
GPO PRI

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Technical Report No. 32-999

Algorithmic Complexity

Richard Sfanley

E S

CFSTf PRICE(S) $

. -

Microfiche (M F)

ff 663 Jub 85

(ACCESSION N U M B E ~ ,
0

>
L

L (THRUI

- (PAGES1
i
< L

1-

-
J E T P R O P U L S I O N L A B O R A T O R Y
C A L I F O R N I A I N S T I T U T E OF T E C H N O L O G Y

P A S A D E N A . C A L I F O R N I A

September 1, 1966

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Technical Report No. 32-999

Algorithmic Complexity

Richard Stanley

R. M. Goldstein, Manager
Communications Systems Research Section

J E T P R O P U L S I O N L A B O R A T O R Y
CALIFORNIA INSTITUTE OF TECHNOLOGY

P A S A D E N A , C A L I F O R N I A

September 1, 1966

Copyright @ 1966
Jet Propulsion Laboratory

California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics & Space Administration

b .

JPL TECHNICAL REPORT NO . 32-999 ' .

CONTENTS

1 . Introduction i
A . Definition of (p . Q) Automaton 1

B . Algorithmic Complexity Concept 2

II . Algorithmically Complex Mappings 3

111 . Algorithmic Complexity of Linear Mappings 6

IV . Crhr ia for Small Complexity 8

V . Summary 12

Refererues 13

TABLES

1 . Number of classes of Boolean functions 9

11 2 . Boolean functions of k 5 3 variables under (Gk. N)

FIGURE

1 . Conversion of M into M' 4

' . JPL TECHNICAL REPORT NO. 32-999

ABSTRACT

The concept of algorithmic complexity that was introduced by
Kolmogorov and expanded by Ofman provides a quantitative means
of measuring the complexity of computing a discrete function-i.e., a
function with finite domain and range. To be precise in the work
reported here, it is assumed that the computation is done by a special
type of finite-state machine, a (p, q) automaton. After reviewing
the definitions in the field of algorithmic complexity, estimates are
made for the maximum possible algorithmic complexity of a discrete
function that can be computed on the simplest possible (p , 9) autom-
aton, a (2, 2) ; this allows comparison of the algorithmic complexities
relative to (p, q) automata and those relative to (2, 2) automata.
Next, bounds are obtained on the complexity of matrix multiplication.
Finally, algorithmic complexity is related to the theory of permutation
groups on the domain and range of a function, and various criteria
are discussed for ensuring a function's having relatively low vmplexity.

1. INTRODUCTION

In this report, two fundamental problems of computer
design are considered theoretically- minimizing the
number of components (and, therefore, the cost) of the
computer, and minimizing the computation time re-
quired. We define a mathematical object called a (p,q)
automaton, where p and q are integers 2 2, which is to
be regarded as an abstract model of a computer. The
theory is easily modified to handle many other models
of computers. Each (p79) automaton computes a s@c
function and has a well defined number of components
(stages) and computation time. Our object is to obtain
upper and lower bounds on the number of stages and
on the computation time required to calculate various
functions. The least number of stages and least time
required to compute a function f on any (p , q) automaton
for fixed p and 9 is defined to be the algorithmic
complexity of f relative to (p , g) automata. A precise
definition of algorithmic complexity is given below.

In Section 11, we consider the largest possible algorith-
mic complexity that a function can have; and in Section
111, we discuss the complexity of matrix multiplication

[over the field GF(2)]. Finally, in Section IV, by using
the concept of equivalence of functions under pexmu-
tation groups, we obtain criteria that guarantee that two
functions have approximately the same complexity, and
that a function has a relatively low complexity.

-

We begin with the necessary definitions. Let V7de-
note the space of m-tuples over an alphabet of p sym-
bols. Then, to defhe the algorithmic complexity of a
function f : V:+ V:, we must first define a (p ,q) autom-
aton that computes f.

A. Definition of Ip, ql Automaton

A (p ,q) automaton, with p,g 2 2, is an autonomous
finite-state machine built of storage elements and gates.
The storage elements, or stages, can be in one of p states
at any time, corresponding to the p symbols of the
alphabet. The gates determine the next state of the
stages as a function of the immediately preceding states
of, at most, q stages. In digital circuit terminology, there
is, at most, one level of gating, and the gates have a

_.
JPL TECHNICAL REPORT NO. 32-999 0

fan-in of, at most, q. The fan-out of each stage could be
limited, also (Ref. l), but this does not appear to add
to the theory.

Further, the (p,q) automaton is defined as a (p-ary)
shift register without feedback. That is, there is a num-
bering of the stages Z1, &, -.., 2, such that, if j > i, the
state of each stage Zi at time j equals the state at time i.
The initial time (before the first shift) is t = 1. The stages
that determine the state of a given stage at the next
time-instant have no higher index than the stage deter-
mined; in fact, the restriction is made that the present
state of a stage does not affect the next stage.

The machine is thought of as effecting a mapping
f : Vi+V; for some k,n > i. Here, k + n 5 N ; the first k
stages correspond to Vi, and the last n to V;. The initial
state of the machine is as follows: an arbitrary element
of Vi can be in the first k stages (the input stages) which,
in practice, are usually loaded into an input register.
The remaining N - k stages are set, or cleared, to a fixed
symbol, zero.

