. If it doesn’t, we
delete the intermediate work involved in this “plugging in” operation and reuse
this space for the next truth assignment. Thus we spend only polynomial space
cumulatively in checking all truth assignments; this completes the bound on
the algorithm’s space requirements.

Since 3-SAT is an NP-complete problem, (9.2) has a significant conse-
quence.

(9.3) NP ⊆ PSPACE.

Proof. Consider an arbitrary problem Y in NP. Since Y ≤P 3-SAT, there is
an algorithm that solves Y using a polynomial number of steps plus a poly-
nomial number of calls to a black box for 3-SAT. Using the algorithm in (9.2)
to implement this black box, we obtain an algorithm for Y that uses only
polynomial space.

Just as with the class P, a problem X is in PSPACE if and only if its
complementary problem X is in PSPACE as well. Thus we can conclude that
co-NP⊆ PSPACE. We draw what is known about the relationships among these
classes of problems in Figure 9.1.

Given that PSPACE is an enormously large class of problems, containing
both NP and co-NP, it is very likely that it contains problems that cannot
be solved in polynomial time. But despite this widespread belief, amazingly

9.2 Some Hard Problems in PSPACE 533

PSPACE

co–

Figure 9.1 The subset relationships among various classes of problems. Note that we
don’t know how to prove the conjecture that all of these classes are different from one
another.

it has not been proven that P �= PSPACE. Nevertheless, the nearly universal
conjecture is that PSPACE contains problems that are not even in NP or co-NP.

9.2 Some Hard Problems in PSPACE
We now survey some natural examples of problems in PSPACE that are not
known—and not believed—to belong to NP or co-NP.

As was the case with NP, we can try understanding the structure of
PSPACE by looking for complete problems—the hardest problems in the class.
We will say that a problem X is PSPACE-complete if (i) it belongs to PSPACE;
and (ii) for all problems Y in PSPACE, we have Y ≤P X.

It turns out, analogously to the case of NP, that a wide range of natural
problems are PSPACE-complete. Indeed, a number of the basic problems in
artificial intelligence are PSPACE-complete, and we describe three genres of
these here.

Planning
Planning problems seek to capture, in a clean way, the task of interacting
with a complex environment to achieve a desired set of goals. Canonical
applications include large logistical operations that require the movement of
people, equipment, and materials. For example, as part of coordinating a
disaster-relief effort, we might decide that twenty ambulances are needed at a
particular high-altitude location. Before this can be accomplished, we need to
get ten snowplows to clear the road; this in turn requires emergency fuel and
snowplow crews; but if we use the fuel for the snowplows, then we may not
have enough for the ambulances; and . . . you get the idea. Military operations

534 Chapter 9 PSPACE: A Class of Problems beyond NP

also require such reasoning on an enormous scale, and automated planning
techniques from artificial intelligence have been used to great effect in this
domain as well.

One can see very similar issues at work in complex solitaire games such
as Rubik’s Cube or the fifteen-puzzle—a 4× 4 grid with fifteen movable tiles
labeled 1, 2, . . . , 15, and a single hole, with the goal of moving the tiles around
so that the numbers end up in ascending order. (Rather than ambulances and
snowplows, we now are worried about things like getting the tile labeled 6
one position to the left, which involves getting the 11 out of the way; but
that involves moving the 9, which was actually in a good position; and so
on.) These toy problems can be quite tricky and are often used in artificial
intelligence as a test-bed for planning algorithms.

Having said all this, how should we define the problem of planning
in a way that’s general enough to include each of these examples? Both
solitaire puzzles and disaster-relief efforts have a number of abstract features
in common: There are a number of conditions we are trying to achieve and a set
of allowable operators that we can apply to achieve these conditions. Thus we
model the environment by a set C = {C1, . . . , Cn} of conditions: A given state
of the world is specified by the subset of the conditions that currently hold. We
interact with the environment through a set {O1, . . . , Ok} of operators. Each
operator Oi is specified by a prerequisite list, containing a set of conditions
that must hold for Oi to be invoked; an add list, containing a set of conditions
that will become true after Oi is invoked; and a delete list, containing a set of
conditions that will cease to hold after Oi is invoked. For example, we could
model the fifteen-puzzle by having a condition for each possible location of
each tile, and an operator to move each tile between each pair of adjacent
locations; the prerequisite for an operator is that its two locations contain the
designated tile and the hole.

The problem we face is the following: Given a set C0 of initial conditions,
and a set C∗ of goal conditions, is it possible to apply a sequence of operators
beginning with C0 so that we reach a situation in which precisely the conditions
in C∗ (and no others) hold? We will call this an instance of the Planning
Problem.

Quantification
We have seen, in the 3-SAT problem, some of the difficulty in determining
whether a set of disjunctive clauses can be simultaneously satisfied. When we
add quantifiers, the problem appears to become even more difficult.

Let �(x1, . . . , xn) be a Boolean formula of the form

C1∧ C2 ∧ . . .∧ Ck,

9.2 Some Hard Problems in PSPACE 535

where each Ci is a disjunction of three terms (in other words, it is an instance
of 3-SAT). Assume for simplicity that n is an odd number, and suppose we ask

∃x1∀x2 . . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn)?

That is, we wish to know whether there is a choice for x1, so that for both
choices of x2, there is a choice for x3, and so on, so that � is satisfied. We will
refer to this decision problem as Quantified 3-SAT (or, briefly, QSAT).

The original 3-SAT problem, by way of comparison, simply asked

∃x1∃x2 . . . ∃xn−2∃xn−1∃xn�(x1, . . . , xn)?

In other words, in 3-SAT it was sufficient to look for a single setting of the
Boolean variables.

Here’s an example to illustrate the kind of reasoning that underlies an
instance of QSAT. Suppose that we have the formula

�(x1, x2, x3)= (x1∨ x2 ∨ x3) ∧ (x1∨ x2 ∨ x3) ∧ (x1∨ x2 ∨ x3) ∧ (x1∨ x2 ∨ x3)

and we ask

∃x1∀x2∃x3�(x1, x2, x3)?

The answer to this question is yes: We can set x1 so that for both choices of
x2, there is a way to set x3 so that � is satisfied. Specifically, we can set x1= 1;
then if x2 is set to 1, we can set x3 to 0 (satisfying all clauses); and if x2 is set
to 0, we can set x3 to 1 (again satisfying all clauses).

Problems of this type, with a sequence of quantifiers, arise naturally as a
form of contingency planning—we wish to know whether there is a decision
we can make (the choice of x1) so that for all possible responses (the choice
of x2) there is a decision we can make (the choice of x3), and so forth.

Games
In 1996 and 1997, world chess champion Garry Kasparov was billed by the
media as the defender of the human race, as he faced IBM’s program Deep Blue
in two chess matches. We needn’t look further than this picture to convince
ourselves that computational game-playing is one of the most visible successes
of contemporary artificial intelligence.

A large number of two-player games fit naturally into the following frame-
work. Players alternate moves, and the first one to achieve a specific goal wins.
(For example, depending on the game, the goal could be capturing the king,
removing all the opponent’s checkers, placing four pieces in a row, and so on.)
Moreover, there is often a natural, polynomial, upper bound on the maximum
possible length of a game.

536 Chapter 9 PSPACE: A Class of Problems beyond NP

The Competitive Facility Location Problem that we introduced in Chapter 1
fits naturally within this framework. (It also illustrates the way in which games
can arise not just as pastimes, but through competitive situations in everyday
life.) Recall that in Competitive Facility Location, we are given a graph G, with
a nonnegative value bi attached to each node i. Two players alternately select
nodes of G, so that the set of selected nodes at all times forms an independent
set. Player 2 wins if she ultimately selects a set of nodes of total value at least
B, for a given bound B; Player 1 wins if he prevents this from happening. The
question is: Given the graph G and the bound B, is there a strategy by which
Player 2 can force a win?

9.3 Solving Quantified Problems and Games in
Polynomial Space

We now discuss how to solve all of these problems in polynomial space. As
we will see, this will be trickier—in one case, a lot trickier—than the (simple)
task we faced in showing that problems like 3-SAT and Independent Set belong
to NP.

We begin here with QSAT and Competitive Facility Location, and then
consider Planning in the next section.

Designing an Algorithm for QSAT
First let’s show that QSAT can be solved in polynomial space. As was the case
with 3-SAT, the idea will be to run a brute-force algorithm that reuses space
carefully as the computation proceeds.

Here is the basic brute-force approach. To deal with the first quantifier ∃x1,
we consider both possible values for x1 in sequence. We first set x1= 0 and
see, recursively, whether the remaining portion of the formula evaluates to 1.
We then set x1= 1 and see, recursively, whether the remaining portion of the
formula evaluates to 1. The full formula evaluates to 1 if and only if either of
these recursive calls yields a 1—that’s simply the definition of the ∃ quantifier.

This is essentially a divide-and-conquer algorithm, which, given an input
with n variables, spawns two recursive calls on inputs with n − 1 variables
each. If we were to save all the work done in both these recursive calls, our
space usage S(n) would satisfy the recurrence

S(n)≤ 2S(n − 1)+ p(n),

where p(n) is a polynomial function. This would result in an exponential
bound, which is too large.

9.3 Solving Quantified Problems and Games in Polynomial Space 537

Fortunately, we can perform a simple optimization that greatly reduces
the space usage. When we’re done with the case x1= 0, all we really need
to save is the single bit that represents the outcome of the recursive call; we
can throw away all the other intermediate work. This is another example of
“reuse”—we’re reusing the space from the computation for x1= 0 in order to
compute the case x1= 1.

Here is a compact description of the algorithm.

If the first quantifier is ∃ xi then

Set xi = 0 and recursively evaluate the quantified expression

over the remaining variables

Save the result (0 or 1) and delete all other intermediate work

Set xi = 1 and recursively evaluate the quantified expression

over the remaining variables

If either outcome yielded an evaluation of 1, then

return 1

Else return 0

Endif

If the first quantifier is ∀ xi then

Set xi = 0 and recursively evaluate the quantified expression

over the remaining variables

Save the result (0 or 1) and delete all other intermediate work

Set xi = 1 and recursively evaluate the quantified expression

over the remaining variables

If both outcomes yielded an evaluation of 1, then

return 1

Else return 0

Endif

Endif

Analyzing the Algorithm
Since the recursive calls for the cases x1= 0 and x1= 1 overwrite the same
space, our space requirement S(n) for an n-variable problem is simply a
polynomial in n plus the space requirement for one recursive call on an (n− 1)-
variable problem:

S(n)≤ S(n − 1)+ p(n),

where again p(n) is a polynomial function. Unrolling this recurrence, we get

S(n)≤ p(n)+ p(n − 1)+ p(n − 2)+ . . .+ p(1)≤ n · p(n).

538 Chapter 9 PSPACE: A Class of Problems beyond NP

Since p(n) is a polynomial, so is n · p(n), and hence our space usage is
polynomial in n, as desired.

In summary, we have shown the following.

(9.4) QSAT can be solved in polynomial space.

Extensions: An Algorithm for Competitive Facility Location
We can determine which player has a forced win in a game such as Competitive
Facility Location by a very similar type of algorithm.

Suppose Player 1 moves first. We consider all of his possible moves in
sequence. For each of these moves, we see who has a forced win in the resulting
game, with Player 2 moving first. If Player 1 has a forced win in any of them,
then Player 1 has a forced win from the initial position. The crucial point,
as in the QSAT algorithm, is that we can reuse the space from one candidate
move to the next; we need only store the single bit representing the outcome.
In this way, we only consume a polynomial amount of space plus the space
requirement for one recursive call on a graph with fewer nodes. As in the case
of QSAT, we get the recurrence

S(n)≤ S(n − 1)+ p(n)

for a polynomial p(n).

In summary, we have shown the following.

(9.5) Competitive Facility Location can be solved in polynomial space.

9.4 Solving the Planning Problem in
Polynomial Space

Now we consider how to solve the basic Planning Problem in polynomial
space. The issues here will look quite different, and it will turn out to be a
much more difficult task.

The Problem
Recall that we have a set of conditions C = {C1, . . . , Cn} and a set of operators
{O1, . . . , Ok}. Each operator Oi has a prerequisite list Pi, an add list Ai, and
a delete list Di. Note that Oi can still be applied even if conditions other than
those in Pi are present; and it does not affect conditions that are not in Ai or Di.

We define a configuration to be a subset C′ ⊆ C; the state of the Planning
Problem at any given time can be identified with a unique configuration C′

9.4 Solving the Planning Problem in Polynomial Space 539

consisting precisely of the conditions that hold at that time. For an initial
configuration C0 and a goal configuration C∗, we wish to determine whether
there is a sequence of operators that will take us from C0 to C∗.

We can view our Planning instance in terms of a giant, implicitly defined,
directed graph G. There is a node of G for each of the 2n possible configurations
(i.e., each possible subset of C); and there is an edge of G from configuration
C′ to configuration C′′ if, in one step, one of the operators can convert C′ to C′′.
In terms of this graph, the Planning Problem has a very natural formulation:
Is there a path in G from C0 to C∗? Such a path corresponds precisely to a
sequence of operators leading from C0 to C∗.

It’s possible for a Planning instance to have a short solution (as in the
example of the fifteen-puzzle), but this need not hold in general. That is,
there need not always be a short path in G from C0 to C∗. This should not be
so surprising, since G has an exponential number of nodes. But we must be
careful in applying this intuition, since G has a special structure: It is defined
very compactly in terms of the n conditions and k operators.

(9.6) There are instances of the Planning Problem with n conditions and k
operators for which there exists a solution, but the shortest solution has length
2n − 1.

Proof. We give a simple example of such an instance; it essentially encodes
the task of incrementing an n-bit counter from the all-zeros state to the all-ones
state.

. We have conditions C1, C2, . . . , Cn.

. We have operators Oi for i = 1, 2, . . . , n.

. O1 has no prerequisites or delete list; it simply adds C1.

. For i > 1, Oi requires Cj for all j < i as prerequisites. When invoked, it
adds Ci and deletes Cj for all j < i.

Now we ask: Is there a sequence of operators that will take us from C0= φ to
C∗ = {C1, C2, . . . , Cn}?

We claim the following, by induction on i:

From any configuration that does not contain Cj for any j ≤ i, there exists
a sequence of operators that reaches a configuration containing Cj for all
j ≤ i; but any such sequence has at least 2i − 1 steps.

This is clearly true for i = 1. For larger i, here’s one solution.

. By induction, achieve conditions {Ci−1, . . . , C1} using operators O1, . . . ,
Oi−1.

. Now invoke operator Oi, adding Ci but deleting everything else.

540 Chapter 9 PSPACE: A Class of Problems beyond NP

. Again, by induction, achieve conditions {Ci−1, . . . , C1} using operators
O1, . . . , Oi−1. Note that condition Ci is preserved throughout this process.

Now we take care of the other part of the inductive step—that any such
sequence requires at least 2i − 1 steps. So consider the first moment when Ci
is added. At this step, Ci−1, . . . , C1 must have been present, and by induction,
this must have taken at least 2i−1− 1 steps. Ci can only be added by Oi,
which deletes all Cj for j < i. Now we have to achieve conditions {Ci−1, . . . , C1}
again; this will take another 2i−1− 1 steps, by induction, for a total of at least
2(2i−1− 1)+ 1= 2i − 1 steps.

The overall bound now follows by applying this claim with i = n.

Of course, if every “yes” instance of Planning had a polynomial-length
solution, then Planning would be in NP—we could just exhibit the solution.
But (9.6) shows that the shortest solution is not necessarily a good certificate
for a Planning instance, since it can have a length that is exponential in the
input size.

However, (9.6) describes essentially the worst case, for we have the
following matching upper bound. The graph G has 2n nodes, and if there is a
path from C0 to C∗, then the shortest such path does not visit any node more
than once. As a result, the shortest path can take at most 2n − 1 steps after
leaving C0.

(9.7) If a Planning instance with n conditions has a solution, then it has one
using at most 2n − 1 steps.

Designing the Algorithm
We’ve seen that the shortest solution to the Planning Problem may have length
exponential in n, which is bad news: After all, this means that in polynomial
space, we can’t even store an explicit representation of the solution. But this
fact doesn’t necessarily close out our hopes of solving an arbitrary instance
of Planning using only polynomial space. It’s possible that there could be an
algorithm that decides the answer to an instance of Planning without ever
being able to survey the entire solution at once.

In fact, we now show that this is the case: we design an algorithm to solve
Planning in polynomial space.

Some Exponential Approaches To get some intuition about this problem,
we first consider the following brute-force algorithm to solve the Planning
instance. We build the graph G and use any graph connectivity algorithm—
depth-first search or breadth-first search—to decide whether there is a path
from C0 to C∗.

9.4 Solving the Planning Problem in Polynomial Space 541

Of course, this algorithm is too brute-force for our purposes; it takes
exponential space just to construct the graph G. We could try an approach in
which we never actually build G, and just simulate the behavior of depth-first
search or breadth-first search on it. But this likewise is not feasible. Depth-first
search crucially requires us to maintain a list of all the nodes in the current
path we are exploring, and this can grow to exponential size. Breadth-first
requires a list of all nodes in the current “frontier” of the search, and this too
can grow to exponential size.

We seem stuck. Our problem is transparently equivalent to finding a path
in G, and all the standard path-finding algorithms we know are too lavish in
their use of space. Could there really be a fundamentally different path-finding
algorithm out there?

A More Space-Efficient Way to Construct Paths In fact, there is a fundamen-
tally different kind of path-finding algorithm, and it has just the properties we
need. The basic idea, proposed by Savitch in 1970, is a clever use of the divide-
and-conquer principle. It subsequently inspired the trick for reducing the space
requirements in the Sequence Alignment Problem; so the overall approach may
remind you of what we discussed there, in Section 6.7. Our plan, as before,
is to find a clever way to reuse space, admittedly at the expense of increasing
the time spent. Neither depth-first search nor breadth-first search is nearly ag-
gressive enough in its reuse of space; both need to maintain a large history at
all times. We need a way to solve half the problem, throw away almost all the
intermediate work, and then solve the other half of the problem.

The key is a procedure that we will call Path(C1, C2, L). It determines
whether there is a sequence of operators, consisting of at most L steps, that
leads from configuration C1 to configuration C2. So our initial problem is to
determine the result (yes or no) of Path(C0, C∗, 2n). Breadth-first search can
be viewed as the following dynamic programming implementation of this
procedure: To determine Path(C1, C2, L), we first determine all C′ for which
Path(C1, C′, L− 1) holds; we then see, for each such C′, whether any operator
leads directly from C′ to C2.

This indicates some of the wastefulness, in terms of space, that breadth-
first search entails. We are generating a huge number of intermediate config-
urations just to reduce the parameter L by one. More effective would be to
try determining whether there is any configuration C′ that could serve as the
midpoint of a path from C1 to C2. We could first generate all possible midpoints
C′. For each C′, we then check recursively whether we can get from C1 to C′
in at most L/2 steps; and also whether we can get from C′ to C2 in at most
L/2 steps. This involves two recursive calls, but we care only about the yes/no
outcome of each; other than this, we can reuse space from one to the next.

542 Chapter 9 PSPACE: A Class of Problems beyond NP

Does this really reduce the space usage to a polynomial amount? We first
write down the procedure carefully, and then analyze it. We will think of L as
a power of 2, which it is for our purposes.

Path(C1, C2, L)

If L= 1 then

If there is an operator O converting C1 to C2 then

return ‘‘yes’’

Else

return ‘‘no’’

Endif

Else (L > 1)

Enumerate all configurations C′ using an n-bit counter

For each C′ do the following:
Compute x = Path(C1, C′, �L/2�)
Delete all intermediate work, saving only the return value x

Compute y = Path(C′, C2, �L/2�)
Delete all intermediate work, saving only the return value y

If both x and y are equal to ‘‘yes’’, then return ‘‘yes’’

Endfor

If ‘‘yes’’ was not returned for any C′ then
Return ‘‘no’’

Endif

Endif

Again, note that this procedure solves a generalization of our original
question, which simply asked for Path(C0, C∗, 2n). This does mean, however,
that we should remember to view L as an exponentially large parameter:
log L= n.

Analyzing the Algorithm
The following claim therefore implies that Planning can be solved in polyno-
mial space.

(9.8) Path(C1, C2, L) returns “yes” if and only if there is a sequence of
operators of length at most L leading from C1 to C2. Its space usage is polynomial
in n, k, and log L.

Proof. The correctness follows by induction on L. It clearly holds when L= 1,
since all operators are considered explicitly. Now consider a larger value of
L. If there is a sequence of operators from C1 to C2, of length L′ ≤ L, then
there is a configuration C′ that occurs at position �L′/2� in this sequence. By

9.5 Proving Problems PSPACE-Complete 543

induction, Path(C1, C′, �L/2�) and Path(C′, C2, �L/2�) will both return “yes,”
and so Path(C1, C2, L) will return “yes.” Conversely, if there is a configuration
C′ so that Path(C1, C′, �L/2�) and Path(C′, C2, �L/2�) both return “yes,” then
the induction hypothesis implies that there exist corresponding sequences
of operators; concatenating these two sequences, we obtain a sequence of
operators from C1 to C2 of length at most L.

Now we consider the space requirements. Aside from the space spent
inside recursive calls, each invocation of Path involves an amount of space
polynomial in n, k, and log L. But at any given point in time, only a single
recursive call is active, and the intermediate work from all other recursive calls
has been deleted. Thus, for a polynomial function p, the space requirement
S(n, k, L) satisfies the recurrence

S(n, k, L)≤ p(n, k, log L)+ S(n, k, �L/2�).
S(n, k, 1)≤ p(n, k, 1).

Unwinding the recurrence for O(log L) levels, we obtain the bound S(n, k, L)=
O(log L · p(n, k, log L)), which is a polynomial in n, k, and log L.

If dynamic programming has an opposite, this is it. Back when we were
solving problems by dynamic programming, the fundamental principle was to
save all the intermediate work, so you don’t have to recompute it. Now that
conserving space is our goal, we have just the opposite priorities: throw away
all the intermediate work, since it’s just taking up space and it can always be
recomputed.

As we saw when we designed the space-efficient Sequence Alignment
Algorithm, the best strategy often lies somewhere in between, motivated by
these two approaches: throw away some of the intermediate work, but not so
much that you blow up the running time.

9.5 Proving Problems PSPACE-Complete
When we studied NP, we had to prove a first problem NP-complete directly
from the definition of NP. After Cook and Levin did this for Satisfiability, many
other NP-complete problems could follow by reduction.

A similar sequence of events followed for PSPACE, shortly after the results
for NP. Recall that we defined PSPACE-completeness, by direct analogy with
NP-completeness, in Section 9.1. The natural analogue of Circuit Satisfiability
and 3-SAT for PSPACE is played by QSAT, and Stockmeyer and Meyer (1973)
proved

(9.9) QSAT is PSPACE-complete.

544 Chapter 9 PSPACE: A Class of Problems beyond NP

This basic PSPACE-complete problem can then serve as a good “root” from
which to discover other PSPACE-complete problems. By strict analogy with the
case of NP, it’s easy to see from the definition that if a problem Y is PSPACE-
complete, and a problem X in PSPACE has the property that Y ≤P X, then X is
PSPACE-complete as well.

Our goal in this section is to show an example of such a PSPACE-
completeness proof, for the case of the Competitive Facility Location Problem;
we will do this by reducing QSAT to Competitive Facility Location. In addition
to establishing the hardness of Competitive Facility Location, the reduction
also gives a sense for how one goes about showing PSPACE-completeness
results for games in general, based on their close relationship to quantifiers.

We note that Planning can also be shown to be PSPACE-complete by a
reduction from QSAT, but we will not go through that proof here.

Relating Quantifiers and Games
It is actually not surprising at all that there should be a close relation between
quantifiers and games. Indeed, we could have equivalently defined QSAT as the
problem of deciding whether the first player has a forced win in the following
Competitive 3-SAT game. Suppose we fix a formula �(x1, . . . , xn) consisting,
as in QSAT, of a conjunction of length-3 clauses. Two players alternate turns
picking values for variables: the first player picks the value of x1, then the
second player picks the value of x2, then the first player picks the value of
x3, and so on. We will say that the first player wins if �(x1, . . . , xn) ends up
evaluating to 1, and the second player wins if it ends up evaluating to 0.

When does the first player have a forced win in this game (i.e., when does
our instance of Competitive 3-SAT have a yes answer)? Precisely when there
is a choice for x1 so that for all choices of x2 there is a choice for x3 so that . . .
and so on, resulting in �(x1, . . . , xn) evaluating to 1. That is, the first player
has a forced win if and only if (assuming n is an odd number)

∃x1∀x2 . . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn).

In other words, our Competitive 3-SAT game is directly equivalent to the
instance of QSAT defined by the same Boolean formula �, and so we have
proved the following.

(9.10) QSAT ≤P Competitive 3-SAT and Competitive 3-SAT ≤P QSAT.

Proving Competitive Facility Location is PSPACE-Complete
Statement (9.10) moves us into the world of games. We use this connection to
establish the PSPACE-completeness of Competitive Facility Location.

9.5 Proving Problems PSPACE-Complete 545

(9.11) Competitive Facility Location is PSPACE-complete.

Proof. We have already shown that Competitive Facility Location is in PSPACE.
To prove it is PSPACE-complete, we now show that Competitive 3-SAT≤P Com-
petitive Facility Location. Combined with the fact that QSAT ≤P Competitive
3-SAT, this will show that QSAT ≤P Competitive Facility Location and hence
will establish the PSPACE-completeness result.

We are given an instance of Competitive 3-SAT, defined by a formula �.
� is the conjunction of clauses

C1∧ C2 ∧ . . .∧ Ck;

each Cj has length 3 and can be written Cj = tj1∨ tj2 ∨ tj3. As before, we will
assume that there is an odd number n of variables. We will also assume,
quite naturally, that no clause contains both a term and its negation; after all,
such a clause would be automatically satisfied by any truth assignment. We
must show how to encode this Boolean structure in the graph that underlies
Competitive Facility Location.

We can picture the instance of Competitive 3-SAT as follows. The players
alternately select values in a truth assignment, beginning and ending with
Player 1; at the end, Player 2 has won if she can select a clause Cj in which
none of the terms has been set to 1. Player 1 has won if Player 2 cannot do
this.

It is this notion that we would like to encode in an instance of Competitive
Facility Location: that the players alternately make a fixed number of moves,
in a highly constrained fashion, and then there’s a final chance by Player 2
to win the whole thing. But in its general form, Competitive Facility Location
looks much more wide-open than this. Whereas the players in Competitive 3-
SAT must set one variable at a time, in order, the players in Competitive Facility
Location can jump all over the graph, choosing nodes wherever they want.

Our fundamental trick, then, will be to use the values bi on the nodes to
tightly constrain where the players can move, under any “reasonable” strategy.
In other words, we will set things up so that if the either of the players deviates
from a particular narrow course, he or she will lose instantly.

As with our more complicated NP-completeness reductions in Chapter 8,
the construction will have gadgets to represent assignments to the variables,
and further gadgets to represent the clauses. Here is how we encode the
variables. For each variable xi, we define two nodes vi, v′i in the graph G,
and include an edge (vi, v′i), as in Figure 9.2. Selecting vi will represent setting
xi= 1; selecting v′i will represent xi= 0. The constraint that the chosen variables

546 Chapter 9 PSPACE: A Class of Problems beyond NP

Goal: 101

Variable 1

Clause 1

1000 1000

Variable 2 100 100

Variable 3 10 10

1

Figure 9.2 The reduction from Competitive 3-SAT to Competitive Facility Location.

must form an independent set naturally prevents both vi and v′i from being
chosen. At this point, we do not define any other edges.

How do we get the players to set the variables in order—first x1, then x2,
and so forth? We place values on v1 and v′1 so high that Player 1 will lose
instantly if he does not choose them. We place somewhat lower values on v2
and v′2, and continue in this way. Specifically, for a value c ≥ k + 2, we define
the node values bvi

and bv′i to be c1+n−i. We define the bound that Player 2 is
trying to achieve to be

B= cn−1+ cn−3+ . . .+ c2+ 1.

Let’s pause, before worrying about the clauses, to consider the game
played on this graph. In the opening move of the game, Player 1 must select
one of v1 or v′1 (thereby obliterating the other one); for if not, then Player
2 will immediately select one of them on her next move, winning instantly.
Similarly, in the second move of the game, Player 2 must select one of v2 or
v′2. For otherwise, Player 1 will select one on his next move; and then, even if
Player 2 acquired all the remaining nodes in the graph, she would not be able
to meet the bound B. Continuing by induction in this way, we see that to avoid
an immediate loss, the player making the ith move must select one of vi or v′i.
Note that our choice of node values has achieved precisely what we wanted:
The players must set the variables in order. And what is the outcome on this
graph? Player 2 ends up with a total of value of cn−1+ cn−3+ . . .+ c2= B− 1:
she has lost by one unit!

We now complete the analogy with Competitive 3-SAT by giving Player
2 one final move on which she can try to win. For each clause Cj, we define
a node cj with value bcj

= 1 and an edge associated with each of its terms as

Solved Exercises 547

follows. If t = xi, we add an edge (cj , vi); if t = xi, we add an edge (cj , v′i). In
other words, we join cj to the node that represents the term t.

This now defines the full graph G. We can verify that, because their values
are so small, the addition of the clause nodes did not change the property that
the players will begin by selecting the variable nodes {vi, v′i} in the correct
order. However, after this is done, Player 2 will win if and only if she can
select a clause node cj that is not adjacent to any selected variable node—in
other words, if and only the truth assignment defined alternately by the players
failed to satisfy some clause.

Thus Player 2 can win the Competitive Facility Location instance we have
defined if and only if she can win the original Competitive 3-SAT instance. The
reduction is complete.

Solved Exercises

Solved Exercise 1
Self-avoiding walks are a basic object of study in the area of statistical physics;
they can be defined as follows. Let L denote the set of all points in R2 with
integer coordinates. (We can think of these as the “grid points” of the plane.)
A self-avoiding walk W of length n is a sequence of points (p1, p2, . . . , pn)

drawn from L so that

(i) p1= (0, 0). (The walk starts at the origin.)

(ii) No two of the points are equal. (The walk “avoids” itself.)

(iii) For each i= 1, 2, . . . , n− 1, the points pi and pi+1 are at distance 1 from
each other. (The walk moves between neighboring points in L.)

Self-avoiding walks (in both two and three dimensions) are used in physical
chemistry as a simple geometric model for the possible conformations of long-
chain polymer molecules. Such molecules can be viewed as a flexible chain
of beads that flops around, adopting different geometric layouts; self-avoiding
walks are a simple combinatorial abstraction for these layouts.

A famous unsolved problem in this area is the following. For a natural
number n ≥ 1, let A(n) denote the number of distinct self-avoiding walks
of length n. Note that we view walks as sequences of points rather than
sets; so two walks can be distinct even if they pass through the same set
of points, provided that they do so in different orders. (Formally, the walks
(p1, p2, . . . , pn) and (q1, q2, . . . , qn) are distinct if there is some i (1≤ i ≤ n)
for which pi �= qi.) See Figure 9.3 for an example. In polymer models based on
self-avoiding walks, A(n) is directly related to the entropy of a chain molecule,

548 Chapter 9 PSPACE: A Class of Problems beyond NP

(a)

(0,1) (1,1)

(0,0) (1,0)

(b)

(0,1) (1,1)

(0,0) (1,0)

(c)

(2,1)

(1,0) (2,0)(0,0)

Figure 9.3 Three distinct self-avoiding walks of length 4. Note that although walks (a)
and (b) involve the same set of points, they are considered different walks because they
pass through them in a different order.

and so it appears in theories concerning the rates of certain metabolic and
organic synthesis reactions.

Despite its importance, no simple formula is known for the value A(n). In-
deed, no algorithm is known for computing A(n) that runs in time polynomial
in n.

(a) Show that A(n)≥ 2n−1 for all natural numbers n ≥ 1.

(b) Give an algorithm that takes a number n as input, and outputs A(n) as a
number in binary notation, using space (i.e., memory) that is polynomial
in n.

Solved Exercises 549

(Thus the running time of your algorithm can be exponential, as long as its
space usage is polynomial. Note also that polynomial here means “polynomial
in n,” not “polynomial in log n.” Indeed, by part (a), we see that it will take
at least n− 1 bits to write the value of A(n), so clearly n− 1 is a lower bound
on the amount of space you need for producing a correct answer.)

Solution We consider part (b) first. One’s first thought is that enumerating all
self-avoiding walks sounds like a complicated prospect; it’s natural to imagine
the search as growing a chain starting from a single bead, exploring possible
conformations, and backtracking when there’s no way to continue growing
and remain self-avoiding. You can picture attention-grabbing screen-savers that
do things like this, but it seems a bit messy to write down exactly what the
algorithm would be.

So we back up; polynomial space is a very generous bound, and we
can afford to take an even more brute-force approach. Suppose that instead
of trying just to enumerate all self-avoiding walks of length n, we simply
enumerate all walks of length n, and then check which ones turn out to be self-
avoiding. The advantage of this is that the space of all walks is much easier
to describe than the space of self-avoiding walks.

Indeed, any walk (p1, p2, . . . , pn) on the set L of grid points in the plane
can be described by the sequence of directions it takes. Each step from pi to pi+1
in the walk can be viewed as moving in one of four directions: north, south,
east, or west. Thus any walk of length n can be mapped to a distinct string
of length n − 1 over the alphabet {N , S, E , W}. (The three walks in Figure 9.3
would be ENW, NES, and EEN.) Each such string corresponds to a walk of
length n, but not all such strings correspond to walks that are self-avoiding:
for example, the walk NESW revisits the point (0, 0).

We can use this encoding of walks for part (b) of the question as follows.
Using a counter in base 4, we enumerate all strings of length n − 1 over the
alphabet {N , S, E , W}, by viewing this alphabet equivalently as {0, 1, 2, 3}. For
each such string, we construct the corresponding walk and test, in polynomial
space, whether it is self-avoiding. Finally, we increment a second counter A
(initialized to 0) if the current walk is self-avoiding. At the end of this algorithm,
A will hold the value of A(n).

Now we can bound the space used by this algorithm as follows. The first
counter, which enumerates strings, has n− 1positions, each of which requires
two bits (since it can take four possible values). Similarly, the second counter
holding A can be incremented at most 4n−1 times, and so it too needs at most
2n bits. Finally, we use polynomial space to check whether each generated
walk is self-avoiding, but we can reuse the same space for each walk, and so
the space needed for this is polynomial as well.

550 Chapter 9 PSPACE: A Class of Problems beyond NP

The encoding scheme also provides a way to answer part (a). We observe
that all walks that can be encoded using only the letters {N , E} are self-avoiding,
since they only move up and to the right in the plane. As there are 2n−1 strings
of length n− 1over these two letters, there are at least 2n−1 self-avoiding walks;
in other words, A(n)≥ 2n−1.

(Note that we argued earlier that our encoding technique also provides an
upper bound, showing immediately that A(n)≤ 4n−1.)

Exercises

1. Let’s consider a special case of Quantified 3-SAT in which the underlying

Boolean formula has no negated variables. Specifically, let �(x1, . . . , xn)

be a Boolean formula of the form

C1∧ C2 ∧ . . .∧ Ck ,

where each Ci is a disjunction of three terms. We say � is monotone if

each term in each clause consists of a nonnegated variable—that is, each

term is equal to xi, for some i, rather than xi.

We define Monotone QSAT to be the decision problem

∃x1∀x2 . . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn)?

where the formula � is monotone.

Do one of the following two things: (a) prove that Monotone QSAT is

PSPACE-complete; or (b) give an algorithm to solve arbitrary instances of

Monotone QSAT that runs in time polynomial in n. (Note that in (b), the

goal is polynomial time, not just polynomial space.)

2. Consider the following word game, which we’ll call Geography . You have

a set of names of places, like the capital cities of all the countries in the

world. The first player begins the game by naming the capital city c of

the country the players are in; the second player must then choose a city

c′ that starts with the letter on which c ends; and the game continues in

this way, with each player alternately choosing a city that starts with the

letter on which the previous one ended. The player who loses is the first

one who cannot choose a city that hasn’t been named earlier in the game.

For example, a game played in Hungary would start with “Budapest,”

and then it could continue (for example), “Tokyo, Ottawa, Ankara, Ams-

terdam, Moscow, Washington, Nairobi.”

This game is a good test of geographical knowledge, of course, but

even with a list of the world’s capitals sitting in front of you, it’s also a

major strategic challenge. Whichword should you pick next, to try forcing

Notes and Further Reading 551

your opponent into a situation where they’ll be the one who’s ultimately

stuck without a move?

To highlight the strategic aspect, we define the following abstract

version of the game, which we call Geography on a Graph. Here, we have

a directed graph G = (V , E), and a designated start node s ∈ V. Players

alternate turns starting from s; each player must, if possible, follow an

edge out of the current node to a node that hasn’t been visited before. The

player who loses is the first one who cannot move to a node that hasn’t

been visited earlier in the game. (There is a direct analogy to Geography ,

with nodes corresponding to words.) In other words, a player loses if the

game is currently at node v, and for edges of the form (v, w), the node w

has already been visited.

Prove that it is PSPACE-complete to decide whether the first player

can force a win in Geography on a Graph.

3. Give a polynomial-time algorithm to decide whether a player has a forced

win in Geography on a Graph, in the special case when the underlying

graph G has no directed cycles (in other words, when G is a DAG).

Notes and Further Reading

PSPACE is just one example of a class of intractable problems beyond NP;
charting the landscape of computational hardness is the goal of the field of
complexity theory. There are a number of books that focus on complexity
theory; see, for example, Papadimitriou (1995) and Savage (1998).

The PSPACE-completeness of QSAT is due to Stockmeyer and Meyer
(1973).

Some basic PSPACE-completeness results for two-player games can be
found in Schaefer (1978) and in Stockmeyer and Chandra (1979). The Com-
petitive Facility Location Problem that we consider here is a stylized example
of a class of problems studied within the broader area of facility location; see,
for example, the book edited by Drezner (1995) for surveys of this topic.

Two-player games have provided a steady source of difficult questions
for researchers in both mathematics and artificial intelligence. Berlekamp,
Conway, and Guy (1982) and Nowakowski (1998) discuss some of the math-
ematical questions in this area. The design of a world-champion-level chess
program was for fifty years the foremost applied challenge problem in the field
of computer game-playing. Alan Turing is known to have worked on devising
algorithms to play chess, as did many leading figures in artificial intelligence
over the years. Newborn (1996) gives a readable account of the history of work

552 Chapter 9 PSPACE: A Class of Problems beyond NP

on this problem, covering the state of the art up to a year before IBM’s Deep
Blue finally achieved the goal of defeating the human world champion in a
match.

Planning is a fundamental problem in artificial intelligence; it features
prominently in the text by Russell and Norvig (2002) and is the subject of a
book by Ghallab, Nau, and Traverso (2004). The argument that Planning can
be solved in polynomial space is due to Savitch (1970), who was concerned
with issues in complexity theory rather than the Planning Problem per se.

Notes on the Exercises Exercise 1 is based on a problem we learned from
Maverick Woo and Ryan Williams; Exercise 2 is based on a result of Thomas
Schaefer.

Chapter 10

Extending the Limits of
Tractability

Although we started the book by studying a number of techniques for solving
problems efficiently, we’ve been looking for a while at classes of problems—
NP-complete and PSPACE-complete problems—for which no efficient solution
is believed to exist. And because of the insights we’ve gained this way,
we’ve implicitly arrived at a two-pronged approach to dealing with new
computational problems we encounter: We try for a while to develop an
efficient algorithm; and if this fails, we then try to prove it NP-complete (or
even PSPACE-complete). Assuming one of the two approaches works out, you
end up either with a solution to the problem (an algorithm), or a potent
“reason” for its difficulty: It is as hard as many of the famous problems in
computer science.

Unfortunately, this strategy will only get you so far. If there is a problem
that people really want your help in solving, they won’t be particularly satisfied
with the resolution that it’s NP-hard1 and that they should give up on it. They’ll
still want a solution that’s as good as possible, even if it’s not the exact, or
optimal, answer. For example, in the Independent Set Problem, even if we can’t
find the largest independent set in a graph, it’s still natural to want to compute
for as much time as we have available, and output as large an independent set
as we can find.

The next few topics in the book will be focused on different aspects
of this notion. In Chapters 11 and 12, we’ll look at algorithms that provide
approximate answers with guaranteed error bounds in polynomial time; we’ll
also consider local search heuristics that are often very effective in practice,

1 We use the term NP-hard to mean “at least as hard as an NP-complete problem.” We avoid referring to

optimization problems as NP-complete, since technically this term applies only to decision problems.

554 Chapter 10 Extending the Limits of Tractability

even when we are not able to establish any provable guarantees about their
behavior.

But to start, we explore some situations in which one can exactly solve
instances of NP-complete problems with reasonable efficiency. How do these
situations arise? The point is to recall the basic message of NP-completeness:
the worst-case instances of these problems are very difficult and not likely to
be solvable in polynomial time. On a particular instance, however, it’s possible
that we are not really in the “worst case”—maybe, in fact, the instance we’re
looking at has some special structure that makes our task easier. Thus the crux
of this chapter is to look at situations in which it is possible to quantify some
precise senses in which an instance may be easier than the worst case, and to
take advantage of these situations when they occur.

We’ll look at this principle in several concrete settings. First we’ll consider
the Vertex Cover Problem, in which there are two natural “size” parameters for
a problem instance: the size of the graph, and the size of the vertex cover being
sought. The NP-completeness of Vertex Cover suggests that we will have to
be exponential in (at least) one of these parameters; but judiciously choosing
which one can have an enormous effect on the running time.

Next we’ll explore the idea that many NP-complete graph problems be-
come polynomial-time solvable if we require the input to be a tree. This is
a concrete illustration of the way in which an input with “special structure”
can help us avoid many of the difficulties that can make the worst case in-
tractable. Armed with this insight, one can generalize the notion of a tree to
a more general class of graphs—those with small tree-width—and show that
many NP-complete problems are tractable on this more general class as well.

Having said this, we should stress that our basic point remains the same
as it has always been: Exponential algorithms scale very badly. The current
chapter represents ways of staving off this problem that can be effective in
various settings, but there is clearly no way around it in the fully general case.
This will motivate our focus on approximation algorithms and local search in
subsequent chapters.

10.1 Finding Small Vertex Covers
Let us briefly recall the Vertex Cover Problem, which we saw in Chapter 8
when we covered NP-completeness. Given a graph G = (V , E) and an integer
k, we would like to find a vertex cover of size at most k—that is, a set of nodes
S ⊆ V of size |S| ≤ k, such that every edge e ∈ E has at least one end in S.

Like many NP-complete decision problems, Vertex Cover comes with two
parameters: n, the number of nodes in the graph, and k, the allowable size of

10.1 Finding Small Vertex Covers 555

a vertex cover. This means that the range of possible running-time bounds is
much richer, since it involves the interplay between these two parameters.

The Problem
Let’s consider this interaction between the parameters n and k more closely.
First of all, we notice that if k is a fixed constant (e.g., k = 2 or k = 3), then
we can solve Vertex Cover in polynomial time: We simply try all subsets of V
of size k, and see whether any of them constitute a vertex cover. There are

(n
k

)
subsets, and each takes time O(kn) to check whether it is a vertex cover, for a
total time of O(kn

(n
k

)
)= O(knk+1). So from this we see that the intractability

of Vertex Cover only sets in for real once k grows as a function of n.

However, even for moderately small values of k, a running time of
O(knk+1) is quite impractical. For example, if n = 1,000 and k = 10, then on
a computer executing a million high-level instructions per second, it would
take at least 1024 seconds to decide if G has a k-node vertex cover—which is
several orders of magnitude larger than the age of the universe. And this is for
a small value of k, where the problem was supposed to be more tractable! It’s
natural to start asking whether we can do something that is practically viable
when k is a small constant.

It turns out that a much better algorithm can be developed, with a running-
time bound of O(2k · kn). There are two things worth noticing about this. First,
plugging in n= 1,000 and k = 10, we see that our computer should be able to
execute the algorithm in a few seconds. Second, we see that as k grows, the
running time is still increasing very rapidly; it’s simply that the exponential
dependence on k has been moved out of the exponent on n and into a separate
function. From a practical point of view, this is much more appealing.

Designing the Algorithm
As a first observation, we notice that if a graph has a small vertex cover, then
it cannot have very many edges. Recall that the degree of a node is the number
of edges that are incident to it.

(10.1) If G = (V , E) has n nodes, the maximum degree of any node is at most
d, and there is a vertex cover of size at most k, then G has at most kd edges.

Proof. Let S be a vertex cover in G of size k′ ≤ k. Every edge in G has at least
one end in S; but each node in S can cover at most d edges. Thus there can
be at most k′d ≤ kd edges in G.

Since the degree of any node in a graph can be at most n− 1, we have the
following simple consequence of (10.1).

556 Chapter 10 Extending the Limits of Tractability

(10.2) If G = (V , E) has n nodes and a vertex cover of size k, then G has at
most k(n − 1)≤ kn edges.

So, as a first step in our algorithm, we can check if G contains more than
kn edges; if it does, then we know that the answer to the decision problem—
Is there a vertex cover of size at most k?—is no. Having done this, we will
assume that G contains at most kn edges.

The idea behind the algorithm is conceptually very clean. We begin by
considering any edge e = (u, v) in G. In any k-node vertex cover S of G, one
of u or v must belong to S. Suppose that u belongs to such a vertex cover S.
Then if we delete u and all its incident edges, it must be possible to cover the
remaining edges by at most k − 1 nodes. That is, defining G−{u} to be the
graph obtained by deleting u and all its incident edges, there must be a vertex
cover of size at most k − 1 in G−{u}. Similarly, if v belongs to S, this would
imply there is a vertex cover of size at most k − 1 in G−{v}.

Here is a concrete way to formulate this idea.

(10.3) Let e = (u, v) be any edge of G. The graph G has a vertex cover of size
at most k if and only if at least one of the graphs G−{u} and G−{v} has a
vertex cover of size at most k − 1.

Proof. First, suppose G has a vertex cover S of size at most k. Then S contains
at least one of u or v; suppose that it contains u. The set S−{u} must cover
all edges that have neither end equal to u. Therefore S−{u} is a vertex cover
of size at most k − 1 for the graph G−{u}.

Conversely, suppose that one of G−{u} and G−{v} has a vertex cover of
size at most k − 1—suppose in particular that G−{u} has such a vertex cover
T. Then the set T ∪ {u} covers all edges in G, so it is a vertex cover for G of
size at most k.

Statement (10.3) directly establishes the correctness of the following re-
cursive algorithm for deciding whether G has a k-node vertex cover.

To search for a k-node vertex cover in G:

If G contains no edges, then the empty set is a vertex cover

If G contains> k |V| edges, then it has no k-node vertex cover

Else let e = (u, v) be an edge of G

Recursively check if either of G−{u} or G−{v}
has a vertex cover of size k − 1

If neither of them does, then G has no k-node vertex cover

10.1 Finding Small Vertex Covers 557

Else, one of them (say, G−{u}) has a (k − 1)-node vertex cover T

In this case, T ∪ {u} is a k-node vertex cover of G

Endif

Endif

Analyzing the Algorithm
Now we bound the running time of this algorithm. Intuitively, we are searching
a “tree of possibilities”; we can picture the recursive execution of the algorithm
as giving rise to a tree, in which each node corresponds to a different recursive
call. A node corresponding to a recursive call with parameter k has, as children,
two nodes corresponding to recursive calls with parameter k− 1. Thus the tree
has a total of at most 2k+1 nodes. In each recursive call, we spend O(kn) time.

Thus, we can prove the following.

(10.4) The running time of the Vertex Cover Algorithm on an n-node graph,
with parameter k, is O(2k · kn).

We could also prove this by a recurrence as follows. If T(n, k) denotes the
running time on an n-node graph with parameter k, then T(·, ·) satisfies the
following recurrence, for some absolute constant c:

T(n, 1)≤ cn,

T(n, k)≤ 2T(n, k − 1)+ ckn.

By induction on k ≥ 1, it is easy to prove that T(n, k)≤ c · 2kkn. Indeed, if this
is true for k − 1, then

T(n, k)≤ 2T(n − 1, k − 1)+ ckn

≤ 2c · 2k−1(k − 1)n + ckn

= c · 2kkn − c · 2kn + ckn

≤ c · 2kkn.

In summary, this algorithm is a powerful improvement on the simple brute-
force approach. However, no exponential algorithm can scale well for very
long, and that includes this one. Suppose we want to know whether there is a
vertex cover with at most 40 nodes, rather than 10; then, on the same machine
as before, our algorithm will take a significant number of years to terminate.

558 Chapter 10 Extending the Limits of Tractability

10.2 Solving NP-Hard Problems on Trees
In Section 10.1 we designed an algorithm for the Vertex Cover Problem that
works well when the size of the desired vertex cover is not too large. We saw
that finding a relatively small vertex cover is much easier than the Vertex Cover
Problem in its full generality.

Here we consider special cases of NP-complete graph problems with a
different flavor—not when the natural “size” parameters are small, but when
the input graph is structurally “simple.” Perhaps the simplest types of graphs
are trees. Recall that an undirected graph is a tree if it is connected and has
no cycles. Not only are trees structurally easy to understand, but it has been
found that many NP-hard graph problems can be solved efficiently when
the underlying graph is a tree. At a qualitative level, the reason for this
is the following: If we consider a subtree of the input rooted at some node
v, the solution to the problem restricted to this subtree only “interacts” with
the rest of the tree through v. Thus, by considering the different ways in which
v might figure in the overall solution, we can essentially decouple the problem
in v’s subtree from the problem in the rest of the tree.

It takes some amount of effort to make this general approach precise and to
turn it into an efficient algorithm. Here we will see how to do this for variants
of the Independent Set Problem; however, it is important to keep in mind that
this principle is quite general, and we could equally well have considered many
other NP-complete graph problems on trees.

First we will see that the Independent Set Problem itself can be solved
by a greedy algorithm on a tree. Then we will consider the generalization
called the Maximum-Weight Independent Set Problem, in which nodes have
weight, and we seek an independent set of maximum weight. We’ll see that
the Maximum-Weight Independent Set Problem can be solved on trees via
dynamic programming, using a fairly direct implementation of the intuition
described above.

A Greedy Algorithm for Independent Set on Trees
The starting point of our greedy algorithm on a tree is to consider the way a
solution looks from the perspective of a single edge; this is a variant on an
idea from Section 10.1. Specifically, consider an edge e = (u, v) in G. In any
independent set S of G, at most one of u or v can belong to S. We’d like to find
an edge e for which we can greedily decide which of the two ends to place in
our independent set.

For this we exploit a crucial property of trees: Every tree has at least
one leaf—a node of degree 1. Consider a leaf v, and let (u, v) be the unique
edge incident to v. How might we “greedily” evaluate the relative benefits of

10.2 Solving NP-Hard Problems on Trees 559

including u or v in our independent set S? If we include v, the only other node
that is directly “blocked” from joining the independent set is u. If we include
u, it blocks not only v but all the other nodes joined to u as well. So if we’re
trying to maximize the size of the independent set, it seems that including v
should be better than, or at least as good as, including u.

(10.5) If T = (V , E) is a tree and v is a leaf of the tree, then there exists a
maximum-size independent set that contains v.

Proof. Consider a maximum-size independent set S, and let e = (u, v) be the
unique edge incident to node v. Clearly, at least one of u or v is in S; for if
neither is present, then we could add v to S, thereby increasing its size. Now, if
v ∈ S, then we are done; and if u ∈ S, then we can obtain another independent
set S′ of the same size by deleting u from S and inserting v.

We will use (10.5) repeatedly to identify and delete nodes that can be
placed in the independent set. As we do this deletion, the tree T may become
disconnected. So, to handle things more cleanly, we actually describe our
algorithm for the more general case in which the underlying graph is a forest—
a graph in which each connected component is a tree. We can view the problem
of finding a maximum-size independent set for a forest as really being the same
as the problem for trees: an optimal solution for a forest is simply the union
of optimal solutions for each tree component, and we can still use (10.5) to
think about the problem in any component.

Specifically, suppose we have a forest F ; then (10.5) allows us to make our
first decision in the following greedy way. Consider again an edge e = (u, v),
where v is a leaf. We will include node v in our independent set S, and not
include node u. Given this decision, we can delete the node v (since it’s already
been included) and the node u (since it cannot be included) and obtain a
smaller forest. We continue recursively on this smaller forest to get a solution.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)

While F has at least one edge

Let e = (u, v) be an edge of F such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges incident to them

Endwhile

Return S

560 Chapter 10 Extending the Limits of Tractability

(10.6) The above algorithm finds a maximum-size independent set in forests
(and hence in trees as well).

Although (10.5) was a very simple fact, it really represents an application of
one of the design principles for greedy algorithms that we saw in Chapter 4: an
exchange argument. In particular, the crux of our Independent Set Algorithm
is the observation that any solution not containing a particular leaf can be
“transformed” into a solution that is just as good and contains the leaf.

To implement this algorithm so it runs quickly, we need to maintain the
current forest F in a way that allows us to find an edge incident to a leaf
efficiently. It is not hard to implement this algorithm in linear time: We need
to maintain the forest in a way that allows us to do so on one iteration of the
While loop in time proportional to the number of edges deleted when u and
v are removed.

The Greedy Algorithm on More General Graphs The greedy algorithm spec-
ified above is not guaranteed to work on general graphs, because we cannot
be guaranteed to find a leaf in every iteration. However, (10.5) does apply to
any graph: if we have an arbitrary graph G with an edge (u, v) such that u is
the only neighbor of v, then it’s always safe to put v in the independent set,
delete u and v, and iterate on the smaller graph.

So if, by repeatedly deleting degree-1 nodes and their neighbors, we’re
able to eliminate the entire graph, then we’re guaranteed to have found an
independent set of maximum size—even if the original graph was not a tree.
And even if we don’t manage to eliminate the whole graph, we may still
succeed in running a few iterations of the algorithm in succession, thereby
shrinking the size of the graph and making other approaches more tractable.
Thus our greedy algorithm is a useful heuristic to try “opportunistically”
on arbitrary graphs, in the hope of making progress toward finding a large
independent set.

Maximum-Weight Independent Set on Trees
Next we turn to the more complex problem of finding a maximum-weight
independent set. As before, we assume that our graph is a tree T = (V , E).
Now we also have a positive weight wv associated with each node v ∈ V. The
Maximum-Weight Independent Set Problem is to find an independent set S in
the graph T = (V , E) so that the total weight

∑
v∈S wv is as large as possible.

First we try the idea we used before to build a greedy solution for the case
without weights. Consider an edge e = (u, v), such that v is a leaf. Including v
blocks fewer nodes from entering the independent set; so, if the weight of v is

10.2 Solving NP-Hard Problems on Trees 561

at least as large as the weight of u, then we can indeed make a greedy decision
just as we did in the case without weights. However, if wv < wu, we face a
dilemma: We acquire more weight by including u, but we retain more options
down the road if we include v. There seems to be no easy way to resolve
this locally, without considering the rest of the graph. However, there is still
something we can say. If node u has many neighbors v1, v2, . . . that are leaves,
then we should make the same decision for all of them: Once we decide not
to include u in the independent set, we may as well go ahead and include all
its adjacent leaves. So for the subtree consisting of u and its adjacent leaves,
we really have only two “reasonable” solutions to consider: including u, or
including all the leaves.

We will use these ideas to design a polynomial-time algorithm using dy-
namic programming. As we recall, dynamic programming allows us to record
a few different solutions, build these up through a sequence of subproblems,
and thereby decide only at the end which of these possibilities will be used in
the overall solution.

The first issue to decide for a dynamic programming algorithm is what our
subproblems will be. For Maximum-Weight Independent Set, we will construct
subproblems by rooting the tree T at an arbitrary node r; recall that this is the
operation of “orienting” all the tree’s edges away from r. Specifically, for any
node u �= r, the parent p(u) of u is the node adjacent to u along the path from
the root r. The other neighbors of u are its children, and we will use children(u)

to denote the set of children of u. The node u and all its descendants form a
subtree Tu whose root is u.

We will base our subproblems on these subtrees Tu. The tree Tr is our
original problem. If u �= r is a leaf, then Tu consists of a single node. For a
node u all of whose children are leaves, we observe that Tu is the kind of
subtree discussed above.

To solve the problem by dynamic programming, we will start at the leaves
and gradually work our way up the tree. For a node u, we want to solve the
subproblem associated with the tree Tu after we have solved the subproblems
for all its children. To get a maximum-weight independent set S for the tree Tu,
we will consider two cases: Either we include the node u in S or we do not. If
we include u, then we cannot include any of its children; if we do not include
u, then we have the freedom to include or omit these children. This suggests
that we should define two subproblems for each subtree Tu: the subproblem
OPTin(u) will denote the maximum weight of an independent set of Tu that
includes u, and the subproblem OPTout(u) will denote the maximum weight of
an independent set of Tu that does not include u.

562 Chapter 10 Extending the Limits of Tractability

Now that we have our subproblems, it is not hard to see how to compute
these values recursively. For a leaf u �= r, we have OPTout(u)= 0 and OPTin(u)=
wu. For all other nodes u, we get the following recurrence that defines OPTout(u)

and OPTin(u) using the values for u’s children.

(10.7) For a node u that has children, the following recurrence defines the
values of the subproblems:

. OPTin(u)= wu +
∑

v∈children(u)

OPTout(v)

. OPTout(u)=
∑

v∈children(u)

max(OPTout(v), OPTin(v)).

Using this recurrence, we get a dynamic programming algorithm by build-
ing up the optimal solutions over larger and larger subtrees. We define arrays
Mout[u]and Min[u], which hold the values OPTout(u) and OPTin(u), respectively.
For building up solutions, we need to process all the children of a node before
we process the node itself; in the terminology of tree traversal, we visit the
nodes in post-order.

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:

Mout[u]= 0

Min[u]= wu

Else set the values:

Mout[u]=
∑

v∈children(u)

max(Mout[u], Min[u])

Min[u]= wu +
∑

v∈children(u)

Mout[u].

Endif

Endfor

Return max(Mout[r], Min[r])

This gives us the value of the maximum-weight independent set. Now, as
is standard in the dynamic programming algorithms we’ve seen before, it’s
easy to recover an actual independent set of maximum weight by recording
the decision we make for each node, and then tracing back through these
decisions to determine which nodes should be included. Thus we have

(10.8) The above algorithm finds a maximum-weight independent set in trees
in linear time.

10.3 Coloring a Set of Circular Arcs 563

10.3 Coloring a Set of Circular Arcs
Some years back, when telecommunications companies began focusing inten-
sively on a technology known as wavelength-division multiplexing, researchers
at these companies developed a deep interest in a previously obscure algorith-
mic question: the problem of coloring a set of circular arcs.

After explaining how the connection came about, we’ll develop an al-
gorithm for this problem. The algorithm is a more complex variation on the
theme of Section 10.2: We approach a computationally hard problem using
dynamic programming, building up solutions over a set of subproblems that
only “interact” with each other on very small pieces of the input. Having to
worry about only this very limited interaction serves to control the complexity
of the algorithm.

The Problem
Let’s start with some background on how network routing issues led to the
question of circular-arc coloring. Wavelength-division multiplexing (WDM) is
a methodology that allows multiple communication streams to share a single
portion of fiber-optic cable, provided that the streams are transmitted on this
cable using different wavelengths. Let’s model the underlying communication
network as a graph G = (V , E), with each communication stream consisting of
a path Pi in G; we imagine data flowing along this stream from one endpoint of
Pi to the other. If the paths Pi and Pj share some edge in G, it is still possible to
send data along these two streams simultaneously as long as they are routed
using different wavelengths. So our goal is the following: Given a set of k
available wavelengths (labeled 1, 2, . . . , k), we wish to assign a wavelength
to each stream Pi in such a way that each pair of streams that share an edge in
the graph are assigned different wavelengths. We’ll refer to this as an instance
of the Path Coloring Problem, and we’ll call a solution to this instance—a legal
assignment of wavelengths to paths—a k-coloring.

This is a natural problem that we could consider as it stands; but from the
point of view of the fiber-optic routing context, it is useful to make one further
simplification. Many applications of WDM take place on networks G that are
extremely simple in structure, and so it is natural to restrict the instances of
Path Coloring by making some assumptions about this underlying network
structure. In fact, one of the most important special cases in practice is also
one of the simplest: when the underlying network is simply a ring; that is, it
can be modeled using a graph G that is a cycle on n nodes.

This is the case we will focus on here: We are given a graph G = (V , E)

that is a cycle on n nodes, and we are given a set of paths P1, . . . , Pm on this
cycle. The goal, as above, is to assign one of k given wavelengths to each path

564 Chapter 10 Extending the Limits of Tractability

a

b

c

d

e

f

Figure 10.1 An instance of the Circular-Arc Coloring Problemwith six arcs (a, b, c, d, e, f)
on a four-node cycle.

Pi so that overlapping paths receive different wavelengths. We will refer to
this as a valid assignment of wavelengths to the paths. Figure 10.1 shows a
sample instance of this problem. In this instance, there is a valid assignment
using k = 3 wavelengths, by assigning wavelength 1 to the paths a and e,
wavelength 2 to the paths b and f , and wavelength 3 to the paths c and d.
From the figure, we see that the underlying cycle network can be viewed as a
circle, and the paths as arcs on this circle; hence we will refer to this special
case of Path Coloring as the Circular-Arc Coloring Problem.

The Complexity of Circular-Arc Coloring It’s not hard to see that Circular-
Arc Coloring can be directly reduced to Graph Coloring. Given an instance of
Circular-Arc Coloring, we define a graph H that has a node zi for each path
Pi, and we connect nodes zi and zj in H if the paths Pi and Pj share an edge
in G. Now, routing all streams using k wavelengths is simply the problem
of coloring H using at most k colors. (In fact, this problem is yet another
application of graph coloring in which the abstract “colors,” since they encode
different wavelengths of light, are actually colors.)

10.3 Coloring a Set of Circular Arcs 565

Note that this doesn’t imply that Circular-Arc Coloring is NP-complete—
all we’ve done is to reduce it to a known NP-complete problem, which doesn’t
tell us anything about its difficulty. For Path Coloring on general graphs, in fact,
it is easy to reduce from Graph Coloring to Path Coloring, thereby establishing
that Path Coloring is NP-complete. However, this straightforward reduction
does not work when the underlying graph is as simple as a cycle. So what is
the complexity of Circular-Arc Coloring?

It turns out that Circular-Arc Coloring can be shown to be NP-complete
using a very complicated reduction. This is bad news for people working
with optical networks, since it means that optimal wavelength assignment
is unlikely to be efficiently solvable. But, in fact, the known reductions that
show Circular-Arc Coloring is NP-complete all have the following interesting
property: The hard instances of Circular-Arc Coloring that they produce all
involve a set of available wavelengths that is quite large. So, in particular,
these reductions don’t show that the Circular-Arc Coloring is hard in the case
when the number of wavelengths is small; they leave open the possibility that
for every fixed, constant number of wavelengths k, it is possible to solve the
wavelength assignment problem in time polynomial in n (the size of the cycle)
and m (the number of paths). In other words, we could hope for a running
time of the form we saw for Vertex Cover in Section 10.1: O(f (k) · p(n, m)),
where f (·) may be a rapidly growing function but p(·, ·) is a polynomial.

Such a running time would be appealing (assuming f (·) does not grow too
outrageously), since it would make wavelength assignment potentially feasible
when the number of wavelengths is small. One way to appreciate the challenge
in obtaining such a running time is to note the following analogy: The general
Graph Coloring Problem is already hard for three colors. So if Circular-Arc
Coloring were tractable for each fixed number of wavelengths (i.e., colors) k,
it would show that it’s a special case of Graph Coloring with a qualitatively
different complexity.

The goal of this section is to design an algorithm with this type of running
time, O(f (k) · p(n, m)). As suggested at the beginning of the section, the
algorithm itself builds on the intuition we developed in Section 10.2 when
solving Maximum-Weight Independent Set on trees. There the difficult search
inherent in finding a maximum-weight independent set was made tractable
by the fact that for each node v in a tree T, the problems in the components
of T−{v} became completely decoupled once we decided whether or not to
include v in the independent set. This is a specific example of the general
principle of fixing a small set of decisions, and thereby separating the problem
into smaller subproblems that can be dealt with independently.

The analogous idea here will be to choose a particular point on the cycle
and decide how to color the arcs that cross over this point; fixing these degrees

566 Chapter 10 Extending the Limits of Tractability

of freedom allows us to define a series of smaller and smaller subproblems on
the remaining arcs.

Designing the Algorithm
Let’s pin down some notation we’re going to use. We have a graph G that is
a cycle on n nodes; we denote the nodes by v1, v2, . . . , vn, and there is an
edge (vi, vi+1) for each i, and also an edge (vn, v1). We have a set of paths
P1, P2, . . . , Pm in G, we have a set of k available colors; we want to color the
paths so that if Pi and Pj share an edge, they receive different colors.

A Simple Special Case: Interval Coloring In order to build up to an algorithm
for Circular-Arc Coloring, we first briefly consider an easier coloring problem:
the problem of coloring intervals on a line. This can be viewed as a special
case of Circular-Arc Coloring in which the arcs lie only in one hemisphere; we
will see that once we do not have difficulties from arcs “wrapping around,”
the problem becomes much simpler. So in this special case, we are given a set
of intervals, and we must label each one with a number in such a way that
any two overlapping intervals receive different labels.

We have actually seen exactly this problem before: It is the Interval
Partitioning (or Interval Coloring) Problem for which we gave an optimal
greedy algorithm at the end of Section 4.1. In addition to showing that there
is an efficient, optimal algorithm for coloring intervals, our analysis in that
earlier section revealed a lot about the structure of the problem. Specifically,
if we define the depth of a set of intervals to be the maximum number that
pass over any single point, then our greedy algorithm from Chapter 4 showed
that the minimum number of colors needed is always equal to the depth. Note
that the number of colors required is clearly at least the depth, since intervals
containing a common point need different colors; the key here is that one never
needs a number of colors that is greater than the depth.

It is interesting that this exact relationship between the number of colors
and the depth does not hold for collections of arcs on a circle. In Figure 10.2, for
example, we see a collection of circular arcs that has depth 2 but needs three
colors. This is a basic reflection of the fact that in trying to color a collection of
circular arcs, one encounters “long-range” obstacles that render the problem
much more complex than the coloring problem for intervals on a line. Despite
this, we will see that thinking about the simpler problem of coloring intervals
will be useful in designing our algorithm for Circular-Arc Coloring.

Transforming to an Interval Coloring Problem We now return to the
Circular-Arc Coloring Problem. For now, we will consider a special case of
the problem in which, for each edge e of the cycle, there are exactly k paths
that contain e. We will call this the uniform-depth case. It turns out that al-

10.3 Coloring a Set of Circular Arcs 567

Figure 10.2 A collection of circular arcs needing three colors, even though at most two
arcs pass over any point of the circle.

though this special case may seem fairly restricted, it contains essentially the
whole complexity of the problem; once we have an algorithm for the uniform-
depth case, it will be easy to translate this to an algorithm for the problem in
general.

The first step in designing an algorithm will be to transform the instance
into a modified form of Interval Coloring: We “cut” the cycle by slicing through
the edge (vn, v1), and then “unroll” the cycle into a path G′. This process is
illustrated in Figure 10.3. The sliced-and-unrolled graph G′ has the same nodes
as G, plus two extra ones where the slicing occurred: a node v0 adjacent to v1
(and no other nodes), and a node vn+1 adjacent to vn (and no other nodes).
Also, the set of paths has changed slightly. Suppose that P1, P2, . . . , Pk are the
paths that contained the edge (vn, v1) in G. Each of these paths Pi has now
been sliced into two, one that we’ll label P′i (starting at v0) and one that we’ll
label P′′i (ending at vn+1).

Now this is an instance of Interval Coloring, and it has depth k. Thus,
following our discussion above about the relation between depth and colors,
we see that the intervals

P′1, P′2, . . . , P′k, Pk+1, . . . , Pm, P′′1 , P′′2 , . . . , P′′k
can be colored using k colors. So are we done? Can we just translate this
solution into a solution for the paths on G?

In fact, this is not so easy; the problem is that our interval coloring may
well not have given the paths P′i and P′′i the same color. Since these are two

568 Chapter 10 Extending the Limits of Tractability

a

b

c

d

e

f

b�

c �a�

c� a �

d

e

f b �

(a)

(b)

Cut

The colorings of {a�, b�, c�}
and {a � , b � , c � } must be
consistent.

Figure 10.3 (a) Cutting through the cycle in an instance of Circular-Arc Coloring, and
then unrolling it so it becomes, in (b), a collection of intervals on a line.

pieces of the same path Pi on G, it’s not clear how to take the differing colors
of P′i and P′′i and infer from this how to color Pi on G. For example, having
sliced open the cycle in Figure 10.3(a), we get the set of intervals pictured in
Figure 10.3(b). Suppose we compute a coloring so that the intervals in the first
row get the color 1, those in the second row get the color 2, and those in the
third row get the color 3. Then we don’t have an obvious way to figure out a
color for a and c.

This suggests a way to formalize the relationship between the instance of
Circular-Arc Coloring in G and the instance of Interval Coloring in G′.

10.3 Coloring a Set of Circular Arcs 569

(10.9) The paths in G can be k-colored if and only if the paths in G′ can be
k-colored subject to the additional restriction that P′i and P′′i receive the same
color, for each i = 1, 2, . . . , k.

Proof. If the paths in G can be k-colored, then we simply use these as the colors
in G′, assigning each of P′i and P′′i the color of Pi. In the resulting coloring, no
two paths with the same color have an edge in common.

Conversely, suppose the paths in G′ can be k-colored subject to the
additional restriction that P′i and P′′i receive the same color, for each i =
1, 2, . . . , k. Then we assign path Pi (for i ≤ k) the common color of P′i and
P′′i ; and we assign path Pj (for j > k) the color that Pj gets in G′. Again, under
this coloring, no two paths with the same color have an edge in common.

We’ve now transformed our problem into a search for a coloring of the
paths in G′ subject to the condition in (10.9): The paths P′i and P′′i (for 1≤ i≤ k)
should get the same color.

Before proceeding, we introduce some further terminology that makes it
easier to talk about algorithms for this problem. First, since the names of the
colors are arbitrary, we can assume that path P′i is assigned the color i for
each i = 1, 2, . . . , k. Now, for each edge ei = (vi, vi+1), we let Si denote the
set of paths that contain this edge. A k-coloring of just the paths in Si has a
very simple structure: it is simply a way of assigning exactly one of the colors
{1, 2, . . . , k} to each of the k paths in Si. We will think of such a k-coloring as
a one-to-one function f : Si → {1, 2, . . . , k}.

Here’s the crucial definition: We say that a k-coloring f of Si and a k-
coloring g of Sj are consistent if there is a single k-coloring of all the paths
that is equal to f on Si, and also equal to g on Sj. In other words, the k-
colorings f and g on restricted parts of the instance could both arise from a
single k-coloring of the whole instance. We can state our problem in terms of
consistency as follows: If f ′ denotes the k-coloring of S0 that assigns color i to
P′i, and f ′′ denotes the k-coloring of Sn that assigns color i to P′′i , then we need
to decide whether f ′ and f ′′ are consistent.

Searching for an Acceptable Interval Coloring It is not clear how to decide
the consistency of f ′ and f ′′ directly. Instead, we adopt a dynamic programming
approach by building up the solution through a series of subproblems.

The subproblems are as follows: For each set Si, working in order over
i = 0, 1, 2, . . . , n, we will compute the set Fi of all k-colorings on Si that are
consistent with f ′. Once we have computed Fn, we need only check whether
it contains f ′′ in order to answer our overall question: whether f ′ and f ′′ are
consistent.

570 Chapter 10 Extending the Limits of Tractability

To start the algorithm, we define F0 = {f ′}: Since f ′ determines a color for
every interval in S0, clearly no other k-coloring of S0 can be consistent with
it. Now suppose we have computed F0, F1, . . . , Fi; we show how to compute
Fi+1 from Fi.

Recall that Si consists of the paths containing the edge ei = (vi, vi+1),
and Si+1 consists of the paths containing the next consecutive edge ei+1=
(vi+1, vi+2). The paths in Si and Si+1 can be divided into three types:

. Those that contain both ei and ei+1. These lie in both Si and Si+1.

. Those that end at node vi+1. These lie in Si but not Si+1.

. Those that begin at node vi+1. These lie in Si+1 but not Si.

Now, for any coloring f ∈ Fi, we say that a coloring g of Si+1 is an extension
of f if all the paths in Si ∩ Si+1 have the same colors with respect to f and g. It
is easy to check that if g is an extension of f , and f is consistent with f ′, then
so is g. On the other hand, suppose some coloring g of Si+1 is consistent with
f ′; in other words, there is a coloring h of all paths that is equal to f ′ on S0 and
is equal to g on Si+1. Then, if we consider the colors assigned by h to paths in
Si, we get a coloring f ∈ Fi, and g is an extension of f .

This proves the following fact.

(10.10) The set Fi+1 is equal to the set of all extensions of k-colorings in Fi.

So, in order to compute Fi+1, we simply need to list all extensions of all
colorings in Fi. For each f ∈ Fi, this means that we want a list of all colorings g
of Si+1 that agree with f on Si ∩ Si+1. To do this, we simply list all possible ways
of assigning the colors of Si−Si+1 (with respect to f) to the paths in Si+1−Si.
Merging these lists for all f ∈ Fi then gives us Fi+1.

Thus the overall algorithm is as follows.

To determine whether f ′ and f ′′ are consistent:
Define F0 = {f ′}
For i = 1, 2, . . . , n

For each f ∈ Fi

Add all extensions of f to Fi+1

Endfor

Endfor

Check whether f ′′ is in Fn

Figure 10.4 shows the results of executing this algorithm on the example
of Figure 10.3. As with all the dynamic programming algorithms we have seen
in this book, the actual coloring can be computed by tracing back through the
steps that built up the sets F1, F2, . . . , Fn.

10.3 Coloring a Set of Circular Arcs 571

b�

c �a�

c� a �

d

e

f b �

3
2
1

1
2
3

3
2
1

1
2
3

3
2
1

1
2
3

3
2
1

1
2
3

2
3
1

2
1
3

Figure 10.4 The execution of the coloring algorithm. The initial coloring f ′ assigns
color 1 to a′, color 2 to b′, and color 3 to c′. Above each edge ei (for i > 0) is a table
representing the set of all consistent colorings in Fi: Each coloring is represented by
one of the columns in the table. Since the coloring f ′′(a′′)= 1, f ′′(b′′)= 2, and f ′′(c′′)= 3
appears in the final table, there is a solution to this instance.

We will discuss the running time of this algorithm in a moment. First,
however, we show how to remove the assumption that the input instance has
uniform depth.

Removing the Uniform-Depth Assumption Recall that the algorithm we just
designed assumes that for each edge e, exactly k paths contain e. In general,
each edge may carry a different number of paths, up to a maximum of k. (If
there were an edge contained in k+ 1 paths, then all these paths would need a
different color, and so we could immediately conclude that the input instance
is not colorable with k colors.)

It is not hard to modify the algorithm directly to handle the general case,
but it is also easy to reduce the general case to the uniform-depth case. For
each edge ei that carries only ki < k paths, we add k − ki paths that consist
only of the single edge ei. We now have a uniform-depth instance, and we
claim

(10.11) The original instance can be colored with k colors if and only if the
modified instance (obtained by adding single-edge paths) can be colored with
k colors.

Proof. Clearly, if the modified instance has a k-coloring, then we can use this
same k-coloring for the original instance (simply ignoring the colors it assigns
to the single-edge paths that we added). Conversely, suppose the original
instance has a k-coloring f . Then we can construct a k-coloring of the modified
instance by starting with f and considering the extra single-edge paths one at
a time, assigning any free color to each of these paths as we consider them.

572 Chapter 10 Extending the Limits of Tractability

Analyzing the Algorithm
Finally, we bound the running time of the algorithm. This is dominated by the
time to compute the sets F1, F2, . . . , Fn. To build one of these sets Fi+1, we need
to consider each coloring f ∈ Fi, and list all permutations of the colors that f
assigns to paths in Si−Si+1. Since Si has k paths, the number of colorings in
Fi is at most k!. Listing all permutations of the colors that f assigns to Si−Si+1
also involves enumerating a set of size �!, where �≤ k is the size of Si−Si+1.

Thus the total time to compute Fi+1 from one Fi has the form O(f (k)) for
a function f (·) that depends only on k. Over the n iterations of the outer loop
to compute F1, F2, . . . , Fn, this gives a total running time of O(f (k) · n), as
desired.

This concludes the description and analysis of the algorithm. We summa-
rize its properties in the following statement.

(10.12) The algorithm described in this section correctly determines whether
a collection of paths on an n-node cycle can be colored with k colors, and its
running time is O(f (k) · n) for a function f (·) that depends only on k.

Looking back on it, then, we see that the running time of the algorithm
came from the intuition we described at the beginning of the section: For
each i, the subproblems based on computing Fi and Fi+1 fit together along the
“narrow” interface consisting of the paths in just Si and Si+1, each of which
has size at most k. Thus the time needed to go from one to the other could
be made to depend only on k, and not on the size of the cycle G or on the
number of paths.

* 10.4 Tree Decompositions of Graphs
In the previous two sections, we’ve seen how particular NP-hard problems
(specifically, Maximum-Weight Independent Set and Graph Coloring) can be
solved when the input has a restricted structure. When you find yourself in
this situation—able to solve an NP-complete problem in a reasonably natural
special case—it’s worth asking why the approach doesn’t work in general. As
we discussed in Sections 10.2 and 10.3, our algorithms in both cases were
taking advantage of a particular kind of structure: the fact that the input could
be broken down into subproblems with very limited interaction.

For example, to solve Maximum-Weight Independent Set on a tree, we took
advantage of a special property of (rooted) trees: Once we decide whether or
not to include a node u in the independent set, the subproblems in each subtree
become completely separated; we can solve each as though the others did not

10.4 Tree Decompositions of Graphs 573

exist. We don’t encounter such a nice situation in general graphs, where there
might not be a node that “breaks the communication” between subproblems
in the rest of the graph. Rather, for the Independent Set Problem in general
graphs, decisions we make in one place seem to have complex repercussions
all across the graph.

So we can ask a weaker version of our question instead: For how general
a class of graphs can we use this notion of “limited interaction”—recursively
chopping up the input using small sets of nodes—to design efficient algorithms
for a problem like Maximum-Weight Independent Set?

In fact, there is a natural and rich class of graphs that supports this type
of algorithm; they are essentially “generalized trees,” and for reasons that
will become clear shortly, we will refer to them as graphs of bounded tree-
width. Just as with trees, many NP-complete problems are tractable on graphs
of bounded tree-width; and the class of graphs of bounded tree-width turns
out to have considerable practical value, since it includes many real-world
networks on which NP-complete graph problems arise. So, in a sense, this
type of graph serves as a nice example of finding the “right” special case of a
problem that simultaneously allows for efficient algorithms and also includes
graphs that arise in practice.

In this section, we define tree-width and give the general approach for
solving problems on graphs of bounded tree-width. In the next section, we
discuss how to tell whether a given graph has bounded tree-width.

Defining Tree-Width
We now give a precise definition for this class of graphs that is designed

to generalize trees. The definition is motivated by two considerations. First,
we want to find graphs that we can decompose into disconnected pieces by
removing a small number of nodes; this allows us to implement dynamic
programming algorithms of the type we discussed earlier. Second, we want to
make precise the intuition conveyed by “tree-like” drawings of graphs as in
Figure 10.5(b).

We want to claim that the graph G pictured in this figure is decomposable
in a tree-like way, along the lines that we’ve been considering. If we were to
encounter G as it is drawn in Figure 10.5(a), it might not be immediately clear
why this is so. In the drawing in Figure 10.5(b), however, we see that G is
really composed of ten interlocking triangles; and seven of the ten triangles
have the property that if we delete them, then the remainder of G falls apart into
disconnected pieces that recursively have this interlocking-triangle structure.
The other three triangles are attached at the extremities, and deleting them is
sort of like deleting the leaves of a tree.

574 Chapter 10 Extending the Limits of Tractability

(a) (b) (c)

Figure 10.5 Parts (a) and (b) depict the same graph drawn in different ways. The drawing
in (b) emphasizes the way in which it is composed of ten interlocking triangles. Part (c)
illustrates schematically how these ten triangles “fit together.”

So G is tree-like if we view it not as being composed of twelve nodes, as
we usually would, but instead as being composed of ten triangles. Although G
clearly contains many cycles, it seems, intuitively, to lack cycles when viewed
at the level of these ten triangles; and based on this, it inherits many of the
nice decomposition properties of a tree.

We will want to represent the tree-like structure of these triangles by
having each triangle correspond to a node in a tree, as shown in Figure 10.5(c).
Intuitively, the tree in this figure corresponds to this graph, with each node of
the tree representing one of the triangles. Notice, however, that the same nodes
of the graph occur in multiple triangles, even in triangles that are not adjacent
in the tree structure; and there are edges between nodes in triangles very
far away in the tree-structure—for example, the central triangle has edges to
nodes in every other triangle. How can we make the correspondence between
the tree and the graph precise? We do this by introducing the idea of a tree
decomposition of a graph G, so named because we will seek to decompose G
according to a tree-like pattern.

Formally, a tree decomposition of G = (V , E) consists of a tree T (on a
different node set from G), and a subset Vt ⊆ V associated with each node t of
T. (We will call these subsets Vt the “pieces” of the tree decomposition.) We
will sometimes write this as the ordered pair (T , {Vt : t ∈ T}). The tree T and
the collection of pieces {Vt : t ∈ T} must satisfy the following three properties.

10.4 Tree Decompositions of Graphs 575

. (Node Coverage) Every node of G belongs to at least one piece Vt.

. (Edge Coverage) For every edge e of G, there is some piece Vt containing
both ends of e.

