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P R E F A C E

This book is a practical guide to algorithmic trading strategies that can be 
readily implemented by both retail and institutional traders. It is not an 

academic treatise on fi nancial theory. Rather, I hope to make accessible to 
the reader some of the most useful fi nancial research done in the past few 
decades, mixing them with insights I gained from actually exploiting some 
of those theories in live trading.

Because strategies take a central place in this book, we will cover a wide 
array of them, broadly divided into the mean-reverting and momentum 
camps, and we will lay out standard techniques for trading each category of 
strategies, and equally important, the fundamental reasons why a strategy 
should work. The emphasis throughout is on simple and linear strategies, 
as an antidote to the overfi tting and data-snooping biases that often plague 
complex strategies.

In the mean-reverting camp, we will discuss the multiple statistical tech-
niques (augmented Dickey-Fuller [ADF] test, Hurst exponent, Variance Ra-
tio test, half-life) for detecting “time series” mean reversion or stationarity, 
and for detecting cointegration of a portfolio of instruments (cointegrated 
augmented Dickey Fuller [CADF] test, Johansen test). Beyond the mechani-
cal application of these statistical tests to time series, we strive to convey an 
intuitive understanding of what they are really testing and the simple math-
ematical equations behind them. 

We will explain the simplest techniques and strategies for trading mean-
reverting portfolios (linear, Bollinger band, Kalman fi lter), and whether us-
ing raw prices, log prices, or ratios make the most sense as inputs to these 
tests and strategies. In particular, we show that the Kalman fi lter is useful 
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to traders in multiple ways and in multiple strategies. Distinction between 
time series versus cross-sectional mean reversion will be made. We will de-
bate the pros and cons of “scaling-in” and highlight the danger of data errors 
in mean-reverting strategies, especially those that deal with spreads. 

Examples of mean-reverting strategies will be drawn from interday and 
intraday stocks models, exchange-traded fund (ETF) pairs and triplets, 
ETFs versus their component stocks, currency pairs, and futures calen-
dar and intermarket spreads. We will explain what makes trading some of 
these strategies quite challenging in recent years due to the rise of dark 
pools and high-frequency trading. We will also illustrate how certain fun-
damental considerations can explain the temporary unhinging of a hitherto 
very profi table ETF pair and how the same considerations can lead one to 
construct an improved version of the strategy. When discussing currency 
trading, we take care to explain why even the calculation of returns may 
seem foreign to an equity trader, and where such concepts as rollover inter-
est may sometimes be important. Much emphasis will be devoted to the 
study of spot returns versus roll returns in futures, and several futures trad-
ing strategies can be derived or understood from a simple mathematical 
model of futures prices. The concepts of backwardation and contango will 
be illustrated graphically as well as mathematically. The chapter on mean 
reversion of currencies and futures cumulates in the study of a very special 
future: the volatility (VX) future, and how it can form the basis of some 
quite lucrative strategies.

In the momentum camp, we start by explaining a few statistical tests for 
times series momentum. The main theme, though, is to explore the four 
main drivers of momentum in stocks and futures and to propose strategies 
that can extract time series and cross-sectional momentum. Roll returns in 
futures is one of those drivers, but it turns out that forced asset sales and 
purchases is the main driver of stock and ETF momentum in many diverse 
circumstances. Some of the newer momentum strategies based on news 
events, news sentiment, leveraged ETFs, order fl ow, and high-frequency 
trading will be covered. Finally, we will look at the pros and cons of mo-
mentum versus mean-reverting strategies and discover their diametrically 
diff erent risk-return characteristics under diff erent market regimes in re-
cent fi nancial history.

I have always maintained that it is easy to fi nd published, supposedly 
profi table, strategies in the many books, magazines, or blogs out there, 
but much harder to see why they may be fl awed and perhaps ultimately 
doomed. So, despite the emphasis on suggesting prototype strategies, we 
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will also discuss many common pitfalls of algorithmic trading strategies, 
which may be almost as valuable to the reader as the description of the 
strategies themselves. These pitfalls can cause live trading results to diverge 
signifi cantly from their backtests. As veterans of algorithmic trading will 
also agree, the same theoretical strategy can result in spectacular profi ts and 
abysmal losses, depending on the details of implementation. Hence, in this 
book I have lavished attention on the nitty-gritties of backtesting and some-
times live implementation of these strategies, with discussions of concepts 
such as data-snooping bias, survivorship bias, primary versus consolidated 
quotes, the venue dependence of currency quotes, the nuances of short-sale 
constraints, the construction of futures continuous contracts, and the use of 
futures closing versus settlement prices in backtests. We also highlight some 
instances of “regime shift” historically when even the most correct backtest 
will fail to predict the future returns of a strategy.

I have also paid attention to choosing the right software platform for 
backtesting and automated execution, given that MATLAB©, my favorite 
language, is no longer the only contender in this department. I will survey 
the state of the art in technology, for every level of programming skills, and 
for many diff erent budgets. In particular, we draw attention to the “inte-
grated development environment” for traders, ranging from the industrial-
strength platforms such as Deltix to the myriad open-source versions such 
as TradeLink. As we will explain, the ease of switching from backtesting 
to live trading mode is the most important virtue of such platforms. The 
fashionable concept of “complex event processing” will also be introduced 
in this context.

I covered risk and money management in my previous book, which was 
built on the Kelly formula—a formula that determines the optimal lever-
age and capital allocation while balancing returns versus risks. I once again 
cover risk and money management here, still based on the Kelly formula, 
but tempered with my practical experience in risk management involving 
black swans, constant proportion portfolio insurance, and stop losses. (U.S. 
Supreme Court Justice Robert H. Jackson could have been talking about 
the application of the Kelly formula when he said we should “temper its doc-
trinaire logic with a little practical wisdom.”) We especially focus on fi nding 
the optimal leverage in realistic situations when we can no longer assume 
Gaussian distribution of returns. Also, we consider whether “risk indicators” 
might be a useful component of a comprehensive risk management scheme.

One general technique that I have overlooked previously is the use of 
Monte Carlo simulations. Here, we demonstrate using simulated, as opposed 
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to historical, data to test the statistical signifi cance of a backtest as well as to 
assess the tail risk of a strategy.

This book is meant as a follow-up to my previous book, Quantitative 

Trading. There, I focused on basic techniques for an algorithmic trader, such 
as how to fi nd ideas for new strategies, how to backtest a strategy, basic 
considerations in automating your executions, and, fi nally, risk management 
via the Kelly formula. Yes, a few useful example strategies were sprinkled 
throughout, but those were not the emphasis. If you are completely new 
to trading algorithmically, that is a good book to read. Algorithmic Trading, 
however, is all about strategies.

All of the examples in this book are built around MATLAB codes, and 
they are all available for download from www.wiley.com/go/algotrading 
or my website at www.epchan.com/book2. Readers will fi nd the password 
embedded in the fi rst example. Readers unfamiliar with MATLAB may 
want to study the tutorial in Quantitative Trading, or watch the free webi-
nars on mathworks.com. Furthermore, the MATLAB Statistics Toolbox was 
occasionally used. (All MATLAB products are available as free trials from 
MathWorks.)

Software and mathematics are the twin languages of algorithmic trading. 
Readers will fi nd this book involves somewhat more mathematics than my 
previous one. This is because of my desire to inject more precision in dis-
cussing the concepts involved in fi nancial markets, and also because I believe 
using simple mathematical models for trading can be more advantageous 
than using the usual “data-mining” approach. That is to say, instead of throw-
ing as many technical trading indicators or rules at a price series to see 
which indicator or rule is profi table—a practice that invites data-snooping 
bias—we try to distill the fundamental property of that price series using 
a simple mathematical model. We can then exploit that model to our fi nan-
cial benefi t. Nevertheless, the level of mathematics needed in the trading of 
stocks, futures, and currencies is far lower than that needed in derivatives 
trading, and anyone familiar with freshman calculus, linear algebra, and sta-
tistics should be able to follow my discussions without problems. If you fi nd 
the equations too confusing, you can just go straight to the examples and see 
their concrete implementations as software codes.

When I wrote my fi rst book, I was an independent trader, though one 
who had worked in the institutional investment management industry for 
many years. In the subsequent years, I have started and managed two hedge 
funds, either with a partner or by myself. I have survived the 2007 summer 
quant funds meltdown, the 2008 fi nancial crisis, the 2010 fl ash crash, the 

http://www.wiley.com/go/algotrading
http://www.epchan.com/book2
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2011 U.S. federal debt downgrade, and the 2011–2012 European debt cri-
sis. Therefore, I am more confi dent than before that my initial approach to 
algorithmic trading is sound, though I have certainly learned much more in 
the interim. For instance, I have found that it is seldom a good idea to manu-
ally override a model no matter how treacherous the market is looking; that 
it is always better to be underleveraged than overleveraged, especially when 
managing other people’s money; that strategy performance often mean-
reverts; and that overconfi dence in a strategy is the greatest danger to us 
all. One learns much more from mistakes and near-catastrophes than from 
successes. I strove to record much of what I have learned in the past four 
years in this book.

My fund management experience has not changed my focus on the seri-
ous retail trader in this book. With suffi  cient determination, and with some 
adaptations and refi nements, all the strategies here can be implemented by 
an independent trader, and they do not require a seven-fi gure brokerage ac-
count, nor do they require fi ve-fi gure technology expenditure. My message 
to these traders is still the same: An individual with limited resources and 
computing power can still challenge powerful industry insiders at their own 
game.

 ■ The Motive

Books written by traders for other traders need to answer one basic ques-
tion: Why are they doing it? More specifi cally, if the strategies described are 
any good, why would the trader publicize them, which would surely render 
them less profi table in the future?

To answer the second question first: Many of the strategies I will 
describe are quite well known to professional traders, so I am hardly 
throwing away any family jewels. Others have such high capacities that 
their profitability will not be seriously affected by a few additional trad-
ers running them. Yet others have the opposite properties: They are of 
such low capacity, or have other unappealing limitations that I no longer 
find them attractive for inclusion in my own fund’s portfolio, but they 
may still be suitable for an individual trader’s account. Finally, I will 
often be depicting strategies that at first sight are very promising, but 
may contain various pitfalls that I have not fully researched and elimi-
nated. For example, I have not included transaction costs in my example 
backtest codes, which are crucial for a meaningful backtest. I often use 
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in-sample data to both optimize parameters and measure performance, 
which would surely inflate results. I am committing all these pitfalls 
in my examples because the simplified version is more illustrative and 
readable. These may be called “prototype strategies.”  They are not meant 
to be traded “as-is,” but they are useful as illustrations of common algo-
rithmic trading techniques, and as inspirations for the reader to further 
refine and improve them.

What about the basic motive question? It comes down to this: 
Crowdsourcing knowledge is often more effi  cient than any other method 
for gathering information. And so—as with my fi rst book—I welcome your 
feedback on the strategies discussed in this book.

 ■ A Note about Sources and 
Acknowledgments

Naturally, I did not invent most of the materials presented here. Besides the 
traditional and commonly accessible sources of books, academic journals, 
magazines, blogs, and online trader forums (such as elitetrader.com and 
nuclearphynance.com), there are now new online expert networks such as 
Hightable.com and Quora.com where specifi c questions can be posted and 
often answered by true industry experts. I have personally benefi ted from 
all these sources and am grateful to the various online experts who have 
answered my questions with unexpected depth and details.

By virtue of my previous book and my blog (http://epchan.blogspot
.com), I am also fortunate to have heard from a great many insightful read-
ers, many of whom have contributed to my knowledge base. 

I have also taught regular workshops in London and Singapore on various 
topics in algorithmic trading that were attended by many institutional ana-
lysts and traders. They have contributed valuable insights to me that may not 
be easily accessible in any public forums. Special workshops held for clients 
in Canada, China, Hong Kong, India, South Africa, and the United States 
have also exposed me to broad international perspectives and concerns.

I am also privileged to have collaborated with many knowledgeable fi -
nance professionals even as an independent trader and fund manager. Some 
of these collaborations are short-term and informal, while others lead to 
the formal formation of fund management companies. In particular, I thank 
Steve Halpern and Roger Hunter for their extensive discussions and count-
less joint projects and ventures.

http://epchan.blogspot.com
http://epchan.blogspot.com
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I am indebted to Bryan Downing for introducing me to some of the trad-
ing technologies mentioned in Chapter 1, and to Rosario Ingargiola for 
showcasing his FXOne platform to me.