After a certain time-a time of, at most, N suffices-
the states of all stages of the machine become, and
remain, constant. At this time, the algorithm is declared
computed for the given input k-tuples. The output
n-tuple is then the contents of the last n output stages,
often called the output register. The states of the re-
maining N - n stages do not concern us at this time, but
the machine must be cleared before a new computation
starts.

This completes the (informal) definition of (p,q) au-
tomata. When p=q=2, the automaton becomes a binary

feedbackless shift register built with, at most, one level
of gates that are, at most, two-legged. We note that,
although the class of finite-state machines defined above
appears restrictive, nevertheless, any algorithm comput-
able by any finite state machine in the most general
form is also computable by some suitable (2,2) autom-
aton without feedback (see Ref. 2).

B. Concept of Algorithmic Complexity

from Ref. 3.
To define this concept, we will use Ofman’s definition

Definition. Given integers k, p, q > 1, n >_ 1, and a
function f : Vi + V i , consider all those (p , q) automata
that realize f as a mapping from the first k stages at
time 1 to the last n stages at some time when the state
of the machine is stabilized and where the input and
output stages are disjoint. Call this class of machines
M j p , q) , or M , for brevity. For B, an automaton in M ,
let N , be the number of stages of B, and let Te be the
earliest time at which the output is available. Finally,
let A(f) be the set of all ordered pairs (N,, TB) for B in
M , such that for no C in M is N , 2 N,, and such that
Tc 5 Ts with at least one inequality strict. Then, the
set A(f) is called the algorithmic complexity of f .

Remarks. It is clear that A(f) is never empty. Ordi-
narily, A(f) will have more than one element, although
it is always a finite set. If C belongs to M, then there is
a B in A(f) that is at least as desirable as C for com-
puting f-since some B in A(f) computes f with, at most,
the number of stages that C has in, at most, the time
that C takes.

b.

JPL TECHNICAL REPORT NO. 32-999
t .

II. ALGORITHMICALLY COMPLEX MAPPINGS

Suppose that a class C of c functions f : Vt - V: is
given. Theorems 1 and 2 show that the algorithhc mm-
plexity of at least one of the functions in C cannot be too
small. Theorem 1 is a generalization of a result in Ref. 4.

Theorem 1. Let C be a cZus of c distinct functions
f : Vi-.V: such that c > 21b -So. Then, there is at kast
one functwn f o in C such thut every (2,2) automaton
realizing fo requires

stages.

Proof. A (2,2) automaton with N stages is determined

by which pair of stages of the ("i') pairs each stage

is affeded, and by which one of the 2,' = 16 functions
V+V: specifies the relation. Hence, there are, at most,

u

[8(i - 1) (i - 2)]' < c
i=1

then some function f o E C requires greater than N stages
to be computed.

Since each term of the left side of Eq. (1) is greater
than twice the preceding term, we have

N C [8(i - 1)(i - 2)]' < 2 0 8 ~ (N - l)N (N - 2)N
i=1

<2=BNNZN (2)

Now let N be the largest integer, such that

It follows that

2 8N+1 (N + 1)2(N+1) 2 c (4)

Since log,x is a monotone increasing function, we may
take the log, log, of each side of inequality Eq. (3):

If c 2 17, then both sides of inequality Eq. (5) are postive,
and we have

1 1 I

lO&N + log, (2log,N + 3 + N ' log, ;OgZ .
(6)

Multiplication of inequality Eq. (6) by the log, of m-
equality Eq. (4) gives

1 + - log,(N + 1) + - + -
log2 c

log,N + log, 2log,N 3 3 + - 3 > log2log, ;I (7)

;) (

An analysis of the bracketed quantity shows it to be < 1
when N > 4. Therefore,

log, c
> 2 log, log, c

when N > 4 or c > 2 - 8" 5l0, or approximately 2s9.22.
The above computations prove Theorem 1.

A similar result for the computaton time T is givem in
the following theorem.

Themem 2 Let C be a closs of c distinct functioru
f : V:+V:. Then, there is at least one function fo in C mch
that every (2,2) automaton realizing f o requires a ann-
putation time

T > loge log, c - logo log, k

Proof. It s&ces to consider the case n= 1, since all out-
put bits may be computed separately and simultaneously.

If M is a (2,2) automaton that computes a function
f : Vi-.V:, then there is' another (2,2) automaton M' that
computes the same function f with the same computation
time as M, such that every stage of M' has, at most, one
fan-out, and such that there are exactly ZT-' stages of M'
that are first affected at time t. It may be necessary,
however, to repeat the same input bit into more than one
input stage of M'. To construct M' from M, it is necessary
only to label each stage of M, copy the one output stage,
connect it to the two stages on which it depends, label
these two stages to correspond to M, then repeat the

'A discussion of properties of automata of the type M appears
in Ref. 1.