. (Coherence) Let t1, t2, and t3 be three nodes of T such that t2 lies on the
path from t1 to t3. Then, if a node v of G belongs to both Vt1 and Vt3, it
also belongs to Vt2.

It’s worth checking that the tree in Figure 10.5(c) is a tree decomposition of
the graph using the ten triangles as the pieces.

Next consider the case when the graph G is a tree. We can build a tree
decomposition of it as follows. The decomposition tree T has a node tv for each
node v of G, and a node te for each edge e of G. The tree T has an edge (tv, te)
when v is an end of e. Finally, if v is a node, then we define the piece Vtv = {v};
and if e = (u, v) is an edge, then we define the piece Vte = {u, v}. One can now
check that the three properties in the definition of a tree decomposition are
satisfied.

Properties of a Tree Decomposition
If we consider the definition more closely, we see that the Node Coverage
and Edge Coverage Properties simply ensure that the collection of pieces
corresponds to the graph G in a minimal way. The crux of the definition is in the
Coherence Property. While it is not obvious from its statement that Coherence
leads to tree-like separation properties, in fact it does so quite naturally. Trees
have two nice separation properties, closely related to each other, that get used
all the time. One says that if we delete an edge e from a tree, it falls apart into
exactly two connected components. The other says that if we delete a node t
from a tree, then this is like deleting all the incident edges, and so the tree falls
apart into a number of components equal to the degree of t. The Coherence
Property is designed to guarantee that separations of T, of both these types,
correspond naturally to separations of G as well.

If T ′ is a subgraph of T, we use GT ′ to denote the subgraph of G induced
by the nodes in all pieces associated with nodes of T ′, that is, the set ∪t∈T ′Vt.

First consider deleting a node t of T.

(10.13) Suppose that T−t has components T1, . . . , Td. Then the subgraphs

GT1
−Vt , GT2

−Vt , . . . , GTd
−Vt

have no nodes in common, and there are no edges between them.

576 Chapter 10 Extending the Limits of Tractability

u

Vt

v

Gt1

Gt2

Gt3

No edge (u, v)

Figure 10.6 Separations of the tree T translate to separations of the graph G.

Proof. We refer to Figure 10.6 for a general view of what the separation looks
like. We first prove that the subgraphs GTi

−Vt do not share any nodes. Indeed,
any such node v would need to belong to both GTi

−Vt and GTj
−Vt for some

i �= j, and so such a node v belongs to some piece Vx with x ∈ Ti, and to some
piece Vy with y ∈ Tj. Since t lies on the x-y path in T, it follows from the
Coherence Property that v lies in Vt and hence belongs to neither GTi

−Vt nor
GTj
−Vt.

Next we must show that there is no edge e = (u, v) in G with one end u
in subgraph GTi

−Vt and the other end v in GTj
−Vt for some j �= i. If there

were such an edge, then by the Edge Coverage Property, there would need to
be some piece Vx containing both u and v. The node x cannot be in both the
subgraphs Ti and Tj. Suppose by symmetry x �∈ Ti. Node u is in the subgraph
GTi

, so u must be in a set Vy for some y in Ti. Then the node u belongs to both
Vx and Vy, and since t lies on the x-y path in T, it follows that u also belongs
to Vt, and so it does not lie in GTi

−Vt as required.

Proving the edge separation property is analogous. If we delete an edge
(x, y) from T, then T falls apart into two components: X, containing x, and Y,

10.4 Tree Decompositions of Graphs 577

u

Vy

v

No edge (u, v)

Vx

Vx � Vy

GX – Vx � Vy GY – Vx � Vy

Figure 10.7 Deleting an edge of the tree T translates to separation of the graph G.

containing y. Let’s establish the corresponding way in which G is separated
by this operation.

(10.14) Let X and Y be the two components of T after the deletion of the edge
(x, y). Then deleting the set Vx ∩Vy from V disconnects G into the two subgraphs
GX−(Vx ∩ Vy) and GY−(Vx ∩ Vy) More precisely, these two subgraphs do not
share any nodes, and there is no edge with one end in each of them.

Proof. We refer to Figure 10.7 for a general view of what the separation looks
like. The proof of this property is analogous to the proof of (10.13). One first
proves that the two subgraphs GX−(Vx ∩ Vy) and GY−(Vx ∩ Vy) do not share
any nodes, by showing that a node v that belongs to both GX and GY must
belong to both Vx and to Vy, and hence it does not lie in either GY−(Vx ∩ Vy)

or GX−(Vx ∩ Vy).

Now we must show that there is no edge e = (u, v) in G with one end u
in GX−(Vx ∩ Vy) and the other end v in GY−(Vx ∩ Vy). If there were such an
edge, then by the Edge Coverage Property, there would need to be some piece
Vz containing both u and v. Suppose by symmetry that z ∈ X. Node v also
belongs to some piece Vw for w ∈ Y. Since x and y lie on the w-z path in T, it
follows that V belongs to Vx and Vy. Hence v ∈ Vx ∩ Vy, and so it does not lie
in GY−(Vx ∩ Vy) as required.

So tree decompositions are useful in that the separation properties of T
carry over to G. At this point, one might think that the key question is: Which
graphs have tree decompositions? But this is not the point, for if we think about

578 Chapter 10 Extending the Limits of Tractability

it, we see that of course every graph has a tree decomposition. Given any G,
we can let T be a tree consisting of a single node t, and let the single piece Vt
be equal to the entire node set of G. This easily satisfies the three properties
required by the definition; and such a tree decomposition is no more useful to
us than the original graph.

The crucial point, therefore, is to look for a tree decomposition in which all
the pieces are small. This is really what we’re trying to carry over from trees, by
requiring that the deletion of a very small set of nodes breaks apart the graph
into disconnected subgraphs. So we define the width of a tree decomposition
(T , {Vt}) to be one less than the maximum size of any piece Vt:

width(T , {Vt})=max
t
|Vt| − 1.

We then define the tree-width of G to be the minimum width of any tree de-
composition of G. Due to the Edge Coverage Property, all tree decompositions
must have pieces with at least two nodes, and hence have tree-width at least
1. Recall that our tree decomposition for a tree G has tree-width 1, as the sets
Vt each have either one or two nodes. The somewhat puzzling “–1” in this
definition is so that trees turn out to have tree-width 1, rather than 2. Also, all
graphs with a nontrivial tree decomposition of tree-width w have separators of
size w, since if (x, y) is an edge of the tree, then, by (10.14), deleting Vx ∩ Vy
separates G into two components.

Thus we can talk about the set of all graphs of tree-width 1, the set of all
graphs of tree-width 2, and so forth. The following fact establishes that trees
are the only graphs with tree-width 1, and hence our definitions here indeed
generalize the notion of a tree. The proof also provides a good way for us to
exercise some of the basic properties of tree decompositions. We also observe
that the graph in Figure 10.5 is thus, according to the notion of tree-width,
a member of the next “simplest” class of graphs after trees: It is a graph of
tree-width 2.

(10.15) A connected graph G has tree-width 1 if and only if it is a tree.

Proof. We have already seen that if G is a tree, then we can build a tree
decomposition of tree-width 1 for G.

To prove the converse, we first establish the following useful fact: If H is
a subgraph of G, then the tree-width of H is at most the tree-width of G. This
is simply because, given a tree decomposition (T , {Vt}) of G, we can define a
tree decomposition of H by keeping the same underlying tree T and replacing
each piece Vt with Vt ∩H. It is easy to check that the required three properties
still hold. (The fact that certain pieces may now be equal to the empty set does
not pose a problem.)

10.4 Tree Decompositions of Graphs 579

Now suppose by way of contradiction that G is a connected graph of tree-
width 1 that is not a tree. Since G is not a tree, it has a subgraph consisting of a
simple cycle C. By our argument from the previous paragraph, it is now enough
for us to argue that the graph C does not have tree-width 1. Indeed, suppose
it had a tree decomposition (T , {Vt}) in which each piece had size at most 2.
Choose any two edges (u, v) and (u′, v′) of C; by the Edge Coverage Property,
there are pieces Vt and Vt′ containing them. Now, on the path in T from t to
t′ there must be an edge (x, y) such that the pieces Vx and Vy are unequal. It
follows that |Vx ∩ Vy| ≤ 1. We now invoke (10.14): Defining X and Y to be the
components of T−(x, y) containing x and y, respectively, we see that deleting
Vx ∩ Vy separates C into CX−(Vx ∩ Vy) and CY−(Vx ∩ Vy). Neither of these
two subgraphs can be empty, since one contains {u, v}−(Vx ∩ Vy) and the
other contains {u′, v′}−(Vx ∩ Vy). But it is not possible to disconnect a cycle
into two nonempty subgraphs by deleting a single node, and so this yields a
contradiction.

When we use tree decompositions in the context of dynamic programming
algorithms, we would like, for the sake of efficiency, that they not have
too many pieces. Here is a simple way to do this. If we are given a tree
decomposition (T , {Vt}) of a graph G, and we see an edge (x, y) of T such
that Vx ⊆ Vy, then we can contract the edge (x, y) (folding the piece Vx into
the piece Vy) and obtain a tree decomposition of G based on a smaller tree.
Repeating this process as often as necessary, we end up with a nonredundant
tree decomposition: There is no edge (x, y) of the underlying tree such that
Vx ⊆ Vy.

Once we’ve reached such a tree decomposition, we can be sure that it does
not have too many pieces:

(10.16) Any nonredundant tree decomposition of an n-node graph has at
most n pieces.

Proof. We prove this by induction on n, the case n = 1 being clear. Let’s
consider the case in which n > 1. Given a nonredundant tree decomposition
(T , {Vt}) of an n-node graph, we first identify a leaf t of T. By the nonredun-
dancy condition, there must be at least one node in Vt that does not appear in
the neighboring piece, and hence (by the Coherence Property) does not appear
in any other piece. Let U be the set of all such nodes in Vt. We now observe that
by deleting t from T, and removing Vt from the collection of pieces, we obtain
a nonredundant tree decomposition of G−U. By our inductive hypothesis, this
tree decomposition has at most n− |U | ≤ n− 1 pieces, and so (T , {Vt}) has at
most n pieces.

580 Chapter 10 Extending the Limits of Tractability

While (10.16) is very useful for making sure one has a small tree decompo-
sition, it is often easier in the course of analyzing a graph to start by building
a redundant tree decomposition, and only later “condensing” it down to a
nonredundant one. For example, our tree decomposition for a graph G that is
a tree built a redundant tree decomposition; it would not have been as simple
to directly describe a nonredundant one.

Having thus laid the groundwork, we now turn to the algorithmic uses of
tree decompositions.

Dynamic Programming over a Tree Decomposition
We began by claiming that the Maximum-Weight Independent Set could be
solved efficiently on any graph for which the tree-width was bounded. Now it’s
time to deliver on this promise. Specifically, we will develop an algorithm that
closely follows the linear-time algorithm for trees. Given an n-node graph with
an associated tree decomposition of width w, it will run in time O(f (w) · n),
where f (·) is an exponential function that depends only on the width w, not on
the number of nodes n. And, as in the case of trees, although we are focusing
on Maximum-Weight Independent Set, the approach here is useful for many
NP-hard problems.

So, in a very concrete sense, the complexity of the problem has been
pushed off of the size of the graph and into the tree-width, which may be much
smaller. As we mentioned earlier, large networks in the real world often have
very small tree-width; and often this is not coincidental, but a consequence of
the structured or modular way in which they are designed. So, if we encounter
a 1,000-node network with a tree decomposition of width 4, the approach
discussed here takes a problem that would have been hopelessly intractable
and makes it potentially quite manageable.

Of course, this is all somewhat reminiscent of the Vertex Cover Algorithm
from Section 10.1. There we pushed the exponential complexity into the
parameter k, the size of the vertex cover being sought. Here we did not have
an obvious parameter other than n lying around, so we were forced to invent
a fairly nonobvious one: the tree-width.

To design the algorithm, we recall what we did for the case of a tree T.
After rooting T, we built the independent set by working our way up from the
leaves. At each internal node u, we enumerated the possibilities for what to
do with u—include it or not include it—since once this decision was fixed, the
problems for the different subtrees below u became independent.

The generalization for a graph G with a tree decomposition (T , {Vt}) of
width w looks very similar. We root the tree T and build the independent set
by considering the pieces Vt from the leaves upward. At an internal node t

10.4 Tree Decompositions of Graphs 581

of T, we confront the following basic question: The optimal independent set
intersects the piece Vt in some subset U, but we don’t know which set U it is.
So we enumerate all the possibilities for this subset U—that is, all possibilities
for which nodes to include from Vt and which to leave out. Since Vt may have
size up to w + 1, this may be 2w+1 possibilities to consider. But we now can
exploit two key facts: first, that the quantity 2w+1 is a lot more reasonable than
2n when w is much smaller than n; and second, that once we fix a particular
one of these 2w+1 possibilities—once we’ve decided which nodes in the piece
Vt to include—the separation properties (10.13) and (10.14) ensure that the
problems in the different subtrees of T below t can be solved independently.
So, while we settle for doing brute-force search at the level of a single piece, we
have an algorithm that is quite efficient at the global level when the individual
pieces are small.

Defining the Subproblems More precisely, we root the tree T at a node r.
For any node t, let Tt denote the subtree rooted at t. Recall that GTt

denotes
the subgraph of G induced by the nodes in all pieces associated with nodes
of Tt; for notational simplicity, we will also write this subgraph as Gt. For a
subset U of V, we use w(U) to denote the total weight of nodes in U; that is,
w(U)=∑

u∈U wu.

We define a set of subproblems for each subtree Tt, one corresponding
to each possible subset U of Vt that may represent the intersection of the
optimal solution with Vt. Thus, for each independent set U ⊆ Vt, we write
ft(U) to denote the maximum weight of an independent set S in Gt, subject to
the requirement that S ∩ Vt = U. The quantity ft(U) is undefined if U is not
an independent set, since in this case we know that U cannot represent the
intersection of the optimal solution with Vt.

There are at most 2w+1 subproblems associated with each node t of T,
since this is the maximum possible number of independent subsets of Vt. By
(10.16), we can assume we are working with a tree decomposition that has
at most n pieces, and hence there are a total of at most 2w+1n subproblems
overall. Clearly, if we have the solutions to all these subproblems, we can
determine the maximum weight of an independent set in G by looking at the
subproblems associated with the root r: We simply take the maximum, over
all independent sets U ⊆ Vr, of fr(U).

Building Up Solutions Now we must show how to build up the solutions to
these sub-problems via a recurrence. It’s easy to get started: When t is a leaf,
ft(U) is equal to w(U) for each independent set U ⊆ Vt.

Now suppose that t has children t1, . . . , td, and we have already deter-
mined the values of fti(W) for each child ti and each independent set W ⊆ Vti.
How do we determine the value of ft(U) for an independent set U ⊆ Vt?

582 Chapter 10 Extending the Limits of Tractability

U

Vt

Vt1
Vt2

No edge

No edge

Parent(t)

Fixing the choice of U
breaks all communication
between descendants
(and with the parent).

Figure 10.8 The subproblem ft(U) in the subgraph Gt. In the optimal solution to this
subproblem, we consider independent sets Si in the descendant subgraphs Gti, subject
to the constraint that Si ∩ Vt = U ∩ Vti.

Let S be the maximum-weight independent set in Gt subject to the require-
ment that S ∩ Vt = U; that is, w(S)= ft(U). The key is to understand how this
set S looks when intersected with each of the subgraphs Gti, as suggested in
Figure 10.8. We let Si denote the intersection of S with the nodes of Gti.

(10.17) Si is a maximum-weight independent set of Gti, subject to the con-
straint that Si ∩ Vt = U ∩ Vti.

10.4 Tree Decompositions of Graphs 583

Proof. Suppose there were an independent set S′i of Gti with the property that
S′i ∩ Vt = U ∩ Vti and w(S′i) > w(Si). Then consider the set S′ = (S−Si) ∪ S′i.
Clearly w(S′) > w(S). Also, it is easy to check that S′ ∩ Vt = U.

We claim that S′ is an independent set in G; this will contradict our choice
of S as the maximum-weight independent set in Gt subject to S ∩ Vt = U. For
suppose S′ is not independent, and let e= (u, v) be an edge with both ends in S′.
It cannot be that u and v both belong to S, or that they both belong to S′i, since
these are both independent sets. Thus we must have u ∈ S−S′i and v ∈ S′i−S,
from which it follows that u is not a node of Gti while v ∈ Gti−(Vt ∩ Vti). But
then, by (10.14), there cannot be an edge joining u and v.

Statement (10.17) is exactly what we need to design a recurrence relation
for our subproblems. It says that the information needed to compute ft(U)

is implicit in the values already computed for the subtrees. Specifically, for
each child ti, we need simply determine the value of the maximum-weight
independent set Si of Gti, subject to the constraint that Si ∩ Vt = U ∩ Vti. This
constraint does not completely determine what Si ∩ Vti should be; rather, it
says that it can be any independent set Ui ⊆ Vti such that Ui ∩ Vt = U ∩ Vti.
Thus the weight of the optimal Si is equal to

max{fti(Ui) : Ui ∩ Vt = U ∩ Vti and Ui ⊆ Vti is independent}.
Finally, the value of ft(U) is simply w(U) plus these maxima added over the d
children of t—except that to avoid overcounting the nodes in U, we exclude
them from the contribution of the children. Thus we have

(10.18) The value of ft(U) is given by the following recurrence:

ft(U)= w(U)+
d∑

i=1

max{fti(Ui)− w(Ui ∩ U) :

Ui ∩ Vt = U ∩ Vti and Ui ⊆ Vti is independent}.

The overall algorithm now just builds up the values of all the subproblems
from the leaves of T upward.

To find a maximum-weight independent set of G,

given a tree decomposition (T , {Vt}) of G:

Modify the tree decomposition if necessary so it is nonredundant

Root T at a node r

For each node t of T in post-order

If t is a leaf then

584 Chapter 10 Extending the Limits of Tractability

For each independent set U of Vt

ft(U)= w(U)

Else

For each independent set U of Vt

ft(U) is determined by the recurrence in (10.18)

Endif

Endfor

Return max {fr(U) : U ⊆ Vr is independent}.

An actual independent set of maximum weight can be found, as usual, by
tracing back through the execution.

We can determine the time required for computing ft(U) as follows: For
each of the d children ti, and for each independent set Ui in Vti, we spend
time O(w) checking if Ui ∩ Vt = U ∩ Vti, to determine whether it should be
considered in the computation of (10.18).

This is a total time of O(2w+1wd) for ft(U); since there are at most 2w+1

sets U associated with t, the total time spent on node t is O(4w+1wd). Finally,
we sum this over all nodes t to get the total running time. We observe that the
sum, over all nodes t, of the number of children of t is O(n), since each node
is counted as a child once. Thus the total running time is O(4w+1wn).

* 10.5 Constructing a Tree Decomposition
In the previous section, we introduced the notion of tree decompositions and
tree-width, and we discussed a canonical example of how to solve an NP-hard
problem on graphs of bounded tree-width.

The Problem
There is still a crucial missing piece in our algorithmic use of tree-width,
however. Thus far, we have simply provided an algorithm for Maximum-
Weight Independent Set on a graph G, provided we have been given a low-width
tree decomposition of G. What if we simply encounter G “in the wild,” and no
one has been kind enough to hand us a good tree decomposition of it? Can we
compute one on our own, and then proceed with the dynamic programming
algorithm?

The answer is basically yes, with some caveats. First we must warn that,
given a graph G, it is NP-hard to determine its tree-width. However, the
situation for us is not actually so bad, because we are only interested here
in graphs for which the tree-width is a small constant. And, in this case, we
will describe an algorithm with the following guarantee: Given a graph G of
tree-width less than w, it will produce a tree decomposition of G of width less

10.5 Constructing a Tree Decomposition 585

than 4w in time O(f (w) ·mn), where m and n are the number of edges and
nodes of G, and f (·) is a function that depends only on w. So, essentially,
when the tree-width is small, there’s a reasonably fast way to produce a tree
decomposition whose width is almost as small as possible.

Designing and Analyzing the Algorithm
An Obstacle to Low Tree-Width The first step in designing an algorithm for
this problem is to work out a reasonable “obstacle” to a graph G having low
tree-width. In other words, as we try to construct a tree decomposition of low
width for G = (V , E), might there be some “local” structure we could discover
that will tell us the tree-width must in fact be large?

The following idea turns out to provide us with such an obstacle. First,
given two sets Y , Z ⊆ V of the same size, we say they are separable if some
strictly smaller set can completely disconnect them—specifically, if there is a
set S ⊆ V such that |S|< |Y| = |Z| and there is no path from Y−S to Z−S in
G−S. (In this definition, Y and Z need not be disjoint.) Next we say that a
set X of nodes in G is w-linked if |X| ≥ w and X does not contain separable
subsets Y and Z, such that |Y| = |Z| ≤ w.

For later algorithmic use of w-linked sets, we make note of the following
fact.

(10.19) Let G = (V , E) have m edges, let X be a set of k nodes in G, and let
w ≤ k be a given parameter. Then we can determine whether X is w-linked in
time O(f (k) ·m), where f (·) depends only on k. Moreover, if X is not w-linked,
we can return a proof of this in the form of sets Y , Z ⊆ X and S ⊆ V such that
|S|< |Y| = |Z| ≤ w and there is no path from Y−S to Z−S in G−S.

Proof. We are trying to decide whether X contains separable subsets Y and Z
such that |Y| = |Z| ≤ w. We can first enumerate all pairs of sufficiently small
subsets Y and Z; since X only has 2k subsets, there are at most 4k such pairs.

Now, for each pair of subsets Y , Z, we must determine whether they are
separable. Let � = |Y| = |Z| ≤ w. But this is exactly the Max-Flow Min-Cut
Theorem when we have an undirected graph with capacities on the nodes:
Y and Z are separable if and only there do not exist � node-disjoint paths,
each with one end in Y and the other in Z. (See Exercise 13 in Chapter 7 for
the version of maximum flows with capacities on the nodes.) We can determine
whether such paths exist using an algorithm for flow with (unit) capacities on
the nodes; this takes time O(�m).

One should imagine a w-linked set as being highly self-entwined—it has
no two small parts that can be easily split off from each other. At the same
time, a tree decomposition cuts up a graph using very small separators; and

586 Chapter 10 Extending the Limits of Tractability

so it is intuitively reasonable that these two structures should be in opposition
to each other.

(10.20) If G contains a (w + 1)-linked set of size at least 3w, then G has
tree-width at least w.

Proof. Suppose, by way of contradiction, that G has a (w + 1)-linked set X of
size at least 3w, and it also has a tree decomposition (T , {Vt}) of width less
than w; in other words, each piece Vt has size at most w. We may further
assume that (T , {Vt}) is nonredundant.

The idea of the proof is to find a piece Vt that is “centered” with respect
to X, so that when some part of Vt is deleted from G, one small subset of X is
separated from another. Since Vt has size at most w, this will contradict our
assumption that X is (w + 1)-linked.

So how do we find this piece Vt? We first root the tree T at a node r; using
the same notation as before, we let Tt denote the subtree rooted at a node
t, and write Gt for GTt

. Now let t be a node that is as far from the root r as
possible, subject to the condition that Gt contains more than 2w nodes of X.

Clearly, t is not a leaf (or else Gt could contain at most w nodes of X); so
let t1, . . . , td be the children of t. Note that since each ti is farther than t from
the root, each subgraph Gti contains at most 2w nodes of X. If there is a child ti
so that Gti contains at least w nodes of X, then we can define Y to be w nodes
of X belonging to Gti, and Z to be w nodes of X belonging to G−Gti. Since
(T , {Vt}) is nonredundant, S= Vti ∩ Vt has size at most w − 1; but by (10.14),
deleting S disconnects Y−S from Z−S. This contradicts our assumption that
X is (w + 1)-linked.

So we consider the case in which there is no child ti such that Gti contains
at least w nodes of X; Figure 10.9 suggests the structure of the argument in
this case. We begin with the node set of Gt1, combine it with Gt2, then Gt3, and
so forth, until we first obtain a set of nodes containing more than w members
of X. This will clearly happen by the time we get to Gtd, since Gt contains
more than 2w nodes of X, and at most w of them can belong to Vt. So suppose
our process of combining Gt1, Gt2, . . . first yields more than w members of X
once we reach index i ≤ d. Let W denote the set of nodes in the subgraphs
Gt1, Gt2, . . . , Gti. By our stopping condition, we have |W ∩ X|> w. But since
Gti contains fewer than w nodes of X, we also have |W ∩ X|< 2w. Hence we
can define Y to be w + 1 nodes of X belonging to W, and Z to be w + 1 nodes
of X belonging to V−W. By (10.13), the piece Vt is now a set of size at most
w whose deletion disconnects Y−Vt from Z−Vt. Again this contradicts our
assumption that X is (w + 1)-linked, completing the proof.

10.5 Constructing a Tree Decomposition 587

Gt

Between w and 2w elements of X

More than
2w elements
of XGt1

Gt2

Gt3

Gt4

Figure 10.9 The final step in the proof of (10.20).

An Algorithm to Search for a Low-Width Tree Decomposition Building on
these ideas, we now give a greedy algorithm for constructing a tree decomposi-
tion of low width. The algorithm will not precisely determine the tree-width of
the input graph G = (V , E); rather, given a parameter w, either it will produce
a tree decomposition of width less than 4w, or it will discover a (w + 1)-linked
set of size at least 3w. In the latter case, this constitutes a proof that the tree-
width of G is at least w, by (10.20); so our algorithm is essentially capable of
narrowing down the true tree-width of G to within a factor of 4. As discussed
earlier, the running time will have the form O(f (w) ·mn), where m and n are
the number of edges and nodes of G, and f (·) depends only on w.

Having worked with tree decompositions for a little while now, one can
start imagining what might be involved in constructing one for an arbitrary
input graph G. The process is depicted at a high level in Figure 10.10. Our goal
is to make G fall apart into tree-like portions; we begin the decomposition
by placing the first piece Vt anywhere. Now, hopefully, G−Vt consists of
several disconnected components; we recursively move into each of these
components, placing a piece in each so that it partially overlaps the piece
Vt that we’ve already defined. We hope that these new pieces cause the graph
to break up further, and we thus continue in this way, pushing forward with
small sets while the graph breaks apart in front of us. The key to making this
algorithm work is to argue the following: If at some point we get stuck, and our

588 Chapter 10 Extending the Limits of Tractability

Step 2

Step 1

Step 3

Figure 10.10 A schematic view of the first three steps in the construction of a tree
decomposition. As each step produces a new piece, the goal is to break up the
remainder of the graph into disconnected components in which the algorithm can
continue iteratively.

small sets don’t cause the graph to break up any further, then we can extract
a large (w + 1)-linked set that proves the tree-width was in fact large.

Given how vague this intuition is, the actual algorithm follows it more
closely than you might expect. We start by assuming that there is no (w + 1)-
linked set of size at least 3w; our algorithm will produce a tree decomposition
provided this holds true, and otherwise we can stop with a proof that the tree-
width of G is at least w. We grow the underlying tree T of the decomposition,
and the pieces Vt, in a greedy fashion. At every intermediate stage of the algo-
rithm, we will maintain the property that we have a partial tree decomposition:
by this we mean that if U ⊆ V denotes the set of nodes of G that belong to at
least one of the pieces already constructed, then our current tree T and pieces
Vt should form a tree decomposition of the subgraph of G induced on U. We
define the width of a partial tree decomposition, by analogy with our defini-
tion for the width of a tree decomposition, to be one less than the maximum
piece size. This means that in order to achieve our goal of having a width of
less than 4w, it is enough to make sure that all pieces have size at most 4w.

If C is a connected component of G−U, we say that u ∈ U is a neighbor of
C if there is some node v ∈ C with an edge to u. The key behind the algorithm
is not to simply maintain a partial tree decomposition of width less than 4w,
but also to make sure the following invariant is enforced the whole time:

(∗) At any stage in the execution of the algorithm, each component C of
G−U has at most 3w neighbors, and there is a single piece Vt that contains
all of them.

10.5 Constructing a Tree Decomposition 589

Why is this invariant so useful? It’s useful because it will let us add a new
node s to T and grow a new piece Vs in the component C, with the confidence
that s can be a leaf hanging off t in the larger partial tree decomposition.
Moreover, (∗) requires there be at most 3w neighbors, while we are trying to
produce a tree decomposition of width less than 4w; this extra w gives our
new piece “room” to expand by a little as it moves into C.

Specifically, we now describe how to add a new node and a new piece
so that we still have a partial tree decomposition, the invariant (∗) is still
maintained, and the set U has grown strictly larger. In this way, we make at
least one node’s worth of progress, and so the algorithm will terminate in at
most n iterations with a tree decomposition of the whole graph G.

Let C be any component of G−U, let X be the set of neighbors of U, and let
Vt be a piece that, as guaranteed by (∗), contains all of X. We know, again by
(∗), that X contains at most 3w nodes. If X in fact contains strictly fewer than
3w nodes, we can make progress right away: For any node v ∈ C we define a
new piece Vs = X ∪ {v}, making s a leaf of t. Since all the edges from v into
U have their ends in X, it is easy to confirm that we still have a partial tree
decomposition obeying (∗), and U has grown.

Thus, let’s suppose that X has exactly 3w nodes. In this case, it is less
clear how to proceed; for example, if we try to create a new piece by arbitrarily
adding a node v ∈ C to X, we may end up with a component of C−{v} (which
may be all of C−{v}) whose neighbor set includes all 3w + 1 nodes of X ∪ {v},
and this would violate (∗).

There’s no simple way around this; for one thing, G may not actually have
a low-width tree decomposition. So this is precisely the place where it makes
sense to ask whether X poses a genuine obstacle to the tree decomposition or
not: we test whether X is a (w + 1)-linked set. By (10.19), we can determine
the answer to this in time O(f (w) ·m), since |X| = 3w. If it turns out that X is
(w + 1)-linked, then we are all done; we can halt with the conclusion that G
has tree-width at least w, which was one acceptable outcome of the algorithm.
On the other hand, if X is not (w + 1)-linked, then we end up with Y , Z ⊆ X
and S ⊆ V such that |S|< |Y| = |Z| ≤w + 1 and there is no path from Y−S to
Z−S in G−S. The sets Y, Z, and S will now provide us with a means to extend
the partial tree decomposition.

Let S′ consist of the nodes of S that lie in Y ∪ Z ∪ C. The situation is now
as pictured in Figure 10.11. We observe that S′ ∩ C is not empty: Y and Z each
have edges into C, and so if S′ ∩ C were empty, there would be a path from
Y−S to Z−S in G−S that started in Y, jumped immediately into C, traveled
through C, and finally jumped back into Z. Also, |S′| ≤ |S| ≤ w.

590 Chapter 10 Extending the Limits of Tractability

Vt

C

X

X � S� will be the new
piece of the tree
decomposition.

Y Z

S��C

Figure 10.11 Adding a new piece to the partial tree decomposition.

We define a new piece Vs = X ∪ S′, making s a leaf of t. All the edges
from S′ into U have their ends in X, and |X ∪ S′| ≤ 3w + w = 4w, so we still
have a partial tree decomposition. Moreover, the set of nodes covered by our
partial tree decomposition has grown, since S′ ∩ C is not empty. So we will be
done if we can show that the invariant (∗) still holds. This brings us exactly
the intuition we tried to capture when discussing Figure 10.10: As we add the
new piece X ∪ S′, we are hoping that the component C breaks up into further
components in a nice way.

Concretely, our partial tree decomposition now covers U ∪ S′; and where
we previously had a component C of G−U, we now may have several compo-
nents C ′ ⊆ C of G−(U ∪ S′). Each of these components C ′ has all its neighbors in
X ∪ S′; but we must additionally make sure there are at most 3w such neigh-
bors, so that the invariant (∗) continues to hold. So consider one of these
components C ′. We claim that all its neighbors in X ∪ S′ actually belong to
one of the two subsets (X−Z) ∪ S′ or (X−Y) ∪ S′, and each of these sets has
size at most |X| ≤ 3w. For, if this did not hold, then C ′ would have a neighbor
in both Y−S and Z−S, and hence there would be a path, through C ′, from
Y−S to Z−S in G−S. But we have already argued that there cannot be such
a path. This establishes that (∗) still holds after the addition of the new piece
and completes the argument that the algorithm works correctly.

Finally, what is the running time of the algorithm? The time to add a new
piece to the partial tree decomposition is dominated by the time required to
check whether X is (w + 1)-linked, which is O(f (w) ·m). We do this for at

Solved Exercises 591

most n iterations, since we increase the number of nodes of G that we cover
in each iteration. So the total running time is O(f (w) ·mn).

We summarize the properties of our tree decomposition algorithm as
follows.

(10.21) Given a graph G and a parameter w, the tree decomposition algorithm
in this section does one of the following two things:

. it produces a tree decomposition of width less than 4w, or

. it reports (correctly) that G does not have tree-width less than w.

The running time of the algorithm is O(f (w) ·mn), for a function f (·) that
depends only on w.

Solved Exercises

Solved Exercise 1
As we’ve seen, 3-SAT is often used to model complex planning and decision-
making problems in artificial intelligence: the variables represent binary de-
cisions to be made, and the clauses represent constraints on these decisions.
Systems that work with instances of 3-SAT often need to represent situations
in which some decisions have been made while others are still undetermined,
and for this purpose it is useful to introduce the notion of a partial assignment
of truth values to variables.

Concretely, given a set of Boolean variables X = {x1, x2, . . . , xn}, we say
that a partial assignment for X is an assignment of the value 0, 1, or ? to each
xi; in other words, it is a function ρ : X → {0, 1, ?}. We say that a variable xi
is determined by the partial assignment if it receives the value 0 or 1, and
undetermined if it receives the value ?. We can think of a partial assignment
as choosing a truth value of 0 or 1 for each of its determined variables, and
leaving the truth value of each undetermined variable up in the air.

Now, given a collection of clauses C1, . . . , Cm, each a disjunction of
three distinct terms, we may be interested in whether a partial assignment is
sufficient to “force” the collection of clauses to be satisfied, regardless of how
we set the undetermined variables. Similarly, we may be interested in whether
there exists a partial assignment with only a few determined variables that
can force the collection of clauses to be satisfied; this small set of determined
variables can be viewed as highly “influential,” since their outcomes alone can
be enough to force the satisfaction of the clauses.

592 Chapter 10 Extending the Limits of Tractability

For example, suppose we are given clauses

(x1∨ x2 ∨ x4), (x2 ∨ x3∨ x4), (x2 ∨ x3∨ x5), (x1∨ x3∨ x6).

Then the partial assignment that sets x1 to 1, sets x3 to 0, and sets all other
variables to ? has only two determined variables, but it forces the collection
of clauses to be satisfied: No matter how we set the remaining four variables,
the clauses will be satisfied.

Here’s a way to formalize this. Recall that a truth assignment for X is an
assignment of the value 0 or 1 to each xi; in other words, it must select a truth
value for every variable and not leave any variables undetermined. We say that
a truth assignment ν is consistent with a partial assignment ρ if each variable
that is determined in ρ has the same truth value in both ρ and ν. (In other
words, if ρ(xi) �=?, then ρ(xi)= ν(xi).) Finally, we say that a partial assignment
ρ forces the collection of clauses C1, . . . , Cm if, for every truth assignment ν

that is consistent with ρ, it is the case that ν satisfies C1, . . . , Cm. (We will also
call ρ a forcing partial assignment.)

Motivated by the issues raised above, here’s the question. We are given a
collection of Boolean variables X = {x1, x2, . . . , xn}, a parameter b < n, and
a collection of clauses C1, . . . , Cm over the variables, where each clause is a
disjunction of three distinct terms. We want to decide whether there exists a
forcing partial assignment ρ for X, such that at most b variables are determined
by ρ. Give an algorithm that solves this problem with a running time of the
form O(f (b) · p(n, m)), where p(·) is a polynomial function, and f (·) is an
arbitrary function that depends only on b, not on n or m.

Solution Intuitively, a forcing partial assignment must “hit” each clause in
at least one place, since otherwise it wouldn’t be able to ensure the truth
value. Although this seems natural, it’s not actually part of the definition (the
definition just talks about truth assignments that are consistent with the partial
assignment), so we begin by formalizing and proving this intuition.

(10.22) A partial assignment ρ forces all clauses if and only if, for each clause
Ci, at least one of the variables in Ci is determined by ρ in a way that satis-
fies Ci.

Proof. Clearly, if ρ determines at least one variable in each Ci in a way
that satisfies it, then no matter how we construct a full truth assignment for
the remaining variables, all the clauses are already satisfied. Thus any truth
assignment consistent with ρ satisfies all clauses.

Now, for the converse, suppose there is a clause Ci such that ρ does not
determine any of the variables in Ci in a way that satisfies Ci. We want to show
that ρ is not forcing, which, according to the definition, requires us to exhibit
a consistent truth assignment that does not satisfy all clauses. So consider the

Solved Exercises 593

following truth assignment ν: ν agrees with ρ on all determined variables, it
assigns an arbitrary truth value to each undetermined variable not appearing
in Ci, and it sets each undetermined variable in Ci in a way that fails to satisfy
it. We observe that ν sets each of the variables in Ci so as not to satisfy it, and
hence ν is not a satisfying assignment. But ν is consistent with ρ, and so it
follows that ρ is not a forcing partial assignment.

In view of (10.22), we have a problem that is very much like the search
for small vertex covers at the beginning of the chapter. There we needed to
find a set of nodes that covered all edges, and we were limited to choosing at
most k nodes. Here we need to find a set of variables that covers all clauses
(and with the right true/false values), and we’re limited to choosing at most
b variables.

So let’s try an analogue of the approach we used for finding a small vertex
cover. We pick an arbitrary clause C�, containing xi, xj, and xk (each possibly
negated). We know from (10.22) that any forcing assignment ρ must set one
of these three variables the way it appears in C�, and so we can try all three
of these possibilities. Suppose we set xi the way it appears in C�; we can then
eliminate from the instance all clauses (including C�) that are satisfied by this
assignment to xi, and consider trying to satisfy what’s left. We call this smaller
set of clauses the instance reduced by the assignment to xi. We can do the same
for xj and xk. Since ρ must determine one of these three variables the way they
appear in C�, and then still satisfy what’s left, we have justified the following
analogue of (10.3). (To make the terminology a bit easier to discuss, we say
that the size of a partial assignment is the number of variables it determines.)

(10.23) There exists a forcing assignment of size at most b if and only if there
is a forcing assignment of size at most b− 1 on at least one of the instances
reduced by the assignment to xi, xj, or xk.

We therefore have the following algorithm. (It relies on the boundary cases
in which there are no clauses (when by definition we can declare success) and
in which there are clauses but b= 0 (in which case we declare failure).

To search for a forcing partial assignment of size at most b:

If there are no clauses, then by definition we have

a forcing assignment

Else if b= 0 then by (10.22) there is no forcing assignment

Else let C� be an arbitrary clause containing variables xi , xj , xk

For each of xi , xj , xk:

Set xi the way it appears in C�

Reduce the instance by this assignment

594 Chapter 10 Extending the Limits of Tractability

Recursively check for a forcing assignment of size at

most b− 1 on this reduced instance

Endfor

If any of these recursive calls (say for xi) returns a

forcing assignment ρ′ of size most b− 1 then

Combining ρ′ with the assignment to xi is the desired answer

Else (none of these recursive calls succeeds)

There is no forcing assignment of size at most b

Endif

Endif

To bound the running time, we consider the tree of possibilities being
searched, just as in the algorithm for finding a vertex cover. Each recursive
call gives rise to three children in this tree, and this goes on to a depth of at
most b. Thus the tree has at most 1+ 3+ 32+ . . .+ 3b ≤ 3b+1 nodes, and at
each node we spend at most O(m+ n) time to produce the reduced instances.
Thus the total running time is O(3b(m + n)).

Exercises

1. In Exercise 5 of Chapter 8, we claimed that the Hitting Set Problem was

NP-complete. To recap the definitions, consider a set A= {a1, . . . , an} and a

collection B1, B2, . . . , Bm of subsets of A. We say that a set H ⊆A is a hitting

set for the collection B1, B2, . . . , Bm if H contains at least one element from

each Bi—that is, if H ∩ Bi is not empty for each i. (So H “hits” all the sets

Bi.)

Now suppose we are given an instance of this problem, and we’d like

to determine whether there is a hitting set for the collection of size at

most k. Furthermore suppose that each set Bi has at most c elements, for

a constant c. Give an algorithm that solves this problem with a running

time of the form O(f (c, k) · p(n, m)), where p(·) is a polynomial function,

and f (·) is an arbitrary function that depends only on c and k, not on n

or m.

2. The difficulty in 3-SAT comes from the fact that there are 2n possible

assignments to the input variables x1, x2, . . . , xn, and there’s no apparent

way to search this space in polynomial time. This intuitive picture, how-

ever, might create the misleading impression that the fastest algorithms

for 3-SAT actually require time 2n. In fact, though it’s somewhat counter-

intuitive when you first hear it, there are algorithms for 3-SAT that run

in significantly less than 2n time in the worst case; in other words, they

Exercises 595

determine whether there’s a satisfying assignment in less time than it

would take to enumerate all possible settings of the variables.

Here we’ll develop one such algorithm, which solves instances of 3-

SAT in O(p(n) · (√3)n) time for some polynomial p(n). Note that the main

term in this running time is (
√

3)n, which is bounded by 1.74n.

(a) For a truth assignment � for the variables x1, x2, . . . , xn, we use �(xi)

to denote the value assigned by � to xi. (This can be either 0 or

1.) If � and �′ are each truth assignments, we define the distance

between � and �′ to be the number of variables xi for which they

assign different values, and we denote this distance by d(�, �′). In
other words, d(�, �′)= |{i : �(xi) �=�′(xi)}|.

A basic building block for our algorithm will be the ability to

answer the following kind of question: Given a truth assignment �

and a distance d, we’d like to know whether there exists a satisfying

assignment �′ such that the distance from � to �′ is at most d.

Consider the following algorithm, Explore(�, d), that attempts to

answer this question.

Explore(�,d):

If � is a satisfying assignment then return "yes"

Else if d = 0 then return "no"

Else

Let Ci be a clause that is not satisfied by �

(i.e., all three terms in Ci evaluate to false)

Let �1 denote the assignment obtained from � by

taking the variable that occurs in the first term of

clause Ci and inverting its assigned value

Define �2 and �3 analogously in terms of the

second and third terms of the clause Ci

Recursively invoke:

Explore(�1,d − 1)

Explore(�2,d − 1)

Explore(�3,d − 1)

If any of these three calls returns "yes"

then return "yes"

Else return "no"

Prove that Explore(�, d) returns “yes” if and only if there exists

a satisfying assignment �′ such that the distance from � to �′ is at

most d. Also, give an analysis of the running time of Explore(�, d)

as a function of n and d.

596 Chapter 10 Extending the Limits of Tractability

Figure 10.12 A triangulated
cycle graph: The edges form
the boundary of a convex
polygon together with a set
of line segments that divide
its interior into triangles.

(b) Clearly any two assignments � and �′ have distance at most n

from each other, so one way to solve the given instance of 3-SAT

would be to pick an arbitrary starting assignment � and then run

Explore(�, n). However, this will not give us the running time we

want.

Instead, we will need to make several calls to Explore, from

different starting points �, and search each time out to more limited

distances. Describe how to do this in such a way that you can solve

the instance of 3-SAT in a running time of only O(p(n) · (√3)n).

3. Suppose we are given a directed graph G = (V , E), with V = {v1, v2, . . . , vn},
and we want to decide whether G has a Hamiltonian path from v1 to vn.

(That is, is there a path in G that goes from v1 to vn, passing through every

other vertex exactly once?)

Since the Hamiltonian Path Problem is NP-complete, we do not ex-

pect that there is a polynomial-time solution for this problem. However,

this does not mean that all nonpolynomial-time algorithms are equally

“bad.” For example, here’s the simplest brute-force approach: For each

permutation of the vertices, see if it forms a Hamiltonian path from v1

to vn. This takes time roughly proportional to n!, which is about 3× 1017

when n = 20.

Show that the Hamiltonian Path Problem can in fact be solved in time

O(2n · p(n)), where p(n) is a polynomial function of n. This is a much better

algorithm formoderate values of n; for example, 2n is only about amillion

when n = 20.

4. We say that a graph G = (V , E) is a triangulated cycle graph if it consists

of the vertices and edges of a triangulated convex n-gon in the plane—in

other words, if it can be drawn in the plane as follows.

The vertices are all placed on the boundary of a convex set in the plane

(wemay assume on the boundary of a circle), with each pair of consecutive

vertices on the circle joined by an edge. The remaining edges are then

drawn as straight line segments through the interior of the circle, with no

pair of edges crossing in the interior. We require the drawing to have the

following property. If we let S denote the set of all points in the plane that

lie on vertices or edges of the drawing, then each bounded component of

the plane after deleting S is bordered by exactly three edges. (This is the

sense in which the graph is a “triangulation.”)

A triangulated cycle graph is pictured in Figure 10.12.

Exercises 597

Prove that every triangulated cycle graph has a tree decomposition

of width at most 2, and describe an efficient algorithm to construct such

a decomposition.

5. The Minimum-Cost Dominating Set Problem is specified by an undirected

graph G = (V , E) and costs c(v) on the nodes v ∈ V. A subset S ⊂ V is said

to be a dominating set if all nodes u ∈ V−S have an edge (u, v) to a node v

in S. (Note the difference between dominating sets and vertex covers: in

a dominating set, it is fine to have an edge (u, v) with neither u nor v in

the set S as long as both u and v have neighbors in S.)

(a) Give a polynomial-time algorithm for the Dominating Set Problem for

the special case in which G is a tree.

(b) Give a polynomial-time algorithm for the Dominating Set Problem for

the special case in which G has tree-width 2, and we are also given a

tree decomposition of G with width 2.

6. The Node-Disjoint Paths Problem is given by an undirected graph G and

k pairs of nodes (si, ti) for i = 1, . . . , k. The problem is to decide whether

there are node-disjoint paths Pi so that path Pi connects si to ti. Give a

polynomial-time algorithm for the Node-Disjoint Paths Problem for the

special case in which G has tree-width 2, and we are also given a tree

decomposition T of G with width 2.

7. The chromatic number of a graph G is the minimum k such that it has a

k-coloring. As we saw in Chapter 8, it is NP-complete for k ≥ 3 to decide

whether a given input graph has chromatic number ≤ k.

(a) Show that for every natural number w ≥ 1, there is a number k(w) so

that the following holds. If G is a graph of tree-width at most w, then

G has chromatic number at most k(w). (The point is that k(w) depends

only on w, not on the number of nodes in G.)

(b) Given an undirected n-node graph G = (V , E) of tree-width at most

w, show how to compute the chromatic number of G in time O(f (w) ·
p(n)), where p(·) is a polynomial but f (·) can be an arbitrary function.

8. Consider the class of 3-SAT instances in which each of the n variables

occurs—counting positive and negated appearances combined—in ex-

actly three clauses. Show that any such instance of 3-SAT is in fact sat-

isfiable, and that a satisfying assignment can be found in polynomial

time.

9. Give a polynomial-time algorithm for the following problem. We are given

a binary tree T = (V , E) with an even number of nodes, and a nonnegative

weight on each edge. We wish to find a partition of the nodes V into two

598 Chapter 10 Extending the Limits of Tractability

sets of equal size so that the weight of the cut between the two sets is

as large as possible (i.e., the total weight of edges with one end in each

set is as large as possible). Note that the restriction that the graph is a

tree is crucial here, but the assumption that the tree is binary is not. The

problem is NP-hard in general graphs.

Notes and Further Reading

The first topic in this chapter, on how to avoid a running time of O(knk+1) for
Vertex Cover, is an example of the general theme of parameterized complexity:
for problems with two such “size parameters” n and k, one generally prefers
running times of the form O(f (k) · p(n)), where p(·) is a polynomial, rather
than running times of the form O(nk). A body of work has grown up around
this issue, including a methodology for identifying NP-complete problems that
are unlikely to allow for such improved running times. This area is covered in
the book by Downey and Fellows (1999).

The problem of coloring a collection of circular arcs was shown to be
NP-complete by Garey, Johnson, Miller, and Papadimitriou (1980). They also
described how the algorithm presented in this chapter follows directly from
a construction due to Tucker (1975). Both Interval Coloring and Circular-
Arc Coloring belong to the following class of problems: Take a collection of
geometric objects (such as intervals or arcs), define a graph by joining pairs
of objects that intersect, and study the problem of coloring this graph. The
book on graph coloring by Jensen and Toft (1995) includes descriptions of a
number of other problems in this style.

The importance of tree decompositions and tree-width was brought into
prominence largely through the work of Robertson and Seymour (1990). The
algorithm for constructing a tree decomposition described in Section 10.5 is
due to Diestel et al. (1999). Further discussion of tree-width and its role in both
algorithms and graph theory can be found in the survey by Reed (1997) and
the book by Diestel (2000). Tree-width has also come to play an important role
in inference algorithms for probabilistic models in machine learning (Jordan
1998).

Notes on the Exercises Exercise 2 is based on a result of Uwe Schöning; and
Exercise 8 is based on a problem we learned from Amit Kumar.

Chapter 11

Approximation Algorithms

Following our encounter with NP-completeness and the idea of computational
intractability in general, we’ve been dealing with a fundamental question: How
should we design algorithms for problems where polynomial time is probably
an unattainable goal?

In this chapter, we focus on a new theme related to this question: approx-
imation algorithms, which run in polynomial time and find solutions that are
guaranteed to be close to optimal. There are two key words to notice in this
definition: close and guaranteed. We will not be seeking the optimal solution,
and as a result, it becomes feasible to aim for a polynomial running time. At
the same time, we will be interested in proving that our algorithms find so-
lutions that are guaranteed to be close to the optimum. There is something
inherently tricky in trying to do this: In order to prove an approximation guar-
antee, we need to compare our solution with—and hence reason about—an
optimal solution that is computationally very hard to find. This difficulty will
be a recurring issue in the analysis of the algorithms in this chapter.

We will consider four general techniques for designing approximation al-
gorithms. We start with greedy algorithms, analogous to the kind of algorithms
we developed in Chapter 4. These algorithms will be simple and fast, as in
Chapter 4, with the challenge being to find a greedy rule that leads to solu-
tions provably close to optimal. The second general approach we pursue is
the pricing method. This approach is motivated by an economic perspective;
we will consider a price one has to pay to enforce each constraint of the prob-
lem. For example, in a graph problem, we can think of the nodes or edges of
the graph sharing the cost of the solution in some equitable way. The pricing
method is often referred to as the primal-dual technique, a term inherited from

600 Chapter 11 Approximation Algorithms

the study of linear programming, which can also be used to motivate this ap-
proach. Our presentation of the pricing method here will not assume familiarity
with linear programming. We will introduce linear programming through our
third technique in this chapter, linear programming and rounding, in which
one exploits the relationship between the computational feasibility of linear
programming and the expressive power of its more difficult cousin, integer
programming. Finally, we will describe a technique that can lead to extremely
good approximations: using dynamic programming on a rounded version of
the input.

11.1 Greedy Algorithms and Bounds on the
Optimum: A Load Balancing Problem

As our first topic in this chapter, we consider a fundamental Load Balancing
Problem that arises when multiple servers need to process a set of jobs or
requests. We focus on a basic version of the problem in which all servers
are identical, and each can be used to serve any of the requests. This simple
problem is useful for illustrating some of the basic issues that one needs to
deal with in designing and analyzing approximation algorithms, particularly
the task of comparing an approximate solution with an optimum solution that
we cannot compute efficiently. Moreover, we’ll see that the general issue of
load balancing is a problem with many facets, and we’ll explore some of these
in later sections.

The Problem
We formulate the Load Balancing Problem as follows. We are given a set of m
machines M1, . . . , Mm and a set of n jobs; each job j has a processing time tj.
We seek to assign each job to one of the machines so that the loads placed on
all machines are as “balanced” as possible.

More concretely, in any assignment of jobs to machines, we can let A(i)
denote the set of jobs assigned to machine Mi; under this assignment, machine
Mi needs to work for a total time of

Ti =
∑

j∈A(i)

tj ,

and we declare this to be the load on machine Mi. We seek to minimize a
quantity known as the makespan; it is simply the maximum load on any
machine, T =maxi Ti. Although we will not prove this, the scheduling problem
of finding an assignment of minimum makespan is NP-hard.

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 601

Designing the Algorithm
We first consider a very simple greedy algorithm for the problem. The algorithm
makes one pass through the jobs in any order; when it comes to job j, it assigns
j to the machine whose load is smallest so far.

Greedy-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i)= ∅ for all machines Mi

For j = 1, . . . , n

Let Mi be a machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i)← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

For example, Figure 11.1 shows the result of running this greedy algorithm
on a sequence of six jobs with sizes 2, 3, 4, 6, 2, 2; the resulting makespan is 8,
the “height” of the jobs on the first machine. Note that this is not the optimal
solution; had the jobs arrived in a different order, so that the algorithm saw
the sequence of sizes 6, 4, 3, 2, 2, 2, then it would have produced an allocation
with a makespan of 7.

Analyzing the Algorithm
Let T denote the makespan of the resulting assignment; we want to show that
T is not much larger than the minimum possible makespan T∗. Of course,
in trying to do this, we immediately encounter the basic problem mentioned
above: We need to compare our solution to the optimal value T∗, even though
we don’t know what this value is and have no hope of computing it. For the

6

2

2
2

3
4

M1 M2 M3

Figure 11.1 The result of running the greedy load balancing algorithm on three
machines with job sizes 2, 3, 4, 6, 2, 2.

602 Chapter 11 Approximation Algorithms

analysis, therefore, we will need a lower bound on the optimum—a quantity
with the guarantee that no matter how good the optimum is, it cannot be less
than this bound.

There are many possible lower bounds on the optimum. One idea for a
lower bound is based on considering the total processing time

∑
j tj. One of

the m machines must do at least a 1/m fraction of the total work, and so we
have the following.

(11.1) The optimal makespan is at least

T∗ ≥ 1
m

∑
j

tj.

There is a particular kind of case in which this lower bound is much too
weak to be useful. Suppose we have one job that is extremely long relative to
the sum of all processing times. In a sufficiently extreme version of this, the
optimal solution will place this job on a machine by itself, and it will be the
last one to finish. In such a case, our greedy algorithm would actually produce
the optimal solution; but the lower bound in (11.1) isn’t strong enough to
establish this.

This suggests the following additional lower bound on T∗.

(11.2) The optimal makespan is at least T∗ ≥maxj tj.

Now we are ready to evaluate the assignment obtained by our greedy
algorithm.

(11.3) Algorithm Greedy-Balance produces an assignment of jobs to ma-
chines with makespan T ≤ 2T∗.

Proof. Here is the overall plan for the proof. In analyzing an approximation
algorithm, one compares the solution obtained to what one knows about the
optimum—in this case, our lower bounds (11.1) and (11.2). We consider a
machine Mi that attains the maximum load T in our assignment, and we ask:
What was the last job j to be placed on Mi? If tj is not too large relative to most
of the other jobs, then we are not too far above the lower bound (11.1). And,
if tj is a very large job, then we can use (11.2). Figure 11.2 shows the structure
of this argument.

Here is how we can make this precise. When we assigned job j to Mi, the
machine Mi had the smallest load of any machine; this is the key property
of our greedy algorithm. Its load just before this assignment was Ti − tj, and
since this was the smallest load at that moment, it follows that every machine

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 603

Mi

The contribution of
the last job alone is
at most the optimum.

Just before adding
the last job, the load
on Mi was at most
the optimum.

Figure 11.2 Accounting for the load on machine Mi in two parts: the last job to be
added, and all the others.

had load at least Ti − tj. Thus, adding up the loads of all machines, we have∑
k Tk ≥m(Ti − tj), or equivalently,

Ti − tj ≤ 1
m

∑
k

Tk.

But the value
∑

k Tk is just the total load of all jobs
∑

j tj (since every job is
assigned to exactly one machine), and so the quantity on the right-hand side
of this inequality is exactly our lower bound on the optimal value, from (11.1).
Thus

Ti − tj ≤ T∗.

Now we account for the remaining part of the load on Mi, which is just the
final job j. Here we simply use the other lower bound we have, (11.2), which
says that tj ≤ T∗. Adding up these two inequalities, we see that

Ti = (Ti − tj)+ tj ≤ 2T∗.

Since our makespan T is equal to Ti, this is the result we want.

It is not hard to give an example in which the solution is indeed close
to a factor of 2 away from optimal. Suppose we have m machines and
n=m(m− 1)+ 1 jobs. The first m(m− 1)= n− 1 jobs each require time tj = 1.
The last job is much larger; it requires time tn =m. What does our greedy
algorithm do with this sequence of jobs? It evenly balances the first n− 1 jobs,
and then has to add the giant job n to one of them; the resulting makespan is
T = 2m − 1.

604 Chapter 11 Approximation Algorithms

M1

The greedy
algorithm was
doing well
until the last
job arrived.

M2 M3 M4

Approximate solution
via greedy algorithm:

M1 M2 M3 M4

Optimal solution:

Figure 11.3 A bad example for the greedy balancing algorithm with m = 4.

What does the optimal solution look like in this example? It assigns the
large job to one of the machines, say, M1, and evenly spreads the remaining
jobs over the other m − 1 machines. This results in a makespan of m. Thus
the ratio between the greedy algorithm’s solution and the optimal solution is
(2m − 1)/m = 2− 1/m, which is close to a factor of 2 when m is large.

See Figure 11.3 for a picture of this with m = 4; one has to admire the
perversity of the construction, which misleads the greedy algorithm into
perfectly balancing everything, only to mess everything up with the final giant
item.

In fact, with a little care, one can improve the analysis in (11.3) to show
that the greedy algorithm with m machines is within exactly this factor of
2− 1/m on every instance; the example above is really as bad as possible.

Extensions: An Improved Approximation Algorithm
Now let’s think about how we might develop a better approximation
algorithm—in other words, one for which we are always guaranteed to be
within a factor strictly smaller than 2 away from the optimum. To do this, it
helps to think about the worst cases for our current approximation algorithm.
Our earlier bad example had the following flavor: We spread everything out
very evenly across the machines, and then one last, giant, unfortunate job
arrived. Intuitively, it looks like it would help to get the largest jobs arranged
nicely first, with the idea that later, small jobs can only do so much damage.
And in fact, this idea does lead to a measurable improvement.

Thus we now analyze the variant of the greedy algorithm that first sorts
the jobs in decreasing order of processing time and then proceeds as before.

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 605

We will prove that the resulting assignment has a makespan that is at most 1.5
times the optimum.

Sorted-Balance:

Start with no jobs assigned

Set Ti = 0 and A(i)= ∅ for all machines Mi

Sort jobs in decreasing order of processing times tj
Assume that t1≥ t2≥ . . .≥ tn
For j = 1, . . . , n

Let Mi be the machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i)← A(i) ∪ {j}
Set Ti ← Ti + tj

EndFor

The improvement comes from the following observation. If we have fewer
than m jobs, then the greedy solution will clearly be optimal, since it puts each
job on its own machine. And if we have more than m jobs, then we can use
the following further lower bound on the optimum.

(11.4) If there are more than m jobs, then T∗ ≥ 2tm+1.

Proof. Consider only the first m + 1 jobs in the sorted order. They each take
at least tm+1 time. There are m + 1 jobs and only m machines, so there must
be a machine that gets assigned two of these jobs. This machine will have
processing time at least 2tm+1.

(11.5) Algorithm Sorted-Balance produces an assignment of jobs to ma-
chines with makespan T ≤ 3

2T∗.

Proof. The proof will be very similar to the analysis of the previous algorithm.
As before, we will consider a machine Mi that has the maximum load. If Mi
only holds a single job, then the schedule is optimal.

So let’s assume that machine Mi has at least two jobs, and let tj be the
last job assigned to the machine. Note that j ≥m+ 1, since the algorithm will
assign the first m jobs to m distinct machines. Thus tj ≤ tm+1≤ 1

2T∗, where
the second inequality is (11.4).

We now proceed as in the proof of (11.3), with the following single change.
At the end of that proof, we had inequalities Ti − tj ≤ T∗ and tj ≤ T∗, and we
added them up to get the factor of 2. But in our case here, the second of these

606 Chapter 11 Approximation Algorithms

inequalities is, in fact, tj ≤ 1
2T∗; so adding the two inequalities gives us the

bound

Ti ≤ 3
2

T∗.

11.2 The Center Selection Problem
Like the problem in the previous section, the Center Selection Problem, which
we consider here, also relates to the general task of allocating work across
multiple servers. The issue at the heart of Center Selection is where best to
place the servers; in order to keep the formulation clean and simple, we will not
incorporate the notion of load balancing into the problem. The Center Selection
Problem also provides an example of a case in which the most natural greedy
algorithm can result in an arbitrarily bad solution, but a slightly different
greedy method is guaranteed to always result in a near-optimal solution.

The Problem
Consider the following scenario. We have a set S of n sites—say, n little towns
in upstate New York. We want to select k centers for building large shopping
malls. We expect that people in each of these n towns will shop at one of the
malls, and so we want to select the sites of the k malls to be central.

Let us start by defining the input to our problem more formally. We are
given an integer k, a set S of n sites (corresponding to the towns), and a
distance function. When we consider instances where the sites are points
in the plane, the distance function will be the standard Euclidean distance
between points, and any point in the plane is an option for placing a center.
The algorithm we develop, however, can be applied to more general notions of
distance. In applications, distance sometimes means straight-line distance, but
can also mean the travel time from point s to point z, or the driving distance
(i.e., distance along roads), or even the cost of traveling. We will allow any
distance function that satisfies the following natural properties.

. dist(s, s)= 0 for all s ∈ S

. the distance is symmetric: dist(s, z)= dist(z, s) for all sites s, z ∈ S

. the triangle inequality: dist(s, z)+ dist(z, h)≥ dist(s, h)

The first and third of these properties tend to be satisfied by essentially all
natural notions of distance. Although there are applications with asymmetric
distances, most cases of interest also satisfy the second property. Our greedy al-
gorithm will apply to any distance function that satisfies these three properties,
and it will depend on all three.

11.2 The Center Selection Problem 607

Next we have to clarify what we mean by the goal of wanting the centers
to be “central.” Let C be a set of centers. We assume that the people in a given
town will shop at the closest mall. This suggests we define the distance of a
site s to the centers as dist(s, C)=minc∈C dist(s, c). We say that C forms an r-
cover if each site is within distance at most r from one of the centers—that is,
if dist(s, C)≤ r for all sites s ∈ S. The minimum r for which C is an r-cover will
be called the covering radius of C and will be denoted by r(C). In other words,
the covering radius of a set of centers C is the farthest that anyone needs to
travel to get to his or her nearest center. Our goal will be to select a set C of k
centers for which r(C) is as small as possible.

Designing and Analyzing the Algorithm
Difficulties with a Simple Greedy Algorithm We now discuss greedy algo-
rithms for this problem. As before, the meaning of “greedy” here is necessarily
a little fuzzy; essentially, we consider algorithms that select sites one by one in
a myopic fashion—that is, choosing each without explicitly considering where
the remaining sites will go.

Probably the simplest greedy algorithm would work as follows. It would
put the first center at the best possible location for a single center, then keep
adding centers so as to reduce the covering radius, each time, by as much as
possible. It turns out that this approach is a bit too simplistic to be effective:
there are cases where it can lead to very bad solutions.

To see that this simple greedy approach can be really bad, consider an
example with only two sites s and z, and k = 2. Assume that s and z are
located in the plane, with distance equal to the standard Euclidean distance
in the plane, and that any point in the plane is an option for placing a center.
Let d be the distance between s and z. Then the best location for a single
center c1 is halfway between s and z, and the covering radius of this one
center is r({c1})= d/2. The greedy algorithm would start with c1 as the first
center. No matter where we add a second center, at least one of s or z will have
the center c1 as closest, and so the covering radius of the set of two centers
will still be d/2. Note that the optimum solution with k = 2 is to select s and
z themselves as the centers. This will lead to a covering radius of 0. A more
complex example illustrating the same problem can be obtained by having two
dense “clusters” of sites, one around s and one around z. Here our proposed
greedy algorithm would start by opening a center halfway between the clusters,
while the optimum solution would open a separate center for each cluster.

Knowing the Optimal Radius Helps In searching for an improved algorithm,
we begin with a useful thought experiment. Suppose for a minute that someone
told us what the optimum radius r is. Would this information help? That is,
suppose we know that there is a set of k centers C∗ with radius r(C∗)≤ r, and

608 Chapter 11 Approximation Algorithms

Center c* used in optimal solution

Site s covered by c*

Circle of twice the radius at s
covers everything that c* covered.

Figure 11.4 Everything covered at radius r by c∗ is also covered at radius 2r by s.

our job is to find some set of k centers C whose covering radius is not much
more than r. It turns out that finding a set of k centers with covering radius at
most 2r can be done relatively easily.

Here is the idea: We can use the existence of this solution C∗ in our
algorithm even though we do not know what C∗ is. Consider any site s ∈ S.
There must be a center c∗ ∈ C∗ that covers site s, and this center c∗ is at
distance at most r from s. Now our idea would be to take this site s as a
center in our solution instead of c∗, as we have no idea what c∗ is. We would
like to make s cover all the sites that c∗ covers in the unknown solution C∗.
This is accomplished by expanding the radius from r to 2r. All the sites that
were at distance at most r from center c∗ are at distance at most 2r from s
(by the triangle inequality). See Figure 11.4 for a simple illustration of this
argument.

S′ will represent the sites that still need to be covered
Initialize S′ = S

Let C = ∅
While S′ �= ∅
Select any site s ∈ S′ and add s to C

Delete all sites from S′ that are at distance at most 2r from s

EndWhile

If |C| ≤ k then

Return C as the selected set of sites

Else

11.2 The Center Selection Problem 609

Claim (correctly) that there is no set of k centers with

covering radius at most r

EndIf

Clearly, if this algorithm returns a set of at most k centers, then we have
what we wanted.

(11.6) Any set of centers C returned by the algorithm has covering radius
r(C)≤ 2r.

Next we argue that if the algorithm fails to return a set of centers, then its
conclusion that no set can have covering radius at most r is indeed correct.

(11.7) Suppose the algorithm selects more than k centers. Then, for any set
C∗ of size at most k, the covering radius is r(C∗) > r.

Proof. Assume the opposite, that there is a set C∗ of at most k centers with
covering radius r(C∗)≤ r. Each center c ∈ C selected by the greedy algorithm
is one of the original sites in S, and the set C∗ has covering radius at most r,
so there must be a center c∗ ∈ C∗ that is at most a distance of r from c—that
is, dist(c, c∗) ≤ r. Let us say that such a center c∗ is close to c. We want to
claim that no center c∗ in the optimal solution C∗ can be close to two different
centers in the greedy solution C. If we can do this, we are done: each center
c ∈ C has a close optimal center c∗ ∈ C∗, and each of these close optimal centers
is distinct. This will imply that |C∗| ≥ |C|, and since |C|> k, this will contradict
our assumption that C∗ contains at most k centers.

So we just need to show that no optimal center c∗ ∈ C can be close to each
of two centers c, c′ ∈ C. The reason for this is pictured in Figure 11.5. Each pair
of centers c, c′ ∈ C is separated by a distance of more than 2r, so if c∗ were
within a distance of at most r from each, then this would violate the triangle
inequality, since dist(c, c∗)+ dist(c∗, c′)≥ dist(c, c′) > 2r.

Eliminating the Assumption That We Know the Optimal Radius Now we
return to the original question: How do we select a good set of k centers without
knowing what the optimal covering radius might be?

It is worth discussing two different answers to this question. First, there are
many cases in the design of approximation algorithms where it is conceptually
useful to assume that you know the value achieved by an optimal solution.
In such situations, you can often start with an algorithm designed under this
assumption and convert it into one that achieves a comparable performance
guarantee by simply trying out a range of “guesses” as to what the optimal

610 Chapter 11 Approximation Algorithms

= Centers used by optimal solution

Figure 11.5 The crucial step in the analysis of the greedy algorithm that knows the
optimal radius r. No center used by the optimal solution can lie in two different circles,
so there must be at least as many optimal centers as there are centers chosen by the
greedy algorithm.

value might be. Over the course of the algorithm, this sequence of guesses gets
more and more accurate, until an approximate solution is reached.

For the Center Selection Problem, this could work as follows. We can start
with some very weak initial guesses about the radius of the optimal solution:
We know it is greater than 0, and it is at most the maximum distance rmax
between any two sites. So we could begin by splitting the difference between
these two and running the greedy algorithm we developed above with this
value of r = rmax/2. One of two things will happen, according to the design of
the algorithm: Either we find a set of k centers with covering radius at most
2r, or we conclude that there is no solution with covering radius at most r. In
the first case, we can afford to lower our guess on the radius of the optimal
solution; in the second case, we need to raise it. This gives us the ability to
perform a kind of binary search on the radius: in general, we will iteratively
maintain values r0 < r1 so that we know the optimal radius is greater than r0,
but we have a solution of radius at most 2r1. From these values, we can run
the above algorithm with radius r = (r0 + r1)/2; we will either conclude that
the optimal solution has radius greater than r > r0, or obtain a solution with
radius at most 2r = (r0 + r1) < 2r1. Either way, we will have sharpened our
estimates on one side or the other, just as binary search is supposed to do.
We can stop when we have estimates r0 and r1 that are close to each other;
at this point, our solution of radius 2r1 is close to being a 2-approximation to
the optimal radius, since we know the optimal radius is greater than r0 (and
hence close to r1).

11.2 The Center Selection Problem 611

A Greedy Algorithm That Works For the specific case of the Center Selection
Problem, there is a surprising way to get around the assumption of knowing the
radius, without resorting to the general technique described earlier. It turns out
we can run essentially the same greedy algorithm developed earlier without
knowing anything about the value of r.

The earlier greedy algorithm, armed with knowledge of r, repeatedly
selects one of the original sites s as the next center, making sure that it is
at least 2r away from all previously selected sites. To achieve essentially the
same effect without knowing r, we can simply select the site s that is farthest
away from all previously selected centers: If there is any site at least 2r away
from all previously chosen centers, then this farthest site s must be one of
them. Here is the resulting algorithm.

Assume k ≤ |S| (else define C = S)

Select any site s and let C = {s}
While |C|< k

Select a site s ∈ S that maximizes dist(s, C)

Add site s to C

EndWhile

Return C as the selected set of sites

(11.8) This greedy algorithm returns a set C of k points such that r(C) ≤
2r(C∗), where C∗ is an optimal set of k points.

Proof. Let r = r(C∗) denote the minimum possible radius of a set of k centers.
For the proof, we assume that we obtain a set of k centers C with r(C) > 2r,
and from this we derive a contradiction.

So let s be a site that is more than 2r away from every center in C. Consider
some intermediate iteration in the execution of the algorithm, where we have
thus far selected a set of centers C ′. Suppose we are adding the center c′ in this
iteration. We claim that c′ is at least 2r away from all sites in C ′. This follows as
site s is more than 2r away from all sites in the larger set C, and we select a site
c that is the farthest site from all previously selected centers. More formally,
we have the following chain of inequalities:

dist(c′, C ′)≥ dist(s, C ′)≥ dist(s, C) > 2r.

It follows that our greedy algorithm is a correct implementation of the
first k iterations of the while loop of the previous algorithm, which knew the
optimal radius r: In each iteration, we are adding a center at distance more
than 2r from all previously selected centers. But the previous algorithm would

612 Chapter 11 Approximation Algorithms

have S′ �= ∅ after selecting k centers, as it would have s ∈ S′, and so it would
go on and select more than k centers and eventually conclude that k centers
cannot have covering radius at most r. This contradicts our choice of r, and
the contradiction proves that r(C)≤ 2r.

Note the surprising fact that our final greedy 2-approximation algorithm
is a very simple modification of the first greedy algorithm that did not work.
Perhaps the most important change is simply that our algorithm always selects
sites as centers (i.e., every mall will be built in one of the little towns and not
halfway between two of them).

11.3 Set Cover: A General Greedy Heuristic
In this section we will consider a very general problem that we also encoun-
tered in Chapter 8, the Set Cover Problem. A number of important algorithmic
problems can be formulated as special cases of Set Cover, and hence an ap-
proximation algorithm for this problem will be widely applicable. We will see
that it is possible to design a greedy algorithm here that produces solutions
with a guaranteed approximation factor relative to the optimum, although this
factor will be weaker than what we saw for the problems in Sections 11.1 and
11.2.

While the greedy algorithm we design for Set Cover will be very simple,
the analysis will be more complex than what we encountered in the previous
two sections. There we were able to get by with very simple bounds on
the (unknown) optimum solution, while here the task of comparing to the
optimum is more difficult, and we will need to use more sophisticated bounds.
This aspect of the method can be viewed as our first example of the pricing
method, which we will explore more fully in the next two sections.

The Problem
Recall from our discussion of NP-completeness that the Set Cover Problem is
based on a set U of n elements and a list S1, . . . , Sm of subsets of U; we say
that a set cover is a collection of these sets whose union is equal to all of U.

In the version of the problem we consider here, each set Si has an
associated weight wi ≥ 0. The goal is to find a set cover C so that the total
weight ∑

Si∈C

wi

is minimized. Note that this problem is at least as hard as the decision version
of Set Cover we encountered earlier; if we set all wi = 1, then the minimum

11.3 Set Cover: A General Greedy Heuristic 613

weight of a set cover is at most k if and only if there is a collection of at most
k sets that covers U.

Designing the Algorithm
We will develop and analyze a greedy algorithm for this problem. The algo-
rithm will have the property that it builds the cover one set at a time; to choose
its next set, it looks for one that seems to make the most progress toward the
goal. What is a natural way to define “progress” in this setting? Desirable
sets have two properties: They have small weight wi, and they cover lots of
elements. Neither of these properties alone, however, would be enough for
designing a good approximation algorithm. Instead, it is natural to combine
these two criteria into the single measure wi/|Si|—that is, by selecting Si, we
cover |Si| elements at a cost of wi, and so this ratio gives the “cost per element
covered,” a very reasonable thing to use as a guide.

Of course, once some sets have already been selected, we are only con-
cerned with how we are doing on the elements still left uncovered. So we will
maintain the set R of remaining uncovered elements and choose the set Si that
minimizes wi/|Si ∩ R|.

Greedy-Set-Cover:

Start with R= U and no sets selected

While R �= ∅
Select set Si that minimizes wi/|Si ∩ R|
Delete set Si from R

EndWhile

Return the selected sets

As an example of the behavior of this algorithm, consider what it would do
on the instance in Figure 11.6. It would first choose the set containing the four
nodes at the bottom (since this has the best weight-to-coverage ratio, 1/4). It
then chooses the set containing the two nodes in the second row, and finally
it chooses the sets containing the two individual nodes at the top. It thereby
chooses a collection of sets of total weight 4. Because it myopically chooses
the best option each time, this algorithm misses the fact that there’s a way to
cover everything using a weight of just 2+ 2ε, by selecting the two sets that
each cover a full column.

Analyzing the Algorithm
The sets selected by the algorithm clearly form a set cover. The question we
want to address is: How much larger is the weight of this set cover than the
weight w∗ of an optimal set cover?

614 Chapter 11 Approximation Algorithms

Two sets can be used to
cover everything, but the
greedy algorithm doesn’t
find them.

1 1

1

1

1 + ε 1 + ε

Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either
1 or 1+ ε for some small ε > 0. The greedy algorithm chooses sets of total weight 4,
rather than the optimal solution of weight 2+ 2ε.

As in Sections 11.1 and 11.2, our analysis will require a good lower bound
on this optimum. In the case of the Load Balancing Problem, we used lower
bounds that emerged naturally from the statement of the problem: the average
load, and the maximum job size. The Set Cover Problem will turn out to be
more subtle; “simple” lower bounds are not very useful, and instead we will
use a lower bound that the greedy algorithm implicitly constructs as a by-
product.

Recall the intuitive meaning of the ratio wi/|Si ∩ R| used by the algorithm; it
is the “cost paid” for covering each new element. Let’s record this cost paid for

11.3 Set Cover: A General Greedy Heuristic 615

element s in the quantity cs. We add the following line to the code immediately
after selecting the set Si.

Define cs = wi/|Si ∩ R| for all s ∈ Si ∩ R

The values cs do not affect the behavior of the algorithm at all; we view
them as a bookkeeping device to help in our comparison with the optimum
w∗. As each set Si is selected, its weight is distributed over the costs cs of the
elements that are newly covered. Thus these costs completely account for the
total weight of the set cover, and so we have

(11.9) If C is the set cover obtained by Greedy-Set-Cover, then
∑

Si∈C wi =∑
s∈U cs.

The key to the analysis is to ask how much total cost any single set Sk
can account for—in other words, to give a bound on

∑
s∈Sk

cs relative to the
weight wk of the set, even for sets not selected by the greedy algorithm. Giving
an upper bound on the ratio ∑

s∈Sk
cs

wk

that holds for every set says, in effect, “To cover a lot of cost, you must use a lot
of weight.” We know that the optimum solution must cover the full cost

∑
s∈U cs

via the sets it selects; so this type of bound will establish that it needs to use
at least a certain amount of weight. This is a lower bound on the optimum,
just as we need for the analysis.

Our analysis will use the harmonic function

H(n)=
n∑

i=1

1
i
.

To understand its asymptotic size as a function of n, we can interpret it as a
sum approximating the area under the curve y = 1/x. Figure 11.7 shows how
it is naturally bounded above by 1+ ∫ n

1
1
x dx = 1+ ln n, and bounded below

by
∫ n+1

1
1
x dx= ln(n + 1). Thus we see that H(n)=�(ln n).

Here is the key to establishing a bound on the performance of the algo-
rithm.

(11.10) For every set Sk, the sum
∑

s∈Sk
cs is at most H(|Sk|) · wk.

Proof. To simplify the notation, we will assume that the elements of Sk are
the first d = |Sk| elements of the set U; that is, Sk = {s1, . . . , sd}. Furthermore,
let us assume that these elements are labeled in the order in which they are
assigned a cost csj

by the greedy algorithm (with ties broken arbitrarily). There

616 Chapter 11 Approximation Algorithms

1 2 3 4

1

1/2
1/3

y = 1/x

Figure 11.7 Upper and lower bounds for the Harmonic Function H(n).

is no loss of generality in doing this, since it simply involves a renaming of the
elements in U.

Now consider the iteration in which element sj is covered by the greedy
algorithm, for some j ≤ d. At the start of this iteration, sj , sj+1, . . . , sd ∈ R by
our labeling of the elements. This implies that |Sk ∩ R| is at least d − j + 1, and
so the average cost of the set Sk is at most

wk

|Sk ∩ R| ≤
wk

d − j + 1
.

Note that this is not necessarily an equality, since sj may be covered in the
same iteration as some of the other elements sj′ for j′ < j. In this iteration, the
greedy algorithm selected a set Si of minimum average cost; so this set Si has
average cost at most that of Sk. It is the average cost of Si that gets assigned
to sj, and so we have

csj
= wi

|Si ∩ R| ≤
wk

|Sk ∩ R| ≤
wk

d − j + 1
.

We now simply add up these inequalities for all elements s ∈ Sk:

∑
s∈Sk

cs =
d∑

j=1

csj
≤

d∑
j=1

wk

d − j + 1
= wk

d
+ wk

d − 1
+ . . .+ wk

1
= H(d) · wk.

We now complete our plan to use the bound in (11.10) for comparing the
greedy algorithm’s set cover to the optimal one. Letting d∗ =maxi |Si| denote
the maximum size of any set, we have the following approximation result.

(11.11) The set cover C selected by Greedy-Set-Cover has weight at most
H(d∗) times the optimal weight w∗.

11.3 Set Cover: A General Greedy Heuristic 617

Proof. Let C∗ denote the optimum set cover, so that w∗ =∑
Si∈C∗ wi. For each

of the sets in C∗, (11.10) implies

wi ≥ 1
H(d∗)

∑
s∈Si

cs.

Because these sets form a set cover, we have

∑
Si∈C∗

∑
s∈Si

cs ≥
∑
s∈U

cs.

Combining these with (11.9), we obtain the desired bound:

w∗ =
∑

Si∈C∗
wi ≥

∑
Si∈C∗

1
H(d∗)

∑
s∈Si

cs ≥ 1
H(d∗)

∑
s∈U

cs = 1
H(d∗)

∑
Si∈C

wi.

Asymptotically, then, the bound in (11.11) says that the greedy algorithm
finds a solution within a factor O(log d∗) of optimal. Since the maximum set
size d∗ can be a constant fraction of the total number of elements n, this is a
worst-case upper bound of O(log n). However, expressing the bound in terms
of d∗ shows us that we’re doing much better if the largest set is small.

It’s interesting to note that this bound is essentially the best one possible,
since there are instances where the greedy algorithm can do this badly. To
see how such instances arise, consider again the example in Figure 11.6. Now
suppose we generalize this so that the underlying set of elements U consists
of two tall columns with n/2 elements each. There are still two sets, each of
weight 1+ ε, for some small ε > 0, that cover the columns separately. We also
create �(log n) sets that generalize the structure of the other sets in the figure:
there is a set that covers the bottommost n/2 nodes, another that covers the
next n/4, another that covers the next n/8, and so forth. Each of these sets
will have weight 1.

Now the greedy algorithm will choose the sets of size n/2, n/4, n/8, . . . ,
in the process producing a solution of weight �(log n). Choosing the two
sets that cover the columns separately, on the other hand, yields the optimal
solution, with weight 2+ 2ε. Through more complicated constructions, one
can strengthen this to produce instances where the greedy algorithm incurs
a weight that is very close to H(n) times the optimal weight. And in fact, by
much more complicated means, it has been shown that no polynomial-time
approximation algorithm can achieve an approximation bound much better
than H(n) times optimal, unless P = NP.