Finally, many thanks to my editor Bill Falloon at John Wiley & Sons for 
being always enthusiastic and supportive of my book ideas, to development 
editor Meg Freeborn for her unfailingly valuable suggestions, and to pro-
duction editor Steven Kyritz for shepherding this book to its fi nal form.
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Backtesting 
and Automated 
Execution

C H A P T E R  1

While the focus of this book is on specifi c categories of strategies and 
not on general techniques of backtesting, there are a number of im-

portant considerations and common pitfalls to all strategies that need to 
be addressed fi rst. If one blithely goes ahead and backtests a strategy with-
out taking care to avoid these pitfalls, the backtesting will be useless. Or 
worse—it will be misleading and may cause signifi cant fi nancial losses.

Since backtesting typically involves the computation of an expected re-
turn and other statistical measures of the performance of a strategy, it is 
reasonable to question the statistical signifi cance of these numbers. We will 
discuss various ways of estimating statistical signifi cance using the method-
ologies of hypothesis testing and Monte Carlo simulations. In general, the 
more round trip trades there are in the backtest, the higher will be the sta-
tistical signifi cance. But even if a backtest is done correctly without pitfalls 
and with high statistical signifi cance, it doesn’t necessarily mean that it is 
predictive of future returns. Regime shifts can spoil everything, and a few 
important historical examples will be highlighted.

The choice of a software platform for backtesting is also an important 
consideration and needs to be tackled early on. A good choice not only will 
vastly increase your productivity, it will also allow you to backtest the broad-
est possible spectrum of strategies in the broadest variety of asset classes. 
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And it will reduce or eliminate the chances of committing the aforemen-
tioned pitfalls. We will also explain why the choice of a good backtesting 
platform is often tied to the choice of a good automated execution platform: 
often, the best platform combines both functions.

 ■ The Importance of Backtesting

Backtesting is the process of feeding historical data to your trading strategy 
to see how it would have performed. The hope is that its historical perfor-
mance tells us what to expect for its future performance. The importance of 
this process is obvious if you have developed a strategy from scratch, since 
you would certainly want to know how it has performed. But even if you 
read about a strategy from a publication, and you trust that the author did 
not lie about its stated performance, it is still imperative that you indepen-
dently backtest the strategy. There are several reasons for this.

Often, the profi tability of a strategy depends sensitively on the details 
of implementation. For example, are the stock orders supposed to be sent 
as market-on-open orders or as market orders just after the open? Are we 
supposed to send in an order for the E-mini Standard & Poor’s (S&P) 500 
future just before the 4:00 p.m. stock market closing time, or just before 
the 4:15 p.m. futures market closing time? Are we supposed to use the bid 
or ask price to trigger a trade, or are we supposed to use the last price? All 
these details tend to be glossed over in a published article, often justifi ably 
so lest they distract from the main idea, but they can aff ect the profi tabil-
ity of a live-traded strategy signifi cantly. The only way to pin down these 
details exactly, so as to implement them in our own automated execution 
system, is to backtest the strategy ourselves. In fact, ideally, our backtest-
ing program can be transformed into an automated execution program by 
the push of a button to ensure the exact implementation of details.

Once we have implemented every detail of a strategy as a backtest pro-
gram, we can then put them under the microscope and look for pitfalls in 
the backtesting process or in the strategy itself. For example, in backtesting 
a stock portfolio strategy with both long and short positions, have we taken 
into account the fact that some stocks were hard to borrow and cannot easily 
be shorted at any reasonable size? In backtesting an intermarket pair-trading 
strategy in futures, have we made sure that the closing prices of the two 
markets occur at the same time? The full list of pitfalls is long and tedious, 
but I will highlight a few common ones in the section “Common Pitfalls of 
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Backtesting.” Often, each market and each strategy presents its own very 
specifi c set of pitfalls. Usually, a pitfall tends to infl ate the backtest perfor-
mance of a strategy relative to its actual performance in the past, which is 
particularly dangerous.

Even if we have satisfi ed ourselves that we have understood and imple-
mented every detail of a strategy in a backtesting program, and that there is 
no pitfall that we can discover, backtesting a published strategy can still yield 
important benefi ts.

Backtesting a published strategy allows you to conduct true out-of-sample 
testing in the period following publication. If that out-of-sample performance 
proves poor, then one has to be concerned that the strategy may have worked 
only on a limited data set. This is actually a more important point than people 
realize. Many authors will claim in their articles that the backtest results were 
“verifi ed with out-of-sample data.” But, actually, if the out-of-sample testing 
results were poor, the authors could have just changed some parameters, or 
they could have tweaked the model substantially so that the results look good 
with the “out-of-sample” data. Hence, true out-of-sample testing cannot re-
ally begin until a strategy is published and cast in stone.

Finally, by backtesting a strategy ourselves, we often can fi nd ways to 
refi ne and improve the strategy to make it more profi table or less risky. 
The backtesting process in trading should follow the “scientifi c method.”  We 
should start with a hypothesis about an arbitrage opportunity, maybe based 
on our own intuition about the market or from some published research. 
We then confi rm or refute this hypothesis by a backtest. If the results of the 
backtest aren’t good enough, we can modify our hypothesis and repeat the 
process.

As I emphasized earlier, performance of a strategy is often very sensitive 
to details, and small changes in these details can bring about substantial im-
provements. These changes can be as simple as changing the look-back time 
period for determining the moving average, or entering orders at the open 
rather than at the close. Backtesting a strategy allows us to experiment with 
every detail.

 ■ Common Pitfalls of Backtesting

Although almost every strategy allows for unique opportunities in commit-
ting errors in backtesting, there are a number of common themes, some 
generally applicable to all markets, others pertain to specifi c ones.
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Look-ahead Bias
As its name implies, look-ahead bias means that your backtest program is us-
ing tomorrow’s prices to determine today’s trading signals. Or, more gener-
ally, it is using future information to make a “prediction” at the current time. 
A common example of look-ahead bias is to use a day’s high or low price to 
determine the entry signal during the same day during backtesting. (Before 
the close of a trading day, we can’t know what the high and low price of the 
day are.) Look-ahead bias is essentially a programming error and can infect 
only a backtest program but not a live trading program because there is no 
way a live trading program can obtain future information. This diff erence 
between backtesting and a live trading program also points to an obvious 
way to avoid look-ahead bias. If your backtesting and live trading programs 
are one and the same, and the only diff erence between backtesting versus 
live trading is what kind of data you are feeding into the program (historical 
data in the former, and live market data in the latter), then there can be no 
look-ahead bias in the program. Later on in this chapter, we will see which 
platforms allow the same source code to be used for both backtest and live 
execution.

Data-Snooping Bias and the Beauty of Linearity
Data-snooping bias is caused by having too many free parameters that are 
fi tted to random ethereal market patterns in the past to make historical per-
formance look good. These random market patterns are unlikely to recur 
in the future, so a model fi tted to these patterns is unlikely to have much 
predictive power.

The way to detect data-snooping bias is well known: We should test the 
model on out-of-sample data and reject a model that doesn’t pass the out-of-
sample test. But this is easier said than done. Are we really willing to give up 
on possibly weeks of work and toss out the model completely? Few of us are 
blessed with such decisiveness. Many of us will instead tweak the model this 
way or that so that it fi nally performs reasonably well on both the in-sample 
and the out-of-sample result. But voilà! By doing this we have just turned 
the out-of-sample data into in-sample data.

If you are unwilling to toss out a model because of its performance on 
a fi xed out-of-sample data set (after all, poor performance on this out-of-
sample data may just be due to bad luck), or if you have a small data set 
to start with and really need to tweak the model using most of this data, 
you should consider the idea of cross-validation. That is, you should select a 
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number of diff erent subsets of the data for training and tweaking your model 
and, more important, making sure that the model performs well on these 
diff erent subsets. One reason why we prefer models with a high Sharpe ratio 
and short maximum drawdown duration is that this almost automatically 
ensures that the model will pass the cross-validation test: the only subsets 
where the model will fail the test are those rare drawdown periods.

There is a general approach to trading strategy construction that can min-
imize data-snooping bias: make the model as simple as possible, with as few 
parameters as possible. Many traders appreciate the second edict, but fail 
to realize that a model with few parameters but lots of complicated trading 
rules are just as susceptible to data-snooping bias. Both edicts lead to the 
conclusion that nonlinear models are more susceptible to data-snooping bias 
than linear models because nonlinear models not only are more complicated 
but they usually have more free parameters than linear models.

Suppose we attempt to predict price by simple extrapolation of the his-
torical price series. A nonlinear model would certainly fi t the historical data 
better, but that’s no guarantee that it can predict a future value better. But 
even if we fi x the number of parameters to be the same for a nonlinear 
model versus its linear contender, one has to remember that we can usually 
approximate a nonlinear model by Taylor-series expansion familiar from 
calculus. That means that there is usually a simpler, linear approximation 
corresponding to every nonlinear model, and a good reason has to be given 
why this linear model cannot be used. (The exceptions are those singular 
cases where the lower-order terms vanish. But such cases seldom describe 
realistic fi nancial time series.)

An equivalent reasoning can be made in the context of what probabil-
ity distributions we should assume for returns. We have heard often that the 
Gaussian distribution fails to capture extreme events in the fi nancial market. 
But the problem with going beyond the Gaussian distribution is that we will 
be confronted with many choices of alternative distributions. Should it be a 
Student’s t-distribution that allows us to capture the skew and kurtosis of the 
returns, or should it be a Pareto distribution that dispenses with a fi nite second 
moment completely? Any choice will have some element of arbitrariness, and 
the decision will be based on a fi nite number of observations. Hence, Occam’s 
razor dictates that unless there are strong theoretical and empirical reasons 
to support a non-Gaussian distribution, a Gaussian form should be assumed.

Linear models imply not only a linear price prediction formula, but also 
a linear capital allocation formula. Let’s say we are considering a mean-
reverting model for a price series such that the change in the price dy in 
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the next time period dt is proportional to the diff erence between the mean 
price and the current price: dy(t) = (λy(t − 1) + μ)dt + dε, the so-called 
“Ornstein-Uhlenbeck” formula, which is explained and examined in greater 
detail in Chapter 2. Often, a trader will use a Bollinger band model to cap-
ture profi ts from this mean-reverting price series, so that we sell (or buy) 
whenever the price exceeds (or falls below) a certain threshold. However, if 
we are forced to stick to linear models, we would be forced to sell (or buy) 
at every price increment, so that the total market value is approximately 
proportional to the negative deviation from the mean. In common traders’ 
parlance, this may be called “averaging-in,” or “scaling-in,” a technique that 
is discussed in Chapter 3.

You will fi nd several examples of linear trading models in this book be-
cause the simplicity of this technique lets us illustrate the point that profi ts 
are not derived from some subtle, complicated cleverness of the strategy 
but from an intrinsic ineffi  ciency in the market that is hidden in plain sight. 
The impatient reader can look ahead to Example 4.2, which shows a linear 
mean-reverting strategy between an exchange-traded fund (ETF) and its 
component stocks, or Examples 4.3 and 4.4, showing two linear long-short 
statistical arbitrage strategies on stocks.

The most extreme form of linear predictive models is one in which 
all the coefficients are equal in magnitude (but not necessarily in sign). 
For example, suppose you have identified a number of factors (  f ’s) that 
are useful in predicting whether tomorrow’s return of a stock index is 
positive. One factor may be today’s return, with a positive today’s re-
turn predicting a positive future return. Another factor may be today’s 
change in the volatility index (VIX), with a negative change predicting 
positive future return. You may have several such factors. If you normal-
ize these factors by turning them first into Z-scores (using in-sample 
data!):

 z(i) = (  f(i) − mean(  f  ))/std(  f  ), (1.1)

where f (i) is the ith factor, you can then predict tomorrow’s return R by

 ∑)(= +R mean R std R sign i z i n( ) ( ) ( )/
i

n
.  (1.2)

The quantities mean(  f  ) and std(  f  ) are the historical average and standard 
deviation of the various f(i), sign(i) is the sign of the historical correlation 
between f(i) and R, and mean(R) and std(R) are the historical average and 
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standard deviation of one-day returns, respectively. Daniel Kahneman, the 
Nobel Prize-winning economist, wrote in his bestseller Thinking, Fast and 

Slow that “formulas that assign equal weights to all the predictors are often 
superior, because they are not aff ected by accidents of sampling” (Kahneman, 
2011). Equation 1.2 is a simplifi ed version of the usual factor model used in 
stock return prediction. While its prediction of the absolute returns may or 
may not be very accurate, its prediction of relative returns between stocks 
is often good enough. This means that if we use it to rank stocks, and then 
form a long-short portfolio by buying the stocks in the top decile and short-
ing those in the bottom decile, the average return of the portfolio is often 
positive.

