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ABSTRACT 

The concept of algorithmic complexity that was introduced by 
Kolmogorov and expanded by Ofman provides a quantitative means 
of measuring the complexity of computing a discrete function-i.e., a 
function with finite domain and range. To be precise in the work 
reported here, it is assumed that the computation is done by a special 
type of finite-state machine, a (p, q )  automaton. After reviewing 
the definitions in the field of algorithmic complexity, estimates are 
made for the maximum possible algorithmic complexity of a discrete 
function that can be computed on the simplest possible ( p ,  9 )  autom- 
aton, a (2, 2) ;  this allows comparison of the algorithmic complexities 
relative to (p, q ) automata and those relative to (2, 2) automata. 
Next, bounds are obtained on the complexity of matrix multiplication. 
Finally, algorithmic complexity is related to the theory of permutation 
groups on the domain and range of a function, and various criteria 
are discussed for ensuring a function's having relatively low vmplexity. 

1. INTRODUCTION 

In this report, two fundamental problems of computer 
design are considered theoretically- minimizing the 
number of components (and, therefore, the cost) of the 
computer, and minimizing the computation time re- 
quired. We define a mathematical object called a (p,q) 
automaton, where p and q are integers 2 2, which is to 
be regarded as an abstract model of a computer. The 
theory is easily modified to handle many other models 
of computers. Each ( p79) automaton computes a s@c 
function and has a well defined number of components 
(stages) and computation time. Our object is to obtain 
upper and lower bounds on the number of stages and 
on the computation time required to calculate various 
functions. The least number of stages and least time 
required to compute a function f on any ( p , q )  automaton 
for fixed p and 9 is defined to be the algorithmic 
complexity of f relative to ( p , g )  automata. A precise 
definition of algorithmic complexity is given below. 

In Section 11, we consider the largest possible algorith- 
mic complexity that a function can have; and in Section 
111, we discuss the complexity of matrix multiplication 

[over the field GF(2)]. Finally, in Section IV, by using 
the concept of equivalence of functions under pexmu- 
tation groups, we obtain criteria that guarantee that two 
functions have approximately the same complexity, and 
that a function has a relatively low complexity. 

- 

We begin with the necessary definitions. Let V7de-  
note the space of m-tuples over an alphabet of p sym- 
bols. Then, to defhe the algorithmic complexity of a 
function f :  V:+ V:, we must first define a (p ,q)  autom- 
aton that computes f. 

A. Definition of Ip, ql Automaton 

A (p ,q )  automaton, with p,g  2 2, is an autonomous 
finite-state machine built of storage elements and gates. 
The storage elements, or stages, can be in one of p states 
at any time, corresponding to the p symbols of the 
alphabet. The gates determine the next state of the 
stages as a function of the immediately preceding states 
of, at most, q stages. In digital circuit terminology, there 
is, at most, one level of gating, and the gates have a 
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fan-in of, at most, q. The fan-out of each stage could be 
limited, also (Ref. l), but this does not appear to add 
to the theory. 

Further, the (p,q) automaton is defined as a (p-ary) 
shift register without feedback. That is, there is a num- 
bering of the stages Z1, &, -.., 2, such that, if j >  i, the 
state of each stage Zi at time j equals the state at time i. 
The initial time (before the first shift) is t = 1. The stages 
that determine the state of a given stage at the next 
time-instant have no higher index than the stage deter- 
mined; in fact, the restriction is made that the present 
state of a stage does not affect the next stage. 

The machine is thought of as effecting a mapping 
f :  Vi+V; for some k,n > i. Here, k + n  5 N ;  the first k 
stages correspond to Vi, and the last n to V;. The initial 
state of the machine is as follows: an arbitrary element 
of Vi can be in the first k stages (the input stages) which, 
in practice, are usually loaded into an input register. 
The remaining N - k stages are set, or cleared, to a fixed 
symbol, zero. 

After a certain time-a time of, at most, N suffices- 
the states of all stages of the machine become, and 
remain, constant. At this time, the algorithm is declared 
computed for the given input k-tuples. The output 
n-tuple is then the contents of the last n output stages, 
often called the output register. The states of the re- 
maining N - n stages do not concern us at this time, but 
the machine must be cleared before a new computation 
starts. 

This completes the (informal) definition of (p,q) au- 
tomata. When p=q=2, the automaton becomes a binary 

feedbackless shift register built with, at most, one level 
of gates that are, at most, two-legged. We note that, 
although the class of finite-state machines defined above 
appears restrictive, nevertheless, any algorithm comput- 
able by any finite state machine in the most general 
form is also computable by some suitable (2,2) autom- 
aton without feedback (see Ref. 2). 