618 Chapter 11 Approximation Algorithms

11.4 The Pricing Method: Vertex Cover
We now turn to our second general technique for designing approximation
algorithms, the pricing method. We will introduce this technique by consid-
ering a version of the Vertex Cover Problem. As we saw in Chapter 8, Vertex
Cover is in fact a special case of Set Cover, and so we will begin this section
by considering the extent to which one can use reductions in the design of
approximation algorithms. Following this, we will develop an algorithm with
a better approximation guarantee than the general bound that we obtained for
Set Cover in the previous section.

The Problem
Recall that a vertex cover in a graph G = (V , E) is a set S ⊆ V so that each
edge has at least one end in S. In the version of the problem we consider here,
each vertex i ∈ V has a weight wi ≥ 0, with the weight of a set S of vertices
denoted w(S)=∑

i∈S wi. We would like to find a vertex cover S for which w(S)

is minimum. When all weights are equal to 1, deciding if there is a vertex cover
of weight at most k is the standard decision version of Vertex Cover.

Approximations via Reductions? Before we work on developing an algo-
rithm, we pause to discuss an interesting issue that arises: Vertex Cover is
easily reducible to Set Cover, and we have just seen an approximation algo-
rithm for Set Cover. What does this imply about the approximability of Vertex
Cover? A discussion of this question brings out some of the subtle ways in
which approximation results interact with polynomial-time reductions.

First consider the special case in which all weights are equal to 1—that
is, we are looking for a vertex cover of minimum size. We will call this the
unweighted case. Recall that we showed Set Cover to be NP-complete using a
reduction from the decision version of unweighted Vertex Cover. That is,

Vertex Cover≤P Set Cover

This reduction says, “If we had a polynomial-time algorithm that solves the
Set Cover Problem, then we could use this algorithm to solve the Vertex Cover
Problem in polynomial time.” We now have a polynomial-time algorithm for
the Set Cover Problem that approximates the solution. Does this imply that we
can use it to formulate an approximation algorithm for Vertex Cover?

(11.12) One can use the Set Cover approximation algorithm to give an H(d)-
approximation algorithm for the weighted Vertex Cover Problem, where d is the
maximum degree of the graph.

Proof. The proof is based on the reduction that showed Vertex Cover ≤P Set
Cover, which also extends to the weighted case. Consider an instance of the
weighted Vertex Cover Problem, specified by a graph G = (V , E). We define an

11.4 The Pricing Method: Vertex Cover 619

instance of Set Cover as follows. The underlying set U is equal to E. For each
node i, we define a set Si consisting of all edges incident to node i and give
this set weight wi. Collections of sets that cover U now correspond precisely to
vertex covers. Note that the maximum size of any Si is precisely the maximum
degree d.

Hence we can use the approximation algorithm for Set Cover to find a
vertex cover whose weight is within a factor of H(d) of minimum.

This H(d)-approximation is quite good when d is small; but it gets worse
as d gets larger, approaching a bound that is logarithmic in the number of
vertices. In the following, we will develop a stronger approximation algorithm
that comes within a factor of 2 of optimal.

Before turning to the 2-approximation algorithm, we make the following
further observation: One has to be very careful when trying to use reductions
for designing approximation algorithms. It worked in (11.12), but we made
sure to go through an argument for why it worked; it is not the case that every
polynomial-time reduction leads to a comparable implication for approxima-
tion algorithms.

Here is a cautionary example. We used Independent Set to prove that the
Vertex Cover Problem is NP-complete. Specifically, we proved

Independent Set≤P Vertex Cover,

which states that “if we had a polynomial-time algorithm that solves the Vertex
Cover Problem, then we could use this algorithm to solve the Independent
Set Problem in polynomial time.” Can we use an approximation algorithm for
the minimum-size vertex cover to design a comparably good approximation
algorithm for the maximum-size independent set?

The answer is no. Recall that a set I of vertices is independent if and
only if its complement S = V − I is a vertex cover. Given a minimum-size
vertex cover S∗, we obtain a maximum-size independent set by taking the
complement I∗ = V − S. Now suppose we use an approximation algorithm for
the Vertex Cover Problem to get an approximately minimum vertex cover S.
The complement I = V − S is indeed an independent set—there’s no problem
there. The trouble is when we try to determine our approximation factor for
the Independent Set Problem; I can be very far from optimal. Suppose, for
example, that the optimal vertex cover S∗ and the optimal independent set I∗
both have size |V|/2. If we invoke a 2-approximation algorithm for the Vertex
Cover Problem, we may perfectly well get back the set S= V. But, in this case,
our “approximately maximum independent set” I = V − S has no elements.

620 Chapter 11 Approximation Algorithms

Designing the Algorithm: The Pricing Method
Even though (11.12) gave us an approximation algorithm with a provable
guarantee, we will be able to do better. Our approach forms a nice illustration
of the pricing method for designing approximation algorithms.

The Pricing Method to Minimize Cost The pricing method (also known as
the primal-dual method) is motivated by an economic perspective. For the
case of the Vertex Cover Problem, we will think of the weights on the nodes
as costs, and we will think of each edge as having to pay for its “share” of
the cost of the vertex cover we find. We have actually just seen an analysis of
this sort, in the greedy algorithm for Set Cover from Section 11.3; it too can be
thought of as a pricing algorithm. The greedy algorithm for Set Cover defined
values cs, the cost the algorithm paid for covering element s. We can think of
cs as the element s’s “share” of the cost. Statement (11.9) shows that it is very
natural to think of the values cs as cost-shares, as the sum of the cost-shares∑

s∈U cs is the cost of the set cover C returned by the algorithm,
∑

Si∈C wi. The
key to proving that the algorithm is an H(d∗)-approximation algorithm was a
certain approximate “fairness” property for the cost-shares: (11.10) shows that
the elements in a set Sk are charged by at most an H(|Sk|) factor more than
the cost of covering them by the set Sk.

In this section, we’ll develop the pricing technique through another ap-
plication, Vertex Cover. Again, we will think of the weight wi of the vertex i
as the cost for using i in the cover. We will think of each edge e as a separate
“agent” who is willing to “pay” something to the node that covers it. The al-
gorithm will not only find a vertex cover S, but also determine prices pe ≥ 0
for each edge e ∈ E, so that if each edge e ∈ E pays the price pe, this will in
total approximately cover the cost of S. These prices pe are the analogues of
cs from the Set Cover Algorithm.

Thinking of the edges as agents suggests some natural fairness rules for
prices, analogous to the property proved by (11.10). First of all, selecting a
vertex i covers all edges incident to i, so it would be “unfair” to charge these
incident edges in total more than the cost of vertex i. We call prices pe fair if,
for each vertex i, the edges adjacent to i do not have to pay more than the
cost of the vertex:

∑
e=(i, j) pe ≤ wi. Note that the property proved by (11.10)

for Set Cover is an approximate fairness condition, while in the Vertex Cover
algorithm we’ll actually use the exact fairness defined here. A useful fact about
fair prices is that they provide a lower bound on the cost of any solution.

(11.13) For any vertex cover S∗, and any nonnegative and fair prices pe, we
have

∑
e∈E pe ≤ w(S∗).

11.4 The Pricing Method: Vertex Cover 621

Proof. Consider a vertex cover S∗. By the definition of fairness, we have∑
e=(i, j) pe ≤ wi for all nodes i ∈ S∗. Adding these inequalities over all nodes

in S∗, we get ∑
i∈S∗

∑
e=(i, j)

pe ≤
∑
i∈S∗

wi = w(S∗).

Now the expression on the left-hand side is a sum of terms, each of which
is some edge price pe. Since S∗ is a vertex cover, each edge e contributes at
least one term pe to the left-hand side. It may contribute more than one copy
of pe to this sum, since it may be covered from both ends by S∗; but the prices
are nonnegative, and so the sum on the left-hand side is at least as large as
the sum of all prices pe. That is,∑

e∈E

pe ≤
∑
i∈S∗

∑
e=(i, j)

pe.

Combining this with the previous inequality, we get∑
e∈E

pe ≤ w(S∗),

as desired.

The Algorithm The goal of the approximation algorithm will be to find a
vertex cover and to set prices at the same time. We can think of the algorithm
as being greedy in how it sets the prices. It then uses these prices to drive the
way it selects nodes for the vertex cover.

We say that a node i is tight (or “paid for”) if
∑

e=(i, j) pe = wi.

Vertex-Cover-Approx(G, w):

Set pe = 0 for all e ∈ E

While there is an edge e = (i, j) such that neither i nor j is tight

Select such an edge e

Increase pe without violating fairness

EndWhile

Let S be the set of all tight nodes

Return S

For example, consider the execution of this algorithm on the instance in
Figure 11.8. Initially, no node is tight; the algorithm decides to select the edge
(a, b). It can raise the price paid by (a, b) up to 3, at which point the node b
becomes tight and it stops. The algorithm then selects the edge (a, d). It can
only raise this price up to 1, since at this point the node a becomes tight (due
to the fact that the weight of a is 4, and it is already incident to an edge that is

622 Chapter 11 Approximation Algorithms

4

a

5 33

00

00

0 0
03

00

4

5 33

4

5 33

a

a: tight a: tight

b: tight

b: tightb: tight

c dc db

c d c d: tight

4

5 33

(a) (b)

(c) (d)

0
13

20

0
13

00

Figure 11.8 Parts (a)–(d) depict the steps in an execution of the pricing algorithm on an
instance of the weighted Vertex Cover Problem. The numbers inside the nodes indicate
their weights; the numbers annotating the edges indicate the prices they pay as the
algorithm proceeds.

paying 3). Finally, the algorithm selects the edge (c, d). It can raise the price
paid by (c, d) up to 2, at which point d becomes tight. We now have a situation
where all edges have at least one tight end, so the algorithm terminates. The
tight nodes are a, b, and d; so this is the resulting vertex cover. (Note that this
is not the minimum-weight vertex cover; that would be obtained by selecting
a and c.)

Analyzing the Algorithm
At first sight, one may have the sense that the vertex cover S is fully paid for
by the prices: all nodes in S are tight, and hence the edges adjacent to the
node i in S can pay for the cost of i. But the point is that an edge e can be
adjacent to more than one node in the vertex cover (i.e., if both ends of e are
in the vertex cover), and hence e may have to pay for more than one node.
This is the case, for example, with the edges (a, b) and (a, d) at the end of the
execution in Figure 11.8.

However, notice that if we take edges for which both ends happened to
show up in the vertex cover, and we charge them their price twice, then we’re
exactly paying for the vertex cover. (In the example, the cost of the vertex

11.4 The Pricing Method: Vertex Cover 623

cover is the cost of nodes a, b, and d, which is 10. We can account for this cost
exactly by charging (a, b) and (a, d) twice, and (c, d) once.) Now, it’s true that
this is unfair to some edges, but the amount of unfairness can be bounded:
Each edge gets charged its price at most two times (once for each end).

We now make this argument precise, as follows.

(11.14) The set S and prices p returned by the algorithm satisfy the inequality
w(S)≤ 2

∑
e∈E pe.

Proof. All nodes in S are tight, so we have
∑

e=(i, j) pe =wi for all i ∈ S. Adding
over all nodes in S we get

w(S)=
∑
i∈S

wi =
∑
i∈S

∑
e=(i, j)

pe.

An edge e = (i, j) can be included in the sum on the right-hand side at most
twice (if both i and j are in S), and so we get

w(S)=
∑
i∈S

∑
e=(i, j)

pe ≤ 2
∑
e∈E

pe ,

as claimed.

Finally, this factor of 2 carries into an argument that yields the approxi-
mation guarantee.

(11.15) The set S returned by the algorithm is a vertex cover, and its cost is
at most twice the minimum cost of any vertex cover.

Proof. First note that S is indeed a vertex cover. Suppose, by contradiction,
that S does not cover edge e = (i, j). This implies that neither i nor j is tight,
and this contradicts the fact that the While loop of the algorithm terminated.

To get the claimed approximation bound, we simply put together statement
(11.14) with (11.13). Let p be the prices set by the algorithm, and let S∗ be an
optimal vertex cover. By (11.14) we have 2

∑
e∈E pe ≥w(S), and by (11.13) we

have
∑

e∈E pe ≤ w(S∗).
In other words, the sum of the edge prices is a lower bound on the weight

of any vertex cover, and twice the sum of the edge prices is an upper bound
on the weight of our vertex cover:

w(S)≤ 2
∑
e∈E

pe ≤ 2w(S∗).

624 Chapter 11 Approximation Algorithms

11.5 Maximization via the Pricing Method:
The Disjoint Paths Problem

We now continue the theme of pricing algorithms with a fundamental problem
that arises in network routing: the Disjoint Paths Problem. We’ll start out by
developing a greedy algorithm for this problem and then show an improved
algorithm based on pricing.

The Problem
To set up the problem, it helps to recall one of the first applications we saw
for the Maximum-Flow Problem: finding disjoint paths in graphs, which we
discussed in Chapter 7. There we were looking for edge-disjoint paths all
starting at a node s and ending at a node t. How crucial is it to the tractability
of this problem that all paths have to start and end at the same node? Using the
technique from Section 7.7, one can extend this to find disjoint paths where
we are given a set of start nodes S and a set of terminals T, and the goal is
to find edge-disjoint paths where paths may start at any node in S and end at
any node in T.

Here, however, we will look at a case where each path to be routed has
its own designated starting node and ending node. Specifically, we consider
the following Maximum Disjoint Paths Problem. We are given a directed graph
G, together with k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk) and an integer
capacity c. We think of each pair (si, ti) as a routing request, which asks for a
path from si to ti. A solution to this instance consists of a subset of the requests
we will satisfy, I ⊆ {1, . . . , k}, together with paths that satisfy them while not
overloading any one edge: a path Pi for i ∈ I so that Pi goes from si to ti, and
each edge is used by at most c paths. The problem is to find a solution with |I|
as large as possible—that is, to satisfy as many requests as possible. Note that
the capacity c controls how much “sharing” of edges we allow; when c = 1,
we are requiring the paths to be fully edge-disjoint, while larger c allows some
overlap among the paths.

We have seen in Exercise 39 in Chapter 8 that it is NP-complete to
determine whether all k routing requests can be satisfied when the paths are
required to be node-disjoint. It is not hard to show that the edge-disjoint version
of the problem (corresponding to the case with c = 1) is also NP-complete.

Thus it turns out to have been crucial for the application of efficient
network flow algorithms that the endpoints of the paths not be explicitly paired
up as they are in Maximum Disjoint Paths. To develop this point a little further,
suppose we attempted to reduce Maximum Disjoint Paths to a network flow
problem by defining the set of sources to be S = {s1, s2, . . . , sk}, defining the

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 625

set of sinks to be T = {t1, t2, . . . , tk}, setting each edge capacity to be c, and
looking for the maximum possible number of disjoint paths starting in S and
ending in T. Why wouldn’t this work? The problem is that there’s no way
to tell the flow algorithm that a path starting at si ∈ S must end at ti ∈ T; the
algorithm guarantees only that this path will end at some node in T. As a
result, the paths that come out of the flow algorithm may well not constitute a
solution to the instance of Maximum Disjoint Paths, since they might not link
a source si to its corresponding endpoint ti.

Disjoint paths problems, where we need to find paths connecting desig-
nated pairs of terminal nodes, are very common in networking applications.
Just think about paths on the Internet that carry streaming media or Web data,
or paths through the phone network carrying voice traffic.1 Paths sharing edges
can interfere with each other, and too many paths sharing a single edge will
cause problems in most applications. The maximum allowable amount of shar-
ing will differ from application to application. Requiring the paths to be disjoint
is the strongest constraint, eliminating all interference between paths. We’ll
see, however, that in cases where some sharing is allowed (even just two paths
to an edge), better approximation algorithms are possible.

Designing and Analyzing a Greedy Algorithm
We first consider a very simple algorithm for the case when the capacity c = 1:
that is, when the paths need to be edge-disjoint. The algorithm is essentially
greedy, except that it exhibits a preference for short paths. We will show that
this simple algorithm is an O(

√
m)-approximation algorithm, where m = |E|

is the number of edges in G. This may sound like a rather large factor of
approximation, and it is, but there is a strong sense in which it is essentially the
best we can do. The Maximum Disjoint Paths Problem is not only NP-complete,
but it is also hard to approximate: It has been shown that unless P =NP, it
is impossible for any polynomial-time algorithm to achieve an approximation
bound significantly better than O(

√
m) in arbitrary directed graphs.

After developing the greedy algorithm, we will consider a slightly more
sophisticated pricing algorithm for the capacitated version. It is interesting

1 A researcher from the telecommunications industry once gave the following explanation for the

distinction between Maximum Disjoint Paths and network flow, and the broken reduction in the

previous paragraph. On Mother’s Day, traditionally the busiest day of the year for telephone calls,

the phone company must solve an enormous disjoint paths problem: ensuring that each source

individual si is connected by a path through the voice network to his or her mother ti. Network flow

algorithms, finding disjoint paths between a set S and a set T, on the other hand, will ensure only

that each person gets their call through to somebody’s mother.

626 Chapter 11 Approximation Algorithms

The long path from
s1 to t1 blocks
everything else.

s1 t1

s2 s3 s4 s5 s6

t2 t3 t4 t5 t6

Figure 11.9 A case in which it’s crucial that a greedy algorithm for selecting disjoint
paths favors short paths over long ones.

to note that the pricing algorithm does much better than the simple greedy
algorithm, even when the capacity c is only slightly more than 1.

Greedy-Disjoint-Paths:

Set I = ∅
Until no new path can be found

Let Pi be the shortest path (if one exists) that is edge-disjoint

from previously selected paths, and connects some (si , ti) pair

that is not yet connected

Add i to I and select path Pi to connect si to ti
EndUntil

Analyzing the Algorithm The algorithm clearly selects edge-disjoint paths.
Assuming the graph G is connected, it must select at least one path. But how
does the number of paths selected compare with the maximum possible? A
kind of situation we need to worry about is shown in Figure 11.9: One of the
paths, from s1 to t1, is very long, so if we select it first, we eliminate up to
�(m) other paths.

We now show that the greedy algorithm’s preference for short paths not
only avoids the problem in this example, but in general it limits the number
of other paths that a selected path can interfere with.

(11.16) The algorithm Greedy-Disjoint-Paths is a (2
√

m + 1)-approx-
imation algorithm for the Maximum Disjoint Paths Problem.

Proof. Consider an optimal solution: Let I∗ be the set of pairs for which a path
was selected in this optimum solution, and let P∗i for i ∈ I∗ be the selected paths.
Let I denote the set of pairs returned by the algorithm, and let Pi for i ∈ I be
the corresponding paths. We need to bound |I∗| in terms of |I|. The key to the
analysis is to make a distinction between short and long paths and to consider

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 627

them separately. We will call a path long if it has at least
√

m edges, and we
will call it short otherwise. Let I∗s denote the set of indices in I∗ so that the
corresponding path P∗i is short, and let Is denote the set of indices in I so that
the corresponding path Pi is short.

The graph G has m edges, and each long path uses at least
√

m edges, so
there can be at most

√
m long paths in I∗.

Now consider the short paths in I∗. In order for I∗ to be much larger than
I, there would have to be many pairs that are connected in I∗ but not in I. Thus
let us consider pairs that are connected by the optimum using a short path,
but are not connected by the greedy algorithm. Since the path P∗i connecting
si and ti in the optimal solution I∗ is short, the greedy algorithm would have
selected this path, if it had been available, before selecting any long paths.
But the greedy algorithm did not connect si and ti at all, and hence one of the
edges e along the path P∗i must occur in a path Pj that was selected earlier by
the greedy algorithm. We will say that edge e blocks the path P∗i .

Now the lengths of the paths selected by the greedy algorithm are mono-
tone increasing, since each iteration has fewer options for choosing paths.
The path Pj was selected before considering P∗i and hence it must be shorter:
|Pj| ≤ |P∗i | ≤

√
m. So path Pj is short. Since the paths used by the optimum are

edge-disjoint, each edge in a path Pj can block at most one path P∗i . It follows
that each short path Pj blocks at most

√
m paths in the optimal solution, and

so we get the bound

|I∗s −I| ≤
∑
j∈Is

|Pj| ≤ |Is|
√

m.

We use this to produce a bound on the overall size of the optimal solution.
To do this, we view I∗ as consisting of three kinds of paths, following the
analysis thus far:

. long paths, of which there are at most
√

m;

. paths that are also in I; and

. short paths that are not in I, which we have just bounded by |Is|
√

m.

Putting this all together, and using the fact that |I| ≥ 1 whenever at least one
set of terminal pairs can be connected, we get the claimed bound:

|I∗| ≤ √m + |I| + |I∗s −I| ≤ √m + |I| + √m|Is| ≤ (2
√

m + 1)|I|.

This provides an approximation algorithm for the case when the selected
paths have to be disjoint. As we mentioned earlier, the approximation bound
of O(

√
m) is rather weak, but unless P =NP, it is essentially the best possible

for the case of disjoint paths in arbitrary directed graphs.

628 Chapter 11 Approximation Algorithms

Designing and Analyzing a Pricing Algorithm
Not letting any two paths use the same edge is quite extreme; in most
applications one can allow a few paths to share an edge. We will now develop
an analogous algorithm, based on the pricing method, for the case where c > 1
paths may share any edge. In the disjoint case just considered, we viewed all
edges as equal and preferred short paths. We can think of this as a simple kind
of pricing algorithm: the paths have to pay for using up the edges, and each
edge has a unit cost. Here we will consider a pricing scheme in which edges
are viewed as more expensive if they have been used already, and hence have
less capacity left over. This will encourage the algorithm to “spread out” its
paths, rather than piling them up on any single edge. We will refer to the cost
of an edge e as its length �e, and define the length of a path to be the sum of the
lengths of the edges it contains: �(P)=∑

e∈P �e. We will use a multiplicative
parameter β to increase the length of an edge each time an additional path
uses it.

Greedy-Paths-with-Capacity:

Set I = ∅
Set edge length �e = 1 for all e ∈ E

Until no new path can be found

Let Pi be the shortest path (if one exists) so that adding Pi to

the selected set of paths does not use any edge more than c

times, and Pi connects some (si , ti) pair not yet connected

Add i to I and select path Pi to connect si to ti
Multiply the length of all edges along Pi by β

EndUntil

Analyzing the Algorithm For the analysis we will focus on the simplest
case, when at most two paths may use the same edge—that is, when c = 2.
We’ll see that, for this case, setting β =m1/3 will give the best approximation
result for this algorithm. Unlike the disjoint paths case (when c = 1), it is
not known whether the approximation bounds we obtain here for c > 1 are
close to the best possible for polynomial-time algorithms in general, assuming
P �=NP.

The key to the analysis in the disjoint case was to distinguish “short” and
“long” paths. For the case when c = 2, we will consider a path Pi selected by
the algorithm to be short if the length is less than β2. Let Is denote the set of
short paths selected by the algorithm.

Next we want to compare the number of paths selected with the maximum
possible. Let I∗ be an optimal solution and P∗i be the set of paths used in this
solution. As before, the key to the analysis is to consider the edges that block

11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 629

the selection of paths in I∗. Long paths can block a lot of other paths, so for now
we will focus on the short paths in Is. As we try to continue following what we
did in the disjoint case, we immediately run into a difficulty, however. In that
case, the length of a path in I∗was simply the number of edges it contained; but
here, the lengths are changing as the algorithm runs, and so it is not clear how
to define the length of a path in I∗ for purposes of the analysis. In other words,
for the analysis, when should we measure this length? (At the beginning of
the execution? At the end?)

It turns out that the crucial moment in the algorithm, for purposes of our
analysis, is the first point at which there are no short paths left to choose. Let
�̄ be the length function at this point in the execution of the algorithm; we’ll
use �̄ to measure the length of paths in I∗. For a path P, we use �̄(P) to denote
its length,

∑
e∈P �̄e. We consider a path P∗i in the optimal solution I∗ short if

�̄(P∗i) < β2, and long otherwise. Let I∗s denote the set of short paths in I∗. The
first step is to show that there are no short paths connecting pairs that are not
connected by the approximation algorithm.

(11.17) Consider a source-sink pair i ∈ I∗ that is not connected by the approx-
imation algorithm; that is, i �∈ I. Then �̄(P∗i)≥ β2.

Proof. As long as short paths are being selected, we do not have to worry
about explicitly enforcing the requirement that each edge be used by at most
c = 2 paths: any edge e considered for selection by a third path would already
have length �e = β2, and hence be long.

Consider the state of the algorithm with length �̄. By the argument in the
previous paragraph, we can imagine the algorithm having run up to this point
without caring about the limit of c; it just selected a short path whenever it
could find one. Since the endpoints si, ti of P∗i are not connected by the greedy
algorithm, and since there are no short paths left when the length function
reaches �̄, it must be the case that path P∗i has length at least β2 as measured
by �̄.

The analysis in the disjoint case used the fact that there are only m edges
to limit the number of long paths. Here we consider length �̄, rather than the
number of edges, as the quantity that is being consumed by paths. Hence,
to be able to reason about this, we will need a bound on the total length in
the graph

∑
e �̄e. The sum of the lengths over all edges

∑
e �e starts out at m

(length 1 for each edge). Adding a short path to the solution Is can increase
the length by at most β3, as the selected path has length at most β2, and the
lengths of the edges are increased by a β factor along the path. This gives us
a useful comparison between the number of short paths selected and the total
length.

630 Chapter 11 Approximation Algorithms

(11.18) The set Is of short paths selected by the approximation algorithm,
and the lengths �̄, satisfy the relation

∑
e �̄e ≤ β3|Is| +m.

Finally, we prove an approximation bound for this algorithm. We will find
that even though we have simply increased the number of paths allowed on
each edge from 1 to 2, the approximation guarantee drops by a significant
amount that essentially incorporates this change into the exponent: from
O(m1/2) down to O(m1/3).

(11.19) The algorithm Greedy-Paths-with-Capacity, using β =m1/3, is
a (4m1/3+ 1)-approximation algorithm in the case when the capacity c = 2.

Proof. We first bound |I∗−I|. By (11.17), we have �̄(P∗i)≥ β2 for all i ∈ I∗−I.
Summing over all paths in I∗−I, we get∑

i∈I∗−I

�̄(P∗i)≥ β2|I∗−I|.

On the other hand, each edge is used by at most two paths in the solution I∗,
so we have ∑

i∈I∗−I

�̄(P∗i)≤
∑
e∈E

2�̄e.

Combining these bounds with (11.18) we get

β2|I∗| ≤ β2|I∗−I| + β2|I| ≤
∑

i∈I∗−I

�̄(P∗i)+ β2|I|

≤
∑
e∈E

2�̄e + β2|I| ≤ 2(β3|I| +m)+ β2|I|.

Finally, dividing through by β2, using |I| ≥ 1 and setting β =m1/3, we get that
|I∗| ≤ (4m1/3+ 1)|I|.

The same algorithm also works for the capacitated Disjoint Path Problem
with any capacity c > 0. If we choose β =m1/(c+1), then the algorithm is a
(2cm1/(c+1) + 1)-approximation algorithm. To extend the analysis, one has to
consider paths to be short if their length is at most βc.

(11.20) The algorithm Greedy-Paths-with-Capacity, using β =m1/c+1,
is a (2cm1/(c+1)+ 1)-approximation algorithm when the the edge capacities are c.

11.6 Linear Programming and Rounding:
An Application to Vertex Cover

We will start by introducing a powerful technique from operations research:
linear programming. Linear programming is the subject of entire courses, and

11.6 Linear Programming and Rounding: An Application to Vertex Cover 631

we will not attempt to provide any kind of comprehensive overview of it
here. In this section, we will introduce some of the basic ideas underlying
linear programming and show how these can be used to approximate NP-hard
optimization problems.

Recall that in Section 11.4 we developed a 2-approximation algorithm
for the weighted Vertex Cover Problem. As a first application for the linear
programming technique, we’ll give here a different 2-approximation algorithm
that is conceptually much simpler (though slower in running time).

Linear Programming as a General Technique
Our 2-approximation algorithm for the weighted version of Vertex Cover will
be based on linear programming. We describe linear programming here not
just to give the approximation algorithm, but also to illustrate its power as a
very general technique.

So what is linear programming? To answer this, it helps to first recall, from
linear algebra, the problem of simultaneous linear equations. Using matrix-
vector notation, we have a vector x of unknown real numbers, a given matrix
A, and a given vector b; and we want to solve the equation Ax= b. Gaussian
elimination is a well-known efficient algorithm for this problem.

The basic Linear Programming Problem can be viewed as a more complex
version of this, with inequalities in place of equations. Specifically, consider
the problem of determining a vector x that satisfies Ax ≥ b. By this notation,
we mean that each coordinate of the vector Ax should be greater than or equal
to the corresponding coordinate of the vector b. Such systems of inequalities
define regions in space. For example, suppose x= (x1, x2) is a two-dimensional
vector, and we have the four inequalities

x1≥ 0, x2≥ 0

x1+ 2x2≥ 6

2x1+ x2≥ 6

Then the set of solutions is the region in the plane shown in Figure 11.10.

Given a region defined by Ax ≥ b, linear programming seeks to minimize
a linear combination of the coordinates of x, over all x belonging to the region.
Such a linear combination can be written ctx, where c is a vector of coefficients,
and ctx denotes the inner product of two vectors. Thus our standard form for
Linear Programming, as an optimization problem, will be the following.

Given an m × n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector
x ∈ Rn to solve the following optimization problem:

min(ctx such that x ≥ 0; Ax ≥ b).

632 Chapter 11 Approximation Algorithms

6

5

4

3

2

1

1 2 3 4 5 6

x1 ≥ 0, x2 ≥ 0
x1+ 2x2 ≥ 6
2x1+ x2 ≥ 6

The region satisfying the inequalities

Figure 11.10 The feasible region of a simple linear program.

ctx is often called the objective function of the linear program, and Ax ≥ b is
called the set of constraints. For example, suppose we define the vector c to
be (1.5, 1) in the example in Figure 11.10; in other words, we are seeking to
minimize the quantity 1.5x1+ x2 over the region defined by the inequalities.
The solution to this would be to choose the point x = (2, 2), where the two
slanting lines cross; this yields a value of ctx= 5, and one can check that there
is no way to get a smaller value.

We can phrase Linear Programming as a decision problem in the following
way.

Given a matrix A, vectors b and c, and a bound γ , does there exist x so
that x ≥ 0, Ax ≥ b, and ctx ≤ γ ?

To avoid issues related to how we represent real numbers, we will assume that
the coordinates of the vectors and matrices involved are integers.

The Computational Complexity of Linear Programming The decision ver-
sion of Linear Programming is in NP. This is intuitively very believable—we
just have to exhibit a vector x satisfying the desired properties. The one con-
cern is that even if all the input numbers are integers, such a vector x may
not have integer coordinates, and it may in fact require very large precision
to specify: How do we know that we’ll be able to read and manipulate it in
polynomial time? But, in fact, one can show that if there is a solution, then
there is one that is rational and needs only a polynomial number of bits to
write down; so this is not a problem.

11.6 Linear Programming and Rounding: An Application to Vertex Cover 633

Linear Programming was also known to be in co-NP for a long time, though
this is not as easy to see. Students who have taken a linear programming course
may notice that this fact follows from linear programming duality.2

For a long time, indeed, Linear Programming was the most famous ex-
ample of a problem in both NP and co-NP that was not known to have a
polynomial-time solution. Then, in 1981, Leonid Khachiyan, who at the time
was a young researcher in the Soviet Union, gave a polynomial-time algorithm
for the problem. After some initial concern in the U.S. popular press that this
discovery might turn out to be a Sputnik-like event in the Cold War (it didn’t),
researchers settled down to understand exactly what Khachiyan had done. His
initial algorithm, while polynomial-time, was in fact quite slow and imprac-
tical; but since then practical polynomial-time algorithms—so-called interior
point methods—have also been developed following the work of Narendra
Karmarkar in 1984.

Linear programming is an interesting example for another reason as well.
The most widely used algorithm for this problem is the simplex method. It
works very well in practice and is competitive with polynomial-time interior
methods on real-world problems. Yet its worst-case running time is known
to be exponential; it is simply that this exponential behavior shows up in
practice only very rarely. For all these reasons, linear programming has been a
very useful and important example for thinking about the limits of polynomial
time as a formal definition of efficiency.

For our purposes here, though, the point is that linear programming
problems can be solved in polynomial time, and very efficient algorithms
exist in practice. You can learn a lot more about all this in courses on linear
programming. The question we ask here is this: How can linear programming
help us when we want to solve combinatorial problems such as Vertex Cover?

Vertex Cover as an Integer Program
Recall that a vertex cover in a graph G = (V , E) is a set S ⊆ V so that each
edge has at least one end in S. In the weighted Vertex Cover Problem, each
vertex i ∈ V has a weight wi ≥ 0, with the weight of a set S of vertices denoted
w(S) =∑

i∈S wi. We would like to find a vertex cover S for which w(S) is
minimum.

2 Those of you who are familiar with duality may also notice that the pricing method of the previous

sections is motivated by linear programming duality: the prices are exactly the variables in the

dual linear program (which explains why pricing algorithms are often referred to as primal-dual

algorithms).

634 Chapter 11 Approximation Algorithms

We now try to formulate a linear program that is in close correspondence
with the Vertex Cover Problem. Thus we consider a graph G = (V , E) with
a weight wi ≥ 0 on each node i. Linear programming is based on the use of
vectors of variables. In our case, we will have a decision variable xi for each
node i ∈ V to model the choice of whether to include node i in the vertex cover;
xi = 0 will indicate that node i is not in the vertex cover, and xi = 1will indicate
that node i is in the vertex cover. We can create a single n-dimensional vector
x in which the ith coordinate corresponds to the ith decision variable xi.

We use linear inequalities to encode the requirement that the selected
nodes form a vertex cover; we use the objective function to encode the goal
of minimizing the total weight. For each edge (i, j) ∈ E, it must have one end
in the vertex cover, and we write this as the inequality xi + xj ≥ 1. Finally,
to express the minimization problem, we write the set of node weights as
an n-dimensional vector w, with the ith coordinate corresponding to wi; we
then seek to minimize wtx. In summary, we have formulated the Vertex Cover
Problem as follows.

(VC.IP) Min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ {0, 1} i ∈ V .

We claim that the vertex covers of G are in one-to-one correspondence with
the solutions x to this system of linear inequalities in which all coordinates
are equal to 0 or 1.

(11.21) S is a vertex cover in G if and only if the vector x, defined as xi = 1
for i ∈ S, and xi = 0 for i �∈ S, satisfies the constraints in (VC.IP). Further, we
have w(S)= wtx.

We can put this system into the matrix form we used for linear program-
ming, as follows. We define a matrix A whose columns correspond to the nodes
in V and whose rows correspond to the edges in E; entry A[e, i]= 1 if node i
is an end of the edge e, and 0 otherwise. (Note that each row has exactly two
nonzero entries.) If we use �1 to denote the vector with all coordinates equal to
1, and �0 to denote the vector with all coordinates equal to 0, then the system
of inequalities above can be written as

Ax ≥ �1
�1≥ x ≥ �0.

11.6 Linear Programming and Rounding: An Application to Vertex Cover 635

But keep in mind that this is not just an instance of the Linear Programming
Problem: We have crucially required that all coordinates in the solution be
either 0 or 1. So our formulation suggests that we should solve the problem

min(wtx subject to �1≥ x ≥ �0, Ax ≥ �1, x has integer coordinates).

This is an instance of the Linear Programming Problem in which we require
the coordinates of x to take integer values; without this extra constraint,
the coordinates of x could be arbitrary real numbers. We call this problem
Integer Programming, as we are looking for integer-valued solutions to a linear
program.

Integer Programming is considerably harder than Linear Programming;
indeed, our discussion really constitutes a reduction from Vertex Cover to the
decision version of Integer Programming. In other words, we have proved

(11.22) Vertex Cover ≤P Integer Programming.

To show the NP-completeness of Integer Programming, we would still
have to establish that the decision version is in NP. There is a complication
here, as with Linear Programming, since we need to establish that there is
always a solution x that can be written using a polynomial number of bits. But
this can indeed be proven. Of course, for our purposes, the integer program
we are dealing with is explicitly constrained to have solutions in which each
coordinate is either 0 or 1. Thus it is clearly in NP, and our reduction from
Vertex Cover establishes that even this special case is NP-complete.

Using Linear Programming for Vertex Cover
We have yet to resolve whether our foray into linear and integer programming
will turn out to be useful or simply a dead end. Trying to solve the integer
programming problem (VC.IP) optimally is clearly not the right way to go, as
this is NP-hard.

The way to make progress is to exploit the fact that Linear Programming is
not as hard as Integer Programming. Suppose we take (VC.IP) and modify it,
dropping the requirement that each xi ∈ {0, 1} and reverting to the constraint
that each xi is an arbitrary real number between 0 and 1. This gives us an
instance of the Linear Programming Problem that we could call (VC.LP), and
we can solve it in polynomial time: We can find a set of values {x∗i } between 0
and 1 so that x∗i + x∗j ≥ 1 for each edge (i, j), and

∑
i wix

∗
i is minimized. Let x∗

denote this vector, and wLP =wtx∗ denote the value of the objective function.

We note the following basic fact.

636 Chapter 11 Approximation Algorithms

(11.23) Let S∗ denote a vertex cover of minimum weight. Then wLP ≤w(S∗).

Proof. Vertex covers of G correspond to integer solutions of (VC.IP), so the
minimum of min(wtx : �1≥ x ≥ 0, Ax ≥ 1) over all integer x vectors is exactly
the minimum-weight vertex cover. To get the minimum of the linear program
(VC.LP), we allow x to take arbitrary real-number values—that is, we minimize
over many more choices of x—and so the minimum of (VC.LP) is no larger
than that of (VC.IP).

Note that (11.23) is one of the crucial ingredients we need for an approx-
imation algorithm: a good lower bound on the optimum, in the form of the
efficiently computable quantity wLP.

However, wLP can definitely be smaller than w(S∗). For example, if the
graph G is a triangle and all weights are 1, then the minimum vertex cover has
a weight of 2. But, in a linear programming solution, we can set xi = 1

2 for all
three vertices, and so get a linear programming solution of weight only 3

2. As
a more general example, consider a graph on n nodes in which each pair of
nodes is connected by an edge. Again, all weights are 1. Then the minimum
vertex cover has weight n− 1, but we can find a linear programming solution
of value n/2 by setting xi = 1

2 for all vertices i.

So the question is: How can solving this linear program help us actually
find a near-optimal vertex cover? The idea is to work with the values x∗i and
to infer a vertex cover S from them. It is natural that if x∗i = 1 for some node i,
then we should put it in the vertex cover S; and if x∗i = 0, then we should leave
it out of S. But what should we do with fractional values in between? What
should we do if x∗i = .4 or x∗i = .5? The natural approach here is to round.
Given a fractional solution {x∗i }, we define S = {i ∈ V : x∗i ≥ 1

2}—that is, we
round values at least 1

2 up, and those below 1
2 down.

(11.24) The set S defined in this way is a vertex cover, and w(S)≤ wLP.

Proof. First we argue that S is a vertex cover. Consider an edge e = (i, j). We
claim that at least one of i and j must be in S. Recall that one of our inequalities
is xi + xj ≥ 1. So in any solution x∗ that satisfies this inequality, either x∗i ≥ 1

2
or x∗j ≥ 1

2. Thus at least one of these two will be rounded up, and i or j will be
placed in S.

Now we consider the weight w(S) of this vertex cover. The set S only has
vertices with x∗i ≥ 1

2; thus the linear program “paid” at least 1
2wi for node i, and

we only pay wi: at most twice as much. More formally, we have the following
chain of inequalities.

wLPwtx∗ =
∑

i

wix
∗
i ≥

∑
i∈S

wix
∗
i ≥

1
2

∑
i∈S

wi = 1
2

w(S).

11.7 Load Balancing Revisited: A More Advanced LP Application 637

Thus we have a produced a vertex cover S of weight at most 2wLP. The
lower bound in (11.23) showed that the optimal vertex cover has weight at
least wLP, and so we have the following result.

(11.25) The algorithm produces a vertex cover S of at most twice the minimum
possible weight.

* 11.7 Load Balancing Revisited: A More Advanced
LP Application

In this section we consider a more general load balancing problem. We will
develop an approximation algorithm using the same general outline as the 2-
approximation we just designed for Vertex Cover: We solve a corresponding
linear program, and then round the solution. However, the algorithm and its
analysis here will be significantly more complex than what was needed for
Vertex Cover. It turns out that the instance of the Linear Programming Problem
we need to solve is, in fact, a flow problem. Using this fact, we will be able
to develop a much deeper understanding of what the fractional solutions to
the linear program look like, and we will use this understanding in order to
round them. For this problem, the only known constant-factor approximation
algorithm is based on rounding this linear programming solution.

The Problem
The problem we consider in this section is a significant, but natural, gener-
alization of the Load Balancing Problem with which we began our study of
approximation algorithms. There, as here, we have a set J of n jobs, and a set
M of m machines, and the goal is to assign each job to a machine so that the
maximum load on any machine will be as small as possible. In the simple Load
Balancing Problem we considered earlier, each job j can be assigned to any
machine i. Here, on the other hand, we will restrict the set of machines that
each job may consider; that is, for each job there is just a subset of machines
to which it can be assigned. This restriction arises naturally in a number of
applications: for example, we may be seeking to balance load while maintain-
ing the property that each job is assigned to a physically nearby machine, or
to a machine with an appropriate authorization to process the job.

More formally, each job j has a fixed given size tj ≥ 0 and a set of machines
Mj ⊆M that it may be assigned to. The sets Mj can be completely arbitrary.
We call an assignment of jobs to machines feasible if each job j is assigned to
a machine i ∈Mj. The goal is still to minimize the maximum load on any
machine: Using Ji ⊆ J to denote the jobs assigned to a machine i ∈M in
a feasible assignment, and using Li =

∑
j∈Ji

tj to denote the resulting load,

638 Chapter 11 Approximation Algorithms

we seek to minimize maxi Li. This is the definition of the Generalized Load
Balancing Problem.

In addition to containing our initial Load Balancing Problem as a special
case (setting Mj =M for all jobs j), Generalized Load Balancing includes the
Bipartite Perfect Matching Problem as another special case. Indeed, given a
bipartite graph with the same number of nodes on each side, we can view the
nodes on the left as jobs and the nodes on the right as machines; we define
tj = 1 for all jobs j, and define Mj to be the set of machine nodes i such that
there is an edge (i, j) ∈ E. There is an assignment of maximum load 1 if and
only if there is a perfect matching in the bipartite graph. (Thus, network flow
techniques can be used to find the optimum load in this special case.) The
fact that Generalized Load Balancing includes both these problems as special
cases gives some indication of the challenge in designing an algorithm for it.

Designing and Analyzing the Algorithm
We now develop an approximation algorithm based on linear programming for
the Generalized Load Balancing Problem. The basic plan is the same one we
saw in the previous section: we’ll first formulate the problem as an equivalent
linear program where the variables have to take specific discrete values; we’ll
then relax this to a linear program by dropping this requirement on the values
of the variables; and then we’ll use the resulting fractional assignment to obtain
an actual assignment that is close to optimal. We’ll need to be more careful than
in the case of the Vertex Cover Problem in rounding the solution to produce
the actual assignment.

Integer and Linear Programming Formulations First we formulate the Gen-
eralized Load Balancing Problem as a linear program with restrictions on the
variable values. We use variables xij corresponding to each pair (i, j) of ma-
chine i ∈M and job j ∈ J. Setting xij = 0 will indicate that job j is not assigned
to machine i, while setting xij = tj will indicate that all the load tj of job j is
assigned to machine i. We can think of x as a single vector with mn coordinates.

We use linear inequalities to encode the requirement that each job is
assigned to a machine: For each job j we require that

∑
i xij = tj. The load

of a machine i can then be expressed as Li =
∑

j xij. We require that xij = 0
whenever i �∈Mj. We will use the objective function to encode the goal of
finding an assignment that minimizes the maximum load. To do this, we
will need one more variable, L, that will correspond to the load. We use the
inequalities

∑
j xij ≤ L for all machines i. In summary, we have formulated the

following problem.

11.7 Load Balancing Revisited: A More Advanced LP Application 639

(GL.IP) min L∑
i

xij = tj for all j ∈ J

∑
j

xij ≤ L for all i ∈M

xij ∈ {0, tj} for all j ∈ J , i ∈Mj.

xij = 0 for all j ∈ J , i �∈Mj.

First we claim that the feasible assignments are in one-to-one correspon-
dence with the solutions x satisfying the above constraints, and, in an optimal
solution to (GL.IP), L is the load of the corresponding assignment.

(11.26) An assignment of jobs to machines has load at most L if and only
if the vector x, defined by setting xij = tj whenever job j is assigned to machine
i, and xij = 0 otherwise, satisfies the constraints in (GL.IP), with L set to the
maximum load of the assignment.

Next we will consider the corresponding linear program obtained by
replacing the requirement that each xij ∈ {0, tj} by the weaker requirement that
xij ≥ 0 for all j ∈ J and i ∈Mj. Let (GL.LP) denote the resulting linear program. It
would also be natural to add xij ≤ tj. We do not add these inequalities explicitly,
as they are implied by the nonnegativity and the equation

∑
i xij = tj that is

required for each job j.

We immediately see that if there is an assignment with load at most L, then
(GL.LP) must have a solution with value at most L. Or, in the contrapositive,

(11.27) If the optimum value of (GL.LP) is L, then the optimal load is at least
L∗ ≥ L.

We can use linear programming to obtain such a solution (x, L) in polyno-
mial time. Our goal will then be to use x to create an assignment. Recall that
the Generalized Load Balancing Problem is NP-hard, and hence we cannot ex-
pect to solve it exactly in polynomial time. Instead, we will find an assignment
with load at most two times the minimum possible. To be able to do this, we
will also need the simple lower bound (11.2), which we used already in the
original Load Balancing Problem.

(11.28) The optimal load is at least L∗ ≥maxj tj.

Rounding the Solution When There Are No Cycles The basic idea is to
round the xij values to 0 or tj. However, we cannot use the simple idea of
just rounding large values up and small values down. The problem is that the
linear programming solution may assign small fractions of a job j to each of

640 Chapter 11 Approximation Algorithms

the m machines, and hence for some jobs there may be no large xij values.
The algorithm we develop will be a rounding of x in the weak sense that
each job j will be assigned to a machine i with xij > 0, but we may have to
round a few really small values up. This weak rounding already ensures that
the assignment is feasible, in the sense that we do not assign any job j to a
machine i not in Mj (because if i �∈Mj, then we have xij = 0).

The key is to understand what the structure of the fractional solution is
like and to show that while a few jobs may be spread out to many machines,
this cannot happen to too many jobs. To this end, we’ll consider the following
bipartite graph G(x)= (V(x), E(x)): The nodes are V(x)=M ∪ J, the set of jobs
and the set of machines, and there is an edge (i, j) ∈ E(x) if and only if xij > 0.

We’ll show that, given any solution for (GL.LP), we can obtain a new
solution x with the same load L, such that G(x) has no cycles. This is the
crucial step, as we show that a solution x with no cycles can be used to obtain
an assignment with load at most L+ L∗.

(11.29) Given a solution (x, L) of (GL.LP) such that the graph G(x) has no
cycles, we can use this solution x to obtain a feasible assignment of jobs to
machines with load at most L+ L∗ in O(mn) time.

Proof. Since the graph G(x) has no cycles, each of its connected components
is a tree. We can produce the assignment by considering each component
separately. Thus, consider one of the components, which is a tree whose nodes
correspond to jobs and machines, as shown in Figure 11.11.

First, root the tree at an arbitrary node. Now consider a job j. If the node
corresponding to job j is a leaf of the tree, let machine node i be its parent.
Since j has degree 1 in the tree G(x), machine i is the only machine that has
been assigned any part of job j, and hence we must have that xij = tj. Our
assignment will assign such a job j to its only neighbor i. For a job j whose
corresponding node is not a leaf in G(x), we assign j to an arbitrary child of
the corresponding node in the rooted tree.

The method can clearly be implemented in O(mn) time (including the
time to set up the graph G(x)). It defines a feasible assignment, as the linear
program (GL.LP) required that xij = 0 whenever i �∈Mj. To finish the proof, we
need to show that the load is at most L+ L∗. Let i be any machine, and let Ji
be the set of jobs assigned to machine i. The jobs assigned to machine i form
a subset of the neighbors of i in G(x): the set Ji contains those children of node
i that are leaves, plus possibly the parent p(i) of node i. To bound the load,
we consider the parent p(i) separately. For all other jobs j �= p(i) assigned to
i, we have xij = tj, and hence we can bound the load using the solution x, as
follows.

11.7 Load Balancing Revisited: A More Advanced LP Application 641

Each internal job node is
assigned to an arbitrary child.

Each leaf is assigned
to its parent.

Figure 11.11 An example of a graph G(x)with no cycles, where the squares aremachines
and the circles are jobs. The solid lines show the resulting assignment of jobs to
machines.

∑
j∈Ji , j �=p(i)

tj ≤
∑
j∈J

xij ≤ L,

using the inequality bounding the load in (GL.LP). For the parent j = p(i) of
node i, we use tj ≤ L∗ by (11.28). Adding the two inequalities, we get that∑

j∈Ji
pij ≤ L+ L∗, as claimed.

Now, by (11.27), we know that L≤ L∗, so a solution whose load is bounded
by L+ L∗ is also bounded by 2L∗—in other words, twice the optimum. Thus
we have the following consequence of (11.29).

(11.30) Given a solution (x, L) of (GL.LP) such that the graph G(x) has no
cycles, then we can use this solution x to obtain a feasible assignment of jobs
to machines with load at most twice the optimum in O(mn) time.

Eliminating Cycles from the Linear Programming Solution To wrap up
our approximation algorithm, then, we just need to show how to convert

642 Chapter 11 Approximation Algorithms

Jobs

Machines

L

L

L

Supply = tj

Demand = ∑ j tjvi

j

Figure 11.12 The network flow computation used to find a solution to (GL.LP). Edges
between the jobs and machines have infinite capacity.

an arbitrary solution of (GL.LP) into a solution x with no cycles in G(x). In
the process, we will also show how to obtain a solution to the linear program
(GL.LP) using flow computations. More precisely, given a fixed load value L,
we show how to use a flow computation to decide if (GL.LP) has a solution
with value at most L. For this construction, consider the following directed
graph G = (V , E) shown in Figure 11.12. The set of vertices of the flow graph
G will be V =M ∪ J ∪ {v}, where v is a new node. The nodes j ∈ J will be
sources with supply tj, and the only demand node is the new sink v, which
has demand

∑
j tj. We’ll think of the flow in this network as “load” flowing

from jobs to the sink v via the machines. We add an edge (j, i) with infinite
capacity from job j to machine i if and only if i ∈Mj. Finally, we add an edge
(i, v) for each machine node i with capacity L.

(11.31) The solutions of this flow problem with capacity L are in one-to-one
correspondence with solutions of (GL.LP) with value L, where xij is the flow
value along edge (i, j), and the flow value on edge (i, t) is the load

∑
j xij on

machine i.

11.7 Load Balancing Revisited: A More Advanced LP Application 643

This statement allows us to solve (GL.LP) using flow computations and a
binary search for the optimal value L: we try successive values of L until we
find the smallest one for which there is a feasible flow.

Here we’ll use the understanding we gained of (GL.LP) from the equivalent
flow formulation to modify a solution x to eliminate all cycles from G(x). In
terms of the flow we have just defined, G(x) is the undirected graph obtained
from G by ignoring the directions of the edges, deleting the sink v and all
adjacent edges, and also deleting all edges from J to M that do not carry flow.
We’ll eliminate all cycles in G(x) in a sequence of at most mn steps, where
the goal of a single step is to eliminate at least one edge from G(x) without
increasing the load L or introducing any new edges.

(11.32) Let (x, L) be any solution to (GL.LP) and C be a cycle in G(x). In
time linear in the length of the cycle, we can modify the solution x to eliminate
at least one edge from G(x) without increasing the load or introducing any new
edges.

Proof. Consider the cycle C in G(x). Recall that G(x) corresponds to the
set of edges that carry flow in the solution x. We will modify the solution
by augmenting the flow along the cycle C, using essentially the procedure
augment from Section 7.1. The augmentation along a cycle will not change
the balance between incoming and outgoing flow at any node; rather, it will
eliminate one backward edge from the residual graph, and hence an edge
from G(x). Assume that the nodes along the cycle are i1, j1, i2, j2, . . . , ik, jk,
where i� is a machine node and j� is a job node. We’ll modify the solution
by decreasing the flow along all edges (j�, i�) and increasing the flow on the
edges (j�, i�+1) for all �= 1, . . . , k (where k + 1 is used to denote 1), by the
same amount δ. This change will not affect the flow conservation constraints.
By setting δ =mink

�=1 xi�j�, we ensure that the flow remains feasible and the
edge obtaining the minimum is deleted from G(x).

We can use the algorithm contained in the proof of (11.32) repeatedly to
eliminate all cycles from G(x). Initially, G(x) may have mn edges, so after at
most O(mn) iterations, the resulting solution (x, L) will have no cycles in G(x).
At this point, we can use (11.30) to obtain a feasible assignment with at most
twice the optimal load. We summarize the result by the following statement.

(11.33) Given an instance of the Generalized Load Balancing Problem, we
can find, in polynomial time, a feasible assignment with load at most twice the
minimum possible.

644 Chapter 11 Approximation Algorithms

11.8 Arbitrarily Good Approximations:
The Knapsack Problem

Often, when you talk to someone faced with an NP-hard optimization problem,
they’re hoping you can give them something that will produce a solution
within, say, 1 percent of the optimum, or at least within a small percentage
of optimal. Viewed from this perspective, the approximation algorithms we’ve
seen thus far come across as quite weak: solutions within a factor of 2 of the
minimum for Center Selection and Vertex Cover (i.e., 100 percent more than
optimal). The Set Cover Algorithm in Section 10.3 is even worse: Its cost is not
even within a fixed constant factor of the minimum possible!

Here is an important point underlying this state of affairs: NP-complete
problems, as you well know, are all equivalent with respect to polynomial-
time solvability; but assuming P �=NP, they differ considerably in the extent
to which their solutions can be efficiently approximated. In some cases, it is
actually possible to prove limits on approximability. For example, if P �=NP,
then the guarantee provided by our Center Selection Algorithm is the best
possible for any polynomial-time algorithm. Similarly, the guarantee provided
by the Set Cover Algorithm, however bad it may seem, is very close to the
best possible, unless P =NP. For other problems, such as the Vertex Cover
Problem, the approximation algorithm we gave is essentially the best known,
but it is an open question whether there could be polynomial-time algorithms
with better guarantees. We will not discuss the topic of lower bounds on
approximability in this book; while some lower bounds of this type are not so
difficult to prove (such as for Center Selection), many are extremely technical.

The Problem
In this section, we discuss an NP-complete problem for which it is possible to
design a polynomial-time algorithm providing a very strong approximation. We
will consider a slightly more general version of the Knapsack (or Subset Sum)
Problem. Suppose you have n items that you consider packing in a knapsack.
Each item i = 1, . . . , n has two integer parameters: a weight wi and a value
vi. Given a knapsack capacity W, the goal of the Knapsack Problem is to find
a subset S of items of maximum value subject to the restriction that the total
weight of the set should not exceed W. In other words, we wish to maximize∑

i∈S vi subject to the condition
∑

i∈S wi ≤W.

How strong an approximation can we hope for? Our algorithm will take
as input the weights and values defining the problem and will also take an
extra parameter ε, the desired precision. It will find a subset S whose total
weight does not exceed W, with value

∑
i∈S vi at most a (1+ ε) factor below

the maximum possible. The algorithm will run in polynomial time for any

11.8 Arbitrarily Good Approximations: The Knapsack Problem 645

fixed choice of ε > 0; however, the dependence on ε will not be polynomial.
We call such an algorithm a polynomial-time approximation scheme.

You may ask: How could such a strong kind of approximation algorithm
be possible in polynomial time when the Knapsack Problem is NP-hard? With
integer values, if we get close enough to the optimum value, we must reach the
optimum itself! The catch is in the nonpolynomial dependence on the desired
precision: for any fixed choice of ε, such as ε = .5, ε = .2, or even ε = .01, the
algorithm runs in polynomial time, but as we change ε to smaller and smaller
values, the running time gets larger. By the time we make ε small enough
to make sure we get the optimum value, it is no longer a polynomial-time
algorithm.

Designing the Algorithm
In Section 6.4 we considered algorithms for the Subset Sum Problem, the
special case of the Knapsack Problem when vi = wi for all items i. We gave a
dynamic programming algorithm for this special case that ran in O(nW) time
assuming the weights are integers. This algorithm naturally extends to the more
general Knapsack Problem (see the end of Section 6.4 for this extension). The
algorithm given in Section 6.4 works well when the weights are small (even if
the values may be big). It is also possible to extend our dynamic programming
algorithm for the case when the values are small, even if the weights may be
big. At the end of this section, we give a dynamic programming algorithm for
that case running in time O(n2v∗), where v∗ =maxi vi. Note that this algorithm
does not run in polynomial time: It is only pseudo-polynomial, because of its
dependence on the size of the values vi. Indeed, since we proved this problem
to be NP-complete in Chapter 8, we don’t expect to be able to find a polynomial-
time algorithm.

Algorithms that depend on the values in a pseudo-polynomial way can
often be used to design polynomial-time approximation schemes, and the
algorithm we develop here is a very clean example of the basic strategy. In
particular, we will use the dynamic programming algorithm with running time
O(n2v∗) to design a polynomial-time approximation scheme; the idea is as
follows. If the values are small integers, then v∗ is small and the problem can
be solved in polynomial time already. On the other hand, if the values are
large, then we do not have to deal with them exactly, as we only want an
approximately optimum solution. We will use a rounding parameter b (whose
value we’ll set later) and will consider the values rounded to an integer multiple
of b. We will use our dynamic programming algorithm to solve the problem
with the rounded values. More precisely, for each item i, let its rounded value
be ṽi = �vi/b�b. Note that the rounded and the original value are quite close
to each other.

646 Chapter 11 Approximation Algorithms

(11.34) For each item i we have vi ≤ ṽi ≤ vi + b.

What did we gain by the rounding? If the values were big to start with, we
did not make them any smaller. However, the rounded values are all integer
multiples of a common value b. So, instead of solving the problem with the
rounded values ṽi, we can change the units; we can divide all values by b and
get an equivalent problem. Let v̂i = ṽi/b= �vi/b� for i = 1, . . . , n.

(11.35) The Knapsack Problem with values ṽi and the scaled problem with
values v̂i have the same set of optimum solutions, the optimum values differ
exactly by a factor of b, and the scaled values are integral.

Now we are ready to state our approximation algorithm. We will assume
that all items have weight at most W (as items with weight wi > W are not in
any solution, and hence can be deleted). We also assume for simplicity that
ε−1 is an integer.

Knapsack-Approx(ε):

Set b= (ε/(2n)) maxi vi

Solve the Knapsack Problem with values v̂i (equivalently ṽi)

Return the set S of items found

Analyzing the Algorithm
First note that the solution found is at least feasible; that is,

∑
i∈S wi ≤W. This

is true as we have rounded only the values and not the weights. This is why
we need the new dynamic programming algorithm described at the end of this
section.

(11.36) The set of items S returned by the algorithm has total weight at most
W, that is

∑
i∈S wi ≤W.

Next we’ll prove that this algorithm runs in polynomial time.

(11.37) The algorithm Knapsack-Approx runs in polynomial time for any
fixed ε > 0.

Proof. Setting b and rounding item values can clearly be done in polynomial
time. The time-consuming part of this algorithm is the dynamic programming
to solve the rounded problem. Recall that for problems with integer values,
the dynamic programming algorithm we use runs in time O(n2v∗), where
v∗ =maxi vi.

Now we are applying this algorithms for an instance in which each item
i has weight wi and value v̂i. To determine the running time, we need to

11.8 Arbitrarily Good Approximations: The Knapsack Problem 647

determine maxi v̂i. The item j with maximum value vj =maxi vi also has
maximum value in the rounded problem, so maxi v̂i = v̂j = �vj/b� = nε−1.
Hence the overall running time of the algorithm is O(n3ε−1). Note that this
is polynomial time for any fixed ε > 0 as claimed; but the dependence on the
desired precision ε is not polynomial, as the running time includes ε−1 rather
than log ε−1.

Finally, we need to consider the key issue: How good is the solution
obtained by this algorithm? Statement (11.34) shows that the values ṽi we used
are close to the real values vi, and this suggests that the solution obtained may
not be far from optimal.

(11.38) If S is the solution found by the Knapsack-Approx algorithm, and
S∗ is any other solution satisfying

∑
i∈S∗ wi ≤W, then we have (1+ ε)

∑
i∈S vi ≥∑

i∈S∗ vi.

Proof. Let S∗ be any set satisfying
∑

i∈S∗ wi ≤W. Our algorithm finds the
optimal solution with values ṽi, so we know that

∑
i∈S

ṽi ≥
∑
i∈S∗

ṽi.

The rounded values ṽi and the real values vi are quite close by (11.34), so we
get the following chain of inequalities.

∑
i∈S∗

vi ≤
∑
i∈S∗

ṽi ≤
∑
i∈S

ṽi ≤
∑
i∈S

(vi + b)≤ nb+
∑
i∈S

vi,

showing that the value
∑

i∈S vi of the solution we obtained is at most nb
smaller than the maximum value possible. We wanted to obtain a relative
error showing that the value obtained,

∑
i∈S vi, is at most a (1+ ε) factor less

than the maximum possible, so we need to compare nb to the value
∑

i∈S vi.

Let j be the item with largest value; by our choice of b, we have vj = 2ε−1nb
and vj = ṽj. By our assumption that each item alone fits in the knapsack (wi ≤
W for all i), we have

∑
i∈S ṽi ≥ ṽj = 2ε−1nb. Finally, the chain of inequalities

above says
∑

i∈S vi ≥
∑

i∈S ṽi − nb, and thus
∑

i∈S vi ≥ (2ε−1− 1)nb. Hence
nb≤ ε

∑
i∈S vi for ε ≤ 1, and so

∑
i∈S∗

vi ≤
∑
i∈S

vi + nb≤ (1+ ε)
∑
i∈S

vi.

648 Chapter 11 Approximation Algorithms

The New Dynamic Programming Algorithm for the
Knapsack Problem
To solve a problem by dynamic programming, we have to define a polynomial
set of subproblems. The dynamic programming algorithm we defined when we
studied the Knapsack Problem earlier uses subproblems of the form OPT(i, w):
the subproblem of finding the maximum value of any solution using a subset of
the items 1, . . . , i and a knapsack of weight w. When the weights are large, this
is a large set of problems. We need a set of subproblems that work well when
the values are reasonably small; this suggests that we should use subproblems
associated with values, not weights. We define our subproblems as follows.
The subproblem is defined by i and a target value V, and OPT(i, V) is the
smallest knapsack weight W so that one can obtain a solution using a subset
of items {1, . . . , i} with value at least V. We will have a subproblem for all
i= 0, . . . , n and values V = 0, . . . ,

∑i
j=1 vj. If v∗ denotes maxi vi, then we see

that the largest V can get in a subproblem is
∑n

j=1 vj ≤ nv∗. Thus, assuming

the values are integral, there are at most O(n2v∗) subproblems. None of these
subproblems is precisely the original instance of Knapsack, but if we have the
values of all subproblems OPT(n, V) for V = 0, . . . ,

∑
i vi, then the value of

the original problem can be obtained easily: it is the largest value V such that
OPT(n, V)≤W.

It is not hard to give a recurrence for solving these subproblems. By
analogy with the dynamic programming algorithm for Subset Sum, we consider
cases depending on whether or not the last item n is included in the optimal
solution O.

. If n �∈ O, then OPT(n, V)= OPT(n − 1, V).

. If n ∈ O is the only item in O, then OPT(n, V)= wn.

. If n ∈ O is not the only item in O, then OPT(n, V) = wn + OPT(n − 1,
V − vn).

These last two options can be summarized more compactly as

. If n ∈ O, then OPT(n, V)= wn + OPT(n − 1, max(0, V − vn)).

This implies the following analogue of the recurrence (6.8) from Chapter 6.

(11.39) If V >
∑n−1

i=1 vi, then OPT(n, V)=wn + OPT(n− 1, V − vn). Otherwise

OPT(n, V)=min(OPT(n − 1, V), wn + OPT(n − 1, max(0, V − vn))).

We can then write down an analogous dynamic programming algorithm.

Knapsack(n):

Array M[0 . . . n, 0 . . . V]

Solved Exercises 649

For i = 0, . . . , n

M[i, 0] = 0

Endfor

For i = 1, 2, . . . , n

For V = 1, . . . ,
∑i

j=1 vj

If V >
∑i−1

j=1 vj then

M[i, V]= wi +M[i − 1, V]

Else

M[i, V]=min(M[i − 1, V], wi +M[i − 1, max(0, V − vi)])

Endif

Endfor

Endfor

Return the maximum value V such that M[n, V]≤W

(11.40) Knapsack(n) takes O(n2v∗) time and correctly computes the optimal
values of the subproblems.

As was done before, we can trace back through the table M containing the
optimal values of the subproblems, to find an optimal solution.

Solved Exercises

Solved Exercise 1
Recall the Shortest-First greedy algorithm for the Interval Scheduling Problem:
Given a set of intervals, we repeatedly pick the shortest interval I, delete all
the other intervals I ′ that intersect I, and iterate.

In Chapter 4, we saw that this algorithm does not always produce a
maximum-size set of nonoverlapping intervals. However, it turns out to have
the following interesting approximation guarantee. If s∗ is the maximum size
of a set of nonoverlapping intervals, and s is the size of the set produced
by the Shortest-First Algorithm, then s ≥ 1

2s∗ (that is, Shortest-First is a 2-
approximation).

Prove this fact.

Solution Let’s first recall the example in Figure 4.1 from Chapter 4, which
showed that Shortest-First does not necessarily find an optimal set of intervals.
The difficulty is clear: We may select a short interval j while eliminating two
longer flanking intervals i and i′. So we have done only half as well as the
optimum.

The question is to show that Shortest-First could never do worse than this.
The issues here are somewhat similar to what came up in the analysis of the

650 Chapter 11 Approximation Algorithms

greedy algorithm for the Maximum Disjoint Paths Problem in Section 11.5: Each
interval we select may “block” some of the intervals in an optimal solution, and
we want to argue that by always selecting the shortest possible interval, these
blocking effects are not too severe. In the case of disjoint paths, we analyzed
the overlaps among paths essentially edge by edge, since the underlying graph
there had an arbitrary structure. Here we can benefit from the highly restricted
structure of intervals on a line so as to obtain a stronger bound.

In order for Shortest-First to do less than half as well as the optimum, there
would have to be a large optimal solution that overlaps with a much smaller
solution chosen by Shortest-First. Intuitively, it seems that the only way this
could happen would be to have one of the intervals i in the optimal solution
nested completely inside one of the intervals j chosen by Shortest-First. This
in turn would contradict the behavior of Shortest-First: Why didn’t it choose
this shorter interval i that’s nested inside j?

Let’s see if we can make this argument precise. Let A denote the set of
intervals chosen by Shortest-First, and let O denote an optimal set of intervals.
For each interval j ∈ A, consider the set of intervals in O that it conflicts with.
We claim

(11.41) Each interval j ∈ A conflicts with at most two intervals in O.

Proof. Assume by way of contradiction that there is an interval in j ∈ A that
conflicts with at least three intervals in i1, i2, i3 ∈ O. These three intervals do
not conflict with one another, as they are part of a single solution O, so they
are ordered sequentially in time. Suppose they are ordered with i1 first, then
i2, and then i3. Since interval j conflicts with both i1 and i3, the interval i2 in
between must be shorter than j and fit completely inside it. Moreover, since i2
was never selected by Shortest-First, it must have been available as an option
when Shortest-First selected interval j. This is a contradiction, since i2 is shorter
than j.

The Shortest-First Algorithm only terminates when every unselected inter-
val conflicts with one of the intervals it selected. So, in particular, each interval
in O is either included in A, or conflicts with an interval in A.

Now we use the following accounting scheme to bound the number of
intervals in O. For each i ∈ O, we have some interval j ∈ A “pay” for i, as
follows. If i is also in A, then i will pay for itself. Otherwise, we arbitrarily
choose an interval j ∈ A that conflicts with i and have j pay for i. As we just
argued, every interval in O conflicts with some interval in A, so all intervals
in O will be paid for under this scheme. But by (11.41), each interval j ∈ A
conflicts with at most two intervals in O, and so it will only pay for at most

Exercises 651

two intervals. Thus, all intervals in O are paid for by intervals in A, and in this
process each interval in A pays at most twice. If follows that A must have at
least half as many intervals as O.

Exercises

1. Suppose you’re acting as a consultant for the Port Authority of a small

Pacific Rim nation. They’re currently doing amulti-billion-dollar business

per year, and their revenue is constrained almost entirely by the rate at

which they can unload ships that arrive in the port.

Here’s a basic sort of problem they face. A ship arrives, with n con-

tainers of weight w1, w2, . . . , wn. Standing on the dock is a set of trucks,

each of which can hold K units of weight. (You can assume that K and

each wi is an integer.) You can stack multiple containers in each truck,

subject to the weight restriction of K ; the goal is to minimize the number

of trucks that are needed in order to carry all the containers. This problem

is NP-complete (you don’t have to prove this).

A greedy algorithm you might use for this is the following. Start with

an empty truck, and begin piling containers 1, 2, 3, . . . into it until you get

to a container that would overflow theweight limit. Nowdeclare this truck

“loaded” and send it off; then continue the process with a fresh truck.

This algorithm, by considering trucks one at a time, may not achieve the

most efficient way to pack the full set of containers into an available

collection of trucks.

(a) Give an example of a set of weights, and a value of K , where this

algorithm does not use the minimum possible number of trucks.

(b) Show, however, that the number of trucks used by this algorithm is

within a factor of 2 of the minimum possible number, for any set of

weights and any value of K .

2. At a lecture in a computational biology conference one of us attended

a few years ago, a well-known protein chemist talked about the idea of

building a “representative set” for a large collection of protein molecules

whose properties we don’t understand. The idea would be to intensively

study the proteins in the representative set and thereby learn (by infer-

ence) about all the proteins in the full collection.

To be useful, the representative set must have two properties.

. It should be relatively small, so that it will not be too expensive to

study it.

652 Chapter 11 Approximation Algorithms

. Every protein in the full collection should be “similar” to some pro-

tein in the representative set. (In this way, it truly provides some

information about all the proteins.)

More concretely, there is a large set P of proteins. We define similarity

on proteins by a distance function d: Given two proteins p and q, it returns

a number d(p, q) ≥ 0. In fact, the function d(·, ·) most typically used is

the sequence alignment measure, which we looked at when we studied

dynamic programming in Chapter 6. We’ll assume this is the distance

being used here. There is a predefined distance cut-off � that’s specified

as part of the input to the problem; two proteins p and q are deemed to

be “similar” to one another if and only if d(p, q)≤�.

We say that a subset of P is a representative set if, for every protein

p, there is a protein q in the subset that is similar to it—that is, for which

d(p, q) ≤�. Our goal is to find a representative set that is as small as

possible.

(a) Give a polynomial-time algorithm that approximates the minimum

representative set to within a factor of O(log n). Specifically, your

algorithm should have the following property: If the minimum pos-

sible size of a representative set is s∗, your algorithm should return

a representative set of size at most O(s∗ log n).

(b) Note the close similarity between this problem and the Center Selec-

tion Problem—a problem for which we considered approximation

algorithms in Section 11.2. Why doesn’t the algorithm described

there solve the current problem?

3. Suppose you are given a set of positive integers A= {a1, a2, . . . , an} and
a positive integer B. A subset S ⊆ A is called feasible if the sum of the

numbers in S does not exceed B:∑
ai∈S

ai ≤ B.

The sum of the numbers in S will be called the total sum of S.

You would like to select a feasible subset S of A whose total sum is

as large as possible.

Example. If A= {8, 2, 4} and B= 11, then the optimal solution is the subset

S = {8, 2}.
(a) Here is an algorithm for this problem.

Initially S = φ

Define T = 0

For i = 1, 2, . . . , n

Exercises 653

If T + ai ≤ B then

S← S ∪ {ai}
T ← T + ai

Endif

Endfor

Give an instance in which the total sum of the set S returned by

this algorithm is less than half the total sum of some other feasible

subset of A.

(b) Give a polynomial-time approximation algorithm for this problem

with the following guarantee: It returns a feasible set S ⊆ A whose

total sum is at least half as large as the maximum total sum of any

feasible set S′ ⊆ A. Your algorithm should have a running time of at

most O(n log n).

4. Consider an optimization version of the Hitting Set Problem defined as

follows. We are given a set A= {a1, . . . , an} and a collection B1, B2, . . . , Bm

of subsets of A. Also, each element ai ∈A has aweight wi ≥ 0. The problem

is to find a hitting set H ⊆ A such that the total weight of the elements in

H, that is,
∑

ai∈H wi, is as small as possible. (As in Exercise 5 in Chapter 8,

we say that H is a hitting set if H ∩ Bi is not empty for each i.) Let b=
maxi |Bi| denote the maximum size of any of the sets B1, B2, . . . , Bm. Give

a polynomial-time approximation algorithm for this problem that finds

a hitting set whose total weight is at most b times the minimum possible.

5. You are asked to consult for a business where clients bring in jobs each

day for processing. Each job has a processing time ti that is known when

the job arrives. The company has a set of ten machines, and each job can

be processed on any of these ten machines.

At the moment the business is running the simple Greedy-Balance

Algorithm we discussed in Section 11.1. They have been told that this

may not be the best approximation algorithm possible, and they are

wondering if they should be afraid of bad performance. However, they

are reluctant to change the scheduling as they really like the simplicity of

the current algorithm: jobs can be assigned to machines as soon as they

arrive, without having to defer the decision until later jobs arrive.

In particular, they have heard that this algorithm can produce so-

lutions with makespan as much as twice the minimum possible; but

their experience with the algorithm has been quite good: They have been

running it each day for the last month, and they have not observed it

to produce a makespan more than 20 percent above the average load,
1
10

∑
i ti.

654 Chapter 11 Approximation Algorithms

To try understanding why they don’t seem to be encountering this

factor-of-two behavior, you ask a bit about the kind of jobs and loads

they see. You find out that the sizes of jobs range between 1 and 50, that

is, 1≤ ti ≤ 50 for all jobs i; and the total load
∑

i ti is quite high each day:

it is always at least 3,000.

Prove that on the type of inputs the company sees, the Greedy-

Balance Algorithm will always find a solution whose makespan is at most

20 percent above the average load.

6. Recall that in the basic Load Balancing Problem from Section 11.1, we’re

interested in placing jobs onmachines so as to minimize themakespan—

the maximum load on any one machine. In a number of applications, it

is natural to consider cases in which you have access to machines with

different amounts of processing power, so that a given job may complete

more quickly on one of your machines than on another. The question

then becomes: How should you allocate jobs to machines in these more

heterogeneous systems?

Here’s a basic model that exposes these issues. Suppose you have

a system that consists of m slow machines and k fast machines. The

fast machines can perform twice as much work per unit time as the

slow machines. Now you’re given a set of n jobs; job i takes time ti to

process on a slow machine and time 1
2 ti to process on a fast machine.

You want to assign each job to a machine; as before, the goal is to

minimize the makespan—that is the maximum, over all machines, of the

total processing time of jobs assigned to that machine.

Give a polynomial-time algorithm that produces an assignment of

jobs to machines with a makespan that is at most three times the opti-

mum.

7. You’re consulting for an e-commerce site that receives a large number

of visitors each day. For each visitor i, where i ∈ {1, 2, . . . , n}, the site

has assigned a value vi, representing the expected revenue that can be

obtained from this customer.

Each visitor i is shown one of m possible ads A1, A2, . . . , Am as they

enter the site. The site wants a selection of one ad for each customer so

that each ad is seen, overall, by a set of customers of reasonably large

total weight. Thus, given a selection of one ad for each customer, we will

define the spread of this selection to be the minimum, over j = 1, 2, . . . , m,

of the total weight of all customers who were shown ad Aj.

Example Suppose there are six customers with values 3, 4, 12, 2, 4, 6, and
there are m= 3 ads. Then, in this instance, one could achieve a spread of

Exercises 655

9 by showing ad A1 to customers 1, 2, 4, ad A2 to customer 3, and ad A3 to

customers 5 and 6.

The ultimate goal is to find a selection of an ad for each customer

that maximizes the spread. Unfortunately, this optimization problem

is NP-hard (you don’t have to prove this). So instead, we will try to

approximate it.

(a) Give a polynomial-time algorithm that approximates the maximum

spread to within a factor of 2. That is, if the maximum spread

is s, then your algorithm should produce a selection of one ad

for each customer that has spread at least s/2. In designing your

algorithm, you may assume that no single customer has a value that

is significantly above the average; specifically, if v =∑n
i=1 vi denotes

the total value of all customers, then you may assume that no single

customer has a value exceeding v/(2m).

(b) Give an example of an instance on which the algorithm you designed

in part (a) does not find an optimal solution (that is, one of maximum

spread). Say what the optimal solution is in your sample instance,

and what your algorithm finds.

8. Some friends of yours are working with a system that performs real-time

scheduling of jobs onmultiple servers, and they’ve come to you for help in

getting around an unfortunate piece of legacy code that can’t be changed.

Here’s the situation. When a batch of jobs arrives, the system allo-

cates them to servers using the simple Greedy-Balance Algorithm from

Section 11.1, which provides an approximation to within a factor of 2.
In the decade and a half since this part of the system was written, the

hardware has gotten faster to the point where, on the instances that the

system needs to deal with, your friends find that it’s generally possible

to compute an optimal solution.

The difficulty is that the people in charge of the system’s internals

won’t let them change the portion of the software that implements the

Greedy-Balance Algorithm so as to replace it with one that finds the

optimal solution. (Basically, this portion of the code has to interact with

somany other parts of the system that it’s notworth the risk of something

going wrong if it’s replaced.)

After grumbling about this for a while, your friends come up with an

alternate idea. Suppose they could write a little piece of code that takes

the description of the jobs, computes an optimal solution (since they’re

able to do this on the instances that arise in practice), and then feeds

the jobs to the Greedy-Balance Algorithm in an order that will cause it

to allocate them optimally . In other words, they’re hoping to be able to

656 Chapter 11 Approximation Algorithms

reorder the input in such a way that when Greedy-Balance encounters the

input in this order, it produces an optimal solution.

So their question to you is simply the following: Is this always possi-

ble? Their conjecture is,

For every instance of the load balancing problem from Section 11.1, there

exists an order of the jobs so that when Greedy-Balance processes the jobs in

this order, it produces an assignment of jobs to machines with the minimum

possible makespan.

Decide whether you think this conjecture is true or false, and give either

a proof or a counterexample.

9. Consider the followingmaximization version of the 3-DimensionalMatch-

ing Problem. Given disjoint sets X, Y, and Z, and given a set T ⊆ X × Y × Z

of ordered triples, a subset M ⊆ T is a 3-dimensional matching if each

element of X ∪ Y ∪ Z is contained in at most one of these triples. The

Maximum 3-Dimensional Matching Problem is to find a 3-dimensional

matching M of maximum size. (The size of the matching, as usual, is the

number of triples it contains. You may assume |X| = |Y| = |Z| if you want.)

Give a polynomial-time algorithm that finds a 3-dimensional match-

ing of size at least 1
3 times the maximum possible size.

10. Suppose you are given an n × n grid graph G, as in Figure 11.13.

Associated with each node v is a weight w(v), which is a nonnegative

integer. You may assume that the weights of all nodes are distinct. Your

Figure 11.13 A grid graph.

Exercises 657

goal is to choose an independent set S of nodes of the grid, so that the

sum of the weights of the nodes in S is as large as possible. (The sum of

the weights of the nodes in S will be called its total weight .)

Consider the following greedy algorithm for this problem.

The "heaviest-first" greedy algorithm:

Start with S equal to the empty set

While some node remains in G

Pick a node vi of maximum weight

Add vi to S

Delete vi and its neighbors from G

Endwhile

Return S

(a) Let S be the independent set returned by the “heaviest-first” greedy

algorithm, and let T be any other independent set in G. Show that, for

each node v ∈ T , either v ∈ S, or there is a node v′ ∈ S so that w(v)≤w(v′)
and (v, v′) is an edge of G.

(b) Show that the “heaviest-first” greedy algorithm returns an indepen-

dent set of total weight at least 1
4 times the maximum total weight of

any independent set in the grid graph G.

11. Recall that in the Knapsack Problem, we have n items, each with a weight

wi and a value vi. We also have a weight bound W, and the problem is to se-

lect a set of items S of highest possible value subject to the condition that

the total weight does not exceed W—that is,
∑

i∈S wi ≤W. Here’s one way

to look at the approximation algorithm that we designed in this chapter.

If we are told there exists a subset O whose total weight is
∑

i∈O wi ≤W

and whose total value is
∑

i∈O vi = V for some V, then our approximation

algorithm can find a set A with total weight
∑

i∈A wi ≤W and total value at

least
∑

i∈A vi ≥ V/(1+ ε). Thus the algorithm approximates the best value,

while keeping the weights strictly under W. (Of course, returning the set

O is always a valid solution, but since the problem is NP-hard, we don’t

expect to always be able to find O itself; the approximation bound of 1+ ε

means that other sets A, with slightly less value, can be valid answers as

well.)

Now, as is well known, you can always pack a little bit more for a trip

just by “sitting on your suitcase”—in other words, by slightly overflowing

the allowed weight limit. This too suggests a way of formalizing the

approximation question for the Knapsack Problem, but it’s the following,

different, formalization.

658 Chapter 11 Approximation Algorithms

Suppose, as before, that you’re given n items with weights and values,

as well as parameters W and V; and you’re told that there is a subset O

whose total weight is
∑

i∈O wi ≤W and whose total value is
∑

i∈O vi = V for

some V. For a given fixed ε > 0, design a polynomial-time algorithm that

finds a subset of items A such that
∑

i∈A wi ≤ (1+ ε)W and
∑

i∈A vi ≥ V.