3

,.
JPL TECHNICAL REPORT NO. 32-999

process until only stages with input labels remain un-
connected to stages above them (see Fig. 1). At this point,
we can add extraneous stages that merely double the
multiplicity of each input stage until each input stage is
removed by a time T from output.

Each of the ZT-' - 1 stages at time t, with 2 5 t 2 T, is
determined by one of the 16 functions g: VZ,+V:. (The
stages that repeat input correspond to one of these func-
tions g; for example, g(xl, x,) = xl.) The ZT-' stages at
time t = 1 are determined by which of the k input bits
they admit. Hence, there are, at most,

16(ZT-I-1) k2T-I

different functions f : Vt+V: that can be realized in a
time Ton a (2,2) automaton.

Now, if
T

S(T) r= 16(zt-'-1) k"-' < c
t=1

there is a function f E C that requires a time greater than
T to be computed on any (2,2) automaton. But

S(T) < 2 162T-'-1 k2'-'

so that

log,S(T) < Z T + l (1 + f log, k)
and

log, log, S(T) < T + 1 + log,(l + f log, k)
5 T + log, log, k (9)

Let T be the largest integer, such that

T < (log, log2 C) - (log, log, k)

A B C D w

Then, from Eq. (9),

log, log, S(T) < log, log, c

Hence, there is a function requiring a time greater than
T and, therefore, greater than or equal to

log, log, c - log, log, k

This completes the proof of Theorem 2.

Since there are 2n.2k distinct functions f : Vt+V:, there
are immediate corollaries of Theorems 1 and 2.

Corollary 1 . If n 2k > 39, there is some function
f : Vt+V; such that every (2,2) automaton realizing f re-
quires

stages.

Corollary 2. There is some function f : Vt+V,l such that
every (2,2) automaton realizing f requires a computation
time

We shall now obtain upper bounds on the algorithmic
complexity of any function f : Vt+Vy; combined with
Corollaries 1 and 2, they give a narrow range for the
maximum complexity possible for Boolean functions. The
first theorem is essentially from G. N. Povarov (Ref. 5).

2 3 I C I D

V 4

4

A B C C A B D D V
4 A B A B

4

Fig. 1. Conversion of M into M'

4

4
M'

. .
JPL TECHNICAL REPORT NO. 32-999

Theorem 3. Given 0 < E < 1, for stcfficient large k
a d n < 2 p k - k , any function f : V+V: can be realized
on a (2,Z) automaton with

Proof. G. N. Povarov proves in Ref. 5 that any function
f : V: + V: can be realized by a (2 ,2) automaton with

stages. Here, m is an arbitrary, positive integer less
than k. Let m be the integral part and 6 the frac-
tional part of log, Iog,(nP) - 45 . Then rn < k provided
n < 22k-'i , and Eq. (10) becomes

For sdciently large k (depending only on E) , the second
term is less than E/S times the first. Since 26 < 2, and 2E/5
< 1 + 245 when 0 < E < 1, Eq. (11) becomes

and Theorem 3 follows.

Corollary 1 and Theorem 3, together, determine the
maximum number of stages required to compute a func-
tion within a factor of 8.

Theorem 4. Any function f:Vf+V; can be realized
on a (2,2) automaton with computation time

T < k + bg ,k + 1

Proof. It sufEces, as usual, to consider the case n = 1.
Let So and S, denote the set of k-tuples in Vi whose image
under f is 0 and 1, respectively. One of Si satisfies I Si I
- < 2k-1, say So. For each given x E So a time T < log,k + 2
is required to determine if the input k-tuple is equal to I.
In the automaton performing this computation, every
stage has only one fan-out and every stage (except input)
is an AND gate. The output bit is a 1 if x E So; it is a 0 if
r 4 So. The I So I output bits, 0 or 1, can all be computed
simultaneously. To determine if one of these I S,, I bits is a
1 requires an additional time T I k - 1, since I So 1 5 2k-1.
Here again, every stage has one fan-out, only; but now,
every stage is an (inclusive) OR gate. The final output

bit is 0 if x E So, and 1 if x 4 S o , i.e., the function value of x.
Thus, the entire computation time is

T < k + l o g , k + l

which completes the proof.

The above theorems allow us to compare the perform-
ance of (2, 2) automata and (p , q) automata. In order to
compute a function f: V: + Vp" on a (2, 2) automaton,
it is necessary to encode the p symbol alphabet onto some
subset of r-tuples from Vi, where 2"' < p 5 2'. Each stage
of the original (p , q) automaton computing f is replaced
by r binary stages. The function f now has domain Vg' and
range V:'. Let N (p , q) and T (p , q) denote the number of
stages and computation time of a given (p, q) automaton
as deihed in the Introduction. It is stated in Ref. 3 that
there exist constants C, and C2 depending only on p and
q, such that

It is now easy to obtain bounds for C , and C,.