B. Concept of Algorithmic Complexity 

from Ref. 3. 
To define this concept, we will use Ofman’s definition 

Definition. Given integers k, p, q > 1, n >_ 1, and a 
function f :  Vi + V i ,  consider all those (p ,  q) automata 
that realize f as a mapping from the first k stages at 
time 1 to the last n stages at some time when the state 
of the machine is stabilized and where the input and 
output stages are disjoint. Call this class of machines 
M j p , q ) ,  or M ,  for brevity. For B, an automaton in M ,  
let N ,  be the number of stages of B, and let Te be the 
earliest time at which the output is available. Finally, 
let A(f)  be the set of all ordered pairs (N,, TB)  for B in 
M ,  such that for no C in M is N ,  2 N,, and such that 
Tc  5 Ts with at least one inequality strict. Then, the 
set A(f) is called the algorithmic complexity of f .  

Remarks. It is clear that A(f) is never empty. Ordi- 
narily, A(f)  will have more than one element, although 
it is always a finite set. If C belongs to M, then there is 
a B in A(f)  that is at least as desirable as C for com- 
puting f-since some B in A(f)  computes f with, at most, 
the number of stages that C has in, at most, the time 
that C takes. 
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II. ALGORITHMICALLY COMPLEX MAPPINGS 

Suppose that a class C of c functions f :  Vt - V: is 
given. Theorems 1 and 2 show that the algorithhc mm- 
plexity of at least one of the functions in C cannot be too 
small. Theorem 1 is a generalization of a result in Ref. 4. 

Theorem 1. Let C be a cZus of c distinct functions 
f :  Vi-.V: such that c > 21b -So. Then, there is at kast 
one functwn f o  in C such thut every (2,2) automaton 
realizing fo  requires 

stages. 

Proof. A (2,2) automaton with N stages is determined 

by which pair of stages of the ("i') pairs each stage 

is affeded, and by which one of the 2,' = 16 functions 
V+V: specifies the relation. Hence, there are, at most, 

u 

[8(i - 1) (i - 2)]' < c 
i=1 

then some function f o  E C requires greater than N stages 
to be computed. 

Since each term of the left side of Eq. (1) is greater 
than twice the preceding term, we have 

N C [8(i - 1)( i  - 2)]' < 2 0 8 ~ ( N  - l)N ( N  - 2)N 
i=1 

<2=BNNZN (2) 

Now let N be the largest integer, such that 

It follows that 

2 8N+1 ( N  + 1)2(N+1) 2 c (4) 

Since log,x is a monotone increasing function, we may 
take the log, log, of each side of inequality Eq. (3): 

If c 2 17, then both sides of inequality Eq. (5) are postive, 
and we have 

1 1 I 

lO&N + log, ( 2log,N + 3 + N ' log, ;OgZ . 
(6) 

Multiplication of inequality Eq. (6) by the log, of m- 
equality Eq. (4) gives 

1 + - log,(N + 1) + - + - 
log2 c 

log,N + log, 2log,N 3 3 + - 3 > log2log, ;I (7) 

;) ( 

An analysis of the bracketed quantity shows it to be < 1 
when N > 4. Therefore, 

log, c 
> 2 log, log, c 

when N > 4 or c > 2 - 8" 5l0, or approximately 2s9.22. 
The above computations prove Theorem 1. 

A similar result for the computaton time T is givem in 
the following theorem. 

Themem 2 Let C be a closs of c distinct functioru 
f : V:+V:. Then, there is at least one function fo  in C mch 
that every (2,2) automaton realizing f o  requires a ann- 
putation time 

T > loge log, c - logo log, k 

Proof. It s&ces to consider the case n= 1, since all out- 
put bits may be computed separately and simultaneously. 

If M is a (2,2) automaton that computes a function 
f :  Vi-.V:, then there is' another (2,2) automaton M' that 
computes the same function f with the same computation 
time as M, such that every stage of M' has, at most, one 
fan-out, and such that there are exactly ZT-' stages of M' 
that are first affected at time t. It may be necessary, 
however, to repeat the same input bit into more than one 
input stage of M'. To construct M' from M, it is necessary 
only to label each stage of M, copy the one output stage, 
connect it to the two stages on which it depends, label 
these two stages to correspond to M, then repeat the 

'A discussion of properties of automata of the type M appears 
in Ref. 1. 

3 
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process until only stages with input labels remain un- 
connected to stages above them (see Fig. 1). At this point, 
we can add extraneous stages that merely double the 
multiplicity of each input stage until each input stage is 
removed by a time T from output. 

Each of the ZT-' - 1 stages at time t, with 2 5 t 2 T, is 
determined by one of the 16 functions g: VZ,+V:. (The 
stages that repeat input correspond to one of these func- 
tions g; for example, g(xl, x,)  = xl.) The ZT-' stages at 
time t = 1 are determined by which of the k input bits 
they admit. Hence, there are, at most, 

16(ZT-I-1) k2T-I 

different functions f :  Vt+V: that can be realized in a 
time Ton a (2,2) automaton. 