In other words, you want A to achieve at least as high a total value as

the given bound V, but you’re allowed to exceed the weight limit W by a

factor of 1+ ε.

Example. Suppose you’re given four items, with weights and values as

follows:

(w1, v1)= (5, 3), (w2, v2)= (4, 6)

(w3, v3)= (1, 4), (w4, v4)= (6, 11)

You’re also givenW = 10 andV = 13 (since, indeed, the subset consisting of

the first three items has total weight at most 10 and has value 13). Finally,
you’re given ε = .1. This means you need to find (via your approximation

algorithm) a subset of weight at most (1+ .1) ∗ 10= 11and value at least 13.
One valid solution would be the subset consisting of the first and fourth

items, with value 14 ≥ 13. (Note that this is a case where you’re able to

achieve a value strictly greater than V, since you’re allowed to slightly

overfill the knapsack.)

12. Consider the following problem. There is a set U of n nodes, which we

can think of as users (e.g., these are locations that need to access a

service, such as a Web server). You would like to place servers at multiple

locations. Suppose you are given a set S possible sites that would be

willing to act as locations for the servers. For each site s ∈ S, there is

a fee fs ≥ 0 for placing a server at that location. Your goal will be to

approximately minimize the cost while providing the service to each of

the customers. So far this is very much like the Set Cover Problem: The

places s are sets, the weight of set s is fs, and we want to select a collection

of sets that covers all users. There is one extra complication: Users u ∈ U

can be served from multiple sites, but there is an associated cost dus for

serving user u from site s. When the value dus is very high, we do not want

to serve user u from site s; and in general the service cost dus serves as an

incentive to serve customers from “nearby” servers whenever possible.

So here is the question, which we call the Facility Location Problem:

Given the sets U and S, and costs f and d, you need to select a subset A⊆ S

at which to place servers (at a cost of
∑

s∈A fs), and assign each user u to

the active server where it is cheapest to be served, mins∈A dus. The goal

Notes and Further Reading 659

is to minimize the overall cost
∑

s∈A fs +
∑

u∈U mins∈A dus. Give an H(n)-

approximation for this problem.

(Note that if all service costs dus are 0 or infinity, then this problem

is exactly the Set Cover Problem: fs is the cost of the set named s, and dus

is 0 if node u is in set s, and infinity otherwise.)

Notes and Further Reading

The design of approximation algorithms for NP-hard problems is an active
area of research, and it is the focus of a book of surveys edited by Hochbaum
(1996) and a text by Vazirani (2001).

The greedy algorithm for load balancing and its analysis is due to Graham
(1966, 1969); in fact, he proved that when the jobs are first sorted in descending
order of size, the greedy algorithm achieves an assignment within a factor 4

3
of optimal. (In the text, we give a simpler proof for the weaker bound of 3

2.)
Using more complicated algorithms, even stronger approximation guarantees
can be proved for this problem (Hochbaum and Shmoys 1987; Hall 1996). The
techniques used for these stronger load balancing approximation algorithms
are also closely related to the method described in the text for designing
arbitrarily good approximations for the Knapsack Problem.

The approximation algorithm for the Center Selection Problem follows the
approach of Hochbaum and Shmoys (1985) and Dyer and Frieze (1985). Other
geometric location problems of this flavor are discussed by Bern and Eppstein
(1996) and in the book of surveys edited by Drezner (1995).

The greedy algorithm for Set Cover and its analysis are due independently
to Johnson (1974), Lovász (1975), and Chvatal (1979). Further results for the
Set Cover Problem are discussed in the survey by Hochbaum (1996).

As mentioned in the text, the pricing method for designing approximation
algorithms is also referred to as the primal-dual method and can be motivated
using linear programming. This latter perspective is the subject of the survey
by Goemans and Williamson (1996). The pricing algorithm to approximate the
Weighted Vertex Cover Problem is due to Bar-Yehuda and Even (1981).

The greedy algorithm for the disjoint paths problem is due to Kleinberg and
Tardos (1995); the pricing-based approximation algorithm for the case when
multiple paths can share an edge is due to Awerbuch, Azar, and Plotkin (1993).
Algorithms have been developed for many other variants of the Disjoint Paths
Problem; see the book of surveys edited by Korte et al. (1990) for a discussion
of cases that can be solved optimally in polynomial time, and Plotkin (1995)
and Kleinberg (1996) for surveys of work on approximation.

660 Chapter 11 Approximation Algorithms

The linear programming rounding algorithm for the Weighted Vertex Cover
Problem is due to Hochbaum (1982). The rounding algorithm for Generalized
Load Balancing is due to Lenstra, Shmoys, and Tardos (1990); see the survey
by Hall (1996) for other results in this vein. As discussed in the text, these
two results illustrate a widely used method for designing approximation al-
gorithms: One sets up an integer programming formulation for the problem,
transforms it to a related (but not equivalent) linear programming problem,
and then rounds the resulting solution. Vazirani (2001) discusses many further
applications of this technique.

Local search and randomization are two other powerful techniques for
designing approximation algorithms; we discuss these connections in the next
two chapters.

One topic that we do not cover in this book is inapproximability. Just as
one can prove that a given NP-hard problem can be approximated to within
a certain factor in polynomial time, one can also sometimes establish lower
bounds, showing that if the problem could be approximated to within bet-
ter than some factor c in polynomial time, then it could be solved optimally,
thereby proving P=NP. There is a growing body of work that establishes such
limits to approximability for many NP-hard problems. In certain cases, these
positive and negative results have lined up perfectly to produce an approxima-
tion threshold, establishing for certain problems that there is a polynomial-time
approximation algorithm to within some factor c, and it is impossible to do
better unless P =NP. Some of the early results on inapproximability were not
very difficult to prove, but more recent work has introduced powerful tech-
niques that become quite intricate. This topic is covered in the survey by Arora
and Lund (1996).

Notes on the Exercises Exercises 4 and 12 are based on results of Dorit
Hochbaum. Exercise 11 is based on results of Sartaj Sahni, Oscar Ibarra, and
Chul Kim, and of Dorit Hochbaum and David Shmoys.

Chapter 12

Local Search

In the previous two chapters, we have considered techniques for dealing with
computationally intractable problems: in Chapter 10, by identifying structured
special cases of NP-hard problems, and in Chapter 11, by designing polynomial-
time approximation algorithms. We now develop a third and final topic related
to this theme: the design of local search algorithms.

Local search is a very general technique; it describes any algorithm that
“explores” the space of possible solutions in a sequential fashion, moving
in one step from a current solution to a “nearby” one. The generality and
flexibility of this notion has the advantage that it is not difficult to design
a local search approach to almost any computationally hard problem; the
counterbalancing disadvantage is that it is often very difficult to say anything
precise or provable about the quality of the solutions that a local search
algorithm finds, and consequently very hard to tell whether one is using a
good local search algorithm or a poor one.

Our discussion of local search in this chapter will reflect these trade-offs.
Local search algorithms are generally heuristics designed to find good, but
not necessarily optimal, solutions to computational problems, and we begin
by talking about what the search for such solutions looks like at a global
level. A useful intuitive basis for this perspective comes from connections with
energy minimization principles in physics, and we explore this issue first. Our
discussion for this part of the chapter will have a somewhat different flavor
from what we’ve generally seen in the book thus far; here, we’ll introduce
some algorithms, discuss them qualitatively, but admit quite frankly that we
can’t prove very much about them.

There are cases, however, in which it is possible to prove properties
of local search algorithms, and to bound their performance relative to an

662 Chapter 12 Local Search

Figure 12.1 When the poten-
tial energy landscape has the
structure of a simple funnel,
it is easy to find the lowest
point.

C

B

A

Figure 12.2 Most landscapes
are more complicated than
simple funnels; for exam-
ple, in this “double funnel,”
there’s a deep global mini-
mum and a shallower local
minimum.

optimal solution. This will be the focus of the latter part of the chapter: We
begin by considering a case—the dynamics of Hopfield neural networks—in
which local search provides the natural way to think about the underlying
behavior of a complex process; we then focus on some NP-hard problems for
which local search can be used to design efficient algorithms with provable
approximation guarantees. We conclude the chapter by discussing a different
type of local search: the game-theoretic notions of best-response dynamics
and Nash equilibria, which arise naturally in the study of systems that contain
many interacting agents.

12.1 The Landscape of an Optimization Problem
Much of the core of local search was developed by people thinking in terms
of analogies with physics. Looking at the wide range of hard computational
problems that require the minimization of some quantity, they reasoned as
follows. Physical systems are performing minimization all the time, when they
seek to minimize their potential energy. What can we learn from the ways in
which nature performs minimization? Does it suggest new kinds of algorithms?

Potential Energy
If the world really looked the way a freshman mechanics class suggests, it
seems that it would consist entirely of hockey pucks sliding on ice and balls
rolling down inclined surfaces. Hockey pucks usually slide because you push
them; but why do balls roll downhill? One perspective that we learn from
Newtonian mechanics is that the ball is trying to minimize its potential energy.
In particular, if the ball has mass m and falls a distance of h, it loses an amount
of potential energy proportional to mh. So, if we release a ball from the top
of the funnel-shaped landscape in Figure 12.1, its potential energy will be
minimized at the lowest point.

If we make the landscape a little more complicated, some extra issues
creep in. Consider the “double funnel” in Figure 12.2. Point A is lower than
point B, and so is a more desirable place for the ball to come to rest. But if
we start the ball rolling from point C, it will not be able to get over the barrier
between the two funnels, and it will end up at B. We say that the ball has
become trapped in a local minimum: It is at the lowest point if one looks in
the neighborhood of its current location; but stepping back and looking at the
whole landscape, we see that it has missed the global minimum.

Of course, enormously large physical systems must also try to minimize
their energy. Consider, for example, taking a few grams of some homogeneous
substance, heating it up, and studying its behavior over time. To capture
the potential energy exactly, we would in principle need to represent the

12.1 The Landscape of an Optimization Problem 663

Figure 12.3 In a general en-
ergy landscape, there may be
a very large number of local
minima that make it hard to
find the global minimum, as
in the “jagged funnel” drawn
here.

behavior of each atom in the substance, as it interacts with nearby atoms.
But it is also useful to speak of the properties of the system as a whole—as
an aggregate—and this is the domain of statistical mechanics. We will come
back to statistical mechanics in a little while, but for now we simply observe
that our notion of an “energy landscape” provides useful visual intuition for
the process by which even a large physical system minimizes its energy. Thus,
while it would in reality take a huge number of dimensions to draw the true
“landscape” that constrains the system, we can use one-dimensional “cartoon”
representations to discuss the distinction between local and global energy
minima, the “funnels” around them, and the “height” of the energy barriers
between them.

Taking a molten material and trying to cool it to a perfect crystalline solid
is really the process of trying to guide the underlying collection of atoms to
its global potential energy minimum. This can be very difficult, and the large
number of local minima in a typical energy landscape represent the pitfalls
that can lead the system astray in its search for the global minimum. Thus,
rather than the simple example of Figure 12.2, which simply contains a single
wrong choice, we should be more worried about landscapes with the schematic
cartoon representation depicted in Figure 12.3. This can be viewed as a “jagged
funnel,” in which there are local minima waiting to trap the system all the way
along its journey to the bottom.

The Connection to Optimization
This perspective on energy minimization has really been based on the follow-
ing core ingredients: The physical system can be in one of a large number of
possible states; its energy is a function of its current state; and from a given
state, a small perturbation leads to a “neighboring” state. The way in which
these neighboring states are linked together, along with the structure of the
energy function on them, defines the underlying energy landscape.

It’s from this perspective that we again start to think about computational
minimization problems. In a typical such problem, we have a large (typically
exponential-size) set C of possible solutions. We also have a cost function c(·)
that measures the quality of each solution; for a solution S ∈ C, we write its
cost as c(S). The goal is to find a solution S∗ ∈ C for which c(S∗) is as small as
possible.

So far this is just the way we’ve thought about such problems all along. We
now add to this the notion of a neighbor relation on solutions, to capture the
idea that one solution S′ can be obtained by a small modification of another
solution S. We write S ∼ S′ to denote that S′ is a neighboring solution of S,
and we use N(S) to denote the neighborhood of S, the set {S′ : S ∼ S′}. We
will primarily be considering symmetric neighbor relations here, though the

664 Chapter 12 Local Search

basic points we discuss will apply to asymmetric neighbor relations as well. A
crucial point is that, while the set C of possible solutions and the cost function
c(·) are provided by the specification of the problem, we have the freedom to
make up any neighbor relation that we want.

A local search algorithm takes this setup, including a neighbor relation, and
works according to the following high-level scheme. At all times, it maintains
a current solution S ∈ C. In a given step, it chooses a neighbor S′ of S, declares
S′ to be the new current solution, and iterates. Throughout the execution of
the algorithm, it remembers the minimum-cost solution that it has seen thus
far; so, as it runs, it gradually finds better and better solutions. The crux of
a local search algorithm is in the choice of the neighbor relation, and in the
design of the rule for choosing a neighboring solution at each step.

Thus one can think of a neighbor relation as defining a (generally undi-
rected) graph on the set of all possible solutions, with edges joining neigh-
boring pairs of solutions. A local search algorithm can then be viewed as
performing a walk on this graph, trying to move toward a good solution.

An Application to the Vertex Cover Problem
This is still all somewhat vague without a concrete problem to think about; so
we’ll use the Vertex Cover Problem as a running example here. It’s important
to keep in mind that, while Vertex Cover makes for a good example, there
are many other optimization problems that would work just as well for this
illustration.

Thus we are given a graph G = (V , E); the set C of possible solutions
consists of all subsets S of V that form vertex covers. Hence, for example, we
always have V ∈ C. The cost c(S) of a vertex cover S will simply be its size; in
this way, minimizing the cost of a vertex cover is the same as finding one of
minimum size. Finally, we will focus our examples on local search algorithms
that use a particularly simple neighbor relation: we say that S ∼ S′ if S′ can
be obtained from S by adding or deleting a single node. Thus our local search
algorithms will be walking through the space of possible vertex covers, adding
or deleting a node to their current solution in each step, and trying to find as
small a vertex cover as possible.

One useful fact about this neighbor relation is the following.

(12.1) Each vertex cover S has at most n neighboring solutions.

The reason is simply that each neighboring solution of S is obtained by adding
or deleting a distinct node. A consequence of (12.1) is that we can efficiently
examine all possible neighboring solutions of S in the process of choosing
which to select.

12.1 The Landscape of an Optimization Problem 665

Let’s think first about a very simple local search algorithm, which we’ll
term gradient descent. Gradient descent starts with the full vertex set V and
uses the following rule for choosing a neighboring solution.

Let S denote the current solution. If there is a neighbor S′ of S with strictly
lower cost, then choose the neighbor whose cost is as small as possible.
Otherwise terminate the algorithm.

So gradient descent moves strictly “downhill” as long as it can; once this is no
longer possible, it stops.

We can see that gradient descent terminates precisely at solutions that are
local minima: solutions S such that, for all neighboring S′, we have c(S)≤ c(S′).
This definition corresponds very naturally to our notion of local minima in
energy landscapes: They are points from which no one-step perturbation will
improve the cost function.

How can we visualize the behavior of a local search algorithm in terms
of the kinds of energy landscapes we illustrated earlier? Let’s think first about
gradient descent. The easiest instance of Vertex Cover is surely an n-node
graph with no edges. The empty set is the optimal solution (since there are no
edges to cover), and gradient descent does exceptionally well at finding this
solution: It starts with the full vertex set V, and keeps deleting nodes until
there are none left. Indeed, the set of vertex covers for this edge-less graph
corresponds naturally to the funnel we drew in Figure 12.1: The unique local
minimum is the global minimum, and there is a downhill path to it from any
point.

When can gradient descent go astray? Consider a “star graph” G, consisting
of nodes x1, y1, y2, . . . , yn−1, with an edge from x1 to each yi. The minimum
vertex cover for G is the singleton set {x1}, and gradient descent can reach
this solution by successively deleting y1, . . . , yn−1 in any order. But, if gradient
descent deletes the node x1 first, then it is immediately stuck: No node yi can be
deleted without destroying the vertex cover property, so the only neighboring
solution is the full node set V, which has higher cost. Thus the algorithm has
become trapped in the local minimum {y1, y2, . . . , yn−1}, which has very high
cost relative to the global minimum.

Pictorially, we see that we’re in a situation corresponding to the double
funnel of Figure 12.2. The deeper funnel corresponds to the optimal solution
{x1}, while the shallower funnel corresponds to the inferior local minimum
{y1, y2, . . . , yn−1}. Sliding down the wrong portion of the slope at the very
beginning can send one into the wrong minimum. We can easily generalize
this situation to one in which the two minima have any relative depths we
want. Consider, for example, a bipartite graph G with nodes x1, x2, . . . , xk and
y1, y2, . . . , y�, where k < �, and there is an edge from every node of the form xi

666 Chapter 12 Local Search

to every node of the form yj. Then there are two local minima, corresponding
to the vertex covers {x1, . . . , xk} and {y1, . . . , y�}. Which one is discovered by
a run of gradient descent is entirely determined by whether it first deletes an
element of the form xi or yj.

With more complicated graphs, it’s often a useful exercise to think about
the kind of landscape they induce; and conversely, one sometimes may look at
a landscape and consider whether there’s a graph that gives rise to something
like it.

For example, what kind of graph might yield a Vertex Cover instance with
a landscape like the jagged funnel in Figure 12.3? One such graph is simply an
n-node path, where n is an odd number, with nodes labeled v1, v2, . . . , vn in
order. The unique minimum vertex cover S∗ consists of all nodes vi where i is
even. But there are many local optima. For example, consider the vertex cover
{v2, v3, v5, v6, v8, v9, . . .} in which every third node is omitted. This is a vertex
cover that is significantly larger than S∗; but there’s no way to delete any node
from it while still covering all edges. Indeed, it’s very hard for gradient descent
to find the minimum vertex cover S∗ starting from the full vertex set V: Once
it’s deleted just a single node vi with an even value of i, it’s lost the chance to
find the global optimum S∗. Thus the even/odd parity distinction in the nodes
captures a plethora of different wrong turns in the local search, and hence
gives the overall funnel its jagged character. Of course, there is not a direct
correspondence between the ridges in the drawing and the local optima; as
we warned above, Figure 12.3 is ultimately just a cartoon rendition of what’s
going on.

But we see that even for graphs that are structurally very simple, gradient
descent is much too straightforward a local search algorithm. We now look at
some more refined local search algorithms that use the same type of neighbor
relation, but include a method for “escaping” from local minima.

12.2 The Metropolis Algorithm and
Simulated Annealing

The first idea for an improved local search algorithm comes from the work of
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953). They considered
the problem of simulating the behavior of a physical system according to
principles of statistical mechanics. A basic model from this field asserts that the
probability of finding a physical system in a state with energy E is proportional
to the Gibbs-Boltzmann function e−E/(kT), where T > 0 is the temperature and
k > 0 is a constant. Let’s look at this function. For any temperature T, the
function is monotone decreasing in the energy E, so this states that a physical

12.2 The Metropolis Algorithm and Simulated Annealing 667

system is more likely to be in a lower energy state than in a high energy
state. Now let’s consider the effect of the temperature T. When T is small, the
probability for a low-energy state is significantly larger than the probability for
a high-energy state. However, if the temperature is large, then the difference
between these two probabilities is very small, and the system is almost equally
likely to be in any state.

The Metropolis Algorithm
Metropolis et al. proposed the following method for performing step-by-step
simulation of a system at a fixed temperature T. At all times, the simulation
maintains a current state of the system and tries to produce a new state by
applying a perturbation to this state. We’ll assume that we’re only interested
in states of the system that are “reachable” from some fixed initial state by a
sequence of small perturbations, and we’ll assume that there is only a finite set
C of such states. In a single step, we first generate a small random perturbation
to the current state S of the system, resulting in a new state S′. Let E(S) and E(S′)
denote the energies of S and S′, respectively. If E(S′)≤ E(S), then we update
the current state to be S′. Otherwise let �E = E(S′)− E(S) > 0. We update the
current state to be S′with probability e−�E/(kT), and otherwise leave the current
state at S.

Metropolis et al. proved that their simulation algorithm has the following
property. To prevent too long a digression, we omit the proof; it is actually a
direct consequence of some basic facts about random walks.

(12.2) Let

Z =
∑
S∈C

e−E(S)/(kT).

For a state S, let fS(t) denote the fraction of the first t steps in which the state
of the simulation is in S. Then the limit of fS(t) as t approaches ∞ is, with
probability approaching 1, equal to 1

Z · e−E(S)/(kT).

This is exactly the sort of fact one wants, since it says that the simulation
spends roughly the correct amount of time in each state, according to the
Gibbs-Boltzmann equation.

If we want to use this overall scheme to design a local search algorithm
for minimization problems, we can use the analogies of Section 12.1 in which
states of the system are candidate solutions, with energy corresponding to cost.
We then see that the operation of the Metropolis Algorithm has a very desirable
pair of features in a local search algorithm: It is biased toward “downhill”

668 Chapter 12 Local Search

moves but will also accept “uphill” moves with smaller probability. In this way,
it is able to make progress even when situated in a local minimum. Moreover,
as expressed in (12.2), it is globally biased toward lower-cost solutions.

Here is a concrete formulation of the Metropolis Algorithm for a minimiza-
tion problem.

Start with an initial solution S0, and constants k and T

In one step:

Let S be the current solution

Let S′ be chosen uniformly at random from the neighbors of S

If c(S′)≤ c(S) then

Update S← S′

Else

With probability e−(c(S′)−c(S))/(kT)

Update S← S′

Otherwise

Leave S unchanged

EndIf

Thus, on the Vertex Cover instance consisting of the star graph in Sec-
tion 12.1, in which x1 is joined to each of y1, . . . , yn−1, we see that the
Metropolis Algorithm will quickly bounce out of the local minimum that arises
when x1 is deleted: The neighboring solution in which x1 is put back in will
be generated and will be accepted with positive probability. On more complex
graphs as well, the Metropolis Algorithm is able, to some extent, to correct the
wrong choices it makes as it proceeds.

At the same time, the Metropolis Algorithm does not always behave the
way one would want, even in some very simple situations. Let’s go back to
the very first graph we considered, a graph G with no edges. Gradient descent
solves this instance with no trouble, deleting nodes in sequence until none
are left. But, while the Metropolis Algorithm will start out this way, it begins
to go astray as it nears the global optimum. Consider the situation in which
the current solution contains only c nodes, where c is much smaller than the
total number of nodes, n. With very high probability, the neighboring solution
generated by the Metropolis Algorithm will have size c + 1, rather than c − 1,
and with reasonable probability this uphill move will be accepted. Thus it
gets harder and harder to shrink the size of the vertex cover as the algorithm
proceeds; it is exhibiting a sort of “flinching” reaction near the bottom of the
funnel.

12.2 The Metropolis Algorithm and Simulated Annealing 669

This behavior shows up in more complex examples as well, and in more
complex ways; but it is certainly striking for it to show up here so simply. In
order to figure out how we might fix this behavior, we return to the physical
analogy that motivated the Metropolis Algorithm, and ask: What’s the meaning
of the temperature parameter T in the context of optimization?

We can think of T as a one-dimensional knob that we’re able to turn,
and it controls the extent to which the algorithm is willing to accept uphill
moves. As we make T very large, the probability of accepting an uphill move
approaches 1, and the Metropolis Algorithm behaves like a random walk that
is basically indifferent to the cost function. As we make T very close to 0, on
the other hand, uphill moves are almost never accepted, and the Metropolis
Algorithm behaves almost identically to gradient descent.

Simulated Annealing
Neither of these temperature extremes—very low or very high—is an effective
way to solve minimization problems in general, and we can see this in physical
settings as well. If we take a solid and heat it to a very high temperature, we
do not expect it to maintain a nice crystal structure, even if this is energetically
favorable; and this can be explained by the large value of kT in the expression
e−E(S)/(kT), which makes the enormous number of less favorable states too
probable. This is a way in which we can view the “flinching” behavior of the
Metropolis Algorithm on an easy Vertex Cover instance: It’s trying to find the
lowest energy state at too high a temperature, when all the competing states
have too high a probability. On the other hand, if we take a molten solid and
freeze it very abruptly, we do not expect to get a perfect crystal either; rather,
we get a deformed crystal structure with many imperfections. This is because,
with T very small, we’ve come too close to the realm of gradient descent, and
the system has become trapped in one of the numerous ridges of its jagged
energy landscape. It is interesting to note that when T is very small, then
statement (12.2) shows that in the limit, the random walk spends most of its
time in the lowest energy state. The problem is that the random walk will take
an enormous amount of time before getting anywhere near this limit.

In the early 1980s, as people were considering the connection between
energy minimization and combinatorial optimization, Kirkpatrick, Gelatt, and
Vecchi (1983) thought about the issues we’ve been discussing, and they asked
the following question: How do we solve this problem for physical systems,
and what sort of algorithm does this suggest? In physical systems, one guides
a material to a crystalline state by a process known as annealing: The material
is cooled very gradually from a high temperature, allowing it enough time to
reach equilibrium at a succession of intermediate lower temperatures. In this

670 Chapter 12 Local Search

way, it is able to escape from the energy minima that it encounters all the way
through the cooling process, eventually arriving at the global optimum.

We can thus try to mimic this process computationally, arriving at an
algorithmic technique known as simulated annealing. Simulated annealing
works by running the Metropolis Algorithm while gradually decreasing the
value of T over the course of the execution. The exact way in which T is
updated is called, for natural reasons, a cooling schedule, and a number of
considerations go into the design of the cooling schedule. Formally, a cooling
schedule is a function τ from {1, 2, 3, . . .} to the positive real numbers; in
iteration i of the Metropolis Algorithm, we use the temperature T = τ(i) in our
definition of the probability.

Qualitatively, we can see that simulated annealing allows for large changes
in the solution in the early stages of its execution, when the temperature is
high. Then, as the search proceeds, the temperature is lowered so that we are
less likely to undo progress that has already been made. We can also view
simulated annealing as trying to optimize a trade-off that is implicit in (12.2).
According to (12.2), values of T arbitrarily close to 0 put the highest probability
on minimum-cost solutions; however, (12.2) by itself says nothing about the
rate of convergence of the functions fS(t) that it uses. It turns out that these
functions converge, in general, much more rapidly for large values of T; and so
to find minimum-cost solutions quickly, it is useful to speed up convergence
by starting the process with T large, and then gradually reducing it so as to
raise the probability on the optimal solutions. While we believe that physical
systems reach a minimum energy state via annealing, the simulated annealing
method has no guarantee of finding an optimal solution. To see why, consider
the double funnel of Figure 12.2. If the two funnels take equal area, then
at high temperatures the system is essentially equally likely to be in either
funnel. Once we cool the temperature, it will become harder and harder to
switch between the two funnels. There appears to be no guarantee that at the
end of annealing, we will be at the bottom of the lower funnel.

There are many open problems associated with simulated annealing, both
in proving properties of its behavior and in determining the range of settings
for which it works well in practice. Some of the general questions that come
up here involve probabilistic issues that are beyond the scope of this book.

Having spent some time considering local search at a very general level,
we now turn, in the next few sections, to some applications in which it is
possible to prove fairly strong statements about the behavior of local search
algorithms and about the local optima that they find.

12.3 An Application of Local Search to Hopfield Neural Networks 671

12.3 An Application of Local Search to Hopfield
Neural Networks

Thus far we have been discussing local search as a method for trying to find the
global optimum in a computational problem. There are some cases, however,
in which, by examining the specification of the problem carefully, we discover
that it is really just an arbitrary local optimum that is required. We now consider
a problem that illustrates this phenomenon.

The Problem
The problem we consider here is that of finding stable configurations in
Hopfield neural networks. Hopfield networks have been proposed as a simple
model of an associative memory, in which a large collection of units are
connected by an underlying network, and neighboring units try to correlate
their states. Concretely, a Hopfield network can be viewed as an undirected
graph G= (V , E), with an integer-valued weight we on each edge e; each weight
may be positive or negative. A configuration S of the network is an assignment
of the value −1 or +1 to each node u; we will refer to this value as the state su
of the node u. The meaning of a configuration is that each node u, representing
a unit of the neural network, is trying to choose between one of two possible
states (“on” or “off”; “yes” or “no”); and its choice is influenced by those of
its neighbors as follows. Each edge of the network imposes a requirement on
its endpoints: If u is joined to v by an edge of negative weight, then u and v
want to have the same state, while if u is joined to v by an edge of positive
weight, then u and v want to have opposite states. The absolute value |we|
will indicate the strength of this requirement, and we will refer to |we| as the
absolute weight of edge e.

Unfortunately, there may be no configuration that respects the require-
ments imposed by all the edges. For example, consider three nodes a, b, c all
mutually connected to one another by edges of weight 1. Then, no matter what
configuration we choose, two of these nodes will have the same state and thus
will be violating the requirement that they have opposite states.

In view of this, we ask for something weaker. With respect to a given
configuration, we say that an edge e = (u, v) is good if the requirement it
imposes is satisfied by the states of its two endpoints: either we < 0 and su = sv,
or we > 0 and su �= sv. Otherwise we say e is bad. Note that we can express the
condition that e is good very compactly, as follows: wesusv < 0. Next we say
that a node u is satisfied in a given configuration if the total absolute weight

672 Chapter 12 Local Search

of all good edges incident to u is at least as large as the total absolute weight
of all bad edges incident to u. We can write this as∑

v :e=(u,v)∈E

wesusv ≤ 0.

Finally, we call a configuration stable if all nodes are satisfied.

Why do we use the term stable for such configurations? This is based on
viewing the network from the perspective of an individual node u. On its own,
the only choice u has is whether to take the state −1 or +1; and like all nodes,
it wants to respect as many edge requirements as possible (as measured in
absolute weight). Suppose u asks: Should I flip my current state? We see that
if u does flip its state (while all other nodes keep their states the same), then
all the good edges incident to u become bad, and all the bad edges incident
to u become good. So, to maximize the amount of good edge weight under
its direct control, u should flip its state if and only if it is not satisfied. In
other words, a stable configuration is one in which no individual node has an
incentive to flip its current state.

A basic question now arises: Does a Hopfield network always have a stable
configuration, and if so, how can we find one?

Designing the Algorithm
We will now design an algorithm that establishes the following result.

(12.3) Every Hopfield network has a stable configuration, and such a config-
uration can be found in time polynomial in n and W =∑

e |we|.

We will see that stable configurations in fact arise very naturally as the
local optima of a certain local search procedure on the Hopfield network.

To see that the statement of (12.3) is not entirely trivial, we note that
it fails to remain true if one changes the model in certain natural ways. For
example, suppose we were to define a directed Hopfield network exactly as
above, except that each edge is directed, and each node determines whether
or not it is satisfied by looking only at edges for which it is the tail. Then,
in fact, such a network need not have a stable configuration. Consider, for
example, a directed version of the three-node network we discussed earlier:
There are nodes a, b, c, with directed edges (a, b), (b, c), (c, a), all of weight
1. Then, if all nodes have the same state, they will all be unsatisfied; and if
one node has a different state from the other two, then the node directly in
front of it will be unsatisfied. Thus there is no configuration of this directed
network in which all nodes are satisfied.

12.3 An Application of Local Search to Hopfield Neural Networks 673

It is clear that a proof of (12.3) will need to rely somewhere on the
undirected nature of the network.

To prove (12.3), we will analyze the following simple iterative procedure,
which we call the State-Flipping Algorithm, to search for a stable configuration.

While the current configuration is not stable

There must be an unsatisfied node

Choose an unsatisfied node u

Flip the state of u

Endwhile

An example of the execution of this algorithm is depicted in Figure 12.4,
ending in a stable configuration.

–10

8 –4

–1 –1

(a)

–10

8 –4

–1 –1

(b)

–10

8 –4

–1 –1

(c)

–10

8 –4

–1 –1

(d)

–10

8 –4

–1 –1

(e)

–10

8 –4

–1 –1

(f)

Figure 12.4 Parts (a)–(f) depict the steps in an execution of the State-Flipping Algorithm
for a five-node Hopfield network, ending in a stable configuration. (Nodes are colored
black or white to indicate their state.)

674 Chapter 12 Local Search

Analyzing the Algorithm
Clearly, if the State-Flipping Algorithm we have just defined terminates, we
will have a stable configuration. What is not obvious is whether it must in
fact terminate. Indeed, in the earlier directed example, this process will simply
cycle through the three nodes, flipping their states sequentially forever.

We now prove that the State-Flipping Algorithm always terminates, and
we give a bound on the number of iterations it takes until termination. This
will provide a proof of (12.3). The key to proving that this process terminates
is an idea we’ve used in several previous situations: to look for a measure of
progress—namely, a quantity that strictly increases with every flip and has an
absolute upper bound. This can be used to bound the number of iterations.

Probably the most natural progress measure would be the number of
satisfied nodes: If this increased every time we flipped an unsatisfied node,
the process would run for at most n iterations before terminating with a stable
configuration. Unfortunately, this does not turn out to work. When we flip an
unsatisfied node v, it’s true that it has now become satisfied, but several of
its previously satisfied neighbors could now become unsatisfied, resulting in
a net decrease in the number of satisfied nodes. This actually happens in one
of the iterations depicted in Figure 12.4: when the middle node changes state,
it renders both of its (formerly satisfied) lower neighbors unsatisfied.

We also can’t try to prove termination by arguing that every node changes
state at most once during the execution of the algorithm: Again, looking at the
example in Figure 12.4, we see that the node in the lower right changes state
twice. (And there are more complex examples in which we can get a single
node to change state many times.)

However, there is a more subtle progress measure that does increase with
each flip of an unsatisfied node. Specifically, for a given configuration S, we
define �(S) to be the total absolute weight of all good edges in the network.
That is,

�(S)=
∑

good e

|we|.

Clearly, for any configuration S, we have �(S) ≥ 0 (since �(S) is a sum of
positive integers), and �(S) ≤W =∑

e |we| (since, at most, every edge is
good).

Now suppose that, in a nonstable configuration S, we choose a node u
that is unsatisfied and flip its state, resulting in a configuration S′. What can we
say about the relationship of �(S′) to �(S)? Recall that when u flips its state,
all good edges incident to u become bad, all bad edges incident to u become
good, and all edges that don’t have u as an endpoint remain the same. So,

12.3 An Application of Local Search to Hopfield Neural Networks 675

if we let gu and bu denote the total absolute weight on good and bad edges
incident to u, respectively, then we have

�(S′)=�(S)− gu + bu.

But, since u was unsatisfied in S, we also know that bu > gu; and since bu and
gu are both integers, we in fact have bu ≥ gu + 1. Thus

�(S′)≥�(S)+ 1.

Hence the value of � begins at some nonnegative integer, increases by at
least 1 on every flip, and cannot exceed W. Thus our process runs for at most
W iterations, and when it terminates, we must have a stable configuration.
Moreover, in each iteration we can identify an unsatisfied node using a number
of arithmetic operations that is polynomial in n; thus a running-time bound
that is polynomial in n and W follows as well.

So we see that, in the end, the existence proof for stable configurations
was really about local search. We first set up an objective function � that
we sought to maximize. Configurations were the possible solutions to this
maximization problem, and we defined what it meant for two configurations S
and S′ to be neighbors: S′ should be obtainable from S by flipping a single state.
We then studied the behavior of a simple iterative improvement algorithm
for local search (the upside-down form of gradient descent, since we have a
maximization problem); and we discovered the following.

(12.4) Any local maximum in the State-Flipping Algorithm to maximize �

is a stable configuration.

It’s worth noting that while our algorithm proves the existence of a stable
configuration, the running time leaves something to be desired when the
absolute weights are large. Specifically, and analogously to what we saw in
the Subset Sum Problem and in our first algorithm for maximum flow, the
algorithm we obtain here is polynomial only in the actual magnitude of the
weights, not in the size of their binary representation. For very large weights,
this can lead to running times that are quite infeasible.

However, no simple way around this situation is currently known. It turns
out to be an open question to find an algorithm that constructs stable states
in time polynomial in n and log W (rather than n and W), or in a number of
primitive arithmetic operations that is polynomial in n alone, independent of
the value of W.

676 Chapter 12 Local Search

12.4 Maximum-Cut Approximation via
Local Search

We now discuss a case where a local search algorithm can be used to provide
a provable approximation guarantee for an optimization problem. We will do
this by analyzing the structure of the local optima, and bounding the quality
of these locally optimal solutions relative to the global optimum. The problem
we consider is the Maximum-Cut Problem, which is closely related to the
problem of finding stable configurations for Hopfield networks that we saw in
the previous section.

The Problem
In the Maximum-Cut Problem, we are given an undirected graph G = (V , E),
with a positive integer weight we on each edge e. For a partition (A, B) of the
vertex set, we use w(A, B) to denote the total weight of edges with one end in
A and the other in B:

w(A, B)=
∑

e=(u , v)
u∈A, v∈B

we.

The goal is to find a partition (A, B) of the vertex set so that w(A, B) is
maximized. Maximum Cut is NP-hard, in the sense that, given a weighted
graph G and a bound β, it is NP-complete to decide whether there is a partition
(A, B) of the vertices of G with w(A, B) ≥ β. At the same time, of course,
Maximum Cut resembles the polynomially solvable Minimum s-t Cut Problem
for flow networks; the crux of its intractability comes from the fact that we are
seeking to maximize the edge weight across the cut, rather than minimize it.

Although the problem of finding a stable configuration of a Hopfield
network was not an optimization problem per se, we can see that Maximum
Cut is closely related to it. In the language of Hopfield networks, Maximum
Cut is an instance in which all edge weights are positive (rather than negative),
and configurations of nodes states S correspond naturally to partitions (A, B):
Nodes have state −1 if and only if they are in the set A, and state +1 if and
only if they are in the set B. The goal is to assign states so that as much weight
as possible is on good edges—those whose endpoints have opposite states.
Phrased this way, Maximum Cut seeks to maximize precisely the quantity
�(S) that we used in the proof of (12.3), in the case when all edge weights
are positive.

Designing the Algorithm
The State-Flipping Algorithm used for Hopfield networks provides a local
search algorithm to approximate the Maximum Cut objective function �(S)=

12.4 Maximum-Cut Approximation via Local Search 677

w(A, B). In terms of partitions, it says the following: If there exists a node
u such that the total weight of edges from u to nodes in its own side of the
partition exceeds the total weight of edges from u to nodes on the other side of
the partition, then u itself should be moved to the other side of the partition.

We’ll call this the “single-flip” neighborhood on partitions: Partitions
(A, B) and (A′, B′) are neighboring solutions if (A′, B′) can be obtained from
(A, B) by moving a single node from one side of the partition to the other. Let’s
ask two basic questions.

. Can we say anything concrete about the quality of the local optima under
the single-flip neighborhood?

. Since the single-flip neighborhood is about as simple as one could
imagine, what other neighborhoods might yield stronger local search
algorithms for Maximum Cut?

We address the first of these questions here, and we take up the second one
in the next section.

Analyzing the Algorithm
The following result addresses the first question, showing that local optima
under the single-flip neighborhood provide solutions achieving a guaranteed
approximation bound.

(12.5) Let (A, B) be a partition that is a local optimum for Maximum Cut
under the single-flip neighborhood. Let (A∗, B∗) be a globally optimal partition.
Then w(A, B)≥ 1

2w(A∗, B∗).

Proof. Let W =∑
e we. We also extend our notation a little: for two nodes u

and v, we use wuv to denote we if there is an edge e joining u and v, and 0
otherwise.

For any node u ∈ A, we must have∑
v∈A

wuv ≤
∑
v∈B

wuv,

since otherwise u should be moved to the other side of the partition, and
(A, B) would not be locally optimal. Suppose we add up these inequalities for
all u ∈ A; any edge that has both ends in A will appear on the left-hand side of
exactly two of these inequalities, while any edge that has one end in A and one
end in B will appear on the right-hand side of exactly one of these inequalities.
Thus, we have

2
∑

{u,v}⊆A

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (12.1)

678 Chapter 12 Local Search

We can apply the same reasoning to the set B, obtaining

2
∑

{u,v}⊆B

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (12.2)

If we add together inequalities (12.1) and (12.2), and divide by 2, we get∑
{u,v}⊆A

wuv +
∑

{u,v}⊆B

wuv ≤ w(A, B). (12.3)

The left-hand side of inequality (12.3) accounts for all edge weight that does
not cross from A to B; so if we add w(A, B) to both sides of (12.3), the left-
hand side becomes equal to W. The right-hand side becomes 2w(A, B), so we
have W ≤ 2w(A, B), or w(A, B)≥ 1

2W.

Since the globally optimal partition (A∗, B∗) clearly satisfies w(A∗, B∗) ≤
W, we have w(A, B)≥ 1

2w(A∗, B∗).

Notice that we never really thought much about the optimal partition
(A∗, B∗) in the proof of (12.5); we really showed the stronger statement that,
in any locally optimal solution under the single-flip neighborhood, at least half
the total edge weight in the graph crosses the partition.

Statement (12.5) proves that a local optimum is a 2-approximation to
the maximum cut. This suggests that the local optimization may be a good
algorithm for approximately maximizing the cut value. However, there is one
more issue that we need to consider: the running time. As we saw at the end
of Section 12.3, the Single-Flip Algorithm is only pseudo-polynomial, and it
is an open problem whether a local optimum can be found in polynomial
time. However, in this case we can do almost as well, simply by stopping the
algorithm when there are no “big enough” improvements.

Let (A, B) be a partition with weight w(A, B). For a fixed ε > 0, let us say
that a single node flip is a big-improvement-flip if it improves the cut value by
at least 2ε

n w(A, B) where n = |V|. Now consider a version of the Single-Flip
Algorithm when we only accept big-improvement-flips and terminate once
no such flip exists, even if the current partition is not a local optimum. We
claim that this will lead to almost as good an approximation and will run
in polynomial time. First we can extend the previous proof to show that the
resulting cut is almost as good. We simply have to add the term 2ε

n w(A, B) to
each inequality, as all we know is that there are no big-improvement-flips.

(12.6) Let (A, B) be a partition such that no big-improvement-flip is possible.
Let (A∗, B∗) be a globally optimal partition. Then (2+ ε)w(A, B)≥ w(A∗, B∗).

Next we consider the running time.

12.5 Choosing a Neighbor Relation 679

(12.7) The version of the Single-Flip Algorithm that only accepts big-
improvement-flips terminates after at most O(ε−1n log W) flips, assuming the
weights are integral, and W =∑

e we.

Proof. Each flip improves the objective function by at least a factor of (1+
ε/n). Since (1+ 1/x)x ≥ 2 for any x ≥ 1, we see that (1+ ε/n)n/ε ≥ 2, and so
the objective function increases by a factor of at least 2 every n/ε flips. The
weight cannot exceed W, and hence it can only be doubled at most log W
times.

12.5 Choosing a Neighbor Relation
We began the chapter by saying that a local search algorithm is really based
on two fundamental ingredients: the choice of the neighbor relation, and the
rule for choosing a neighboring solution at each step. In Section 12.2 we spent
time thinking about the second of these: both the Metropolis Algorithm and
simulated annealing took the neighbor relation as given and modified the way
in which a neighboring solution should be chosen.

What are some of the issues that should go into our choice of the neighbor
relation? This can turn out to be quite subtle, though at a high level the trade-off
is a basic one.

(i) The neighborhood of a solution should be rich enough that we do not
tend to get stuck in bad local optima; but

(ii) the neighborhood of a solution should not be too large, since we want to
be able to efficiently search the set of neighbors for possible local moves.

If the first of these points were the only concern, then it would seem that we
should simply make all solutions neighbors of one another—after all, then
there would be no local optima, and the global optimum would always be just
one step away! The second point exposes the (obvious) problem with doing
this: If the neighborhood of the current solution consists of every possible
solution, then the local search paradigm gives us no leverage whatsoever; it
reduces simply to brute-force search of this neighborhood.

Actually, we’ve already encountered one case in which choosing the right
neighbor relation had a profound effect on the tractability of a problem, though
we did not explicitly take note of this at the time: This was in the Bipartite
Matching Problem. Probably the simplest neighbor relation on matchings
would be the following: M ′ is a neighbor of M if M ′ can be obtained by
the insertion or deletion of a single edge in M. Under this definition, we get
“landscapes” that are quite jagged, quite like the Vertex Cover examples we

680 Chapter 12 Local Search

saw earlier; and we can get locally optimal matchings under this definition
that have only half the size of the maximum matching.

But suppose we try defining a more complicated (indeed, asymmetric)
neighbor relation: We say that M ′ is a neighbor of M if, when we set up
the corresponding flow network, M ′ can be obtained from M by a single
augmenting path. What can we say about a matching M if it is a local maximum
under this neighbor relation? In this case, there is no augmenting path, and
so M must in fact be a (globally) maximum matching. In other words, with
this neighbor relation, the only local maxima are global maxima, and so
direct gradient ascent will produce a maximum matching. If we reflect on
what the Ford-Fulkerson algorithm is doing in our reduction from Bipartite
Matching to Maximum Flow, this makes sense: the size of the matching strictly
increases in each step, and we never need to “back out” of a local maximum.
Thus, by choosing the neighbor relation very carefully, we’ve turned a jagged
optimization landscape into a simple, tractable funnel.

Of course, we do not expect that things will always work out this well.
For example, since Vertex Cover is NP-complete, it would be surprising if it
allowed for a neighbor relation that simultaneously produced “well-behaved”
landscapes and neighborhoods that could be searched efficiently. We now
look at several possible neighbor relations in the context of the Maximum Cut
Problem, which we considered in the previous section. The contrasts among
these neighbor relations will be characteristic of issues that arise in the general
topic of local search algorithms for computationally hard graph-partitioning
problems.

Local Search Algorithms for Graph Partitioning
In Section 12.4, we considered a state-flipping algorithm for the Maximum-
Cut Problem, and we showed that the locally optimal solutions provide a
2-approximation. We now consider neighbor relations that produce larger
neighborhoods than the single-flip rule, and consequently attempt to reduce
the prevalence of local optima. Perhaps the most natural generalization is the
k-flip neighborhood, for k ≥ 1: we say that partitions (A, B) and (A′, B′) are
neighbors under the k-flip rule if (A′, B′) can be obtained from (A, B) by moving
at most k nodes from one side of the partition to the other.

Now, clearly if (A, B) and (A′, B′) are neighbors under the k-flip rule, then
they are also neighbors under the k′-flip rule for every k′> k. Thus, if (A, B) is a
local optimum under the k′-flip rule, it is also a local optimum under the k-flip
rule for every k < k′. But reducing the set of local optima by raising the value
of k comes at a steep computational price: to examine the set of neighbors of
(A, B) under the k-flip rule, we must consider all �(nk) ways of moving up to

12.6 Classification via Local Search 681

k nodes to the opposite side of the partition. This becomes prohibitive even
for small values of k.

Kernighan and Lin (1970) proposed an alternate method for generating
neighboring solutions; it is computationally much more efficient, but still
allows large-scale transformations of solutions in a single step. Their method,
which we’ll call the K-L heuristic, defines the neighbors of a partition (A, B)

according the following n-phase procedure.

. In phase 1, we choose a single node to flip, in such a way that the value
of the resulting solution is as large as possible. We perform this flip even
if the value of the solution decreases relative to w(A, B). We mark the
node that has been flipped and let (A1, B1) denote the resulting solution.

. At the start of phase k, for k > 1, we have a partition (Ak−1, Bk−1); and
k − 1 of the nodes are marked. We choose a single unmarked node to
flip, in such a way that the value of the resulting solution is as large as
possible. (Again, we do this even if the value of the solution decreases as
a result.) We mark the node we flip and let (Ak, Bk) denote the resulting
solution.

. After n phases, each node is marked, indicating that it has been flipped
precisely once. Consequently, the final partition (An, Bn) is actually the
mirror image of the original partition (A, B): We have An = B and Bn =A.

. Finally, the K-L heuristic defines the n − 1 partitions (A1, B1), . . . ,
(An−1, Bn−1) to be the neighbors of (A, B). Thus (A, B) is a local optimum
under the K-L heuristic if and only if w(A, B)≥w(Ai, Bi) for 1≤ i≤ n− 1.

So we see that the K-L heuristic tries a very long sequence of flips, even
while it appears to be making things worse, in the hope that some partition
(Ai, Bi) generated along the way will turn out better than (A, B). But even
though it generates neighbors very different from (A, B), it only performs n flips
in total, and each takes only O(n) time to perform. Thus it is computationally
much more reasonable than the k-flip rule for larger values of k. Moreover, the
K-L heuristic has turned out to be very powerful in practice, despite the fact
that rigorous analysis of its properties has remained largely an open problem.

* 12.6 Classification via Local Search
We now consider a more complex application of local search to the design
of approximation algorithms, related to the Image Segmentation Problem that
we considered as an application of network flow in Section 7.10. The more
complex version of Image Segmentation that we focus on here will serve as
an example where, in order to obtain good performance from a local search
algorithm, one needs to use a rather complex neighborhood structure on the

682 Chapter 12 Local Search

set of solutions. We will find that the natural “state-flipping” neighborhood
that we saw in earlier sections can result in very bad local optima. To obtain
good performance, we will instead use an exponentially large neighborhood.
One problem with such a large neighborhood is that we can no longer afford
to search though all neighbors of the current solution one by one for an
improving solution. Rather, we will need a more sophisticated algorithm to
find an improving neighbor whenever one exists.

The Problem
Recall the basic Image Segmentation Problem that we considered as an appli-
cation of network flow in Section 7.10. There we formulated the problem of
segmenting an image as a labeling problem; the goal was to label (i.e., classify)
each pixel as belonging to the foreground or the background of the image. At
the time, it was clear that this was a very simple formulation of the problem,
and it would be nice to handle more complex labeling tasks—for example,
to segment the regions of an image based on their distance from the camera.
Thus we now consider a labeling problem with more than two labels. In the
process, we will end up with a framework for classification that applies more
broadly than just to the case of pixels in an image.

In setting up the two-label foreground/background segmentation problem,
we ultimately arrived at the following formulation. We were given a graph
G = (V , E) where V corresponded to the pixels of the image, and the goal
was to classify each node in V as belonging to one of two possible classes:
foreground or background. Edges represented pairs of nodes likely to belong to
the same class (e.g., because they were next to each other), and for each edge
(i, j) we were given a separation penalty pij ≥ 0 for placing i and j in different
classes. In addition, we had information about the likelihood of whether a
node or pixel was more likely to belong to the foreground or the background.
These likelihoods translated into penalties for assigning a node to the class
where it was less likely to belong. Then the problem was to find a labeling
of the nodes that minimized the total separation and assignment penalties.
We showed that this minimization problem could be solved via a minimum-
cut computation. For the rest of this section, we will refer to the problem we
defined there as Two-Label Image Segmentation.

Here we will formulate the analogous classification/labeling problem with
more than two classes or labels. This problem will turn out to be NP-hard,
and we will develop a local search algorithm where the local optima are 2-
approximations for the best labeling. The general labeling problem, which we
will consider in this section, is formulated as follows. We are given a graph
G = (V , E) and a set L of k labels. The goal is to label each node in V with one
of the labels in L so as to minimize a certain penalty. There are two competing

12.6 Classification via Local Search 683

forces that will guide the choice of the best labeling. For each edge (i, j) ∈ E,
we have a separation penalty pij ≥ 0 for labeling the two nodes i and j with
different labels. In addition, nodes are more likely to have certain labels than
others. This is expressed through an assignment penalty. For each node i ∈ V
and each label a ∈ L, we have a nonnegative penalty ci(a) ≥ 0 for assigning
label a to node i. (These penalties play the role of the likelihoods from the
Two-Label Image Segmentation Problem, except that here we view them as
costs to be minimized.) The Labeling Problem is to find a labeling f : V → L
that minimizes the total penalty:

�(f)=
∑
i∈V

ci(f (i))+
∑

(i, j)∈E:f (i)�=f (j)

pij.

Observe that the Labeling Problem with only two labels is precisely the
Image Segmentation Problem from Section 7.10. For three labels, the Labeling
Problem is already NP-hard, though we will not prove this here.

Our goal is to develop a local search algorithm for this problem, in which
local optima are good approximations to the optimal solution. This will also
serve as an illustration of the importance of choosing good neighborhoods
for defining the local search algorithm. There are many possible choices for
neighbor relations, and we’ll see that some work a lot better than others. In
particular, a fairly complex definition of the neighborhoods will be used to
obtain the approximation guarantee.

Designing the Algorithm
A First Attempt: The Single-Flip Rule The simplest and perhaps most natural
choice for neighbor relation is the single-flip rule from the State-Flipping
Algorithm for the Maximum-Cut Problem: Two labelings are neighbors if we
can obtain one from the other by relabeling a single node. Unfortunately, this
neighborhood can lead to quite poor local optima for our problem even when
there are only two labels.

This may be initially surprising, since the rule worked quite well for the
Maximum-Cut Problem. However, our problem is related to the Minimum-Cut
Problem. In fact, Minimum s-t Cut corresponds to a special case when there are
only two labels, and s and t are the only nodes with assignment penalties. It is
not hard to see that this State-Flipping Algorithm is not a good approximation
algorithm for the Minimum-Cut Problem. See Figure 12.5, which indicates how
the edges incident to s may form the global optimum, while the edges incident
to t can form a local optimum that is much worse.

A Closer Attempt: Considering Two Labels at a Time Here we will develop a
local search algorithm in which the neighborhoods are much more elaborate.
One interesting feature of our algorithm is that it allows each solution to have

684 Chapter 12 Local Search

s t

A bad local optimum:
Cutting the two edges incident
to s would be better.

Figure 12.5 An instance of the Minimum s-t Cut Problem, where all edges have
capacity 1.

exponentially many neighbors. This appears to be contrary to the general rule
that “the neighborhood of a solution should not be too large,” as stated in
Section 12.5. However, we will be working with neighborhoods in a more
subtle way here. Keeping the size of the neighborhood small is good if the
plan is to search for an improving local step by brute force; here, however, we
will use a polynomial-time minimum-cut computation to determine whether
any of a solution’s exponentially many neighbors represent an improvement.

The idea of the local search is to use our polynomial-time algorithm
for Two-Label Image Segmentation to find improving local steps. First let’s
consider a basic implementation of this idea that does not always give a good
approximation guarantee. For a labeling f , we pick two labels a, b ∈ L and
restrict attention to the nodes that have labels a or b in labeling f . In a single
local step, we will allow any subset of these nodes to flip labels from a to b, or
from b to a. More formally, two labelings f and f ′ are neighbors if there are two
labels a, b ∈ L such that for all other labels c �∈ {a, b} and all nodes i ∈ V, we
have f (i)= c if and only if f ′(i)= c. Note that a state f can have exponentially
many neighbors, as an arbitrary subset of the nodes labeled a and b can flip
their label. However, we have the following.

(12.8) If a labeling f is not locally optimal for the neighborhood above, then a
neighbor with smaller penalty can be found via k2 minimum-cut computations.

Proof. There are fewer than k2 pairs of distinct labels, so we can try each pair
separately. Given a pair of labels a, b ∈ L, consider the problem of finding an
improved labeling via swapping labels of nodes between labels a and b. This
is exactly the Segmentation Problem for two labels on the subgraph of nodes
that f labels a or b. We use the algorithm developed for Two-Label Image
Segmentation to find the best such relabeling.

12.6 Classification via Local Search 685

s t

z

Figure 12.6 A bad local optimum for the local search algorithm that considers only
two labels at a time.

This neighborhood is much better than the single-flip neighborhood we
considered first. For example, it solves the case of two labels optimally.
However, even with this improved neighborhood, local optima can still be
bad, as shown in Figure 12.6. In this example, there are three nodes s, t, and z
that are each required to keep their initial labels. Each other node lies on one of
the sides of the triangle; it has to get one of the two labels associated with the
nodes at the ends of this side. These requirements can be expressed simply by
giving each node a very large assignment penalty for the labels that we are not
allowing. We define the edge separation penalties as follows: The light edges
in the figure have penalty 1, while the heavy edges have a large separation
penalty of M. Now observe that the labeling in the figure has penalty M + 3
but is locally optimal. The (globally) optimal penalty is only 3 and is obtained
from the labeling in the figure by relabeling both nodes next to s.

A Local Search Neighborhood That Works Next we define a different neigh-
borhood that leads to a good approximation algorithm. The local optimum in
Figure 12.6 may be suggestive of what would be a good neighborhood: We
need to be able to relabel nodes of different labels in a single step. The key is
to find a neighbor relation rich enough to have this property, yet one that still
allows us to find an improving local step in polynomial time.

Consider a labeling f . As part of a local step in our new algorithm, we will
want to do the following. We pick one label a ∈ L and restrict attention to the

686 Chapter 12 Local Search

i je

s

Node e can always be
placed so that at most one
incident edge is cut.

Figure 12.7 The construction
for edge e = (i, j) with a �=
f (i) �= f (j) �= a.

nodes that do not have label a in labeling f . As a single local step, we will
allow any subset of these nodes to change their labels to a. More formally,
for two labelings f and f ′, we say that f ′ is a neighbor of f if there is a label
a ∈ L such that, for all nodes i ∈ V, either f ′(i)= f (i) or f ′(i)= a. Note that this
neighbor relation is not symmetric; that is, we cannot get f back from f ′ via
a single step. We will now show that for any labeling f we can find its best
neighbor via k minimum-cut computations, and further, a local optimum for
this neighborhood is a 2-approximation for the minimum penalty labeling.

Finding a Good Neighbor To find the best neighbor, we will try each label a
separately. Consider a label a. We claim that the best relabeling in which nodes
may change their labels to a can be found via a minimum-cut computation.
The construction of the minimum-cut graph G′ = (V ′, E′) is analogous to
the minimum-cut computation developed for Two-Label Image Segmentation.
There we introduced a source s and a sink t to represent the two labels. Here we
will also introduce a source and a sink, where the source s will represent label
a, while the sink t will effectively represent the alternate option nodes have—
namely, to keep their original labels. The idea will be to find the minimum cut
in G′ and relabel all nodes on the s-side of the cut to label a, while letting all
nodes on the t-side keep their original labels.

For each node of G, we will have a corresponding node in the new set
V ′ and will add edges (i, t) and (s, i) to E′, as was done in Figure 7.18 from
Chapter 7 for the case of two labels. The edge (i, t) will have capacity ci(a), as
cutting the edge (i, t) places node i on the source side and hence corresponds
to labeling node i with label a. The edge (i, s) will have capacity ci(f (i)), if
f (i) �= a, and a very large number M (or +∞) if f (i)= a. Cutting edge (i, t)
places node i on the sink side and hence corresponds to node i retaining its
original label f (i) �= a. The large capacity of M prevents nodes i with f (i)= a
from being placed on the sink side.

In the construction for the two-label problem, we added edges between
the nodes of V and used the separation penalties as capacities. This works
well for nodes that are separated by the cut, or nodes on the source side that
are both labeled a. However, if both i and j are on the sink side of the cut, then
the edge connecting them is not cut, yet i and j are separated if f (i) �= f (j). We
deal with this difficulty by enhancing the construction of G′ as follows. For an
edge (i, j), if f (i)= f (j) or one of i or j is labeled a, then we add an edge (i, j)
to E′ with capacity pij. For the edges e = (i, j) where f (i) �= f (j) and neither has
label a, we’ll have to do something different to correctly encode via the graph
G′ that i and j remain separated even if they are both on the sink side. For each
such edge e, we add an extra node e to V ′ corresponding to edge e, and add
the edges (i, e), (e, j), and (e, s) all with capacity pij. See Figure 12.7 for these
edges.

12.6 Classification via Local Search 687

(12.9) Given a labeling f and a label a, the minimum cut in the graph G′ =
(V ′, E′) corresponds to the minimum-penalty neighbor of labeling f obtained
by relabeling a subset of nodes to label a. As a result, the minimum-penalty
neighbor of f can be found via k minimum-cut computations, one for each label
in L.

Proof. Let (A, B) be an s-t cut in G′. The large value of M ensures that a
minimum-capacity cut will not cut any of these high-capacity edges. Now
consider a node e in G′ corresponding to an edge e = (i, j) ∈ E. The node e ∈ V ′
has three adjacent edges, each with capacity pij. Given any partition of the
other nodes, we can place e so that at most one of these three edges is cut.
We’ll call a cut good if no edge of capacity M is cut and, for all the nodes
corresponding to edges in E, at most one of the adjacent edges is cut. So far
we have argued that all minimum-capacity cuts are good.

Good s-t cuts in G′ are in one-to-one correspondence with relabelings of f
obtained by changing the label of a subset of nodes to a. Consider the capacity
of a good cut. The edges (s, i) and (i, t) contribute exactly the assignment
penalty to the capacity of the cut. The edges (i, j) directly connecting nodes in
V contribute exactly the separation penalty of the nodes in the corresponding
labeling: pij if they are separated, and 0 otherwise. Finally, consider an edge
e= (i, j) with a corresponding node e ∈V ′. If i and j are both on the source side,
none of the three edges adjacent to e are cut, and in all other cases exactly one
of these edges is cut. So again, the three edges adjacent to e contribute to the cut
exactly the separation penalty between i and j in the corresponding labeling.
As a result, the capacity of a good cut is exactly the same as the penalty of the
corresponding labeling, and so the minimum-capacity cut corresponds to the
best relabeling of f .

Analyzing the Algorithm
Finally, we need to consider the quality of the local optima under this definition
of the neighbor relation. Recall that in our previous two attempts at defining
neighborhoods, we found that they can both lead to bad local optima. Now, by
contrast, we’ll show that any local optimum under our new neighbor relation
is a 2-approximation to the minimum possible penalty.

To begin the analysis, consider an optimal labeling f ∗, and for a label a ∈ L
let V∗a = {i : f ∗(i)= a} be the set of nodes labeled by a in f ∗. Consider a locally
optimal labeling f . We obtain a neighbor fa of labeling f by starting with f and
relabeling all nodes in V∗a to a. The labeling f is locally optimal, and hence this
neighbor fa has no smaller penalty: �(fa)≥�(f). Now consider the difference
�(fa)−�(f), which we know is nonnegative. What quantities contribute to

688 Chapter 12 Local Search

this difference? The only possible change in the assignment penalties could
come from nodes in V∗a: for each i ∈ V∗a, the change is ci(f

∗(i)) − ci(f (i)).
The separation penalties differ between the two labelings only in edges (i, j)
that have at least one end in V∗a. The following inequality accounts for these
differences.

(12.10) For a labeling f and its neighbor fa, we have

�(fa)−�(f)≤
∑
i∈V∗a

[
ci(f

∗(i))− ci(f (i))
]+ ∑

(i,j) leaving V∗a

pij −
∑

(i, j) in or leaving V∗a
f (i)�=f (j)

pij.

Proof. The change in the assignment penalties is exactly
∑

i∈V∗a ci(f
∗(i)) −

ci(f (i)). The separation penalty for an edge (i, j) can differ between the two
labelings only if edge (i, j) has at least one end in V∗a. The total separation
penalty of labeling f for such edges is exactly∑

(i, j) in or leaving V∗a
f (i)�=f (j)

pij ,

while the labeling fa has a separation penalty of at most∑
(i, j) leaving V∗a

pij

for these edges. (Note that this latter expression is only an upper bound, since
an edge (i, j) leaving V∗a that has its other end in a does not contribute to the
separation penalty of fa.)

Now we are ready to prove our main claim.

(12.11) For any locally optimal labeling f , and any other labeling f ∗, we have
�(f)≤ 2�(f ∗).

Proof. Let fa be the neighbor of f defined previously by relabeling nodes to
label a. The labeling f is locally optimal, so we have �(fa) −�(f) ≥ 0 for
all a ∈ L. We use (12.10) to bound �(fa)−�(f) and then add the resulting
inequalities for all labels to obtain the following:

0≤
∑
a∈L

(�(fa)−�(f))

≤
∑
a∈L

⎡
⎢⎢⎣∑

i∈V∗a

ci(f
∗(i))− ci(f (i))+

∑
(i, j) leaving V∗a

pij −
∑

(i, j) in or leaving V∗a
f (i) �=f (j)

pij

⎤
⎥⎥⎦ .

12.6 Classification via Local Search 689

We will rearrange the inequality by grouping the positive terms on the left-
hand side and the negative terms on the right-hand side. On the left-hand
side, we get ci(f

∗(i)) for all nodes i, which is exactly the assignment penalty
of f ∗. In addition, we get the term pij twice for each of the edges separated by
f ∗ (once for each of the two labels f ∗(i) and f ∗(j)).

On the right-hand side, we get ci(f (i)) for each node i, which is exactly the
assignment penalty of f . In addition, we get the terms pij for edges separated
by f . We get each such separation penalty at least once, and possibly twice if
it is also separated by f ∗.

In summary, we get the following.

2�(f ∗)≥
∑
a∈L

⎡
⎣∑

i∈V∗a

ci(f
∗(i))+

∑
(i, j) leaving V∗a

pij

⎤
⎦

≥
∑
a∈L

⎡
⎢⎢⎣∑

i∈V∗a

ci(f (i))+
∑

(i, j) in or leaving V∗a
f (i) �=f (j)

pij

⎤
⎥⎥⎦≥�(f),

proving the claimed bound.

We proved that all local optima are good approximations to the labeling
with minimum penalty. There is one more issue to consider: How fast does
the algorithm find a local optimum? Recall that in the case of the Maximum-
Cut Problem, we had to resort to a variant of the algorithm that accepts only
big improvements, as repeated local improvements may not run in polynomial
time. The same is also true here. Let ε > 0 be a constant. For a given labeling f ,
we will consider a neighboring labeling f ′ a significant improvement if �(f ′)≤
(1− ε/3k)�(f). To make sure the algorithm runs in polynomial time, we should
only accept significant improvements, and terminate when no significant
improvements are possible. After at most ε−1k significant improvements, the
penalty decreases by a constant factor; hence the algorithm will terminate in
polynomial time. It is not hard to adapt the proof of (12.11) to establish the
following.

(12.12) For any fixed ε > 0, the version of the local search algorithm that only
accepts significant improvements terminates in polynomial time and results in
a labeling f such that �(f)≤ (2+ ε)�(f ∗) for any other labeling f ∗.

690 Chapter 12 Local Search

12.7 Best-Response Dynamics and Nash Equilibria
Thus far we have been considering local search as a technique for solving
optimization problems with a single objective—in other words, applying local
operations to a candidate solution so as to minimize its total cost. There are
many settings, however, where a potentially large number of agents, each with
its own goals and objectives, collectively interact so as to produce a solution
to some problem. A solution that is produced under these circumstances often
reflects the “tug-of-war” that led to it, with each agent trying to pull the solution
in a direction that is favorable to it. We will see that these interactions can be
viewed as a kind of local search procedure; analogues of local minima have a
natural meaning as well, but having multiple agents and multiple objectives
introduces new challenges.

The field of game theory provides a natural framework in which to talk
about what happens in such situations, when a collection of agents interacts
strategically—in other words, with each trying to optimize an individual ob-
jective function. To illustrate these issues, we consider a concrete application,
motivated by the problem of routing in networks; along the way, we will in-
troduce some notions that occupy central positions in the area of game theory
more generally.

The Problem
In a network like the Internet, one frequently encounters situations in which
a number of nodes all want to establish a connection to a single source
node s. For example, the source s may be generating some kind of data
stream that all the given nodes want to receive, as in a style of one-to-many
network communication known as multicast. We will model this situation by
representing the underlying network as a directed graph G= (V , E), with a cost
ce ≥ 0 on each edge. There is a designated source node s ∈ V and a collection
of k agents located at distinct terminal nodes t1, t2, . . . , tk ∈ V. For simplicity,
we will not make a distinction between the agents and the nodes at which
they reside; in other words, we will think of the agents as being t1, t2, . . . , tk.
Each agent tj wants to construct a path Pj from s to tj using as little total cost
as possible.

Now, if there were no interaction among the agents, this would consist of
k separate shortest-path problems: Each agent tj would find an s-tj path for
which the total cost of all edges is minimized, and use this as its path Pj. What
makes this problem interesting is the prospect of agents being able to share the
costs of edges. Suppose that after all the agents have chosen their paths, agent
tj only needs to pay its “fair share” of the cost of each edge e on its path; that
is, rather than paying ce for each e on Pi, it pays ce divided by the number of

12.7 Best-Response Dynamics and Nash Equilibria 691

agents whose paths contain e. In this way, there is an incentive for the agents
to choose paths that overlap, since they can then benefit by splitting the costs
of edges. (This sharing model is appropriate for settings in which the presence
of multiple agents on an edge does not significantly degrade the quality of
transmission due to congestion or increased latency. If latency effects do come
into play, then there is a countervailing penalty for sharing; this too leads to
interesting algorithmic questions, but we will stick to our current focus for
now, in which sharing comes with benefits only.)

Best-Response Dynamics and Nash Equilibria: Definitions and
Examples
To see how the option of sharing affects the behavior of the agents, let’s begin
by considering the pair of very simple examples in Figure 12.8. In example (a),
each of the two agents has two options for constructing a path: the middle route
through v, and the outer route using a single edge. Suppose that each agent
starts out with an initial path but is continually evaluating the current situation
to decide whether it’s possible to switch to a better path.

In example (a), suppose the two agents start out using their outer paths.
Then t1 sees no advantage in switching paths (since 4 < 5+ 1), but t2 does
(since 8 > 5+ 1), and so t2 updates its path by moving to the middle. Once
this happens, things have changed from the perspective of t1: There is suddenly
an advantage for t1 in switching as well, since it now gets to share the cost of
the middle path, and hence its cost to use the middle path becomes 2.5+ 1< 4.
Thus it will switch to the middle path. Once we are in a situation where both

s

v

t2t1

s

t

4
5

8

1 1

1 + ε k

k agents

(a) (b)

Figure 12.8 (a) It is in the two agents’ interest to share the middle path. (b) It would
be better for all the agents to share the edge on the left. But if all k agents start on the
right-hand edge, then no one of them will want to unilaterally move from right to left;
in other words, the solution in which all agents share the edge on the right is a bad
Nash equilibrium.

692 Chapter 12 Local Search

sides are using the middle path, neither has an incentive to switch, and so this
is a stable solution.

Let’s discuss two definitions from the area of game theory that capture
what’s going on in this simple example. While we will continue to focus on
our particular multicast routing problem, these definitions are relevant to any
setting in which multiple agents, each with an individual objective, interact to
produce a collective solution. As such, we will phrase the definitions in these
general terms.

. First of all, in the example, each agent was continually prepared to
improve its solution in response to changes made by the other agent(s).
We will refer to this process as best-response dynamics. In other words,
we are interested in the dynamic behavior of a process in which each
agent updates based on its best response to the current situation.

. Second, we are particularly interested in stable solutions, where the best
response of each agent is to stay put. We will refer to such a solution,
from which no agent has an incentive to deviate, as a Nash equilibrium.
(This is named after the mathematician John Nash, who won the Nobel
Prize in economics for his pioneering work on this concept.) Hence,
in example (a), the solution in which both agents use the middle path
is a Nash equilibrium. Note that the Nash equilibria are precisely the
solutions at which best-response dynamics terminate.

The example in Figure 12.8(b) illustrates the possibility of multiple Nash
equilibria. In this example, there are k agents that all reside at a common node
t (that is, t1= t2= . . .= tk = t), and there are two parallel edges from s to t with
different costs. The solution in which all agents use the left-hand edge is a Nash
equilibrium in which all agents pay (1+ ε)/k. The solution in which all agents
use the right-hand edge is also a Nash equilibrium, though here the agents each
pay k/k = 1. The fact that this latter solution is a Nash equilibrium exposes an
important point about best-response dynamics. If the agents could somehow
synchronously agree to move from the right-hand edge to the left-hand one,
they’d all be better off. But under best-response dynamics, each agent is only
evaluating the consequences of a unilateral move by itself. In effect, an agent
isn’t able to make any assumptions about future actions of other agents—in
an Internet setting, it may not even know anything about these other agents
or their current solutions—and so it is only willing to perform updates that
lead to an immediate improvement for itself.

To quantify the sense in which one of the Nash equilibria in Figure 12.8(b)
is better than the other, it is useful to introduce one further definition. We
say that a solution is a social optimum if it minimizes the total cost to all
agents. We can think of such a solution as the one that would be imposed by

12.7 Best-Response Dynamics and Nash Equilibria 693

s

v

t2t1

3
5

5

1 1

Figure 12.9 A network in
which the unique Nash equi-
libriumdiffers from the social
optimum.

a benevolent central authority that viewed all agents as equally important and
hence evaluated the quality of a solution by summing the costs they incurred.
Note that in both (a) and (b), there is a social optimum that is also a Nash
equilibrium, although in (b) there is also a second Nash equilibrium whose
cost is much greater.

The Relationship to Local Search
Around here, the connections to local search start to come into focus. A set of
agents following best-response dynamics are engaged in some kind of gradient
descent process, exploring the “landscape” of possible solutions as they try to
minimize their individual costs. The Nash equilibria are the natural analogues
of local minima in this process: solutions from which no improving move is
possible. And the “local” nature of the search is clear as well, since agents are
only updating their solutions when it leads to an immediate improvement.

Having said all this, it’s important to think a bit further and notice the
crucial ways in which this differs from standard local search. In the beginning
of this chapter, it was easy to argue that the gradient descent algorithm for
a combinatorial problem must terminate at a local minimum: each update
decreased the cost of the solution, and since there were only finitely many
possible solutions, the sequence of updates could not go on forever. In other
words, the cost function itself provided the progress measure we needed to
establish termination.

In best-response dynamics, on the other hand, each agent has its own
personal objective function to minimize, and so it’s not clear what overall
“progress” is being made when, for example, agent ti decides to update its
path from s. There’s progress for ti, of course, since its cost goes down, but
this may be offset by an even larger increase in the cost to some other agent.
Consider, for example, the network in Figure 12.9. If both agents start on the
middle path, then t1 will in fact have an incentive to move to the outer path; its
cost drops from 3.5 to 3, but in the process the cost of t2 increases from 3.5 to 6.
(Once this happens, t2 will also move to its outer path, and this solution—with
both nodes on the outer paths—is the unique Nash equilibrium.)

There are examples, in fact, where the cost-increasing effects of best-
response dynamics can be much worse than this. Consider the situation in
Figure 12.10, where we have k agents that each have the option to take a
common outer path of cost 1+ ε (for some small number ε > 0), or to take their
own alternate path. The alternate path for tj has cost 1/j. Now suppose we start
with a solution in which all agents are sharing the outer path. Each agent pays
(1+ ε)/k, and this is the solution that minimizes the total cost to all agents.
But running best-response dynamics starting from this solution causes things
to unwind rapidly. First tk switches to its alternate path, since 1/k < (1+ ε)/k.

694 Chapter 12 Local Search

s

tk–1t2

1

0

1 + εt1 t3 tk

0 0 0 0

1
2

1
3

1
k–1

1
k The optimal solution

costs 1 + ε, while
the unique Nash
equilibrium costs
much more.

Figure 12.10 A network in which the unique Nash equilibrium costs H(k)=�(log k)

times more than the social optimum.

As a result of this, there are now only k − 1 agents sharing the outer path,
and so tk−1 switches to its alternate path, since 1/(k − 1) < (1+ ε)/(k − 1).
After this, tk−2 switches, then tk−3, and so forth, until all k agents are using
the alternate paths directly from s. Things come to a halt here, due to the
following fact.

(12.13) The solution in Figure 12.10, in which each agent uses its direct path
from s, is a Nash equilibrium, and moreover it is the unique Nash equilibrium
for this instance.

Proof. To verify that the given solution is a Nash equilibrium, we simply need
to check that no agent has an incentive to switch from its current path. But this
is clear, since all agents are paying at most 1, and the only other option—the
(currently vacant) outer path—has cost 1+ ε.

Now suppose there were some other Nash equilibrium. In order to be
different from the solution we have just been considering, it would have to
involve at least one of the agents using the outer path. Let tj1, tj2, . . . , tj� be
the agents using the outer path, where j1 < j2 < . . . < j�. Then all these agents
are paying (1+ ε)/�. But notice that j� ≥ �, and so agent tj� has the option to
pay only 1/j� ≤ 1/� by using its alternate path directly from s. Hence tj� has an
incentive to deviate from the current solution, and hence this solution cannot
be a Nash equilibrium.

Figure 12.8(b) already illustrated that there can exist a Nash equilibrium
whose total cost is much worse than that of the social optimum, but the
examples in Figures 12.9 and 12.10 drive home a further point: The total cost
to all agents under even the most favorable Nash equilibrium solution can be

12.7 Best-Response Dynamics and Nash Equilibria 695

worse than the total cost under the social optimum. How much worse? The
total cost of the social optimum in this example is 1+ ε, while the cost of the
unique Nash equilibrium is 1+ 1

2 + 1
3 + . . .+ 1

k =
∑k

i=1
1
i . We encountered this

expression in Chapter 11, where we defined it to be the harmonic number H(k)

and showed that its asymptotic value is H(k)=�(log k).

These examples suggest that one can’t really view the social optimum as
the analogue of the global minimum in a traditional local search procedure. In
standard local search, the global minimum is always a stable solution, since no
improvement is possible. Here the social optimum can be an unstable solution,
since it just requires one agent to have an interest in deviating.

Two Basic Questions
Best-response dynamics can exhibit a variety of different behaviors, and we’ve
just seen a range of examples that illustrate different phenomena. It’s useful at
this point to step back, assess our current understanding, and ask some basic
questions. We group these questions around the following two issues.

. The existence of a Nash equilibrium. At this point, we actually don’t
have a proof that there even exists a Nash equilibrium solution in every
instance of our multicast routing problem. The most natural candidate
for a progress measure, the total cost to all agents, does not necessarily
decrease when a single agent updates its path.

Given this, it’s not immediately clear how to argue that the best-
response dynamics must terminate. Why couldn’t we get into a cycle
where agent t1 improves its solution at the expense of t2, then t2 improves
its solution at the expense of t1, and we continue this way forever? Indeed,
it’s not hard to define other problems in which exactly this can happen
and in which Nash equilibria don’t exist. So if we want to argue that best-
response dynamics leads to a Nash equilibrium in the present case, we
need to figure out what’s special about our routing problem that causes
this to happen.

. The price of stability. So far we’ve mainly considered Nash equilibria
in the role of “observers”: essentially, we turn the agents loose on the
graph from an arbitrary starting point and watch what they do. But if we
were viewing this as protocol designers, trying to define a procedure by
which agents could construct paths from s, we might want to pursue the
following approach. Given a set of agents, located at nodes t1, t2, . . . , tk,
we could propose a collection of paths, one for each agent, with two
properties.

(i) The set of paths forms a Nash equilibrium solution; and

(ii) Subject to (i), the total cost to all agents is as small as possible.

696 Chapter 12 Local Search

Of course, ideally we’d like just to have the smallest total cost, as this is
the social optimum. But if we propose the social optimum and it’s not a
Nash equilibrium, then it won’t be stable: Agents will begin deviating and
constructing new paths. Thus properties (i) and (ii) together represent
our protocol’s attempt to optimize in the face of stability, finding the best
solution from which no agent will want to deviate.

We therefore define the price of stability, for a given instance of the
problem, to be the ratio of the cost of the best Nash equilibrium solution
to the cost of the social optimum. This quantity reflects the blow-up in
cost that we incur due to the requirement that our solution must be stable
in the face of the agents’ self-interest.

Note that this pair of questions can be asked for essentially any problem
in which self-interested agents produce a collective solution. For our multicast
routing problem, we now resolve both these questions. Essentially, we will
find that the example in Figure 12.10 captures some of the crucial aspects
of the problem in general. We will show that for any instance, best-response
dynamics starting from the social optimum leads to a Nash equilibrium whose
cost is greater by at most a factor of H(k)=�(log k).

Finding a Good Nash Equilibrium
We focus first on showing that best-response dynamics in our problem always
terminates with a Nash equilibrium. It will turn out that our approach to
this question also provides the necessary technique for bounding the price
of stability.

The key idea is that we don’t need to use the total cost to all agents as the
progress measure against which to bound the number of steps of best-response
dynamics. Rather, any quantity that strictly decreases on a path update by
any agent, and which can only decrease a finite number of times, will work
perfectly well. With this in mind, we try to formulate a measure that has this
property. The measure will not necessarily have as strong an intuitive meaning
as the total cost, but this is fine as long as it does what we need.

We first consider in more detail why just using the total agent cost doesn’t
work. Suppose, to take a simple example, that agent tj is currently sharing, with
x other agents, a path consisting of the single edge e. (In general, of course,
the agents’ paths will be longer than this, but single-edge paths are useful to
think about for this example.) Now suppose that tj decides it is in fact cheaper
to switch to a path consisting of the single edge f , which no agent is currently
using. In order for this to be the case, it must be that cf < ce/(x+ 1). Now, as
a result of this switch, the total cost to all agents goes up by cf : Previously,

12.7 Best-Response Dynamics and Nash Equilibria 697

x+ 1 agents contributed to the cost ce, and no one was incurring the cost cf ;
but, after the switch, x agents still collectively have to pay the full cost ce, and
tj is now paying an additional cf .

In order to view this as progress, we need to redefine what “progress”
means. In particular, it would be useful to have a measure that could offset
the added cost cf via some notion that the overall “potential energy” in the
system has dropped by ce/(x + 1). This would allow us to view the move by
tj as causing a net decrease, since we have cf < ce/(x+ 1). In order to do this,
we could maintain a “potential” on each edge e, with the property that this
potential drops by ce/(x + 1) when the number of agents using e decreases
from x + 1 to x. (Correspondingly, it would need to increase by this much
when the number of agents using e increased from x to x+ 1.)

Thus, our intuition suggests that we should define the potential so that,
if there are x agents on an edge e, then the potential should decrease by ce/x
when the first one stops using e, by ce/(x− 1) when the next one stops using
e, by ce/(x − 2) for the next one, and so forth. Setting the potential to be
ce(1/x + 1/(x − 1)+ . . .+ 1/2+ 1)= ce · H(x) is a simple way to accomplish
this. More concretely, we define the potential of a set of paths P1, P2, . . . , Pk,
denoted �(P1, P2, . . . , Pk), as follows. For each edge e, let xe denote the number
of agents whose paths use the edge e. Then

�(P1, P2, . . . , Pk)=
∑
e∈E

ce · H(xe).