Theorem 5. For any 0 < E < 1 and pq sufficiently large,
we h u e

Proof. We first replace each p-ary stage by I 5 log, p
+ 1 binary stages. Each binary stage now depends on
qr stages, so that our (p, q) automaton with N (p , q) stages
has become a (2, qr) automaton with rN(p , q) stages. We
replace each stage, together with the qr stages on which
it depends, by a (2, 2) automaton with qr input stages
and 1 output stage. By Theorem 3, this requires at most
[(a 2qr)/qr] (1 + E) - qr - 1 additional stages for each
stage r e p l a d , when qr I log, pq + q is sufficiently
large. Hence, our (p , q) automaton has become a (2, 2)
automaton with

stages. Since r 5 log, p + 1, we get

and, thus, complete the proof.

5

. .
JPL TECHNICAL REPORT NO. 32-999

>

Theorem 6. an additional time less than qr + log, qr - 1 (2 is sub-
tracted from the upper bound of Theorem 4 because the
input and output are part of the (2, qr) automaton).
Therefore,

T(27 2, I (q(' i- log' p , + log' q(l

Proof. In the proof of Theorem 5, the conversion of the

bgz p)) T(ps q ,

T(292) I (qr + log2 qr - 1) T(P, 4) + T(p, q) (p , 9) automaton to a (2, qr) automaton does not increase
the computation time. If we replace each stage, as well
as the qr stages on which it depends, by a (2 ,2) automaton
as constructed in Theorem 4, then by Theorem 4, for
each unit of time in the (2, qr) automaton, we are adding

I [dog2 P + 1) + log, Q (log, P + I)] T(p, 9)

completing the proof.

111. ALGORITHMIC COMPLEXITY OF LINEAR MAPPINGS

Let A be here a fixed r X s matrix over the field GF(2).
Consider A as a mapping A: Vlt + Vit performing the
operation of matrix multiplication whose domain consists
of all r X t matrixes over GF(2) and whose range consists
of r X t matrixes over GF(2). Since there are 2'* distinct
r X s matrixes A, the following theorem is an immediate
consequence of Theorem 1.

Theorem 7. If rs > 39, then there is some r X s matrix
A over GF(2), such that every (2, 2) automaton perform-
ing the matrix multiplication A: V l t + Vi t requires at
least rs/(2 lpg,rs) stages.

By modifying Theorem 3, L. R. Welch (Ref. 6) has ob-
tained a converse to Theorem 7, of which the following
theorem is a slight modification.

Theorem 8. Any matrix multiplication A:V;' + Vit can
be realized on a (2,2) automaton with

stages, where brackets denote the integer part.

Proof. It suffices to prove the theorem for t = 1, since
A can produce each of the t columns of the range inde-
pendently, to give a factor of t . We claim that there is a
(2,2) automaton M , with m input stages and 2" stages in
all, such that the stages realize all 2" linear functionals of
the input variables into GF(2). This assertion is clearly
true for m = 1; a stage with no inputs produces the zero
functional, whereas the input stage itself produces the
remaining linear functional of one variable. Suppose
the hypothesis is true for m - 1. Then, there is an autom-

aton M, with 2"' stages realizing all linear functionals
of m - 1 variables xl, . e - , G - ~ .

Adjoin 2"' - 1 stages, each of which depends on xm
and one stage of Mo, excluding the stage which realizes
the zero functional. Each new stage computes the oper-
ation of mod 2 addition. Clearly, the enlarged automaton
has 2" stages that realize all linear functionals of m vari-
ables xl, * . - , xm. The proof of the assertion now follows
by induction.

First, for any given so, 1 2 so 2 s, group the s variables
into sets of size so with the last group of size u = s - so [s/.so]
(brackets denote the integer part). Then, for each set,
form all linear functionals using

280 + 2" s - u -
so

stages. Now, each of the r output functions is a linear
combination of [(s - o)/s,] + 1 functions. This combina-
tion can be constructed with (s - a) / s 0 stages. The total
number of stages is, then,

N = r - + - S - u s - 0 2#o + 2-
so so

Let so equal the integer part of 10g2r, and let 6 equal the
fractional part of log,r. Equation (12) becomes the in-
equality

and Theorem 8 follows.

6

JPL TECHNICAL REPORT NO. 32-999 ' .

In particular, if r 5 2"', then

3rst
log,r - 1

If r > 2', then at least r - 28 rows of A must be dupli-
cated, which requires only t stages each, once the rest
of the multiplication has been computed. Hence, when
r > 2., we get

N + 2 + 2 ' log, 2') +t (t -2 ')

= t (21.1 + r)

The ratio of the upper and lower bounds obtained in
Theorems 7 and 8 grows arbitrarily large, even for h e d t.
For small r and large s, the l m e r bound becomes un-
realistic; e.g., when s > 2ur, the lower bound is less than
s/%, while 2s - 1 stages are needed when

A =

In the case in which r = s and t = 1, i.e., when A is a
square matrix that operates on a vector, the two bounds
differ by a factor of 8 as r + m:

< N < - 2rz + r
4 log, r - [log, r]

The upper bound also becomes unrealistic for small n
and large k. The next theorem gives another upper bound,
which is more precise in this case. A similar result is
stated by L. R. Welch (Ref. 6) without proof; Welch does
not include the input stages in his bound.

Theorern 9. Any mmtr& multipliwtion A:VZt + Vit cun
be realized on a (2,2) automaton with

stages.