Now, if 
T 

S(T) r= 16(zt-'-1) k"-' < c 
t=1 

there is a function f E C that requires a time greater than 
T to be computed on any (2,2) automaton. But 

S(T) < 2 162T-'-1 k2'-' 

so that 

log,S(T) < Z T + l  (1 + f log, k) 
and 

log, log, S(T) < T + 1 + log,(l + f log, k) 
5 T + log, log, k (9) 

Let T be the largest integer, such that 

T < (log, log2 C) - (log, log, k) 

A B C D  w 

Then, from Eq. (9), 

log, log, S( T) < log, log, c 

Hence, there is a function requiring a time greater than 
T and, therefore, greater than or equal to 

log, log, c - log, log, k 

This completes the proof of Theorem 2. 

Since there are 2n.2k distinct functions f :  Vt+V:, there 
are immediate corollaries of Theorems 1 and 2. 

Corollary 1 .  If n 2k > 39, there is some function 
f :  Vt+V; such that every (2,2) automaton realizing f re- 
quires 

stages. 

Corollary 2. There is some function f :  Vt+V,l such that 
every (2,2) automaton realizing f requires a computation 
time 

We shall now obtain upper bounds on the algorithmic 
complexity of any function f :  Vt+Vy; combined with 
Corollaries 1 and 2, they give a narrow range for the 
maximum complexity possible for Boolean functions. The 
first theorem is essentially from G. N. Povarov (Ref. 5). 

2 3  I C I D  

V 4 

4 

A B C  C A B D  D V 
4 A B A B  

4 

Fig. 1. Conversion of M into M' 

4 

4 
M' 
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Theorem 3. Given 0 < E < 1, for stcfficient large k 
a d  n < 2 p k - k  , any function f :  V+V: can be realized 
on a (2,Z) automaton with 

Proof. G. N. Povarov proves in Ref. 5 that any function 
f :  V: + V: can be realized by a (2 ,2)  automaton with 

stages. Here, m is an arbitrary, positive integer less 
than k. Let m be the integral part and 6 the frac- 
tional part of log, Iog,(nP) - 45 .  Then rn < k provided 
n < 22k-'i , and Eq. (10) becomes 

For sdciently large k (depending only on E ) ,  the second 
term is less than E/S times the first. Since 26 < 2, and 2E/5 
< 1 + 245 when 0 < E < 1, Eq. (11) becomes 

and Theorem 3 follows. 

Corollary 1 and Theorem 3, together, determine the 
maximum number of stages required to compute a func- 
tion within a factor of 8. 

Theorem 4. Any function f:Vf+V; can be realized 
on a (2,2) automaton with computation time 

T < k + bg ,k  + 1 

Proof. It sufEces, as usual, to consider the case n = 1. 
Let So and S, denote the set of k-tuples in Vi whose image 
under f is 0 and 1, respectively. One of Si satisfies I Si I 
- < 2k-1, say So.  For each given x E So a time T < log,k + 2 
is required to determine if the input k-tuple is equal to I. 
In the automaton performing this computation, every 
stage has only one fan-out and every stage (except input) 
is an AND gate. The output bit is a 1 if x E So; it is a 0 if 
r 4 So.  The I So I output bits, 0 or 1, can all be computed 
simultaneously. To determine if one of these I S,, I bits is a 
1 requires an additional time T I k - 1, since I So 1 5 2k-1. 
Here again, every stage has one fan-out, only; but now, 
every stage is an (inclusive) OR gate. The final output 

bit is 0 if x E So, and 1 if x 4 S o ,  i.e., the function value of x. 
Thus, the entire computation time is 

T < k + l o g , k + l  

which completes the proof. 

The above theorems allow us to compare the perform- 
ance of (2, 2) automata and ( p ,  q )  automata. In order to 
compute a function f: V: + Vp" on a (2, 2)  automaton, 
it is necessary to encode the p symbol alphabet onto some 
subset of r-tuples from Vi,  where 2"' < p 5 2'. Each stage 
of the original (p ,  q)  automaton computing f is replaced 
by r binary stages. The function f now has domain Vg' and 
range V:'. Let N ( p ,  q )  and T ( p ,  q )  denote the number of 
stages and computation time of a given (p, q)  automaton 
as deihed in the Introduction. It is stated in Ref. 3 that 
there exist constants C, and C2 depending only on p and 
q, such that 

It is now easy to obtain bounds for C ,  and C,. 

Theorem 5. For any 0 < E < 1 and pq sufficiently large, 
we h u e  

Proof. We first replace each p-ary stage by I 5 log, p 
+ 1 binary stages. Each binary stage now depends on 
qr stages, so that our (p, q )  automaton with N ( p ,  q )  stages 
has become a (2, qr) automaton with rN(p ,  q )  stages. We 
replace each stage, together with the qr stages on which 
it depends, by a (2, 2) automaton with qr  input stages 
and 1 output stage. By Theorem 3, this requires at most 
[(a 2qr)/qr] (1 + E) - qr - 1 additional stages for each 
stage r e p l a d ,  when qr I log, pq + q is sufficiently 
large. Hence, our ( p ,  q )  automaton has become a (2, 2) 
automaton with 

stages. Since r 5 log, p + 1, we get 

and, thus, complete the proof. 