(We’ll define the harmonic number H(0) to be 0, so that the contribution of
edges containing no paths is 0.)

The following claim establishes that � really works as a progress measure.

(12.14) Suppose that the current set of paths is P1, P2, . . . , Pk, and agent tj up-
dates its path from Pj to P′j . Then the new potential �(P1, . . . , Pj−1, P′j , Pj+1, . . . ,
Pk) is strictly less than the old potential �(P1, . . . , Pj−1, Pj , Pj+1, . . . , Pk).

Proof. Before tj switched its path from Pj to P′j, it was paying
∑

e∈Pj
ce/xe,

since it was sharing the cost of each edge e with xe − 1 other agents. After the
switch, it continues to pay this cost on the edges in the intersection Pj ∩ P′j,
and it also pays cf/(xf + 1) on each edge f ∈ P′j−Pj. Thus the fact that tj viewed
this switch as an improvement means that

∑
f∈P′j−Pj

cf

xf + 1
<

∑
e∈Pj−P′j

ce

xe
.

698 Chapter 12 Local Search

Now let’s ask what happens to the potential function �. The only edges
on which it changes are those in P′j−Pj and those in Pj−P′j. On the former set,
it increases by ∑

f∈P′j−Pj

cf [H(xf + 1)− H(xf)]=
∑

f∈P′j−Pj

cf

xf + 1
,

and on the latter set, it decreases by∑
e∈Pj−P′j

ce[H(xe)− H(xe − 1)]=
∑

e∈Pj−P′j

ce

xe
.

So the criterion that tj used for switching paths is precisely the statement that
the total increase is strictly less than the total decrease, and hence the potential
� decreases as a result of tj’s switch.

Now there are only finitely many ways to choose a path for each agent tj,
and (12.14) says that best-response dynamics can never revisit a set of paths
P1, . . . , Pk once it leaves it due to an improving move by some agent. Thus we
have shown the following.

(12.15) Best-response dynamics always leads to a set of paths that forms a
Nash equilibrium solution.

Bounding the Price of Stability Our potential function � also turns out to
be very useful in providing a bound on the price of stability. The point is that,
although � is not equal to the total cost incurred by all agents, it tracks it
reasonably closely.

To see this, let C(P1, . . . , Pk) denote the total cost to all agents when the
selected paths are P1, . . . , Pk. This quantity is simply the sum of ce over all
edges that appear in the union of these paths, since the cost of each such edge
is completely covered by the agents whose paths contain it.

Now the relationship between the cost function C and the potential func-
tion � is as follows.

(12.16) For any set of paths P1, . . . , Pk, we have

C(P1, . . . , Pk)≤�(P1, . . . , Pk)≤ H(k) · C(P1, . . . , Pk).

Proof. Recall our notation in which xe denotes the number of paths containing
edge e. For the purposes of comparing C and �, we also define E+ to be the
set of all edges that belong to at least one of the paths P1, . . . , Pk. Then, by
the definition of C, we have C(P1, . . . , Pk)=

∑
e∈E+ ce.

12.7 Best-Response Dynamics and Nash Equilibria 699

A simple fact to notice is that xe ≤ k for all e. Now we simply write

C(P1, . . . , Pk)=
∑
e∈E+

ce ≤
∑
e∈E+

ceH(xe)=�(P1, . . . , Pk)

and

�(P1, . . . , Pk)=
∑
e∈E+

ceH(xe)≤
∑
e∈E+

ceH(k)= H(k) · C(P1, . . . , Pk).

Using this, we can give a bound on the price of stability.

(12.17) In every instance, there is a Nash equilibrium solution for which the
total cost to all agents exceeds that of the social optimum by at most a factor of
H(k).

Proof. To produce the desired Nash equilibrium, we start from a social op-
timum consisting of paths P∗1 , . . . , P∗k and run best-response dynamics. By
(12.15), this must terminate at a Nash equilibrium P1, . . . , Pk.

During this run of best-response dynamics, the total cost to all agents may
have been going up, but by (12.14) the potential function was decreasing.
Thus we have �(P1, . . . , Pk)≤�(P∗1 , . . . , P∗k).

This is basically all we need since, for any set of paths, the quantities C
and � differ by at most a factor of H(k). Specifically,

C(P1, . . . , Pk)≤�(P1, . . . , Pk)≤�(P∗1 , . . . , P∗k)≤ H(k) · C(P∗1 , . . . , P∗k).

Thus we have shown that a Nash equilibrium always exists, and there is
always a Nash equilibrium whose total cost is within an H(k) factor of the
social optimum. The example in Figure 12.10 shows that it isn’t possible to
improve on the bound of H(k) in the worst case.

Although this wraps up certain aspects of the problem very neatly, there
are a number of questions here for which the answer isn’t known. One
particularly intriguing question is whether it’s possible to construct a Nash
equilibrium for this problem in polynomial time. Note that our proof of the
existence of a Nash equilibrium argued simply that as best-response dynamics
iterated through sets of paths, it could never revisit the same set twice, and
hence it could not run forever. But there are exponentially many possible sets
of paths, and so this does not give a polynomial-time algorithm. Beyond the
question of finding any Nash equilibrium efficiently, there is also the open
question of efficiently finding a Nash equilibrium that achieves a bound of
H(k) relative to the social optimum, as guaranteed by (12.17).

It’s also important to reiterate something that we mentioned earlier: It’s
not hard to find problems for which best-response dynamics may cycle forever

700 Chapter 12 Local Search

and for which Nash equilibria do not necessarily exist. We were fortunate
here that best-response dynamics could be viewed as iteratively improving a
potential function that guaranteed our progress toward a Nash equilibrium,
but the point is that potential functions like this do not exist for all problems
in which agents interact.

Finally, it’s interesting to compare what we’ve been doing here to a prob-
lem that we considered earlier in this chapter: finding a stable configuration
in a Hopfield network. If you recall the discussion of that earlier problem, we
analyzed a process in which each node “flips” between two possible states,
seeking to increase the total weight of “good” edges incident to it. This can
in fact be viewed as an instance of best-response dynamics for a problem in
which each node has an objective function that seeks to maximize this mea-
sure of good edge weight. However, showing the convergence of best-response
dynamics for the Hopfield network problem was much easier than the chal-
lenge we faced here: There it turned out that the state-flipping process was
in fact a “disguised” form of local search with an objective function obtained
simply by adding together the objective functions of all nodes—in effect, the
analogue of the total cost to all agents served as a progress measure. In the
present case, it was precisely because this total cost function did not work
as a progress measure that we were forced to embark on the more complex
analysis described here.

Solved Exercises

Solved Exercise 1
The Center Selection Problem from Chapter 11 is another case in which one
can study the performance of local search algorithms.

Here is a simple local search approach to Center Selection (indeed, it’s a
common strategy for a variety of problems that involve locating facilities). In
this problem, we are given a set of sites S= {s1, s2, . . . , sn} in the plane, and we
want to choose a set of k centers C = {c1, c2, . . . , ck} whose covering radius—
the farthest that people in any one site must travel to their nearest center—is
as small as possible.

We start by arbitrarily choosing k points in the plane to be the centers
c1, c2, . . . , ck. We now alternate the following two steps.

(i) Given the set of k centers c1, c2, . . . , ck, we divide S into k sets: For
i = 1, 2, . . . , k, we define Si to be the set of all the sites for which ci is
the closest center.

(ii) Given this division of S into k sets, construct new centers that will be as
“central” as possible relative to them. For each set Si, we find the smallest

Solved Exercises 701

circle in the plane that contains all points in Si, and define center ci to
be the center of this circle.

If steps (i) and (ii) cause the covering radius to strictly decrease, then we
perform another iteration; otherwise the algorithm stops.

The alternation of steps (i) and (ii) is based on the following natural
interplay between sites and centers. In step (i) we partition the sites as well as
possible given the centers; and then in step (ii) we place the centers as well
as possible given the partition of the sites. In addition to its role as a heuristic
for placing facilities, this type of two-step interplay is also the basis for local
search algorithms in statistics, where (for reasons we won’t go into here) it is
called the Expectation Maximization approach.

(a) Prove that this local search algorithm eventually terminates.

(b) Consider the following statement.

There is an absolute constant b > 1 (independent of the particular input
instance), so when the local search algorithm terminates, the covering
radius of its solution is at most b times the optimal covering radius.

Decide whether you think this statement is true or false, and give a proof
of either the statement or its negation.

Solution To prove part (a), one’s first thought is the following: The set of
covering radii decreases in each iteration; it can’t drop below the optimal
covering radius; and so the iterations must terminate. But we have to be a
bit careful, since we’re dealing with real numbers. What if the covering radii
decreased in every iteration, but by less and less, so that the algorithm was
able to run arbitrarily long as its covering radii converged to some value from
above?

It’s not hard to take care of this concern, however. Note that the covering
radius at the end of step (ii) in each iteration is completely determined by the
current partition of the sites into S1, S2, . . . , Sk. There are a finite number of
ways to partition the sites into k sets, and if the local search algorithm ran
for more than this number of iterations, it would have to produce the same
partition in two of these iterations. But then it would have the same covering
radius at the end of each of these iterations, and this contradicts the assumption
that the covering radius strictly decreases from each iteration to the next.

This proves that the algorithm always terminates. (Note that it only gives
an exponential bound on the number of iterations, however, since there are
exponentially many ways to partition the sites into k sets.)

To disprove part (b), it would be enough to find a run of the algorithm in
which the iterations gets “stuck” in a configuration with a very large covering
radius. This is not very hard to do. For any constant b > 1, consider a set S

702 Chapter 12 Local Search

of four points in the plane that form the corners of a tall, narrow rectangle of
width w and height h = 2bw. For example, we could have the four points be
(0, 0), (0, h), (w, h), (w, 0).

Now suppose k = 2, and we start the two centers anywhere to the left and
right of the rectangle, respectively (say, at (−1, h/2) and (w + 1, h/2)). The
first iteration proceeds as follows.

. Step (i) will divide S into the two points S1 on the left side of the rectangle
(with x-coordinate 0) and the two points S2 on the right side of the
rectangle (with x-coordinate w).

. Step (ii) will place centers at the midpoints of S1 and S2 (i.e., at (0, h/2)
and (w, h/2)).

We can check that in the next iteration, the partition of S will not change, and
so the locations of the centers will not change; the algorithm terminates here
at a local minimum.

The covering radius of this solution is h/2. But the optimal solution would
place centers at the midpoints of the top and bottom sides of the rectangle, for a
covering radius of w/2. Thus the covering radius of our solution is h/w= 2b > b
times that of the optimum.

Exercises

1. Consider the problem of finding a stable state in a Hopfield neural
network, in the special case when all edge weights are positive. This
corresponds to the Maximum-Cut Problem that we discussed earlier in
the chapter: For every edge e in the graph G, the endpoints of G would
prefer to have opposite states.

Now suppose the underlying graph G is connected and bipartite; the
nodes can be partitioned into sets X and Y so that each edge has one
end in X and the other in Y. Then there is a natural “best” configuration
for the Hopfield net, in which all nodes in X have the state +1 and all
nodes in Y have the state −1. This way, all edges are good, in that their
ends have opposite states.

The question is: In this special case, when the best configuration is
so clear, will the State-Flipping Algorithm described in the text (as long
as there is an unsatisfied node, choose one and flip its state) always find
this configuration? Give a proof that it will, or an example of an input
instance, a starting configuration, and an execution of the State-Flipping
Algorithm that terminates at a configuration in which not all edges are
good.

Exercises 703

2. Recall that for a problem in which the goal is to maximize some under-
lying quantity, gradient descent has a natural “upside-down” analogue,
in which one repeatedly moves from the current solution to a solution
of strictly greater value. Naturally, we could call this a gradient ascent
algorithm. (Often in the literature you’ll also see such methods referred
to as hill-climbing algorithms.)

By straight symmetry, the observations we’ve made in this chapter
about gradient descent carry over to gradient ascent: For many problems
you can easily end up with a local optimum that is not very good. But
sometimes one encounters problems—as we saw, for example, with
the Maximum-Cut and Labeling Problems—for which a local search
algorithm comes with a very strong guarantee: Every local optimum is
close in value to the global optimum. We now consider the Bipartite
Matching Problem and find that the same phenomenon happens here as
well.

Thus, consider the following Gradient Ascent Algorithm for finding
a matching in a bipartite graph.

As long as there is an edge whose endpoints are unmatched, add it to
the current matching. When there is no longer such an edge, terminate
with a locally optimal matching.

(a) Give an example of a bipartite graph G for which this gradient ascent
algorithm does not return the maximum matching.

(b) Let M and M ′ be matchings in a bipartite graph G. Suppose that
|M ′|> 2|M|. Show that there is an edge e′ ∈M ′ such that M ∪ {e′} is
a matching in G.

(c) Use (b) to conclude that any locally optimal matching returned by
the gradient ascent algorithm in a bipartite graph G is at least half
as large as a maximum matching in G.

3. Suppose you’re consulting for a biotech company that runs experiments
on two expensive high-throughput assay machines, each identical, which
we’ll label M1 and M2. Each day they have a number of jobs that they
need to do, and each job has to be assigned to one of the two machines.
The problem they need help on is how to assign the jobs to machines to
keep the loads balanced each day. The problem is stated as follows. There
are n jobs, and each job j has a required processing time tj. They need
to partition the jobs into two groups A and B, where set A is assigned
to M1 and set B to M2. The time needed to process all of the jobs on the
two machines is T1=

∑
j∈A tj and T2=

∑
j∈B tj. The problem is to have

the two machines work roughly for the same amounts of time—that is,
to minimize |T1− T2|.

704 Chapter 12 Local Search

A previous consultant showed that the problem is NP-hard (by a
reduction from Subset Sum). Now they are looking for a good local search
algorithm. They propose the following. Start by assigning jobs to the
two machines arbitrarily (say jobs 1, . . . , n/2 to M1, the rest to M2). The
local moves are to move a single job from one machine to the other, and
we only move jobs if the move decreases the absolute difference in the
processing times. You are hired to answer some basic questions about
the performance of this algorithm.

(a) The first question is: How good is the solution obtained? Assume
that there is no single job that dominates all the processing time—
that is, that tj ≤ 1

2

∑n
i=1 ti for all jobs j. Prove that for every locally

optimal solution, the times the two machines operate are roughly
balanced: 1

2T1≤ T2≤ 2T1.

(b) Next you worry about the running time of the algorithm: How often
will jobs be moved back and forth between the two machines? You
propose the following small modification in the algorithm. If, in
a local move, many different jobs can move from one machine to
the other, then the algorithm should always move the job j with
maximum tj. Prove that, under this variant, each job will move at
most once. (Hence the local search terminates in at most n moves.)

(c) Finally, they wonder if they should work on better algorithms. Give
an example in which the local search algorithm above will not lead
to an optimal solution.

4. Consider the Load Balancing Problem from Section 11.1. Some friends
of yours are running a collection of Web servers, and they’ve designed
a local search heuristic for this problem, different from the algorithms
described in Chapter 11.

Recall that we have m machines M1, . . . , Mm, and we must assign
each job to a machine. The load of the ith job is denoted ti. The makespan
of an assignment is the maximum load on any machine:

max
machines Mi

∑
jobs j assigned to Mi

tj.

Your friends’ local search heuristic works as follows. They start with
an arbitrary assignment of jobs to machines, and they then repeatedly
try to apply the following type of “swap move.”

Let A(i) and A(j) be the jobs assigned to machines Mi and Mj,
respectively. To perform a swap move on Mi and Mj, choose subsets
of jobs B(i)⊆ A(j) and B(j)⊆ A(j), and “swap” these jobs between
the two machines. That is, update A(i) to be A(i) ∪ B(j) − B(i),

Notes and Further Reading 705

and update A(j) to be A(j) ∪ B(i) − B(j). (One is allowed to have
B(i)= A(i), or to have B(i) be the empty set; and analogously for
B(j).)

Consider a swap move applied to machines Mi and Mj. Suppose the
loads on Mi and Mj before the swap are Ti and Tj, respectively, and
the loads after the swap are T ′i and T ′j . We say that the swap move is
improving if max(T ′i , T ′j) < max(Ti, Tj)—in other words, the larger of the
two loads involved has strictly decreased. We say that an assignment
of jobs to machines is stable if there does not exist an improving swap
move, beginning with the current assignment.

Thus the local search heuristic simply keeps executing improving
swap moves until a stable assignment is reached; at this point, the
resulting stable assignment is returned as the solution.

Example. Suppose there are two machines: In the current assignment,
the machine M1 has jobs of sizes 1, 3, 5, 8, and machine M2 has jobs of
sizes 2, 4. Then one possible improving swap move would be to define
B(1) to consist of the job of size 8, and define B(2) to consist of the job
of size 2. After these two sets are swapped, the resulting assignment has
jobs of size 1, 2, 3, 5 on M1, and jobs of size 4, 8 on M2. This assignment
is stable. (It also has an optimal makespan of 12.)

(a) As specified, there is no explicit guarantee that this local search
heuristic will always terminate. What if it keeps cycling forever
through assignments that are not stable?

Prove that, in fact, the local search heuristic terminates in a finite
number of steps, with a stable assignment, on any instance.

(b) Show that any stable assignment has a makespan that is within a
factor of 2 of the minimum possible makespan.

Notes and Further Reading

Kirkpatrick, Gelatt, and Vecchi (1983) introduced simulated annealing, build-
ing on an algorithm of Metropolis et al. (1953) for simulating physical systems.
In the process, they highlighted the analogy between energy landscapes and
the solution spaces of computational problems.

The book of surveys edited by Aarts and Lenstra (1997) covers a wide range
of applications of local search techniques for algorithmic problems. Hopfield
neural networks were introduced by Hopfield (1982) and are discussed in
more detail in the book by Haykin (1999). The heuristic for graph partitioning
discussed in Section 12.5 is due to Kernighan and Lin (1970).

706 Chapter 12 Local Search

The local search algorithm for classification based on the Labeling Problem
is due to Boykov, Veksler, and Zabih (1999). Further results and computational
experiments are discussed in the thesis by Veksler (1999).

The multi-agent routing problem considered in Section 12.7 raises issues
at the intersection of algorithms and game theory, an area concerned with
the general issue of strategic interaction among agents. The book by Osborne
(2003) provides an introduction to game theory; the algorithmic aspects of the
subject are discussed in surveys by Papadimitriou (2001) and Tardos (2004)
and the thesis and subsequent book by Roughgarden (2002, 2004). The use
of potential functions to prove the existence of Nash equilibria has a long
history in game theory (Beckmann, McGuire, and Winsten, 1956; Rosenthal
1973), and potential functions were used to analyze best-response dynamics
by Monderer and Shapley (1996). The bound on the price of stability for the
routing problem in Section 12.7 is due to Anshelevich et al. (2004).

Chapter 13

Randomized Algorithms

The idea that a process can be “random” is not a modern one; we can trace
the notion far back into the history of human thought and certainly see its
reflections in gambling and the insurance business, each of which reach into
ancient times. Yet, while similarly intuitive subjects like geometry and logic
have been treated mathematically for several thousand years, the mathematical
study of probability is surprisingly young; the first known attempts to seriously
formalize it came about in the 1600s. Of course, the history of computer science
plays out on a much shorter time scale, and the idea of randomization has been
with it since its early days.

Randomization and probabilistic analysis are themes that cut across many
areas of computer science, including algorithm design, and when one thinks
about random processes in the context of computation, it is usually in one of
two distinct ways. One view is to consider the world as behaving randomly:
One can consider traditional algorithms that confront randomly generated
input. This approach is often termed average-case analysis, since we are
studying the behavior of an algorithm on an “average” input (subject to some
underlying random process), rather than a worst-case input.

A second view is to consider algorithms that behave randomly: The world
provides the same worst-case input as always, but we allow our algorithm to
make random decisions as it processes the input. Thus the role of randomiza-
tion in this approach is purely internal to the algorithm and does not require
new assumptions about the nature of the input. It is this notion of a randomized
algorithm that we will be considering in this chapter.

708 Chapter 13 Randomized Algorithms

Why might it be useful to design an algorithm that is allowed to make
random decisions? A first answer would be to observe that by allowing ran-
domization, we’ve made our underlying model more powerful. Efficient de-
terministic algorithms that always yield the correct answer are a special case
of efficient randomized algorithms that only need to yield the correct answer
with high probability; they are also a special case of randomized algorithms
that are always correct, and run efficiently in expectation. Even in a worst-
case world, an algorithm that does its own “internal” randomization may be
able to offset certain worst-case phenomena. So problems that may not have
been solvable by efficient deterministic algorithms may still be amenable to
randomized algorithms.

But this is not the whole story, and in fact we’ll be looking at randomized
algorithms for a number of problems where there exist comparably efficient de-
terministic algorithms. Even in such situations, a randomized approach often
exhibits considerable power for further reasons: It may be conceptually much
simpler; or it may allow the algorithm to function while maintaining very little
internal state or memory of the past. The advantages of randomization seem
to increase further as one considers larger computer systems and networks,
with many loosely interacting processes—in other words, a distributed sys-
tem. Here random behavior on the part of individual processes can reduce the
amount of explicit communication or synchronization that is required; it is
often valuable as a tool for symmetry-breaking among processes, reducing the
danger of contention and “hot spots.” A number of our examples will come
from settings like this: regulating access to a shared resource, balancing load
on multiple processors, or routing packets through a network. Even a small
level of comfort with randomized heuristics can give one considerable leverage
in thinking about large systems.

A natural worry in approaching the topic of randomized algorithms is that
it requires an extensive knowledge of probability. Of course, it’s always better
to know more rather than less, and some algorithms are indeed based on
complex probabilistic ideas. But one further goal of this chapter is to illustrate
how little underlying probability is really needed in order to understand many
of the well-known algorithms in this area. We will see that there is a small set
of useful probabilistic tools that recur frequently, and this chapter will try to
develop the tools alongside the algorithms. Ultimately, facility with these tools
is as valuable as an understanding of the specific algorithms themselves.

13.1 A First Application: Contention Resolution
We begin with a first application of randomized algorithms—contention res-
olution in a distributed system—that illustrates the general style of analysis

13.1 A First Application: Contention Resolution 709

we will be using for many of the algorithms that follow. In particular, it is a
chance to work through some basic manipulations involving events and their
probabilities, analyzing intersections of events using independence as well as
unions of events using a simple Union Bound. For the sake of completeness,
we give a brief summary of these concepts in the final section of this chapter
(Section 13.15).

The Problem
Suppose we have n processes P1, P2, . . . , Pn, each competing for access to
a single shared database. We imagine time as being divided into discrete
rounds. The database has the property that it can be accessed by at most
one process in a single round; if two or more processes attempt to access
it simultaneously, then all processes are “locked out” for the duration of that
round. So, while each process wants to access the database as often as possible,
it’s pointless for all of them to try accessing it in every round; then everyone
will be perpetually locked out. What’s needed is a way to divide up the rounds
among the processes in an equitable fashion, so that all processes get through
to the database on a regular basis.

If it is easy for the processes to communicate with one another, then one
can imagine all sorts of direct means for resolving the contention. But suppose
that the processes can’t communicate with one another at all; how then can
they work out a protocol under which they manage to “take turns” in accessing
the database?

Designing a Randomized Algorithm
Randomization provides a natural protocol for this problem, which we can
specify simply as follows. For some number p > 0 that we’ll determine shortly,
each process will attempt to access the database in each round with probability
p, independently of the decisions of the other processes. So, if exactly one
process decides to make the attempt in a given round, it will succeed; if
two or more try, then they will all be locked out; and if none try, then the
round is in a sense “wasted.” This type of strategy, in which each of a set
of identical processes randomizes its behavior, is the core of the symmetry-
breaking paradigm that we mentioned initially: If all the processes operated
in lockstep, repeatedly trying to access the database at the same time, there’d
be no progress; but by randomizing, they “smooth out” the contention.

Analyzing the Algorithm
As with many applications of randomization, the algorithm in this case is
extremely simple to state; the interesting issue is to analyze its performance.

710 Chapter 13 Randomized Algorithms

Defining Some Basic Events When confronted with a probabilistic system
like this, a good first step is to write down some basic events and think about
their probabilities. Here’s a first event to consider. For a given process Pi and a
given round t, let A[i, t]denote the event that Pi attempts to access the database
in round t. We know that each process attempts an access in each round with
probability p, so the probability of this event, for any i and t, is Pr

[
A[i, t]

]= p.
For every event, there is also a complementary event, indicating that the event
did not occur; here we have the complementary event A[i, t] that Pi does not
attempt to access the database in round t, with probability

Pr
[
A[i, t]

]
= 1− Pr

[
A[i, t]

]= 1− p.

Our real concern is whether a process succeeds in accessing the database in
a given round. Let S[i, t]denote this event. Clearly, the process Pi must attempt
an access in round t in order to succeed. Indeed, succeeding is equivalent to
the following: Process Pi attempts to access the database in round t, and each
other process does not attempt to access the database in round t. Thus S[i, t] is
equal to the intersection of the event A[i, t]with all the complementary events
A[j, t], for j �= i:

S[i, t]=A[i, t]∩
⎛
⎝⋂

j �=i

A[j, t]

⎞
⎠ .

All the events in this intersection are independent, by the definition of the
contention-resolution protocol. Thus, to get the probability of S[i, t], we can
multiply the probabilities of all the events in the intersection:

Pr
[
S[i, t]

]= Pr
[
A[i, t]

] ·∏
j �=i

Pr
[
A[j, t]

]
= p(1− p)n−1.

We now have a nice, closed-form expression for the probability that Pi
succeeds in accessing the database in round t; we can now ask how to set p
so that this success probability is maximized. Observe first that the success
probability is 0 for the extreme cases p= 0 and p= 1 (these correspond to the
extreme case in which processes never bother attempting, and the opposite
extreme case in which every process tries accessing the database in every
round, so that everyone is locked out). The function f (p) = p(1− p)n−1 is
positive for values of p strictly between 0 and 1, and its derivative f ′(p)=
(1− p)n−1− (n − 1)p(1− p)n−2 has a single zero at the value p= 1/n, where
the maximum is achieved. Thus we can maximize the success probability by
setting p= 1/n. (Notice that p= 1/n is a natural intuitive choice as well, if one
wants exactly one process to attempt an access in any round.)

13.1 A First Application: Contention Resolution 711

When we set p= 1/n, we get Pr
[
S[i, t]

]= 1
n

(
1− 1

n

)n−1
. It’s worth getting

a sense for the asymptotic value of this expression, with the help of the
following extremely useful fact from basic calculus.

(13.1)

(a) The function
(
1− 1

n

)n
converges monotonically from 1

4 up to 1
e as n

increases from 2.

(b) The function
(
1− 1

n

)n−1
converges monotonically from 1

2 down to 1
e as n

increases from 2.

Using (13.1), we see that 1/(en) ≤ Pr
[
S[i, t]

] ≤ 1/(2n), and hence
Pr
[
S[i, t]

]
is asymptotically equal to �(1/n).

Waiting for a Particular Process to Succeed Let’s consider this protocol with
the optimal value p= 1/n for the access probability. Suppose we are interested
in how long it will take process Pi to succeed in accessing the database at least
once. We see from the earlier calculation that the probability of its succeeding
in any one round is not very good, if n is reasonably large. How about if we
consider multiple rounds?

Let F[i, t] denote the “failure event” that process Pi does not succeed
in any of the rounds 1 through t. This is clearly just the intersection of
the complementary events S[i, r] for r = 1, 2, . . . , t. Moreover, since each of
these events is independent, we can compute the probability of F[i, t] by
multiplication:

Pr
[
F[i, t]

]= Pr

[
t⋂

r=1

S[i, r]

]
=

t∏
r=1

Pr
[
S[i, r]

]
=
[

1− 1
n

(
1− 1

n

)n−1
]t

.

This calculation does give us the value of the probability; but at this point,
we’re in danger of ending up with some extremely complicated-looking ex-
pressions, and so it’s important to start thinking asymptotically. Recall that
the probability of success was �(1/n) after one round; specifically, it was
bounded between 1/(en) and 1/(2n). Using the expression above, we have

Pr
[
F[i, t]

]= t∏
r=1

Pr
[
S[i, r]

]
≤
(

1− 1
en

)t

.

Now we notice that if we set t = en, then we have an expression that can be
plugged directly into (13.1). Of course en will not be an integer; so we can
take t = �en� and write

Pr
[
F[i, t]

]≤ (
1− 1

en

)�en�
≤
(

1− 1
en

)en

≤ 1
e

.

712 Chapter 13 Randomized Algorithms

This is a very compact and useful asymptotic statement: The probability
that process Pi does not succeed in any of rounds 1 through �en� is upper-
bounded by the constant e−1, independent of n. Now, if we increase t by some
fairly small factors, the probability that Pi does not succeed in any of rounds
1 through t drops precipitously: If we set t = �en� · (c ln n), then we have

Pr
[
F[i, t]

]≤ (
1− 1

en

)t

=
((

1− 1
en

)�en�)c ln n

≤ e−c ln n = n−c.

So, asymptotically, we can view things as follows. After �(n) rounds,
the probability that Pi has not yet succeeded is bounded by a constant; and
between then and �(n ln n), this probability drops to a quantity that is quite
small, bounded by an inverse polynomial in n.

Waiting for All Processes to Get Through Finally, we’re in a position to ask
the question that was implicit in the overall setup: How many rounds must
elapse before there’s a high probability that all processes will have succeeded
in accessing the database at least once?

To address this, we say that the protocol fails after t rounds if some process
has not yet succeeded in accessing the database. Let Ft denote the event that
the protocol fails after t rounds; the goal is to find a reasonably small value of
t for which Pr

[
Ft
]

is small.

The event Ft occurs if and only if one of the events F[i, t] occurs; so we
can write

Ft =
n⋃

i=1

F[i, t].

Previously, we considered intersections of independent events, which were
very simple to work with; here, by contrast, we have a union of events that are
not independent. Probabilities of unions like this can be very hard to compute
exactly, and in many settings it is enough to analyze them using a simple Union
Bound, which says that the probability of a union of events is upper-bounded
by the sum of their individual probabilities:

(13.2) (The Union Bound) Given events E1, E2, . . . , En, we have

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr
[
Ei
]

.

Note that this is not an equality; but the upper bound is good enough
when, as here, the union on the left-hand side represents a “bad event” that

13.1 A First Application: Contention Resolution 713

we’re trying to avoid, and we want a bound on its probability in terms of
constituent “bad events” on the right-hand side.

For the case at hand, recall that Ft =
⋃n

i=1 F[i, t], and so

Pr
[
Ft
]≤ n∑

i=1

Pr
[
F[i, t]

]
.

The expression on the right-hand side is a sum of n terms, each with the same
value; so to make the probability of Ft small, we need to make each of the
terms on the right significantly smaller than 1/n. From our earlier discussion,
we see that choosing t =�(n) will not be good enough, since then each term
on the right is only bounded by a constant. If we choose t = �en� · (c ln n),
then we have Pr

[
F[i, t]

] ≤ n−c for each i, which is what we want. Thus, in
particular, taking t = 2�en� ln n gives us

Pr
[
Ft
]≤ n∑

i=1

Pr
[
F[i, t]

]≤ n · n−2= n−1,

and so we have shown the following.

(13.3) With probability at least 1− n−1, all processes succeed in accessing
the database at least once within t = 2�en� ln n rounds.

An interesting observation here is that if we had chosen a value of t equal
to qn ln n for a very small value of q (rather than the coefficient 2e that we
actually used), then we would have gotten an upper bound for Pr

[
F[i, t]

]
that

was larger than n−1, and hence a corresponding upper bound for the overall
failure probability Pr

[
Ft
]

that was larger than 1—in other words, a completely
worthless bound. Yet, as we saw, by choosing larger and larger values for
the coefficient q, we can drive the upper bound on Pr

[
Ft
]

down to n−c for
any constant c we want; and this is really a very tiny upper bound. So, in a
sense, all the “action” in the Union Bound takes place rapidly in the period
when t =�(n ln n); as we vary the hidden constant inside the �(·), the Union
Bound goes from providing no information to giving an extremely strong upper
bound on the probability.

We can ask whether this is simply an artifact of using the Union Bound
for our upper bound, or whether it’s intrinsic to the process we’re observing.
Although we won’t do the (somewhat messy) calculations here, one can show
that when t is a small constant times n ln n, there really is a sizable probability
that some process has not yet succeeded in accessing the database. So a
rapid falling-off in the value of Pr

[
Ft
]

genuinely does happen over the range
t =�(n ln n). For this problem, as in many problems of this flavor, we’re

714 Chapter 13 Randomized Algorithms

really identifying the asymptotically “correct” value of t despite our use of the
seemingly weak Union Bound.

13.2 Finding the Global Minimum Cut
Randomization naturally suggested itself in the previous example, since we
were assuming a model with many processes that could not directly commu-
nicate. We now look at a problem on graphs for which a randomized approach
comes as somewhat more of a surprise, since it is a problem for which perfectly
reasonable deterministic algorithms exist as well.

The Problem
Given an undirected graph G = (V , E), we define a cut of G to be a partition
of V into two non-empty sets A and B. Earlier, when we looked at network
flows, we worked with the closely related definition of an s-t cut: there, given
a directed graph G = (V , E) with distinguished source and sink nodes s and t,
an s-t cut was defined to be a partition of V into sets A and B such that s ∈ A
and t ∈ B. Our definition now is slightly different, since the underlying graph
is now undirected and there is no source or sink.

For a cut (A, B) in an undirected graph G, the size of (A, B) is the number of
edges with one end in A and the other in B. A global minimum cut (or “global
min-cut” for short) is a cut of minimum size. The term global here is meant
to connote that any cut of the graph is allowed; there is no source or sink.
Thus the global min-cut is a natural “robustness” parameter; it is the smallest
number of edges whose deletion disconnects the graph. We first check that
network flow techniques are indeed sufficient to find a global min-cut.

(13.4) There is a polynomial-time algorithm to find a global min-cut in an
undirected graph G.

Proof. We start from the similarity between cuts in undirected graphs and s-t
cuts in directed graphs, and with the fact that we know how to find the latter
optimally.

So given an undirected graph G = (V , E), we need to transform it so that
there are directed edges and there is a source and sink. We first replace every
undirected edge e = (u, v) ∈ E with two oppositely oriented directed edges,
e′ = (u, v) and e′′ = (v, u), each of capacity 1. Let G′ denote the resulting
directed graph.

Now suppose we pick two arbitrary nodes s, t ∈ V, and find the minimum
s-t cut in G′. It is easy to check that if (A, B) is this minimum cut in G′, then
(A, B) is also a cut of minimum size in G among all those that separate s from
t. But we know that the global min-cut in G must separate s from something,

13.2 Finding the Global Minimum Cut 715

since both sides A and B are nonempty, and s belongs to only one of them.
So we fix any s ∈ V and compute the minimum s-t cut in G′ for every other
node t ∈ V−{s}. This is n − 1 directed minimum-cut computations, and the
best among these will be a global min-cut of G.

The algorithm in (13.4) gives the strong impression that finding a global
min-cut in an undirected graph is in some sense a harder problem than finding
a minimum s-t cut in a flow network, as we had to invoke a subroutine for the
latter problem n− 1 times in our method for solving the former. But it turns out
that this is just an illusion. A sequence of increasingly simple algorithms in the
late 1980s and early 1990s showed that global min-cuts in undirected graphs
could actually be computed just as efficiently as s-t cuts or even more so, and by
techniques that didn’t require augmenting paths or even a notion of flow. The
high point of this line of work came with David Karger’s discovery in 1992 of
the Contraction Algorithm, a randomized method that is qualitatively simpler
than all previous algorithms for global min-cuts. Indeed, it is sufficiently simple
that, on a first impression, it is very hard to believe that it actually works.

Designing the Algorithm
Here we describe the Contraction Algorithm in its simplest form. This version,
while it runs in polynomial time, is not among the most efficient algorithms
for global min-cuts. However, subsequent optimizations to the algorithm have
given it a much better running time.

The Contraction Algorithm works with a connected multigraph G= (V , E);
this is an undirected graph that is allowed to have multiple “parallel” edges
between the same pair of nodes. It begins by choosing an edge e = (u, v) of G
uniformly at random and contracting it, as shown in Figure 13.1. This means
we produce a new graph G′ in which u and v have been identified into a single
new node w; all other nodes keep their identity. Edges that had one end equal
to u and the other equal to v are deleted from G′. Each other edge e is preserved
in G′, but if one of its ends was equal to u or v, then this end is updated to be
equal to the new node w. Note that, even if G had at most one edge between
any two nodes, G′ may end up with parallel edges.

The Contraction Algorithm then continues recursively on G′, choosing
an edge uniformly at random and contracting it. As these recursive calls
proceed, the constituent vertices of G′ should be viewed as supernodes: Each
supernode w corresponds to the subset S(w)⊆ V that has been “swallowed
up” in the contractions that produced w. The algorithm terminates when
it reaches a graph G′ that has only two supernodes v1 and v2 (presumably
with a number of parallel edges between them). Each of these super-nodes vi
has a corresponding subset S(vi)⊆ V consisting of the nodes that have been

716 Chapter 13 Randomized Algorithms

b

d

ca

d

c

{a,b}

{a,b,c}

d

Figure 13.1 The Contraction Algorithm applied to a four-node input graph.

contracted into it, and these two sets S(v1) and S(v2) form a partition of V. We
output (S(v1), S(v2)) as the cut found by the algorithm.

The Contraction Algorithm applied to a multigraph G = (V , E):

For each node v, we will record

the set S(v) of nodes that have been contracted into v

Initially S(v) = {v} for each v

If G has two nodes v1 and v2, then return the cut (S(v1), S(v2))

Else choose an edge e = (u, v) of G uniformly at random

Let G′ be the graph resulting from the contraction of e,

with a new node zuv replacing u and v

Define S(zuv) = S(u) ∪ S(v)

Apply the Contraction Algorithm recursively to G′

Endif

Analyzing the Algorithm
The algorithm is making random choices, so there is some probability that it
will succeed in finding a global min-cut and some probability that it won’t. One
might imagine at first that the probability of success is exponentially small.
After all, there are exponentially many possible cuts of G; what’s favoring the
minimum cut in the process? But we’ll show first that, in fact, the success
probability is only polynomially small. It will then follow that by running the
algorithm a polynomial number of times and returning the best cut found in
any run, we can actually produce a global min-cut with high probability.

(13.5) The Contraction Algorithm returns a global min-cut of G with proba-
bility at least 1/

(n
2

)
.

Proof. We focus on a global min-cut (A, B) of G and suppose it has size k;
in other words, there is a set F of k edges with one end in A and the other

13.2 Finding the Global Minimum Cut 717

in B. We want to give a lower bound on the probability that the Contraction
Algorithm returns the cut (A, B).

Consider what could go wrong in the first step of the Contraction Algo-
rithm: The problem would be if an edge in F were contracted. For then, a node
of A and a node of B would get thrown together in the same supernode, and
(A, B) could not be returned as the output of the algorithm. Conversely, if an
edge not in F is contracted, then there is still a chance that (A, B) could be
returned.

So what we want is an upper bound on the probability that an edge in F is
contracted, and for this we need a lower bound on the size of E. Notice that if
any node v had degree less than k, then the cut ({v}, V−{v}) would have size
less than k, contradicting our assumption that (A, B) is a global min-cut. Thus
every node in G has degree at least k, and so |E| ≥ 1

2kn. Hence the probability
that an edge in F is contracted is at most

k
1
2kn

= 2
n

.

Now consider the situation after j iterations, when there are n − j super-
nodes in the current graph G′, and suppose that no edge in F has been
contracted yet. Every cut of G′ is a cut of G, and so there are at least k edges
incident to every supernode of G′. Thus G′ has at least 1

2k(n − j) edges, and
so the probability that an edge of F is contracted in the next iteration j + 1 is
at most

k
1
2k(n − j)

= 2
n − j

.

The cut (A, B) will actually be returned by the algorithm if no edge
of F is contracted in any of iterations 1, 2, . . . , n − 2. If we write Ej for
the event that an edge of F is not contracted in iteration j, then we have
shown Pr

[
E1
]≥ 1− 2/n and Pr

[
Ej+1 | E1∩ E2 . . .∩ Ej

]≥ 1− 2/(n− j). We are
interested in lower-bounding the quantity Pr

[
E1∩ E2 . . .∩ En−2

]
, and we

can check by unwinding the formula for conditional probability that this is
equal to

Pr
[
E1
] · Pr

[
E2 | E1

]
. . . Pr

[
Ej+1 | E1∩ E2 . . .∩ Ej

]
. . . Pr

[
En−2 | E1∩ E2 . . .∩ En−3

]
≥
(

1− 2
n

) (
1− 2

n − 1

)
. . .

(
1− 2

n − j

)
. . .

(
1− 2

3

)

=
(

n − 2
n

) (
n − 3
n − 1

) (
n − 4
n − 2

)
. . .

(
2
4

) (
1
3

)

= 2
n(n − 1)

=
(

n
2

)−1

.

718 Chapter 13 Randomized Algorithms

So we now know that a single run of the Contraction Algorithm fails to
find a global min-cut with probability at most (1− 1/

(n
2

)
). This number is very

close to 1, of course, but we can amplify our probability of success simply
by repeatedly running the algorithm, with independent random choices, and
taking the best cut we find. By fact (13.1), if we run the algorithm

(n
2

)
times,

then the probability that we fail to find a global min-cut in any run is at most

(
1− 1/

(
n
2

))(n
2) ≤ 1

e
.

And it’s easy to drive the failure probability below 1/e with further repetitions:
If we run the algorithm

(n
2

)
ln n times, then the probability we fail to find a

global min-cut is at most e− ln n = 1/n.

The overall running time required to get a high probability of success is
polynomial in n, since each run of the Contraction Algorithm takes polynomial
time, and we run it a polynomial number of times. Its running time will be
fairly large compared with the best network flow techniques, since we perform
�(n2) independent runs and each takes at least �(m) time. We have chosen to
describe this version of the Contraction Algorithm since it is the simplest and
most elegant; it has been shown that some clever optimizations to the way in
which multiple runs are performed can improve the running time considerably.

Further Analysis: The Number of Global Minimum Cuts
The analysis of the Contraction Algorithm provides a surprisingly simple
answer to the following question: Given an undirected graph G = (V , E) on
n nodes, what is the maximum number of global min-cuts it can have (as a
function of n)?

For a directed flow network, it’s easy to see that the number of minimum
s-t cuts can be exponential in n. For example, consider a directed graph with
nodes s, t , v1, v2, . . . , vn, and unit-capacity edges (s, vi) and (vi, t) for each i.
Then s together with any subset of {v1, v2, . . . , vn} will constitute the source
side of a minimum cut, and so there are 2n minimum s-t cuts.

But for global min-cuts in an undirected graph, the situation looks quite
different. If one spends some time trying out examples, one finds that the n-
node cycle has

(n
2

)
global min-cuts (obtained by cutting any two edges), and

it is not clear how to construct an undirected graph with more.

We now show how the analysis of the Contraction Algorithm settles this
question immediately, establishing that the n-node cycle is indeed an extreme
case.

13.3 Random Variables and Their Expectations 719

(13.6) An undirected graph G = (V , E) on n nodes has at most
(n

2

)
global

min-cuts.

Proof. The key is that the proof of (13.5) actually established more than was
claimed. Let G be a graph, and let C1, . . . , Cr denote all its global min-cuts.
Let Ei denote the event that Ci is returned by the Contraction Algorithm, and
let E = ∪r

i=1Ei denote the event that the algorithm returns any global min-cut.

Then, although (13.5) simply asserts that Pr [E]≥ 1/
(n

2

)
, its proof actually

shows that for each i, we have Pr
[
Ei
] ≥ 1/

(n
2

)
. Now each pair of events Ei

and Ej are disjoint—since only one cut is returned by any given run of the
algorithm—so by the Union Bound for disjoint events (13.49), we have

Pr [E]= Pr
[∪r

i=1Ei
]= r∑

i=1

Pr
[
Ei
]≥ r/

(
n
2

)
.

But clearly Pr [E]≤ 1, and so we must have r ≤ (n
2

)
.

13.3 Random Variables and Their Expectations
Thus far our analysis of randomized algorithms and processes has been based
on identifying certain “bad events” and bounding their probabilities. This is
a qualitative type of analysis, in the sense that the algorithm either succeeds
or it doesn’t. A more quantitative style of analysis would consider certain
parameters associated with the behavior of the algorithm—for example, its
running time, or the quality of the solution it produces—and seek to determine
the expected size of these parameters over the random choices made by the
algorithm. In order to make such analysis possible, we need the fundamental
notion of a random variable.

Given a probability space, a random variable X is a function from the
underlying sample space to the natural numbers, such that for each natural
number j, the set X−1(j) of all sample points taking the value j is an event.
Thus we can write Pr [X = j] as loose shorthand for Pr

[
X−1(j)

]
; it is because

we can ask about X’s probability of taking a given value that we think of it as
a “random variable.”

Given a random variable X, we are often interested in determining its
expectation—the “average value” assumed by X. We define this as

E [X]=
∞∑
j=0

j · Pr [X = j] ,

720 Chapter 13 Randomized Algorithms

declaring this to have the value ∞ if the sum diverges. Thus, for example,
if X takes each of the values in {1, 2, . . . , n} with probability 1/n, then
E [X]= 1(1/n)+ 2(1/n)+ . . .+ n(1/n)= (n+1

2

)
/n = (n + 1)/2.

Example: Waiting for a First Success
Here’s a more useful example, in which we see how an appropriate random
variable lets us talk about something like the “running time” of a simple
random process. Suppose we have a coin that comes up headswith probability
p > 0, and tails with probability 1− p. Different flips of the coin have
independent outcomes. If we flip the coin until we first get a heads, what’s
the expected number of flips we will perform? To answer this, we let X denote
the random variable equal to the number of flips performed. For j > 0, we
have Pr [X = j]= (1− p)j−1p: in order for the process to take exactly j steps,
the first j − 1 flips must come up tails, and the jth must come up heads.
Now, applying the definition, we have

E [X] =
∞∑
j=0

j · Pr [X = j]=
∞∑
j=1

j(1− p)j−1p= p
1− p

∞∑
j=1

j(1− p)j

= p
1− p

· (1− p)

p2
= 1

p
.

Thus we get the following intuitively sensible result.

(13.7) If we repeatedly perform independent trials of an experiment, each of
which succeeds with probability p > 0, then the expected number of trials we
need to perform until the first success is 1/p.

Linearity of Expectation
In Sections 13.1 and 13.2, we broke events down into unions of much simpler
events, and worked with the probabilities of these simpler events. This is a
powerful technique when working with random variables as well, and it is
based on the principle of linearity of expectation.

(13.8) Linearity of Expectation. Given two random variables X and Y defined
over the same probability space, we can define X + Y to be the random variable
equal to X(ω)+ Y(ω) on a sample point ω. For any X and Y, we have

E [X + Y]= E [X]+ E [Y] .

We omit the proof, which is not difficult. Much of the power of (13.8)
comes from the fact that it applies to the sum of any random variables; no
restrictive assumptions are needed. As a result, if we need to compute the

13.3 Random Variables and Their Expectations 721

expectation of a complicated random variable X, we can first write it as a
sum of simpler random variables X = X1+ X2+ . . .+ Xn, compute each E

[
Xi
]
,

and then determine E [X]=∑
E
[
Xi
]
. We now look at some examples of this

principle in action.

Example: Guessing Cards
Memoryless Guessing To amaze your friends, you have them shuffle a deck
of 52 cards and then turn over one card at a time. Before each card is turned
over, you predict its identity. Unfortunately, you don’t have any particular
psychic abilities—and you’re not so good at remembering what’s been turned
over already—so your strategy is simply to guess a card uniformly at random
from the full deck each time. On how many predictions do you expect to be
correct?

Let’s work this out for the more general setting in which the deck has n
distinct cards, using X to denote the random variable equal to the number of
correct predictions. A surprisingly effortless way to compute X is to define the
random variable Xi, for i = 1, 2, . . . , n, to be equal to 1 if the ith prediction is
correct, and 0 otherwise. Notice that X = X1+ X2+ . . .+ Xn, and

E
[
Xi
]= 0 · Pr

[
Xi = 0

]+ 1 · Pr
[
Xi = 1

]= Pr
[
Xi = 1

]= 1
n

.

It’s worth pausing to note a useful fact that is implicitly demonstrated by the
above calculation: If Z is any random variable that only takes the values 0 or
1, then E [Z]= Pr [Z = 1].

Since E
[
Xi
]= 1

n for each i, we have

E [X]=
n∑

i=1

E
[
Xi
]= n

(
1
n

)
= 1.

Thus we have shown the following.

(13.9) The expected number of correct predictions under the memoryless
guessing strategy is 1, independent of n.

Trying to compute E [X] directly from the definition
∑∞

j=0 j · Pr [X = j]
would be much more painful, since it would involve working out a much more
elaborate summation. A significant amount of complexity is hidden away in
the seemingly innocuous statement of (13.8).

Guessing with Memory Now let’s consider a second scenario. Your psychic
abilities have not developed any further since last time, but you have become
very good at remembering which cards have already been turned over. Thus,
when you predict the next card now, you only guess uniformly from among

722 Chapter 13 Randomized Algorithms

the cards not yet seen. How many correct predictions do you expect to make
with this strategy?

Again, let the random variable Xi take the value 1 if the ith prediction is
correct, and 0 otherwise. In order for the ith prediction to be correct, you need
only guess the correct one out of n − i + 1 remaining cards; hence

E
[
Xi
]= Pr

[
Xi = 1

]= 1
n − i + 1

,

and so we have

Pr [X]=
n∑

i=1

E
[
Xi
]= n∑

i=1

1
n − i + 1

=
n∑

i=1

1
i
.

This last expression
∑n

i=1
1
i = 1+ 1

2 + 1
3 + . . .+ 1

n is the harmonic number
H(n), and it is something that has come up in each of the previous two
chapters. In particular, we showed in Chapter 11 that H(n), as a function of
n, closely shadows the value

∫ n+1
1

1
x dx= ln(n+ 1). For our purposes here, we

restate the basic bound on H(n) as follows.

(13.10) ln(n + 1) < H(n) < 1+ ln n, and more loosely, H(n)=�(log n).

Thus, once you are able to remember the cards you’ve already seen, the
expected number of correct predictions increases significantly above 1.

(13.11) The expected number of correct predictions under the guessing strat-
egy with memory is H(n)=�(log n).

Example: Collecting Coupons
Before moving on to more sophisticated applications, let’s consider one more
basic example in which linearity of expectation provides significant leverage.

Suppose that a certain brand of cereal includes a free coupon in each box.
There are n different types of coupons. As a regular consumer of this brand,
how many boxes do you expect to buy before finally getting a coupon of each
type?

Clearly, at least n boxes are needed; but it would be sort of surprising if
you actually had all n types of coupons by the time you’d bought n boxes. As
you collect more and more different types, it will get less and less likely that a
new box has a type of coupon you haven’t seen before. Once you have n − 1
of the n different types, there’s only a probability of 1/n that a new box has
the missing type you need.

Here’s a way to work out the expected time exactly. Let X be the random
variable equal to the number of boxes you buy until you first have a coupon

13.3 Random Variables and Their Expectations 723

of each type. As in our previous examples, this is a reasonably complicated
random variable to think about, and we’d like to write it as a sum of simpler
random variables. To think about this, let’s consider the following natural
idea: The coupon-collecting process makes progress whenever you buy a box
of cereal containing a type of coupon you haven’t seen before. Thus the goal
of the process is really to make progress n times. Now, at a given point in time,
what is the probability that you make progress in the next step? This depends
on how many different types of coupons you already have. If you have j types,
then the probability of making progress in the next step is (n − j)/n: Of the
n types of coupons, n − j allow you to make progress. Since the probability
varies depending on the number of different types of coupons we have, this
suggests a natural way to break down X into simpler random variables, as
follows.

Let’s say that the coupon-collecting process is in phase j when you’ve
already collected j different types of coupons and are waiting to get a new
type. When you see a new type of coupon, phase j ends and phase j + 1begins.
Thus we start in phase 0, and the whole process is done at the end of phase
n − 1. Let Xj be the random variable equal to the number of steps you spend
in phase j. Then X = X0 + X1+ . . .+ Xn−1, and so it is enough to work out
E
[
Xj
]

for each j.

(13.12) E
[
Xj
]= n/(n − j).

Proof. In each step of phase j, the phase ends immediately if and only if the
coupon you get next is one of the n − j types you haven’t seen before. Thus,
in phase j, you are really just waiting for an event of probability (n − j)/n to
occur, and so, by (13.7), the expected length of phase j is E

[
Xj
]= n/(n − j).

Using this, linearity of expectation gives us the overall expected time.

(13.13) The expected time before all n types of coupons are collected is
E [X]= nH(n)=�(n log n).

Proof. By linearity of expectation, we have

E [X]=
n−1∑
j=0

E
[
Xj
]= n−1∑

j=0

n
n − j

= n
n−1∑
j=0

1
n − j

= n
n∑

i=1

1
i
= nH(n).

By (13.10), we know this is asymptotically equal to �(n log n).

It is interesting to compare the dynamics of this process to one’s intuitive
view of it. Once n − 1 of the n types of coupons are collected, you expect to

724 Chapter 13 Randomized Algorithms

buy n more boxes of cereal before you see the final type. In the meantime, you
keep getting coupons you’ve already seen before, and you might conclude that
this final type is “the rare one.” But in fact it’s just as likely as all the others;
it’s simply that the final one, whichever it turns out to be, is likely to take a
long time to get.

A Final Definition: Conditional Expectation
We now discuss one final, very useful notion concerning random variables
that will come up in some of the subsequent analyses. Just as one can define
the conditional probability of one event given another, one can analogously
define the expectation of a random variable conditioned on a certain event.
Suppose we have a random variable X and an event E of positive probability.
Then we define the conditional expectation of X, given E, to be the expected
value of X computed only over the part of the sample space corresponding
to E. We denote this quantity by E [X | E]. This simply involves replacing the
probabilities Pr [X = j] in the definition of the expectation with conditional
probabilities:

E [X | E]=
∞∑
j=0

j · Pr [X = j | E] .

13.4 A Randomized Approximation Algorithm
for MAX 3-SAT

In the previous section, we saw a number of ways in which linearity of
expectation can be used to analyze a randomized process. We now describe
an application of this idea to the design of an approximation algorithm. The
problem we consider is a variation of the 3-SAT Problem, and we will see that
one consequence of our randomized approximation algorithm is a surprisingly
strong general statement about 3-SAT that on its surface seems to have nothing
to do with either algorithms or randomization.

The Problem
When we studied NP-completeness, a core problem was 3-SAT: Given a set of
clauses C1, . . . , Ck, each of length 3, over a set of variables X = {x1, . . . , xn},
does there exist a satisfying truth assignment?

Intuitively, we can imagine such a problem arising in a system that tries
to decide the truth or falsehood of statements about the world (the variables
{xi}), given pieces of information that relate them to one another (the clauses
{Cj}). Now the world is a fairly contradictory place, and if our system gathers

13.4 A Randomized Approximation Algorithm for MAX 3-SAT 725

enough information, it could well end up with a set of clauses that has no
satisfying truth assignment. What then?

A natural approach, if we can’t find a truth assignment that satisfies all
clauses, is to turn the 3-SAT instance into an optimization problem: Given the
set of input clauses C1, . . . , Ck, find a truth assignment that satisfies as many
as possible. We’ll call this the Maximum 3-Satisfiability Problem (or MAX
3-SAT for short). Of course, this is an NP-hard optimization problem, since
it’s NP-complete to decide whether the maximum number of simultaneously
satisfiable clauses is equal to k. Let’s see what can be said about polynomial-
time approximation algorithms.

Designing and Analyzing the Algorithm
A remarkably simple randomized algorithm turns out to give a strong perfor-
mance guarantee for this problem. Suppose we set each variable x1, . . . , xn
independently to 0 or 1 with probability 1

2 each. What is the expected number
of clauses satisfied by such a random assignment?

Let Z denote the random variable equal to the number of satisfied clauses.
As in Section 13.3, let’s decompose Z into a sum of random variables that each
take the value 0 or 1; specifically, let Zi = 1 if the clause Ci is satisfied, and 0
otherwise. Thus Z = Z1+ Z2+ . . .+ Zk. Now E

[
Zi
]

is equal to the probability
that Ci is satisfied, and this can be computed easily as follows. In order for Ci
not to be satisfied, each of its three variables must be assigned the value that
fails to make it true; since the variables are set independently, the probability
of this is (1

2)3= 1
8 . Thus clause Ci is satisfied with probability 1− 1

8 = 7
8 , and

so E
[
Zi
]= 7

8 .

Using linearity of expectation, we see that the expected number of satisfied
clauses is E [Z]= E

[
Z1
]+ E

[
Z2
]+ . . .+ E

[
Zk
]= 7

8k. Since no assignment can
satisfy more than k clauses, we have the following guarantee.

(13.14) Consider a 3-SAT formula, where each clause has three different
variables. The expected number of clauses satisfied by a random assignment is
within an approximation factor 7

8 of optimal.

But, if we look at what really happened in the (admittedly simple) analysis
of the random assignment, it’s clear that something stronger is going on. For
any random variable, there must be some point at which it assumes some
value at least as large as its expectation. We’ve shown that for every instance
of 3-SAT, a random truth assignment satisfies a 7

8 fraction of all clauses in
expectation; so, in particular, there must exist a truth assignment that satisfies
a number of clauses that is at least as large as this expectation.

726 Chapter 13 Randomized Algorithms

(13.15) For every instance of 3-SAT, there is a truth assignment that satisfies
at least a 7

8 fraction of all clauses.

There is something genuinely surprising about the statement of (13.15).
We have arrived at a nonobvious fact about 3-SAT—the existence of an
assignment satisfying many clauses—whose statement has nothing to do with
randomization; but we have done so by a randomized construction. And,
in fact, the randomized construction provides what is quite possibly the
simplest proof of (13.15). This is a fairly widespread principle in the area
of combinatorics—namely, that one can show the existence of some structure
by showing that a random construction produces it with positive probability.
Constructions of this sort are said to be applications of the probabilistic method.

Here’s a cute but minor application of (13.15): Every instance of 3-SAT
with at most seven clauses is satisfiable. Why? If the instance has k≤ 7 clauses,
then (13.15) implies that there is an assignment satisfying at least 7

8k of them.
But when k ≤ 7, it follows that 7

8k > k − 1; and since the number of clauses
satisfied by this assignment must be an integer, it must be equal to k. In other
words, all clauses are satisfied.

Further Analysis: Waiting to Find a Good Assignment
Suppose we aren’t satisfied with a “one-shot” algorithm that produces a single
assignment with a large number of satisfied clauses in expectation. Rather,
we’d like a randomized algorithm whose expected running time is polynomial
and that is guaranteed to output a truth assignment satisfying at least a 7

8
fraction of all clauses.

A simple way to do this is to generate random truth assignments until one
of them satisfies at least 7

8k clauses. We know that such an assignment exists,
by (13.15); but how long will it take until we find one by random trials?

This is a natural place to apply the waiting-time bound we derived in
(13.7). If we can show that the probability a random assignment satisfies at
least 7

8k clauses is at least p, then the expected number of trials performed by
the algorithm is 1/p. So, in particular, we’d like to show that this quantity p is
at least as large as an inverse polynomial in n and k.

For j = 0, 1, 2, . . . , k, let pj denote the probability that a random assign-
ment satisfies exactly j clauses. So the expected number of clauses satisfied, by
the definition of expectation, is equal to

∑k
j=0 jpj; and by the previous analysis,

this is equal to 7
8k. We are interested in the quantity p=∑

j≥7k/8 pj. How can
we use the lower bound on the expected value to give a lower bound on this
quantity?

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 727

We start by writing

7
8

k =
k∑

j=0

jpj =
∑

j<7k/8

jpj +
∑

j≥7k/8

jpj.

Now let k′ denote the largest natural number that is strictly smaller than 7
8k.

The right-hand side of the above equation only increases if we replace the
terms in the first sum by k′pj and the terms in the second sum by kpj. We also

observe that
∑

j<7k/8

pj = 1− p, and so

7
8

k ≤
∑

j<7k/8

k′pj +
∑

j≥7k/8

kpj = k′(1− p)+ kp≤ k′ + kp,

and hence kp≥ 7
8k − k′. But 7

8k − k′ ≥ 1
8 , since k′ is a natural number strictly

smaller than 7
8 times another natural number, and so

p ≥
7
8k − k′

k
≥ 1

8k
.

This was our goal—to get a lower bound on p—and so by the waiting-time
bound (13.7), we see that the expected number of trials needed to find the
satisfying assignment we want is at most 8k.

(13.16) There is a randomized algorithm with polynomial expected running
time that is guaranteed to produce a truth assignment satisfying at least a 7

8
fraction of all clauses.

13.5 Randomized Divide and Conquer:
Median-Finding and Quicksort

We’ve seen the divide-and-conquer paradigm for designing algorithms at
various earlier points in the book. Divide and conquer often works well in
conjunction with randomization, and we illustrate this by giving divide-and-
conquer algorithms for two fundamental problems: computing the median of
n numbers, and sorting. In each case, the “divide” step is performed using
randomization; consequently, we will use expectations of random variables to
analyze the time spent on recursive calls.

The Problem: Finding the Median
Suppose we are given a set of n numbers S = {a1, a2, . . . , an}. Their median
is the number that would be in the middle position if we were to sort them.
There’s an annoying technical difficulty if n is even, since then there is no

728 Chapter 13 Randomized Algorithms

“middle position”; thus we define things precisely as follows: The median of
S= {a1, a2, . . . , an} is equal to the kth largest element in S, where k= (n + 1)/2
if n is odd, and k = n/2 if n is even. In what follows, we’ll assume for the sake
of simplicity that all the numbers are distinct. Without this assumption, the
problem becomes notationally more complicated, but no new ideas are brought
into play.

It is clearly easy to compute the median in time O(n log n) if we simply
sort the numbers first. But if one begins thinking about the problem, it’s far
from clear why sorting is necessary for computing the median, or even why
�(n log n) time is necessary. In fact, we’ll show how a simple randomized
approach, based on divide-and-conquer, yields an expected running time of
O(n).

Designing the Algorithm
A Generic Algorithm Based on Splitters The first key step toward getting
an expected linear running time is to move from median-finding to the more
general problem of selection. Given a set of n numbers S and a number k
between 1and n, consider the function Select(S, k) that returns the kth largest
element in S. As special cases, Select includes the problem of finding the
median of S via Select(S, n/2) or Select(S, (n + 1)/2); it also includes the
easier problems of finding the minimum (Select(S, 1)) and the maximum
(Select(S, n)). Our goal is to design an algorithm that implements Select so
that it runs in expected time O(n).

The basic structure of the algorithm implementing Select is as follows.
We choose an element ai ∈ S, the “splitter,” and form the sets S− = {aj :aj < ai}
and S+ = {aj : aj > ai}. We can then determine which of S− or S+ contains the
kth largest element, and iterate only on this one. Without specifying yet how
we plan to choose the splitter, here’s a more concrete description of how we
form the two sets and iterate.

Select(S,k):

Choose a splitter ai ∈ S

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| = k − 1 then

The splitter ai was in fact the desired answer

Else if |S−| ≥ k then

The kth largest element lies in S−

Recursively call Select(S−, k)

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 729

Else suppose |S−| = � < k − 1

The kth largest element lies in S+

Recursively call Select(S+, k − 1− �)

Endif

Observe that the algorithm is always called recursively on a strictly smaller set,
so it must terminate. Also, observe that if |S| = 1, then we must have k = 1,
and indeed the single element in S will be returned by the algorithm. Finally,
from the choice of which recursive call to make, it’s clear by induction that the
right answer will be returned when |S|> 1 as well. Thus we have the following

(13.17) Regardless of how the splitter is chosen, the algorithm above returns
the kth largest element of S.

Choosing a Good Splitter Now let’s consider how the running time of Select
depends on the way we choose the splitter. Assuming we can select a splitter
in linear time, the rest of the algorithm takes linear time plus the time for the
recursive call. But how is the running time of the recursive call affected by the
choice of the splitter? Essentially, it’s important that the splitter significantly
reduce the size of the set being considered, so that we don’t keep making
passes through large sets of numbers many times. So a good choice of splitter
should produce sets S− and S+ that are approximately equal in size.

For example, if we could always choose the median as the splitter, then
we could show a linear bound on the running time as follows. Let cn be the
running time for Select, not counting the time for the recursive call. Then,
with medians as splitters, the running time T(n) would be bounded by the
recurrence T(n)≤ T(n/2)+ cn. This is a recurrence that we encountered at the
beginning of Chapter 5, where we showed that it has the solution T(n)=O(n).

Of course, hoping to be able to use the median as the splitter is rather
circular, since the median is what we want to compute in the first place! But,
in fact, one can show that any “well-centered” element can serve as a good
splitter: If we had a way to choose splitters ai such that there were at least
εn elements both larger and smaller than ai, for any fixed constant ε > 0,
then the size of the sets in the recursive call would shrink by a factor of at
least (1− ε) each time. Thus the running time T(n) would be bounded by
the recurrence T(n)≤ T((1− ε)n)+ cn. The same argument that showed the
previous recurrence had the solution T(n) = O(n) can be used here: If we
unroll this recurrence for any ε > 0, we get

730 Chapter 13 Randomized Algorithms

T(n)≤ cn + (1− ε)cn + (1− ε)2cn + . . .=
[
1+ (1− ε)+ (1− ε)2+ . . .

]

cn ≤ 1
ε
· cn,

since we have a convergent geometric series.

Indeed, the only thing to really beware of is a very “off-center” splitter.
For example, if we always chose the minimum element as the splitter, then we
may end up with a set in the recursive call that’s only one element smaller
than we had before. In this case, the running time T(n) would be bounded
by the recurrence T(n)≤ T(n− 1)+ cn. Unrolling this recurrence, we see that
there’s a problem:

T(n)≤ cn + c(n − 1)+ c(n − 2)+ . . .= cn(n + 1)
2

=�(n2).

Random Splitters Choosing a “well-centered” splitter, in the sense we have
just defined, is certainly similar in flavor to our original problem of choosing
the median; but the situation is really not so bad, since any well-centered
splitter will do.

Thus we will implement the as-yet-unspecified step of selecting a splitter
using the following simple rule:

Choose a splitter ai ∈ S uniformly at random

The intuition here is very natural: since a fairly large fraction of the elements
are reasonably well-centered, we will be likely to end up with a good splitter
simply by choosing an element at random.

The analysis of the running time with a random splitter is based on this
idea; we expect the size of the set under consideration to go down by a fixed
constant fraction every iteration, so we should get a convergent series and
hence a linear bound as previously. We now show how to make this precise.

Analyzing the Algorithm
We’ll say that the algorithm is in phase j when the size of the set under
consideration is at most n(3

4)j but greater than n(3
4)j+1. Let’s try to bound

the expected time spent by the algorithm in phase j. In a given iteration of the
algorithm, we say that an element of the set under consideration is central if
at least a quarter of the elements are smaller than it and at least a quarter of
the elements are larger than it.

Now observe that if a central element is chosen as a splitter, then at least
a quarter of the set will be thrown away, the set will shrink by a factor of 3

4
or better, and the current phase will come to an end. Moreover, half of all the

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 731

elements in the set are central, and so the probability that our random choice
of splitter produces a central element is 1

2. Hence, by our simple waiting-time
bound (13.7), the expected number of iterations before a central element is
found is 2; and so the expected number of iterations spent in phase j, for any
j, is at most 2.

This is pretty much all we need for the analysis. Let X be a random variable
equal to the number of steps taken by the algorithm. We can write it as the
sum X = X0 + X1+ X2+ . . ., where Xj is the expected number of steps spent
by the algorithm in phase j. When the algorithm is in phase j, the set has
size at most n(3

4)j, and so the number of steps required for one iteration in
phase j is at most cn(3

4)j for some constant c. We have just argued that the
expected number of iterations spent in phase j is at most two, and hence we
have E

[
Xj
] ≤ 2cn(3

4)j. Thus we can bound the total expected running time
using linearity of expectation,

E [X]=
∑

j

E
[
Xj
]≤∑

j

2cn
(

3
4

)j

= 2cn
∑

j

(
3
4

)j

≤ 8cn,

since the sum
∑

j(
3
4)j is a geometric series that converges. Thus we have the

following desired result.

(13.18) The expected running time of Select(n, k) is O(n).

A Second Application: Quicksort
The randomized divide-and-conquer technique we used to find the median
is also the basis of the sorting algorithm Quicksort. As before, we choose a
splitter for the input set S, and separate S into the elements below the splitter
value and those above it. The difference is that, rather than looking for the
median on just one side of the splitter, we sort both sides recursively and glue
the two sorted pieces together (with the splitter in between) to produce the
overall output. Also, we need to explicitly include a base case for the recursive
code: we only use recursion on sets of size at least 4. A complete description
of Quicksort is as follows.

Quicksort(S):

If |S| ≤ 3 then

Sort S

Output the sorted list

Else

Choose a splitter ai ∈ S uniformly at random

For each element aj of S

732 Chapter 13 Randomized Algorithms

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

Recursively call Quicksort(S−) and Quicksort(S+)
Output the sorted set S−, then ai, then the sorted set S+

Endif

As with median-finding, the worst-case running time of this method is
not so good. If we always select the smallest element as a splitter, then the
running time T(n) on n-element sets satisfies the same recurrence as before:
T(n)≤ T(n − 1)+ cn, and so we end up with a time bound of T(n)=�(n2).
In fact, this is the worst-case running time for Quicksort.

On the positive side, if the splitters selected happened to be the medians
of the sets at each iteration, then we get the recurrence T(n)≤ 2T(n/2)+ cn,
which arose frequently in the divide-and-conquer analyses of Chapter 5; the
running time in this lucky case is O(n log n).

Here we are concerned with the expected running time; we will show that
this can be bounded by O(n log n), almost as good as in the best case when the
splitters are perfectly centered. Our analysis of Quicksort will closely follow
the analysis of median-finding. Just as in the Select procedure that we used
for median-finding, the crucial definition is that of a central splitter—one that
divides the set so that each side contains at least a quarter of the elements. (As
we discussed earlier, it is enough for the analysis that each side contains at
least some fixed constant fraction of the elements; the use of a quarter here is
chosen for convenience.) The idea is that a random choice is likely to lead to a
central splitter, and central splitters work well. In the case of sorting, a central
splitter divides the problem into two considerably smaller subproblems.

To simplify the presentation, we will slightly modify the algorithm so that
it only issues its recursive calls when it finds a central splitter. Essentially, this
modified algorithm differs from Quicksort in that it prefers to throw away
an “off-center” splitter and try again; Quicksort, by contrast, launches the
recursive calls even with an off-center splitter, and at least benefits from the
work already done in splitting S. The point is that the expected running time
of this modified algorithm can be analyzed very simply, by direct analogy
with our analysis for median-finding. With a bit more work, a very similar but
somewhat more involved analysis can also be done for the original Quicksort
algorithm as well; however, we will not describe this analysis here.

Modified Quicksort(S):

If |S| ≤ 3 then

Sort S

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 733

Output the sorted list

Endif

Else

While no central splitter has been found

Choose a splitter ai ∈ S uniformly at random

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| ≥ |S|/4 and |S+| ≥ |S|/4 then

ai is a central splitter

Endif

Endwhile

Recursively call Quicksort(S−) and Quicksort(S+)
Output the sorted set S−, then ai, then the sorted set S+

Endif

Consider a subproblem for some set S. Each iteration of the While loop
selects a possible splitter ai and spends O(|S|) time splitting the set and deciding
if ai is central. Earlier we argued that the number of iterations needed until
we find a central splitter is at most 2. This gives us the following statement.

(13.19) The expected running time for the algorithm on a set S, excluding
the time spent on recursive calls, is O(|S|).

The algorithm is called recursively on multiple subproblems. We will group
these subproblems by size. We’ll say that the subproblem is of type j if the size
of the set under consideration is at most n(3

4)j but greater than n(3
4)j+1. By

(13.19), the expected time spent on a subproblem of type j, excluding recursive
calls, is O(n(3

4)j). To bound the overall running time, we need to bound the
number of subproblems for each type j. Splitting a type j subproblem via a
central splitter creates two subproblems of higher type. So the subproblems of
a given type j are disjoint. This gives us a bound on the number of subproblems.

(13.20) The number of type j subproblems created by the algorithm is at most
(4

3)j+1.

There are at most (4
3)j+1 subproblems of type j, and the expected time

spent on each is O(n(3
4)j) by (13.19). Thus, by linearity of expectation, the

expected time spent on subproblems of type j is O(n). The number of different
types is bounded by log 4

3
n = O(log n), which gives the desired bound.

(13.21) The expected running time of Modified Quicksort is O(n log n).

734 Chapter 13 Randomized Algorithms

We considered this modified version of Quicksort to simplify the analy-
sis. Coming back to the original Quicksort, our intuition suggests that the
expected running time is no worse than in the modified algorithm, as accept-
ing the noncentral splitters helps a bit with sorting, even if it does not help as
much as when a central splitter is chosen. As mentioned earlier, one can in
fact make this intuition precise, leading to an O(n log n) expected time bound
for the original Quicksort algorithm; we will not go into the details of this
here.

13.6 Hashing: A Randomized Implementation of
Dictionaries

Randomization has also proved to be a powerful technique in the design
of data structures. Here we discuss perhaps the most fundamental use of
randomization in this setting, a technique called hashing that can be used
to maintain a dynamically changing set of elements. In the next section, we
will show how an application of this technique yields a very simple algorithm
for a problem that we saw in Chapter 5—the problem of finding the closest
pair of points in the plane.

The Problem
One of the most basic applications of data structures is to simply maintain a
set of elements that changes over time. For example, such applications could
include a large company maintaining the set of its current employees and
contractors, a news indexing service recording the first paragraphs of news
articles it has seen coming across the newswire, or a search algorithm keeping
track of the small part of an exponentially large search space that it has already
explored.

In all these examples, there is a universe U of possible elements that is
extremely large: the set of all possible people, all possible paragraphs (say, up
to some character length limit), or all possible solutions to a computationally
hard problem. The data structure is trying to keep track of a set S ⊆ U whose
size is generally a negligible fraction of U, and the goal is to be able to insert
and delete elements from S and quickly determine whether a given element
belongs to S.

We will call a data structure that accomplishes this a dictionary. More
precisely, a dictionary is a data structure that supports the following operations.

. MakeDictionary. This operation initializes a fresh dictionary that can
maintain a subset S of U; the dictionary starts out empty.

. Insert(u) adds element u ∈ U to the set S. In many applications, there
may be some additional information that we want to associate with u

13.6 Hashing: A Randomized Implementation of Dictionaries 735

(for example, u may be the name or ID number of an employee, and we
want to also store some personal information about this employee), and
we will simply imagine this being stored in the dictionary as part of a
record together with u. (So, in general, when we talk about the element
u, we really mean u and any additional information stored with u.)

. Delete(u) removes element u from the set S, if it is currently present.

. Lookup(u) determines whether u currently belongs to S; if it does, it also
retrieves any additional information stored with u.

Many of the implementations we’ve discussed earlier in the book involve
(most of) these operations: For example, in the implementation of the BFS
and DFS graph traversal algorithms, we needed to maintain the set S of nodes
already visited. But there is a fundamental difference between those problems
and the present setting, and that is the size of U. The universe U in BFS or DFS
is the set of nodes V, which is already given explicitly as part of the input.
Thus it is completely feasible in those cases to maintain a set S ⊆ U as we
did there: defining an array with |U | positions, one for each possible element,
and setting the array position for u equal to 1 if u ∈ S, and equal to 0 if u �∈ S.
This allows for insertion, deletion, and lookup of elements in constant time
per operation, by simply accessing the desired array entry.

Here, by contrast, we are considering the setting in which the universe
U is enormous. So we are not going to be able to use an array whose size is
anywhere near that of U. The fundamental question is whether, in this case,
we can still implement a dictionary to support the basic operations almost as
quickly as when U was relatively small.

We now describe a randomized technique called hashing that addresses
this question. While we will not be able to do quite as well as the case in
which it is feasible to define an array over all of U, hashing will allow us to
come quite close.

Designing the Data Structure
As a motivating example, let’s think a bit more about the problem faced by
an automated service that processes breaking news. Suppose you’re receiving
a steady stream of short articles from various wire services, weblog postings,
and so forth, and you’re storing the lead paragraph of each article (truncated
to at most 1,000 characters). Because you’re using many sources for the sake
of full coverage, there’s a lot of redundancy: the same article can show up
many times.

When a new article shows up, you’d like to quickly check whether you’ve
seen the lead paragraph before. So a dictionary is exactly what you want for this
problem: The universe U is the set of all strings of length at most 1,000 (or of

736 Chapter 13 Randomized Algorithms

length exactly 1,000, if we pad them out with blanks), and we’re maintaining
a set S⊆ U consisting of strings (i.e., lead paragraphs) that we’ve seen before.

One solution would be to keep a linked list of all paragraphs, and scan
this list each time a new one arrives. But a Lookup operation in this case takes
time proportional to |S|. How can we get back to something that looks like an
array-based solution?

Hash Functions The basic idea of hashing is to work with an array of size
|S|, rather than one comparable to the (astronomical) size of U.

Suppose we want to be able to store a set S of size up to n. We will
set up an array H of size n to store the information, and use a function
h : U → {0, 1, . . . , n − 1} that maps elements of U to array positions. We call
such a function h a hash function, and the array H a hash table. Now, if we
want to add an element u to the set S, we simply place u in position h(u) of
the array H. In the case of storing paragraphs of text, we can think of h(·) as
computing some kind of numerical signature or “check-sum” of the paragraph
u, and this tells us the array position at which to store u.

This would work extremely well if, for all distinct u and v in our set S, it
happened to be the case that h(u) �= h(v). In such a case, we could look up
u in constant time: when we check array position H[h(u)], it would either be
empty or would contain just u.

In general, though, we cannot expect to be this lucky: there can be distinct
elements u, v ∈ S for which h(u)= h(v). We will say that these two elements
collide, since they are mapped to the same place in H. There are a number
of ways to deal with collisions. Here we will assume that each position H[i]
of the hash table stores a linked list of all elements u ∈ S with h(u)= i. The
operation Lookup(u) would now work as follows.

. Compute the hash function h(u).

. Scan the linked list at position H[h(u)] to see if u is present in this list.

Hence the time required for Lookup(u) is proportional to the time to compute
h(u), plus the length of the linked list at H[h(u)]. And this latter quantity, in
turn, is just the number of elements in S that collide with u. The Insert and
Delete operations work similarly: Insert adds u to the linked list at position
H[h(u)], and Delete scans this list and removes u if it is present.

So now the goal is clear: We’d like to find a hash function that “spreads
out” the elements being added, so that no one entry of the hash table H
contains too many elements. This is not a problem for which worst-case
analysis is very informative. Indeed, suppose that |U | ≥ n2 (we’re imagining
applications where it’s much larger than this). Then, for any hash function h
that we choose, there will be some set S of n elements that all map to the same

13.6 Hashing: A Randomized Implementation of Dictionaries 737

position. In the worst case, we will insert all the elements of this set, and then
our Lookup operations will consist of scanning a linked list of length n.

Our main goal here is to show that randomization can help significantly
for this problem. As usual, we won’t make any assumptions about the set of
elements S being random; we will simply exploit randomization in the design
of the hash function. In doing this, we won’t be able to completely avoid
collisions, but can make them relatively rare enough, and so the lists will be
quite short.

Choosing a Good Hash Function We’ve seen that the efficiency of the
dictionary is based on the choice of the hash function h. Typically, we will think
of U as a large set of numbers, and then use an easily computable function h
that maps each number u ∈ U to some value in the smaller range of integers
{0, 1, . . . , n− 1}. There are many simple ways to do this: we could use the first
or last few digits of u, or simply take u modulo n. While these simple choices
may work well in many situations, it is also possible to get large numbers
of collisions. Indeed, a fixed choice of hash function may run into problems
because of the types of elements u encountered in the application: Maybe the
particular digits we use to define the hash function encode some property of
u, and hence maybe only a few options are possible. Taking u modulo n can
have the same problem, especially if n is a power of 2. To take a concrete
example, suppose we used a hash function that took an English paragraph,
used a standard character encoding scheme like ASCII to map it to a sequence
of bits, and then kept only the first few bits in this sequence. We’d expect a
huge number of collisions at the array entries corresponding to the bit strings
that encoded common English words like The, while vast portions of the array
can be occupied only by paragraphs that begin with strings like qxf , and hence
will be empty.

A slightly better choice in practice is to take (u mod p) for a prime number
p that is approximately equal to n. While in some applications this may yield
a good hashing function, it may not work well in all applications, and some
primes may work much better than others (for example, primes very close to
powers of 2 may not work so well).

Since hashing has been widely used in practice for a long time, there is a
lot of experience with what makes for a good hash function, and many hash
functions have been proposed that tend to work well empirically. Here we
would like to develop a hashing scheme where we can prove that it results in
efficient dictionary operations with high probability.

The basic idea, as suggested earlier, is to use randomization in the con-
struction of h. First let’s consider an extreme version of this: for every element
u ∈ U, when we go to insert u into S, we select a value h(u) uniformly at

738 Chapter 13 Randomized Algorithms

random in the set {0, 1, . . . , n − 1}, independently of all previous choices. In
this case, the probability that two randomly selected values h(u) and h(v) are
equal (and hence cause a collision) is quite small.

(13.22) With this uniform random hashing scheme, the probability that two
randomly selected values h(u) and h(v) collide—that is, that h(u)= h(v)—is
exactly 1/n.

Proof. Of the n2 possible choices for the pair of values (h(u), h(v)), all are
equally likely, and exactly n of these choices results in a collision.

