
Algorithmic information theory:
a gentle introduction

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

LIRMM CNRS & University of Montpellier

February 2016, IHP

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Standard example

Four-letter alphabet {a, b, c , d}. Two bits per letter.

Different frequencies: 1/8, 1/8, 1/4, 1/2.

Better encoding: 000, 001, 01, 1

In general: log(1/pi ) bits for a letter with frequency pi ,
average H =

∑
pi log(1/pi ).

“Statistical regularities can be used for compression”

Other types of regularities: block frequencies 50% compession
if aa, bb, cc , dd only

Non-statistical regularities: binary expansion of π is highly
compressible.
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Algorithmic complexity

Goal: to define the amount of information in an individual
object (genome, picture,. . . )

Idea: “amount of information = number of bits needed to
define (describe, specify,. . . ) a given object”

“Define” is vague:

THE MINIMAL POSITIVE INTEGER THAT
CANNOT BE DEFINED BY LESS THAN
THOUSAND ENGLISH WORDS

More precise version: algorithmic complexity of x is the
minimal length of a program that produces x .

“compressed size”

but we do not care about compression, only decompression
matters
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Kolmogorov complexity and decompressors

decompressor = any partial computable function V from
{0, 1}∗ to {0, 1}∗ (we define complexity of strings)

decompressor = programming language (without input):
if V (x) = z we say that “x is a program for z”

(“description” of z , “compressed version” of z , etc.)

Given decompressor V , we define the complexity of a string z
w.r.t. this decompressor

CV (z) = min{|x | : V (x) = z}

min∅ = +∞
Can one achieve something by this trivial definition?!
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Function CV

Without computability: let V be an arbitrary partial function
from strings to strings

which functions CV do we obtain?

#{z : CV (z) = k} ≤ 2k

necessary and sufficient condition

use k-bit strings as “descriptions” (“compressed versions”) of
strings z with C (z) = k .

for every z one can trivially find V that makes CV (z) = 0
(map empty string Λ to z)

So what? Even if we restrict V to computable partial
functions, can we get anything non-trivial?
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An easy exercise

For every two decompressors V0 and V1 there exist some V
such that

CV (z) ≤ min(CV0(z),CV1(z)) + O(1) for all z

“V is (almost) as good as each of V0,V1”

V (0x) = V0(x) and V (1x) = V1(x)

first we specify which decompressor to use, and then the short
program for this decompressor

preserves computability

“practical application”: zipped file starts with a header that
specifies compression method (2k methods for k-bit header)
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Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives

“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Optimal decompressors

For every sequence V0,V1, . . . of decompressors there exist
some V such that CV (z) ≤ CVi

(z) + 2 log i + c for some c
and for all i and z

V is almost as good as every Vi (and the price to pay is
moderate, only O(log i))

proof: prepend Vi -programs by a self-delimited description of
i (say, i in binary with all bits doubled, terminated by 01)

the computable enumeration of all computable Vi gives
“Kolmogorov–Solomonoff theorem”: there exists an optimal
computable decompressor that is almost as good as any other
computable one.

CU for such an optimal U is called “algorithmic complexity”
(or Kolmogorov complexity) and denoted by C

“application”: self-extracting archives

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Some natural properties of C

C (x) ≤ |x |+ O(1).

Indeed, compare the optimal decompressor U with x 7→ x

“algorithmic transformations do not create new information”:
if A is some computable function, then C (A(x)) ≤ C (x) + cA
for some cA and all x (here cA depends on A but not on x)

there is less than 2n objects of complexity less than n.

Indeed, the number of descriptions shorter than n does not
exceed 1 + 2 + 4 + . . .+ 2n−1 < 2n

Some objects are highly compressible, e.g., C (0n) ≤ log n + c

Indeed, consider the algorithmic transformation bin(n) 7→ 0n

but most are not: the fraction of strings x of length n such
that C (x) < n − c is less than 2−c

Law of nature: tossing 8000 coins, you get a sequence of 1000
bytes that has zip-compressed length at least 900. Does it
follow from the known laws of physics (and how if it does)?
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Bad news

We defined the complexity function C , but in fact it is defined
only up to O(1)-change

. . . unless you declare your favourite programming language to
be “the right one”

So the questions “is C (01000) < 15”? or “what is bigger:
C (010) or C (101)” do not make sense