Actually, if your goal is just to rank stocks instead of coming up with an 
expected return, there is an even simpler way to combine the factors f ’s 
without using Equations 1.1 and 1.2. We can fi rst compute the ranks(i) of a 
stock s based on a factor f(i). Then we multiply these ranks by the sign of the 
correlation between f(i) and the expected return of the stock. Finally, we 
sum all these signed ranks to form the rank of a stock:

 ∑ )(=rank sign i rank i( )s si

n
. (1.3)

As an example, Joel Greenblatt has famously used a two-factor model as a 
“magic formula” to rank stocks: f(1) = return on capital and f(2) = earnings 
yield (Greenblatt, 2006). We are supposed to buy the top 30 ranked stocks 
and hold them for a year. The annual percentage rate (APR) for this strategy 
was 30.8 percent from 1988 to 2004, compared with 12.4 percent for the 
S&P 500. Quite a triumph of linearity!

In the end, though, no matter how carefully you have tried to prevent 
data-snooping bias in your testing process, it will somehow creep into your 
model. So we must perform a walk-forward test as a fi nal, true out-of-
sample test. This walk-forward test can be conducted in the form of pa-
per trading, but, even better, the model should be traded with real money 
(albeit with minimal leverage) so as to test those aspects of the strategy that 
eluded even paper trading. Most traders would be happy to fi nd that live 
trading generates a Sharpe ratio better than half of its backtest value.

Stock Splits and Dividend Adjustments
Whenever a company’s stock has an N-to-1 split, the stock price will be di-
vided by N times. However, if you own a number of shares of that company’s 
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stock before the split, you will own N times as many shares after the split, 
so there is in fact no change in the total market value. But in a backtest, 
we typically are looking at just the price series to determine our trading 
signals, not the market-value series of some hypothetical account. So unless 
we back-adjust the prices before the ex-date of the split by dividing them by 
N, we will see a sudden drop in price on the ex-date, and that might trigger 
some erroneous trading signals. This is as true in live trading as in backtest-
ing, so you would have to divide the historical prices by N just before the 
market opens on the ex-date during live trading, too. (If it is a reverse 1-to-
N split, we would have to multiply the historical prices before the ex-date 
by N.)

Similarly, when a company pays a cash (or stock) dividend of $d per 
share, the stock price will also go down by $d (absent other market move-
ments). That is because if you own that stock before the dividend ex-date, 
you will get cash (or stock) distributions in your brokerage account, so 
again there should be no change in the total market value. If you do not 
back-adjust the historical price series prior to the ex-date, the sudden drop 
in price may also trigger an erroneous trading signal. This adjustment, too, 
should be applied to any historical data used in the live trading model just 
before the market opens on an ex-date. (This discussion applies to ETFs as 
well. A slightly more complicated treatment needs to be applied to options 
prices.)

You can fi nd historical split and dividend information on many websites, 
but I fi nd that earnings.com is an excellent free resource. It not only records 
such historical numbers, but it shows the announced split and dividend 
amounts and ex-dates in the future as well, so we can anticipate such events 
in our automated trading software. If you are interested in historical stock 
data that are already adjusted for stock splits and dividends, and are easy to 
download, try csidata.com.

Survivorship Bias in Stock Database
If you are backtesting a stock-trading model, you will suff er from survi-
vorship bias if your historical data do not include delisted stocks. Imagine 
an extreme case: suppose your model asks you to just buy the one stock 
that dropped the most in the previous day and hold it forever. In actuality, 
this strategy will most certainly perform poorly because in many cases the 
company whose stock dropped the most in the previous day will go on to 
bankruptcy, resulting in 100 percent loss of the stock position. But if your 
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historical data do not include delisted stocks—that is, they contain only 
stocks that survive until today—then the backtest result may look excellent. 
This is because you would have bought a stock when it was beaten down 
badly but subsequently survived, though you could not have predicted its 
eventual survival if you were live-trading the strategy.

Survivorship bias is more dangerous to mean-reverting long-only stock 
strategies than to mean-reverting long-short or short-only strategies. This is 
because, as we saw earlier, this bias tends to infl ate the backtest performance 
of a long-only strategy that fi rst buys low and then sells high, whereas it will 
defl ate the backtest performance of a short-only strategy that fi rst sells high 
and then buys low. Those stocks that went to zero would have done very well 
with a short-only strategy, but they would not be present in backtest data 
with survivorship bias. For mean-reverting long-short strategies, the two 
eff ects are of opposite signs, but infl ation of the long strategy return tends 
to outweigh the defl ation of the short portfolio return, so the danger is re-
duced but not eliminated. Survivorship bias is less dangerous to momentum 
models. The profi table short momentum trade will tend to be omitted in 
data with survivorship bias, and thus the backtest return will be defl ated.

You can buy reasonably priced historical data that are free of survivor-
ship bias from csidata.com (which provides a list of delisted stocks). Other 
vendors include kibot.com, tickdata.com, and crsp.com. Or you can in fact 
collect your own survivorship bias–free data by saving the historical prices 
of all the stocks in an index every day. Finally, in the absence of such survi-
vorship bias–free data, you can limit yourself to backtesting only the most 
recent, say, three years of historical data to reduce the damage.

Primary versus Consolidated Stock Prices
Many U.S. stocks are traded on multiple exchanges, electronic communi-
cation networks (ECNs), and dark pools: The New York Stock Exchange 
(NYSE), NYSE Arca, Nasdaq, Island, BATS, Instinet, Liquidnet, Bloomberg 
Tradebook, Goldman Sachs’ Sigma X, and Credit Suisse’s CrossFinder are 
just some of the example markets. When you look up the historical daily 
closing price of a stock, it refl ects the last execution price on any one of 
these venues during regular trading hours. Similarly, a historical daily open-
ing price refl ects the fi rst execution price on any one of these venues. But 
when you submit a market-on-close (MOC) or market-on-open (MOO) 
order, it will always be routed to the primary exchange only. For example, 
an MOC order on IBM will be routed to NYSE, an MOC order on SPY 
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will be routed to NYSE Arca, and an MOC order on Microsoft (MSFT) will 
be routed to Nasdaq. Hence, if you have a strategy that relies on market-
on-open or market-on-close orders, you need the historical prices from 
the primary exchange to accurately backtest your model. If you use the 
usual consolidated historical prices for backtesting, the results can be quite 
unrealistic. In particular, if you use consolidated historical prices to back-
test a mean-reverting model, you are likely to generate infl ated backtest 
performance because a small number of shares can be executed away from 
the primary exchange at a price quite diff erent from the auction price on 
the primary exchange. The transaction prices on the next trading day will 
usually mean-revert from this hard-to-achieve outlier price. (The close and 
open prices on the U.S. primary exchanges are always determined by an 
auction, while a transaction at the close on a secondary exchange is not the 
result of an auction.)

A similar consideration applies to using high or low prices for your strat-
egy. What were recorded in the historical data are usually the consolidated 
highs or lows, not that of the primary exchange. They are often unrepresen-
tative, exaggerated numbers resulting from trades of small sizes on second-
ary exchanges. Backtest performance will also be infl ated if these historical 
prices are used.

Where can we fi nd historical prices from the primary exchanges? Bloom-
berg users have access to that as part of their subscription. Of course, just as 
in the case of storing and using survivorship bias–free data discussed earlier, 
we can also subscribe to direct live feeds from the (primary) exchanges and 
store those prices into our own databases in real time. We can then use these 
databases in the future as our source of primary exchange data. Subscribing 
to such feeds independently can be an expensive proposition, but if your 
broker has such subscriptions and it redistributes such data to its clients that 
colocate within its data center, the cost can be much lower. Unfortunately, 
most retail brokers do not redistribute direct feeds from the exchanges, but 
institutional brokers such as Lime Brokerage often do.

If we don’t have access to such data, all we can do is to entertain a healthy 
skepticism of our backtest results.

Venue Dependence of Currency Quotes
Compared to the stock market, the currency markets are even more frag-
mented and there is no rule that says a trade executed at one venue has to be 
at the best bid or ask across all the diff erent venues. Hence, a backtest will 
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be realistic only if we use historical data extracted from the same venue(s) 
as the one(s) we expect to trade on.

There are quotes aggregators such as Streambase that consolidate data 
feeds from diff erent venues into one order book. In this case, you may use 
the consolidated historical data for backtesting, as long as you can execute 
on the venue that formed part of the consolidated order book.

Another feature of currency live quotes and historical data is that trade 
prices and sizes, as opposed to bid and ask quotes, are not generally avail-
able, at least not without a small delay. This is because there is no regula-
tion that says the dealer or ECN must report the trade price to all market 
participants. Indeed, many dealers view transaction information as propri-
etary and valuable information. (They might be smart to do that because 
there are high-frequency strategies that depend on order fl ow informa-
tion and that require trade prices, as mentioned in Chapter 7. The banks’ 
forex proprietary trading desks no doubt prefer to keep this information 
to themselves.) But using bid-ask quotes for backtesting forex strategies 
is recommended anyway, since the bid-ask spreads for the same currency 
pair can vary signifi cantly between venues. As a result, the transaction costs 
are also highly venue dependent and need to be taken into account in a 
backtest.

Short-Sale Constraints
A stock-trading model that involves shorting stocks assumes that those 
stocks can be shorted, but often there are diffi  culties in shorting some 
stocks. To short a stock, your broker has to be able to “locate” a quantity of 
these stocks from other customers or other institutions (typically mutual 
funds or other asset managers that have large long positions in many stocks) 
and arrange a stock loan to you. If there is already a large short interest out 
there so that a lot of the shares of a company have already been borrowed, 
or if the fl oat of the stock is limited, then your stock can be “hard to bor-
row.” Hard to borrow may mean that you, as the short seller, will have to 
pay interest to the stock lender, instead of the other way around in a normal 
situation. In more extreme cases, hard to borrow may mean that you cannot 
borrow the stock in the quantity you desire or at all. After Lehman Brothers 
collapsed during the fi nancial crisis of 2008–2009, the U.S. Securities and 
Exchange Commission (SEC) banned short sales in all the fi nancial indus-
try stocks for several months. So if your backtesting model shorts stocks 
that were hard or impossible to borrow, it may show a wonderful return 
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because no one else was able to short the stock and depress its price when 
your model shorted it. But this return is completely unrealistic. This renders 
short-sale constraints dangerous to backtesting. It is not easy, though, to fi nd 
a historically accurate list of hard-to-borrow stocks for your backtest, as this 
list depends on which broker you use. As a general rule, small-cap stocks are 
aff ected much more by short-sale constraint than are large-cap stocks, and 
so the returns of their short positions are much more suspect. Bear in mind 
also that sometimes ETFs are as hard to borrow as stocks. I have found, for 
example, that I could not even borrow SPY to short in the months after the 
Lehman Brothers’ collapse!

An additional short-sale constraint is the so-called “uptick rule” imposed 
by the SEC. The original uptick rule was in eff ect from 1938 to 2007, where 
the short sale had to be executed at a price higher than the last traded price, 
or at the last traded price if that price was higher than the price of the trade 
prior to the last. (For Nasdaq stocks, the short sale price must be higher 
than the last bid rather than the last trade.) The Alternative Uptick Rule that 
took eff ect in 2010 also requires a short sale to have a trade price higher than 
the national best bid, but only when a circuit breaker has been triggered. A 
circuit breaker for a stock is triggered when that stock traded at 10 percent 
lower than its previous close. The circuit breaker is in eff ect for the follow-
ing day after the initial trigger as well. This eff ectively prevents any short 
market orders from being fi lled. So, again, a really accurate backtest that 
involves short sales must take into account whether these constraints were 
in eff ect when the historical trade was supposed to occur. Otherwise, the 
backtest performance will be infl ated.