However, it will not work to use a hash function with independently
random chosen values. To see why, suppose we inserted u into S, and then
later want to perform either Delete(u) or Lookup(u). We immediately run into
the “Where did I put it?” problem: We will need to know the random value
h(u) that we used, so we will need to have stored the value h(u) in some form
where we can quickly look it up. But this is exactly the same problem we were
trying to solve in the first place.

There are two things that we can learn from (13.22). First, it provides a
concrete basis for the intuition from practice that hash functions that spread
things around in a “random” way can be effective at reducing collisions. Sec-
ond, and more crucial for our goals here, we will be able to show how a more
controlled use of randomization achieves performance as good as suggested
in (13.22), but in a way that leads to an efficient dictionary implementation.

Universal Classes of Hash Functions The key idea is to choose a hash
function at random not from the collection of all possible functions into
[0, n − 1], but from a carefully selected class of functions. Each function h in
our class of functions H will map the universe U into the set {0, 1, . . . , n− 1},
and we will design it so that it has two properties. First, we’d like it to come
with the guarantee from (13.22):

. For any pair of elements u, v ∈ U, the probability that a randomly chosen
h ∈H satisfies h(u)= h(v) is at most 1/n.

We say that a class H of functions is universal if it satisfies this first property.
Thus (13.22) can be viewed as saying that the class of all possible functions
from U into {0, 1, . . . , n − 1} is universal.

However, we also need H to satisfy a second property. We will state this
slightly informally for now and make it more precise later.

. Each h ∈H can be compactly represented and, for a given h ∈H and
u ∈ U, we can compute the value h(u) efficiently.

13.6 Hashing: A Randomized Implementation of Dictionaries 739

The class of all possible functions failed to have this property: Essentially, the
only way to represent an arbitrary function from U into {0, 1, . . . , n − 1} is to
write down the value it takes on every single element of U.

In the remainder of this section, we will show the surprising fact that
there exist classes H that satisfy both of these properties. Before we do this,
we first make precise the basic property we need from a universal class of hash
functions. We argue that if a function h is selected at random from a universal
class of hash functions, then in any set S⊂ U of size at most n, and any u ∈ U,
the expected number of items in S that collide with u is a constant.

(13.23) Let H be a universal class of hash functions mapping a universe U
to the set {0, 1, . . . , n − 1}, let S be an arbitrary subset of U of size at most n,
and let u be any element in U. We define X to be a random variable equal to the
number of elements s ∈ S for which h(s)= h(u), for a random choice of hash
function h ∈H. (Here S and u are fixed, and the randomness is in the choice
of h ∈H.) Then E [X]≤ 1.

Proof. For an element s ∈ S, we define a random variable Xs that is equal to 1
if h(s)= h(u), and equal to 0 otherwise. We have E

[
Xs
]= Pr

[
Xs = 1

]≤ 1/n,
since the class of functions is universal.

Now X =∑
s∈S Xs, and so, by linearity of expectation, we have

E [X]=
∑
s∈S

E
[
Xs
]≤ |S| · 1

n
≤ 1.

Designing a Universal Class of Hash Functions Next we will design a
universal class of hash functions. We will use a prime number p≈ n as the
size of the hash table H. To be able to use integer arithmetic in designing
our hash functions, we will identify the universe with vectors of the form
x= (x1, x2, . . . xr) for some integer r, where 0≤ xi < p for each i. For example,
we can first identify U with integers in the range [0, N − 1] for some N, and
then use consecutive blocks of �log p bits of u to define the corresponding
coordinates xi. If U ⊆ [0, N − 1], then we will need a number of coordinates
r ≈ log N/ log n.

Let A be the set of all vectors of the form a = (a1, . . . , ar), where ai is an
integer in the range [0, p− 1] for each i = 1, . . . , r. For each a ∈A, we define
the linear function

ha(x)=
(

r∑
i=1

aixi

)
mod p.

740 Chapter 13 Randomized Algorithms

This now completes our random implementation of dictionaries. We define
the family of hash functions to be H = {ha : a ∈ A}. To execute MakeDic-
tionary, we choose a random hash function from H; in other words, we
choose a random vector from A (by choosing each coordinate uniformly at
random), and form the function ha. Note that in order to define A, we need
to find a prime number p ≥ n. There are methods for generating prime num-
bers quickly, which we will not go into here. (In practice, this can also be
accomplished using a table of known prime numbers, even for relatively large
n.)

We then use this as the hash function with which to implement Insert,
Delete, and Lookup. The family H = {ha : a ∈A} satisfies a formal version of
the second property we were seeking: It has a compact representation, since
by simply choosing and remembering a random a ∈A, we can compute ha(u)

for all elements u ∈ U. Thus, to show that H leads to an efficient, hashing-
based implementation of dictionaries, we just need to establish that H is a
universal family of hash functions.

Analyzing the Data Structure
If we are using a hash function ha from the class H that we’ve defined, then a
collision ha(x)= ha(y) defines a linear equation modulo the prime number p. In
order to analyze such equations, it’s useful to have the following “cancellation
law.”

(13.24) For any prime p and any integer z �= 0 mod p, and any two integers
α, β, if αz = βz mod p, then α = β mod p.

Proof. Suppose αz= βz mod p. Then, by rearranging terms, we get z(α − β)=
0 mod p, and hence z(α − β) is divisible by p. But z �= 0 mod p, so z is not
divisible by p. Since p is prime, it follows that α − β must be divisible by p;
that is, α = β mod p as claimed.

We now use this to prove the main result in our analysis.

(13.25) The class of linear functions H defined above is universal.

Proof. Let x = (x1, x2, . . . xr) and y = (y1, y2, . . . yr) be two distinct elements
of U. We need to show that the probability of ha(x)= ha(y), for a randomly
chosen a ∈ A, is at most 1/p.

Since x �= y, then there must be an index j such that xj �= yj. We now
consider the following way of choosing the random vector a ∈ A. We first
choose all the coordinates ai where i �= j. Then, finally, we choose coordinate
aj. We will show that regardless of how all the other coordinates ai were

13.7 Finding the Closest Pair of Points: A Randomized Approach 741

chosen, the probability of ha(x)= ha(y), taken over the final choice of aj, is
exactly 1/p. It will follow that the probability of ha(x)= ha(y) over the random
choice of the full vector a must be 1/p as well.

This conclusion is intuitively clear: If the probability is 1/p regardless of
how we choose all other ai, then it is 1/p overall. There is also a direct proof
of this using conditional probabilities. Let E be the event that ha(x)= ha(y),
and let Fb be the event that all coordinates ai (for i �= j) receive a sequence of
values b. We will show, below, that Pr

[
E | Fb

]= 1/p for all b. It then follows
that Pr [E]=∑

b Pr
[
E | Fb

] · Pr
[
Fb
]= (1/p)

∑
b Pr

[
Fb
]= 1/p.

So, to conclude the proof, we assume that values have been chosen
arbitrarily for all other coordinates ai, and we consider the probability of
selecting aj so that ha(x)= ha(y). By rearranging terms, we see that ha(x)=
ha(y) if and only if

aj(yj − xj)=
∑
i �=j

ai(xi − yi) mod p.

Since the choices for all ai (i �= j) have been fixed, we can view the right-hand
side as some fixed quantity m. Also, let us define z = yj − xj.

Now it is enough to show that there is exactly one value 0≤ aj < p that
satisfies ajz =m mod p; indeed, if this is the case, then there is a probability
of exactly 1/p of choosing this value for aj. So suppose there were two such
values, aj and a′j. Then we would have ajz = a′jz mod p, and so by (13.24) we
would have aj = a′j mod p. But we assumed that aj , a′j < p, and so in fact aj

and a′j would be the same. It follows that there is only one aj in this range that
satisfies ajz =m mod p.

Tracing back through the implications, this means that the probability of
choosing aj so that ha(x)= ha(y) is 1/p, however we set the other coordinates
ai in a; thus the probability that x and y collide is 1/p. Thus we have shown
that H is a universal class of hash functions.

13.7 Finding the Closest Pair of Points:
A Randomized Approach

In Chapter 5, we used the divide-and-conquer technique to develop an
O(n log n) time algorithm for the problem of finding the closest pair of points in
the plane. Here we will show how to use randomization to develop a different
algorithm for this problem, using an underlying dictionary data structure. We
will show that this algorithm runs in O(n) expected time, plus O(n) expected
dictionary operations.

There are several related reasons why it is useful to express the running
time of our algorithm in this way, accounting for the dictionary operations

742 Chapter 13 Randomized Algorithms

separately. We have seen in Section 13.6 that dictionaries have a very efficient
implementation using hashing, so abstracting out the dictionary operations
allows us to treat the hashing as a “black box” and have the algorithm inherit
an overall running time from whatever performance guarantee is satisfied by
this hashing procedure. A concrete payoff of this is the following. It has been
shown that with the right choice of hashing procedure (more powerful, and
more complicated, than what we described in Section 13.6), one can make the
underlying dictionary operations run in linear expected time as well, yielding
an overall expected running time of O(n). Thus the randomized approach we
describe here leads to an improvement over the running time of the divide-
and-conquer algorithm that we saw earlier. We will talk about the ideas that
lead to this O(n) bound at the end of the section.

It is worth remarking at the outset that randomization shows up for two
independent reasons in this algorithm: the way in which the algorithm pro-
cesses the input points will have a random component, regardless of how the
dictionary data structure is implemented; and when the dictionary is imple-
mented using hashing, this introduces an additional source of randomness as
part of the hash-table operations. Expressing the running time via the num-
ber of dictionary operations allows us to cleanly separate the two uses of
randomness.

The Problem
Let us start by recalling the problem’s (very simple) statement. We are given
n points in the plane, and we wish to find the pair that is closest together.
As discussed in Chapter 5, this is one of the most basic geometric proximity
problems, a topic with a wide range of applications.

We will use the same notation as in our earlier discussion of the closest-
pair problem. We will denote the set of points by P = {p1, . . . , pn}, where pi
has coordinates (xi, yi); and for two points pi, pj ∈ P, we use d(pi, pj) to denote
the standard Euclidean distance between them. Our goal is to find the pair of
points pi, pj that minimizes d(pi, pj).

To simplify the discussion, we will assume that the points are all in the
unit square: 0≤ xi, yi < 1 for all i = 1, . . . , n. This is no loss of generality: in
linear time, we can rescale all the x- and y-coordinates of the points so that
they lie in a unit square, and then we can translate them so that this unit
square has its lower left corner at the origin.

Designing the Algorithm
The basic idea of the algorithm is very simple. We’ll consider the points in
random order, and maintain a current value δ for the closest pair as we process

13.7 Finding the Closest Pair of Points: A Randomized Approach 743

the points in this order. When we get to a new point p, we look “in the vicinity”
of p to see if any of the previously considered points are at a distance less than
δ from p. If not, then the closest pair hasn’t changed, and we move on to the
next point in the random order. If there is a point within a distance less than
δ from p, then the closest pair has changed, and we will need to update it.

The challenge in turning this into an efficient algorithm is to figure out
how to implement the task of looking for points in the vicinity of p. It is here
that the dictionary data structure will come into play.

We now begin making this more concrete. Let us assume for simplicity that
the points in our random order are labeled p1, . . . , pn. The algorithm proceeds
in stages; during each stage, the closest pair remains constant. The first stage
starts by setting δ = d(p1, p2), the distance of the first two points. The goal of
a stage is to either verify that δ is indeed the distance of the closest pair of
points, or to find a pair of points pi, pj with d(pi, pj) < δ. During a stage, we’ll
gradually add points in the order p1, p2, . . . , pn. The stage terminates when
we reach a point pi so that for some j < i, we have d(pi, pj) < δ. We then let δ

for the next stage be the closest distance found so far: δ =minj:j<i d(pi, pj).

The number of stages used will depend on the random order. If we get
lucky, and p1, p2 are the closest pair of points, then a single stage will do. It
is also possible to have as many as n− 2 stages, if adding a new point always
decreases the minimum distance. We’ll show that the expected running time
of the algorithm is within a constant factor of the time needed in the first,
lucky case, when the original value of δ is the smallest distance.

Testing a Proposed Distance The main subroutine of the algorithm is a
method to test whether the current pair of points with distance δ remains
the closest pair when a new point is added and, if not, to find the new closest
pair.

The idea of the verification is to subdivide the unit square (the area where
the points lie) into subsquares whose sides have length δ/2, as shown in
Figure 13.2. Formally, there will be N2 subsquares, where N = �1/(2δ)�: for
0≤ s≤ N − 1 and 1≤ t ≤ N − 1, we define the subsquare Sst as

Sst = {(x, y) : sδ/2≤ x < (s+ 1)δ/2; tδ/2≤ y < (t + 1)δ/2}.
We claim that this collection of subsquares has two nice properties for our

purposes. First, any two points that lie in the same subsquare have distance
less than δ. Second, and a partial converse to this, any two points that are less
than δ away from each other must fall in either the same subsquare or in very
close subsquares.

(13.26) If two points p and q belong to the same subsquare Sst, then
d(p, q) < δ.

744 Chapter 13 Randomized Algorithms

δ/2

δ/2p
If p is involved in the closest
pair, then the other point
lies in a close subsquare.

sδ—2

—tδ2

Figure 13.2 Dividing the square into size δ/2 subsquares. The point p lies in the
subsquare Sst.

Proof. If points p and q are in the same subsquare, then both coordinates of
the two points differ by at most δ/2, and hence d(p, q)≤√

(δ/2)2+ (δ/2)2)=
δ/
√

2 < δ, as required.

Next we say that subsquares Sst and Ss′t′ are close if |s − s′| ≤ 2 and
|t − t′| ≤ 2. (Note that a subsquare is close to itself.)

(13.27) If for two points p, q ∈ P we have d(p, q) < δ, then the subsquares
containing them are close.

Proof. Consider two points p, q ∈ P belonging to subsquares that are not close;
assume p ∈ Sst and q ∈ Ss′t′, where one of s, s′ or t , t′ differs by more than 2. It
follows that in one of their respective x- or y-coordinates, p and q differ by at
least δ, and so we cannot have d(p, q) < δ.

Note that for any subsquare Sst, the set of subsquares close to it form a
5× 5 grid around it. Thus we conclude that there are at most 25 subsquares
close to Sst, counting Sst itself. (There will be fewer than 25 if Sst is at the edge
of the unit square containing the input points.)

Statements (13.26) and (13.27) suggest the basic outline of our algorithm.
Suppose that, at some point in the algorithm, we have proceeded partway
through the random order of the points and seen P′ ⊆ P, and suppose that we
know the minimum distance among points in P′ to be δ. For each of the points
in P′, we keep track of the subsquare containing it.

13.7 Finding the Closest Pair of Points: A Randomized Approach 745

Now, when the next point p is considered, we determine which of the
subsquares Sst it belongs to. If p is going to cause the minimum distance to
change, there must be some earlier point p′ ∈ P′ at distance less than δ from
it; and hence, by (13.27), the point p′ must be in one of the 25 squares around
the square Sst containing p. So we will simply check each of these 25 squares
one by one to see if it contains a point in P′; for each point in P′ that we find
this way, we compute its distance to p. By (13.26), each of these subsquares
contains at most one point of P′, so this is at most a constant number of distance
computations. (Note that we used a similar idea, via (5.10), at a crucial point
in the divide-and-conquer algorithm for this problem in Chapter 5.)

A Data Structure for Maintaining the Subsquares The high-level description
of the algorithm relies on being able to name a subsquare Sst and quickly
determine which points of P, if any, are contained in it. A dictionary is a
natural data structure for implementing such operations. The universe U of
possible elements is the set of all subsquares, and the set S maintained by the
data structure will be the subsquares that contain points from among the set
P′ that we’ve seen so far. Specifically, for each point p′ ∈ P′ that we have seen
so far, we keep the subsquare containing it in the dictionary, tagged with the
index of p′. We note that N2= �1/(2δ)�2 will, in general, be much larger than
n, the number of points. Thus we are in the type of situation considered in
Section 13.6 on hashing, where the universe of possible elements (the set of all
subsquares) is much larger than the number of elements being indexed (the
subsquares containing an input point seen thus far).

Now, when we consider the next point p in the random order, we determine
the subsquare Sst containing it and perform a Lookup operation for each of
the 25 subsquares close to Sst. For any points discovered by these Lookup
operations, we compute the distance to p. If none of these distances are less
than δ, then the closest distance hasn’t changed; we insert Sst (tagged with p)
into the dictionary and proceed to the next point.

However, if we find a point p′ such that δ′ = d(p, p′) < δ, then we need
to update our closest pair. This updating is a rather dramatic activity: Since
the value of the closest pair has dropped from δ to δ′, our entire collection of
subsquares, and the dictionary supporting it, has become useless—it was,
after all, designed only to be useful if the minimum distance was δ. We
therefore invoke MakeDictionary to create a new, empty dictionary that will
hold subsquares whose side lengths are δ′/2. For each point seen thus far, we
determine the subsquare containing it (in this new collection of subsquares),
and we insert this subsquare into the dictionary. Having done all this, we are
again ready to handle the next point in the random order.

746 Chapter 13 Randomized Algorithms

Summary of the Algorithm We have now actually described the algorithm
in full. To recap:

Order the points in a random sequence p1, p2, . . . , pn

Let δ denote the minimum distance found so far

Initialize δ = d(p1, p2)

Invoke MakeDictionary for storing subsquares of side length δ/2

For i = 1, 2, . . . , n:

Determine the subsquare Sst containing pi

Look up the 25 subsquares close to pi

Compute the distance from pi to any points found in these subsquares

If there is a point pj (j < i) such that δ′ = d(pj , pi) < δ then

Delete the current dictionary

Invoke MakeDictionary for storing subsquares of side length δ′/2

For each of the points p1, p2, . . . , pi:

Determine the subsquare of side length δ′/2 that contains it

Insert this subsquare into the new dictionary

Endfor

Else

Insert pi into the current dictionary

Endif

Endfor

Analyzing the Algorithm
There are already some things we can say about the overall running time
of the algorithm. To consider a new point pi, we need to perform only a
constant number of Lookup operations and a constant number of distance
computations. Moreover, even if we had to update the closest pair in every
iteration, we’d only do n MakeDictionary operations.

The missing ingredient is the total expected cost, over the course of the
algorithm’s execution, due to reinsertions into new dictionaries when the
closest pair is updated. We will consider this next. For now, we can at least
summarize the current state of our knowledge as follows.

(13.28) The algorithm correctly maintains the closest pair at all times, and
it performs at most O(n) distance computations, O(n) Lookup operations, and
O(n) MakeDictionary operations.

We now conclude the analysis by bounding the expected number of
Insert operations. Trying to find a good bound on the total expected number
of Insert operations seems a bit problematic at first: An update to the closest

13.7 Finding the Closest Pair of Points: A Randomized Approach 747

pair in iteration i will result in i insertions, and so each update comes at a high
cost once i gets large. Despite this, we will show the surprising fact that the
expected number of insertions is only O(n). The intuition here is that, even as
the cost of updates becomes steeper as the iterations proceed, these updates
become correspondingly less likely.

Let X be a random variable specifying the number of Insert operations
performed; the value of this random variable is determined by the random
order chosen at the outset. We are interested in bounding E [X], and as usual
in this type of situation, it is helpful to break X down into a sum of simpler
random variables. Thus let Xi be a random variable equal to 1 if the ith point
in the random order causes the minimum distance to change, and equal to 0
otherwise.

Using these random variables Xi, we can write a simple formula for the
total number of Insert operations. Each point is inserted once when it is
first encountered; and i points need to be reinserted if the minimum distance
changes in iteration i. Thus we have the following claim.

(13.29) The total number of Insert operations performed by the algorithm
is n +∑

i iXi.

Now we bound the probability Pr
[
Xi = 1

]
that considering the ith point

causes the minimum distance to change.

(13.30) Pr
[
Xi = 1

]≤ 2/i.

Proof. Consider the first i points p1, p2, . . . , pi in the random order. Assume
that the minimum distance among these points is achieved by p and q. Now
the point pi can only cause the minimum distance to decrease if pi = p or
pi = q. Since the first i points are in a random order, any of them is equally
likely to be last, so the probability that p or q is last is 2/i.

Note that 2/i is only an upper bound in (13.30) because there could be
multiple pairs among the first i points that define the same smallest distance.

By (13.29) and (13.30), we can bound the total number of Insert oper-
ations as

E [X]= n +
∑

i

i · E [Xi
]≤ n + 2n = 3n.

Combining this with (13.28), we obtain the following bound on the running
time of the algorithm.

(13.31) In expectation, the randomized closest-pair algorithm requires O(n)

time plus O(n) dictionary operations.

748 Chapter 13 Randomized Algorithms

Achieving Linear Expected Running Time
Up to this point, we have treated the dictionary data structure as a black box,
and in (13.31) we bounded the running time of the algorithm in terms of
computational time plus dictionary operations. We now want to give a bound
on the actual expected running time, and so we need to analyze the work
involved in performing these dictionary operations.

To implement the dictionary, we’ll use a universal hashing scheme, like the
one discussed in Section 13.6. Once the algorithm employs a hashing scheme,
it is making use of randomness in two distinct ways: First, we randomly order
the points to be added; and second, for each new minimum distance δ, we
apply randomization to set up a new hash table using a universal hashing
scheme.

When inserting a new point pi, the algorithm uses the hash-table Lookup
operation to find all nodes in the 25 subsquares close to pi. However, if
the hash table has collisions, then these 25 Lookup operations can involve
inspecting many more than 25 nodes. Statement (13.23) from Section 13.6
shows that each such Lookup operation involves considering O(1) previously
inserted points, in expectation. It seems intuitively clear that performing O(n)

hash-table operations in expectation, each of which involves considering O(1)
elements in expectation, will result in an expected running time of O(n) overall.
To make this intuition precise, we need to be careful with how these two
sources of randomness interact.

(13.32) Assume we implement the randomized closest-pair algorithm using a
universal hashing scheme. In expectation, the total number of points considered
during the Lookup operations is bounded by O(n).

Proof. From (13.31) we know that the expected number of Lookup operations
is O(n), and from (13.23) we know that each of these Lookup operations
involves considering only O(1) points in expectation. In order to conclude
that this implies the expected number of points considered is O(n), we now
consider the relationship between these two sources of randomness.

Let X be a random variable denoting the number of Lookup operations
performed by the algorithm. Now the random order σ that the algorithm
chooses for the points completely determines the sequence of minimum-
distance values the algorithm will consider and the sequence of dictionary
operations it will perform. As a result, the choice of σ determines the value
of X; we let X(σ) denote this value, and we let Eσ denote the event the
algorithm chooses the random order σ . Note that the conditional expectation
E
[
X | Eσ

]
is equal to X(σ). Also, by (13.31), we know that E [X]≤ c0n, for

some constant c0.

13.7 Finding the Closest Pair of Points: A Randomized Approach 749

Now consider this sequence of Lookup operations for a fixed order σ . For
i= 1, . . . , X(σ), let Yi be the number of points that need to be inspected during
the ith Lookup operations—namely, the number of previously inserted points
that collide with the dictionary entry involved in this Lookup operation. We
would like to bound the expected value of

∑X(σ)
i=1 Yi, where expectation is over

both the random choice of σ and the random choice of hash function.

By (13.23), we know that E
[
Yi | Eσ

]= O(1) for all σ and all values of i.
It is useful to be able to refer to the constant in the expression O(1) here, so
we will say that E

[
Yi | Eσ

]≤ c1 for all σ and all values of i. Summing over all
i, and using linearity of expectation, we get E

[∑
i Yi | Eσ

]≤ c1X(σ). Now we
have

E

[X(σ)∑
i=1

Yi

]
=
∑
σ

Pr
[
Eσ

]
E

[∑
i

Yi | Eσ

]

≤
∑
σ

Pr
[
Eσ

] · c1X(σ)

= c1

∑
σ

E
[
X | Eσ

] · Pr
[
Eσ

]= c1E [X] .

Since we know that E [X] is at most c0n, the total expected number of points
considered is at most c0c1n = O(n), which proves the claim.

Armed with this claim, we can use the universal hash functions from
Section 13.6 in our closest-pair algorithm. In expectation, the algorithm will
consider O(n) points during the Lookup operations. We have to set up multiple
hash tables—a new one each time the minimum distance changes—and we
have to compute O(n) hash-function values. All hash tables are set up for
the same size, a prime p ≥ n. We can select one prime and use the same
table throughout the algorithm. Using this, we get the following bound on the
running time.

(13.33) In expectation, the algorithm uses O(n) hash-function computations
and O(n) additional time for finding the closest pair of points.

Note the distinction between this statement and (13.31). There we counted
each dictionary operation as a single, atomic step; here, on the other hand,
we’ve conceptually opened up the dictionary operations so as to account for
the time incurred due to hash-table collisions and hash-function computations.

Finally, consider the time needed for the O(n) hash-function computations.
How fast is it to compute the value of a universal hash function h? The class
of universal hash functions developed in Section 13.6 breaks numbers in our
universe U into r ≈ log N/ log n smaller numbers of size O(log n) each, and

750 Chapter 13 Randomized Algorithms

then uses O(r) arithmetic operations on these smaller numbers to compute the
hash-function value. So computing the hash value of a single point involves
O(log N/ log n) multiplications, on numbers of size log n. This is a total of
O(n log N/ log n) arithmetic operations over the course of the algorithm, more
than the O(n) we were hoping for.

In fact, it is possible to decrease the number of arithmetic operations to
O(n) by using a more sophisticated class of hash functions. There are other
classes of universal hash functions where computing the hash-function value
can be done by only O(1) arithmetic operations (though these operations will
have to be done on larger numbers, integers of size roughly log N). This
class of improved hash functions also comes with one extra difficulty for
this application: the hashing scheme needs a prime that is bigger than the
size of the universe (rather than just the size of the set of points). Now the
universe in this application grows inversely with the minimum distance δ, and
so, in particular, it increases every time we discover a new, smaller minimum
distance. At such points, we will have to find a new prime and set up a new
hash table. Although we will not go into the details of this here, it is possible
to deal with these difficulties and make the algorithm achieve an expected
running time of O(n).

13.8 Randomized Caching
We now discuss the use of randomization for the caching problem, which we
first encountered in Chapter 4. We begin by developing a class of algorithms,
the marking algorithms, that include both deterministic and randomized ap-
proaches. After deriving a general performance guarantee that applies to all
marking algorithms, we show how a stronger guarantee can be obtained for a
particular marking algorithm that exploits randomization.

The Problem
We begin by recalling the Cache Maintenance Problem from Chapter 4. In the
most basic setup, we consider a processor whose full memory has n addresses;
it is also equipped with a cache containing k slots of memory that can be
accessed very quickly. We can keep copies of k items from the full memory in
the cache slots, and when a memory location is accessed, the processor will
first check the cache to see if it can be quickly retrieved. We say the request
is a cache hit if the cache contains the requested item; in this case, the access
is very quick. We say the request is a cache miss if the requested item is not
in the cache; in this case, the access takes much longer, and moreover, one
of the items currently in the cache must be evicted to make room for the new
item. (We will assume that the cache is kept full at all times.)

13.8 Randomized Caching 751

The goal of a Cache Maintenance Algorithm is to minimize the number of
cache misses, which are the truly expensive part of the process. The sequence
of memory references is not under the control of the algorithm—this is simply
dictated by the application that is running—and so the job of the algorithms
we consider is simply to decide on an eviction policy: Which item currently in
the cache should be evicted on each cache miss?

In Chapter 4, we saw a greedy algorithm that is optimal for the problem:
Always evict the item that will be needed the farthest in the future. While this
algorithm is useful to have as an absolute benchmark on caching performance,
it clearly cannot be implemented under real operating conditions, since we
don’t know ahead of time when each item will be needed next. Rather, we need
to think about eviction policies that operate online, using only information
about past requests without knowledge of the future.

The eviction policy that is typically used in practice is to evict the item that
was used the least recently (i.e., whose most recent access was the longest ago
in the past); this is referred to as the Least-Recently-Used, or LRU, policy. The
empirical justification for LRU is that algorithms tend to have a certain locality
in accessing data, generally using the same set of data frequently for a while.
If a data item has not been accessed for a long time, this is a sign that it may
not be accessed again for a long time.

Here we will evaluate the performance of different eviction policies with-
out making any assumptions (such as locality) on the sequence of requests.
To do this, we will compare the number of misses made by an eviction policy
on a sequence σ with the minimum number of misses it is possible to make
on σ . We will use f (σ) to denote this latter quantity; it is the number of misses
achieved by the optimal Farthest-in-Future policy. Comparing eviction policies
to the optimum is very much in the spirit of providing performance guaran-
tees for approximation algorithms, as we did in Chapter 11. Note, however, the
following interesting difference: the reason the optimum was not attainable in
our approximation analyses from that chapter (assuming P �=NP) is that the
algorithms were constrained to run in polynomial time; here, on the other
hand, the eviction policies are constrained in their pursuit of the optimum by
the fact that they do not know the requests that are coming in the future.

For eviction policies operating under this online constraint, it initially
seems hopeless to say something interesting about their performance: Why
couldn’t we just design a request sequence that completely confounds any
online eviction policy? The surprising point here is that it is in fact possible to
give absolute guarantees on the performance of various online policies relative
to the optimum.

752 Chapter 13 Randomized Algorithms

We first show that the number of misses incurred by LRU, on any request
sequence, can be bounded by roughly k times the optimum. We then use
randomization to develop a variation on LRU that has an exponentially stronger
bound on its performance: Its number of misses is never more than O(log k)

times the optimum.

Designing the Class of Marking Algorithms
The bounds for both LRU and its randomized variant will follow from a
general template for designing online eviction policies—a class of policies
called marking algorithms. They are motivated by the following intuition.
To do well against the benchmark of f (σ), we need an eviction policy that
is sensitive to the difference between the following two possibilities: (a) in
the recent past, the request sequence has contained more than k distinct
items; or (b) in the recent past, the request sequence has come exclusively
from a set of at most k items. In the first case, we know that f (σ) must be
increasing, since no algorithm can handle more than k distinct items without
incurring a cache miss. But, in the second case, it’s possible that σ is passing
through a long stretch in which an optimal algorithm need not incur any
misses at all. It is here that our policy must make sure that it incurs very
few misses.

Guided by these considerations, we now describe the basic outline of a
marking algorithm, which prefers evicting items that don’t seem to have been
used in a long time. Such an algorithm operates in phases; the description of
one phase is as follows.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked

On a request to item s:

Mark s

If s is in the cache, then evict nothing

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over

Processing of s is deferred to start of next phase

Else evict an unmarked item from the cache

Endif

Endif

Note that this describes a class of algorithms, rather than a single spe-
cific algorithm, because the key step—evict an unmarked item from the

13.8 Randomized Caching 753

cache—does not specify which unmarked item should be selected. We will
see that eviction policies with different properties and performance guarantees
arise depending on how we resolve this ambiguity.

We first observe that, since a phase starts with all items unmarked, and
items become marked only when accessed, the unmarked items have all been
accessed less recently than the marked items. This is the sense in which
a marking algorithm is trying to evict items that have not been requested
recently. Also, at any point in a phase, if there are any unmarked items in the
cache, then the least recently used item must be unmarked. It follows that the
LRU policy evicts an unmarked item whenever one is available, and so we
have the following fact.

(13.34) The LRU policy is a marking algorithm.

Analyzing Marking Algorithms
We now describe a method for analyzing marking algorithms, ending with a
bound on performance that applies to all marking algorithms. After this, when
we add randomization, we will need to strengthen this analysis.

Consider an arbitrary marking algorithm operating on a request sequence
σ . For the analysis, we picture an optimal caching algorithm operating on σ

alongside this marking algorithm, incurring an overall cost of f (σ). Suppose
that there are r phases in this sequence σ , as defined by the marking algorithm.

To make the analysis easier to discuss, we are going to “pad” the sequence
σ both at the beginning and the end with some extra requests; these will not
add any extra misses to the optimal algorithm—that is, they will not cause f (σ)

to increase—and so any bound we show on the performance of the marking
algorithm relative to the optimum for this padded sequence will also apply to
σ . Specifically, we imagine a “phase 0” that takes place before the first phase,
in which all the items initially in the cache are requested once. This does not
affect the cost of either the marking algorithm or the optimal algorithm. We
also imagine that the final phase r ends with an epilogue in which every item
currently in the cache of the optimal algorithm is requested twice in round-
robin fashion. This does not increase f (σ); and by the end of the second pass
through these items, the marking algorithm will contain each of them in its
cache, and each will be marked.

For the performance bound, we need two things: an upper bound on the
number of misses incurred by the marking algorithm, and a lower bound saying
that the optimum must incur at least a certain number of misses.

The division of the request sequence σ into phases turns out to be the
key to doing this. First of all, here is how we can picture the history of a

754 Chapter 13 Randomized Algorithms

phase, from the marking algorithm’s point of view. At the beginning of the
phase, all items are unmarked. Any item that is accessed during the phase is
marked, and it then remains in the cache for the remainder of the phase. Over
the course of the phase, the number of marked items grows from 0 to k, and
the next phase begins with a request to a (k + 1)st item, different from all of
these marked items. We summarize some conclusions from this picture in the
following claim.

(13.35) In each phase, σ contains accesses to exactly k distinct items. The
subsequent phase begins with an access to a different (k + 1)st item.

Since an item, once marked, remains in the cache until the end of the
phase, the marking algorithm cannot incur a miss for an item more than once in
a phase. Combined with (13.35), this gives us an upper bound on the number
of misses incurred by the marking algorithm.

(13.36) The marking algorithm incurs at most k misses per phase, for a total
of at most kr misses over all r phases.

As a lower bound on the optimum, we have the following fact.

(13.37) The optimum incurs at least r − 1 misses. In other words, f (σ) ≥
r − 1.

Proof. Consider any phase but the last one, and look at the situation just
after the first access (to an item s) in this phase. Currently s is in the cache
maintained by the optimal algorithm, and (13.35) tells us that the remainder
of the phase will involve accesses to k − 1 other distinct items, and the first
access of the next phase will involve a kth other item as well. Let S be this
set of k items other than s. We note that at least one of the members of S is
not currently in the cache maintained by the optimal algorithm (since, with s
there, it only has room for k − 1 other items), and the optimal algorithm will
incur a miss the first time this item is accessed.

What we’ve shown, therefore, is that for every phase j < r, the sequence
from the second access in phase j through the first access in phase j+ 1involves
at least one miss by the optimum. This makes for a total of at least r − 1misses.

Combining (13.36) and (13.37), we have the following performance guar-
antee.

(13.38) For any marking algorithm, the number of misses it incurs on any
sequence σ is at most k · f (σ)+ k.

13.8 Randomized Caching 755

Proof. The number of misses incurred by the marking algorithm is at most

kr = k(r − 1)+ k ≤ k · f (σ)+ k,

where the final inequality is just (13.37).

Note that the “+k” in the bound of (13.38) is just an additive constant,
independent of the length of the request sequence σ , and so the key aspect
of the bound is the factor of k relative to the optimum. To see that this factor
of k is the best bound possible for some marking algorithms, and for LRU in
particular, consider the behavior of LRU on a request sequence in which k + 1
items are repeatedly requested in a round-robin fashion. LRU will each time
evict the item that will be needed just in the next step, and hence it will incur
a cache miss on each access. (It’s possible to get this kind of terrible caching
performance in practice for precisely such a reason: the program is executing a
loop that is just slightly too big for the cache.) On the other hand, the optimal
policy, evicting the page that will be requested farthest in the future, incurs
a miss only every k steps, so LRU incurs a factor of k more misses than the
optimal policy.

Designing a Randomized Marking Algorithm
The bad example for LRU that we just saw implies that, if we want to obtain
a better bound for an online caching algorithm, we will not be able to reason
about fully general marking algorithms. Rather, we will define a simple Ran-
domized Marking Algorithm and show that it never incurs more than O(log k)

times the number of misses of the optimal algorithm—an exponentially better
bound.

Randomization is a natural choice in trying to avoid the unfortunate
sequence of “wrong” choices in the bad example for LRU. To get this bad
sequence, we needed to define a sequence that always evicted precisely the
wrong item. By randomizing, a policy can make sure that, “on average,” it is
throwing out an unmarked item that will at least not be needed right away.

Specifically, where the general description of a marking contained the line

Else evict an unmarked item from the cache

without specifying how this unmarked item is to be chosen, our Randomized
Marking Algorithm uses the following rule:

Else evict an unmarked item chosen uniformly at random

from the cache

756 Chapter 13 Randomized Algorithms

This is arguably the simplest way to incorporate randomization into the
marking framework.1

Analyzing the Randomized Marking Algorithm
Now we’d like to get a bound for the Randomized Marking Algorithm that is
stronger than (13.38); but in order to do this, we need to extend the analysis
in (13.36) and (13.37) to something more subtle. This is because there are
sequences σ , with r phases, where the Randomized Marking Algorithm can
really be made to incur kr misses—just consider a sequence that never repeats
an item. But the point is that, on such sequences, the optimum will incur many
more than r − 1 misses. We need a way to bring the upper and lower bounds
closer together, based on the structure of the sequence.

This picture of a “runaway sequence” that never repeats an item is an
extreme instance of the distinction we’d like to draw: It is useful to classify
the unmarked items in the middle of a phase into two further categories. We
call an unmarked item fresh if it was not marked in the previous phase either,
and we call it stale if it was marked in the previous phase.

Recall the picture of a single phase that led to (13.35): The phase begins
with all items unmarked, and it contains accesses to k distinct items, each
of which goes from unmarked to marked the first time it is accessed. Among
these k accesses to unmarked items in phase j, let cj denote the number of
these that are to fresh items.

To strengthen the result from (13.37), which essentially said that the
optimum incurs at least one miss per phase, we provide a bound in terms
of the number of fresh items in a phase.

(13.39) f (σ)≥ 1
2

∑r
j=1 cj.

Proof. Let fj(σ) denote the number of misses incurred by the optimal algorithm
in phase j, so that f (σ)=∑r

j=1 fj(σ). From (13.35), we know that in any phase
j, there are requests to k distinct items. Moreover, by our definition of fresh,
there are requests to cj+1 further items in phase j + 1; so between phases j and
j + 1, there are at least k + cj+1 distinct items requested. It follows that the
optimal algorithm must incur at least cj+1 misses over the course of phases j

1 It is not, however, the simplest way to incorporate randomization into a caching algorithm. We could

have considered the Purely Random Algorithm that dispenses with the whole notion of marking, and

on each cache miss selects one of its k current items for eviction uniformly at random. (Note the

difference: The Randomized Marking Algorithm randomizes only over the unmarked items.) Although

we won’t prove this here, the Purely Random Algorithm can incur at least c times more misses than

the optimum, for any constant c < k, and so it does not lead to an improvement over LRU.

13.8 Randomized Caching 757

and j + 1, so fj(σ)+ fj+1(σ)≥ cj+1. This holds even for j = 0, since the optimal
algorithm incurs c1 misses in phase 1. Thus we have

r−1∑
j=0

(fj(σ)+ fj+1(σ))≥
r−1∑
j=0

cj+1.

But the left-hand side is at most 2
∑r

j=1 fj(σ)= 2f (σ), and the right-hand side
is
∑r

j=1 cj.

We now give an upper bound on the expected number of misses incurred
by the Randomized Marking Algorithm, also quantified in terms of the number
of fresh items in each phase. Combining these upper and lower bounds will
yield the performance guarantee we’re seeking. In the following statement, let
Mσ denote the random variable equal to the number of cache misses incurred
by the Randomized Marking Algorithm on the request sequence σ .

(13.40) For every request sequence σ , we have E
[
Mσ

]≤ H(k)
∑r

j=1 cj.

Proof. Recall that we used cj to denote the number of requests in phase j
to fresh items. There are k requests to unmarked items in a phase, and each
unmarked item is either fresh or stale, so there must be k− cj requests in phase
j to unmarked stale items.

Let Xj denote the number of misses incurred by the Randomized Marking
Algorithm in phase j. Each request to a fresh item results in a guaranteed miss
for the Randomized Marking Algorithm; since the fresh item was not marked
in the previous phase, it cannot possibly be in the cache when it is requested
in phase j. Thus the Randomized Marking Algorithm incurs at least cj misses
in phase j because of requests to fresh items.

Stale items, by contrast, are a more subtle matter. The phase starts with
k stale items in the cache; these are the items that were unmarked en masse
at the beginning of the phase. On a request to a stale item s, the concern is
whether the Randomized Marking Algorithm evicted it earlier in the phase and
now incurs a miss as it has to bring it back in. What is the probability that the
ith request to a stale item, say s, results in a miss? Suppose that there have been
c ≤ cj requests to fresh items thus far in the phase. Then the cache contains
the c formerly fresh items that are now marked, i− 1 formerly stale items that
are now marked, and k − c − i + 1 items that are stale and not yet marked in
this phase. But there are k − i + 1 items overall that are still stale; and since
exactly k − c − i+ 1 of them are in the cache, the remaining c of them are not.
Each of the k − i+ 1 stale items is equally likely to be no longer in the cache,
and so s is not in the cache at this moment with probability c

k−i+1 ≤
cj

k−i+1.

758 Chapter 13 Randomized Algorithms

This is the probability of a miss on the request to s. Summing over all requests
to unmarked items, we have

E
[
Xj
]≤ cj +

k−cj∑
i=1

cj

k − i + 1
≤ cj

⎡
⎣1+

k∑
�=cj+1

1
�

⎤
⎦= cj(1+ H(k)− H(cj))≤ cjH(k).

Thus the total expected number of misses incurred by the Randomized
Marking Algorithm is

E
[
Mσ

]= r∑
j=1

E
[
Xj
]≤ H(k)

r∑
j=1

cj.

Combining (13.39) and (13.40), we immediately get the following perfor-
mance guarantee.

(13.41) The expected number of misses incurred by the Randomized Marking
Algorithm is at most 2H(k) · f (σ)= O(log k) · f (σ).

13.9 Chernoff Bounds
In Section 13.3, we defined the expectation of a random variable formally and
have worked with this definition and its consequences ever since. Intuitively,
we have a sense that the value of a random variable ought to be “near” its
expectation with reasonably high probability, but we have not yet explored
the extent to which this is true. We now turn to some results that allow us to
reach conclusions like this, and see a sampling of the applications that follow.

We say that two random variables X and Y are independent if, for any
values i and j, the events Pr [X = i] and Pr [Y = j] are independent. This
definition extends naturally to larger sets of random variables. Now consider
a random variable X that is a sum of several independent 0-1-valued random
variables: X = X1+ X2+ . . .+ Xn, where Xi takes the value 1 with probability
pi, and the value 0 otherwise. By linearity of expectation, we have E [X]=∑n

i=1 pi. Intuitively, the independence of the random variables X1, X2, . . . , Xn
suggests that their fluctuations are likely to “cancel out,” and so their sum
X will have a value close to its expectation with high probability. This is in
fact true, and we state two concrete versions of this result: one bounding the
probability that X deviates above E[X], the other bounding the probability that
X deviates below E[X]. We call these results Chernoff bounds, after one of the
probabilists who first established bounds of this form.

13.9 Chernoff Bounds 759

(13.42) Let X , X1, X2, . . . , Xn be defined as above, and assume that μ ≥
E [X]. Then, for any δ > 0, we have

Pr [X > (1+ δ)μ]<
[

eδ

(1+ δ)(1+δ)

]μ

.

Proof. To bound the probability that X exceeds (1+ δ)μ, we go through a
sequence of simple transformations. First note that, for any t > 0, we have
Pr [X > (1+ δ)μ]= Pr

[
etX > et(1+δ)μ

]
, as the function f (x)= etx is monotone

in x. We will use this observation with a t that we’ll select later.

Next we use some simple properties of the expectation. For a random
variable Y, we have γ Pr [Y > γ]≤ E [Y], by the definition of the expectation.
This allows us to bound the probability that Y exceeds γ in terms of E [Y].
Combining these two ideas, we get the following inequalities.

Pr [X > (1+ δ)μ]= Pr
[
etX > et(1+δ)μ

]
≤ e−t(1+δ)μE

[
etX

]
.

Next we need to bound the expectation E
[
etX

]
. Writing X as X =∑

i Xi, the

expectation is E
[
etX

]= E
[
et
∑

i Xi
]
= E

[∏
i etXi

]
. For independent variables Y

and Z, the expectation of the product YZ is E [YZ]= E [Y]E [Z]. The variables
Xi are independent, so we get E

[∏
i etXi

]=∏
i E

[
etXi

]
.

Now, etXi is et with probability pi and e0 = 1 otherwise, so its expectation
can be bounded as

E
[
etXi

]
= pie

t + (1− pi)= 1+ pi(e
t − 1)≤ epi(e

t−1),

where the last inequality follows from the fact that 1+ α ≤ eα for any α ≥ 0.
Combining the inequalities, we get the following bound.

Pr [X > (1+ δ)μ] ≤ e−t(1+δ)μE
[
etX

]
= e−t(1+δ)μ

∏
i

E
[
etXi

]

≤ e−t(1+δ)μ
∏

i

epi(e
t−1) ≤ e−t(1+δ)μeμ(et−1).

To obtained the bound claimed by the statement, we substitute t = ln(1+ δ).

Where (13.42) provided an upper bound, showing that X is not likely to
deviate far above its expectation, the next statement, (13.43), provides a lower
bound, showing that X is not likely to deviate far below its expectation. Note
that the statements of the results are not symmetric, and this makes sense: For
the upper bound, it is interesting to consider values of δ much larger than 1,
while this would not make sense for the lower bound.

760 Chapter 13 Randomized Algorithms

(13.43) Let X , X1, X2, . . . , Xn and μ be as defined above, and assume that
μ≤ E[X]. Then for any 1> δ > 0, we have

Pr [X < (1− δ)μ]< e−
1
2μδ2

.

The proof of (13.43) is similar to the proof of (13.42), and we do not give
it here. For the applications that follow, the statements of (13.42) and (13.43),
rather than the internals of their proofs, are the key things to keep in mind.

13.10 Load Balancing
In Section 13.1, we considered a distributed system in which communication
among processes was difficult, and randomization to some extent replaced
explicit coordination and synchronization. We now revisit this theme through
another stylized example of randomization in a distributed setting.

The Problem
Suppose we have a system in which m jobs arrive in a stream and need to be
processed immediately. We have a collection of n identical processors that are
capable of performing the jobs; so the goal is to assign each job to a processor
in a way that balances the workload evenly across the processors. If we had
a central controller for the system that could receive each job and hand it
off to the processors in round-robin fashion, it would be trivial to make sure
that each processor received at most �m/n� jobs—the most even balancing
possible.

But suppose the system lacks the coordination or centralization to imple-
ment this. A much more lightweight approach would be to simply assign each
job to one of the processors uniformly at random. Intuitively, this should also
balance the jobs evenly, since each processor is equally likely to get each job.
At the same time, since the assignment is completely random, one doesn’t
expect everything to end up perfectly balanced. So we ask: How well does this
simple randomized approach work?

Although we will stick to the motivation in terms of jobs and processors
here, it is worth noting that comparable issues come up in the analysis of
hash functions, as we saw in Section 13.6. There, instead of assigning jobs to
processors, we’re assigning elements to entries in a hash table. The concern
about producing an even balancing in the case of hash tables is based on
wanting to keep the number of collisions at any particular entry relatively
small. As a result, the analysis in this section is also relevant to the study of
hashing schemes.

13.10 Load Balancing 761

Analyzing a Random Allocation
We will see that the analysis of our random load balancing process depends on
the relative sizes of m, the number of jobs, and n, the number of processors.
We start with a particularly clean case: when m = n. Here it is possible for
each processor to end up with exactly one job, though this is not very likely.
Rather, we expect that some processors will receive no jobs and others will
receive more than one. As a way of assessing the quality of this randomized
load balancing heuristic, we study how heavily loaded with jobs a processor
can become.

Let Xi be the random variable equal to the number of jobs assigned to
processor i, for i = 1, 2, . . . , n. It is easy to determine the expected value
of Xi: We let Yij be the random variable equal to 1 if job j is assigned
to processor i, and 0 otherwise; then Xi =

∑n
i=1 Yij and E

[
Yij
] = 1/n, so

E
[
Xi
] =∑n

j=1 E
[
Yij
] = 1. But our concern is with how far Xi can deviate

above its expectation: What is the probability that Xi > c? To give an upper
bound on this, we can directly apply (13.42): Xi is a sum of independent 0-1-
valued random variables {Yij}; we have μ= 1and 1+ δ = c. Thus the following
statement holds.

(13.44)

Pr
[
Xi > c

]
<

(
ec−1

cc

)
.

In order for there to be a small probability of any Xi exceeding c, we will take
the Union Bound over i= 1, 2, . . . , n; and so we need to choose c large enough
to drive Pr

[
Xi > c

]
down well below 1/n for each i. This requires looking at

the denominator cc in (13.44). To make this denominator large enough, we
need to understand how this quantity grows with c, and we explore this by
first asking the question: What is the x such that xx = n?

Suppose we write γ (n) to denote this number x. There is no closed-form
expression for γ (n), but we can determine its asymptotic value as follows.
If xx = n, then taking logarithms gives x log x = log n; and taking logarithms
again gives log x+ log log x= log log n. Thus we have

2 log x > log x+ log log x= log log n > 766 log x,

and, using this to divide through the equation x log x= log n, we get

1
2

x ≤ log n
log log n

≤ x= γ (n).

Thus γ (n)=�

(
log n

log log n

)
.

762 Chapter 13 Randomized Algorithms

Now, if we set c = eγ (n), then by (13.44) we have

Pr
[
Xi > c

]
<

(
ec−1

cc

)
<

(
e
c

)c

=
(

1
γ (n)

)eγ (n)

<

(
1

γ (n)

)2γ (n)

= 1
n2

.

Thus, applying the Union Bound over this upper bound for X1, X2, . . . , Xn, we
have the following.

(13.45) With probability at least 1− n−1, no processor receives more than

eγ (n)=�
(

log n
log log n

)
jobs.

With a more involved analysis, one can also show that this bound is
asymptotically tight: with high probability, some processor actually receives

�
(

log n
log log n

)
jobs.

So, although the load on some processors will likely exceed the expecta-
tion, this deviation is only logarithmic in the number of processors.

Increasing the Number of Jobs We now use Chernoff bounds to argue that,
as more jobs are introduced into the system, the loads “smooth out” rapidly,
so that the number of jobs on each processor quickly become the same to
within constant factors.

Specifically, if we have m = 16n ln n jobs, then the expected load per
processor is μ = 16 ln n. Using (13.42), we see that the probability of any
processor’s load exceeding 32 ln n is at most

Pr
[
Xi > 2μ

]
<

(
e
4

)16 ln n

<

(
1
e2

)ln n

= 1
n2

.

Also, the probability that any processor’s load is below 8 ln n is at most

Pr
[
Xi <

1
2
μ

]
< e−

1
2 (1

2)2(16 ln n) = e−2 ln n = 1
n2

.

Thus, applying the Union Bound, we have the following.

(13.46) When there are n processors and �(n log n) jobs, then with high
probability, every processor will have a load between half and twice the average.

13.11 Packet Routing
We now consider a more complex example of how randomization can alleviate
contention in a distributed system—namely, in the context of packet routing.

13.11 Packet Routing 763

e

Packet 1

Packet 3

Packet 2

Only one packet can
cross e per time step.

Figure 13.3 Three packets whose paths involve a shared edge e.

The Problem
Packet routing is a mechanism to support communication among nodes of a
large network, which we can model as a directed graph G = (V , E). If a node
s wants to send data to a node t, this data is discretized into one or more
packets, each of which is then sent over an s-t path P in the network. At any
point in time, there may be many packets in the network, associated with
different sources and destinations and following different paths. However, the
key constraint is that a single edge e can only transmit a single packet per time
step. Thus, when a packet p arrives at an edge e on its path, it may find there
are several other packets already waiting to traverse e; in this case, p joins a
queue associated with e to wait until e is ready to transmit it. In Figure 13.3,
for example, three packets with different sources and destinations all want to
traverse edge e; so, if they all arrive at e at the same time, some of them will
be forced to wait in a queue for this edge.

Suppose we are given a network G with a set of packets that need to be sent
across specified paths. We’d like to understand how many steps are necessary
in order for all packets to reach their destinations. Although the paths for
the packets are all specified, we face the algorithmic question of timing the
movements of the packets across the edges. In particular, we must decide when
to release each packet from its source, as well as a queue management policy
for each edge e—that is, how to select the next packet for transmission from
e’s queue in each time step.

It’s important to realize that these packet scheduling decisions can have
a significant effect on the amount of time it takes for all the packets to reach
their destinations. For example, let’s consider the tree network in Figure 13.4,
where there are nine packets that want to traverse the respective dotted paths
up the tree. Suppose all packets are released from their sources immediately,
and each edge e manages its queue by always transmitting the packet that is

764 Chapter 13 Randomized Algorithms

2 31 5 64 8 97

Packet 1 may need to wait
for packets 2, 3, 6, and 9,
depending on the schedule.

Figure 13.4 A case in which the scheduling of packets matters.

closest to its destination. In this case, packet 1 will have to wait for packets
2 and 3 at the second level of the tree; and then later it will have to wait for
packets 6 and 9 at the fourth level of the tree. Thus it will take nine steps
for this packet to reach its destination. On the other hand, suppose that each
edge e manages its queue by always transmitting the packet that is farthest
from its destination. Then packet 1 will never have to wait, and it will reach
its destination in five steps; moreover, one can check that every packet will
reach its destination within six steps.

There is a natural generalization of the tree network in Figure 13.4, in
which the tree has height h and the nodes at every other level have k children.
In this case, the queue management policy that always transmits the packet
nearest its destination results in some packet requiring �(hk) steps to reach its
destination (since the packet traveling farthest is delayed by �(k) steps at each
of �(h) levels), while the policy that always transmits the packet farthest from

13.11 Packet Routing 765

its destination results in all packets reaching their destinations within O(h+ k)

steps. This can become quite a large difference as h and k grow large.

Schedules and Their Durations Let’s now move from these examples to the
question of scheduling packets and managing queues in an arbitrary network
G. Given packets labeled 1, 2, . . . , N and associated paths P1, P2, . . . , PN , a
packet schedule specifies, for each edge e and each time step t, which packet
will cross edge e in step t. Of course, the schedule must satisfy some basic
consistency properties: at most one packet can cross any edge e in any one
step; and if packet i is scheduled to cross e at step t, then e should be on
the path Pi, and the earlier portions of the schedule should cause i to have
already reached e. We will say that the duration of the schedule is the number
of steps that elapse until every packet reaches its destination; the goal is to
find a schedule of minimum duration.

What are the obstacles to having a schedule of low duration? One obstacle
would be a very long path that some packet must traverse; clearly, the duration
will be at least the length of this path. Another obstacle would be a single edge
e that many packets must cross; since each of these packets must cross e in a
distinct step, this also gives a lower bound on the duration. So, if we define the
dilation d of the set of paths {P1, P2, . . . , PN} to be the maximum length of any
Pi, and the congestion c of the set of paths to be the maximum number that have
any single edge in common, then the duration is at least max(c, d)=�(c + d).

In 1988, Leighton, Maggs, and Rao proved the following striking result:
Congestion and dilation are the only obstacles to finding fast schedules, in the
sense that there is always a schedule of duration O(c + d). While the statement
of this result is very simple, it turns out to be extremely difficult to prove; and
it yields only a very complicated method to actually construct such a schedule.
So, instead of trying to prove this result, we’ll analyze a simple algorithm (also
proposed by Leighton, Maggs, and Rao) that can be easily implemented in a
distributed setting and yields a duration that is only worse by a logarithmic
factor: O(c + d log(mN)), where m is the number of edges and N is the number
of packets.

Designing the Algorithm
A Simple Randomized Schedule If each edge simply transmits an arbitrary
waiting packet in each step, it is easy to see that the resulting schedule has
duration O(cd): at worst, a packet can be blocked by c − 1 other packets on
each of the d edges in its path. To reduce this bound, we need to set things up
so that each packet only waits for a much smaller number of steps over the
whole trip to its destination.

766 Chapter 13 Randomized Algorithms

The reason a bound as large as O(cd) can arise is that the packets are
very badly timed with respect to one another: Blocks of c of them all meet
at an edge at the same time, and once this congestion has cleared, the same
thing happens at the next edge. This sounds pathological, but one should
remember that a very natural queue management policy caused it to happen
in Figure 13.4. However, it is the case that such bad behavior relies on very
unfortunate synchronization in the motion of the packets; so it is believable
that, if we introduce some randomization in the timing of the packets, then
this kind of behavior is unlikely to happen. The simplest idea would be just to
randomly shift the times at which the packets are released from their sources.
Then if there are many packets all aimed at the same edge, they are unlikely
to hit it all at the same time, as the contention for edges has been “smoothed
out.” We now show that this kind of randomization, properly implemented, in
fact works quite well.

Consider first the following algorithm, which will not quite work. It
involves a parameter r whose value will be determined later.

Each packet i behaves as follows:

i chooses a random delay s between 1 and r

i waits at its source for s time steps

i then moves full speed ahead, one edge per time step

until it reaches its destination

If the set of random delays were really chosen so that no two packets ever
“collided”—reaching the same edge at the same time—then this schedule
would work just as advertised; its duration would be at most r (the maximum
initial delay) plus d (the maximum number of edges on any path). However,
unless r is chosen to be very large, it is likely that a collision will occur
somewhere in the network, and so the algorithm will probably fail: Two packets
will show up at the same edge e in the same time step t, and both will be
required to cross e in the next step.

Grouping Time into Blocks To get around this problem, we consider the
following generalization of this strategy: rather than implementing the “full
speed ahead” plan at the level of individual time steps, we implement it at the
level of contiguous blocks of time steps.

For a parameter b, group intervals of b consecutive time steps

into single blocks of time

Each packet i behaves as follows:

i chooses a random delay s between 1 and r

i waits at its source for s blocks

13.11 Packet Routing 767

i then moves forward one edge per block,

until it reaches its destination

This schedule will work provided that we avoid a more extreme type of
collision: It should not be the case that more than b packets are supposed to
show up at the same edge e at the start of the same block. If this happens, then
at least one of them will not be able to cross e in the next block. However, if the
initial delays smooth things out enough so that no more than b packets arrive
at any edge in the same block, then the schedule will work just as intended.
In this case, the duration will be at most b(r + d)—the maximum number of
blocks, r + d, times the length of each block, b.

(13.47) Let E denote the event that more than b packets are required to be
at the same edge e at the start of the same block. If E does not occur, then the
duration of the schedule is at most b(r + d).

Our goal is now to choose values of r and b so that both the probability Pr [E]
and the duration b(r + d) are small quantities. This is the crux of the analysis
since, if we can show this, then (13.47) gives a bound on the duration.

Analyzing the Algorithm
To give a bound on Pr [E], it’s useful to decompose it into a union of simpler
bad events, so that we can apply the Union Bound. A natural set of bad events
arises from considering each edge and each time block separately; if e is an
edge, and t is a block between 1and r + d, we let Fet denote the event that more
than b packets are required to be at e at the start of block t. Clearly, E=∪e ,tFet.
Moreover, if Net is a random variable equal to the number of packets scheduled
to be at e at the start of block t, then Fet is equivalent to the event [Net > b].

The next step in the analysis is to decompose the random variable Net
into a sum of independent 0-1-valued random variables so that we can apply a
Chernoff bound. This is naturally done by defining Xeti to be equal to 1 if packet
i is required to be at edge e at the start of block t, and equal to 0 otherwise.
Then Net =

∑
i Xeti; and for different values of i, the random variables Xeti

are independent, since the packets are choosing independent delays. (Note
that Xeti and Xe′t′i, where the value of i is the same, would certainly not be
independent; but our analysis does not require us to add random variables
of this form together.) Notice that, of the r possible delays that packet i can
choose, at most one will require it to be at e at block t; thus E

[
Xeti

] ≤ 1/r.
Moreover, at most c packets have paths that include e; and if i is not one of
these packets, then clearly E

[
Xeti

]= 0. Thus we have

E
[
Net

]=∑
i

E
[
Xeti

]≤ c
r
.

768 Chapter 13 Randomized Algorithms

We now have the setup for applying the Chernoff bound (13.42), since
Net is a sum of the independent 0-1-valued random variables Xeti. Indeed, the
quantities are sort of like what they were when we analyzed the problem of
throwing m jobs at random onto n processors: in that case, each constituent
random variable had expectation 1/n, the total expectation was m/n, and we
needed m to be �(n log n) in order for each processor load to be close to its
expectation with high probability. The appropriate analogy in the case at hand
is for r to play the role of n, and c to play the role of m: This makes sense
symbolically, in terms of the parameters; it also accords with the picture that
the packets are like the jobs, and the different time blocks of a single edge are
like the different processors that can receive the jobs. This suggests that if we
want the number of packets destined for a particular edge in a particular block
to be close to its expectation, we should have c =�(r log r).

This will work, except that we have to increase the logarithmic term a
little to make sure that the Union Bound over all e and all t works out in the
end. So let’s set

r = c
q log(mN)

,

where q is a constant that will be determined later.

Let’s fix a choice of e and t and try to bound the probability that Net
exceeds a constant times c

r . We define μ= c
r , and observe that E

[
Net

]≤ μ, so
we are in a position to apply the Chernoff bound (13.42). We choose δ = 2,
so that (1+ δ)μ= 3c

r = 3q log(mN), and we use this as the upper bound in

the expression Pr
[
Net > 3c

r

]
= Pr

[
Net > (1+ δ)μ

]
. Now, applying (13.42), we

have

Pr
[
Net >

3c
r

]
<

[
eδ

(1+ δ)(1+δ)

]μ

<

[
e1+δ

(1+ δ)(1+δ)

]μ

=
(

e
1+ δ

)(1+δ)μ

=
(

e
3

)(1+δ)μ

=
(

e
3

)3c/r

=
(

e
3

)3q log(mN)

= 1
(mN)z

,

where z is a constant that can be made as large as we want by choosing the
constant q appropriately.

We can see from this calculation that it’s safe to set b= 3c/r; for, in this
case, the event Fet that Net > b will have very small probability for each choice
of e and t. There are m different choices for e, and d + r different choice for
t, where we observe that d + r ≤ d + c − 1≤ N. Thus we have

Pr [E]= Pr

[⋃
e ,t

Fet

]
≤
∑
e ,t

Pr
[
Fet

]≤mN · 1
(mN)z

= 1
(mN)z−1

,

which can be made as small as we want by choosing z large enough.

13.12 Background: Some Basic Probability Definitions 769

Our choice of the parameters b and r, combined with (13.44), now implies
the following.

(13.48) With high probability, the duration of the schedule for the packets is
O(c + d log (mN)).

Proof. We have just argued that the probability of the bad event E is very
small, at most (mN)−(z−1) for an arbitrarily large constant z. And provided
that E does not happen, (13.47) tells us that the duration of the schedule is
bounded by

b(r + d)= 3c
r

(
r + d

)= 3c + d · 3c
r
= 3c + d(3q log(mN))= O(c + d log(mN)).

13.12 Background: Some Basic Probability
Definitions

For many, though certainly not all, applications of randomized algorithms, it is
enough to work with probabilities defined over finite sets only; and this turns
out to be much easier to think about than probabilities over arbitrary sets. So
we begin by considering just this special case. We’ll then end the section by
revisiting all these notions in greater generality.

Finite Probability Spaces
We have an intuitive understanding of sentences like, “If a fair coin is flipped,
the probability of ‘heads’ is 1/2.” Or, “If a fair die is rolled, the probability of a
‘6’ is 1/6.” What we want to do first is to describe a mathematical framework
in which we can discuss such statements precisely. The framework will work
well for carefully circumscribed systems such as coin flips and rolls of dice;
at the same time, we will avoid the lengthy and substantial philosophical
issues raised in trying to model statements like, “The probability of rain
tomorrow is 20 percent.” Fortunately, most algorithmic settings are as carefully
circumscribed as those of coins and dice, if perhaps somewhat larger and more
complex.

To be able to compute probabilities, we introduce the notion of a finite
probability space. (Recall that we’re dealing with just the case of finite sets for
now.) A finite probability space is defined by an underlying sample space �,
which consists of the possible outcomes of the process under consideration.
Each point i in the sample space also has a nonnegative probability mass
p(i) ≥ 0; these probability masses need only satisfy the constraint that their
total sum is 1; that is,

∑
i∈� p(i)= 1. We define an event E to be any subset of

770 Chapter 13 Randomized Algorithms

�—an event is defined simply by the set of outcomes that constitute it—and
we define the probability of the event to be the sum of the probability masses
of all the points in E. That is,

Pr [E]=
∑
i∈E

p(i).

In many situations that we’ll consider, all points in the sample space have the
same probability mass, and then the probability of an event E is simply its size
relative to the size of �; that is, in this special case, Pr [E]= |E|/|�|. We use

E to denote the complementary event �−E; note that Pr
[
E
]
= 1− Pr [E].

Thus the points in the sample space and their respective probability
masses form a complete description of the system under consideration; it
is the events—the subsets of the sample space—whose probabilities we are
interested in computing. So to represent a single flip of a “fair” coin, we
can define the sample space to be �= {heads, tails} and set p(heads)=
p(tails)= 1/2. If we want to consider a biased coin in which “heads” is twice
as likely as “tails,” we can define the probability masses to be p(heads)= 2/3
and p(tails)= 1/3. A key thing to notice even in this simple example is that
defining the probability masses is a part of defining the underlying problem;
in setting up the problem, we are specifying whether the coin is fair or biased,
not deriving this from some more basic data.

Here’s a slightly more complex example, which we could call the Process
Naming, or Identifier Selection Problem. Suppose we have n processes in a dis-
tributed system, denoted p1, p2, . . . , pn, and each of them chooses an identifier
for itself uniformly at random from the space of all k-bit strings. Moreover, each
process’s choice happens concurrently with those of all the other processes,
and so the outcomes of these choices are unaffected by one another. If we view
each identifier as being chosen from the set {0, 1, 2, . . . , 2k − 1} (by consider-
ing the numerical value of the identifier as a number in binary notation), then
the sample space � could be represented by the set of all n-tuples of integers,
with each integer between 0 and 2k − 1. The sample space would thus have
(2k)n = 2kn points, each with probability mass 2−kn.

Now suppose we are interested in the probability that processes p1 and
p2 each choose the same name. This is an event E, represented by the subset
consisting of all n-tuples from � whose first two coordinates are the same.
There are 2k(n−1) such n-tuples: we can choose any value for coordinates 3
through n, then any value for coordinate 2, and then we have no freedom of
choice in coordinate 1. Thus we have

Pr [E]=
∑
i∈E

p(i)= 2k(n−1) · 2−kn = 2−k.

13.12 Background: Some Basic Probability Definitions 771

This, of course, corresponds to the intuitive way one might work out the
probability, which is to say that we can choose any identifier we want for
process p2, after which there is only 1 choice out of 2k for process p1 that will
cause the names to agree. It’s worth checking that this intuition is really just
a compact description of the calculation above.

Conditional Probability and Independence
If we view the probability of an event E, roughly, as the likelihood that E

is going to occur, then we may also want to ask about its probability given
additional information. Thus, given another event F of positive probability,
we define the conditional probability of E given F as

Pr [E | F]= Pr [E ∩ F]
Pr [F]

.

This is the “right” definition intuitively, since it’s performing the following
calculation: Of the portion of the sample space that consists of F (the event
we “know” to have occurred), what fraction is occupied by E?

One often uses conditional probabilities to analyze Pr [E] for some com-
plicated event E, as follows. Suppose that the events F1, F2, . . . , Fk each have
positive probability, and they partition the sample space; in other words, each
outcome in the sample space belongs to exactly one of them, so

∑k
j=1 Pr

[
Fj
]=

1. Now suppose we know these values Pr
[
Fj
]
, and we are also able to deter-

mine Pr
[
E | Fj

]
for each j = 1, 2, . . . , k. That is, we know what the probability

of E is if we assume that any one of the events Fj has occurred. Then we can
compute Pr [E] by the following simple formula:

Pr [E]=
k∑

j=1

Pr
[
E | Fj

] · Pr
[
Fj
]

.

To justify this formula, we can unwind the right-hand side as follows:

k∑
j=1

Pr
[
E | Fj

] · Pr
[
Fj
]= k∑

j=1

Pr
[
E ∩ Fj

]
Pr
[
Fj
] · Pr

[
Fj
]= k∑

j=1

Pr
[
E ∩ Fj

]= Pr [E] .

Independent Events Intuitively, we say that two events are independent if
information about the outcome of one does not affect our estimate of the
likelihood of the other. One way to make this concrete would be to declare
events E and F independent if Pr [E | F]= Pr [E], and Pr [F | E]= Pr [F]. (We’ll
assume here that both have positive probability; otherwise the notion of
independence is not very interesting in any case.) Actually, if one of these
two equalities holds, then the other must hold, for the following reason: If
Pr [E | F]= Pr [E], then

772 Chapter 13 Randomized Algorithms

Pr [E ∩ F]
Pr [F]

= Pr [E] ,

and hence Pr [E ∩ F]= Pr [E] · Pr [F], from which the other equality holds as
well.

It turns out to be a little cleaner to adopt this equivalent formulation as
our working definition of independence. Formally, we’ll say that events E and
F are independent if Pr [E ∩ F]= Pr [E] · Pr [F].

This product formulation leads to the following natural generalization. We
say that a collection of events E1, E2, . . . , En is independent if, for every set of
indices I ⊆ {1, 2, . . . , n}, we have

Pr

[⋂
i∈I

Ei

]
=
∏
i∈I

Pr
[
Ei
]

.

It’s important to notice the following: To check if a large set of events
is independent, it’s not enough to check whether every pair of them is
independent. For example, suppose we flip three independent fair coins: If Ei
denotes the event that the ith coin comes up heads, then the events E1, E2, E3
are independent and each has probability 1/2. Now let A denote the event that
coins 1and 2 have the same value; let B denote the event that coins 2 and 3have
the same value; and let C denote the event that coins 1 and 3 have different
values. It’s easy to check that each of these events has probability 1/2, and the
intersection of any two has probability 1/4. Thus every pair drawn from A, B, C
is independent. But the set of all three events A, B, C is not independent, since
Pr [A ∩ B ∩ C]= 0.

The Union Bound
Suppose we are given a set of events E1, E2, . . . , En, and we are interested
in the probability that any of them happens; that is, we are interested in the
probability Pr

[∪n
i=1Ei

]
. If the events are all pairwise disjoint from one another,

then the probability mass of their union is comprised simply of the separate
contributions from each event. In other words, we have the following fact.

(13.49) Suppose we have events E1, E2, . . . , En such that Ei ∩ Ej = φ for each
pair. Then

Pr

[
n⋃

i=1

Ei

]
=

n∑
i=1

Pr
[
Ei
]

.

In general, a set of events E1, E2, . . . , En may overlap in complex ways. In
this case, the equality in (13.49) no longer holds; due to the overlaps among

13.12 Background: Some Basic Probability Definitions 773

ε1

ε2 ε3

Ω ε1

ε2 ε3

Ω

Figure 13.5 The Union Bound: The probability of a union is maximized when the events
have no overlap.

events, the probability mass of a point that is counted once on the left-hand
side will be counted one or more times on the right-hand side. (See Figure 13.5.)
This means that for a general set of events, the equality in (13.49) is relaxed to
an inequality; and this is the content of the Union Bound. We have stated the
Union Bound as (13.2), but we state it here again for comparison with (13.49).

(13.50) (The Union Bound) Given events E1, E2, . . . , En, we have

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr
[
Ei
]

.

Given its innocuous appearance, the Union Bound is a surprisingly pow-
erful tool in the analysis of randomized algorithms. It draws its power mainly
from the following ubiquitous style of analyzing randomized algorithms. Given
a randomized algorithm designed to produce a correct result with high proba-
bility, we first tabulate a set of “bad events” E1, E2, . . . , En with the following
property: if none of these bad events occurs, then the algorithm will indeed
produce the correct answer. In other words, if F denotes the event that the
algorithm fails, then we have

Pr [F]≤ Pr

[
n⋃

i=1

Ei

]
.

But it’s hard to compute the probability of this union, so we apply the Union
Bound to conclude that

Pr [F]≤ Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr
[
Ei
]

.

774 Chapter 13 Randomized Algorithms

Now, if in fact we have an algorithm that succeeds with very high probabil-
ity, and if we’ve chosen our bad events carefully, then each of the probabilities
Pr
[
Ei
]

will be so small that even their sum—and hence our overestimate of
the failure probability—will be small. This is the key: decomposing a highly
complicated event, the failure of the algorithm, into a horde of simple events
whose probabilities can be easily computed.

Here is a simple example to make the strategy discussed above more
concrete. Recall the Process Naming Problem we discussed earlier in this
section, in which each of a set of processes chooses a random identifier.
Suppose that we have 1,000 processes, each choosing a 32-bit identifier, and
we are concerned that two of them will end up choosing the same identifier.
Can we argue that it is unlikely this will happen? To begin with, let’s denote
this event by F. While it would not be overwhelmingly difficult to compute
Pr [F] exactly, it is much simpler to bound it as follows. The event F is really a
union of

(1000
2

)
“atomic” events; these are the events Eij that processes pi and

pj choose the same identifier. It is easy to verify that indeed, F =∪i<jEij. Now,
for any i �= j, we have Pr

[
Eij
]= 2−32, by the argument in one of our earlier

examples. Applying the Union Bound, we have

Pr [F]≤
∑
i, j

Pr
[
Eij
]= (

1000
2

)
· 2−32.

Now,
(1000

2

)
is at most half a million, and 232 is (a little bit) more than 4 billion,

so this probability is at most .5
4000 = .000125.

Infinite Sample Spaces
So far we’ve gotten by with finite probability spaces only. Several of the
sections in this chapter, however, consider situations in which a random
process can run for arbitrarily long, and so cannot be well described by a
sample space of finite size. As a result, we pause here to develop the notion
of a probability space more generally. This will be somewhat technical, and in
part we are providing it simply for the sake of completeness: Although some of
our applications require infinite sample spaces, none of them really exercises
the full power of the formalism we describe here.

Once we move to infinite sample spaces, more care is needed in defining a
probability function. We cannot simply give each point in the sample space �

a probability mass and then compute the probability of every set by summing.
Indeed, for reasons that we will not go into here, it is easy to get into trouble
if one even allows every subset of � to be an event whose probability can be
computed. Thus a general probability space has three components:

13.12 Background: Some Basic Probability Definitions 775

(i) The sample space �.

(ii) A collection S of subsets of �; these are the only events on which we are
allowed to compute probabilities.

(iii) A probability function Pr, which maps events in S to real numbers in
[0, 1].

The collection S of allowable events can be any family of sets that satisfies
the following basic closure properties: the empty set and the full sample space
� both belong to S; if E ∈ S, then E ∈ S (closure under complement); and
if E1, E2, E3, . . . ∈ S, then ∪∞i=1Ei ∈ S (closure under countable union). The
probability function Pr can be any function from S to [0, 1] that satisfies
the following basic consistency properties: Pr [φ]= 0, Pr [�]= 1, Pr [E]=
1− Pr

[
E
]
, and the Union Bound for disjoint events (13.49) should hold even

for countable unions—if E1, E2, E3, . . .∈ S are all pairwise disjoint, then

Pr

[∞⋃
i=1

Ei

]
=

∞∑
i=1

Pr
[
Ei
]

.

Notice how, since we are not building up Pr from the more basic notion of a
probability mass anymore, (13.49) moves from being a theorem to simply a
required property of Pr.

When an infinite sample space arises in our context, it’s typically for the
following reason: we have an algorithm that makes a sequence of random
decisions, each one from a fixed finite set of possibilities; and since it may run
for arbitrarily long, it may make an arbitrarily large number of decisions. Thus
we consider sample spaces � constructed as follows. We start with a finite set
of symbols X = {1, 2, . . . , n}, and assign a weight w(i) to each symbol i ∈ X.
We then define � to be the set of all infinite sequences of symbols from X (with
repetitions allowed). So a typical element of � will look like 〈x1, x2, x3, . . .〉
with each entry xi ∈ X.

The simplest type of event we will be concerned with is as follows: it is the
event that a point ω ∈� begins with a particular finite sequence of symbols.
Thus, for a finite sequence σ = x1x2 . . . xs of length s, we define the prefix
event associated with σ to be the set of all sample points of � whose first s
entries form the sequence σ . We denote this event by Eσ , and we define its
probability to be Pr

[
Eσ

]= w(x1)w(x2) . . . w(xs).

The following fact is in no sense easy to prove.

776 Chapter 13 Randomized Algorithms

(13.51) There is a probability space (�, S, Pr), satisfying the required closure
and consistency properties, such that � is the sample space defined above,
Eσ ∈ S for each finite sequence σ , and Pr

[
Eσ

]= w(x1)w(x2) . . . w(xs).

Once we have this fact, the closure of S under complement and countable
union, and the consistency of Pr with respect to these operations, allow us to
compute probabilities of essentially any “reasonable” subset of �.

In our infinite sample space �, with events and probabilities defined as
above, we encounter a phenomenon that does not naturally arise with finite
sample spaces. Suppose the set X used to generate � is equal to {0, 1}, and
w(0)=w(1)= 1/2. Let E denote the set consisting of all sequences that contain
at least one entry equal to 1. (Note that E omits the “all-0” sequence.) We
observe that E is an event in S, since we can define σi to be the sequence of
i− 1 0s followed by a 1, and observe that E =∪∞i=1Eσi

. Moreover, all the events
Eσi

are pairwise disjoint, and so

Pr [E]=
∞∑
i=1

Pr
[
Eσi

]
=

∞∑
i=1

2−i = 1.

Here, then, is the phenomenon: It’s possible for an event to have probability

1 even when it’s not equal to the whole sample space �. Similarly, Pr
[
E
]
=

1− Pr [E]= 0, and so we see that it’s possible for an event to have probability
0 even when it’s not the empty set. There is nothing wrong with any of these
results; in a sense, it’s a necessary step if we want probabilities defined over
infinite sets to make sense. It’s simply that in such cases, we should be careful
to distinguish between the notion that an event has probability 0 and the
intuitive idea that the event “can’t happen.”

Solved Exercises

Solved Exercise 1
Suppose we have a collection of small, low-powered devices scattered around
a building. The devices can exchange data over short distances by wireless
communication, and we suppose for simplicity that each device has enough
range to communicate with d other devices. Thus we can model the wireless
connections among these devices as an undirected graph G = (V , E) in which
each node is incident to exactly d edges.

Now we’d like to give some of the nodes a stronger uplink transmitter that
they can use to send data back to a base station. Giving such a transmitter to
every node would ensure that they can all send data like this, but we can
achieve this while handing out fewer transmitters. Suppose that we find a

Solved Exercises 777

subset S of the nodes with the property that every node in V − S is adjacent
to a node in S. We call such a set S a dominating set, since it “dominates” all
other nodes in the graph. If we give uplink transmitters only to the nodes in a
dominating set S, we can still extract data from all nodes: Any node u �∈ S can
choose a neighbor v ∈ S, send its data to v, and have v relay the data back to
the base station.

The issue is now to find a dominating set S of minimum possible size,
since this will minimize the number of uplink transmitters we need. This is an
NP-hard problem; in fact, proving this is the crux of Exercise 29 in Chapter 8.
(It’s also worth noting here the difference between dominating sets and vertex
covers: in a dominating set, it is fine to have an edge (u, v) with neither u nor
v in the set S as long as both u and v have neighbors in S. So, for example, a
graph consisting of three nodes all connected by edges has a dominating set
of size 1, but no vertex cover of size 1.)

Despite the NP-hardness, it’s important in applications like this to find as
small a dominating set as one can, even if it is not optimal. We will see here
that a simple randomized strategy can be quite effective. Recall that in our
graph G, each node is incident to exactly d edges. So clearly any dominating
set will need to have size at least n

d+1, since each node we place in a dominating
set can take care only of itself and its d neighbors. We want to show that a
random selection of nodes will, in fact, get us quite close to this simple lower
bound.

Specifically, show that for some constant c, a set of cn log n
d+1 nodes chosen

uniformly at random from G will be a dominating set with high probability.
(In other words, this completely random set is likely to form a dominating set
that is only O(log n) times larger than our simple lower bound of n

d+1.)

Solution Let k = cn log n
d , where we will choose the constant c later, once we

have a better idea of what’s going on. Let E be the event that a random choice
of k nodes is a dominating set for G. To make the analysis simpler, we will
consider a model in which the nodes are selected one at a time, and the same
node may be selected twice (if it happens to be picked twice by our sequence
of random choices).

Now we want to show that if c (and hence k) is large enough, then Pr [E] is
close to 1. But E is a very complicated-looking event, so we begin by breaking
it down into much simpler events whose probabilities we can analyze more
easily.

To start with, we say that a node w dominates a node v if w is a neighbor
of v, or w = v. We say that a set S dominates a node v if some element of S
dominates v. (These definitions let us say that a dominating set is simply a
set of nodes that dominates every node in the graph.) Let D[v, t] denote the

778 Chapter 13 Randomized Algorithms

event that the tth random node we choose dominates node v. The probability
of this event can be determined quite easily: of the n nodes in the graph, we
must choose v or one of its d neighbors, and so

Pr
[
D[v, t]

]= d + 1
n

.

Let Dv denote the event that the random set consisting of all k selected
nodes dominates v. Thus

Dv =
k⋃

t=1

D[v, t].

For independent events, we’ve seen in the text that it’s easier to work with
intersections—where we can simply multiply out the probabilities—than with
unions. So rather than thinking about Dv, we’ll consider the complementary
“failure event” Dv, that no node in the random set dominates v. In order for
no node to dominate v, each of our choices has to fail to do so, and hence we
have

Dv =
k⋂

t=1

D[v, t].

Since the events D[v, t] are independent, we can compute the probability on
the right-hand side by multiplying all the individual probabilities; thus

Pr
[
Dv

]
=

k∏
t=1

Pr
[
D[v, t]

]
=
(

1− d + 1
n

)k

.

