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Main Complexity Classes in Algorithmic Game Theory

1 equilibria are guaranteed to exist (i.e., total problems TFNP
⊆ FNP (“a function extension of a decision problem in NP”)

2 we can search for them

pure strategy profiles
support enumeration
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1Figure from M. Yannakakis ”Equilibria, fixed points, and complexity
classes” Computer Science Review (3) 71–85, 2009



Polynomial Local Search (PLS)

consider an instance I of an optimization problem, S(I) is a
set of candidate solutions, pI(s) is a cost (or utility)
associated with candidate s ∈ S(I) that has to be minimized
(or maximized, respectively)

each candidate s ∈ S(I) has a neighborhood NI(s) ⊆ S(I)

a candidate s is locally optimal (cost-wise) if

pI(s) ≤ pI(s′) ∀s′ ∈ NI(s)

Sol(I) is a set of locally optimal solutions

every step of the algorithm (generating starting solution,
computing the cost, getting a better neighbor) is polynomial,
but there can be an exponential number of steps



Polynomial Local Search (PLS) (2)

several well-known problems of this kind

finding a local optimum in Traveling Salesman Problem, Max
Cut, Max Sat, ...

we define a neighborhood function (e.g., 2-Opt) and perform a
greedy search

finding a stable configuration of a neural network

finding a pure equilibrium when it is guaranteed to exist

computing an optimal strategy in simple stochastic games,
where pure stationary strategy is known to be optimal (the
problem is in PLS, but it is open whether it is in P, or not)
some other variants of stochastic games (mean payoff/parity
games with no chance)



From PLS to PPAD

Searching for pure Nash equilibria is not sufficient.

Pure equilibria do not have to exist.

What can we search for in mixed strategies?

Is this problem in PLS? Can we redefine the problem of finding a
mixed NE as a PLS?



Nash and Fixed Points

Theorem (Brouwer’s Fixed Point Theorem)

Let X be a convex and compact set in a n-dimensional Euclidean
space, and let f : X → X be a continuous function. Then there
exists a point x ∈ X such that f(x) = x. Such a point is called a
fixed point of f .



(Brief) Proof of Existence of Nash in Finite Games using
Brouwer’s Fixed Point Theorem

Let Σ be a mixed strategy profile Σ = Σ1 × Σ2 × . . .Σn (i.e.,
convex and compact subset of Euclidean space). We will define a
(continuous) function f : Σ→ Σ and show that every fixed point
of f is an equilibrium of the game.

We can use regret function that specifies how much player i can
gain by switching to pure strategy j:

gji (σ) := max
{

0, ui(s
j
i , σ−i)− ui(σi, σ−i)

}
We want to get gji (σ) = 0 ∀j ∈ Si (no regret).



(Brief) Proof of Existence of Nash in Finite Games using
Brouwer’s Fixed Point Theorem (2)

We can now define function f , such that if σ is an equilibrium
profile, then f(σ) = σ;

f ji (σ) :=
σi(s

j
i ) + gji (σ)

1 +
∑mi

k=1 g
k
i (σ)

We need to show the other implication. For fixed point σ it holds

gji (σ) = σi(s
j
i )

mi∑
k=1

gki (σ)



(Brief) Proof of Existence of Nash in Finite Games using
Brouwer’s Fixed Point Theorem (3)

Suppose that fixed point σ is not an equilibrium. There must exist
a pure strategy l ∈ {1, . . . ,mi} such that gli(σ) > 0 and
consequently from the previous slide we know that σi(s

l
i) > 0. Now

ui(σ) =

mi∑
j=1

σi(s
j
i )ui(s

j
i , σ−i) (1)

0 =

mi∑
j=1

σi(s
j
i )
(
ui(s

j
i , σ−i)− ui(σ)

)
(2)

0 =
∑

j:σi(s
j
i )>0

σi(s
j
i )g

j
i (σ), (3)

where the last summand is strictly positive due to pure strategy l,
which is a contradiction.



Generalization of Nash’s Theorem

The set of strategies of game G does not have to be a probability
distribution, but generally a convex set (polytope; recall convex
games).

We can create an auxiliary game G′, where pure strategies will be
vertexes of the polytope of the convex game and use the original
Nash’s Theorem.

Finally, we translate the equilibrium strategies from G′ to G and
show that they must form an equilibrium in G.



Discretized variant – Sperner’s Lemma and Scarf’s
algorithm

Sperner’s Lemma (2D):
Given a triangle ABC, and a triangulation T of the triangle, the set
S of vertices of T is colored with three colors in such a way that:

1 A, B, and C are colored 1, 2, and 3 respectively

2 Each vertex on an edge of ABC is to be colored only with one
of the two colors of the ends of its edge. For example, each
vertex on AC must have a color either 1 or 3.

Then there exists a triangle from T, whose vertices are colored
with the three different colors.

More precisely, there must be an odd number of such triangles.



Discretized variant – Sperner’s Lemma and Scarf’s
algorithm
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2Figure from Wikipedia.



Discretized variant – Sperner’s Lemma and Scarf’s
algorithm

Scarf’s Algorithm for approximating fixed points of Brouwer
function F: ∆n → ∆n:

1 Subdivide the simplex ∆n into “small” subsimplices of
diameter δ > 0 (depending on the “modulus of continuity” of
F, and on ε > 0).

2 Color every vertex, z, of every subsimplex with a color
i = min{i | zi > 0 & F (z)i ≤ zi}.

3 By Sperner’s Lemma there must exist a panchromatic
subsimplex. (And the proof provides a way to “navigate”
toward such a simplex.)