5 
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> 

Theorem 6. an additional time less than qr + log, qr - 1 (2 is sub- 
tracted from the upper bound of Theorem 4 because the 
input and output are part of the (2, qr) automaton). 
Therefore, 

T(27 2, I (q(' i- log' p ,  + log' q(l 

Proof. In the proof of Theorem 5, the conversion of the 

bgz p))  T(ps  q ,  

T(292) I (qr + log2 qr - 1) T(P, 4) + T(p, q )  (p ,  9) automaton to a (2, qr) automaton does not increase 
the computation time. If we replace each stage, as well 
as the qr stages on which it depends, by a (2 ,2)  automaton 
as constructed in Theorem 4, then by Theorem 4, for 
each unit of time in the (2, qr) automaton, we are adding 

I [dog2 P + 1) + log, Q (log, P + I)] T(p, 9 )  

completing the proof. 

111. ALGORITHMIC COMPLEXITY OF LINEAR MAPPINGS 

Let A be here a fixed r X s matrix over the field GF(2). 
Consider A as a mapping A: Vlt + Vit performing the 
operation of matrix multiplication whose domain consists 
of all r X t matrixes over GF(2) and whose range consists 
of r X t matrixes over GF(2). Since there are 2'* distinct 
r X s matrixes A, the following theorem is an immediate 
consequence of Theorem 1. 

Theorem 7.  If  rs > 39, then there is some r X s matrix 
A over GF(2), such that every (2, 2) automaton perform- 
ing the matrix multiplication A: V l t  + Vi t  requires at 
least rs/(2 lpg,rs) stages. 

By modifying Theorem 3, L. R. Welch (Ref. 6) has ob- 
tained a converse to Theorem 7, of which the following 
theorem is a slight modification. 

Theorem 8. Any matrix multiplication A:V;' + Vit can 
be realized on a (2,2) automaton with 

stages, where brackets denote the integer part. 

Proof. It suffices to prove the theorem for t = 1, since 
A can produce each of the t columns of the range inde- 
pendently, to give a factor of t .  We claim that there is a 
(2,2) automaton M ,  with m input stages and 2" stages in 
all, such that the stages realize all 2" linear functionals of 
the input variables into GF(2). This assertion is clearly 
true for m = 1; a stage with no inputs produces the zero 
functional, whereas the input stage itself produces the 
remaining linear functional of one variable. Suppose 
the hypothesis is true for m - 1. Then, there is an autom- 

aton M, with 2"' stages realizing all linear functionals 
of m - 1 variables xl, . e - ,  G - ~ .  

Adjoin 2"' - 1 stages, each of which depends on xm 
and one stage of Mo, excluding the stage which realizes 
the zero functional. Each new stage computes the oper- 
ation of mod 2 addition. Clearly, the enlarged automaton 
has 2" stages that realize all linear functionals of m vari- 
ables xl, * . - ,  xm. The proof of the assertion now follows 
by induction. 

First, for any given so, 1 2 so 2 s, group the s variables 
into sets of size so with the last group of size u = s - so [ s/.so] 
(brackets denote the integer part). Then, for each set, 
form all linear functionals using 

280 + 2" s - u  - 
so 

stages. Now, each of the r output functions is a linear 
combination of [ ( s  - o)/s,] + 1 functions. This combina- 
tion can be constructed with (s  - a ) / s 0  stages. The total 
number of stages is, then, 

N = r - + -  S - u  s - 0  2#o  + 2- 
so so 

Let so equal the integer part of 10g2r, and let 6 equal the 
fractional part of log,r. Equation (12) becomes the in- 
equality 

and Theorem 8 follows. 

6 
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In particular, if r 5 2"', then 

3rst 
log,r - 1 

If r > 2', then at least r - 28 rows of A must be dupli- 
cated, which requires only t stages each, once the rest 
of the multiplication has been computed. Hence, when 
r > 2., we get 

N + 2 + 2 '  log, 2' ) +t ( t -2 ' )  

= t (21.1 + r) 

The ratio of the upper and lower bounds obtained in 
Theorems 7 and 8 grows arbitrarily large, even for h e d  t. 
For small r and large s, the l m e r  bound becomes un- 
realistic; e.g., when s > 2ur, the lower bound is less than 
s/%, while 2s - 1 stages are needed when 

A =  

In the case in which r = s and t = 1, i.e., when A is a 
square matrix that operates on a vector, the two bounds 
differ by a factor of 8 as r +  m: 

< N < -  2rz + r  
4 log, r - [log, r ]  

The upper bound also becomes unrealistic for small n 
and large k. The next theorem gives another upper bound, 
which is more precise in this case. A similar result is 
stated by L. R. Welch (Ref. 6) without proof; Welch does 
not include the input stages in his bound. 