Proof. As before, we may assume t = 1. Let Ail*, * * e i k

denote the collection of all those columns cj,, cj,, - - e, cju

of A which have a 1 in their i , i,, ..e, i k coordinates and a
0 elsewhere. For each such collection cj,, . e., cju, con-
struct an automaton with less than u - 1 stages (exclud-
ing input) which adds mod 2 the u input variables
xj, , -.-, xju. We now have Zr-l subautomata with a total
of, at most, 2s - 1 stages, since they all share s input
stages, and any A+, i2 * * * ik is disjoint from any other one.

It remains only to connect various subautomata by
mod 2 addition to compute the r output bits. It is not
hard to see that these connections are equivalent to mul-
tiplication by a special matrix with r rows and 2"' col-
umns. If two columns of this special matrix are identical,
then they both contain only 0's. By Theorem 8, it
requires less than r2'/[log, r] + r stages to perform this
multiplication, of which 2' have already been used for
input. Hence, we have used, altogether,

stages. This computation completes the proof of The-
orem 9.

The problem of finding the least computation time for
matrix multiplication is not as interesting as the problem
of finding the number of stages, since each entry of the
output matrix can be computed simultaneously. Thus, the
least time T is simply the least time required to compute
the scalar product z x, where z is a fixed s-tuple and x is
an input s-tuple. If z contains exactly a ones, then the
least possible computation time is clearly {log, a} + 1,
where {y) denotes the rounding upward function, i.e.,
the least integer greater than, or equal to, y. We state the
above observations as a theorem.

Theorem 10. I f A is an r X s mcrtrir over GF(2), theta
the matrir multipliaatiolP A: VZt+ Vlt aan be realized
by a (2 , Z) automaton with a computatwn time

T = 1 + { b g a } (13)

where a is the greatest number of ones appearing in any
row of A, and { x } denotes the rounding upward jhc-
twn. Furthennore, e o e y (2,2) automaton realizing A
requires a comptctation time at least as large as that gioen
in Eq. (13). In particular, some r X s matrixes require a
time T = 1 + {log s}, but no r X s matrix requires more
time.

7

JPL TECHNICAL REPORT NO. 32-999
4

IV. CRITERIA FOR SMALL COMPLEXITY

There are a number of properties that a Boolean func-
tion f : V: + VF may have which guarantee that it have a
relatively low algorithmic complexity. A knowledge of
these properties also narrows the search for specific func-
tions of high complexity. We shall restrict our concern,
generally, to the case n = 1; when n > 1, the automaton
may be regarded as n independent automata sharing the
same input.

We begin with the concept of equivalence of functions
under permutation groups on their domain and range.
Let G be a permutation group on the set of all k-tuples
(x I , . . e , xk) EV:, and let H be a permutation group on the
set of all n-tuples (y l , . . ., yn) E V;. We say that the func-
tions f : Vi + V; and g: Vi + V; are equivalent with G
on the domain and H on the range if for some fixed T E G,
c E H we have

CT f [+)I = g (4 (14)

for all x E V i . We use the notation (G, H) to denote a
group G acting on the domain and a group H acting on
the range of a Boolean function; if Eq. (14) holds, then,
we also say that f and g are equivalent under (G, H) . (It is
easily seen that the relation that we have called equiva-
lence under (G, H) is, indeed, an equivalence relation.)
Let E(G, H) denote the number of equivalence classes
induced by the equivalence relation (G, H) .

We shall be concerned with the following permutation
groups G, H :

the group of all 2k complementations of in-
put variables: This group is isomorphic to
the elementary abelian group of order 2k.

the symmetric group on the k input varia-
bles: This is the group of all permutations
of input bits.

the smallest group containing both Ci and
s k : Gk is the serni-direct product of Ci and
s k (see Theorem 4 in Section 6 of Ref. 7).

the full linear group on the input variables:
This is the group of all nonsingular linear
transformations of the input variables.

the affine group on the input variables: This
is the smallest group containing both Ct and
GLk.

H = l

For n = 1,
H = N

the group consisting only of the identity: In
other words, two elements y l , y2 of the range
are considered equivalent if, and only if,
y1 = y2.

the group of complementations on the
range: N is isomorphic to the cyclic group
of order 2.

For some applications of these groups to the theory of
Boolean functions, the reader is referred to Harrison
(Refs. 7-10) and to Hertzig and Dean2. An immediate
application to algorithmic complexity is given by the
following theorem.

Theorem 11. T h e algorithmic complexity Mf of
f : vt + vi is invariant under (Gk, N); i.e., if f and g are
equivalent under (Gk, N) , then f and g have exactly the
same algorithmic complexity on a (2, 2) automaton.

Proof. A permutation E S k of the variables merely
corresponds to a relabeling of the stages of the autom-
aton and, consequently, does not affect the algorithmic
complexity. If a complementation u E Cl;. is carried out
on certain variables, then we need only appropriately
alter the functions f o : Vi + Vi of pairs of input variables
that correspond to the first step of the computation.
Again, the algorithmic complexity is not affected. The
complementation on the range may be incorporated into
the last step of the computation when necessary, without
altering the complexity. Since every permutation in Gk
is the product of permutations in C: and s k , the proof of
Theorem 11 is complete.