Theorem: function C (·) is not computable (and even does not
have a computable lower bound)

proof: if it were, the string xn, “the first string that has
complexity at least n”, has complexity at least n and at most
O(log n) at the same time (since it is obtained algorithmically
from n)
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Digression: Gödel and Chaitin

Gödel: not all true statements are provable

Chaitin: not all true statements of the form “C (x) > m”
where x is a specific string, and m is a specific number, are
provable

moreover, they are provable only for m not exceeding some
constant

Why? If not, consider the function m 7→ ym = (the first
discovered string with complexity provably exceeding m)

the complexity of ym is at least m (assuming only true
statements are provable)

the complexity of ym is at most logm + O(1) since it is
obtained from m by an algorithmic transformation

second order digression: axiomatic power of statements of this
form
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Good news

Still the asymptotic considerations have sense

e.g., one can define “effective Hausdorff dimension” of an
individual infinite bit sequence x0x1 . . . as
lim inf C (x0 . . . xn−1)/n

(Hausdorff dimension for a singleton?!)

theorem: if x = x0x1 . . . is obtained by independent trials of
Bernoulli distribution (p, 1− p), then with probability 1 the
effective Hausdorff dimension of x is H(p).

finite version: if p is a frequence of 1s in a n-bit string x , then

C (x) ≤ nH(p) + O(log n)

Even for genome (or a long novel) the notion of complexity
has sense: different “natural” programming languages give
complexities that are 102–105 apart (the length of a compiler)
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Even for genome (or a long novel) the notion of complexity
has sense: different “natural” programming languages give
complexities that are 102–105 apart (the length of a compiler)
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Parallels with classical information theory

H(X ,Y ) ≤ H(X ) + H(Y )

computation: convexity of logarithms

In AIT: if there is a short program computing x , and another
short program computing y , they could be combined into a
program that computes a pair (x , y) (some encoding of it)

complexity of a pair = complexity of its encoding (change of
the encoding is a computable transformation, so only
O(1)-change in complexity)

C (x , y) ≤ C (x) + C (y) + O(log(C (x) + C (y))

logarithmic overhead needed to separate the programs

why so different arguments for parallel statements?
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One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



One more example

H(X ,Y ) = H(X ) + H(Y |X )

parallel statement: C (x , y) ≈ C (x) + C (y |x)

. . . but first we need to define C (y |x)

C (y |x) = the minimal length of a program that maps x to y

“conditional complexity”

this statement is true with the same logarithmic precision

one direction (≤): the same argument

another direction more interesting: why looking for a short
program that produces (x , y) we may assume w.l.o.g. it
consists of two parts: first producing x and second
transforming x to y?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Combinatorial versions – 1

H(X ,Y ) ≤ H(X ) + H(Y )

log S(A) ≤ log S(Ax) + log S(Ay )

here A ⊂ X × Y is a two-dimensional set,

Ax and Ay are projections of A onto X and Y

and S stands for the “size” (cardinality in the discrete version,
area/length in the continuous version)
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Combinatorial versions – 2

H(X ,Y ) ≤ H(X ) + H(Y |X )

log S(A) ≤ log S(Ax) + log maxx S(Ay |x)

here A ⊂ X × Y is a two-dimensional set,

Ax ⊂ X is the projection of A onto X

Ay |x ⊂ Y is the x-th “vertical section” of A where the
X -coordinate is fixed

and S stands for the “size”

In other words: if Ax is of size at most 2l and all sections Ay |x
are of size at most 2m, then A is of size at most 2l+m.

now closer to the algorithmic statement: to specify an
element (x , y) of A, we may first use l bits to specify x and
then m bits to specify y inside x-section Ay |x
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Combinatorial versions – 3

H(X ) + H(Y |X ) ≤ H(X ,Y )

combinatorial statement not so obvious: A may have small
size, at the same time its projection Ax can be rather large
and some section Ay |x can be rather large

in other words: the average size of a section may be much less
than the maximal size

correct version: if S(A) ≤ 2l+m, then A can be represented as
A′ ∪ A′′ where (1) A′ has small projection: S(A′x) ≤ 2l and
(2) all sections of A′′ are small: S(A′′y |x) ≤ 2m for every x .

proof: let A′ be the union of all sections that are larger than
2m, and A′′ be the rest (the union of all small sections)
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combinatorial statement not so obvious: A may have small
size, at the same time its projection Ax can be rather large
and some section Ay |x can be rather large

in other words: the average size of a section may be much less
than the maximal size

correct version: if S(A) ≤ 2l+m, then A can be represented as
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Algorithmic complexity version