Theorern 9. Any mmtr& multipliwtion A:VZt + Vit cun 
be realized on a (2,2) automaton with 

stages. 

Proof. As before, we may assume t = 1. Let Ail*, * * e  i k  

denote the collection of all those columns cj,, cj,, - - e, cju 

of A which have a 1 in their i ,  i,, ..e, i k  coordinates and a 
0 elsewhere. For each such collection cj,, . e., cju, con- 
struct an automaton with less than u - 1 stages (exclud- 
ing input) which adds mod 2 the u input variables 
xj, ,  -.-, xju. We now have Zr-l subautomata with a total 
of, at most, 2s - 1 stages, since they all share s input 
stages, and any A+, i2 * * *  ik is disjoint from any other one. 

It remains only to connect various subautomata by 
mod 2 addition to compute the r output bits. It is not 
hard to see that these connections are equivalent to mul- 
tiplication by a special matrix with r rows and 2"' col- 
umns. If two columns of this special matrix are identical, 
then they both contain only 0's. By Theorem 8, it 
requires less than r2'/[log, r] + r stages to perform this 
multiplication, of which 2' have already been used for 
input. Hence, we have used, altogether, 

stages. This computation completes the proof of The- 
orem 9. 

The problem of finding the least computation time for 
matrix multiplication is not as interesting as the problem 
of finding the number of stages, since each entry of the 
output matrix can be computed simultaneously. Thus, the 
least time T is simply the least time required to compute 
the scalar product z x, where z is a fixed s-tuple and x is 
an input s-tuple. If z contains exactly a ones, then the 
least possible computation time is clearly {log, a} + 1, 
where {y) denotes the rounding upward function, i.e., 
the least integer greater than, or equal to, y. We state the 
above observations as a theorem. 

Theorem 10. I f  A is an r X s mcrtrir over GF(2), theta 
the matrir multipliaatiolP A: VZt+ Vlt  aan be realized 
by a ( 2 , Z )  automaton with a computatwn time 

T = 1 + { b g a }  (13) 

where a is the greatest number of ones appearing in any 
row of A, and { x }  denotes the rounding upward jhc- 
twn. Furthennore, e o e y  (2,2) automaton realizing A 
requires a comptctation time at least as large as that gioen 
in Eq. (13). In particular, some r X s matrixes require a 
time T = 1 + {log s}, but no r X s matrix requires more 
time. 

7 
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IV. CRITERIA FOR SMALL COMPLEXITY 

There are a number of properties that a Boolean func- 
tion f :  V: + VF may have which guarantee that it have a 
relatively low algorithmic complexity. A knowledge of 
these properties also narrows the search for specific func- 
tions of high complexity. We shall restrict our concern, 
generally, to the case n = 1; when n > 1, the automaton 
may be regarded as n independent automata sharing the 
same input. 

We begin with the concept of equivalence of functions 
under permutation groups on their domain and range. 
Let G be a permutation group on the set of all k-tuples 
( x I ,  . . e ,  xk) EV:, and let H be a permutation group on the 
set of all n-tuples ( y l ,  . . ., yn) E V;. We say that the func- 
tions f :  Vi + V; and g:  Vi + V; are equivalent with G 
on the domain and H on the range if for some fixed T E G, 
c E H we have 

CT f [+)I = g ( 4  (14) 

for all x E V i .  We use the notation (G, H )  to denote a 
group G acting on the domain and a group H acting on 
the range of a Boolean function; if Eq. (14) holds, then, 
we also say that f and g are equivalent under (G, H) .  (It is 
easily seen that the relation that we have called equiva- 
lence under (G, H )  is, indeed, an equivalence relation.) 
Let E(G, H )  denote the number of equivalence classes 
induced by the equivalence relation (G, H ) .  

We shall be concerned with the following permutation 
groups G, H :  

the group of all 2k complementations of in- 
put variables: This group is isomorphic to 
the elementary abelian group of order 2k. 

the symmetric group on the k input varia- 
bles: This is the group of all permutations 
of input bits. 

the smallest group containing both Ci and 
s k :  Gk is the serni-direct product of Ci and 
s k  (see Theorem 4 in Section 6 of Ref. 7). 

the full linear group on the input variables: 
This is the group of all nonsingular linear 
transformations of the input variables. 

the affine group on the input variables: This 
is the smallest group containing both Ct and 
GLk. 

H = l  

For n = 1, 
H = N  

the group consisting only of the identity: In 
other words, two elements y l ,  y2 of the range 
are considered equivalent if, and only if, 
y1 = y2. 

the group of complementations on the 
range: N is isomorphic to the cyclic group 
of order 2. 