The group GLk (and hence, A,) does not preserve algo-
rithmic complexity. For instance, when k > 1, the per-
mutation taking x1 + x1 + x2 + ... + x k results in an
increase of complexity in computing f(xl, a.0, x k) = xl.
The next theorem, however, shows that functions equiv-
alent under (Ak, N) cannot differ in their complexity by
too great an amount.

Theorem 12. If f : Vi + Vi and g: Vi + V; me equiv-
alent under (Ak, N), and if f can be computed with Nf
stages in a time Tf on a (2, 2) automaton, then g can be

’ Hertzig, D., and Dean, R., “Decompositions and Equivalences
of Numerical Functions on a Vector Space Over GF(2),” un-
published paper (private communication from Professor Dean,
California Institute of Technology).

8

I

* .

JPL TECHNICAL REPORT NO. 32-999

computed with N, stages in a time To on a (2,2) automu-
ton, where

Proof. By assumption, there is a ked (nonsingular)
matrix A, a ked vector v, and a fhed permutation r e N,
such that

g (r) = rflAx + v)
for all x in VE. Hence, g can be computed by first com-
puting Ax + v, then computing xf(Ax + v). The permu-
tation r can be incorporated-into the last step of the
computation off, SO N,, = N , and T,, = Tf. Let N , and
T, denote the nwnba of stages and computation time
for computing Ax + v. Since the output of Ax + v
corresponds to the input of f , we have

No 5 Nf + N , - k

To 2 T f + T, - 1 (15)

The addition of o to Ax can be incorporated into the last
step of the computation of Ax, so that we can take for
N, and T, the bounds for matrix multiplication obtained
in Theorems 8 and 9. Substitution of these results into
Eq. (15) gives Theorem 12.

Theorems 11 and 12 result in a substantial decrease in
the number of functions f : V:+ V: that have to be con-
sidered when dealing with algorithmic complexity. Rather
than considering 2$ functions, we may consider, instead,
E(Gk, N) or E(Ak, N) classes of functions. Table 1 repro-
duces the values of E(G*, N) and E(AI, N) obtained by
Harrison (Ref. 8) for 1 5 k _< 6 and compares these with

No. of
voriobkr

t

those of 2$. A method of calculating these values, based
on a theorem of De Bruijn (Ref. 11) is also discussed in
Ref. 9.

To discuss two Froperties of functions f : t.., + V: which
tend to make their complexities small, we begin with two
definitions.

~~: Length of Funcpion. Let f:V: + V:. We
define the length I f I of f to be the number of t e r n ap-
pearing when f is written out as a mod 2 sum of products.
For instance,

10) = o
111 = 1

[r1r2 + r 3 I = 2

I x,x* + X I + r, + 1 I = 4

Furthermore, we define the length of f under (G,H),
denoted by I f l (G , H) , to be the minimum length of all func-
tions in the equivalence to which f belongs under (G, H).

0ef;nition: Measures p and 1pl of f. Let f : V: + Vi, and
let S o and S , denote the set of elements in V:, which are
mapped into 0 and 1, respectively. (Clearly, So U S , = V:
and So n S , = 4.) If si denotes the number of elements
in S i , then we define two measures, p and I p I, of f as
follows:

P (f) = s1 - so

I P I (f) = Is1--0l

The measure p was defined and discussed by Hertzig and
Dean2, but for our purposes I p I will be more convenient.

A function f is called neutral (Hertzig and Dean use
the term balanced) if p(f) = I p I (f) = 0. Some properties

Table 1. Number of classes of Boolean functions

Vatw d Pk
Uze of c k r u r of functions* I

- ~~

4

16

256

65,536

4,294,967,296(4.3 X 1 09)

1 8,446,744,073,709,551.61 6(1.8 X 1 0Iv1

2

4

14

222

61 6,126t6.2 X 109

200,253,952,527.1 84l2.0 X 1 01')

~~ ~~

2

3

6

18

206

7,888,299(7.9 X 10')

*From Harrison [Ref. 8) . I

9

- .
JPL TECHNICAL REPORT NO. 32-999

of neutral functions are given in Ref. 8 and the paper cited
in Footnote 2. For instance, it is shown by Harrison in
Ref. 8 (as a special case of his Lemma 11) that the num-
ber of neutral classes of functions f : vk, + Vi under (Gk,l)
is greater than, or equal to,

2 2Zk-(3k/2) A(Z)”& k!

It is easy to see that the measure Ipl(f) is invariant under
(G, N) ; the length 1 f 1, however, is not invariant.

The relationship of the length of a function to its algo-
rithmic complexity is given by the following theorem.

Theorem 13. Let f: Vt + Vi and set I = 1 f 1 (G k , N).