Futures Continuous Contracts
Futures contracts have expiry dates, so a trading strategy on, say, crude oil 
futures, is really a trading strategy on many diff erent contracts. Usually, 
the strategy applies to front-month contracts. Which contract is the “front 
month” depends on exactly when you plan to “roll over” to the next month; 
that is, when you plan to sell the current front contract and buy the contract 
with the next nearest expiration date (assuming you are long a contract to 
begin with). Some people may decide to roll over 10 days before the current 
front contract expires; others may decide to roll over when there is an “open 
interest crossover”; that is, when the open interest of the next contract ex-
ceeds that of the current front contract. No matter how you decide your 
rollover date, it is quite an extra bother to have to incorporate that in your 
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trading strategy, as this buying and selling is independent of the strategy and 
should result in minimal additional return or profi t and loss (P&L). (P&L, or 
return, is certainly aff ected by the so-called “roll return,” but as we discuss 
extensively in Chapter 5, roll return is in eff ect every day on every contract 
and is not a consequence of rolling over.) Fortunately, most futures histori-
cal data vendors also recognize this, and they usually make available what is 
known as “continuous contract” data.

We won’t discuss here how you can go about creating a continuous con-
tract yourself because you can read about that on many futures historical 
data vendors’ websites. But there is a nuance to this process that you need 
to be aware of. The fi rst step in creating a continuous contract is to concat-
enate the prices of the front-month contract together, given a certain set of 
rollover dates. But this results in a price series that may have signifi cant price 
gaps going from the last date before rollover to the rollover date, and it will 
create a false return or P&L on the rollover date in your backtest.

To see this, let’s say the closing price of the front contract on date T is 
p(T ), and the closing price of this same contract on date T + 1 is p(T + 1). 
Also, let’s say the closing price of the next nearby contract (also called the 
“back” contract) on date T + 1 is q(T + 1). Suppose T + 1 is the rollover date, 
so if we are long the front contract, we should sell this contract at the close 
at p(T + 1), and then buy the next contract at q(T + 1). What’s the P&L (in 
points, not dollars) and return of this strategy on T + 1? The P&L is just 
p(T + 1) − p(T ), and the return is ( p(T + 1) − p(T ))/p(T ). But the unad-
justed continuous price series will show a price of p(T ) at T, and q(T + 1) at 
T + 1. If you calculate P&L and return the usual way, you would have calcu-
lated the erroneous values of q(T + 1) − p(T ) and (q(T + 1) − p(T ))/p(T ), 
respectively. To prevent this error, the data vendor can typically back-adjust 
the data series to eliminate the price gap, so that the P&L on T + 1 is p(T + 1) 
− p(T ). This can be done by adding the number (q(T + 1) − p(T + 1)) to 
every price p(t) on every date t on or before T, so that the price change and 
P&L from T to T + 1 is correctly calculated as q(T + 1) − ( p(T ) + q(T + 1) 
− p(T + 1)) = p(T + 1) − p(T ). (Of course, to take care of every rollover, 
you would have to apply this back adjustment multiple times, as you go back 
further in the data series.)

Is our problem solved? Not quite. Check out what the return is at T + 1 
given this adjusted price series: ( p(T + 1) − p(T ))/( p(T ) + q(T + 1) − p(T + 
1)), not ( p(T + 1) − p(T))/p(T ). If you back-adjust to make the P&L calcu-
lation correct, you will leave the return calculation incorrect. Conversely, 
you can back-adjust the price series to make the return calculation correct 
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(by multiplying every price p(t) on every date t on or before T by the num-
ber q(T + 1)/p(T + 1)), but then the P&L calculation will be incorrect. You 
really can’t have both. As long as you want the convenience of using a con-
tinuous contract series, you have to choose one performance measurement 
only, P&L or return. (If you bother to backtest your strategy on the various 
individual contracts, taking care of the rollover buying and selling yourself, 
then both P&L and return can be correctly calculated simultaneously.)

An additional diffi  culty occurs when we choose the price back-adjustment 
instead of the return back-adjustment method: the prices may turn negative 
in the distant past. This may create problems for your trading strategy, and 
it will certainly create problems in calculating returns. A common method 
to deal with this is to add a constant to all the prices so that none will be 
negative.

This subtlety in picking the right back-adjustment method is more im-
portant when we have a strategy that involves trading spreads between 
diff erent contracts. If your strategy generates trading signals based on the 
price diff erence between two contracts, then you must choose the price 
back-adjustment method; otherwise, the price diff erence may be wrong and 
generate a wrong trading signal. When a strategy involves calendar spreads 
(spreads on contracts with the same underlying but diff erent expiration 
dates), this back adjustment is even more important. This is because the 
calendar spread is a small number compared to the price of one leg of the 
spread, so any error due to rollover will be a signifi cant percentage of the 
spread and very likely to trigger a wrong signal both in backtest and in live 
trading. However, if your strategy generates trading signals based on the 
ratio of prices between two contracts, then you must choose the return 
back-adjustment method.

As you can see, when choosing a data vendor for historical futures prices, 
you must understand exactly how they have dealt with the back-adjustment 
issue, as it certainly impacts your backtest. For example, csidata.com uses 
only price back adjustment, but with an optional additive constant to pre-
vent prices from going negative, while tickdata.com allows you the option 
of choosing price versus return back-adjustment, but there is no option for 
adding a constant to prevent negative prices.

Futures Close versus Settlement Prices
The daily closing price of a futures contract provided by a data vendor 
is usually the settlement price, not the last traded price of the contract 
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during that day. Note that a futures contract will have a settlement price 
each day (determined by the exchange), even if the contract has not traded 
at all that day. And if the contract has traded, the settlement price is in 
general diff erent from the last traded price. Most historical data vendors 
provide the settlement price as the daily closing price. But some, such as 
vendors that provide tick-by-tick data, may provide actual transaction price 
only, and therefore the close price will be the last traded price, if there has 
been a transaction on that day. Which price should we use to backtest our 
strategies?

In most cases, we should use the settlement price, because if you had 
traded live near the close, that would have been closest to the price of your 
transaction. The last recorded trade price might have occurred several hours 
earlier and bear little relation to your transaction price near the close. This 
is especially important if we are constructing a pairs-trading strategy on 
futures. If you use the settlement prices to determine the futures spreads, 
you are guaranteed to be using two contemporaneous prices. (This is true 
as long as the two futures contracts have the same underlying and therefore 
have the same closing time. If you are trading intermarket spreads, see the 
discussion at the end of this section.) However, if you use the last traded 
prices to determine the spread, you may be using prices generated at two 
very diff erent times and therefore incorrect. This incorrectness may mean 
that your backtest program will be generating erroneous trades due to an 
unrealistically large spread, and these trades may be unrealistically profi t-
able in backtest when the spreads return to a correct, smaller value in the 
future, maybe when near-simultaneous transactions occur. As usual, an in-
fl ated backtest result is dangerous.

If you have an intraday spread strategy or are otherwise using intraday 
futures prices for backtesting a spread strategy, you will need either histori-
cal data with bid and ask prices of both contracts or the intraday data on 
the spread itself when it is native to the exchange. This is necessary because 
many futures contracts are not very liquid. So if we use the last price of ev-
ery bar to form the spread, we may fi nd that the last prices of contract A and 
contract B of the same bar may actually refer to transactions that are quite 
far apart in time. A spread formed by asynchronous last prices could not in 
reality be bought or sold at those prices. Backtests of intraday spread strate-
gies using the last price of each leg of the spread instead of the last price 
of the spread itself will again infl ate the resulting returns. One vendor that 
sells intraday historical calendar spread data (both quote and trade prices) is 
cqgdatafactory.com.
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There is one general detail in backtesting intermarket spreads that should 
not be overlooked. If the contracts are traded on diff erent exchanges, they 
are likely to have diff erent closing times. So it would be wrong to form an 
intermarket spread using their closing prices. This is true also if we try to 
form a spread between a future and an ETF. The obvious remedy of this is 
to obtain intraday bid-ask data so that synchronicity is assured. The other 
possibility is to trade an ETF that holds a future instead of the future itself. 
For example, instead of trading the gold future GC (settlement price set 
at 1:30 p.m. ET) against the gold-miners ETF GDX, we can trade the gold 
trust GLD against GDX instead. Because both trade on Arca, their closing 
prices are set at the same 4:00 p.m. ET.

 ■ Statistical Signifi cance of Backtesting: 
Hypothesis Testing

In any backtest, we face the problem of fi nite sample size: Whatever statisti-
cal measures we compute, such as average returns or maximum drawdowns, 
are subject to randomness. In other words, we may just be lucky that our 
strategy happened to be profi table in a small data sample. Statisticians have 
developed a general methodology called hypothesis testing to address this 
issue.

The general framework of hypothesis testing as applied to backtesting 
follows these steps:

 1. Based on a backtest on some fi nite sample of data, we compute a cer-
tain statistical measure called the test statistic. For concreteness, let’s say 
the test statistic is the average daily return of a trading strategy in that 
period. 

 2. We suppose that the true average daily return based on an infi nite data 
set is actually zero. This supposition is called the null hypothesis.

 3. We suppose that the probability distribution of daily returns is 
known. This probability distribution has a zero mean, based on the 
null hypothesis. We describe later how we determine this probability 
distribution.

 4. Based on this null hypothesis probability distribution, we compute the 
probability p that the average daily returns will be at least as large as 
the observed value in the backtest (or, for a general test statistic, as 
extreme, allowing for the possibility of a negative test statistic). This 
probability p is called the p-value, and if it is very small (let’s say smaller 
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than 0.01), that means we can “reject the null hypothesis,” and conclude 
that the backtested average daily return is statistically signifi cant.

The step in this procedure that requires most thought is step 3. How do 
we determine the probability distribution under the null hypothesis? Per-
haps we can suppose that the daily returns follow a standard parametric 
probability distribution such as the Gaussian distribution, with a mean of 
zero and a standard deviation given by the sample standard deviation of the 
daily returns. If we do this, it is clear that if the backtest has a high Sharpe 
ratio, it would be very easy for us to reject the null hypothesis. This is be-
cause the standard test statistic for a Gaussian distribution is none other than 
the average divided by the standard deviation and multiplied by the square 
root of the number of data points (Berntson, 2002). The p-values for various 
critical values are listed in Table 1.1. For example, if the daily Sharpe ratio 
multiplied by the square root of the number days ( n) in the backtest is 
greater than or equal to the critical value 2.326, then the p-value is smaller 
than or equal to 0.01.

This method of hypothesis testing is consistent with our belief that high-
Sharpe-ratio strategies are more statistically signifi cant.

Another way to estimate the probability distribution of the null hy-
pothesis is to use Monte Carlo methods to generate simulated historical 
price data and feed these simulated data into our strategy to determine 
the empirical probability distribution of profits. Our belief is that the 
profitability of the trading strategy captured some subtle patterns or 
correlations of the price series, and not just because of the first few 
moments of the price distributions. So if we generate many simulated 
price series with the same first moments and the same length as the 
actual price data, and run the trading strategy over all these simulated 
price series, we can find out in what fraction p of these price series 
are the average returns greater than or equal to the backtest return. 

TABLE 1.1 Critical Values for ×n  Daily Sharpe Ratio

p-value Critical values

0.10 1.282

0.05 1.645

0.01 2.326

0.001 3.091

Source: Berntson (2002).
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Ideally, p will be small, which allows us to reject the null hypothesis. 
Otherwise, the average return of the strategy may just be due to the 
market returns.

A third way to estimate the probability distribution of the null hypoth-
esis is suggested by Andrew Lo and his collaborators (Lo, Mamaysky, and 
Wang, 2000). In this method, instead of generating simulated price data, 
we generate sets of simulated trades, with the constraint that the number 
of long and short entry trades is the same as in the backtest, and with the 
same average holding period for the trades. These trades are distributed 
randomly over the actual historical price series. We then measure what 
fraction of such sets of trades has average return greater than or equal to 
the backtest average return.

In Example 1.1, I compare these three ways of testing the statistical sig-
nifi cance of a backtest on a strategy. We should not be surprised that they 
give us diff erent answers, since the probability distribution is diff erent in 
each case, and each assumed distribution compares our strategy against a 
diff erent benchmark of randomness.

Example 1.1: Hypothesis Testing on a Futures 
Momentum Strategy

We apply the three versions of hypothesis testing, each with 
a diff erent probability distribution for the null hypothesis, on 
the backtest results of the TU momentum strategy described in 
Chapter 6. That strategy buys (sells) the TU future if it has a positive 
(negative) 12-month return, and holds the position for 1 month. We 
pick this strategy not only because of its simplicity, but because it has 
a fi xed holding period. So for version 3 of the hypothesis testing, we 
need to randomize only the starting days of the long and short trades, 
with no need to randomize the holding periods.