For some applications of these groups to the theory of 
Boolean functions, the reader is referred to Harrison 
(Refs. 7-10) and to Hertzig and Dean2. An immediate 
application to algorithmic complexity is given by the 
following theorem. 

Theorem 11. T h e  algorithmic complexity Mf of 
f :  vt + vi is invariant under (Gk, N);  i.e., if f and g are 
equivalent under (Gk, N) ,  then f and g have exactly the 
same algorithmic complexity on a (2, 2) automaton. 

Proof. A permutation E S k  of the variables merely 
corresponds to a relabeling of the stages of the autom- 
aton and, consequently, does not affect the algorithmic 
complexity. If a complementation u E Cl;. is carried out 
on certain variables, then we need only appropriately 
alter the functions f o :  Vi + Vi of pairs of input variables 
that correspond to the first step of the computation. 
Again, the algorithmic complexity is not affected. The 
complementation on the range may be incorporated into 
the last step of the computation when necessary, without 
altering the complexity. Since every permutation in Gk 
is the product of permutations in C: and s k ,  the proof of 
Theorem 11 is complete. 

The group GLk (and hence, A,) does not preserve algo- 
rithmic complexity. For instance, when k > 1, the per- 
mutation taking x1 + x1 + x2 + ... + x k  results in an 
increase of complexity in computing f(xl, a.0, x k )  = xl. 
The next theorem, however, shows that functions equiv- 
alent under (Ak, N) cannot differ in their complexity by 
too great an amount. 

Theorem 12. If  f :  Vi + Vi and g: Vi + V; me equiv- 
alent under (Ak, N), and if f can be computed with Nf 
stages in a time Tf on a (2, 2) automaton, then g can be 

’ Hertzig, D., and Dean, R., “Decompositions and Equivalences 
of Numerical Functions on a Vector Space Over GF( 2),” un- 
published paper (private communication from Professor Dean, 
California Institute of Technology). 
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computed with N, stages in a time To on a (2,2) automu- 
ton, where 

Proof. By assumption, there is a ked (nonsingular) 
matrix A, a ked vector v, and a fhed permutation r e N, 
such that 

g ( r )  = rflAx + v) 
for all x in VE. Hence, g can be computed by first com- 
puting Ax + v, then computing xf(Ax + v). The permu- 
tation r can be incorporated-into the last step of the 
computation off, SO N,, = N ,  and T,, = Tf. Let N ,  and 
T, denote the nwnba of stages and computation time 
for computing Ax + v. Since the output of Ax + v 
corresponds to the input of f ,  we have 

No 5 Nf + N ,  - k 

To 2 T f  + T, - 1 (15) 

The addition of o to Ax can be incorporated into the last 
step of the computation of Ax, so that we can take for 
N, and T, the bounds for matrix multiplication obtained 
in Theorems 8 and 9. Substitution of these results into 
Eq. (15) gives Theorem 12. 

Theorems 11 and 12 result in a substantial decrease in 
the number of functions f :  V:+ V: that have to be con- 
sidered when dealing with algorithmic complexity. Rather 
than considering 2$ functions, we may consider, instead, 
E(Gk, N) or E(Ak, N) classes of functions. Table 1 repro- 
duces the values of E(G*, N) and E(AI, N) obtained by 
Harrison (Ref. 8) for 1 5 k _< 6 and compares these with 

No. of 
voriobkr 

t 

those of 2$. A method of calculating these values, based 
on a theorem of De Bruijn (Ref. 11) is also discussed in 
Ref. 9. 

To discuss two Froperties of functions f :  t.., + V: which 
tend to make their complexities small, we begin with two 
definitions. 

~~: Length of Funcpion. Let f:V: + V:. We 
define the length I f I of f to be the number of t e r n  ap- 
pearing when f is written out as a mod 2 sum of products. 
For instance, 

10) = o  
111 = 1  

[r1r2 + r 3  I = 2 

I x,x*  + X I  + r, + 1 I = 4 

Furthermore, we define the length of f under (G,H), 
denoted by I f l ( G , H ) ,  to be the minimum length of all func- 
tions in the equivalence to which f belongs under (G, H). 

0ef;nition: Measures p and 1pl of f. Let f :  V: + Vi, and 
let S o  and S ,  denote the set of elements in V:, which are 
mapped into 0 and 1, respectively. (Clearly, So U S ,  = V: 
and So n S ,  = 4.) If si denotes the number of elements 
in S i ,  then we define two measures, p and I p I, of f as 
follows: 

P ( f )  = s1 - so 

I P I ( f )  = Is1--0l 

The measure p was defined and discussed by Hertzig and 
Dean2, but for our purposes I p I will be more convenient. 