C (x , y) ≥ C (x) + C (y |x) (ignoring logarithmic overhead)

reformulation: if C (x , y) < l + m, then either C (x) < l or
C (y |x) < m.

enumerate pairs (x , y) with C (x , y) < l + m; there are at
most 2l+m such pairs

while for a given x at most 2m pairs (x , y) with this x and
different y ’s are discovered, each of these y can be specified
by its ordinal number (at most m bits) assuming x is known

for some pairs (x , y) this does not work: there are more than
2m pairs with this x . But there are at most 2l “bad” x , and
each of them can be specified by its ordinal number (at most
l bits)

these cases correspond to C (y |x) ≤ m and C (x) ≤ l (plus
logarithmic overhead) respectively
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Romashchenko’s theorem

More than informal analogy

Linear inequalities for entropies:

λXYZH(X ,Y ,Z )+λXYH(X ,Y )+λXZH(X ,Z )+λYZH(Y ,Z )+

λXH(X ) + λYH(Y ) + λZH(Z ) ≥ 0

e.g., H(X ) + H(X ,Y ,Z ) ≤ H(X ,Y ) + H(X ,Z )
(expanded version of I (Y : Z |X ) ≥ 0)

the description of all true inequalities of this type (the dual
cone to the set of entropy tuples) is an open difficult problem
for > 3 variables

Romashchenko: exactly the same inequalities are true for
Kolmogorov complexities

similar statement is true for combinatorial analogs (Yeung
uniform sets, or splitting as explained above)
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Shannon coding theorem

Why algorithmic information theory is natural?

X : random variable with finite range

(X1, . . . ,Xn) values of n independent copies of X

want to encode (X1, . . . ,Xn) by m bits (so that decoding
works with high probability)

Shannon: possible if m ≥ nH(X )

X is serialized, but encoding/decoding is arbitrary: half-way
to algorithmic information theory

algorithmic reformulation: with high probability [under
product distribution] the complexity of the string (X1, . . . ,Xn)
is close to nH(X )
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Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y )

are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Multisource algorithmic information theory

Common information: X ,Y two random variables

(X1,Y1), . . . , (Xn,Yn): serialization

we want to communicate (X1, . . . ,Xn) to Alice and
(Y1, . . . ,Yn) to Bob

by sending some common (broadcast) message to both, and
two separate messages to Alice and Bob

question: how long should be these messages? if the lengths
are bounded by c (common), a and b (separate), what are the
conditions on a, b, c that make this possible?

necessary conditions a + b + c ≥ nH(X ,Y ), a + c ≥ H(X ),
b + c ≥ H(Y ) are in general not sufficient

but why should be restrict ourselves to n independent copies?
Let x , y be a random pair of incident point and line on a
plane over Fp. What is the (a, b, c)-profile of it?

a combinatorial question about covering of the set of incident
pairs by combinatorial rectangles

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Slepyan–Wolf (a special case) and Muchnik

a pair (X ,Y ) of dependent variables and n independent copies
(X1,Y1), . . . , (Xn,Yn)

Alice knows (X1, . . . ,Xn); Bob known (Y1, . . . ,Yn) and wants
to know (X1, . . . ,Xn) too

how many bits needs Alice to send to Bob?

SW: about nH(Y |X ) bits are necessary and sufficient

(Shannon achieves this if Alice knows X )

algorithmic version: Alice knows string X ; Bob knows string
Y . A message M is needed such that (1) C (M|X ) ≈ 0 (the
message M does not contain information that Alice does not
have) and (2) C (X |Y ,M) ≈ 0 (the message M together with
Y contain all the information needed to reconstruct X ).

what is the minimal length of such an M?
Andrej Muchnik: about C (Y |X ) bits are necessary and
sufficient. [Related to SW but not a corollary or vice versa]
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Versions of algorithmic complexity

Several versions of “Kolmogorov complexity”:

plain complexity (as defined above, denoted sometimes by K ,
C , KS ,. . . ) [Solomonoff, Kolmogorov, Chaitin]
prefix complexity (only prefix decompressors are considered:
their domain should not contain a string and its prefix at the
same time; denoted sometimes by K , H, KP. . . ) [Levin,
Chaitin]
decision complexity (the program does not produce x but can
compute bit xi for every given i ; denoted sometimes by KR,
KD,. . . ) [Loveland]
monotone complexity (both the program and the output are
considered as prefixes of infinite sequences, denoted
sometimes by KM, Km,. . . ) [Levin]
a priori probability (discrete and continuous; the first one
leads to prefix complexity, the second one gives a new notion
of complexity, sometimes denoted by KM, KA,. . . ) [Levin,
Chaitin]
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So what?