The fi rst hypothesis test is very easy. We assume the probability 
distribution of the daily returns is Gaussian, with mean zero as 
befi tting a null hypothesis, and with the standard deviation given by 
the standard deviation of the daily returns given by our backtest. So 
if ret is the Tx1 MATLAB© array containing the daily returns of the 
strategy, the test statistic is just

mean(ret)/std(ret)*sqrt(length(ret))
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Example 1.1 (Continued)

which turns out to be 2.93 for our data set. Comparing this test 
statistic with the critical values in Table 1.1 tells us that we can reject 
the null hypothesis with better than 99 percent probability.

The second hypothesis test involves generating a set of random, 
simulated daily returns data for the TU future (not the daily returns 
of the strategy) for the same number of days as our backtest. These 
random daily returns data will have the same mean, standard 
deviation, skewness, and kurtosis as the observed futures returns, 
but, of course, they won’t have the same correlations embedded 
in them. If we fi nd there is a good probability that the strategy can 
generate an as good as or better return on this random returns series 
as the observed returns series, it would mean that the momentum 
strategy is not really capturing any momentum or serial correlations 
in the returns at all and is profi table only because we were lucky that 
the observed returns’ probability distribution has a certain mean and 
a certain shape. To generate these simulated random returns with the 
prescribed moments, we use the pearsrnd function from the MATLAB 
Statistics Toolbox. After the simulated returns marketRet_sim are 
generated, we then go on to construct a simulated price series cl_sim 
using those returns. Finally, we run the strategy on these simulated 
prices and calculate the average return of the strategy. We repeat 
this 10,000 times and count how many times the strategy produces 
an average return greater than or equal to that produced on the 
observed data set.

Assuming that marketRet is the Tx1 array containing the 
observed daily returns of TU, the program fragment is displayed 
below. (The source codes for these tests can be downloaded as 
TU_mom_hypothesisTest.m from www.wiley.com/go/algotrading.) 

moments={mean(marketRet), std(marketRet), ...
 skewness(marketRet), kurtosis(marketRet)};
numSampleAvgretBetterOrEqualObserved=0;

for sample=1:10000

marketRet_sim=pearsrnd(moments{:}, length(marketRet), 1);

cl_sim=cumprod(1+marketRet_sim)-1;

longs_sim=cl_sim > backshift(lookback, cl_sim) ;

shorts_sim=cl_sim < backshift(lookback, cl_sim) ;
(Continued )

http://www.wiley.com/go/algotrading
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Example 1.1 (Continued)

pos_sim=zeros(length(cl_sim), 1);

for h=0:holddays-1

long_sim_lag=backshift(h, longs_sim);

long_sim_lag(isnan(long_sim_lag))=false;

long_sim_lag=logical(long_sim_lag);

short_sim_lag=backshift(h, shorts_sim);

short_sim_lag(isnan(short_sim_lag))=false;

short_sim_lag=logical(short_sim_lag);

pos_sim(long_sim_lag)=pos_sim(long_sim_lag)+1;

pos_sim(short_sim_lag)=pos_sim(short_sim_lag)-1;

end

ret_sim=backshift(1, pos_sim).*marketRet_sim/holddays;

ret_sim(~isfinite(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=numSampleAvgret
 BetterOrEqualObserved+1;

end

end

We found that out of 10,000 random returns sets, 1,166 have 
average strategy return greater than or equal to the observed average 
return. So the null hypothesis can be rejected with only 88 percent 
probability. Clearly, the shape of the returns distribution curve has 
something to do with the success of the strategy. (It is less likely that 
the success is due to the mean of the distribution since the position 
can be long or short at diff erent times.)

The third hypothesis test involves randomizing the long and short 
entry dates, while keeping the same number of long trades and short 
trades as the ones in the backtest, respectively. We can accomplish 
this quite easily by the MATLAB function randperm:

numSampleAvgretBetterOrEqualObserved=0;

for sample=1:100000

P=randperm(length(longs));
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Example 1.1 (Continued)

longs_sim=longs(P);

shorts_sim=shorts(P);

pos_sim=zeros(length(cl), 1);

for h=0:holddays-1

long_sim_lag=backshift(h, longs_sim);

long_sim_lag(isnan(long_sim_lag))=false;

long_sim_lag=logical(long_sim_lag);

short_sim_lag=backshift(h, shorts_sim);

short_sim_lag(isnan(short_sim_lag))=false;

short_sim_lag=logical(short_sim_lag);

pos(long_sim_lag)=pos(long_sim_lag)+1;

pos(short_sim_lag)=pos(short_sim_lag)-1;

end

ret_sim=backshift(1, pos_sim).*marketRet/holddays;

ret_sim(isnan(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=...
 numSampleAvgretBetterOrEqualObserved+1;

end

end

There is not a single sample out of 100,000 where the average 
strategy return is greater than or equal to the observed return. 
Clearly, the third test is much weaker for this strategy.

The fact that a null hypothesis is not unique and diff erent null hypoth-
eses can give rise to diff erent estimates of statistical signifi cance is one 
reason why many critics believe that hypothesis testing is a fl awed meth-
odology (Gill, 1999). The other reason is that we actually want to know 
the conditional probability that the null hypothesis is true given that we 
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have observed the test statistic R: P(H0|R). But the procedure we outlined 
previously actually just computed the conditional probability of obtaining 
a test statistic R given that the null hypothesis is true: P(R|H0). Rarely is 
P(R|H0) = P(H0|R).

Even though hyp othesis testing and the rejection of a null hypothesis 
may not be a very satisfactory way to estimate statistical signifi cance, the 
failure to reject a null hypothesis can inspire very interesting insights. Our 
Example 1.1 shows that any random returns distribution with high kurtosis 
can be favorable to momentum strategies. 

 ■ When Not to Backtest a Strategy

We have spent much eff ort earlier convincing you that you should backtest 
every strategy that comes your way before trading it. Why would we rec-
ommend against backtesting some strategies? The fact is that there are some 
published strategies that are so obviously fl awed it would be a waste of time 
to even consider them. Given what you know now about common pitfalls of 
backtesting, you are in a good position to judge whether you would want to 
backtest a strategy without even knowing the details. We will look at a few 
examples here.

Example 1: A strategy that has a backtest annualized return of 30 per-
cent and a Sharpe ratio of 0.3, and a maximum drawdown duration of 
two years.

Very few traders (as opposed to “investors”) have the stomach for a strat-
egy that remains “under water” for two years. The low Sharpe ratio coupled 
with the long drawdown duration indicates that the strategy is not consis-
tent. The high average return may be just a fl uke, and it is not likely to re-
peat itself when we start to trade the strategy live. Another way to say this 
is that the high return is likely the result of data-snooping bias, and the long 
drawdown duration will make it unlikely that the strategy will pass a cross-
validation test. Do not bother to backtest high return but low Sharpe ratio 
strategies. Also, do not bother to backtest strategies with a maximum draw-
down duration longer than what you or your investors can possibly endure.

Example 2: A long-only crude oil futures strategy returned 20 percent 
in 2007, with a Sharpe ratio of 1.5.

A quick check of the total return of holding the front-month crude oil fu-
tures in 2007 reveals that it was 47 percent, with a Sharpe ratio of 1.7. Hence, 
this trading strategy is not in any way superior to a simple buy-and-hold 
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strategy! Moral of the story: We must always choose the appropriate bench-
mark to measure a trading strategy against. The appropriate benchmark of 
a long-only strategy is the return of a buy-and-hold position—the informa-
tion ratio rather than the Sharpe ratio.

Example 3: A simple “buy-low-sell-high” strategy picks the 10 lowest-
priced stocks at the beginning of the year and holds them for a year. 
The backtest return in 2001 is 388 percent.

The fi rst question that should come to mind upon reading this strategy is: 
Was the strategy backtested using a survivorship-bias-free stock database? 
In other words, does the stock database include those stocks that have since 
been delisted? If the database includes only stocks that have survived until 
today, then the strategy will most likely pick those lucky survivors that hap-
pened to be very cheap at the beginning of 2001. With the benefi t of hind-
sight, the backtest can, of course, achieve a 388 percent return. In contrast, 
if the database includes delisted stocks, then the strategy will most likely 
pick those stocks to form the portfolio, resulting in almost 100 percent 
loss. This 100 percent loss would be the realized return if we had traded 
the strategy back in 2001, and the 388 percent return is an infl ated backtest 
return that can never be realized. If the author did not specifi cally mention 
that the data used include delisted stocks, then we can assume the backtest 
suff ers from survivorship bias and the return is likely to be infl ated.

Example 4: A neural net trading model that has about 100 nodes gener-
ates a backtest Sharpe ratio of 6.

My alarms always go off whenever I hear the term neural net trad-

ing model, not to mention one that has 100 nodes. All you need to 
know about the nodes in a neural net is that the number of param-
eters to be fitted with in-sample training data is proportional to the 
number of nodes. With at least 100 parameters, we can certainly fit the 
model to any time series we want and obtain a fantastic Sharpe ratio. 
Needless to say, it will have little or no predictive power going forward 
due to data-snooping bias.

Example 5: A high-frequency E-mini S&P 500 futures trading strategy 
has a backtest annual average return of 200 percent and a Sharpe ratio 
of 6. Its average holding period is 50 seconds.

Can we really backtest a high-frequency trading strategy? The perfor-
mance of a high-frequency trading strategy depends on the order types 
used and the execution method in general. Furthermore, it depends cru-
cially on the market microstructure. Even if we have historical data of the 
entire order book, the profi t from a high-frequency strategy is still very 
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dependent on the reactions of other market participants. One has to ques-
tion whether there is a “Heisenberg uncertainty principle” at work: The 
act of placing or executing an order might alter the behavior of the other 
market participants. So be very skeptical of a so-called backtest of a high-
frequency strategy.

Life is too short to backtest every single strategy that we read about, so 
we hope awareness of the common pitfalls of backtesting will help you se-
lect what strategies to backtest.

 ■ Will a Backtest Be Predictive of 
Future Returns?

Even if we manage to avoid all the common pitfalls outlined earlier and there 
are enough trades to ensure statistical signifi cance of the backtest, the predic-
tive power of any backtest rests on the central assumption that the statisti-
cal properties of the price series are unchanging, so that the trading rules 
that were profi table in the past will be profi table in the future. This assump-
tion is, of course, invalidated often in varying degrees: A country’s economic 
prospect changes, a company’s management changes, and a fi nancial market’s 
structure changes. In the past decade in the United States, we have witnessed 
numerous instances of the last category of changes. Among them:

 ■ Decimalization of U.S. stock quotes on April 9, 2001. (Prior to this date, 
U.S. stocks were quoted in one-eighth or one-sixteenth of a penny.) This 
caused bid-ask spreads to decrease, but also caused the “displayed liquidity” 
at the best bid and ask prices to decrease (Arnuk and Saluzzi, 2012). This in 
turn caused profi tability of many statistical arbitrage strategies to decrease 
while increasing the profi tability of many high-frequency strategies.

 ■ The 2008 fi nancial crisis that induced a subsequent 50 percent collapse of 
average daily trading volumes (Durden, 2012). Retail trading and owner-
ship of common stock is particularly reduced. This has led to decreasing 
average volatility of the markets, but with increasing frequency of sudden 
outbursts such as that which occurred during the fl ash crash in May 2010 and 
the U.S. federal debt credit rating downgrade in August 2011. The overall 
eff ect has been a general decrease in profi ts for mean-reverting strategies, 
which thrive on a high but constant level of volatility.

 ■ The same 2008 fi nancial crisis, which also initiated a multiyear bear 
market in momentum strategies, as discussed in Chapter 6.
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 ■ The SEC’s Regulation NMS implemented in July 2007, which also 
contributed to the drastic decrease in the average trade sizes and the ob-
solescence of the NYSE block trade (Arnuk and Saluzzi, 2012).

 ■ The removal of the old uptick rule for short sales in June 2007 and the 
reinstatement of the new Alternative Uptick Rule in 2010.

Strategies that performed superbly prior to each of these “regime shifts” 
may stop performing and vice versa. Backtests done using data prior to 
such regime shifts may be quite worthless, while backtests done using 
recent data may be no more indicative of future profi ts if and when a fu-
ture regime shift is to occur. The general point of this is that algorithmic 
trading is not just about algorithms, programming, and mathematics: An 
awareness of such fundamental market and economic issues is also needed 
to inform us on whether a backtest is predictive and will continue to be 
predictive.