Now, k = cn log n
d+1 , so we can write this last expression as

(
1− d + 1

n

)k

=
[(

1− d + 1
n

)n/(d+1)
]c log n

≤
(

1
e

)c log n

,

where the inequality follows from (13.1) that we stated earlier in the chapter.

We have not yet specified the base of the logarithm we use to define k,
but it’s starting to look like base e is a good choice. Using this, we can further
simplify the last expression to

Pr
[
Dv

]
≤
(

1
e

)c ln n

= 1
nc

.

We are now very close to done. We have shown that for each node v, the
probability that our random set fails to dominate it is at most n−c, which we
can drive down to a very small quantity by making c moderately large. Now
recall the original event E, that our random set is a dominating set. This fails

Solved Exercises 779

to occur if and only if one of the events Dv fails to occur, so E = ∪vDv. Thus,
by the Union Bound (13.2), we have

Pr
[
E
]
≤
∑
v∈V

Pr
[
Dv

]
≤ n · 1

nc
= 1

nc−1
.

Simply choosing c = 2 makes this probability 1
n , which is much less than 1.

Thus, with high probability, the event E holds and our random choice of nodes
is indeed a dominating set.

It’s interesting to note that the probability of success, as a function of k,
exhibits behavior very similar to what we saw in the contention-resolution
example in Section 13.1. Setting k =�(n/d) is enough to guarantee that each
individual node is dominated with constant probability. This, however, is not
enough to get anything useful out of the Union Bound. Then, raising k by
another logarithmic factor is enough to drive up the probability of dominating
each node to something very close to 1, at which point the Union Bound can
come into play.

Solved Exercise 2
Suppose we are given a set of n variables x1, x2, . . . , xn, each of which can
take one of the values in the set {0, 1}. We are also given a set of k equations;
the r th equation has the form

(xi + xj) mod 2= br

for some choice of two distinct variables xi, xj, and for some value br that is
either 0 or 1. Thus each equation specifies whether the sum of two variables
is even or odd.

Consider the problem of finding an assignment of values to variables that
maximizes the number of equations that are satisfied (i.e., in which equality
actually holds). This problem is NP-hard, though you don’t have to prove this.

For example, suppose we are given the equations

(x1+ x2) mod 2= 0

(x1+ x3) mod 2= 0

(x2+ x4) mod 2= 1

(x3+ x4) mod 2= 0

over the four variables x1, . . . , x4. Then it’s possible to show that no assign-
ment of values to variables will satisfy all equations simultaneously, but setting
all variables equal to 0 satisfies three of the four equations.

780 Chapter 13 Randomized Algorithms

(a) Let c∗ denote the maximum possible number of equations that can be
satisfied by an assignment of values to variables. Give a polynomial-time
algorithm that produces an assignment satisfying at least 1

2c∗ equations.
If you want, your algorithm can be randomized; in this case, the expected
number of equations it satisfies should be at least 1

2c∗. In either case, you
should prove that your algorithm has the desired performance guarantee.

(b) Suppose we drop the condition that each equation must have exactly two
variables; in other words, now each equation simply specifies that the
sum of an arbitrary subset of the variables, mod 2, is equal to a particular
value br.

Again let c∗ denote the maximum possible number of equations
that can be satisfied by an assignment of values to variables, and give
a polynomial-time algorithm that produces an assignment satisfying at
least 1

2c∗ equations. (As before, your algorithm can be randomized.) If
you believe that your algorithm from part (a) achieves this guarantee here
as well, you can state this and justify it with a proof of the performance
guarantee for this more general case.

Solution Let’s recall the punch line of the simple randomized algorithm for
MAX 3-SAT that we saw earlier in the chapter: If you’re given a constraint
satisfaction problem, assigning variables at random can be a surprisingly
effective way to satisfy a constant fraction of all constraints.

We now try applying this principle to the problem here, beginning with
part (a). Consider the algorithm that sets each variable independently and uni-
formly at random. How well does this random assignment do, in expectation?
As usual, we will approach this question using linearity of expectation: If X is
a random variable denoting the number of satisfied equations, we’ll break X
up into a sum of simpler random variables.

For some r between 1 and k, let the r th equation be

(xi + xj) mod 2= br .

Let Xr be a random variable equal to 1 if this equation is satisfied, and 0
otherwise. E

[
Xr
]

is the probability that equation r is satisfied. Of the four
possible assignments to equation i, there are two that cause it to evaluate to 0
mod 2 (xi = xj = 0 and xi = xj = 1) and two that cause it to evaluate to 1 mod
2 (xi = 0; xj = 1 and xi = i; xj = 0). Thus E

[
Xr
]= 2/4= 1/2.

Now, by linearity of expectation, we have E [X]=∑
r E

[
Xr
]= k/2. Since

the maximum number of satisfiable equations c∗ must be at most k, we satisfy
at least c∗/2 in expectation. Thus, as in the case of MAX 3-SAT, a simple random
assignment to the variables satisfies a constant fraction of all constraints.

Solved Exercises 781

For part (b), let’s press our luck by trying the same algorithm. Again let Xr
be a random variable equal to 1 if the r th equation is satisfied, and 0 otherwise;
let X be the total number of satisfied equations; and let c∗ be the optimum.

We want to claim that E
[
Xr
]= 1/2 as before, even when there can be

an arbitrary number of variables in the r th equation; in other words, the
probability that the equation takes the correct value mod 2 is exactly 1/2.
We can’t just write down all the cases the way we did for two variables per
equation, so we will use an alternate argument.

In fact, there are two natural ways to prove that E
[
Xr
]= 1/2. The first

uses a trick that appeared in the proof of (13.25) in Section 13.6 on hashing:
We consider assigning values arbitrarily to all variables but the last one in
the equation, and then we randomly assign a value to the last variable x.
Now, regardless of how we assign values to all other variables, there are two
ways to assign a value to x, and it is easy to check that one of these ways will
satisfy the equation and the other will not. Thus, regardless of the assignments
to all variables other than x, the probability of setting x so as to satisfy the
equation is exactly 1/2. Thus the probability the equation is satisfied by a
random assignment is 1/2.

(As in the proof of (13.25), we can write this argument in terms of con-
ditional probabilities. If E is the event that the equation is satisfied, and
Fb is the event that the variables other than x receive a sequence of val-
ues b, then we have argued that Pr

[
E | Fb

]= 1/2 for all b, and so Pr [E]=∑
b Pr

[
E | Fb

] · Pr
[
Fb
]= (1/2)

∑
b Pr

[
Fb
]= 1/2.)

An alternate proof simply counts the number of ways for the r th equation
to have an even sum, and the number of ways for it to have an odd sum. If
we can show that these two numbers are equal, then the probability that a
random assignment satisfies the r th equation is the probability it gives it a sum
with the right even/odd parity, which is 1/2.

In fact, at a high level, this proof is essentially the same as the previous
one, with the difference that we make the underlying counting problem
explicit. Suppose that the r th equation has t terms; then there are 2t possible
assignments to the variables in this equation. We want to claim that 2t−1

assignments produce an even sum, and 2t−1 produce an odd sum, which will
show that E

[
Xr
]= 1/2. We prove this by induction on t. For t = 1, there are

just two assignments, one of each parity; and for t = 2, we already proved this
earlier by considering all 22= 4 possible assignments. Now suppose the claim
holds for an arbitrary value of t − 1. Then there are exactly 2t−1 ways to get
an even sum with t variables, as follows:

. 2t−2 ways to get an even sum on the first t − 1 variables (by induction),
followed by an assignment of 0 to the tth, plus

782 Chapter 13 Randomized Algorithms

. 2t−2 ways to get an odd sum on the first t − 1 variables (by induction),
followed by an assignment of 1 to the tth.

The remaining 2t−1 assignments give an odd sum, and this completes the
induction step.

Once we have E
[
Xr
] = 1/2, we conclude as in part (a): Linearity of

expectation gives us E [X]=∑
r E

[
Xr
]= k/2≥ c∗/2.

Exercises

1. 3-Coloring is a yes/no question, but we can phrase it as an optimization

problem as follows.

Suppose we are given a graph G = (V , E), and we want to color each

node with one of three colors, even if we aren’t necessarily able to give

different colors to every pair of adjacent nodes. Rather, we say that an

edge (u, v) is satisfied if the colors assigned to u and v are different.

Consider a 3-coloring that maximizes the number of satisfied edges,

and let c∗ denote this number. Give a polynomial-time algorithm that

produces a 3-coloring that satisfies at least 2
3c∗ edges. If you want, your

algorithm can be randomized; in this case, the expected number of edges

it satisfies should be at least 2
3c∗.

2. Consider a county in which 100,000 people vote in an election. There

are only two candidates on the ballot: a Democratic candidate (denoted

D) and a Republican candidate (denoted R). As it happens, this county is

heavily Democratic, so 80,000 people go to the polls with the intention

of voting for D, and 20,000 go to the polls with the intention of voting

for R.

However, the layout of the ballot is a little confusing, so each voter,

independently and with probability 1
100 , votes for the wrong candidate—

that is, the one that he or she didn’t intend to vote for. (Remember that

in this election, there are only two candidates on the ballot.)

Let X denote the random variable equal to the number of votes

received by the Democratic candidate D, when the voting is conducted

with this process of error. Determine the expected value of X, and give

an explanation of your derivation of this value.

3. In Section 13.1, we saw a simple distributed protocol to solve a particu-

lar contention-resolution problem. Here is another setting in which ran-

domization can help with contention resolution, through the distributed

construction of an independent set.

Exercises 783

Suppose we have a system with n processes. Certain pairs of pro-

cesses are in conflict , meaning that they both require access to a shared

resource. In a given time interval, the goal is to schedule a large subset

S of the processes to run—the rest will remain idle—so that no two con-

flicting processes are both in the scheduled set S. We’ll call such a set S

conflict-free.

One can picture this process in terms of a graph G = (V , E) with a

node representing each process and an edge joining pairs of processes

that are in conflict. It is easy to check that a set of processes S is conflict-

free if and only if it forms an independent set in G. This suggests that

finding a maximum-size conflict-free set S, for an arbitrary conflict G,

will be difficult (since the general Independent Set Problem is reducible

to this problem). Nevertheless, we can still look for heuristics that find

a reasonably large conflict-free set. Moreover, we’d like a simple method

for achieving this without centralized control: Each process should com-

municate with only a small number of other processes and then decide

whether or not it should belong to the set S.

We will suppose for purposes of this question that each node has

exactly d neighbors in the graph G. (That is, each process is in conflict

with exactly d other processes.)

(a) Consider the following simple protocol.

Each process Pi independently picks a random value xi; it sets xi to 1 with

probability 1
2 and sets xi to 0 with probability 1

2 . It then decides to enter

the set S if and only if it chooses the value 1, and each of the processes

with which it is in conflict chooses the value 0.

Prove that the set S resulting from the execution of this protocol is

conflict-free. Also, give a formula for the expected size of S in terms

of n (the number of processes) and d (the number of conflicts per

process).

(b) The choice of the probability 1
2 in the protocol above was fairly ar-

bitrary, and it’s not clear that it should give the best system perfor-

mance. A more general specification of the protocol would replace

the probability 1
2 by a parameter p between 0 and 1, as follows.

Each process Pi independently picks a random value xi; it sets xi to 1
with probability p and sets xi to 0 with probability 1− p. It then decides

to enter the set S if and only if it chooses the value 1, and each of the

processes with which it is in conflict chooses the value 0.

784 Chapter 13 Randomized Algorithms

In terms of the parameters of the graph G, give a value of p so that

the expected size of the resulting set S is as large as possible. Give a

formula for the expected size of S when p is set to this optimal value.

4. A number of peer-to-peer systems on the Internet are based on overlay

networks. Rather than using the physical Internet topology as the net-

work on which to perform computation, these systems run protocols by

which nodes choose collections of virtual “neighbors” so as to define a

higher-level graph whose structure may bear little or no relation to the

underlying physical network. Such an overlay network is then used for

sharing data and services, and it can be extremely flexible compared with

a physical network, which is hard tomodify in real time to adapt to chang-

ing conditions.

Peer-to-peer networks tend to grow through the arrival of new partici-

pants, who join by linking into the existing structure. This growth process

has an intrinsic effect on the characteristics of the overall network. Re-

cently, people have investigated simple abstract models for network

growth that might provide insight into the way such processes behave,

at a qualitative level, in real networks.

Here’s a simple example of such a model. The system begins with

a single node v1. Nodes then join one at a time; as each node joins, it

executes a protocol whereby it forms a directed link to a single other

node chosen uniformly at random from those already in the system. More

concretely, if the system already contains nodes v1, v2, . . . , vk−1 and node

vk wishes to join, it randomly selects one of v1, v2, . . . , vk−1 and links to

this node.

Suppose we run this process until we have a system consisting of

nodes v1, v2, . . . , vn; the random process described above will produce

a directed network in which each node other than v1 has exactly one

outgoing edge. On the other hand, a node may have multiple incoming

links, or none at all. The incoming links to a node vj reflect all the

other nodes whose access into the system is via vj; so if vj has many

incoming links, this can place a large load on it. To keep the system load-

balanced, then, we’d like all nodes to have a roughly comparable number

of incoming links. That’s unlikely to happen here, however, since nodes

that join earlier in the process are likely to havemore incoming links than

nodes that join later. Let’s try to quantify this imbalance as follows.

(a) Given the random process described above, what is the expected

number of incoming links to node vj in the resulting network? Give an

exact formula in terms of n and j, and also try to express this quantity

Exercises 785

TnT2

Switching
hub

T1 T3

Figure 13.6 Towns T1, T2 . . . , Tn need to decide how to share the cost of the cable.

asymptotically (via an expression without large summations) using

�(·) notation.
(b) Part (a) makes precise a sense in which the nodes that arrive early

carry an “unfair” share of the connections in the network. Another

way to quantify the imbalance is to observe that, in a run of this

random process, we expect many nodes to end up with no incoming

links.

Give a formula for the expected number of nodes with no incoming

links in a network grown randomly according to this model.

5. Out in a rural part of the county somewhere, n small towns have decided

to get connected to a large Internet switching hub via a high-volume fiber-

optic cable. The towns are labeled T1, T2, . . . , Tn, and they are all arranged

on a single long highway, so that town Ti is i miles from the switching

hub (See Figure 13.6).

Now this cable is quite expensive; it costs k dollars per mile, resulting

in an overall cost of kn dollars for the whole cable. The towns get together

and discuss how to divide up the cost of the cable.

First, one of the towns way out at the far end of the highway makes

the following proposal.

Proposal A. Divide the cost evenly among all towns, so each pays k dollars.

There’s some sense in which Proposal A is fair, since it’s as if each town

is paying for the mile of cable directly leading up to it.

But one of the towns very close to the switching hub objects, pointing

out that the faraway towns are actually benefiting from a large section of

the cable, whereas the close-in towns only benefit from a short section

of it. So they make the following counterproposal.

Proposal B. Divide the cost so that the contribution of town Ti is proportional

to i, its distance from the switching hub.

One of the other towns very close to the switching hub points out

that there’s another way to do a nonproportional division that is also

786 Chapter 13 Randomized Algorithms

natural. This is based on conceptually dividing the cable into n equal-

length “edges” e1, . . . , en, where the first edge e1 runs from the switching

hub to T1, and the ith edge ei (i > 1) runs from Ti−1 to Ti. Now we observe

that, while all the towns benefit from e1, only the last town benefits from

en. So they suggest

Proposal C. Divide the cost separately for each edge ei. The cost of ei should

be shared equally by the towns Ti, Ti+1, . . . , Tn, since these are the towns

“downstream” of ei.

So now the towns have many different options; which is the fairest?

To resolve this, they turn to the work of Lloyd Shapley, one of the most

famous mathematical economists of the 20th century. He proposed what

is now called the Shapley value as a general mechanism for sharing costs

or benefits among several parties. It can be viewed as determining the

“marginal contribution” of each party, assuming the parties arrive in a

random order.

Here’s how it would work concretely in our setting. Consider an

orderingO of the towns, and suppose that the towns “arrive” in this order.

The marginal cost of town Ti in order O is determined as follows. If Ti is

first in the order O, then Ti pays ki, the cost of running the cable all the

way from the switching hub to Ti. Otherwise, look at the set of towns that

come before Ti in the orderO, and let Tj be the farthest among these towns

from the switching hub. When Ti arrives, we assume the cable already

reaches out to Tj but no farther. So if j > i (Tj is farther out than Ti), then

the marginal cost of Ti is 0, since the cable already runs past Ti on its way

out to Tj. On the other hand, if j < i, then the marginal cost of Ti is k(i− j):

the cost of extending the cable from Tj out to Ti.

(For example, suppose n = 3 and the towns arrive in the order

T1, T3, T2. First T1 pays k when it arrives. Then, when T3 arrives, it only has

to pay 2k to extend the cable from T1. Finally, when T2 arrives, it doesn’t

have to pay anything since the cable already runs past it out to T3.)

Now, let Xi be the random variable equal to the marginal cost of

town Ti when the order O is selected uniformly at random from all

permutations of the towns. Under the rules of the Shapley value, the

amount that Ti should contribute to the overall cost of the cable is the

expected value of Xi.

The question is: Which of the three proposals above, if any, gives the

same division of costs as the Shapley value cost-sharingmechanism? Give

a proof for your answer.

Exercises 787

6. One of the (many) hard problems that arises in genome mapping can be

formulated in the following abstract way. We are given a set of n markers

{μ1, . . . , μn}—these are positions on a chromosome that we are trying to

map—and our goal is to output a linear ordering of these markers. The

output should be consistent with a set of k constraints, each specified by

a triple (μi, μj , μk), requiring that μj lie between μi and μk in the total

ordering that we produce. (Note that this constraint does not specify

which of μi or μk should come first in the ordering, only that μj should

come between them.)

Now it is not always possible to satisfy all constraints simultaneously,

so we wish to produce an ordering that satisfies as many as possible.

Unfortunately, decidingwhether there is an ordering that satisfies at least

k′ of the k constraints is an NP-complete problem (you don’t have to prove

this.)

Give a constant α > 0 (independent of n) and an algorithm with the

following property. If it is possible to satisfy k∗ of the constraints, then

the algorithm produces an ordering of markers satisfying at least αk∗

of the constraints. Your algorithm may be randomized; in this case it

should produce an ordering for which the expected number of satisfied

constraints is at least αk∗.

7. In Section 13.4, we designed an approximation algorithm to within a fac-

tor of 7/8 for the MAX 3-SAT Problem, where we assumed that each clause

has terms associated with three different variables. In this problem, we

will consider the analogous MAX SAT Problem: Given a set of clauses

C1, . . . , Ck over a set of variables X = {x1, . . . , xn}, find a truth assignment

satisfying as many of the clauses as possible. Each clause has at least

one term in it, and all the variables in a single clause are distinct, but

otherwise we do not make any assumptions on the length of the clauses:

There may be clauses that have a lot of variables, and others may have

just a single variable.

(a) First consider the randomized approximation algorithm we used for

MAX 3-SAT, setting each variable independently to true or false with

probability 1/2 each. Show that the expected number of clauses

satisfied by this randomassignment is at least k/2, that is, at least half
of the clauses are satisfied in expectation. Give an example to show

that there are MAX SAT instances such that no assignment satisfies

more than half of the clauses.

(b) If we have a clause that consists only of a single term (e.g., a clause

consisting just of x1, or just of x2), then there is only a singleway to sat-

isfy it: We need to set the corresponding variable in the appropriate

788 Chapter 13 Randomized Algorithms

way. If we have two clauses such that one consists of just the term

xi, and the other consists of just the negated term xi, then this is a

pretty direct contradiction.

Assume that our instance has no such pair of “conflicting

clauses”; that is, for no variable xi do we have both a clause C = {xi}
and a clause C ′ = {xi}. Modify the randomized procedure above to im-

prove the approximation factor from 1/2 to at least .6. That is, change

the algorithm so that the expected number of clauses satisfied by the

process is at least .6k.

(c) Give a randomized polynomial-time algorithm for the general MAX

SAT Problem, so that the expected number of clauses satisfied by the

algorithm is at least a .6 fraction of the maximum possible.

(Note that, by the example in part (a), there are instances where

one cannot satisfy more than k/2 clauses; the point here is that

we’d still like an efficient algorithm that, in expectation, can satisfy

a .6 fraction of the maximum that can be satisfied by an optimal

assignment .)

8. Let G = (V , E) be an undirected graph with n nodes and m edges. For a

subset X ⊆ V, we use G[X] to denote the subgraph induced on X—that is,

the graph whose node set is X and whose edge set consists of all edges

of G for which both ends lie in X.

We are given a natural number k ≤ n and are interested in finding a

set of k nodes that induces a “dense” subgraph of G; we’ll phrase this

concretely as follows. Give a polynomial-time algorithm that produces,

for a given natural number k ≤ n, a set X ⊆ V of k nodes with the property

that the induced subgraph G[X] has at least mk(k−1)
n(n−1) edges.

Youmay give either (a) a deterministic algorithm, or (b) a randomized

algorithm that has an expected running time that is polynomial, and that

only outputs correct answers.

9. Suppose you’re designing strategies for selling items on a popular auction

Web site. Unlike other auction sites, this one uses a one-pass auction,

in which each bid must be immediately (and irrevocably) accepted or

refused. Specifically, the site works as follows.

. First a seller puts up an item for sale.

. Then buyers appear in sequence.

. When buyer i appears, he or she makes a bid bi > 0.

. The seller must decide immediately whether to accept the bid or not.

If the seller accepts the bid, the item is sold and all future buyers are

Exercises 789

turned away. If the seller rejects the bid, buyer i departs and the bid

is withdrawn; and only then does the seller see any future buyers.

Suppose an item is offered for sale, and there are n buyers, each with

a distinct bid. Suppose further that the buyers appear in a random order,

and that the seller knows the number n of buyers. We’d like to design

a strategy whereby the seller has a reasonable chance of accepting the

highest of the n bids. By a strategy , we mean a rule by which the seller

decides whether to accept each presented bid, based only on the value of

n and the sequence of bids seen so far.

For example, the seller could always accept the first bid presented.

This results in the seller accepting the highest of the n bids with probabil-

ity only 1/n, since it requires the highest bid to be the first one presented.

Give a strategy underwhich the seller accepts the highest of the n bids

with probability at least 1/4, regardless of the value of n. (For simplicity,

you may assume that n is an even number.) Prove that your strategy

achieves this probabilistic guarantee.

10. Consider a very simple online auction system that works as follows. There

are n bidding agents; agent i has a bid bi, which is a positive natural

number. We will assume that all bids bi are distinct from one another.

The bidding agents appear in an order chosen uniformly at random, each

proposes its bid bi in turn, and at all times the systemmaintains a variable

b∗ equal to the highest bid seen so far. (Initially b∗ is set to 0.)

What is the expected number of times that b∗ is updated when this

process is executed, as a function of the parameters in the problem?

Example. Suppose b1= 20, b2= 25, and b3= 10, and the bidders arrive in

the order 1, 3, 2. Then b∗ is updated for 1 and 2, but not for 3.

11. Load balancing algorithms for parallel or distributed systems seek to

spread out collections of computing jobs over multiple machines. In this

way, no one machine becomes a “hot spot.” If some kind of central

coordination is possible, then the load can potentially be spread out

almost perfectly. But what if the jobs are coming from diverse sources

that can’t coordinate? As we saw in Section 13.10, one option is to assign

them to machines at random and hope that this randomization will work

to prevent imbalances. Clearly, this won’t generally work as well as a

perfectly centralized solution, but it can be quite effective. Here we try

analyzing some variations and extensions on the simple load balancing

heuristic we considered in Section 13.10.

790 Chapter 13 Randomized Algorithms

Suppose you have k machines, and k jobs show up for processing.

Each job is assigned to one of the k machines independently at random

(with each machine equally likely).

(a) Let N(k) be the expected number of machines that do not receive any

jobs, so that N(k)/k is the expected fraction of machines with nothing

to do. What is the value of the limit limk→∞ N(k)/k? Give a proof of

your answer.

(b) Suppose that machines are not able to queue up excess jobs, so if the

random assignment of jobs to machines sends more than one job to

a machine M, then M will do the first of the jobs it receives and reject

the rest. Let R(k) be the expected number of rejected jobs; so R(k)/k

is the expected fraction of rejected jobs. What is limk→∞ R(k)/k? Give

a proof of your answer.

(c) Now assume thatmachines have slightly larger buffers; eachmachine

M will do the first two jobs it receives, and reject any additional jobs.

Let R2(k) denote the expected number of rejected jobs under this rule.

What is limk→∞ R2(k)/k? Give a proof of your answer.

12. Consider the following analogue of Karger’s algorithm for finding mini-

mum s-t cuts. We will contract edges iteratively using the following ran-

domized procedure. In a given iteration, let s and t denote the possibly

contracted nodes that contain the original nodes s and t, respectively. To

make sure that s and t do not get contracted, at each iteration we delete

any edges connecting s and t and select a random edge to contract among

the remaining edges. Give an example to show that the probability that

this method finds a minimum s-t cut can be exponentially small.

13. Consider a balls-and-bins experiment with 2n balls but only two bins.

As usual, each ball independently selects one of the two bins, both bins

equally likely. The expected number of balls in each bin is n. In this

problem, we explore the question of how big their difference is likely to

be. Let X1 and X2 denote the number of balls in the two bins, respectively.

(X1 and X2 are random variables.) Prove that for any ε > 0 there is a

constant c > 0 such that the probability Pr
[
X1− X2 > c

√
n
]≤ ε.

14. Some people designing parallel physical simulations come to you with

the following problem. They have a set P of k basic processes and want to

assign each process to run on one of two machines, M1 and M2. They are

then going to run a sequence of n jobs, J1, . . . , Jn. Each job Ji is represented

by a set Pi ⊆ P of exactly 2n basic processes which must be running

(each on its assigned machine) while the job is processed. An assignment

of basic processes to machines will be called perfectly balanced if, for

Exercises 791

each job Ji, exactly n of the basic processes associated with Ji have been

assigned to each of the two machines. An assignment of basic processes

to machines will be called nearly balanced if, for each job Ji, no more

than 4
3n of the basic processes associated with Ji have been assigned to

the same machine.

(a) Show that for arbitrarily large values of n, there exist sequences of

jobs J1, . . . , Jn for which no perfectly balanced assignment exists.

(b) Suppose that n ≥ 200. Give an algorithm that takes an arbitrary se-

quence of jobs J1, . . . , Jn and produces a nearly balanced assignment

of basic processes to machines. Your algorithm may be randomized,

in which case its expected running time should be polynomial, and

it should always produce the correct answer.

15. Suppose you are presented with a very large set S of real numbers, and

you’d like to approximate the median of these numbers by sampling. You

may assume all the numbers in S are distinct. Let n = |S|; we will say that

a number x is an ε-approximate median of S if at least (1
2 − ε)n numbers

in S are less than x, and at least (1
2 − ε)n numbers in S are greater than x.

Consider an algorithm that works as follows. You select a subset

S′ ⊆ S uniformly at random, compute the median of S′, and return this

as an approximate median of S. Show that there is an absolute constant

c, independent of n, so that if you apply this algorithm with a sample S′

of size c, then with probability at least .99, the number returned will be

a (.05)-approximate median of S. (You may consider either the version of

the algorithm that constructs S′ by sampling with replacement, so that an

element of S can be selected multiple times, or one without replacement.)

16. Consider the following (partially specified) method for transmitting a

message securely between a sender and a receiver. The message will be

represented as a string of bits. Let � = {0, 1}, and let �∗ denote the set of

all strings of 0 or more bits (e.g., 0, 00, 1110001∈�∗). The “empty string,”

with no bits, will be denoted λ ∈�∗.

The sender and receiver share a secret function f : �∗ ×�→�. That

is, f takes a word and a bit, and returns a bit. When the receiver gets a

sequence of bits α ∈�∗, he or she runs the following method to decipher

it.

Let α = α1α2 . . . αn, where n is the number of bits in α

The goal is to produce an n-bit deciphered message,

β = β1β2 . . . βn

Set β1= f (λ, α1)

792 Chapter 13 Randomized Algorithms

For i = 2, 3, 4, . . . , n

Set βi = f (β1 β2 . . . βi−1, αi)

Endfor

Output β

One could view this is as a type of “stream cipher with feedback.” One

problem with this approach is that, if any bit αi gets corrupted in trans-

mission, it will corrupt the computed value of βj for all j ≥ i.

We consider the following problem. A sender S wants to transmit the

same (plain-text) message β to each of k receivers R1, . . . , Rk. With each

one, he shares a different secret function f 〈i〉. Thus he sends a different

encrypted message α〈i〉 to each receiver, so that α〈i〉 decrypts to β when

the above algorithm is run with the function f 〈i〉.

Unfortunately, the communication channels are very noisy, so each of

the n bits in each of the k transmissions is independently corrupted (i.e.,

flipped to its complement) with probability 1/4. Thus no single receiver

on his or her own is likely to be able to decrypt the message correctly.

Show, however, that if k is large enough as a function of n, then the k

receivers can jointly reconstruct the plain-text message in the following

way. They get together, and without revealing any of the α〈i〉 or the f 〈i〉,
they interactively run an algorithm that will produce the correct β with

probability at least 9/10. (How large do you need k to be in your algorithm?)

17. Consider the following simple model of gambling in the presence of bad

odds. At the beginning, your net profit is 0. You play for a sequence of n

rounds; and in each round, your net profit increases by 1with probability

1/3, and decreases by 1 with probability 2/3.

Show that the expected number of steps in which your net profit is

positive can be upper-bounded by an absolute constant, independent of

the value of n.

18. In this problem, we will consider the following simple randomized algo-

rithm for the Vertex Cover Algorithm.

Start with S = ∅
While S is not a vertex cover,

Select an edge e not covered by S

Select one end of e at random (each end equally likely)

Add the selected node to S

Endwhile

Notes and Further Reading 793

We will be interested in the expected cost of a vertex cover selected by

this algorithm.

(a) Is this algorithm a c-approximation algorithm for the Minimum

Weight Vertex Cover Problem for some constant c? Prove your an-

swer.

(b) Is this algorithm a c-approximation algorithm for theMinimumCardi-

nality Vertex Cover Problem for some constant c? Prove your answer.

(Hint: For an edge, let pe denote the probability that edge e is

selected as an uncovered edge in this algorithm. Can you express

the expected value of the solution in terms of these probabilities? To

bound the value of an optimal solution in terms of the pe probabilities,

try to bound the sum of the probabilities for the edges incident to a

given vertex v, namely,
∑

e incident to v

pe.)

Notes and Further Reading

The use of randomization in algorithms is an active research area; the books
by Motwani and Raghavan (1995) and Mitzenmacher and Upfal (2005) are
devoted to this topic. As the contents of this chapter make clear, the types
of probabilistic arguments used in the study of basic randomized algorithms
often have a discrete, combinatorial flavor; one can get background in this
style of probabilistic analysis from the book by Feller (1957).

The use of randomization for contention resolution is common in many
systems and networking applications. Ethernet-style shared communication
media, for example, use randomized backoff protocols to reduce the number
of collisions among different senders; see the book by Bertsekas and Gallager
(1992) for a discussion of this topic.

The randomized algorithm for the Minimum-Cut Problem described in the
text is due to Karger, and after further optimizations due to Karger and Stein
(1996), it has become one of the most efficient approaches to the minimum
cut problem. A number of further extensions and applications of the algorithm
appear in Karger’s (1995) Ph.D. thesis.

The approximation algorithm for MAX 3-SAT is due to Johnson (1974), in
a paper that contains a number of early approximation algorithms for NP-hard
problems. The surprising punch line to that section—that every instance of 3-
SAT has an assignment satisfying at least 7/8 of the clauses—is an example
of the probabilistic method, whereby a combinatorial structure with a desired
property is shown to exist simply by arguing that a random structure has
the property with positive probability. This has grown into a highly refined

794 Chapter 13 Randomized Algorithms

technique in the area of combinatorics; the book by Alon and Spencer (2000)
covers a wide range of its applications.

Hashing is a topic that remains the subject of extensive study, in both
theoretical and applied settings, and there are many variants of the basic
method. The approach we focus on in Section 13.6 is due to Carter and Wegman
(1979). The use of randomization for finding the closest pair of points in the
plane was originally proposed by Rabin (1976), in an influential early paper
that exposed the power of randomization in many algorithmic settings. The
algorithm we describe in this chapter was developed by Golin et al. (1995).
The technique used there to bound the number of dictionary operations, in
which one sums the expected work over all stages of the random order, is
sometimes referred to as backwards analysis; this was originally proposed
by Chew (1985) for a related geometric problem, and a number of further
applications of backwards analysis are described in the survey by Seidel (1993).

The performance guarantee for the LRU caching algorithm is due to Sleator
and Tarjan (1985), and the bound for the Randomized Marking algorithm is
due to Fiat, Karp, Luby, McGeoch, Sleator, and Young (1991). More generally,
the paper by Sleator and Tarjan highlighted the notion of online algorithms,
which must process input without knowledge of the future; caching is one
of the fundamental applications that call for such algorithms. The book by
Borodin and El-Yaniv (1998) is devoted to the topic of online algorithms and
includes many further results on caching in particular.

There are many ways to formulate bounds of the type in Section 13.9,
showing that a sum of 0-1-valued independent random variables is unlikely to
deviate far from its mean. Results of this flavor are generally called Chernoff
bounds, or Chernoff-Hoeffding bounds, after the work of Chernoff (1952)
and Hoeffding (1963). The books by Alon and Spencer (1992), Motwani and
Raghavan (1995), and Mitzenmacher and Upfal (2005) discuss these kinds of
bounds in more detail and provide further applications.

The results for packet routing in terms of congestion and dilation are
due to Leighton, Maggs, and Rao (1994). Routing is another area in which
randomization can be effective at reducing contention and hot spots; the book
by Leighton (1992) covers many further applications of this principle.

Notes on the Exercises Exercise 6 is based on a result of Benny Chor and
Madhu Sudan; Exercise 9 is a version of the Secretary Problem, whose popu-
larization is often credited to Martin Gardner.

Epilogue: Algorithms That Run
Forever

Every decade has its addictive puzzles; and if Rubik’s Cube stands out as the
preeminent solitaire recreation of the early 1980s, then Tetris evokes a similar
nostalgia for the late eighties and early nineties. Rubik’s Cube and Tetris have a
number of things in common—they share a highly mathematical flavor, based
on stylized geometric forms—but the differences between them are perhaps
more interesting.

Rubik’s Cube is a game whose complexity is based on an enormous search
space; given a scrambled configuration of the Cube, you have to apply an
intricate sequence of operations to reach the ultimate goal. By contrast, Tetris—
in its pure form—has a much fuzzier definition of success; rather than aiming
for a particular endpoint, you’re faced with a basically infinite stream of events
to be dealt with, and you have to react continuously so as to keep your head
above water.

These novel features of Tetris parallel an analogous set of themes that has
emerged in recent thinking about algorithms. Increasingly, we face settings in
which the standard view of algorithms—in which one begins with an input,
runs for a finite number of steps, and produces an output—does not really
apply. Rather, if we think about Internet routers that move packets while
avoiding congestion, or decentralized file-sharing mechanisms that replicate
and distribute content to meet user demand, or machine learning routines
that form predictive models of concepts that change over time, then we are
dealing with algorithms that effectively are designed to run forever. Instead
of producing an eventual output, they succeed if they can keep up with an
environment that is in constant flux and continuously throws new tasks at
them. For such applications, we have shifted from the world of Rubik’s Cube
to the world of Tetris.

796 Epilogue: Algorithms That Run Forever

There are many settings in which we could explore this theme, and as our
final topic for the book we consider one of the most compelling: the design of
algorithms for high-speed packet switching on the Internet.

The Problem
A packet traveling from a source to a destination on the Internet can be thought
of as traversing a path in a large graph whose nodes are switches and whose
edges are the cables that link switches together. Each packet p has a header
from which a switch can determine, when p arrives on an input link, the output
link on which p needs to depart. The goal of a switch is thus to take streams of
packets arriving on its input links and move each packet, as quickly as possible,
to the particular output link on which it needs to depart. How quickly? In high-
volume settings, it is possible for a packet to arrive on each input link once
every few tens of nanoseconds; if they aren’t offloaded to their respective
output links at a comparable rate, then traffic will back up and packets will
be dropped.

In order to think about the algorithms operating inside a switch, we model
the switch itself as follows. It has n input links I1, . . . , In and n output links
O1, . . . , On. Packets arrive on the input links; a given packet p has an associated
input/output type (I[p], O[p]) indicating that it has arrived at input link I[p]
and needs to depart on output link O[p]. Time moves in discrete steps; in each
step, at most one new packet arrives on each input link, and at most one
packet can depart on each output link.

Consider the example in Figure E.1. In a single time step, the three packets
p, q, and r have arrived at an empty switch on input links I1, I3, and I4,
respectively. Packet p is destined for O1, packet q is destined for O3, and packet
r is also destined for O3. Now there’s no problem sending packet p out on link
O1; but only one packet can depart on link O3, and so the switch has to resolve
the contention between q and r. How can it do this?

The simplest model of switch behavior is known as pure output queueing,
and it’s essentially an idealized picture of how we wished a switch behaved.
In this model, all nodes that arrive in a given time step are placed in an output
buffer associated with their output link, and one of the packets in each output
buffer actually gets to depart. More concretely, here’s the model of a single
time step.

One step under pure output queueing:

Packets arrive on input links

Each packet p of type (I[p], O[p]) is moved to output buffer O[p]

At most one packet departs from each output buffer

Epilogue: Algorithms That Run Forever 797

p

I2

I1

I3

I4

O2

O1

O3

O4

q

r

Figure E.1 A switch with n = 4 inputs and outputs. In one time step, packets p, q, and r
have arrived.

So, in Figure E.1, the given time step could end with packets p and q having
departed on their output links, and with packet r sitting in the output buffer
O3. (In discussing this example here and below, we’ll assume that q is favored
over r when decisions are made.) Under this model, the switch is basically
a “frictionless” object through which packets pass unimpeded to their output
buffer.

In reality, however, a packet that arrives on an input link must be copied
over to its appropriate output link, and this operation requires some processing
that ties up both the input and output links for a few nanoseconds. So, really,
constraints within the switch do pose some obstacles to the movement of
packets from inputs to outputs.

The most restrictive model of these constraints, input/output queueing,
works as follows. We now have an input buffer for each input link I, as
well as an output buffer for each output link O. When each packet arrives, it
immediately lands in its associated input buffer. In a single time step, a switch
can read at most one packet from each input buffer and write at most one
packet to each output buffer. So under input/output queueing, the example of
Figure E.1 would work as follows. Each of p, q, and r would arrive in different
input buffers; the switch could then move p and q to their output buffers, but
it could not move all three, since moving all three would involve writing two
packets into the output buffer O3. Thus the first step would end with p and
q having departed on their output links, and r sitting in the input buffer I4
(rather than in the output buffer O3).

More generally, the restriction of limited reading and writing amounts to
the following: If packets p1, . . . , p� are moved in a single time step from input

798 Epilogue: Algorithms That Run Forever

buffers to output buffers, then all their input buffers and all their output buffers
must be distinct. In other words, their types {(I[pi], O[pi]) : i= 1, 2, . . . , �}must
form a bipartite matching. Thus we can model a single time step as follows.

One step under input/output queueing:

Packets arrive on input links and are placed in input buffers

A set of packets whose types form a matching are moved to their

associated output buffers

At most one packet departs from each output buffer

The choice of which matching to move is left unspecified for now; this is a
point that will become crucial later.

So under input/output queueing, the switch introduces some “friction” on
the movement of packets, and this is an observable phenomenon: if we view
the switch as a black box, and simply watch the sequence of departures on the
output links, then we can see the difference between pure output queueing
and input/output queueing. Consider an example whose first step is just like
Figure E.1, and in whose second step a single packet s of type (I4, O4) arrives.
Under pure output queueing, p and q would depart in the first step, and r and
s would depart in the second step. Under input/output queueing, however,
the sequence of events depicted in Figure E.2 occurs: At the end of the first
step, r is still sitting in the input buffer I4, and so, at the end of the second
step, one of r or s is still in the input buffer I4 and has not yet departed. This
conflict between r and s is called head-of-line blocking, and it causes a switch
with input/output queueing to exhibit inferior delay characteristics compared
with pure output queueing.

Simulating a Switch with Pure Output Queueing While pure output queue-
ing would be nice to have, the arguments above indicate why it’s not feasible
to design a switch with this behavior: In a single time step (lasting only tens of
nanoseconds), it would not generally be possible to move packets from each
of n input links to a common output buffer.

But what if we were to take a switch that used input/output queueing and
ran it somewhat faster, moving several matchings in a single time step instead
of just one? Would it be possible to simulate a switch that used pure output
queueing? By this we mean that the sequence of departures on the output links
(viewing the switch as a black box) should be the same under the behavior of
pure output queueing and the behavior of our sped-up input/output queueing
algorithm.

It is not hard to see that a speed-up of n would suffice: If we could move
n matchings in each time step, then even if every arriving packet needed to
reach the same output buffer, we could move them all in the course of one

Epilogue: Algorithms That Run Forever 799

p

Packets q and r can’t
both move through
the switch in one
time step.

I2

I1

I3

I4

O2

O1

O3

O4

q

r

(a)

s

As a result of r having
to wait, one of packets
r and s will be blocked
in this step.

I2

I1

I3

I4

O2

O1

O3

O4

r

(b)

Figure E.2 Parts (a) and (b) depict a two-step example in which head-of-line blocking
occurs.

step. But a speed-up of n is completely infeasible; and if we think about this
worst-case example, we begin to worry that we might need a speed-up of n to
make this work—after all, what if all the arriving packets really did need to
go to the same output buffer?

The crux of this section is to show that a much more modest speed-up
is sufficient. We’ll describe a striking result of Chuang, Goel, McKeown, and
Prabhakar (1999), showing that a switch using input/output queueing with a
speed-up of 2 can simulate a switch that uses pure output queueing. Intuitively,
the result exploits the fact that the behavior of the switch at an internal level
need not resemble the behavior under pure output queueing, provided that
the sequence of output link departures is the same. (Hence, to continue the

800 Epilogue: Algorithms That Run Forever

example in the previous paragraph, it’s okay that we don’t move all n arriving
packets to a common output buffer in one time step; we can afford more time
for this, since their departures on this common output link will be spread out
over a long period of time anyway.)

Designing the Algorithm
Just to be precise, here’s our model for a speed-up of 2.

One step under sped-up input/output queueing:

Packets arrive on input links and are placed in input buffers

A set of packets whose types form a matching are moved to their

associated output buffers

At most one packet departs from each output buffer

A set of packets whose types form a matching are moved to their

associated output buffers

In order to prove that this model can simulate pure output queueing, we
need to resolve the crucial underspecified point in the model above: Which
matchings should be moved in each step? The answer to this question will form
the core of the result, and we build up to it through a sequence of intermediate
steps. To begin with, we make one simple observation right away: If a packet
of type (I , O) is part of a matching selected by the switch, then the switch will
move the packet of this type that has the earliest time to leave.

Maintaining Input and Output Buffers To decide which two matchings the
switch should move in a given time step, we define some quantities that track
the current state of the switch relative to pure output queueing. To begin with,
for a packet p, we define its time to leave, TL(p), to be the time step in which
it would depart on its output link from a switch that was running pure output
queueing. The goal is to make sure that each packet p departs from our switch
(running sped-up input/output queueing) in precisely the time step TL(p).

Conceptually, each input buffer is maintained as an ordered list; however,
we retain the freedom to insert an arriving packet into the middle of this
order, and to move a packet to its output buffer even when it is not yet at
the front of the line. Despite this, the linear ordering of the buffer will form
a useful progress measure. Each output buffer, by contrast, does not need to
be ordered; when a packet’s time to leave comes up, we simply let it depart.
We can think of the whole setup as resembling a busy airport terminal, with
the input buffers corresponding to check-in counters, the output buffers to
the departure lounge, and the internals of the switch to a congested security
checkpoint. The input buffers are stressful places: If you don’t make it to the
head of the line by the time your departure is announced, you could miss your

Epilogue: Algorithms That Run Forever 801

time to leave; to mitigate this, there are airport personnel who are allowed
to helpfully extract you from the middle of the line and hustle you through
security. The output buffers, by way of contrast, are relaxing places: You sit
around until your time to leave is announced, and then you just go. The goal
is to get everyone through the congestion in the middle so that they depart on
time.

One consequence of these observations is that we don’t need to worry
about packets that are already in output buffers; they’ll just depart at the
right time. Hence we refer to a packet p as unprocessed if it is still in its
input buffer, and we define some further useful quantities for such packets.
The input cushion IC(p) is the number of packets ordered in front of p in its
input buffer. The output cushion OC(p) is the number of packets already in
p’s output buffer that have an earlier time to leave. Things are going well for
an unprocessed packet p if OC(p) is significantly greater than IC(p); in this
case, p is near the front of the line in its input buffer, and there are still a lot of
packets before it in the output buffer. To capture this relationship, we define
Slack(p)= OC(p)− IC(p), observing that large values of Slack(p) are good.

Here is our plan: We will move matchings through the switch so as to
maintain the following two properties at all times.

(i) Slack(p)≥ 0 for all unprocessed packets p.

(ii) In any step that begins with IC(p)= OC(p)= 0, packet p will be moved
to its output buffer in the first matching.

We first claim that it is sufficient to maintain these two properties.

(E.1) If properties (i) and (ii) are maintained for all unprocessed packets at
all times, then every packet p will depart at its time to leave TL(p).

Proof. If p is in its output buffer at the start of step TL(p), then it can clearly
depart. Otherwise it must be in its input buffer. In this case, we have OC(p)= 0
at the start of the step. By property (i), we have Slack(p)= OC(p)− IC(p)≥ 0,
and hence IC(p)= 0. It then follows from property (ii) that p will be moved to
the output buffer in the first matching of this step, and hence will depart in
this step as well.

It turns out that property (ii) is easy to guarantee (and it will arise naturally
from the solution below), so we focus on the tricky task of choosing matchings
so as to maintain property (i).

Moving a Matching through a Switch When a packet p first arrives on an
input link, we insert it as far back in the input buffer as possible (potentially
somewhere in the middle) consistent with the requirement Slack(p)≥ 0. This
makes sure property (i) is satisfied initially for p.

802 Epilogue: Algorithms That Run Forever

Now, if we want to maintain nonnegative slacks over time, then we need
to worry about counterbalancing events that cause Slack(p) to decrease. Let’s
return to the description of a single time step and think about how such
decreases can occur.

One step under sped-up input/output queueing:

Packets arrive on input links and are placed in input buffers

The switch moves a matching

At most one packet departs from each output buffer

The switch moves a matching

Consider a given packet p that is unprocessed at the beginning of a time
step. In the arrival phase of the step, IC(p) could increase by 1 if the arriving
packet is placed in the input buffer ahead of p. This would cause Slack(p)

to decrease by 1. In the departure phase of the step, OC(p) could decrease
by 1, since a packet with an earlier time to leave will no longer be in the
output buffer. This too would cause Slack(p) to decrease by 1. So, in summary,
Slack(p) can potentially decrease by 1 in each of the arrival and departure
phases. Consequently, we will be able to maintain property (i) if we can
guarantee that Slack(p) increases by at least 1 each time the switch moves
a matching. How can we do this?

If the matching to be moved includes a packet in I[p]that is ahead of p, then
IC(p) will decrease and hence Slack(p) will increase. If the matching includes
a packet destined for O[p]with an earlier time to leave than p, then OC(p) and
Slack(p) will increase. So the only problem is if neither of these things happens.
Figure E.3 gives a schematic picture of such a situation. Suppose that packet
x is moved out of I[p] even though it is farther back in order, and packet y
is moved to O[p] even though it has a later time to leave. In this situation, it
seems that buffers I[p] and O[p] have both been treated “unfairly”: It would
have been better for I[p] to send a packet like p that was farther forward, and
it would have been better for O[p] to receive a packet like p that had an earlier
time to leave. Taken together, the two buffers form something reminiscent of
an instability from the Stable Matching Problem.

In fact, we can make this precise, and it provides the key to finishing the
algorithm. Suppose we say that output buffer O prefers input buffer I to I ′
if the earliest time to leave among packets of type (I , O) is smaller than the
earliest time to leave among packets of type (I ′, O). (In other words, buffer I
is more in need of sending something to buffer O.) Further, we say that input
buffer I prefers output buffer O to output buffer O′ if the forwardmost packet
of type (I , O) comes ahead of the forwardmost packet of type (I , O′) in the
ordering of I. We construct a preference list for each buffer from these rules;

Epilogue: Algorithms That Run Forever 803

y

O[p]

qpx

I[p] (front)

It would be unfair to move
x and y but not move p.

Figure E.3 Choosing a matching to move.

and if there are no packets at all of type (I , O), then I and O are placed at the
end of each other’s preference lists, with ties broken arbitrarily. Finally, we
determine a stable matching M with respect to these preference lists, and the
switch moves this matching M.

Analyzing the Algorithm
The following fact establishes that choosing a stable matching will indeed yield
an algorithm with the performance guarantee that we want.

(E.2) Suppose the switch always moves a stable matching M with respect
to the preference lists defined above. (And for each type (I , O) contained in
M, we select the packet of this type with the earliest time to leave). Then, for
all unprocessed packets p, the value Slack(p) increases by at least 1 when the
matching M is moved.

Proof. Consider any unprocessed packet p. Following the discussion above,
suppose that no packet ahead of p in I[p] is moved as part of the matching
M, and no packet destined for O[p] with an earlier time to leave is moved as
part of M. So, in particular, the pair (I[p], O[p]) is not in M; suppose that pairs
(I ′, O[p]) and (I[p], O′) belong to M.

Now p has an earlier time to leave than any packet of type (I ′, O[p]), and it
comes ahead of every packet of type (I[p], O′) in the ordering of I[p]. It follows
that I[p]prefers O[p] to O′, and O[p]prefers I[p] to I ′. Hence the pair (I[p], O[p])
forms an instability, which contradicts our assumption that M is stable.

Thus, by moving a stable matching in every step, the switch maintains
the property Slack(p) ≥ 0 for all packets p; hence, by (E.1), we have shown
the following.

804 Epilogue: Algorithms That Run Forever

(E.3) By moving two stable matchings in each time step, according to the
preferences just defined, the switch is able to simulate the behavior of pure
output queueing.

Overall, the algorithm makes for a surprising last-minute appearance by
the topic with which we began the book—and rather than matching men with
women or applicants with employers, we find ourselves matching input links
to output links in a high-speed Internet router.

This has been one glimpse into the issue of algorithms that run forever,
keeping up with an infinite stream of new events. It is an intriguing topic, full
of open directions and unresolved issues. But that is for another time, and
another book; and, as for us, we are done.

References

E. Aarts and J. K. Lenstra (eds.). Local Search in Combinatorial Optimization.
Wiley, 1997.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

N. Alon and J. Spencer. The Probabilistic Method (2nd edition). Wiley, 2000.

M. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgar-
den. The price of stability for network design with fair cost allocation. Proc. 45th
IEEE Symposium on Foundations of Computer Science, pp. 295–304, 2004.

K. Appel and W. Haken. The solution of the four-color-map problem. Scientific
American, 237:4(1977), 108–121.

S. Arora and C. Lund. Hardness of approximations. In Approximation Algorithms
for NP-Hard Problems, edited by D. S. Hochbaum. PWS Publishing, 1996.

B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing,
Proc. 34th IEEE Symposium on Foundations of Computer Science, pp. 32–40, 1993.

R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2 (1981), 198–203.

A.-L. Barabasi. Linked: The New Science of Networks. Perseus, 2002.

M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of
Transportation. Yale University Press, 1956.

L. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems Journal 5 (1966), 78–101.

T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.

R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

806 References

R. Bellman. On a routing problem. Quarterly of Applied Mathematics 16 (1958),
87–90.

R. Bellman. On the approximation of curves by line segments using dynamic
programming. Communications of the ACM, 4:6 (June 1961), 284.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 1997.

C. Berge. Graphs and Hypergraphs. North-Holland Mathematical Library, 1976.

E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical
Plays. Academic Press, 1982.

M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In
Approximation Algorithms for NP-Hard Problems, edited by D. S. Hochbaum. PWS
Publishing, 1996.

D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.

B. Bollobas. Modern Graph Theory. Springer-Verlag, 1998.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

A. Borodin, M. N. Nielsen, and C. Rackoff. (Incremental) priority algorithms. Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 752–761, 2002.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. International Conference on Computer Vision, pp. 377–384, 1999.

L. J. Carter and M. L. Wegman. Universal classes of hash functions. J. Computer
and System Sciences 18:2 (1979), 143–154.

B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms:
Theory and experimental evaluation. Proc. 5th ACM-SIAM Symposium on Discrete
Algorithms, pp. 516–525, 1994.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23 (1952), 493–509.

L. P. Chew. Building Voronoi diagrams for convex polygons in linear expected
time. Technical Report, Dept. of Math and Computer Science, Dartmouth College,
Hanover, NH, 1985.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Sci.
Sinica 14 (1965), 1396–1400.

S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing
with a combined input output queued switch. IEEE J. on Selected Areas in
Communications, 17:6 (1999), 1030–1039.

V. Chvatal. A greedy heuristic for the set covering problem. Mathematics of
Operations Research, 4 (1979), 233–235.

References 807

S. A. Cook. The complexity of theorem proving procedures. Proc. 3rd ACM Symp.
on Theory of Computing, pp. 151–158. 1971.

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley, 1998.

T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

R. Diestel, K. Yu. Gorbunov, T.R. Jensen, and C. Thomassen. Highly connected
sets and the excluded grid theorem. J. Combinatorial Theory, Series B 75(1999),
61–73.

R. Diestel. Graph Theory (2nd edition). Springer-Verlag, 2000.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Matematik, 1 (1959), 269–271.

E. A. Dinitz. Algorithm for solution of a problem of maximum flow in networks
with power estimation. Soviet Mathematics Doklady, 11(1970), 1277–1280.

R. Downey and M. Fellows. Parametrized Complexity. Springer-Verlag, 1999.

Z. Drezner (ed.). Facility location. Springer-Verlag, 1995.

R. Duda, P. Hart, and D. Stork. Pattern Classification (2nd edition). Wiley, 2001.

M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations
Research Letters, 3 (1985), 285–288.

J. Edmonds. Minimum partition of a matroid into independent subsets. J. Research
of the National Bureau of Standards B, 69 (1965), 67–72.

J. Edmonds. Optimum branchings. J. Research of the National Bureau of Standards,
71B (1967), 233–240.

J. Edmonds. Matroids and the Greedy Algorithm. Math. Programming 1 (1971),
127–136.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM 19:2(1972), 248–264.

L. Euler. Solutio problematis ad geometriam situs pertinentis. Commetarii
Academiae Scientiarum Imperialis Petropolitanae 8 (1736), 128–140.

R. M. Fano. Transmission of Information. M.I.T. Press, 1949.

W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley,
1957.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. J. Algorithms 12 (1991), 685–699.

R. W. Floyd. Algorithm 245 (TreeSort). Communications of the ACM, 7 (1964),
701.

808 References

L. R. Ford. Network Flow Theory. RAND Corporation Technical Report P-923,
1956.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

D. Gale. The two-sided matching problem: Origin, development and current issues.
International Game Theory Review, 3:2/3 (2001), 237–252.

D. Gale and L. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly 69 (1962), 9–15.

M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, 1979.

M. Garey, D. Johnson, G. Miller, and C. Papadimitriou. The complexity of coloring
circular arcs and chords. SIAM J. Algebraic and Discrete Methods, 1:2 (June 1980),
216–227.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In Approximation
Algorithms for NP-Hard Problems, edited by D. S. Hochbaum. PWS Publishing,
1996.

A. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers.
Ph.D. thesis, MIT, 1986.

A. Goldberg. Network Optimization Library. http://www.avglab.com/andrew
/soft.html.

A. Goldberg, É. Tardos, and R. E. Tarjan. Network flow algorithms. In Paths, Flows,
and VLSI-Layout, edited by B. Korte et al. Springer-Verlag, 1990.

A. Goldberg and R. Tarjan. A new approach to the maximum flow problem. Proc.
18th ACM Symposium on Theory of Computing, pp. 136–146, 1986.

M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for
closest pair problems. Nordic J. Comput., 2 (1995), 3–27.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal 45 (1966), 1563–1581.

R. L. Graham. Bounds for multiprocessing timing anomalies. SIAM J. Applied
Mathematics 17 (1969), 263–269.

R. L. Graham and P. Hell. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7 (1985), 43–57.

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html

References 809

M. Granovetter. Threshold models of collective behavior. American Journal of
Sociology 83:6(1978), 1420–1443.

D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for
binary images. J. Royal Statistical Society B, 51:2(1989), pp. 271–278.

D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

D. R. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, 1989.

L. A. Hall. Approximation algorithms for scheduling. In Approximation Algorithms
for NP-Hard Problems, edited by D. S. Hochbaum. PWS Publishing, 1996.

P. Hall. On representation of subsets. J. London Mathematical Society 10 (1935),
26–30.

S. Haykin. Neural Networks: A Comprehensive Foundation (2nd ed.). Macmillan,
1999.

D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communications of the ACM 18 (1975) 341–343.

D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM J. on Computing, 11:3 (1982), 555–556.

D. S. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS
Publishing, 1996.

D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex
cover, independent set and related problems. In Approximation Algorithms for
NP-Hard Problems, edited by D. S. Hochbaum. PWS Publishing, 1996.

D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research 10:2 (1985), 180–184.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: Theoretical and practical results. Journal of the ACM 34
(1987), 144–162.

W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
American Statistical Association, 58 (1963), 13–30.

J. Hopfield. Neural networks and physical systems with emergent collective
computational properties. Proc. National Academy of Sciences of the USA, 79
(1982), 2554–2588.

D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. IRE 40: 9 (Sept. 1952), 1098–1101.

A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1981.

T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley Interscience, 1995.

810 References

D. S. Johnson. Approximation algorithms for combinatorial problems. J. of
Computer and System Sciences, 9 (1974), 256–278.

M. Jordan (ed.). Learning in Graphical Models. MIT Press, 1998.

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, 7 (1962), 595–596.

D. Karger. Random Sampling in Graph Optimization Problems. Ph.D. Thesis,
Stanford University, 1995.

D. R. Karger, C. Stein. A new approach to the minimum cut problem. Journal of
the ACM 43:4(1996), 601–640.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4:4(1984), 373–396.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, edited by R. Miller and J. Thatcher, pp. 85–103. Plenum Press, 1972.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49:2 (1970), 291–307.

S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley,
1997.

L. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20:1(1979), 191–194.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:4598 (1983), 671–680.

J. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. Ph.D Thesis,
MIT, 1996.

J. Kleinberg and É. Tardos. Disjoint paths in densely embedded graphs. Proc. 36th
IEEE Symposium on Foundations of Computer Science, pp. 52–61, 1995.

D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms
(3rd edition). Addison-Wesley, 1997a.

D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms
(3rd edition). Addison-Wesley, 1997b.

D. E. Knuth. Stable marriage and its relation to other combinatorial problems. CRM
Proceedings and Lecture Notes, vol. 10. American Mathematical Society, 1997c.

D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching (3rd
edition). Addison-Wesley, 1998.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26:2
(2004), 147–159.

References 811

D. Konig. Uber Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre. Mathematische Annalen, 77 (1916), 453–465.

B. Korte, L. Lovász, H. J. Prömel, A. Schrijver (eds.). Paths, Flows, and VLSI-Layout
Springer-Verlag, 1990.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 2001.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, 1985.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Handbooks in Operations Research
and Management Science 4, edited by S. C. Graves, A. H. G. Rinnooy Kan, and P.
H. Zipkin. Elsevier, 1993.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures. Morgan
Kaufmann, 1992.

F. T. Leighton, B. M. Maggs, and S. Rao. Packet routing and job-shop scheduling
in O(congestion + dilation) steps. Combinatorica, 14:2 (1994), 167–186.

D. Lelewer and D. S. Hirshberg. Data Compression. Computing Surveys 19:3 (1987),
261–297.

J. K. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46 (1990), 259–271.

L. Levin. Universal Search Problems (in Russian). Problemy Peredachi Informatsii,
9:3 (1973), pp. 265–266. For a partial English translation, see B. A. Trakhtenbrot, A
survey of Russian approaches to Perebor (brute-force search) algorithms. Annals
of the History of Computing 6:4 (1984), 384–400.

L. Lovász. On the ratio of the optimal integral and fractional covers. Discrete
Mathematics 13 (1975), 383–390.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, 1990.

D. H. Mathews and M. Zuker. RNA secondary structure prediction. In Encyclopedia
of Genetics, Genomics, Proteomics and Bioinformatics, edited by P. Clote. Wiley,
2004.

K. Mehlhorn and St. Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

K. Menger. Zur allgemeinen Kurventheorie. Fundam. Math. 19 (1927), 96–115.

K. Menger. On the origin of the n-Arc Theorem. J. Graph Theory 5 (1981), 341–350.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth. A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J. Chemical Physics 21
(1953), 1087–1092.

812 References

M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

D. Monderer and L. Shapley. Potential Games. Games and Economic Behavior 14
(1996), 124–143.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

John F. Nash, Jr. Equilibrium points in n-person games. Proc. National Academy
of Sciences of the USA, 36 (1950), 48–49.

S. B. Needleman and C. D. Wunsch. J. Molecular Biology. 48 (1970), 443–453.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

J. Nesetril. A few remarks on the history of MST-problem. Archivum Mathematicum
Brno, 33 (1997), 15–22.

M. Newborn. Kasparov versus Deep Blue: Computer Chess Comes of Age. Springer-
Verlag, 1996.

R. Nowakowski (ed.). Games of No Chance. Cambridge University Press, 1998.

M. Osborne. An Introduction to Game Theory. Oxford University Press, 2003.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

C. H. Papadimitriou. Algorithms, games, and the Internet. Proc. 33rd ACM
Symposium on Theory of Computing, pp. 749–753, 2001.

S. Plotkin. Competitive routing in ATM networks. IEEE J. Selected Areas in
Communications, 1995, pp. 1128–1136.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes
in C. Cambridge University Press, 1988.

M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity: New
Directions and Recent Results, edited by J. Traub, 21–39. Academic Press, 1976.

B. Reed. Tree width and tangles, a new measure of connectivity and some
applications. Surveys in Combinatorics, edited by R. Bailey. Cambridge University
Press, 1997.

N. Robertson and P. D. Seymour. An outline of a disjoint paths algorithm. In Paths,
Flows, and VLSI-Layout, edited by B. Korte et al. Springer-Verlag, 1990.

R. W. Rosenthal. The network equilibrium problem in integers. Networks 3 (1973),
53–59.

S. Ross. Introduction to Stochastic Dynamic Programming, Academic Press, 1983.

References 813

T. Roughgarden. Selfish Routing. Ph.D. thesis, Cornell University, 2002.

T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2004.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd edition).
Prentice Hall, 2002.

D. Sankoff. The early introduction of dynamic programming into computational
biology. Bioinformatics 16:1 (2000), 41–47.

J. E. Savage. Models of Computation. Addison-Wesley, 1998.

W. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Computer and System Sciences 4 (1970), 177–192.

T. Schaefer. On the complexity of some two-person perfect-information games. J.
Computer and System Sciences 16:2 (April 1978), 185–225.

T. Schelling. Micromotives and Macrobehavior. Norton, 1978.

A. Schrijver. On the history of the transportation and maximum flow problems.
Math. Programming 91 (2002), 437–445.

R. Seidel. Backwards analysis of randomized geometric algorithms. In New Trends
in Discrete and Computational Geometry, edited by J. Pach, pp. 37–68. Springer-
Verlag, 1993.

M. I. Shamos and D. Hoey. Closest-point problems. Proc. 16th IEEE Symposium on
Foundations of Computer Science, pp. 151–162, 1975.

C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1949.

M. Sipser. The history and status of the P versus NP question. Proc. 24th ACM
Symposium on the Theory of Computing, pp. 603–618, 1992.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:2 (1985), 202–208.

M. Smid. Closest-point problems in computational geometry. In Handbook of
Computational Geometry, edited by J. Rudiger Sack and J. Urrutia, pp. 877–935.
Elsevier Science Publishers, B.V. North-Holland, 1999.

J. W. Stewart. BGP4: Inter-Domain Routing in the Internet. Addison-Wesley, 1998.

L. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games. SIAM
J. on Computing 8 (1979), 151–174.

L. Stockmeyer and A. Meyer. Word problems requiring exponential time. Proc. 5th
Annual ACM Symposium on Theory of Computing, pp. 1–9, 1973.

É. Tardos. Network Games. Proc. 36th ACM Symposium on Theory of Computing,
pp. 341–342, 2004.

814 References

R. E. Tarjan. Data structures and network algorithms. CBMS-NSF Regional
Conference Series in Applied Mathematics 44. Society for Industrial and Applied
Mathematics, 1983.

R. E. Tarjan. Algorithmic design. Communications of the ACM, 30:3 (1987), 204–
212.

A. Tucker. Coloring a family of circular arcs. SIAM J. Applied Mathematics, 29:3
(November 1975), 493–502.

V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

O. Veksler. Efficient Graph-Based Energy Minimization Methods in Computer
Vision. Ph.D. thesis, Cornell University, 1999.

M. Waterman. Introduction to Computational Biology: Sequences, Maps and
Genomes. Chapman Hall, 1995.

D. J. Watts. Six Degrees: The Science of a Connected Age. Norton, 2002.

K. Wayne. A new property and faster algorithm for baseball elimination. SIAM J.
Discrete Mathematics, 14:2 (2001), 223–229.

J. W. J. Williams. Algorithm 232 (Heapsort). Communications of the ACM, 7
(1964), 347–348.

Index

A page number ending in ex refers to a topic that is discussed in an exercise.

Numbers
3-Coloring Problem

NP-completeness, 487–490
as optimization problem, 782 ex

3-Dimensional Matching Problem
NP-completeness, 481–485
polynomial time approximation

algorithm for, 656 ex
problem, 481

3-SAT Problem, 459–460
assignments in, 459, 594–596 ex
as Constraint Satisfaction Problem,

500
in Lecture Planning exercise,

503–504 ex
MAX-3-SAT

algorithm design and analysis
for, 725–726

good assignments in, 726–727
notes, 793
problem, 724–725
random assignment for, 725–726,

787 ex
NP completeness, 471
polynomial space algorithm for,

532
Quantified. See QSAT (Quantified

3-SAT)
reductions in, 459–463

4-Dimensional Matching Problem,
507 ex

A
Aarts, E., 705
(a,b)-skeletons, 517–518 ex

ABL (average bits per letter) in
encoding, 165

Absolute weight of edges, 671
Ad hoc networks, 435–436 ex
Adaptive compression schemes, 177
Add lists in planning problems, 534,

538
Adenine, 273
Adjacency lists, 87–89, 93
Adjacency matrices, 87–89
Adopters in human behaviors, 523 ex
Ads

advertising policies, 422–423 ex
Strategic Advertising Problem,

508–509 ex
Affiliation network graphs, 76
Agglomerative clustering, 159
Ahuja, Ravindra K., 449–450
Airline route maps, 74
Airline Scheduling Problem, 387

algorithm for
analyzing, 390–391
designing, 389–390

problem, 387–389
Alignment, sequence. See Sequence

alignment
Allocation

random, in load balancing, 761–762
register, 486
resource. See Resource allocation

Alon, N., 793–794
Alternating paths in Bipartite

Matching Problem, 370
Althofer, Ingo, 207
Ambiguity in Morse code, 163

Ancestors
lowest common, 96
in trees, 77

Anderberg, M., 206
Annealing, 669–670
Anshelevich, E., 706
Antigens, blood, 418–419 ex
Apartments, expense sharing in,

429–430 ex
Appalachian Trail exercise, 183–

185 ex
Appel, K., 490
Approximate medians, 791 ex
Approximate time-stamps, 196–

197 ex
Approximation algorithms, 599–600

in caching, 751
greedy algorithms for

Center Selection Problem,
606–612

Interval Scheduling Problem,
649–651 ex

load balancing, 600–606
Set Cover Problem, 612–617

Knapsack Problem, 644
algorithm analysis for, 646–647
algorithm design for, 645–646
problem, 644–645

linear programming and rounding.
See Linear programming and
rounding

load balancing, 637
algorithm design and analysis

for, 638–643
problem, 637–638

816 Index

Approximation algorithms (cont.)
Maximum-Cut Problem, 676,

683–684
algorithm analysis for, 677–679
algorithm design for, 676–677
for graph partitioning, 680–681

notes, 659
pricing methods

Disjoint Paths Problem, 624–
630

Vertex Cover Problem, 618–623
Approximation thresholds, 660
Arbitrage opportunities for shortest

paths, 291
Arbitrarily good approximations for

Knapsack Problem, 644
algorithms for

analyzing, 646–647
designing, 645–646

problem, 644–645
Arborescences, minimum-cost, 116,

177
greedy algorithms for

analyzing, 181–183
designing, 179–181

problem, 177–179
Arc coloring. See Circular-Arc

Coloring Problem
Arithmetic coding, 176
Arora, S., 660
Arrays

in dynamic programming, 258–259
for heaps, 60–61
in Knapsack Problem, 270–271
in Stable Matching Algorithm,

42–45
for Union-Find structure, 152–153

ASCII code, 162
Assignment penalty in Image

Segmentation Problem, 683
Assignments

3-SAT, 459, 594–596 ex
in bipartite matching, 15
for linear equations mod 2,

780–781 ex
in load balancing, 637
for MAX-3-SAT problem, 725–726,

787 ex
partial, 591–594 ex
wavelength, 486

Astronomical events, 325–326 ex

Asymmetric distances in Traveling
Salesman Problem, 479

Asymmetry of NP, 495–497
Asymptotic order of growth, 35–36

in common functions, 40–42
lower bounds, 37
notes, 70
properties of, 38–40
tight bounds, 37–38
upper bounds, 36–37

Asynchronous algorithms
Bellman-Ford, 299
Gale-Shapley, 10

Atmospheric science experiment,
426–427 ex

Attachment costs, 143
Auctions

combinatorial, 511 ex
one-pass, 788–789 ex

Augment algorithm, 342–343, 346
Augmentation along cycles, 643
Augmenting paths, 342–343

choosing, 352
algorithm analysis in, 354–356
algorithm design in, 352–354
algorithm extensions in, 356–357
finding, 412 ex

in Minimum-Cost Perfect Matching
Problem, 405

in neighbor relations, 680
Average bits per letter (ABL) in

encoding, 165
Average-case analysis, 31, 707
Average distances in networks,

109–110 ex
Awerbuch, B., 659
Azar, Y., 659

B
Back-up sets for networks, 435–436 ex
Backoff protocols, 793
Backward edges in residual graphs,

341–342
Backward-Space-Efficient-Alignment,

286–287
Backwards analysis, 794
Bacon, Kevin, 448 ex
Bank cards, fraud detection,

246–247 ex
Bar-Yehuda, R., 659
Barabasi, A. L., 113

Barter economies, 521–522 ex
Base of logarithms, 41
Base-pairing in DNA, 273–275
Base stations

for cellular phones, 190 ex,
430–431 ex

for mobile computing, 417–418 ex
Baseball Elimination Problem, 400

algorithm design and analysis for,
402–403

characterization in, 403–404
notes, 449
problem, 400–401

Bases, DNA, 273–275
Beckmann, M., 706
Belady, Les, 133, 206
Bell, T. C., 206
Bellman, Richard, 140, 292, 335
Bellman-Ford algorithm

in Minimum-Cost Perfect Matching
Problem, 408

for negative cycles in graphs,
301–303

for router paths, 298–299
for shortest paths, 292–295

Berge, C., 113
Berlekamp, E. R., 551
Bern, M., 659
Bertsekas, D.

backoff protocols, 793
shortest-path algorithm, 336

Bertsimas, Dimitris, 336
Best achievable bottleneck rate,

198–199 ex
Best-response dynamics, 690,

693–695
definitions and examples, 691–693
Nash equilibria and, 696–700
notes, 706
problem, 690–691
questions, 695–696

Best valid partners in Gale-Shapley
algorithm, 10–11

BFS (breadth-first search), 79–82
for bipartiteness, 94–96
for directed graphs, 97–98
implementing, 90–92
in planning problems, 541
for shortest paths, 140

BGP (Border Gateway Protocol), 301
Bicriteria shortest path problems, 530

Index 817

Bidding agents, 789 ex
Bids

in combinatorial auctions, 511 ex
in one-pass auctions, 788–789 ex

Big-improvement-flips, 678
Billboard placement, 307–309 ex
Bin-packing, 651 ex
Binary search

in arrays, 44
in Center Selection Problem, 610
sublinear time in, 56

Binary trees
nodes in, 108 ex
for prefix codes, 166–169

Biology
genome mapping, 279, 521 ex,

787 ex
RNA Secondary Structure

Prediction Problem, 272–273
algorithm for, 275–278
notes, 335
problem, 273–275
sequences in, 279

Bipartite graphs, 14–16, 337, 368–370
2-colorability of, 487
notes, 449
testing for, 94–96

Bipartite Matching Problem, 337, 367
algorithm for

analyzing, 369–371
designing, 368
extensions, 371–373

costs in, 404–405
algorithm design and analysis

for, 405–410
algorithm extensions for, 410–411
problem, 405

description, 14–16
in Hopfield neural networks, 703 ex
neighbor relations in, 679–680
in packet switching, 798
problem, 368

Bipartiteness testing, breadth-first
search for, 94–96

Bits in encoding, 162–163
Blair Witch Project, 183–185 ex
Blocking

in Disjoint Paths Problem, 627
in Interval Scheduling Problem,

650 ex
in packet switching, 798–799

Blood types, 418–419 ex

Boese, K., 207
Boies, David, 503 ex
Bollobas, B., 113
Boolean formulas

with quantification, 534
in Satisfiability Problem, 459–460

Border Gateway Protocol (BGP), 301
Borodin, Allan

caching, 794
greedy algorithms, 207

Bottleneck edges, 192 ex
Bottlenecks

in augmenting paths, 342–345, 352
in communications, 198–199 ex

Bounds
in asymptotic order of growth

lower, 37
tight, 37–38
upper, 36–37

Chernoff, 758–760
for load balancing, 762
for packet routing, 767–769

in circulations, 382–384, 414 ex
in Load Balancing Problem

algorithm analysis for, 601–604
algorithm design for, 601
algorithm extensions for,

604–606
problem, 600

Boxes, nesting arrangement for,
434–435 ex

Boykov, Yuri, 450, 706
Breadth-first search (BFS), 79–82

for bipartiteness, 94–96
for directed graphs, 97–98
implementing, 90–92
in planning problems, 541
for shortest paths, 140

Broadcast Time Problem, 527–528 ex
Brute-force search

and dynamic programming, 252
in worst-case running times, 31–32

Buffers in packet switching, 796–801
Butterfly specimens, 107–108 ex

C
Cache hits and misses, 132–133, 750
Cache Maintenance Problem

greedy algorithms for
designing and analyzing,

133–136
extensions, 136–137

notes, 206
problem, 131–133

Caching
optimal

greedy algorithm design and
analysis for, 133–136

greedy algorithm extensions for,
136–137

problem, 131–133
randomized, 750–751

marking algorithm for, 753–
755

notes, 794
problem, 750–752
randomized algorithm for,

755–758
Capacity and capacity conditions

in circulation, 380, 383
of cuts, 346, 348
of edges, 338
in integer-valued flows, 351
in network models, 338–339
of nodes, 420–421 ex
for preflows, 357
in residual graphs, 342

Card guessing
with memory, 721–722
without memory, 721

Carpool scheduling, 431 ex
Carter, L. J., 794
Cascade processes, 523 ex
Cellular phone base stations, 190 ex,

430–431 ex
Center Selection Problem, 606

algorithms for, 607–612
limits on approximability, 644
local search for, 700–702 ex
notes, 659
problem, 606–607
and representative sets, 652 ex

Central nodes in flow networks,
429 ex

Central splitters
in median-finding, 729–730
in Quicksort, 732

Certifiers, in efficient certification,
464

Chain molecules, entropy of,
547–550 ex

Chandra, A. K., 551
Change detection in Segmented Least

Squares Problem, 263

818 Index

ChangeKey operation
for heaps, 65
for Prim’s Algorithm, 150
for shortest paths, 141–142

Chao, T., 207
Character encoding. See Huffman

codes
Character sets, 162
Characterizations

notes, 529
in NP and co-NP, 496–497

Charged particles, 247–248 ex
Check reconciliation, 430 ex
Cherkassky, Boris V., 336
Chernoff, H., 794
Chernoff bounds, 758–760

for load balancing, 762
for packet routing, 767–769

Chernoff-Hoeffding bounds, 794
Chess, 535
Chew, L. P., 794
Children

in heaps, 59–61
in trees, 77

Chor, Benny, 794
Chromatic number. See Coloring

Problems
Chromosomes

DNA, 279
in genome mapping, 521 ex,

787 ex
Chu, Y. J., 206
Chuang, S.-T., 799
Chvatal, V., 659
Circuit Satisfiability Problem

in NP completeness, 466–470
relation to PSPACE-completeness,

543
Circular-Arc Coloring Problem, 563

algorithms for
analyzing, 572
designing, 566–571

notes, 598
problem, 563–566

Circulations
in Airline Scheduling Problem, 390
with demands, 379–384, 414 ex
with lower bounds, 382–384, 387,

414 ex
in survey design, 387

Citation networks, 75

Classification via local search,
681–682

algorithm analysis for, 687–689
algorithm design for, 683–687
notes, 706
problem, 682–683

Clause gadgets, 483–484
Clauses with Boolean variables,

459–460
Cleary, J. G., 206
Clock signals, 199 ex
Clones ‘R’ Us exercise, 309–311 ex
Close to optimal solutions, 599
Closest-Pair algorithm, 230
Closest pair of points, 209, 225

algorithm for
analyzing, 231
designing, 226–230

notes, 249
problem, 226
randomized approach, 741–742

algorithm analysis for, 746–747
algorithm design for, 742–746
linear expected running time for,

748–750
notes, 794
problem, 742

running time of, 51–52
Clustering, 157–158

formalizing, 158, 515–516 ex
greedy algorithms for

analyzing, 159–161
designing, 157–158

notes, 206
problem, 158

CMS (Course Management System),
431–433 ex

Co-NP, 495–496
for good characterization, 496–497
in PSPACE, 532–533

Coalition, 500–502 ex
Cobham, A., 70
Coherence property, 575
Cohesiveness of node sets, 444 ex
Collaborative filtering, 221–222
Collecting coupons example, 722–724
Collective human behaviors,

522–524 ex
Collisions in hashing, 736–737
Coloring problems

3-Coloring Problem

NP-completeness, 487–490
as optimization problem, 782 ex

Circular-Arc Coloring Problem, 563
algorithm analysis for, 572
algorithm design for, 566–571
notes, 598
problem, 563–566

Graph Coloring Problem, 485–486,
499

chromatic number in, 597 ex
computational complexity of,

486–487
notes, 529
NP-completeness, 487–490
for partitioning, 499

Combinatorial auctions, 511 ex
Combinatorial structure of spanning

trees, 202–203 ex
Common running times, 47–48

cubic, 52–53
linear, 48–50
O(n log n), 50–51
O(nk), 53–54
quadratic, 51–52
sublinear, 56

Communication networks
graphs as models of, 74–75
switching in, 26–27 ex, 796–804

Compatibility
of configurations, 516–517 ex
of labelings and preflows, 358
of prices and matchings, 408

Compatible intervals, 116, 253
Compatible requests, 13, 116, 118–119
Competitive 3-SAT game, 544–547
Competitive Facility Location

Problem, 17
games in, 536–537
in PSPACE completeness, 544–547

Compiler design, 486
Complementary base-pairing in DNA,

273–275
Complementary events, 710
Complex plane, 239
Complex roots of unity, 239
Component array, 152–153
Component Grouping Problem,

494–495
Compression. See Data compression
Computational steps in algorithms,

35–36

Index 819

Computational biology
RNA Secondary Structure

Prediction Problem, 272–273
algorithm for, 275–278
notes, 335
problem, 273–275

sequence alignment. See Sequence
alignment

Computational complexity. See
Computational intractability;
Computational tractability

Computational geometry
closest pair of points, 226, 741
notes, 249

Computational intractability, 451–452
Circuit Satisfiability Problem,

466–470
efficient certification in, 463–466
Graph Coloring Problem, 485–486

computational complexity of,
486–487

notes, 529
NP-completeness, 487–490

numerical problems, 490
in scheduling, 493–494
Subset Sum Problem, 491–495

partitioning problems, 481–485
polynomial-time reductions,

452–454
Independent Set in, 454–456
Turing, 473
Vertex Cover in, 456–459

Satisfiability Problem, 459–463
sequencing problems, 473–474

Hamiltonian Cycle Problem,
474–479

Hamiltonian Path Problem,
480–481

Traveling Salesman Problem,
474, 479

Computational tractability, 29–30
efficiency in, 30–31
polynomial time, 32–35
worst-case running times, 31–32

Compute-Opt algorithm, 255–256
Computer game-playing

chess, 551
PSPACE for, 535–536

Computer vision, 226, 391, 681
Concatenating sequences, 308–

309 ex, 517 ex

Conditional expectation, 724
Conditional probability, 771–772
Conditions, in planning problems,