Then, there is a (2,Z) automaton realizing f with N , stages
in a time Tf , where

N f 5 k(l + 1) - 1

Tr I 1 + {logs k } + {logs 1)

Proof. Each of the I terms is a product of, at most,
k variables. Each term therefore requires N I 2k - 1,
T 2 1 + {log, k}. Since input need not be repeated, all I
terms can be computed with N I (2k - 1) I - k(l - 1)
= k (I + 1) - I, T 5 1 + {log, k}. To add the I terms
requires an additional N 2 I - 1, T 2 {log, I}. Hence,

N , _< k(I + 1) - I + (I - 1) = k (l + 1) - 1

T, 2 1 + {log, k} + {log, I}

as required.

By using a slight modification of the proof of Theorem 8
-considering mod 2 multiplication rather than mod 2
addition-it can, in fact, be shown that

Loosely speaking, Theorem 13 states that short functions
(functions with small I) have low complexities. The ques-
tion of what, in fact, is the maximum value L = L(k) of
I f I (G k , N) , as f ranges over Vi is of interest. It seems plau-
sible to conjecture the asymptotic formula L(k) - 2k-1.
In fact, it may even seem reasonable to conjecture that
L (k) = 2k-1; this equality is valid for 1 2 k 5 3. A counter-
example to this latter conjecture, however, is provided by

f(xljXZ,x3,X4) = xlxZx3x4 + xlxZx3 + xlxZ + xlx3 f xlx4
+ ~ 2 x 3 + x2x4 -t ~ 3 x 4 + ~4

1 0

for here, I f I (G , , N) = 9. We can, however, obtain fairly pre-
cise bounds for L(k). We first need an inequality of interest
in its own right.

Lemma 1 . If xo > 0, then (1 + X,)~(’+~O) < (1 + ~ X ,) ~ + * ~ O .

Proof. Define a by (1 + X ,) ~ + ~ O = and let g(x)
= (1 + x)log(l + x) - ax. Note that g(xo) = 0. Now
g’ (x) = log(1 + x) + 1 - a, so g’ (x,) = (axo)/(l + x,)
+ 1 - a = 1 - a/(l + x,). If 1 + xo < a, then (1 + x,)
log(1 + x,) < a log(1 + xo) < ax,, since log(1 + x,) < xo
for xo > 0. This contradicts (1 + x,) log(1 + x,) = ax,;
hence, 1 + xo 2 a and g‘ (x,) >_ 0. Since g‘ (x) is increasing
for x 2 0, we have g(x) 2 0 for x 2 x,. If x = 2xo,

(1 + 2x0)l+% 2 [exp (ax,)]2 = (1 + X ,) ~ (~ + ~ J

which, thus, proves the lemma.

Theorem 14. Given E > 0, then for suficiently large k
we have

2k-I 4 < L(k) < - 3 2k-‘ I + €

(The upper bound is valid for all k.)

Proof. We first establish the lower bound. Since Gk has
order 2k k ! and N has order 2, there are, at most, 2k+1 k !
functions in equivalence class under (G, N) . There are

(7) functions of length i, so that if

2k-1
then I < L(k). Put I = - and let k + 00 in the left

I + €

side of Eq. (16). Although it is possible to obtain an exact
asymptotic formula for the left side of Eq. (16), for our
purposes, the following estimate will suffice:

(17)
by Stirling’s formula. By Lemma 1 the expression in brack-
ets is less than 2, so that for large k, the right-hand side of
Eq. (17) is less than 22k/k!2k+1. This establishes the lower
bound.

The upper bound is obtained by induction on k . It
clearly holds for k = 0, as L(0) = 0. Assume the result

a .

JPL TECHNICAL REPORT NO. 32-999 * .

Roprosmmwtvndkn *.in
k = 1 a dnid C b f S

1 0 2

2 0 2

4

valid for k - 1. Let f : VE+V; be a function that achieves
L(k) = I f I (G ~ , N) , and write

f(xl,-’*,xk) = xlfl(&,’..$k) + fZ(&,. . .$k) .

Transform the input, if necessary, by a permutation in Gk
sothat I f l (5 L(k - 1) < t - 2 b 2 . Hence,

w
Irl

2

0

I f 2 I (18) L(k) < 2- + 4

clearly, f is equivalent under (Gk, N) to rlfl + fl + fz, for
this results from the complementation xl x1 + 1. It is not
h a r d t o ~ e e t h a t I f , + f , (~ 2 ~ - I f ~ I - l f z I . Hence,we
also have

L(k) < I fl I + (2k - 1 fl - I f 2 1)
= 2k - I f 2 I (19)

Adding inequality Eqs. (18) and (19) gives 2L(k) < (4/3)
2k-2 + 2k = 4/3 2k. Therefore, L(k) < 4/3 2L1, and the

proof follows by induction. Theorem 14 is so proved.

We now show the relatirnp between the measure 1 p I
and algorithmic complexity.