4 Fact: If δ > 0 is chosen such that δ ≤ ε/2n and
∀x, y ∈ ∆n, ||x− y||∞ < δ → ||F (x)− F (y)||∞ < ε/2n, then
all the points in a panchromatic subsimplex are weak ε-fixed
points.
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3From slides by K. Etessami: Tutorial on GAMES’ 08



Discretized variant – Sperner’s Lemma and Scarf’s
algorithm
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4Figure from slides by K. Etessami: Tutorial on GAMES’ 08.



Polynomial Parity Arguments on Directed graphs (PPAD)

there is a set of candidate solutions S(I) for an instance I and
polynomial-time algorithms:

compute an initial candidate solution s0 ∈ S(I)

given I and s test whether s ∈ S(I) and if so compute a
successor succI(s) ∈ S(I) and a predecessor predI(s) ∈ S(I)

predI(s0) = s0
succI(s0) 6= s0
predI(succI(s0)) = s0

Sol(I) is a set of nodes where indegree + outdegree = 1.



PPAD – End of the Line (2)

Given a graph G of
indegree/outdegree at most 1,
and a strat node of indegree 0
and outdegree 1, find another
node degree of 1.

Blue nodes are Sol(I).

5

5Figure from R. Savani ”Polymatrix Games” Tutorial at WINE 2015



PPAD and equilibria

Theorem ([1],[5])

It is PPAD-complete to compute an exact Nash equilibrium of a
bimatrix game.

An alternative proof of the existence of a Nash equilibrium is based
on Lemke-Howson algorithm.



PPAD and equilibria (2)

Many follow-up results of the completeness theorem:

computing an exact Nash equilibrium for a two-player
extensive-form game is PPAD-complete [4]

computing an exact Nash equilibrium for a two-player
normal-form game is PPAD-complete even if all the payoffs
are 0 and 1 (so called win-lose games) [3]

computing ε-Nash equilibrium for an n-player game is
PPAD-complete [2]6

6Approximation in a weak sense.



FIXP

What are the computational challenges moving to n-player games
when computing Nash equilibria?

knowing the support does not help in computing one

Nash equilibria use in general irrational numbers

1 Left Right

Top 3, 0, 2 0, 2, 0

Bottom 0, 1, 0 1, 0, 0

2 Left Right

Top 1, 0, 0 0, 1, 0

Bottom 0, 3, 0 2, 0, 3

p(L) = (−13 +
√

601)/24 ...

Theorem (Bubelis 1979)

Every real algebraic number can be “encoded” in a precise sense as
the payoff to player 1 in a unique NE of a 3-player game.



FIXP

K. Etessami and M. Yannakakis [6] defined a new class FIXP:
Input: an algebraic circuit over basis {+, ∗,−, /,max,min} with
rational constants, having n input variables and n outputs, such
that the circuit represents a continuous function
F : [0, 1]n → [0, 1]n.
Output: Compute (or strong ε-approximate) a fixed point of F .



FIXP

The most famous problem in this class is the square-root sum
problem:

Sqrt-Sum

Given (d1, . . . , dn) ∈ Nn and k ∈ N, decide whether∑n
i=1

√
di ≤ k.

It is known to be solvable in PSPACE.

Theorem (Etessami and Yannakakis, 2007)

Any non-trivial approximation of an actual NE solves Sqrt-Sum



FIXP

Theorem (Etessami and Yannakakis, 2007)

Computing a 3-player Nash Equilibrium is FIXP-complete.

The completeness holds in several senses:

exact (real-valued) computation;

strong ε-approximation,

decision version of the problem – given a game G, rational
value q ∈ Q, and coordinate i: if for all NEs x∗, x∗i ≥ q, then
answer “Yes”; if for all NEs x∗, x∗i < q, then the answer is
“No”. Otherwise, any answer is fine.



FIXP-completeness

Proof Sketch:

Suppose we could create a (3-player) game such that, in any
NE, Player 1 plays strategy A with probability > 1/2 iff∑

i

√
di > k and with probability < 1/2 iff

∑
i

√
di < k.

(Suppose equality can’t happen.)

Add an extra player with 2 strategies, who gets high payoff if
it “guesses correctly” whether player 1 plays pure strategy A,
and low payoff otherwise.

In any NE, the new player will play one of its two strategies
with probability 1.

Deciding which solves SqrtSum



PPAD as an algebraic circuit

Theorem (Etessami and Yannakakis, 2007)

Let linear-FIXP denote the subclass of FIXP where the algebraic
circuits are restricted to basis {+,max} and multiplication by
rational constants only. Then, the following are all equivalent:

1 PPAD

2 linear-FIXP

3 exact fixed point problems for “polynomial piecewise-linear
functions”



References I

(besides the books)

X. Chen and X. Deng.

Settling the complexity of two-player nash equilibrium.

In IEEE Symposium on Foundations of Computer Science (FOCS), pages
261–272, 2006.

X. Chen, X. Deng, and S.-H. Teng.

Computing Nash equilibria: Approximation and smoothed complexity.

In Proc. 47th IEEE FOCS, 2006.

X. Chen, S.-H. Teng, and P. Valiant.

The approximation complexity of winlose games.

In Proc. 18th ACM SODA, 2007.

C. Daskalakis, A. Fabrikant, and C. H. Papadimitriou.

The Game World Is Flat: The Complexity of Nash Equilibria in Succinct
Games.

In ICALP, pages 513–524, 2006.



References II

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou.

The Complexity of Computing a Nash Equilibrium.

In Proceedings of the 38th annual ACM symposium on Theory of
computing, 2006.

K. Etessami and M. Yannakakis.

On the complexity of nash equilibria and other fixed points.

In FOCS, 2007.

Z. H. Gumus and C. A. Floudas.

Global optimization of mixed-integer bilevel programming problems.

Computational Management Science, 2:181–212, 2005.