534, 538
Configurations

in Hopfield neural networks, 671,
676, 700, 702–703 ex

in planning problems, 538–539
Conflict graphs, 16
Conflicts

in 3-SAT Problem, 461
contention resolution for, 782–

784 ex
in Interval Scheduling Problem,

118
Congestion

in Minimum Spanning Tree
Problem, 150

of packet schedule paths, 765
Conjunction with Boolean variables,

459
Connected components, 82–83
Connected undirected graphs, 76–77
Connectivity in graphs, 76–79

breadth-first search for, 79–82
connected components in, 82–83,

86–87, 94
depth-first search for, 83–86
directed graphs, 97–99

Conservation conditions
for flows, 339
for preflows, 357

Consistent check reconciliation,
430 ex

Consistent k-coloring, 569
Consistent metrics, 202 ex
Consistent truth assignment, 592 ex
Constraint Satisfaction Problems

in 3-SAT, 500
in Lecture Planning Problem,

503 ex
Constraints in Linear Programming

Problem, 632–634
Consumer preference patterns, 385
Container packing, 651 ex
Contention resolution, 708–709

algorithm for
analyzing, 709–714
designing, 709

notes, 793
problem, 709

randomization in, 782–784 ex
Context-free grammars, 272
Contingency planning, 535
Contraction Algorithm

analyzing, 716–718
designing, 715–716
for number of global minimum

cuts, 718–719
Control theory, 335
Convergence of probability functions,

711
Convolutions, 234

algorithms for, 238–242
computing, 237–238
problem, 234–237

Conway, J. H., 551
Cook, S. A., NP-completeness, 467,

529, 543
Cook reduction, 473
Cooling schedule in simulated

annealing, 669–670
Corner-to-corner paths for sequence

alignment, 284–285, 287–288
Cost function in local search, 663
Cost-sharing

for apartment expenses, 429–430 ex
for edges, 690
for Internet services, 690–700,

785–786 ex
Coulomb’s Law, 247–248 ex
Counting inversions, 222–223, 246 ex
Counting to infinity, 300–301
Coupon collecting example, 722–724
Course Management System (CMS),

431–433 ex
Cover, T., 206
Coverage Expansion Problem,

424–425 ex
Covering problems, 455–456, 498
Covering radius in Center Selection

Problem, 607–608, 700–702 ex
Crew scheduling, 387

algorithm for
analyzing, 390–391
designing, 389–390

problem, 387–389
Crick, F., 273
Cross-examination in Lecture

Planning Problem, 503 ex
Cryptosystem, 491
Cubic time, 52–53

820 Index

Cushions in packet switching, 801
Cut Property

characteristics of, 187–188 ex
in Minimum Spanning Tree

Problem, 146–149
Cuts. See Minimum cuts
Cycle Cover Problem, 528 ex
Cycle Property

characteristics of, 187–188 ex
in Minimum Spanning Tree

Problem, 147–149
Cytosine, 273

D
DAGs (directed acyclic graphs),

99–104
algorithm for, 101–104
problem, 100–101
topological ordering in, 104 ex,

107 ex
Daily Special Scheduling Problem,

526 ex
Das, Gautam, 207
Dashes in Morse code, 163
Data compression, 162

greedy algorithms for
analyzing, 173–175
designing, 166–173
extensions, 175–177

notes, 206
problem, 162–166

Data mining
for event sequences, 190 ex
in Segmented Least Squares

Problem, 263
for survey design, 385

Data stream algorithms, 48
Data structures

arrays, 43–44
dictionaries, 734–735
in graph traversal, 90–94
for representing graphs, 87–89
hashing, 736–741
lists, 44–45
notes, 70
priority queues. See Priority queues
queues, 90
in Stable Matching Problem, 42–47
stacks, 90
Union-Find, 151–157

De Berg, M., 250

Deadlines
minimizing lateness, 125–126

algorithm analysis for, 128–131
algorithm design for, 126–128
algorithm extensions for, 131
notes, 206
in schedulable jobs, 334 ex

in NP-complete scheduling
problems, 493, 500

Decentralized algorithm for shortest
paths, 290–291

Decision-making data, 513–514 ex
Decision problem

for efficient certification, 463
vs. optimization version, 454

Decision variables in Weighted Vertex
Cover problem, 634

Decisive Subset Problem, 513–514 ex
Decomposition

path, 376
tree. See Tree decompositions

Deep Blue program
in chess matches, 535
notes, 552

Degrees
of nodes, 88
of polynomials, 40

Delete lists in planning problems,
534, 538

Delete operation
for dictionaries, 735–736, 738
for heaps, 62, 64–65
for linked lists, 44–45

DeLillo, Don, 400
Demands

in circulation, 379–384, 414 ex
in survey design, 386

Demers, Al, 450
Demographic groups, advertising

policies for, 422–423 ex
Dense subgraphs, 788 ex
Dependencies in directed acyclic

graphs, 100
Dependency networks, graphs for, 76
Depth

of nodes, 167
of sets of intervals, 123–125,

566–567
Depth-first search (DFS), 83–86

for directed graphs, 97–98
implementing, 92–94

in planning problems, 541
Descendants in trees, 77
Determined variables, 591 ex
DFS. See Depth-first search (DFS)
Diagonal entries in matrices, 428 ex
Diameter of networks, 109–110 ex
Dictionaries

hashing for, 734
data structure analysis for,

740–741
data structure design for,

735–740
problem, 734–735

sequence alignment in, 278–279
Diestel, R.

graph theory, 113
tree decomposition, 598

Differentiable functions, minimizing,
202 ex, 519–520 ex

Dijkstra, Edsger W., 137, 206
Dijkstra’s Algorithm

in Minimum-Cost Perfect Matching
Problem, 408

for paths, 137–141, 143, 290, 298
Dilation of paths in packet schedules,

765
Dinitz, A., 357
Directed acyclic graphs (DAGs),

99–104
algorithm for, 101–104
problem, 100–101
topological ordering in, 101, 104 ex,

107 ex
Directed Disjoint Paths Problem. See

Disjoint Paths Problem
Directed Edge-Disjoint Paths

Problem, 374, 624–625
Directed edges for graphs, 73
Directed graphs, 73

connectivity in, 97–99
disjoint paths in, 373–377
representing, 97
search algorithms for, 97
strongly connected, 77, 98–99
World Wide Web as, 75

Directed Hopfield networks, 672
Discovering nodes, 92
Discrete Fourier transforms, 240
Disjoint Paths Problem, 373–374, 624

algorithms for
analyzing, 375–377

Index 821

designing, 374–375
extensions, 377–378
greedy approximation, 625–627
greedy pricing, 628–630

notes, 449, 659
NP-complete version of, 527 ex
problem, 374, 624–625
for undirected graphs, 377–378,

597 ex
Disjunction with Boolean variables,

459
Disks in memory hierarchies, 132
Distance function

in clustering, 158
for biological sequences, 279–280,

652 ex
Distance vector protocols

description, 297–300
problems with, 300–301

Distances
in breadth-first search, 80
in Center Selection Problem,

606–607
for closest pair of points, 226,

743–745
between graph nodes, 77
in Minimum Spanning Tree

Problem, 150
in networks, 109–110 ex
in Traveling Salesman Problem,

479
Distinct edge costs, 149
Distributed systems, 708
Diverse Subset Problem, 505 ex
Divide-and-Conquer-Alignment

algorithm, 288–289
Divide-and-conquer approach, 209,

727
closest pair of points, 225

algorithm analysis for, 231
algorithm design for, 226–230

convolutions, 234
algorithms for, 238–242
computing, 237–238
problem, 234–237

integer multiplication, 231
algorithm analysis for, 233–234
algorithm design for, 232–233
problem, 231–232

inversions in, 221
algorithms for, 223–225

problem, 221–223
limitations of, 251
median-finding, 727

algorithm analysis for, 730–731
algorithm design for, 728–730
problem, 727–728

Mergesort Algorithm, 210–211
approaches to, 211–212
substitutions in, 213–214
unrolling recurrences in, 212–213

Quicksort, 731–734
related recurrences in, 220–221
sequence alignment

algorithm analysis for, 282–284
algorithm design for, 281–282
problem, 278–281

subproblems in, 215–220
DNA, 273–275

genome mapping, 521 ex
RNA. See RNA Secondary Structure

Prediction Problem
sequence alignment for, 279

Dobkin, David, 207
Doctors Without Weekends,

412–414 ex, 425–426 ex
Domain Decomposition Problem,

529 ex
Dominating Set Problem

Minimum-Cost, 597 ex
in wireless networks, 776–779 ex
definition, 519 ex

Dormant nodes in negative cycle
detection, 306

Dots in Morse code, 163
Doubly linked lists, 44–45
Douglas, Michael, 115
Downey, R., 598
Downstream nodes in flow networks,

429 ex
Downstream points in

communications networks,
26–27 ex

Dreyfus, S., 336
Drezner, Z., 551, 659
Droid Trader! game, 524 ex
Dubes, R., 206
Duda, R., 206
Duration of packet schedules, 765
Dyer, M. E., 659
Dynamic programming, 251–252

for approximation, 600

for Circular-Arc Coloring, 569–571
in interval scheduling, 14
over intervals, 272–273

algorithm for, 275–278
problem, 273–275

for Knapsack Problem, 266–267,
645, 648

algorithm analysis for, 270–271
algorithm design for, 268–270
algorithm extension for, 271–272

for Maximum-Weight Independent
Set Problem, 561–562

notes, 335
in planning problems, 543
principles of, 258–260
Segmented Least Squares Problem,

261
algorithm analysis for, 266
algorithm design for, 264–266
problem, 261–264

for sequence alignment. See
Sequence alignment

for shortest paths in graphs. See
Shortest Path Problem

using tree decompositions, 580–584
Weighted Interval Scheduling

Problem, 252
algorithm design, 252–256
memoized recursion, 256–257

E
Earliest Deadline First algorithm,

127–128
Edahiro, M., 207
Edge congestion, 150
Edge costs

distinct, 149
in Minimum Spanning Tree

Problem, 143
sharing, 690

Edge-disjoint paths, 374–376,
624–625

Edge lengths in shortest paths, 137,
290

Edge-separation property, 575–577
Edges

bottleneck, 192 ex
capacity of, 338
in graphs, 13, 73–74
in Minimum Spanning Tree

Problem, 142–150

822 Index

Edges (cont.)
in n-node trees, 78
reduced costs of, 409

Edmonds, Jack
greedy algorithms, 207
minimum-cost arborescences, 126
NP-completeness, 529
polynomial-time solvability, 70
strongly polynomial algorithms,

357
Efficiency

defining, 30–31
of polynomial time, 32–35
of pseudo-polynomial time, 271

Efficient certification in NP-
completeness, 463–466

Efficient Recruiting Problem, 506 ex
El Goog, 191–192 ex
El-Yaniv, R., 794
Electoral districts, gerrymandering

in, 331–332 ex
Electromagnetic observation,

512–513 ex
Electromagnetic pulse (EMP),

319–320 ex
Encoding. See Huffman codes
Ends of edges, 13, 73
Entropy of chain molecules,

547–550 ex
Environment statistics, 440–441 ex
Eppstein, D., 659
Equilibrium

Nash. See Nash equilibria
of prices and matchings, 411

Erenrich, Jordan, 450
Ergonomics of floor plans, 416–

417 ex
Error of lines, 261–262
Escape Problem, 421 ex
Euclidean distances

in Center Selection Problem,
606–607

in closest pair of points, 226,
743–745

Euler, Leonhard, 113
Evasive Path Problem, 510–511 ex
Even, S., 659
Events

in contention resolution, 709–712
independent, 771–772
in infinite sample spaces, 775
in probability, 769–770

Eviction policies and schedules
in optimal caching, 132–133
in randomized caching, 750–751

Excess of preflows, 358
Exchange arguments

in greedy algorithms, 116, 128–131
in Minimum Spanning Tree

Problem, 143
in optimal caching, 131–137
for prefix codes, 168–169
proving, 186 ex

Expectation Maximization approach,
701 ex

Expectation, 708
conditional, 724
linearity of, 720–724
of random variables, 719–720,

758–762
Expected running time

for closest pair of points, 748–750
for median-finding, 729–731
for Quicksort, 732–733

Expected value in voting, 782 ex
Expenses, sharing

apartment, 429–430 ex
Internet services, 690–700,

785–786 ex
Exploring nodes, 92
Exponential functions in asymptotic

bounds, 42
Exponential time, 54–56, 209, 491
ExtractMin operation

for heaps, 62, 64
for Prim’s Algorithm, 150
for shortest paths, 141–142

F
Facility Location Problem

games in, 536–537
in PSPACE completeness, 544–547
for Web servers, 658–659 ex

Factorial growth of search space, 55
Factoring, 491
Failure events, 711–712
Fair driving schedules, 431 ex
Fair prices, 620–621
Fano, Robert M., 169–170, 206
Farthest-in-Future algorithm,

133–136, 751
Fast Fourier Transform (FFT), 234

for convolutions, 238–242
notes, 250

FCC (Fully Compatible Configuration)
Problem, 516–517 ex

Feasible assignments in load
balancing, 637

Feasible circulation, 380–384
Feasible sets of projects, 397
Feedback, stream ciphers with,

792 ex
Feedback sets, 520 ex
Feller, W., 793
Fellows, M., 598
FFT (Fast Fourier Transform), 234

for convolutions, 238–242
notes, 250

Fiat, A., 794
Fiction, hypertext, 509–510 ex
FIFO (first-in, first-out) order, 90
Fifteen-puzzle, 534
Filtering, collaborative, 221–222
Financial trading cycles, 324 ex
Find operation in Union-Find

structure, 151–156
Find-Solution algorithm, 258–259
FindMin operation, 64
Finite probability spaces, 769–771
First-in, first-out (FIFO) order, 90
Fixed-length encoding, 165–166
Flooding, 79, 140–141
Floor plans, ergonomics of,

416–417 ex
Flows. See Network flows
Floyd, Robert W., 70
Food webs, 76
Forbidden pairs in Stable Matching

Problem, 19–20 ex
Forcing partial assignment, 592–

593 ex
Ford, L. R.

dynamic programming, 292
flow, 344, 448
shortest paths, 140, 335

Ford-Fulkerson Algorithm, 344–346
augmenting paths in, 352, 356
for disjoint paths, 376
flow and cuts in, 346–352
for maximum matching, 370
neighbor relations in, 680
vs. Preflow-Push algorithm, 359

Foreground/background
segmentation, 391–392

algorithm for, 393–395
local search, 681–682

Index 823

problem, 392–393
tool design for, 436–438 ex

Forests, 559
Formatting in pretty-printing,

317–319 ex
Forward edges in residual graphs,

341–342
Four-Color Conjecture, 485, 490
Fraud detection, 246–247 ex
Free energy of RNA molecules, 274
Free-standing subsets, 444 ex
Frequencies

of letters in encoding, 163, 165–166
Fresh items in randomized marking

algorithm, 756–757
Frieze, A. M., 659
Fulkerson, D. R., 344, 448
Full binary trees, 168
Fully Compatible Configuration

(FCC) Problem, 516–517 ex
Funnel-shaped potential energy

landscape, 662–663

G
G-S (Gale-Shapley) algorithm, 6

analyzing, 7–9
data structures in, 43
extensions to, 9–12
in Stable Matching Problem,

20–22 ex
Gadgets

in 3-Dimensional Matching
Problem, 482–484

in Graph Coloring Problem,
487–490

in Hamiltonian Cycle Problem,
475–479

in PSPACE-completeness
reductions, 546

in SAT problems, 459–463
Galactic Shortest Path Problem,

527 ex
Gale, David, 1–3, 28
Gale-Shapley (G-S) algorithm, 6

analyzing, 7–9
data structures in, 43
extensions to, 9–12
in Stable Matching Problem,

20–22 ex
Gallager, R.

backoff protocols, 793

shortest-path algorithm, 336
Gambling model, 792 ex
Game theory, 690

definitions and examples, 691–693
and local search, 693–695
Nash equilibria in, 696–700
questions, 695–696

notes, 706
Games

Droid Trader!, 524 ex
Geography, 550–551 ex
notes, 551
PSPACE, 535–538, 544–547

Gaps
in Preflow-Push Algorithm, 445 ex
in sequences, 278–280

Gardner, Martin, 794
Garey, M., 529
Gaussian elimination, 631
Gaussian smoothing, 236
Geiger, Davi, 450
Gelatt, C. D., Jr., 669, 705
Generalized Load Balancing Problem

algorithm design and analysis for,
638–643

notes, 660
Genomes

mapping, 521 ex, 787 ex
sequences in, 279

Geographic information systems,
closest pair of points in, 226

Geography game, 550–551 ex
Geometric series in unrolling

recurrences, 219
Gerrymandering, 331–332 ex
Ghallab, Malik, 552
Gibbs-Boltzmann function, 666–667
Global minimum cuts, 714

algorithm for
analyzing, 716–718
designing, 715–716

number of, 718–719
problem, 714–715

Global minima in local search, 662
Goal conditions in planning

problems, 534
Goel, A., 799
Goemans, M. X., 659
Goldberg, Andrew V.

Preflow-Push Algorithm, 449
shortest-path algorithm, 336

Golin, M., 794
Golovin, Daniel, 530
Golumbic, Martin C., 113, 205
Good characterizations

notes, 529
in NP and co-NP, 496–497

Gorbunov, K. Yu., 598
Gradient descents in local search,

665–666, 668
Graham, R. L.

greedy algorithms, 659
minimum spanning tree, 206

Granovetter, Mark, 522 ex
Graph Coloring Problem, 485–486,

499
chromatic number in, 597 ex
computational complexity of,

486–487
notes, 529
NP-completeness, 487–490
for partitioning, 499

Graph partitioning
local search for, 680–681
notes, 705

Graphics
closest pair of points in, 226
hidden surface removal in, 248 ex

Graphs, 12–13, 73–74
bipartite, 14–16, 337, 368–370

2-colorable, 487
bipartiteness of, 94–96
notes, 449

breadth-first search in, 90–92
connectivity in, 76–79

breadth-first search in, 79–82
connected components in,

82–83, 86–87, 94
depth-first search in, 83–86

depth-first search in, 92–94
directed. See Directed graphs
directed acyclic (DAGs), 99–104

algorithm for, 101–104
problem, 100–101
topological ordering in, 101,

104 ex, 107 ex
examples of, 74–76
grid

greedy algorithms for, 656–657 ex
local minima in, 248–249 ex
for sequence alignment, 283–284

paths in, 76–77

824 Index

Graphs (cont.)
queues and stacks for traversing,

89–90
representing, 87–89
shortest paths in. See Shortest Path

Problem
topological ordering in, 101–104

algorithm design and analysis
for, 101–104

in DAGs, 104 ex, 107 ex
problem, 100–101

trees. See Trees
Greedy algorithms, 115–116

for Appalachian Trail exercise,
183–185 ex

for approximation, 599
Center Selection Problem,

606–612
load balancing, 600–606
Set Cover Problem, 612–617
Shortest-First, 649–651 ex

for clustering
analyzing, 159–161
designing, 157–158

for data compression, 161–166
analyzing, 173–175
designing, 166–173
extensions, 175–177

for Interval Scheduling Problem,
14, 116

analyzing, 118–121
designing, 116–118
extensions, 121–122
for Interval Coloring, 121–125

limitations of, 251
for minimizing lateness, 125–126

analyzing, 128–131
designing, 126–128
extensions, 131

for minimum-cost arborescences,
177–179

analyzing, 181–183
designing, 179–181

for Minimum Spanning Tree
Problem, 142–143

analyzing, 144–149
designing, 143–144
extensions, 150–151

for NP-hard problems on trees,
558–560

for optimal caching, 131–133

designing and analyzing,
133–136

extensions, 136–137
pricing methods in Disjoint Paths

Problem, 624
analyzing, 626, 628–630
designing, 625–626, 628
problem, 624–625

Shortest-First, 649–651 ex
for shortest paths, 137

analyzing, 138–142
designing, 137–138

Greedy-Balance algorithm, 601–602
Greedy-Disjoint-Paths algorithm, 626
Greedy-Paths-with-Capacity

algorithm, 628–630
Greedy-Set-Cover algorithm, 613–616
Greig, D., 449
Grid graphs

greedy algorithms for, 656–657 ex
local minima in, 248–249 ex
for sequence alignment, 283–284

Group decision-making data,
513–514 ex

Growth order, asymptotic, 35–36
in common functions, 40–42
lower bounds, 37
notes, 70
properties of, 38–40
tight bounds, 37–38
upper bounds, 36–37

Guanine, 273
Guaranteed close to optimal

solutions, 599
Guessing cards

with memory, 721–722
without memory, 721

Gusfield, D. R.
sequence analysis, 335
stable matching, 28

Guthrie, Francis, 485
Guy, R. K., 551

H
Haken, W., 490
Hall, L., 659–660
Hall, P., 449
Hall’s Theorem, 372

and Menger’s Theorem, 377
notes, 449
for NP and co-NP, 497

Hamiltonian Cycle Problem, 474
description, 474–475
NP-completeness of, 475–479

Hamiltonian Path Problem, 480
NP-completeness of, 480–481
running time of, 596 ex

Hard problems. See Computational
intractability; NP-hard
problems

Harmonic numbers
in card guessing, 722
in Nash equilibrium, 695

Hart, P., 206
Hartmanis, J., 70
Hash functions, 736–737

designing, 737–738
universal classes of, 738–740,

749–750
Hash tables, 736–738, 760
Hashing, 734

for closest pair of points, 742,
749–750

data structures for
analyzing, 740–741
designing, 735–740

for load balancing, 760–761
notes, 794
problem, 734–735

Haykin, S., 705
Head-of-line blocking in packet

switching, 798–799
Heads of edges, 73
Heap order, 59–61
Heapify-down operation, 62–64
Heapify-up operation, 60–62, 64
Heaps, 58–60

operations for, 60–64
for priority queues, 64–65

for Dijkstra’s Algorithm, 142
for Prim’s Algorithm, 150

Heights of nodes, 358–359
Hell, P., 206
Hidden surface removal, 248 ex
Hierarchical agglomerative

clustering, 159
Hierarchical metrics, 201 ex
Hierarchies

memory, 131–132
in trees, 78

High-Score-on-Droid-Trader! Problem
(HSoDT!), 525 ex

Index 825

Highway billboard placement,
307–309 ex

Hill-climbing algorithms, 703 ex
Hirschberg, Daniel S., 206
Histograms with convolution, 237
Hitting Set Problem

defined, 506–507 ex
optimization version, 653 ex
set size in, 594 ex

Ho, J., 207
Hochbaum, Dorit, 659–660
Hoeffding, H., 794
Hoey, D., 226
Hoffman, Alan, 449
Hopcroft, J., 70
Hopfield neural networks, 671

algorithms for
analyzing, 674–675
designing, 672–673

notes, 705
problem, 671–672
stable configurations in, 676, 700,

702–703 ex
Hospital resident assignments,

23–24 ex
Houses, floor plan ergonomics for,

416–417 ex
HSoDT! (High-Score-on-Droid-

Trader! Problem), 525 ex
Hsu, Y., 207
Huffman, David A., 170, 206
Huffman codes, 116, 161

greedy algorithms for
analyzing, 173–175
designing, 166–173
extensions, 175–177

notes, 206
problem, 162–166

Human behaviors, 522–524 ex
Hyperlinks in World Wide Web, 75
Hypertext fiction, 509–510 ex

I
Ibarra, Oscar H., 660
Identifier Selection Problem, 770
Idle time in minimizing lateness,

128–129
Image Segmentation Problem,

391–392
algorithm for, 393–395

with depth, 437–438 ex
local search, 681–682
problem, 392–393
tool design for, 436–438 ex

Implicit labels, 248 ex
Inapproximability, 660
Independent events, 709–710,

771–772
Independent random variables, 758
Independent Set Problem, 16–17,

454
3-SAT reduction to, 460–462
contention resolution with,

782–784 ex
with Interval Scheduling Problem,

16, 505 ex
notes, 205
in O(nk) time, 53–54
in a path, 312–313 ex
in polynomial-time reductions,

454–456
running times of, 54–55
using tree decompositions, 580–584
relation to Vertex Cover, 455–456,

619
Independent sets

for grid graphs, 657 ex
in packing problems, 498
strongly, 519 ex
in trees, 558–560

Indifferences in Stable Matching
Problem, 24–25 ex

Inequalities
linear

in Linear Programming Problem,
631

for load balancing, 638
for Vertex Cover Problem, 634

triangle, 203 ex, 334–335 ex
Infinite capacities in Project Selection

Problem, 397
Infinite sample spaces, 774–776
Influence Maximization Problem,

524 ex
Information networks, graphs for, 75
Information theory

for compression, 169
notes, 206

Initial conditions in planning
problems, 534, 538

Input buffers in packet switching,
797–801

Input cushions in packet switching,
801

Input/output queueing in packet
switching, 797

Insert operation
for closest pair of points, 746–747
for dictionaries, 734–736
for heaps, 64
for linked lists, 44–45

Instability in Stable Matching
Problem, 4, 20–25 ex

Integer multiplication, 209, 231
algorithm for

analyzing, 233–234
designing, 232–233

notes, 250
problem, 231–232

Integer programming
for approximation, 600, 634–636
for load balancing, 638–639
for Vertex Cover Problem, 634

Integer Programming Problem,
633–635

Integer-valued circulations, 382
Integer-valued flows, 351
Interference-free schedules, 105 ex
Interference in Nearby

Electromagnetic Observation
Problem, 512–513 ex

Interior point methods in linear
programming, 633

Interleaving signals, 329 ex
Internal nodes in network models,

339
Internet routers, 795
Internet routing

notes, 336
shortest paths in, 297–301

Internet services, cost-sharing for,
690–700, 785–786 ex

Interpolation of polynomials, in
Fast Fourier Transform, 238,
241–242

Intersection Interface Problem, 513 ex
Interval Coloring Problem, 122–125,

566
from Circular-Arc Coloring

Problem, 566–569

826 Index

Interval Coloring Problem (cont.)
notes, 598

Interval graphs, 205
Interval Partitioning Problem,

122–125, 566
Interval Scheduling Problem, 13–14,

116
decision version of, 505 ex
greedy algorithms for, 116

for Interval Coloring, 121–125
analyzing, 118–121
designing, 116–118
extensions, 121–122

Multiple Interval Scheduling, 512 ex
notes, 206
for processors, 197 ex
Shortest-First greedy algorithm for,

649–651 ex
Intervals, dynamic programming

over
algorithm for, 275–278
problem, 273–275

Inventory problem, 333 ex
Inverse Ackermann function, 157
Inversions

algorithms for counting, 223–225
in minimizing lateness, 128–129
problem, 221–223
significant, 246 ex

Investment simulation, 244–246 ex
Irving, R. W., 28
Ishikawa, Hiroshi, 450
Iterative-Compute-Opt algorithm,

259
Iterative procedure

for dynamic programming,
258–260

for Weighted Interval Scheduling
Problem, 252

J
Jagged funnels in local search, 663
Jain, A., 206
Jars, stress-testing, 69–70 ex
Jensen, T. R., 529, 598
Jobs

in Interval Scheduling, 116
in load balancing, 600, 637–638,

789–790 ex
in Scheduling to Minimize

Lateness, 125-126

in Scheduling with Release Times
and Deadlines, 493

Johnson, D. S.
circular arc coloring, 529
MAX-SAT algorithm, 793
NP-completeness, 529
Set Cover algorithm, 659

Jordan, M., 598
Joseph, Deborah, 207
Junction boxes in communications

networks, 26–27 ex

K
K-clustering, 158
K-coloring, 563, 569–570
K-flip neighborhoods, 680
K-L (Kernighan-Lin) heuristic, 681
Kahng, A., 207
Karatsuba, A., 250
Karger, David, 715, 790 ex, 793
Karmarkar, Narendra, 633
Karp, R. M.

augmenting paths, 357
NP-completeness, 529
Randomized Marking algorithm,

794
Karp reduction, 473
Kasparov, Garry, 535
Kempe, D., 530
Kernighan, B., 681, 705
Kernighan-Lin (K-L) heuristic, 681
Keshav, S., 336
Keys

in heaps, 59–61
in priority queues, 57–58

Khachiyan, Leonid, 632
Kim, Chul E., 660
Kirkpatrick, S., 669, 705
Kleinberg, J., 659
Knapsack algorithm, 266–267,

648–649
Knapsack-Approx algorithm, 646–647
Knapsack Problem, 266–267, 499

algorithms for
analyzing, 270–271
designing, 268–270
extensions, 271–272

approximations, 644
algorithm analysis in, 646–647
algorithm design in, 645–646
problem, 644–645

total weights in, 657–658 ex
notes, 335, 529

Knuth, Donald E., 70, 336
recurrences, 249–250
stable matching, 28

Kolmogorov, Vladimir, 449
König, D., 372, 449
Korte, B., 659
Kruskal’s Algorithm, 143–144

with clustering, 159–160
data structures for

pointer-based, 154–155
simple, 152–153

improvements, 155–157
optimality of, 146–147
problem, 151–152
valid execution of, 193 ex

Kumar, Amit, 598

L
Labeling Problem

via local search, 682–688
notes, 706

Labels and labeling
gap labeling, 445 ex
image, 437–438 ex
in image segmentation, 393
in Preflow-Push Algorithm,

360–364, 445 ex
Landscape in local search, 662

connections to optimization,
663–664

notes, 705
potential energy, 662–663
Vertex Cover Problem, 664–

666
Laptops on wireless networks,

427–428 ex
Last-in, first-out (LIFO) order, 90
Lateness, minimizing, 125–126

algorithms for
analyzing, 128–131
designing, 126–128
extensions for, 131

notes, 206
in schedulable jobs, 334 ex

Lawler, E. L.
matroids, 207
NP-completeness, 529
scheduling, 206

Layers in breadth-first search, 79–81

Index 827

Least-Recently-Used (LRU) principle
in caching, 136–137, 751–752
notes, 794

Least squares, Segmented Least
Squares Problem, 261

algorithm for
analyzing, 266
designing, 264–266

notes, 335
problem, 261–264

Leaves and leaf nodes, in trees, 77,
559

Lecture Planning Problem, 502–505 ex
LEDA (Library of Efficient Algorithms

and Datastructures), 71
Lee, Lillian, 336
Leighton, F. T., 765, 794
Lelewer, Debra, 206
Lengths

of edges and paths in shortest
paths, 137, 290

of paths in Disjoint Paths Problem,
627–628

of strings, 463
Lenstra, J. K.

local search, 705
rounding algorithm, 660
scheduling, 206

Levin, L., 467, 529, 543
Library of Efficient Algorithms and

Datastructures (LEDA), 71
Licenses, software, 185–187 ex
LIFO (last-in, first-out) order, 90
Light fixtures, ergonomics of,

416–417 ex
Likelihood in image segmentation,

393
Limits on approximability, 644
Lin, S., 681, 705
Line of best fit, 261–262
Linear equations

mod 2, 779–782 ex
solving, 631

Linear programming and rounding,
630–631

for approximation, 600
general techniques, 631–633
Integer Programming Problem,

633–635
for load balancing, 637

algorithm design and analysis
for, 638–643

problem, 637–638
notes, 659–660
for Vertex Cover, 635–637

Linear Programming Problem,
631–632

Linear space, sequence alignment in,
284

algorithm design for, 285–288
problem, 284–285

Linear time, 48–50
for closest pair of points, 748–750
graph search, 87

Linearity of expectation, 720–724
Linked lists, 44–45
Linked sets of nodes, 585–586
Lists

adjacency, 87–89, 93
merging, 48–50
in Stable Matching Algorithm,

42–45
Liu, T. H., 206
Llewellyn, Donna, 250
Lo, Andrew, 336
Load balancing

greedy algorithm for, 600–606
linear programming for, 637

algorithm design and analysis
for, 638–643

problem, 637–638
randomized algorithms for,

760–762
Local minima in local search,

248–249 ex, 662, 665
Local optima

in Hopfield neural networks, 671
in Labeling Problem, 682–689
in Maximum-Cut Problem, 677–678

Local search, 661–662
best-response dynamics as, 690,

693–695
definitions and examples,

691–693
Nash equilibria in, 696–700
problem, 690–691
questions, 695–696

classification via, 681–682
algorithm analysis for, 687–689
algorithm design for, 683–687
notes, 706
problem, 682–683

Hopfield neural networks, 671
algorithm analysis for, 674–675

algorithm design for, 672–673
local optima in, 671
problem, 671–672

for Maximum-Cut Problem
approximation, 676–679

Metropolis algorithm, 666–669
neighbor relations in, 663–664,

679–681
notes, 660
optimization problems, 662

connections to, 663–664
potential energy, 662–663
Vertex Cover Problem, 664–666

simulated annealing, 669–670
Locality of reference, 136, 751
Location problems, 606, 659
Logarithms in asymptotic bounds, 41
Lombardi, Mark, 110 ex
Lookup operation

for closest pair of points, 748–749
for dictionaries, 735–736, 738

Loops, running time of, 51–53
Lovász, L., 659
Low-Diameter Clustering Problem,

515–516 ex
Lower bounds

asymptotic, 37
circulations with, 382–384, 387,

414 ex
notes, 660
on optimum for Load Balancing

Problem, 602–603
Lowest common ancestors, 96
LRU (Least-Recently-Used) principle

in caching, 136–137, 751–752
notes, 794

Luby, M., 794
Lund, C., 660

M
M-Compute-Opt algorithm, 256–

257
Maggs, B. M., 765, 794
Magnanti, Thomas L., 449–450
Magnets, refrigerator, 507–508 ex
Main memory, 132
MakeDictionary operation

for closest pair of points, 745–746
for hashing, 734

Makespans, 600–605, 654 ex
MakeUnionFind operation, 152–156
Manber, Udi, 450

828 Index

Mapping genomes, 279, 521 ex,
787 ex

Maps of routes for transportation
networks, 74

Margins in pretty-printing, 317–319 ex
Marketing, viral, 524 ex
Marking algorithms for randomized

caching, 750, 752–753
analyzing, 753–755
notes, 794
randomized, 755–758

Martello, S., 335, 529
Matching, 337

3-Dimensional Matching Problem
NP-completeness, 481–485
polynomial time in, 656 ex
problem, 481

4-Dimensional Matching Problem,
507 ex

base-pair, 274
in bipartite graphs. See Bipartite

Matching Problem
in load balancing, 638
Minimum-Cost Perfect Matching

Problem, 405–406
algorithm design and analysis

for, 405–410
economic interpretation of,

410–411
notes, 449

in packet switching, 798, 801–803
in sequences, 278–280
in Stable Matching Problem. See

Stable Matching Problem
Mathews, D. H., 335
Matrices

adjacency, 87–89
entries in, 428 ex
in linear programming, 631–632

Matroids, 207
MAX-3-SAT

algorithm design and analysis for,
725–726

good assignments for, 726–727
notes, 793
problem, 724–725
random assignment for, 725–726,

787 ex
Max-Flow Min-Cut Theorem,

348–352
for Baseball Elimination Problem,

403

for disjoint paths, 376–377
good characterizations via, 497
with node capacities, 420–421 ex

Maximum 3-Dimensional Matching
Problem, 656 ex

Maximum, computing in linear time,
48

Maximum-Cut Problem in local
search, 676, 683

algorithms for
analyzing, 677–679
designing, 676–677

for graph partitioning, 680–681
Maximum Disjoint Paths Problem,

624
greedy approximation algorithm

for, 625–627
pricing algorithm for, 628–630
problem, 624–625

Maximum-Flow Problem
algorithm for

analyzing, 344–346
designing, 340–344

extensions, 378–379
circulations with demands,

379–382
circulations with demands and

lower bounds, 382–384
with node capacities, 420–421 ex
notes, 448
problem, 338–340

Maximum Matching Problem. See
Bipartite Matching Problem

Maximum spacing, clusterings of,
158–159

Maximum-Weight Independent Set
Problem

using tree decompositions, 572,
580–584

on trees, 560–562
Maze-Solving Problem, 78–79
McGeoch, L. A., 794
McGuire, C. B., 706
McKeown, N., 799
Median-finding, 209, 727

algorithm for
analyzing, 730–731
designing, 728–730

approximation for, 791 ex
problem, 727–728

Medical consulting firm, 412–414 ex,
425–426 ex

Mehlhorn, K., 71
Memoization, 256

over subproblems, 258–260
for Weighted Interval Scheduling

Problem, 256–257
Memory hierarchies, 131–132
Menger, K., 377, 449
Menger’s Theorem, 377
Merge-and-Count algorithm, 223–225
Mergesort Algorithm, 210–211

as example of general approach,
211–212

notes, 249
running times for, 50–51
recurrences for, 212–214

Merging
inversions in, 221–225
sorted lists, 48–50

Meta-search tools, 222
Metropolis, N., 666, 705
Metropolis algorithm, 666–669
Meyer, A., 543, 551
Miller, G., 598
Minimum-altitude connected

subgraphs, 199 ex
Minimum-bottleneck spanning trees,

192 ex
Minimum Cardinality Vertex Cover

Problem, 793 ex
Minimum-Cost Arborescence

Problem, 116, 177
greedy algorithms for

analyzing, 181–183
designing, 179–181

problem, 177–179
Minimum-Cost Dominating Set

Problem, 597 ex
Minimum-Cost Path Problem. See

Shortest Path Problem
Minimum-Cost Flow Problem, 449
Minimum-Cost Perfect Matching

Problem, 405–406
algorithm design and analysis for,

405–410
economic interpretation of, 410–411
notes, 449

Minimum cuts
in Baseball Elimination Problem,

403–404
global, 714

algorithm analysis for, 716–718
algorithm design for, 715–716

Index 829

number of, 718–719
problem, 714–715

in image segmentation, 393
Karger’s algorithm for, 790 ex
in local search, 684
in Maximum-Flow Problem, 340
in networks, 346

algorithm analysis for, 346–348
maximum flow with, 348–352

notes, 793
in Project Selection Problem,

397–399
Minimum Spanning Tree Problem,

116
greedy algorithms for

analyzing, 144–149
designing, 143–144
extensions, 150–151

notes, 206
problem, 142–143

Minimum spanning trees
for clustering, 157–159
membership in, 188 ex

Minimum-weight Steiner trees,
204 ex, 335 ex

Minimum Weight Vertex Cover
Problem, 793 ex

Mismatch costs, 280
Mismatches in sequences, 278–280
Mitzenmacher, M., 793–794
Mobile computing, base stations for,

417–418 ex
Mobile robots, 104–106 ex
Mobile wireless networks, 324–325 ex
Mod 2 linear equations, 779–782 ex
Modified Quicksort algorithm,

732–734
Molecules

closest pair of points in, 226
entropy of, 547–550 ex
protein, 651–652 ex
RNA, 273–274

Monderer, D., 706
Monitoring networks, 423–424 ex
Monotone formulas, 507 ex
Monotone QSAT, 550 ex
Monotone Satisfiability, 507 ex
Morse, Samuel, 163
Morse code, 163
Most favorable Nash equilibrium

solutions, 694–695

Motwani, R., 793–794
Multi-phase greedy algorithms, 177

analyzing, 181–183
designing, 179–181
problem, 177–179

Multi-way choices in dynamic
programming, 261

algorithm for
analyzing, 266
designing, 264–266

problem, 261–264
for shortest paths, 293

Multicast, 690
Multicommodity Flow Problem, 382
Multigraphs in Contraction

Algorithm, 715
Multiple Interval Scheduling, 512 ex
Multiplication

integer, 209, 231
algorithm analysis for, 233–234
algorithm design for, 232–233
notes, 250
problem, 231–232

polynomials via convolution, 235,
238–239

Multivariable Polynomial
Minimization Problem,
520 ex

Mutual reachability, 98–99
Mutually reachable nodes, 98–99

N
N-node trees, 78
Nabokov, Vladimir, 107 ex
Näher, S., 71
Nash, John, 692
Nash equilibria

definitions and examples, 691–693
finding, 696–700
notes, 706
problem, 690–691
questions, 695–696

National Resident Matching Problem,
3, 23–24 ex

Natural brute-force algorithm, 31–32
Natural disasters, 419 ex
Nau, Dana, 552
Near-trees, 200 ex
Nearby Electromagnetic Observation

Problem, 512–513 ex
Needleman, S., 279

Negation with Boolean variables, 459
Negative cycles, 301

algorithms for
designing and analyzing,

302–304
extensions, 304–307

in Minimum-Cost Perfect Matching
Problem, 406

problem, 301–302
relation to shortest paths, 291–294

Neighborhoods
in Hopfield neural networks, 677
in Image Segmentation Problem,

682
in local search, 663–664, 685–687
in Maximum-Cut Problem, 680

Nemhauser, G. L., 206
Nesetril, J., 206
Nested loops, running time of, 51–53
Nesting arrangement for boxes,

434–435 ex
Network design, in Minimum

Spanning Tree Problem,
142–143, 150

Network flow, 337–338
Airline Scheduling Problem, 387

algorithm analysis for, 390–391
algorithm design for, 389–390
problem, 387–389

Baseball Elimination Problem, 400
algorithm design and analysis

for, 402–403
characterization in, 403–404
problem, 400–401

Bipartite Matching Problem. See
Bipartite Matching Problem

Disjoint Paths Problem, 373–374
algorithm analysis for, 375–377
algorithm design for, 374–375
algorithm extensions for,

377–378
problem, 374

good augmenting paths for, 352
algorithm analysis for, 354–356
algorithm design for, 352–354
algorithm extensions for,

356–357
finding, 412 ex

Image Segmentation Problem,
391–392

algorithm for, 393–395

830 Index

Network flow (cont.)
Image Segmentation

Problem (cont.)
problem, 392–393

Maximum-Flow Problem. See
Maximum-Flow Problem

Preflow-Push Maximum-Flow
Algorithm, 357

algorithm analysis for, 361–365
algorithm design for, 357–361
algorithm extensions for, 365
algorithm implementation for,

365–367
Project Selection Problem, 396–399

Networks
graphs as models of, 75–76
neural. See Hopfield neural

networks
routing in. See Routing in networks
social, 75–76, 110–111 ex
wireless, 108–109 ex, 324–325 ex

Newborn, M., 551–552
Nielsen, Morten N., 207
Node-Disjoint Paths Problem, 597 ex
Node-separation property, 575–576
Nodes

in binary trees, 108 ex
central, 429 ex
degrees of, 88
depth of, 167
discovering, 92
in graphs, 13, 73–74
for heaps, 59–60
heights of, 358–359
linked sets of, 585–586
local minimum, 248 ex
in network models, 338–339
prices on, 407–410
in shortest paths, 137

Nonadopters in human behaviors,
523 ex

Noncrossing conditions in RNA
base-pair matching, 274

Nondeterministic search, 464n
Nonsaturating push operations,

363–364, 446 ex
Norvig, P., 552
Nowakowski, R., 551
NP and NP-completeness, 451–452,

466
Circuit Satisfiability Problem,

466–470

co-NP and asymmetry in, 495–497
efficient certification in, 463–466
Graph Coloring, 485–490
independent sets, 17
notes, 529, 659
numerical problems, 490–495
partitioning problems, 481–485
polynomial-time reductions,

452–454
Independent Set in, 454–456
Turing, 473
Vertex Cover in, 456–459

proofs for, 470–473
Satisfiability Problem in, 459–

463
sequencing problems, 473–474

Hamiltonian Cycle Problem,
474–479

Hamiltonian Path Problem,
480–481

Traveling Salesman Problem,
474, 479

taxonomy of, 497–500
NP-hard problems, 553–554

taxonomy of, 497–500
on trees, 558

Circular-Arc Coloring Problem.
See Circular-Arc Coloring
Problem

decompositions. See Tree
decompositions

greedy algorithm for, 558–560
Maximum-Weight Independent

Set Problem, 560–562
Vertex Cover Problem, 554–555

algorithm analysis for, 557
algorithm design for, 555–557

Null pointers in linked lists, 44
Number Partitioning Problem, 518 ex
Numerical problems, 490, 499

in scheduling, 493–494
Subset Sum Problem, 491–495

O
O notation

in asymptotic order of growth,
36–38

exercise for, 65–66 ex
O(n2) time, 51–52
O(n3) time, 52–53
O(nk) time, 53–54
O(n log n) time, 50–51

Objective function in Linear
Programming Problem, 632

Odd cycles and graph bipartiteness,
95

Off-center splitters in median-finding,
730

Offering prices in combinatorial
auctions, 511 ex

Ofman, Y., 250
Omega notation

in asymptotic order of growth,
37–38

exercise, 66 ex, 68 ex
On-line algorithms, 48

for caching, 751
for Interval Scheduling Problem,

121
notes, 794

One-pass auction, 788–789 ex
Open-Pit Mining Problem, 397
Operators in planning problems, 534,

538–540
Opportunity cycles, 324 ex
Optimal caching

greedy algorithms for
designing and analyzing,

133–136
extensions, 136–137

notes, 206
problem, 131–133

Optimal prefix codes, 165–166,
170–173

Optimal radius in Center Selection
Problem, 607–610

Optimal schedules in minimizing
lateness, 128–131

Oral history study, 112 ex
Order of growth, asymptotic. See

Asymptotic order of growth
Ordered graphs, characteristics of,

313 ex
Ordered pairs as representation of

directed graph edges, 73
Ordering, topological, 102

computing, 101
in DAGs, 102, 104 ex, 107 ex
node deletions in, 102–104

Orlin, James B., 449–450
Output buffers in packet switching,

796–801
Output cushions in packet switching,

801

Index 831

Output queueing in packet switching,
796–797

Overlay networks, 784–785 ex
Overmars, M., 250

P
P class. See Polynomial time
Packet routing, 762–763

algorithm for
analyzing, 767–769
designing, 765–767

notes, 794
problem, 763–765

Packet switching
algorithm for

analyzing, 803–804
designing, 800–803

problem, 796–800
Packets, 763
Packing problems, 456, 498
Pairs of points, closest. See Closest

pair of points
Papadimitriou, Christos H.

circular arc coloring, 529
complexity theory, 551
game theory, 706

Parameterized complexity, 598
Parents in trees, 77
Parsing algorithms for context-free

grammars, 272
Partial assignment, 591–594 ex
Partial products in integer

multiplication, 232
Partial substitution

in sequence alignment recurrence,
289

in unrolling recurrences, 214,
217–219, 243–244 ex

Partial tree decomposition, 588–590
Partitioning problems, 498–499

3-Dimensional Matching Problem,
481–485

Graph Coloring Problem, 485–486
Interval Partitioning Problem,

121–125, 566
local search for, 680–681
Maximum Cut Problem, 676
notes, 705
Number Partitioning Problem,

518 ex
Segmented Least Squares Problem,

263–265

Path Coloring Problem, 563–565
Path decomposition, 376
Path Selection Problem, 508 ex
Path vector protocols, 301
Paths, 76–77

augmenting. See Augmenting paths
disjoint. See Disjoint Paths Problem
shortest. See Shortest Path Problem

Patterns
in related recurrences, 221
in unrolling recurrences, 213, 215,

218
Pauses in Morse code, 163
Peer-to-peer systems, 784–785 ex
Peering relationships in

communication networks, 75
Perfect Assembly Problem, 521 ex
Perfect matching, 337

in Bipartite Matching Problem,
14–16, 371–373, 404–405

in Gale-Shapley algorithm, 8
in Stable Matching Problem, 4–5

Permutations
of database tables, 439–440 ex
in sequencing problems, 474

Phases for marking algorithms,
752–753

Picard, J., 450
Picnic exercise, 327 ex
Pieces in tree decompositions, 574
Ping commands, 424 ex
Pixels

compression of images, 176
in image segmentation, 392–394
in local search algorithm, 682

Placement costs, 323–324 ex
Planning

contingency, 535
notes, 552
in PSPACE, 533–535, 538

algorithm analysis for, 542–543
algorithm design for, 540–542
problem, 538–540

Plot Fulfillment Problem, 510 ex
Plotkin, S., 659
P = NP question, 465
Pointer-based structures for

Union-Find, 154–156
Pointer graphs in negative cycle

detection algorithm, 304–306
Pointers

for heaps, 59–60

in linked lists, 44
in Union-Find data structure,

154–157
Points, closest pairs of. See Closest

pair of points
Politics, gerrymandering in,

331–332 ex
Polymer models, 547–550 ex
Polynomial Minimization Problem,

520 ex
Polynomial space. See PSPACE
Polynomial time, 34, 463–464

approximation scheme, 644–645
in asymptotic bounds, 40–41
as definition of efficiency, 32–35
in efficient certification, 463
notes, 70–71
reductions, 452–454

Independent Set in, 454–456
Turing, 473
Vertex Cover in, 456–459

Polynomial-time algorithm, 33
Polynomially bounded numbers,

subset sums with, 494–495
Polynomials, recursive procedures

for, 240–241
interpolation, 238, 241–242
multiplication, 235

Porteous, B., 449
Porting software, 433 ex
Potential functions

in Nash equilibrium, 700
notes, 706
for push operations, 364

Prabhakar, B., 799
Precedence constraints in Project

Selection Problem, 396–397
Precedence relations in directed

acyclic graphs, 100
Preference lists in Stable Matching

Problem, 4–5
Preferences in Stable Matching

Problem, 4
Prefix codes, 164–165

binary trees for, 166–169
optimal, 165–166, 170–173

Prefix events in infinite sample
spaces, 775

Preflow-Push Maximum-Flow
Algorithm, 357

analyzing, 361–365
designing, 357–361

832 Index

Preflow-Push Maximum-Flow
Algorithm (cont.)

extensions, 365
implementing, 365
notes, 449
variants, 444–446 ex

Preflows, 357–358
Preparata, F. P., 249
Preprocessing for data structures, 43
Prerequisite lists in planning

problems, 534, 538
Press, W. H., 250
Pretty-printing, 317–319 ex
Price of stability

in Nash equilibrium, 698–699
notes, 706

Prices
economic interpretation of, 410–411
fair, 620–621
in Minimum-Cost Perfect Matching

Problem, 407–410
Pricing (primal-dual) methods, 206

for approximation, 599–600
Disjoint Paths Problem, 624–630
Vertex Cover Problem, 618–623

notes, 659
Primal-dual methods. See Pricing

methods
Prim’s Algorithm

implementing, 149–150
optimality, 146–147
for spanning trees, 143–144

Printing, 317–319 ex
Priority queues, 57–58

for Dijkstra’s Algorithm, 141–142
heaps for. See Heaps
for Huffman’s Algorithm, 175
notes, 70
for Prim’s Algorithm, 150

Priority values, 57–58
Probabilistic method

for MAX-3-SAT problem, 726
notes, 793

Probability, 707
Chernoff bounds, 758–760
conditional, 771–772
of events, 709–710, 769–770
probability spaces in

finite, 769–771
infinite, 774–776

Union Bound in, 772–774

Probability mass, 769
Probing nodes, 248 ex
Process Naming Problem, 770
Progress measures

for best-response dynamics, 697
in Ford-Fulkerson Algorithm,

344–345
in Gale-Shapley algorithm, 7–8
in Hopfield neural networks, 674

Project Selection Problem, 396
algorithm for

analyzing, 398–399
designing, 397–398

problem, 396–397
Projections of database tables,

439–440 ex
Proposed distances for closest pair of

points, 743–745
Protein molecules, 651–652 ex
Pseudo-code, 35–36
Pseudo-knotting, 274
Pseudo-polynomial time

in augmenting paths, 356–357
efficiency of, 271
in Knapsack Problem, 645
in Subset Sum Problem, 491

PSPACE, 531–533
completeness in, 18, 543–547
for games, 535–538, 544–547
planning problems in, 533–535,

538
algorithm analysis for, 542–543
algorithm design for, 540–542
problem, 538–540

quantification in, 534–538
Pull-based Bellman-Ford algorithm,

298
Pure output queueing in packet

switching, 796
Push-based Bellman-Ford algorithm,

298–299
Push-Based-Shortest-Path algorithm,

299
Push operations in preflow, 360,

446 ex
Pushing flow in network models, 341

Q
QSAT (Quantified 3-SAT), 535–536

algorithm for
analyzing, 537–538

designing, 536–537
extensions, 538

monotone, 550 ex
notes, 551
in PSPACE completeness, 543–545

Quadratic time, 51–52
Quantification in PSPACE, 534–538
Quantifiers in PSPACE completeness,

544
Queue management policy, 763
Queues

for graph traversal, 89–90
for Huffman’s Algorithm, 175
in packet routing, 763
in packet switching, 796–797
priority. See Priority queues

Quicksort, 731–734

R
Rabin, M. O., 70, 794
Rackoff, Charles, 207
Radio interference, 512–513 ex
Radzik, Tomasz, 336
Raghavan, P., 793
Random assignment

for linear equations mod 2,
780–781 ex

for MAX-3-SAT problem, 725–726,
787 ex

Random variables, 719–720
with convolution, 237
expectation of, 719–720
linearity of expectation, 720–724

Randomized algorithms, 707–708
for approximation algorithms,

660, 724–727, 779–782 ex,
787–788 ex, 792–793 ex

caching. See Randomized caching
Chernoff bounds, 758–760
closest pair of points, 741–742

algorithm analysis for, 746–747
algorithm design for, 742–746
linear expected running time for,

748–750
notes, 794
problem, 742

contention resolution, 708–709
algorithm analysis for, 709–714
algorithm design for, 709
notes, 793
problem, 709

Index 833

randomization in, 782–784 ex
divide-and-conquer approach, 209,

727
median-finding, 727–731
Quicksort, 731–734

global minimum cuts, 714
algorithm analysis for, 716–718
algorithm design for, 715–716
number of, 718–719
problem, 714–715

hashing, 734
data structure analysis for,

740–741
data structure design for,

735–740
problem, 734–735

for load balancing, 760–762
for MAX-3-SAT, 724–727
notes, 793
for packet routing, 762–763

algorithm analysis for, 767–769
algorithm design for, 765–767
notes, 794
problem, 763–765

probability. See Probability
random variables and expectations

in, 719–724
Randomized caching, 750

marking algorithms for, 752–753
analyzing, 753–755
notes, 794
randomized, 755–758

notes, 794
problem, 750–752

Rankings, comparing, 221–222
Ranks in Stable Matching Problem, 4
Rao, S., 765, 794
Ratliff, H., 450
Rearrangeable matrices, 428 ex
Rebooting computers, 320–322 ex
Reconciliation of checks, 430 ex
Recurrences and recurrence relations,

209
for divide-and-conquer algorithms,

210–211
approaches to, 211–212
substitutions in, 213–214
unrolling recurrences in,

212–213, 244 ex
in sequence alignment, 285–286,

289–290

subproblems in, 215–220
in Weighted Interval Scheduling

Problem, 257
Recursive-Multiple algorithm,

233–234
Recursive procedures

for depth-first search, 85, 92
for dynamic programming,

259–260
for Weighted Interval Scheduling

Problem, 252–256
Reduced costs of edges, 409
Reduced schedules in optimal

caching, 134–135
Reductions

polynomial-time, 452–454
Turing, Cook, and Karp, 473

in PSPACE completeness, 546
transitivity of, 462–463

Reed, B., 598
Refrigerator magnets, 507–508 ex
Register allocation, 486
Relabel operations in preflow,

360–364, 445 ex
Release times, 137, 493, 500
Representative sets for protein

molecules, 651–652 ex
Requests in interval scheduling,

13–14
Residual graphs, 341–345

in Minimum-Cost Perfect Matching
Problem, 405

for preflows, 358–359
Resource allocation

in Airline Scheduling, 387
in Bipartite Matching, 14–16
in Center Selection, 606–607
in Interval Scheduling, 13–14, 116
in Load Balancing, 600, 637
in Wavelength-Division

Multiplexing, 563–564
Resource Reservation Problem, 506 ex
Reusing space, 537–538, 541
Reverse-Delete Algorithm, 144,

148–149
Rinnooy Kan, A. H. G., 206
Rising trends, 327–328 ex
RNA Secondary Structure Prediction

Problem, 272–273
algorithm for, 275–278
notes, 335

problem, 273–275
Robertson, N., 598
Robots, mobile, 104–106 ex
Rosenbluth, A. W., 666
Rosenbluth, M. N., 666
Rooted trees

arborescences as, 177-179
for clock signals, 200 ex
description, 77–78
for prefix codes, 166
rounding fractional solutions via,

639–643
Roots of unity with convolution, 239
Rosenthal, R. W., 706
Ross, S., 335
ROTC picnic exercise, 327 ex
Roughgarden, T., 706
Rounding

for Knapsack Problem, 645
in linear programming. See Linear

programming and rounding
Route maps for transportation

networks, 74
Router paths, 297–301
Routing in networks

game theory in, 690
definitions and examples,

691–693
and local search, 693–695
Nash equilibria in, 696–700
problem, 690–691
questions, 695–696

Internet
disjoint paths in, 624–625
notes, 336
shortest paths in, 297–301

notes, 336
packet, 762–763

algorithm analysis for, 767–769
algorithm design for, 765–767
problem, 763–765

Routing requests in Maximum
Disjoint Paths Problem, 624

RSA cryptosystem, 491
Rubik’s Cube

as planning problem, 534
vs. Tetris, 795

Run forever, algorithms that
description, 795–796
packet switching

algorithm analysis for, 803–804

834 Index

Run forever, algorithms that (cont.)
packet switching (cont.)

algorithm design for, 800–803
problem, 796–800

Running times, 47–48
cubic, 52–53
exercises, 65–69 ex
linear, 48–50
in Maximum-Flow Problem,

344–346
O(nk), 53–54
O(n log n), 50–51
quadratic, 51–52
sublinear, 56
worst-case, 31–32

Russell, S., 552

S
S-t connectivity, 78, 84
S-t Disjoint Paths Problem, 374
Sahni, Sartaj, 660
Sample space, 769, 774–776
Sankoff, D., 335
Satisfiability (SAT) Problem

3-SAT. See 3-SAT Problem
NP completeness, 466–473
relation to PSPACE completeness,

543
reductions and, 459–463

Satisfiable clauses, 459
Satisfying assignments with Boolean

variables, 459
Saturating push operations, 363–364,

446 ex
Savage, John E., 551
Savitch, W., 541, 552
Scaling behavior of polynomial time,

33
Scaling Max-Flow Algorithm,

353–356
Scaling parameter in augmenting

paths, 353
Scaling phase in Scaling Max-Flow

Algorithm, 354–356
Schaefer, Thomas, 552
Scheduling

Airline Scheduling Problem, 387
algorithm analysis for, 390–391
algorithm design for, 389–390
problem, 387–389

carpool, 431 ex

Daily Special Scheduling Problem,
526 ex

interference-free, 105 ex
interval. See Interval Scheduling

Problem
Knapsack Problem. See Knapsack

Problem
Load Balancing Problem. See Load

Balancing Problem
for minimizing lateness. See

Lateness, minimizing
Multiple Interval Scheduling,

NP-completeness of, 512 ex
numerical problems in, 493–494,

500
optimal caching

greedy algorithm design and
analysis for, 133–136

greedy algorithm extensions for,
136–137

problem, 131–133
in packet routing. See Packet

routing
processors, 442–443 ex
shipping, 25–26 ex
triathalons, 191 ex
for weighted sums of completion

times, 194–195 ex
Schoning, Uwe, 598
Schrijver, A., 449
Schwartzkopf, O., 250
Search space, 32, 47–48
Search

binary
in arrays, 44
in Center Selection Problem, 610
sublinear time in, 56

breadth-first, 79–82
for bipartiteness, 94–96
for connectivity, 79–81
for directed graphs, 97–98
implementing, 90–92
in planning problems, 541
for shortest paths, 140

brute-force, 31–32
depth-first, 83–86

for connectivity, 83–86
for directed graphs, 97–98
implementing, 92–94
in planning problems, 541

local. See Local search

Secondary structure, RNA. See RNA
Secondary Structure Prediction
Problem

Segmentation, image, 391–392
algorithm for, 393–395
local search in, 681–682
problem, 392–393
tool design for, 436–438 ex

Segmented Least Squares Problem,
261

algorithm for
analyzing, 266
designing, 264–266

notes, 335
problem, 261–264
segments in, 263

Seheult, A., 449
Seidel, R., 794
Selection in median-finding, 728–730
Self-avoiding walks, 547–550 ex
Self-enforcing processes, 1
Separation for disjoint paths, 377
Separation penalty in image

segmentation, 393, 683
Sequence alignment, 278, 280

algorithms for
analyzing, 282–284
designing, 281–282

for biological sequences, 279–280,
652 ex

in linear space, 284
algorithm design for, 285–288
problem, 284–285

notes, 335
problem, 278–281
and Segmented Least Squares,

309–311 ex
Sequencing problems, 473–474, 499

Hamiltonian Cycle Problem,
474–479

Hamiltonian Path Problem,
480–481

Traveling Salesman Problem, 474,
479

Set Cover Problem, 456–459, 498,
612

approximation algorithm for
analyzing, 613–617
designing, 613
limits on approximability, 644

notes, 659

Index 835

problem, 456–459, 612–613
relation to Vertex Cover Problem,

618–620
Set Packing Problem, 456, 498
Seymour, P. D., 598
Shamir, Ron, 113
Shamos, M. I.

closest pair of points, 226
divide-and-conquer, 250

Shannon, Claude E., 169–170, 206
Shannon-Fano codes, 169–170
Shapley, Lloyd, 1–3, 28, 706, 786 ex
Shapley value, 786 ex
Sharing

apartment expenses, 429–430 ex
edge costs, 690
Internet service expenses, 690–700,

785–786 ex
Shmoys, David B.

greedy algorithm for Center
Selection, 659

rounding algorithm for Knapsack,
660

scheduling, 206
Shortest-First greedy algorithm,

649–651 ex
Shortest Path Problem, 116, 137, 290

bicriteria, 530
distance vector protocols

description, 297–300
problems, 300–301

Galactic, 527 ex
greedy algorithms for

analyzing, 138–142
designing, 137–138

with minimum spanning trees,
189 ex

negative cycles in graphs, 301
algorithm design and analysis,

302–304
problem, 301–302

with negative edge lengths
designing and analyzing,

291–294
extensions, 294–297

notes, 206, 335–336
problem, 290–291

Signals and signal processing
clock, 199 ex
with convolution, 235–236
interleaving, 329 ex

notes, 250
smoothing, 209, 236

Significant improvements in neighbor
labeling, 689

Significant inversion, 246 ex
Similarity between strings, 278–279
Simple paths in graphs, 76
Simplex method in linear

programming, 633
Simulated annealing

notes, 705
technique, 669–670

Single-flip neighborhood in Hopfield
neural networks, 677

Single-flip rule in Maximum-Cut
Problem, 680

Single-link clustering, 159, 206
Sink conditions for preflows, 358–359
Sink nodes in network models,

338–339
Sinks in circulation, 379–381
Sipser, Michael

polynomial time, 70
P = NP question, 529

Six Degrees of Kevin Bacon game,
448 ex

Skeletons of graphs, 517–518 ex
Skew, zero, 201 ex
Slack

in minimizing lateness, 127
in packet switching, 801–802

Sleator, D. D.
LRU, 137
Randomized Marking algorithm,

794
Smid, Michiel, 249
Smoothing signals, 209, 236
Social networks

as graphs, 75–76
paths in, 110–111 ex

Social optimum vs. Nash equilibria,
692–693, 699

Solitaire puzzles, 534
Sort-and-Count algorithm, 225
Sorted-Balance algorithm, 605
Sorted lists, merging, 48–50
Sorting

for Load Balancing Problem,
604–606

Mergesort Algorithm, 210–211
approaches to, 211–212

running times for, 50–51
substitutions in, 213–214
unrolling recurrences in, 212–213

O(n log n) time, 50–51
priority queues for, 58
Quicksort, 731–734
topological, 101–104, 104 ex, 107 ex

Source conditions for preflows,
358–359

Source nodes, 338–339, 690
Sources

in circulation, 379–381
in Maximum-Flow Problems, 339

Space complexity, 531–532
Space-Efficient-Alignment algorithm,

285–286
Spacing of clusterings, 158–159
Spanning Tree Problem. See

Minimum Spanning Tree
Problem

Spanning trees
and arborescences. See Minimum-

Cost Arborescence Problem
combinatorial structure of,

202–203 ex
Sparse graphs, 88
Spell-checkers, 279
Spencer, J., 793–794
Splitters

in median-finding, 728–730
in Quicksort, 732

Stability in generalized Stable
Matching Problem, 23–24 ex

Stable configurations in Hopfield
neural networks, 671, 676,
700, 702–703 ex

Stable matching, 4–5
Stable Matching Problem, 1, 802–803

algorithms for
analyzing, 7–9
designing, 5–6
extensions, 9–12
implementing, 45–47
lists and arrays in, 42–45

exercises, 19–25 ex
and Gale-Shapley algorithm, 8–9
notes, 28
problem, 1–5
search space for, 32
truthfulness in, 27–28 ex

Stacks for graph traversal, 89–90

836 Index

Stale items in randomized marking
algorithm, 756–757

Star Wars series, 526–527 ex
Start nodes in shortest paths, 137
StartHeap operation, 64
State-flipping algorithm

in Hopfield neural networks,
673–677

as local search, 683
State flipping neighborhood in Image

Segmentation Problem, 682
Statistical mechanics, 663
Staying ahead in greedy algorithms,

115–116
in Appalachian Trail exercise,

184 ex
in Interval Scheduling Problem,

119–120
for shortest paths, 139

Stearns, R. E., 70
Steepness conditions for preflows,

358–359
Steiner trees, 204 ex, 334–335 ex,

527 ex
Steps in algorithms, 35–36
Stewart, John W., 336
Stewart, Potter, 207
Stochastic dynamic programming,

335
Stockmeyer, L., 543, 551
Stocks

investment simulation, 244–246 ex
rising trends in, 327–328 ex

Stopping points in Appalachian Trail
exercise, 183–185 ex

Stopping signals for shortest paths,
297

Stork, D., 206
Strategic Advertising Problem,

508–509 ex
Stream ciphers with feedback, 792 ex
Stress-testing jars, 69–70 ex
Strings

chromosome, 521 ex
concatenating, 308–309 ex, 517 ex
encoding. See Huffman codes
length of, 463
similarity between, 278–279

Strong components in directed
graphs, 99

Strong instability in Stable Matching
Problem, 24–25 ex

Strongly connected directed graphs,
77, 98–99

Strongly independent sets, 519 ex
Strongly polynomial algorithms,

356–357
Subgraphs

connected, 199 ex
dense, 788 ex

Sublinear time, 56
Subproblems

in divide-and-conquer techniques,
215–220

in dynamic programming, 251,
258–260

in Mergesort Algorithm, 210
with Quicksort, 733
for Weighted Interval Scheduling

Problem, 254, 258–260
Subsequences, 190 ex
Subset Sum Problem, 266–267, 491,

499
algorithms for

analyzing, 270–271
designing, 268–270
extensions, 271–272

hardness in, 493–494
relation to Knapsack Problem, 645,

648, 657–658 ex
NP-completeness of, 492–493
with polynomially bounded

numbers, 494–495
Subsquares for closest pair of points,

743–746
Substitution

in sequence alignment, 289
in unrolling recurrences, 213–214,

217–219, 243–244 ex
Success events, 710–712
Sudan, Madhu, 794
Summing in unrolling recurrences,

213, 216–217
Sums of functions in asymptotic

growth rates, 39–40
Supernodes

in Contraction Algorithm,
715

in minimum-cost arborescences,
181

Supervisory committee exercise,
196 ex

Supply in circulation, 379
Surface removal, hidden, 248 ex

Survey Design Problem, 384–385
algorithm for

analyzing, 386–387
designing, 386

problem, 385–386
Suspicious Coalition Problem,

500–502 ex
Swapping rows in matrices, 428 ex
Switched data streams, 26–27 ex
Switching

algorithm for
analyzing, 803–804
designing, 800–803

in communications networks,
26–27 ex

problem, 796–800
Switching time in Broadcast Time

Problem, 528 ex
Symbols, encoding. See Huffman

codes
Symmetry-breaking, randomization

for, 708–709

T
Tables, hash, 736–738, 760
Tails of edges, 73
Tardos, É.

disjoint paths problem, 659
game theory, 706
network flow, 448
rounding algorithm, 660

Target sequences, 309
Tarjan, R. E.

graph traversal, 113
LRU, 137
online algorithms, 794
polynomial time, 70–71
Preflow-Push Algorithm, 449

Taxonomy of NP-completeness,
497–500

Telegraph, 163
Teller, A. H., 666
Teller, E., 666
Temperature in simulated annealing,

669–670
Terminal nodes, 690
Terminals in Steiner trees, 204 ex,

334–335 ex
Termination in Maximum-Flow

Problem, 344–346
Testing bipartiteness, 94–96
Tetris, 795

Index 837

Theta in asymptotic order of growth,
37–38

Thomas, J., 206
Thomassen, C., 598
Thresholds

approximation, 660
in human behaviors, 523 ex

Thymine, 273
Tight bounds, asymptotic, 37–38
Tight nodes in pricing method,

621
Time-series data mining, 190 ex
Time-stamps for transactions,

196–197 ex
Time to leave in packet switching,

800
Time-varying edge costs, 202 ex
Timing circuits, 200 ex
Toft, B., 598
Top-down approach for data

compression, 169–170
Topological ordering, 102

computing, 101
in DAGs, 102, 104 ex, 107 ex

Toth, P.
Knapsack Problem, 335
Subset Sum, 529

Tours in Traveling Salesman Problem,
474

Tovey, Craig, 250
Trace data for networked computers,

111 ex
Tracing back in dynamic

programming, 257
Trading in barter economies,

521–522 ex
Trading cycles, 324 ex
Traffic

in Disjoint Paths Problem, 373
in Minimum Spanning Tree

Problem, 150
in networks, 339, 625

Transactions
approximate time-stamps for,

196–197 ex
via shortest paths, 290

Transitivity
of asymptotic growth rates, 38–39
of reductions, 462–463

Transmitters in wireless networks,
776–779 ex

Transportation networks, graphs as
models of, 74

Traveling Salesman Problem, 499
distance in, 474
notes, 529
NP-completeness of, 479
running times for, 55–56

Traversal of graphs, 78–79
breadth-first search for, 79–82
connected components via, 82–83,

86–87
depth-first search for, 83–86

Traverso, Paolo, 552
Tree decompositions, 572–573

algorithm for, 585–591
dynamic programming using,

580–584
notes, 598
problem, 584–585
properties in, 575–580
tree-width in, 584–590

defining, 573–575, 578–579
notes, 598

Trees, 77–78
and arborescences. See Minimum-

Cost Arborescence Problem
binary

nodes in, 108 ex
for prefix codes, 166–169

breadth-first search, 80–81
depth-first search, 84–85
in Minimum Spanning Tree

Problem. See Minimum
Spanning Tree Problem

NP-hard problems on, 558
decompositions. See Tree

decompositions
Maximum-Weight Independent

Set Problem, 560–562
of possibilities, 557

Tree-width. See Tree decompositions
Triangle inequality, 203 ex, 334–

335 ex, 606
Triangulated cycle graphs, 596–597 ex
Triathalon scheduling, 191 ex
Trick, Michael, 250
Truth assignments

with Boolean variables, 459
consistent, 592 ex

Truthfulness in Stable Matching
Problem, 27–28 ex

Tucker, A., 598
Turing, Alan, 551
Turing Award lecture, 70
“Twelve Days of Christmas,” 69 ex

Two-Label Image Segmentation,
391–392, 682

U
Underspecified algorithms

graph traversal, 83
Ford-Fulkerson, 351–352
Gale-Shapley, 10
Preflow-Push, 361

Undetermined variables, 591 ex
Undirected Edge-Disjoint Paths

Problem, 374
Undirected Feedback Set Problem,

520 ex
Undirected graphs, 74

connected, 76–77
disjoint paths in, 377–378
in image segmentation, 392
number of global minimum cuts

in, 718–719
Unfairness in Gale-Shapley algorithm,

9–10
Uniform-depth case of Circular Arc

Coloring, 566–567
Unimodal sequences, 242 ex
Union Bound, 709, 712–713

for contention resolution, 712–713
for load balancing, 761–762
for packet routing, 767–768
in probability, 772–774

Union-Find data structure, 151–152
improvements, 155–157
pointer-based, 154–157
simple, 152–153

Union operation, 152–154
Universal hash functions, 738–740,

749–750
Unrolling recurrences

in Mergesort Algorithm, 212–213
subproblems in, 215–220
substitutions in, 213–214, 217–219
in unimodal sequence exercise,

244 ex
Unweighted case in Vertex Cover

Problem, 618
Upfal, E., 793–794
Uplink transmitters, 776–777 ex
Upper bounds, asymptotic, 36–37
Upstream nodes in flow networks,

429 ex
Upstream points in communications

networks, 26–27 ex
User-friendly houses, 416–417 ex

838 Index

Using up All the Refrigerator Magnets
Problem, 507–508 ex

V
Valid execution of Kruskal’s

algorithm, 193 ex
Valid partners in Gale-Shapley

algorithm, 10–12
Valid stopping points in Appalachian

Trail exercise, 183–184 ex
Validation functions in barter

economy, 522 ex
Values

of flows in network models, 339
of keys in priority queues, 57–58

Van Kreveld, M., 250
Variable-length encoding schemes,

163
Variables

adding in dynamic programming,
266, 276

Boolean, 459–460
random, 719–720

with convolution, 237
linearity of expectation, 720–724

Vazirani, V. V., 659–660
Vecchi, M. P., 669, 705
Vectors, sums of, 234–235
Veksler, Olga, 449–450, 706
Vertex Cover Problem, 498, 554–555

and Integer Programming Problem,
633–635

linear programming for. See Linear
programming and rounding

in local search, 664–666
notes, 659–660
optimal algorithms for

analyzing, 557
designing, 555–557

in polynomial-time reductions,
454–459

pricing methods, 618
algorithm analysis for, 622–623
algorithm design for, 620–622
problem, 618–619

problem, 555
randomized approximation

algorithm for, 792–793 ex
Vertices of graphs, 74
Viral marketing phenomenon, 524 ex

Virtual places in hypertext fiction,
509 ex

Virus tracking, 111–112 ex
VLSI chips, 200 ex
Von Neumann, John, 249
Voting

expected value in, 782 ex
gerrymandering in, 331–332 ex

W
Wagner, R., 336
Walks, self-avoiding, 547–550 ex
Wall Street, 115
Water in shortest path problem,

140–141
Waterman, M., 335
Watson, J., 273
Watts, D. J., 113
Wavelength assignment for wireless

networks, 486
Wavelength-division multiplexing

(WDM), 563–564
Wayne, Kevin, 449
Weak instability in Stable Matching

Problem, 25 ex
Weaver, W., 206
Wegman, M. L., 794
Weighted Interval Scheduling

Problem, 14, 122, 252
algorithms for

designing, 252–256
memoized recursion, 256–257

relation to billboard placement,
309 ex

subproblems in, 254, 258–260
Weighted sums of completion times,

194–195 ex
Weighted Vertex Cover Problem, 618,

631
as generalization of Vertex Cover,

633–635
notes, 659–660

Weights
of edges in Hopfield neural

networks, 671
in infinite sample spaces, 775
in Knapsack Problem, 267–272,

657–658 ex
of nodes, 657 ex
in Set Cover Problem, 612

of Steiner trees, 204 ex
in Vertex Cover Problem, 618

Well-centered splitters
in median-finding, 729–730
in Quicksort, 732

Width, tree, in tree decompositions.
See Tree decompositions

Williams, J. W. J., 70
Williams, Ryan, 552
Williamson, D. P., 659
Winner Determination for

Combinatorial Auctions
problem, 511–512 ex

Winsten, C. B., 706
Wireless networks

ad hoc, 435–436 ex
for laptops, 427–428 ex
nodes in, 108–109 ex, 324–325 ex
transmitters for, 776–779 ex
wavelength assignment for, 486

Witten, I. H., 206
Woo, Maverick, 530, 552
Word-of-mouth effects, 524 ex
Word processors, 317–319 ex
Word segmentation problem,

316–318 ex
World Wide Web

advertising, 422–423 ex, 508–508 ex
diameter of, 109–110 ex
as directed graph, 75
meta-search tools on, 222

Worst-case analysis, 31–32
Worst-case running times, 31–32
Worst valid partners in Gale-Shapley

algorithm, 11–12
Wosley, L. A., 206
Wunsch, C., 279

Y
Young, N. E., 794

Z
Zabih, Ramin D., 449–450, 706
Zero skew, 201 ex
Zero-Weight-Cycle problem, 513 ex
Zones

in Competitive Facility Location
Problem, 18

in Evasive Path Problem, 510–511 ex
Zuker, M., 335

	Cover
	Title Page
	Copyright Page
	Contents
	About the Authors
	Preface
	Acknowledgments
	1 Introduction: Some Representative Problems
	1.1 A First Problem: Stable Matching
	1.2 Five Representative Problems
	Solved Exercises
	Exercises
	Notes and Further Reading

	2 Basics of Algorithm Analysis
	2.1 Computational Tractability
	2.2 Asymptotic Order of Growth
	2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays
	2.4 A Survey of Common Running Times
	2.5 A More Complex Data Structure: Priority Queues
	Solved Exercises
	Exercises
	Notes and Further Reading

	3 Graphs
	3.1 Basic Definitions and Applications
	3.2 Graph Connectivity and Graph Traversal
	3.3 Implementing Graph Traversal Using Queues and Stacks
	3.4 Testing Bipartiteness: An Application of Breadth-First Search
	3.5 Connectivity in Directed Graphs
	3.6 Directed Acyclic Graphs and Topological Ordering
	Solved Exercises
	Exercises
	Notes and Further Reading

	4 Greedy Algorithms
	4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead
	4.2 Scheduling to Minimize Lateness: An Exchange Argument
	4.3 Optimal Caching: A More Complex Exchange Argument
	4.4 Shortest Paths in a Graph
	4.5 The Minimum Spanning Tree Problem
	4.6 Implementing Kruskal's Algorithm: The Union-Find Data Structure
	4.7 Clustering
	4.8 Huffman Codes and Data Compression
	*4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm
	Solved Exercises
	Exercises
	Notes and Further Reading

	5 Divide and Conquer
	5.1 A First Recurrence: The Mergesort Algorithm
	5.2 Further Recurrence Relations
	5.3 Counting Inversions
	5.4 Finding the Closest Pair of Points
	5.5 Integer Multiplication
	5.6 Convolutions and the Fast Fourier Transform
	Solved Exercises
	Exercises
	Notes and Further Reading

	6 Dynamic Programming
	6.1 Weighted Interval Scheduling: A Recursive Procedure
	6.2 Principles of Dynamic Programming: Memoization or Iteration over Subproblems
	6.3 Segmented Least Squares: Multi-way Choices
	6.4 Subset Sums and Knapsacks: Adding a Variable
	6.5 RNA Secondary Structure: Dynamic Programming over Intervals
	6.6 Sequence Alignment
	6.7 Sequence Alignment in Linear Space via Divide and Conquer
	6.8 Shortest Paths in a Graph
	6.9 Shortest Paths and Distance Vector Protocols
	*6.10 Negative Cycles in a Graph
	Solved Exercises
	Exercises
	Notes and Further Reading

	7 Network Flow
	7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm
	7.2 Maximum Flows and Minimum Cuts in a Network
	7.3 Choosing Good Augmenting Paths
	*7.4 The Preflow-Push Maximum-Flow Algorithm
	7.5 A First Application: The Bipartite Matching Problem
	7.6 Disjoint Paths in Directed and Undirected Graphs
	7.7 Extensions to the Maximum-Flow Problem
	7.8 Survey Design
	7.9 Airline Scheduling
	7.10 Image Segmentation
	7.11 Project Selection
	7.12 Baseball Elimination
	*7.13 A Further Direction: Adding Costs to the Matching Problem
	Solved Exercises
	Exercises
	Notes and Further Reading

	8 NP and Computational Intractability
	8.1 Polynomial-Time Reductions
	8.2 Reductions via "Gadgets": The Satisfiability Problem
	8.3 Efficient Certification and the Definition of NP
	8.4 NP-Complete Problems
	8.5 Sequencing Problems
	8.6 Partitioning Problems
	8.7 Graph Coloring
	8.8 Numerical Problems
	8.9 Co-NP and the Asymmetry of NP
	8.10 A Partial Taxonomy of Hard Problems
	Solved Exercises
	Exercises
	Notes and Further Reading

	9 PSPACE: A Class of Problems beyond NP
	9.1 PSPACE
	9.2 Some Hard Problems in PSPACE
	9.3 Solving Quanti.ed Problems and Games in Polynomial Space
	9.4 Solving the Planning Problem in Polynomial Space
	9.5 Proving Problems PSPACE-Complete
	Solved Exercises
	Exercises
	Notes and Further Reading

	10 Extending the Limits of Tractability
	10.1 Finding Small Vertex Covers
	10.2 Solving NP-Hard Problems on Trees
	10.3 Coloring a Set of Circular Arcs
	*10.4 Tree Decompositions of Graphs
	*10.5 Constructing a Tree Decomposition
	Solved Exercises
	Exercises
	Notes and Further Reading

	11 Approximation Algorithms
	11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem
	11.2 The Center Selection Problem
	11.3 Set Cover: A General Greedy Heuristic
	11.4 The Pricing Method: Vertex Cover
	11.5 Maximization via the Pricing Method: The Disjoint Paths Problem
	11.6 Linear Programming and Rounding: An Application to Vertex Cover
	*11.7 Load Balancing Revisited: A More Advanced LP Application
	11.8 Arbitrarily Good Approximations: The Knapsack Problem
	Solved Exercises
	Exercises
	Notes and Further Reading

	12 Local Search
	12.1 The Landscape of an Optimization Problem
	12.2 The Metropolis Algorithm and Simulated Annealing
	12.3 An Application of Local Search to Hopfield Neural Networks
	12.4 Maximum-Cut Approximation via Local Search
	12.5 Choosing a Neighbor Relation
	*12.6 Classification via Local Search
	12.7 Best-Response Dynamics and Nash Equilibria
	Solved Exercises
	Exercises
	Notes and Further Reading

	13 Randomized Algorithms
	13.1 A First Application: Contention Resolution
	13.2 Finding the Global Minimum Cut
	13.3 Random Variables and Their Expectations
	13.4 A Randomized Approximation Algorithm for MAX 3-SAT
	13.5 Randomized Divide and Conquer: Median-Finding and Quicksort
	13.6 Hashing: A Randomized Implementation of Dictionaries
	13.7 Finding the Closest Pair of Points: A Randomized Approach
	13.8 Randomized Caching
	13.9 Chernoff Bounds
	13.10 Load Balancing
	13.11 Packet Routing
	13.12 Background: Some Basic Probability Definitions
	Solved Exercises
	Exercises
	Notes and Further Reading

	Epilogue: Algorithms That Run Forever
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