Theorem 15. Let f : V:+V:. If 1 p I(f) = m; then, there
exists a (2,2) automaton renlizing f with N, stages and a
computation time T,, where

1 N, 2 Tk(2L - m) + k - 1

Proof. If I p I(f) = m, then one of So or SI, say So, has
1 1
3(2k - m) elements and the other one has 3(2k + m) ele-

ments. We now use the procedure of the proof of Theo-
rem 4 to compute f . To determine whether the input is
equal to a given ked element of So requires

N < 2 k - 1

T 5 1 + {log, k}

Hence, to test all (2k - m)/2 elements of So, without re-
peating input, requires

1 N 2 k + 3 (2k - m) (k - 1)

1
2 At this point we h a ~ e - (2 ~ - m) stages, of which exactly

one is equal to 1 if, and only if, the input was in So; other-
wise, all (2k - m)/2 stages are 0. To determine whether

b. Two variables

k = 2

1

2

3

4

k = 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Table 2. (Cont’d)
e. Three variables

No. in
clru

2

6

6

24

2

24

24

24

8

8

16

48

48

16

256

w
Irl

Irl
8

0

0

4

0

0

0

0

0

4

6

2

2

2

11

, ’ JPL TECHNICAL REPORT NO. 32-999

one of these (2’” - m)/2 stages is 1 requires an additional
N,T as follows:

1 N 5 _;Z(2R - m) - 1

T I { log2-] = {10g2(2’” - m)> - 1

Combination of inequality Eqs. (20) and (21) gives the
statement of the theorem, completing the proof.

Theorem 15, in effect, states that highly non-neutral
functions have low complexities, which is not surprising.
Theorems 13 and 15 combined suggest that the place to
look for algorithmically complex functions is among the
nearly neutral functions of long length.

Table 2 describes the equivalence classes of the Boolean
functions of k variables under (Gk, N) for k 2 3. Included
are representative functions of minimal length in each
equivalence class, the number of functions in each class,
and the common measure I p I of the functions in each
class.

V. SUMMARY

We have defined the concept of algorithmic complex-
ity in order to estimate the size and the time required
for a computer to calculate various functions. In general,
we would like to determine the exact complexity of any
given function, but this seems much too difficult. In this
report, therefore, we have discussed methods of approx-
imating the complexity of special classes of functions.

Using a (2, 2) automaton as a model for a computer,
we have determined the maximum size (number of stages)
required to compute any function within a factor of 8;
at the same time, we have determined the maximum
time required asymptotically. An important special class
of functions is made up of linear mappings; we have

obtained bounds on their algorithmic complexity which,
in the case of multiplication by a square matrix, are
accurate within a factor of 8. Many functions have com-
plexities considerably less than the upper bounds
obtained in Section 11; therefore, recognition of such
functions is important. We have shown that the com-
plexities of functions equivalent under certain permuta-
tion groups do not differ significantly.

In many cases, a function may be seen to have low
complexity when it is compared with an equivalent func-
tion whose complexity has been estimated by some other
means. Measure and length are two such criteria used
to guarantee that a function has low complexity.

1 2

0 -

JPL TECHNICAL REPORT NO. 32-999
c -

REFERENCES

1. Stanley, R., “The Notion of a (p, q, r) Automaton,” Supporting Research and Ad-
vanced Development, SPS No. 37-35, Vol. IV, Jet Propulsion Laboratory, Pasa-
dena, Calif., October 31, 1965, pp. 292-298.

2. Golomb, 5. W., The Shift Register as a Finite-State Machine, USCEE NO. 122,
University of Southern California, Los Angeles, Calif., 1965.

3. Ofman, Yu, “On the Algorithmic Complexity of Discrete Functions,” Sov. Phys.
Daklody, Cyb. Cont. Theory 7 (19631, pp- 589-591 (Translated).

4. Stanley, R., “New Results of Algorithmic Complexity,” Supporting Research and
Advanced Development, SPS No. 37-34, Vol, IV, Jet Propulsion Laboratory,
Pasadena, Calif., August 31, 1965, pp. 298-305.

5. Povarov, G. N., “Synthesis of Contact Multipoles,” paper reviewed in IRE Trans.
Circuit Theory, 3 (1 956). p. 78.

6. Welch, L. R., “Asymptotic Algorithmic Complexity,” Supporting Research and
Advonced Development, SPS No. 37-39, Vol. IV, Jet Propulsion Laboratory,
Pasadena, Calif., June 30, 1966.

7. Harrison, M. A., “The Number of Transistivity Sets of Boo!ean Functions,” SOC.
Ind. Appl. Math, J., 11, No. 3 (September 19631, pp. 806-828.

8. Harrison, M. A., On the Classification of Boolean Functions by the General
Linear and Affine Groups, Technical Note, College of Engineering, University of
Michigan, Ann Arbor, Mich., September 1962.

9. Harrison, M. A., “The Number of Equivalence Classes of Boolean Functions
Under Groups Containing Negation,” I€€€ Trans. Electron. Computers, €C- 7 2, No.
5 (October 1963).

10. Stanley, R., “Further Results on the Algorithmic Complexity of (p, q) Automata,”
Supporting Research and Advonced Development, SPS No. 37-35, Vol. IV, Jet
Propulsion Laboratory, Pasadeno, Colif., October 3 1, 1965, pp. 298-304.

11. De Bruijn, N. G., “Generalization of Polya’s Fundamental Theorem in Enumer-
ative Combinatorial Analysis,” Koninklijke Nederlandse Akademe von Weten-
schappen 62 (1 9591, pp. 59-69.

1 3