Natural questions:

why so many versions?

which versions is the right one (the best)?

do we really care?

Brief answers:

many versions since inputs and outputs can be considered
with different structures (topologies): discrete and continuous
(as prefixes of infinite sequences): this gives four versions
(even eight for conditional complexities where also topology
on conditions is important)

not “right” versus “wrong”, just different (different ones are
more suitable in different cases)

information theorists: no need to care (only log-difference)

recursion theorists: yes, they do!

the translation between a priori probability and complexity is
of philosophical importance (and a technical tool)
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Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]

∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively)

and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Discrete a priori probability

we considered arbitrary functions as decompessors, but then
restricted ourselves to computable ones

now we consider arbitrary distributions and then restrict
ourselves to output distributions of randomized algorithms

randomized algorithm P without input: being started, outputs
a natural number (or binary string: we identify them) and
stops

may hang (no output)

pi = Pr[P outputs i ]∑
i pi ≤ 1

sum may be less than 1 if non-termination has positive
probability

pi are “lower semicomputable” (can be approximated from
below effectively) and every lower semicomputable converging
series with sum ≤ 1 is the output distribution of some P

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Algorithmic information theory: a gentle introduction



Universal randomized algorithm and a priori distribution

let P and P ′ be two randomized algorithms of that type

P ′ is “better” (more “diverse”) if

∃ε∀i Pr[P ′ outputs i ] ≥ εPr[P outputs i ]

series
∑

p′i is an upper bound for
∑

pi (up to a constant)

universal (optimal, “most diverse”) randomized algorithm:
“choose a randomized algorithm at random and then simulate
it”

“biggest” (“least convergent”) lower semicomputable series
(weighted sum of all)

discrete a priori probability of i = the probability to get i as
an output of some fixed universal randomized algorithm

defined up to O(1) factor

denoted sometimes by m(i) (where i is an integer – or the
corresponding string)
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Discrete a priori probability and prefix complexity

Let K (i) be a prefix complexity of an integer i (the length of the
shortest “self-delimited” program that produces i

Theorem (Levin, Chaitin)

m(i) = 2−K(i)+O(1)

an infinite algorithmic version of Kraft inequality for prefix
codes

relates two philosophically different properties of an object x :
(1) how difficult is an object x to describe (complexity) and
(2) how plausible x is as an output of an unknown random
process

one direction (≥) is easy: universal decompressor applied to a
sequence of random bits is a random process, and if i has a
program of length n, then the probability to bump into it is at
least 2−n
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Game proof of Levin–Chaitin theorem

Game:

two players A and B alternate

B approximates from below the terms mi of some converging
series

∑
mi ≤ 1 (at every step t giving some rational lower

bounds mi [t] that increases with t; then mi is defined as
limt→∞mi [t])

A may declare at each step that some string x is a
“description” for some integer i (in other words, A
enumerates some pairs of type (string, integer)); strings
appearing in these pairs should form a prefix-free set (one is
not a prefix of another)

game is infinite; A wins in the limit if every i has description of
size at most log(1/mi ) + 4. (Here 4 is large enough constant.)

Claim: A has a computable winning strategy.
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Game proof – 2

Two questions:

how A wins the game?

why it is enough for the proof of Levin–Chaitin theorem?

The second question: let A play against the approximations for a
priori probability (recall it is lower semicomputable); the pairs
generated by A form a graph of a computable prefix-free
decompressor, so they provide a bound for prefix complexity

The first question (more technical):

assume w.l.o.g. that approximations mi [t] are all of the form
2−k (we lose only some O(1) factor);

the sum of all these approximations is bounded by 2 (again a
constant factor); divide them by 2;

cover the interval [0, 1] from left to right by the intervals of
these lengths and then choose a maximal binary (Cantor
space) interval inside.
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constant factor); divide them by 2;

cover the interval [0, 1] from left to right by the intervals of
these lengths and then choose a maximal binary (Cantor
space) interval inside.
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in case we reached this place. . .

Thanks for the patience!

textbook (Uspensky, Vereshchagin, S):
www.lirmm.fr/~ashen/kolmbook-eng.pdf
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