 ■ Choosing a Backtesting and Automated 
Execution Platform

Software companies have worked very hard to provide traders with a wide 
variety of backtesting and automated execution platforms that cater to ev-
ery possible level of programming skills. We are faced with two basic choices 
when it comes to deciding on a trading platform:

 1. Buying a special-purpose backtesting and execution platform, and 
implementing your strategy using that platform’s special-purpose 
graphical user interface (GUI) or programming language.

 2. Writing your own backtest and execution program in a generic 
programming language such as C++, either in a completely stand-
alone manner with piecemeal purchases of software libraries to make 
the task easier or within an integrated development environment 
(IDE) that comes with a comprehensive library catering to algorith-
mic trading.

We consider some criteria for making this choice next.

How Good Is Your Programming Skill?
If you have little skill in programming, then the only choice is to pick a 
special-purpose trading platform. These platforms unburden the user from 
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having to learn a programming language by presenting a graphical “drag-
and-drop” user interface for building a trading strategy. Examples of these 
products are Deltix and Progress Apama. However, I have found that these 
GUIs can be quite limiting in the variety of strategies that you can build, 
and in the long run, it is far more effi  cient to become adept in a program-
ming language in order to express your strategy. (Note that Deltix and 
Progress Apama also allow other ways to specify a strategy, as explained 
below.)

Traders possessing the next level of programming skill should consider 
implementing both backtesting and automated execution using one of the 
scripting languages. These languages do not require compilation, and you 
can instantly see the results the moment you fi nish typing in the mathe-
matical or logical expressions. Many traders’ favorite backtesting platform, 
Microsoft Excel, perhaps used in conjunction with Visual Basic (VB) macros, 
belongs to this category. But it is actually quite hard to build a reasonably 
complicated strategy in Excel, and even harder to debug it. Excel also is not 
a particularly high-performance language, so if your strategy is very compu-
tationally intensive, it is not going to work. If you use Excel for automated 
executions, you may fi nd that you have to use DDE links provided by your 
brokerage for market data updates, and you will likely need to add Visual 
Basic macros to handle more complicated trading logic, which is quite in-
effi  cient. (However, see Box 1.1 for an Excel-like trading platform that is 
supercharged for effi  ciency.)

B
O

X
 1

.1 Excel on Steroids—The FXone Automated Execution Platform

There is a currency trading platform called FXone that looks like Excel, but the 

underlying computational engine is written in a high-performance language 

like C++ instead of relying on VB macros. It is a true tick-driven application: 

Every tick (in the FX case, a tick is a new quote) triggers a recalculation of 

all the values in all of the cells of the spreadsheet. Furthermore, it has an 

internal cache for real-time data so that different cells that require the same 

data to compute can simply retrieve it from the cache, instead of duplicating 

subscriptions of the same data. It is also a true multithreaded platform at two 

different levels. First, different strategies written on different Excel workbooks 

can get market data updates and submit orders simultaneously. Second, 

different cells within the same workbook can also get updates and act on 

new data simultaneously. That is to say, even if the calculation in one cell 

happens to take very long to complete, it will not prevent other cells from 

responding to a new tick by, say, submitting an order. A screenshot of FXone 

is shown in Figure 1.1.
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Many special-purpose trading platforms, including QuantHouse and 
RTD Tango and the aforementioned Deltix and Progress Apama, also in-
clude ways for coding a strategy with their own proprietary programming 
languages, which are usually quite simple and easy to learn, maybe as easy 
as Visual Basic. Aside from the institutional platforms mentioned here, 
many retail traders are familiar with MetaTrader, NinjaTrader, Trading 
Blox, or TradeStation Easy Language. I have not tried all of these platforms 
personally, but I have a lingering suspicion that despite the apparent ease of 
use and other advantages I mention later, they all in some way place some 
limitations on the type of strategies that can be backtested and executed.

Requiring just slightly more skills than programming in VB, traders will 
fi nd the scripting languages of MATLAB, R, and Python off er vastly more 
ease of debugging, much greater fl exibility in the type of strategies that can 
be backtested, and higher effi  ciency in backtesting large data sets. These are 
what we call “REPL” languages. REPL is programmer-speak for “Read-Eval-
Print-Loop.” That is, you can type in a mathematical expression, and the 
program will immediately evaluate it and print out the answer, and get ready 
for you to input the next expression. It works exactly like a handheld cal-
culator, but better: You can also save all these expressions in a fi le, and have 
the program automatically execute them sequentially. The syntax of these 
languages is designed to be more intuitive and easier to understand than 
conventional programming languages such as C++ and much more fl exible 
in terms of the type of variables that can be used in a program. Scalars, ar-
rays, and strings are all basically dealt with using a similar syntax and passed 
along to functions in the same way.

MATLAB can also utilize Java, C++, or C# libraries or application pro-
gramming interfaces (APIs) and call functions implemented in those librar-
ies or APIs. This allows MATLAB to take advantage of the more effi  cient 
implementations in those conventional languages when a task is particularly 
computationally intensive. Also, there are far more libraries and APIs that 
are written in those conventional languages than those written in MATLAB, 
R, or Python, so this feature is often essential.

Many algorithmic traders are aware that MATLAB, R, and Python are 
excellent languages for backtesting. But less well known is the fact that 
they can be turned into execution platforms as well with the addition 
of some toolboxes. Most brokerages have APIs written in Java, C++, or 
C#; and, as I said earlier, MATLAB can call functions in APIs written in 
such languages, though it does take some familiarity with these languages 
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to know how to call these functions. If you would prefer a solution that 
obviates making “foreign-language” API calls in MATLAB, there are a 
number of commercial products available. MATLAB’s own Datafeed Tool-
box can send orders to Trading Technologies’ X_TRADER. To connect 
MATLAB to Interactive Brokers, undocumentedmatlab.com has devel-
oped an API called IB-Matlab. Another vendor, www.exchangeapi.com, 
has a similar API called quant2ib, as well as one called quant2tt for con-
necting MATLAB to Trading Technologies. For other brokerages, www.
pracplay.com off ers a bridge from MATLAB or R to 15 or more brokers 
for a monthly fee. A free, open-source MATLAB API for connecting to 
Interactive Brokers was developed by Jev Kuznetsov and is available for 
download from MATLAB Central’s File Exchange. Meanwhile, the MAT-
FIX software from agoratron.com lets your MATLAB program send or-
ders using the Financial Information eXchange (FIX) protocol to brokers 
or exchanges. You can also use MATLAB to call the Java or .NET func-
tions in QuickFIX, an open source FIX engine (Kozola, 2012). For Py-
thon users, the free, open-source software IbPy will connect your Python 
trading program to Interactive Brokers. While these add-ons to MATLAB 
and Python make it possible to connect to a broker, they nevertheless do 
not shield you from all the complexity of such connections. And, more 
important, it is cumbersome to use the same program for both backtest-
ing and execution.

If you are a hard-core programmer, you will, of course, have no prob-
lem backtesting and automating execution directly in the most fl exible, 
most effi  cient, and most robust of programming languages, such as afore-
mentioned trio of Java, C++, or C#. As I said earlier, all brokerages or 
exchanges that cater to algorithmic traders provide APIs in one or more 
of these languages, or they allow you to submit orders using the FIX 
messages, which in turn can be created and transmitted using a program 
written in one of these languages. (For example, QuickFIX, mentioned 
previously, is available in C++, C#, VB, Python, and Ruby.) But even 
here the software industry has come to make our strategy implementation 
easier and more robust by providing IDEs designed just for backtesting. 
In fact, many of the special-purpose trading platforms (Deltix, Progress 
Apama, QuantHouse, RTD Tango, etc.) include ways for coding strategies 
using general-purpose, advanced programming languages that make them 
resemble IDEs. There are also free, open-source class libraries or IDEs 
that I describe in the next section.

http://www.exchangeapi.com
http://www.pracplay.com
http://www.pracplay.com
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Can Backtesting and Execution Use 
the Same Program?
Special-purpose execution platforms typically hide the complexity of con-
necting to a brokerage or exchange, receiving live market data, sending or-
ders and receiving order confi rmations, updating portfolio positions etc. 
from the programmer. Meanwhile, special-purpose backtesting platforms 
typically come integrated with historical data. So for many special-purpose 
trading platforms, the backtest program can be made the same as the live 
execution program by factoring out the pure trading logic into a function, 
unencumbered with details of how to retrieve data or where to submit or-
ders, and switching between backtesting mode and live execution mode can 
be done by pushing a button to switch between feeding in historical data 
versus live market data.

This ease of switching between backtesting and live execution is more 
than just convenience: It eliminates any possibility of discrepancies or er-
rors in transcribing a backtest strategy into a live strategy, discrepancies that 
often plague strategies written in a general programming language whether 
it is C++ or MATLAB. Just as importantly, it eliminates the possibility of 
look-ahead bias. As explained before, look-ahead bias means mistakenly in-
corporating future, unknowable information as part of the historical data 
input to the backtest engine. Special-purpose platforms feed in historical 
market data into the trade generating engine one tick or one bar at a time, 
just as it would feeding in live market data. So there is no possibility that 
future information can be used as input. This is one major advantage of using 
a special-purpose trading platform.

There is one more advantage in using a platform where the backtesting 
and live execution programs are one and the same—it enables true tick-
based high-frequency trading strategies backtesting. This is because most in-
dustrial-strength live execution programs are “event-driven”; that is, a trade 
is triggered by the arrival of a new tick, not the end of an arbitrary time 
bar. So if the input historical data is also tick-based, we can also backtest a 
high-frequency strategy that depends on the change of every tick or even 
every change in the order book. (I said “in theory” assuming that your hard-
ware is powerful enough. Otherwise, see the discussion later in this chapter 
in the section “What Type of Asset Classes or Strategies Does the Platform 
Support?”) Of course, we can backtest tick-based strategies in MATLAB by 
feeding every tick into the program as well, though that is quite a cumber-
some procedure.
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If you are a competent programmer who prefers the fl exibility of a general 
purpose programming language, yet you want to use the same program for 
both backtesting and live trading because of the preceding considerations, 
you can still use the institutional-grade special-purpose platforms as IDEs, 
or you can use the many open-source IDEs available: Marketcetera, Trade-
Link, Algo-Trader, ActiveQuant. I call them IDEs, but they are more than 
just a trading strategy development environment: They come with libraries 
that deal with the nuts and bolts of connecting to and exchanging data with 
your broker, much like a special-purpose platform does. Many of them are 
also integrated with historical data, which is an important time saver. As 
an added bonus, these open-source IDEs are either free or quite low-cost 
compared to special-purpose platforms. I display in Table 1.2 the languages, 
markets, and brokers that they support. (FIX as a broker means that the 
system can directly access any execution venues via the FIX protocol, re-
gardless of clearing broker.) I also indicate whether the IDE is tick based 
(sometimes called event driven or stream based ).

One should note that Table 1.2 only compares features of open-source 
IDEs. The institutional-grade special-purpose platforms typically have all of 
these features.

What Type of Asset Classes or Strategies Does the 
Platform Support?
While using a special-purpose platform for trading strategies has several 
important advantages described earlier, few but the most high end of these 

TABLE 1.2 Comparisons of Open-Source Integrated Development Environments 
(IDEs) for Backtesting and Automated Execution

IDE Language(s)
Asset 
class(es) Broker(s)

Tick 
based?

CEP 
enabled?

ActiveQuant Java, MATLAB, R Various CTS, FIX, Trading 
Technologies-
supported brokers

Yes No

Algo-Trader Java Various Interactive Brokers, 
FIX

Yes Yes

Marketcetera Java, Python, Ruby Various Various, FIX Yes Yes

OpenQuant .NET (C#, VB) Various Various, FIX ? No

TradeLink .NET (C#, C++, 
VB), Java, Pascal, 
Python

Various Various, FIX Yes No
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platforms support all possible asset classes, including stocks, futures, cur-
rencies, and options. For example, the popular MetaTrader is for currencies 
trading only. It is especially diffi  cult for these platforms to trade strate-
gies that involve arbitrage between diff erent asset classes, such as between 
futures and stocks or currencies and futures. The open-source IDEs are bet-
ter able to handle these situations. As Table 1.2 indicates, most IDEs can 
trade a variety of asset classes. But, as usual, the most fl exible solution in this 
respect is a stand-alone program written outside of any IDE.