A function f is called neutral (Hertzig and Dean use 
the term balanced) if p(f) = I p I (f) = 0. Some properties 

Table 1. Number of classes of Boolean functions 

Vatw d Pk 
Uze of c k r u r  of functions* I 

- ~~ 

4 

16 

256 

65,536 

4,294,967,296(4.3 X 1 09) 

1 8,446,744,073,709,551.61 6( 1.8 X 1 0Iv1 

2 

4 

14 

222 

61 6,126t6.2 X 109 

200,253,952,527.1 84l2.0 X 1 01') 

~~ ~~ 

2 

3 

6 

18 

206 

7,888,299(7.9 X 10') 

*From Harrison [Ref. 8 ) .  I 
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of neutral functions are given in Ref. 8 and the paper cited 
in Footnote 2. For instance, it is shown by Harrison in 
Ref. 8 (as a special case of his Lemma 11) that the num- 
ber of neutral classes of functions f :  vk, + Vi under (Gk,l) 
is greater than, or equal to, 

2 2Zk-(3k/2) A( Z)”& k! 

It is easy to see that the measure Ipl(f) is invariant under 
(G, N ) ;  the length 1 f 1, however, is not invariant. 

The relationship of the length of a function to its algo- 
rithmic complexity is given by the following theorem. 

Theorem 13. Let f: Vt + Vi and set I = 1 f 1 ( G k ,  N). 

Then, there is a (2,Z) automaton realizing f with N ,  stages 
in a time Tf ,  where 

N f  5 k(l + 1 )  - 1 

Tr I 1 + {logs k }  + {logs 1 )  

Proof. Each of the I terms is a product of, at most, 
k variables. Each term therefore requires N I 2k - 1, 
T 2 1 + {log, k}. Since input need not be repeated, all I 
terms can be computed with N I (2k - 1) I - k(l - 1) 
= k ( I  + 1) - I, T 5 1 + {log, k}. To add the I terms 
requires an additional N 2 I - 1, T 2 {log, I}. Hence, 

N ,  _< k(I + 1) - I + ( I  - 1) = k ( l  + 1) - 1 

T,  2 1 + {log, k} + {log, I} 

as required. 

By using a slight modification of the proof of Theorem 8 
-considering mod 2 multiplication rather than mod 2 
addition-it can, in fact, be shown that 

Loosely speaking, Theorem 13 states that short functions 
(functions with small I )  have low complexities. The ques- 
tion of what, in fact, is the maximum value L = L(k)  of 
I f I ( G k , N ) ,  as f ranges over Vi is of interest. It seems plau- 
sible to conjecture the asymptotic formula L(k) - 2k-1. 
In fact, it may even seem reasonable to conjecture that 
L ( k )  = 2k-1; this equality is valid for 1 2 k 5 3. A counter- 
example to this latter conjecture, however, is provided by 

f(xljXZ,x3,X4) = xlxZx3x4 + xlxZx3 + xlxZ + xlx3 f xlx4 
+ ~ 2 x 3  + x2x4 -t ~ 3 x 4  + ~4 

1 0  

for here, I f I ( G , , N )  = 9. We can, however, obtain fairly pre- 
cise bounds for L(k). We first need an inequality of interest 
in its own right. 

Lemma 1 .  If xo > 0, then (1 + X,)~(’+~O) < (1 + ~ X , ) ~ + * ~ O .  

Proof. Define a by (1 + X , ) ~ + ~ O  = and let g(x) 
= (1 + x)log(l + x) - ax. Note that g(xo) = 0. Now 
g’ (x) = log(1 + x) + 1 - a, so g’ (x,) = (axo)/(l + x,) 
+ 1 - a = 1 - a/(l + x,). If 1 + xo < a, then (1 + x,) 
log(1 + x,) < a log(1 + xo) < ax,, since log(1 + x,) < xo 
for xo > 0. This contradicts (1 + x,) log(1 + x,)  = ax,; 
hence, 1 + xo 2 a and g‘ (x,) >_ 0. Since g‘ (x) is increasing 
for x 2 0, we have g(x) 2 0 for x 2 x,. If x = 2xo, 

(1 + 2x0)l+% 2 [exp (ax,)]2 = (1 + X , ) ~ ( ~ + ~ J  

which, thus, proves the lemma. 

Theorem 14. Given E > 0, then for suficiently large k 
we have 

2k-I 4 < L(k) < - 3 2k-‘  I + €  

(The upper bound is valid for all k.)  

Proof. We first establish the lower bound. Since Gk has 
order 2k k !  and N has order 2, there are, at most, 2k+1 k !  
functions in equivalence class under (G, N ) .  There are 

( 7 )  functions of length i, so that if 

2k-1 
then I < L(k). Put I = - and let k +  00 in the left 

I + €  

side of Eq. (16). Although it is possible to obtain an exact 
asymptotic formula for the left side of Eq. (16), for our 
purposes, the following estimate will suffice: 

(17) 
by Stirling’s formula. By Lemma 1 the expression in brack- 
ets is less than 2, so that for large k, the right-hand side of 
Eq. (17) is less than 22k/k!2k+1. This establishes the lower 
bound. 