Beyond asset classes, many special-purpose platforms also place restric-
tions on the type of strategies that they support even within one asset class. 
Often, simple pairs trading strategies require special modules to handle. Most 
lower-end platforms cannot handle common statistical arbitrage or portfolio 
trading strategies that involve many symbols. Open-source IDEs do not have 
such restrictions, and, of course, neither do stand-alone programs.

What about high(er)-frequency trading? What kind of platforms can sup-
port this demanding trading strategy? The surprising answer is that most 
platforms can handle the execution part of high-frequency trading without 
too much latency (as long as your strategy can tolerate latencies in the 1- to 
10-millisecond range), and since special-purpose platforms as well as IDEs 
typically use the same program for both backtesting and execution, back-
testing shouldn’t in theory be a problem either.

To understand why most platforms have no trouble handling high-
frequency executions, we have to realize that most of the latency that needs 
to be overcome in high-frequency trading is due to live market data latency, 
or brokerage order confi rmation latency.

 1. Live market data latency:
For your program to receive a new quote or trade price within 1 to 
10 milliseconds (ms), you have to colocate your program at the ex-
change or in your broker’s data center (see Box 1.2); furthermore, 
you have to receive a direct data feed from the exchanges involved, not 
from a consolidated data feed such as SIAC’s Consolidated Tape System 
(CTS). (For example, Interactive Brokers’ data feed only off ers snap-
shots of market data every 250 ms.)

 2. Brokerage order confi rmation latency:
If a strategy submits limit orders, it will depend on a timely order sta-
tus confi rmation before it can decide what to do next. For some retail 
brokerages, it can take up to six seconds between the execution of an 
order and your program receiving the execution confi rmation, virtually 
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.2 Colocation of Trading Programs

The general term colocation can mean several ways of physically locating 

your trading program outside of your desktop computer. Stretching the 

defi nition a bit, it can mean installing your trading program in a cloud server or 

VPS (virtual private server) such as Amazon’s EC2, slicehost.com, or gogrid.

com. The advantage of doing so is to prevent power or Internet outages 

that are more likely to strike a private home or offi ce than a commercial data 

center, with its backup power supply and redundant network connectivity. 

Colocating in a cloud server does not necessarily shorten the time data take 

to travel between your brokerage or an exchange to your trading program, 

since many homes or offi ces are now equipped with a fi ber optics connection 

to their Internet service provider (e.g., Verizon’s FiOS in the United States, and 

Bell’s Fibe Internet in Canada). To verify whether colocating in a virtual private 

server (VPS) actually reduces this latency, you would need to conduct a test 

yourself by “pinging” your broker’s server to see what the average round 

trip time is. Certainly, if your VPS happens to be located physically close to 

your broker or exchange, and if they are directly connected to an Internet 

backbone, this latency will be smaller. (For example, pinging the Interactive 

Brokers’ quote server from my home desktop computer produces an average 

round trip time of about 55 ms, pinging the same server from Amazon’s EC2 

takes about 25 ms, and pinging it from various VPSs located near Interactive 

Brokers takes about 16 to 34 ms.)

I mention VPS only because many trading programs are not so compu-

tationally intensive as to require their own dedicated servers. But if they are, 

you can certainly upgrade to such services at many of the hosting companies 

familiar with the requirements of the fi nancial trading industry such as Equinix 

and Telx, both of whom operate data centers in close proximity to the various 

exchanges.

If your server is already in a secure location (whether that is your offi ce 

or a data center) and is immune to power outage, then all you need is a 

fast connection to your broker or the exchange. You can consider using 

an “extranet,” which is like the Internet but operated by a private company, 

which will guarantee a minimum communication speed. BT Radianz, Savvis, 

and TNS are examples of such companies. If you have a large budget, you 

can also ask these companies to build a dedicated communication line from 

your server to your broker or exchange as well.

The next step up in the colocation hierarchy is colocating inside your 

brokerage’s data center, so that quotes or orders confi rmation generated 

by your broker are transmitted to your program via an internal network, 

unmolested by the noise and vagaries of the public Internet. Various brokers 

that cater to professional traders have made available colocation service: 

examples are Lime Brokerage and FXCM. (Because of colocation, clients 

of Lime Brokerage can even receive direct data feeds from the NYSE at a 
(Continued )
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) relatively low rate, which, as I mentioned before, is faster than the consolidated 

SIAC CTS data feed.)

The ultimate colocation is, of course, situating your trading server at the 

exchange or ECN itself. This is likely to be an expensive proposition (except 

for forex ECNs), and useful only if you have a prime broker relationship, which 

allows you to have “sponsored access” to connect to the exchange without 

going through the broker’s infrastructure (Johnson, 2010). Such prime broker 

relationships can typically be established only if you can generate institutional-

level commissions or have multimillion-dollar account. The requirements as 

well as expenses to establish colocation are lower for forex prime brokers and 

ECNs. Most forex ECNs including Currenex, EBS, FXall, and Hotspot operate 

within large commercial data centers such as Equinix’s NY4 facility, and it is 

not too expensive to colocate at that facility or sign up with a VPS that does.

Some traders have expressed concern that colocating their trading 

programs on a remote server exposes them to possible theft of their 

intellectual property. The simplest way is eliminate this risk is to just store 

“executables” (binary computer codes that look like gibberish to humans) 

on these remote servers, and not the source code of your trading algorithm. 

(Even with a MATLAB program, you can convert all the .m fi les to .p fi les 

before loading them to the remote server.) Without source codes, no one 

can know the operating instructions of running the trading program, and no 

one will be foolish enough to risk capital on trading a black-box strategy of 

which they know little about. For the truly paranoid, you can also require an 

ever-changing password that depends on the current time to start a program.

ensuring that no high-frequency trading can be done. Even if your bro-
kerage has order confi rmation latency below 10 ms, or if they allow 
you to have direct market access to the exchanges so you get your order 
status confi rmation directly from the exchanges, you would still need 
to colocate your program with either your broker in the former case, 
or with the exchange in the latter case.
 Practically any software program (other than Excel running with a 
VB macro) takes less than 10 ms to submit a new order after receiving 
the latest market data and order status updates, so software or hardware 
latency is usually not the bottleneck for high-frequency trading, unless 
you are using one program to monitor thousands of symbols. (Concern-
ing this last point, see Box 1.3 for issues related to multithreading.) But 
backtesting a high-frequency strategy is entirely a diff erent matter. To do 
this, you will be required to input many months of tick data (trades and 
quotes), maybe on many symbols, into the backtesting platform. Worse, 
sometimes you have to input level 2 quotes, too. Just the quantity of 
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data will overwhelm the memory of most machines, if they are not han-
dled in special ways (such as using parallel computing algorithms). Most 
special-purpose backtesting platforms are not designed to be especially 
intelligent when handling this quantity of data, and most of them are not 
equipped at all to backtest data with all of bid/ask/last tick prices (and 
sizes) nor level 2 quotes either. So backtesting a high-frequency strategy 
usually requires that you write your own stand-alone program with spe-
cial customization. Actually, backtesting a high-frequency strategy may 
not tell you much about its real-life profi tability anyway because of the 
Heisenberg uncertainty principle that I mentioned before.
 Besides high-frequency trading, news-driven trading often causes all 
but the top-end special-purpose platforms to stumble. News-driven 
trading by defi nition requires as input a machine-readable news feed. 
Most special-purpose platforms do not have this capability, and neither 
do most open-source IDEs. Exceptions include Progress Apama, which 
incorporates both Dow Jones and Reuters machine-readable news feed, 
and Deltix, which integrates Ravenpack’s News Sentiment data feed. 
Among IDE’s, Marketcetera off ers a newsfeed from benzinga.com 
(which is unlikely to match the speed of delivery of Bloomberg, Dow 
Jones, and Reuters). If you are writing your own stand-alone trading 

B
O

X
 1

.3 Multithreading and High-Frequency Trading of Multiple Symbols

Multithreading for a trading platform means that it can respond to multiple 

events (usually the arrival of a new tick) simultaneously. This is particularly 

important if the program trades multiple symbols simultaneously, which is 

often the case for a stock-trading program. You certainly don’t want your buy 

order for AAPL to be delayed just because the program is deciding whether to 

sell BBRY! If you write your own stand-alone trading program using a modern 

programming language such as Java or Python, you won’t have any problem 

with multithreading because this ability is native to such languages. However, 

if you use MATLAB, you will need to purchase the Parallel Computing Toolbox 

as well; otherwise, there is no multithreading. (Even if you purchase that 

Toolbox, you are limited to 12 independent threads, hardly enough to trade 

500 stocks simultaneously!) But do not confuse the lack of multithreading 

in MATLAB with the “loss of ticks.” If you write two “listeners,” A and B, in 

MATLAB to receive tick data from two separate symbols, because the fact 

that listener A is busy processing a tick-triggered event doesn’t mean that 

listener B is “deaf.” Once listener A has fi nished processing, listener B will 

start to process those tick events that it has received while A was busy, with 

no lost ticks (Kuznetsov, 2010).
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program, you have the fl exibility of connecting to these news feed ei-
ther using the news provider’s API (e.g., both Dow Jones and Thomson 
Reuters have made available their machine-readable news through an 
API) or simply read a news XML fi le ftp’ed to your hard-drive periodi-
cally by the news provider. If you are news trading at high frequency, the 
former expensive solution is an absolute necessity. Otherwise, there are 
much more aff ordable solutions from vendors such as Newsware. I will 
discuss more on the topic of event-driven trading in Chapter 7.

Does the Platform Have Complex 
Event Processing?
Complex event processing (CEP) is a fashionable term to describe a program 
responding to an event instantaneously and taking appropriate action. The 
events that concern us are usually the arrival of a new tick, or the delivery 
of a news item. For an algorithmic trader, one important point is that the 
program is event driven, and not bar driven. That is, the program does not 
go poll prices or news items at the end of each bar and then decide what to 
do. Because CEP is event driven, there is no delay between the occurrence 
of an event and the response to it.

If instantaneity is the only strength of CEP, then we can just use the so-
called callback functions that almost every brokerage API provides. A call-
back function is also triggered whenever a new tick or news item arrives, 
and based on this new data we can perform all kinds of computations and 
determine whether to submit an order. This is easy when the rule required 
is simply “moving average of the price over the last hour.”

But what if the rules are “complex,” such as “sell when the order fl ow in 
the last half hour is positive, the price is above the moving average, the vola-
tility is low, and an important news item just arrived”?

What if the rule involves many clauses like during, between, afterwards, in 
parallel when applied to the sequence of events? According to CEP afi cionados, 
it is much more succinct to express these complicated rules using a CEP lan-
guage than a traditional programming language. But what about the argument 
that trading rules should be simple to avoid data-snooping bias? Their answer 
is that they are not data mining the data to fi nd arbitrary rules, but simply 
implementing rules that seasoned traders already know are profi table. I am not 
entirely convinced by their arguments, but if you are, you should know that 
Progress Apama mentioned above is distinguished by their CEP technology. 
Certain free, open-source IDEs have CEP, too, as you can see from Table 1.2.
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• Backtesting is useless if it is not predictive of future performance of a 

strategy, but pitfalls in backtesting will decrease its predictive power.

• Eliminating pitfalls:

• A platform that uses the same program for both backtesting and live 

executions can eliminate look-ahead bias.

• Out-of-sample testing, cross-validation, and high Sharpe ratios are 

all good practices for reducing data-snooping bias, but none is more 

defi nitive than walk-forward testing.

• Simple models are a simple cure for data-snooping bias.

• “Why did my model generate a ‘short’ signal for THQI on 2012/7/9? Oh, 

that’s because I forgot to adjust its historical prices for a 1:10 reverse 

stock split!”

• “Did your model just buy the stock CMC? Are you sure it didn’t forget to 

adjust its historical prices because today is its ex-date for dividends?”

• “I see that your model is long only. Did you make sure your data don’t 

have survivorship bias?”

• “The backtest of your mean-reverting stock-trading model using closing 

prices is excellent, but expect a defl ation of the results if you test it again 

using primary exchange data.”

• “Your model performed brilliantly during November 2008. But did it short 

a lot of fi nancial stocks back then? Don’t forget that short sales of those 

stocks were banned.”

• “This high-frequency stock-trading model looks good on backtest, but I 

wonder if it incorporated uptick rules for their short trades.”