The upper bound is obtained by induction on k .  It 
clearly holds for k = 0, as L(0) = 0. Assume the result 
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Roprosmmwtvndkn *.in 
k =  1 a dnid C b f S  

1 0 2 

2 0 2 

4 

valid for k - 1. Let f :  VE+V; be a function that achieves 
L(k) = I f I ( G ~ , N ) ,  and write 

f(xl,-’*,xk) = xlfl(&,’..$k) + fZ(&,. . .$k) .  

Transform the input, if necessary, by a permutation in Gk 
sothat I f l (  5 L(k - 1) < t - 2 b 2 .  Hence, 

w 
Irl 

2 

0 

I f 2  I (18) L(k) < 2- + 4 

clearly, f is equivalent under (Gk, N) to rlfl + fl + fz, for 
this results from the complementation xl x1 + 1. It is not 
h a r d t o ~ e e t h a t I f , + f , ( ~ 2 ~ - I f ~ I  - l f z I .  Hence,we 
also have 

L(k) < I fl  I + (2k - 1 fl - I f 2  1) 
= 2k - I f 2  I (19) 

Adding inequality Eqs. (18) and (19) gives 2L(k) < (4/3) 
2k-2 + 2k = 4/3 2k. Therefore, L(k) < 4/3 2L1, and the 

proof follows by induction. Theorem 14 is so proved. 

We now show the relatirnp between the measure 1 p I 
and algorithmic complexity. 

Theorem 15. Let f :  V:+V:. If 1 p I(f) = m; then, there 
exists a (2,2) automaton renlizing f with N, stages and a 
computation time T,, where 

1 N, 2 Tk(2L - m) + k - 1 

Proof. If I p I(f) = m, then one of So or SI, say So, has 
1 1 
3(2k - m) elements and the other one has 3(2k + m) ele- 

ments. We now use the procedure of the proof of Theo- 
rem 4 to compute f .  To determine whether the input is 
equal to a given ked element of So requires 

N < 2 k - 1  

T 5 1 + {log, k} 

Hence, to test all (2k - m)/2 elements of So, without re- 
peating input, requires 

1 N 2 k + 3 (2k - m) (k - 1) 

1 
2 At this point we h a ~ e - ( 2 ~  - m) stages, of which exactly 

one is equal to 1 if, and only if, the input was in So; other- 
wise, all (2k - m)/2 stages are 0. To determine whether 

b. Two variables 

k = 2  

1 

2 

3 

4 

k = 3  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Table 2. (Cont’d) 
e. Three variables 

No. in 
clru 

2 

6 

6 

24 

2 

24 

24 

24 

8 

8 

16 

48 

48 

16 

256 

w 
Irl 

Irl 
8 

0 

0 

4 

0 

0 

0 

0 

0 

4 

6 

2 

2 

2 
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one of these (2’” - m)/2 stages is 1 requires an additional 
N,T as follows: 

1 N 5 _;Z(2R - m) - 1 

T I { log2-] = {10g2(2’” - m)> - 1 

Combination of inequality Eqs. (20) and (21) gives the 
statement of the theorem, completing the proof. 

Theorem 15, in effect, states that highly non-neutral 
functions have low complexities, which is not surprising. 
Theorems 13 and 15 combined suggest that the place to 
look for algorithmically complex functions is among the 
nearly neutral functions of long length. 

Table 2 describes the equivalence classes of the Boolean 
functions of k variables under (Gk, N )  for k 2 3. Included 
are representative functions of minimal length in each 
equivalence class, the number of functions in each class, 
and the common measure I p I of the functions in each 
class. 

V. SUMMARY 

We have defined the concept of algorithmic complex- 
ity in order to estimate the size and the time required 
for a computer to calculate various functions. In general, 
we would like to determine the exact complexity of any 
given function, but this seems much too difficult. In this 
report, therefore, we have discussed methods of approx- 
imating the complexity of special classes of functions. 

Using a (2, 2) automaton as a model for a computer, 
we have determined the maximum size (number of stages) 
required to compute any function within a factor of 8; 
at the same time, we have determined the maximum 
time required asymptotically. An important special class 
of functions is made up of linear mappings; we have 

obtained bounds on their algorithmic complexity which, 
in the case of multiplication by a square matrix, are 
accurate within a factor of 8. Many functions have com- 
plexities considerably less than the upper bounds 
obtained in Section 11; therefore, recognition of such 
functions is important. We have shown that the com- 
plexities of functions equivalent under certain permuta- 
tion groups do not differ significantly. 

In many cases, a function may be seen to have low 
complexity when it is compared with an equivalent func- 
tion whose complexity has been estimated by some other 
means. Measure and length are two such criteria used 
to guarantee that a function has low complexity. 

1 2  
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