• “Your futures calendar spread model uses the differences in price to form 

the spread. Why are you back-adjusting your prices using returns gap?”

• “Why is it that my mean-reverting intraday futures spread performed so 

well in backtest but so poorly in live trading? Oh, I should have used tick-

based instead of bar-based data for my backtest.”

• “Your backtest of this momentum strategy seems to be without any 

pitfalls. But just because it performed well before 2008 doesn’t mean it 

will perform well afterward.”

• Statistical signifi cance of backtests:

• “What do you mean by saying that the expected APR of this strategy is 

10 percent and is statistically signifi cant to within 1 percent?” Answer: 

“It means by running the strategy on 10,000 simulated price series with 

the same length and the same fi rst three moments as the historical price 

series, there are only 100 sample series where the APR is equal to or 

greater than 10 percent.”

KEY POINTS

(Continued )
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• “What do you mean by saying that the expected APR of this strategy is 

10 percent and is statistically signifi cant to within 1 percent?” Alternative 

answer: “It means by randomizing the entry dates of my trades, there is 

only 1 in 100 random permutations where the APR is equal to or greater 

than 10 percent.”

• Which backtest platform to pick?

• “I am a brilliant mathematician starting a fund with $50 million to invest, 

but I don’t know how to program. What trading platform should I use?” 

Pick an institutional special-purpose platform like Deltix, QuantHouse, 

Progress Apama, or RTD Tango.

• “I am an experienced, discretionary, independent trader, and I want to 

automate my strategies. What trading platform should I use?” Pick a retail 

special-purpose platform like MetaTrader, NinjaTrader, Trading Blox, or 

TradeStation.

• “I am a quant who is great with strategy research using MATLAB. 

But how should I implement these strategies and go ‘live’?” Try 

exchangeapi.com’s quant2ib API for Interactive Brokers, quant2tt for 

Trading Technologies, www.pracplay.com for other brokers, or MATFIX for 

FIX connections.

• “I am a good C++, C#, and Java programmer, but I hate dealing with 

low-level connections to the brokerage, and I hate having to rewrite my 

connections every time I change brokers.” Try one of the IDEs such as 

Marketcetera, TradeLink, AlgoTrader, or ActiveQuant.

• Automating executions:

• “I want to colocate my trading program at a data center to reduce my 

order confi rmation latency below 10 ms.” Are you sure your broker has an 

order confi rmation latency shorter than 10 ms?

• “I am colocated at Amazon’s EC2. Market data fed to my trading 

programs should be much more up-to-date than getting them at my 

desktop PC.” Not necessarily: EC2’s server may be farther away (in 

Internet distance) from your broker’s data server than your desktop PC.

• “I am using MATLAB’s Parallel Computing Toolbox, and I run my 

program on a GPU. Therefore, I can trade all 500 stocks in the SPX 

simultaneously.” Even with MATLAB’s Parallel Computing Toolbox, you 

are limited to handling 12 stocks simultaneously. Writing your own Java 

or Python program will allow true multithreading on a graphics processing 

unit (GPU).

• “My IDE isn’t CEP enabled. I can’t really run a tick-based trading 

strategy.” Even platforms that are not CEP enabled often have callback 

functions that enable your program to be triggered by ticks.

http://www.pracplay.com
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The Basics of 
Mean Reversion

Whether we realize it or not, nature is fi lled with examples of mean 
reversion. Figure 2.1 shows the water level of the Nile from 622 ad 

to 1284 ad, clearly a mean-reverting time series. Mean reversion is equally 
prevalent in the social sciences. Daniel Kahneman cited a famous example: 
the “Sports Illustrated jinx,” which is the claim that “an athlete whose picture 
appears on the cover of the magazine is doomed to perform poorly the fol-
lowing season” (Kahneman, 2011). The scientifi c reason is that an athlete’s 
performance can be thought of as randomly distributed around a mean, so 
an exceptionally good performance one year (which puts the athlete on the 
cover of Sports Illustrated) is very likely to be followed by performances that 
are closer to the average. 

Is mean reversion also prevalent in fi nancial price series? If so, our lives as 
traders would be very simple and profi table! All we need to do is to buy low 
(when the price is below the mean), wait for reversion to the mean price, 
and then sell at this higher price, all day long. Alas, most price series are 
not mean reverting, but are geometric random walks. The returns, not the 
prices, are the ones that usually randomly distribute around a mean of zero. 
Unfortunately, we cannot trade on the mean reversion of returns. (One 
should not confuse mean reversion of returns with anti-serial-correlation 
of returns, which we can defi nitely trade on. But anti-serial-correlation of 
returns is the same as the mean reversion of prices.) Those few price series 
that are found to be mean reverting are called stationary, and in this chapter 
we will describe the statistical tests (ADF test and the Hurst exponent and 
Variance Ratio test) for stationarity. There are not too many prefabricated 
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that represent assets traded in the public exchanges or markets.
Fortunately, we can manufacture many more mean-reverting price series 

than there are traded assets because we can often combine two or more 
individual price series that are not mean reverting into a portfolio whose 
net market value (i.e., price) is mean reverting. Those price series that can 
be combined this way are called cointegrating, and we will describe the 
statistical tests (CADF test and Johansen test) for cointegration, too. Also, 
as a by-product of the Johansen test, we can determine the exact weightings 
of each asset in order to create a mean reverting portfolio. Because of this 
possibility of artifi cially creating stationary portfolios, there are numerous 
opportunities available for mean reversion traders.

As an illustration of how easy it is to profi t from mean-reverting price 
series, I will also describe a simple linear trading strategy, a strategy that is 
truly “parameterless.”

One clarifi cation: The type of mean reversion we will look at in this chap-
ter may be called time series mean reversion because the prices are supposed 
to be reverting to a mean determined by its own historical prices. The tests 

FIGURE 2.1 Minimum Water Levels of the Nile River, 622–1284 ad 
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and trading strategies that I depict in this chapter are all tailored to time se-
ries mean reversion. There is another kind of mean reversion, called “cross-
sectional” mean reversion. Cross-sectional mean reversion means that the 
cumulative returns of the instruments in a basket will revert to the cumula-
tive return of the basket. This also implies that the short-term relative re-
turns of the instruments are serially anticorrelated. (Relative return of an 
instrument is the return of that instrument minus the return of the basket.) 
Since this phenomenon occurs most often for stock baskets, we will discuss 
how to take advantage of it in Chapter 4 when we discuss mean-reverting 
strategies for stocks and ETFs. 

 ■ Mean Reversion and Stationarity

Mean reversion and stationarity are two equivalent ways of looking at the 
same type of price series, but these two ways give rise to two diff erent sta-
tistical tests for such series.

The mathematical description of a mean-reverting price series is that the 
change of the price series in the next period is proportional to the diff erence 
between the mean price and the current price. This gives rise to the ADF 
test, which tests whether we can reject the null hypothesis that the propor-
tionality constant is zero.

However, the mathematical description of a stationary price series is that 
the variance of the log of the prices increases slower than that of a geo-
metric random walk. That is, their variance is a sublinear function of time, 
rather than a linear function, as in the case of a geometric random walk. 
This sublinear function is usually approximated by τ2H, where τ is the time 
separating two price measurements, and H is the so-called Hurst exponent, 
which is less than 0.5 if the price series is indeed stationary (and equal to 
0.5 if the price series is a geometric random walk). The Variance Ratio test 
can be used to see whether we can reject the null hypothesis that the Hurst 
exponent is actually 0.5.

Note that stationarity is somewhat of a misnomer: It doesn’t mean that 
the prices are necessarily range bound, with a variance that is independent 
of time and thus a Hurst exponent of zero. It merely means that the variance 
increases slower than normal diff usion.

A clear mathematical exposition of the ADF and Variance Ratio tests can 
be found in Walter Beckert’s course notes (Beckert, 2011). Here, we are 
interested only in their applications to practical trading strategies.
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Augmented Dickey-Fuller Test
If a price series is mean reverting, then the current price level will tell us 
something about what the price’s next move will be: If the price level is 
higher than the mean, the next move will be a downward move; if the price 
level is lower than the mean, the next move will be an upward move. The 
ADF test is based on just this observation.

We can describe the price changes using a linear model:

Δy(t) = λy(t − 1) + μ + βt + α1Δy(t − 1) + … + αkΔy(t − k) + ∋

t (2.1)

where Δy(t) ≡ y(t) − y(t − 1), Δy(t − 1) ≡ y(t − 1) − y(t − 2), and so on. The ADF 
test will fi nd out if λ = 0. If the hypothesis λ = 0 can be rejected, that means the 
next move Δy(t) depends on the current level y(t − 1), and therefore it is not a 
random walk. The test statistic is the regression coeffi  cient λ (with y(t − 1) as 
the independent variable and Δy(t) as the dependent variable) divided by the 
standard error of the regression fi t: λ/SE(λ). The statisticians Dickey and Fuller 
have kindly found out for us the distribution of this test statistic and tabulated 
the critical values for us, so we can look up for any value of λ/SE(λ) whether 
the hypothesis can be rejected at, say, the 95 percent probability level. 

Notice that since we expect mean regression, λ/SE(λ) has to be negative, 
and it has to be more negative than the critical value for the hypothesis to 
be rejected. The critical values themselves depend on the sample size and 
whether we assume that the price series has a non-zero mean −μ/λ or a 
steady drift −βt/λ. In practical trading, the constant drift in price, if any, 
tends to be of a much smaller magnitude than the daily fl uctuations in price. 
So for simplicity we will assume this drift term to be zero (β = 0). 

In Example 2.1, we apply the ADF test to a currency rate series 
USD.CAD.

Example 2.1: Using ADF  Test for Mean Reversion

The ADF test is available as a MATLAB Econometrics function adftest, 
or from the open-source MATLAB package spatial-econometrics.com’s 
adf function. We will use adf below, and my code is available for 
download as stationarityTests.m from http://epchan.com/book2.

(After you have downloaded the spatial-econometrics.com’s jplv7 
folder to your computer, remember to add all the subfolders of this 
package to your MATLAB path before using it.) 

http://epchan.com/book2
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(Continued )

The adf function has three inputs. The fi rst is the price series in 
ascending order of time (chronological order is important). The 
second is a parameter indicating whether we should assume the 
off set μ and whether the drift β in Equation 2.1 should be zero. We 
should assume the off set is nonzero, since the mean price toward 
which the prices revert is seldom zero. We should, however, assume 
the drift is zero, because the constant drift in price tends to be of a 
much smaller magnitude than the daily fl uctuations in price. These 
considerations mean that the second parameter should be 0 (by the 
package designer’s convention). The third input is the lag k. You can 
start by trying k = 0, but often only by setting k = 1 can we reject 
the null hypothesis, meaning that the change in prices often does 
have serial correlations. We will try the test on the exchange rate 
USD.CAD (how many Canadian dollars in exchange for one U.S. 
dollar). We assume that the daily prices at 17:00 ET are stored in 
a MATLAB array γ. The data fi le is that of one-minute bars, but we 
will just extract the end-of-day prices at 17:00 ET. Sampling the data 
at intraday frequency will not increase the statistical signifi cance of 
the ADF test. We can see from Figure 2.2 that it does not look very 
stationary.

FIGURE 2.2 USD.CAD Price Series

Example 2.1 (Continued)
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And indeed, you should fi nd that the ADF test statistic is about 
−1.84, but the critical value at the 90 percent level is −2.594, so we 
can’t reject the hypothesis that λ is zero. In other words, we can’t 
show that USD.CAD is stationary, which perhaps is not surprising, 
given that the Canadian dollar is known as a commodity currency, 
while the U.S. dollar is not. But note that λ is negative, which 
indicates the price series is at least not trending.

results=adf(y, 0, 1); 
prt(results);

% Augmented DF test for unit root variable:     variable  1 

%  ADF t-statistic       # of lags   AR(1) estimate 

%        -1.840744               1         0.994120 

%  

%    1% Crit Value   5% Crit Value   10% Crit Value 

%           -3.458          -2.871           -2.594

Example 2.1 (Continued)

Hurst Exponent and Variance Ratio Test
Intuitively speaking, a “stationary” price series means that the prices diff use 
from its initial value more slowly than a geometric random walk would. Math-
ematically, we can determine the nature of the price series by measuring this 
speed of diff usion. The speed of diff usion can be characterized by the variance

 Var(τ) = 〈|z(t + τ) − z(t)|2〉 (2.2)

where z is the log prices (z = log(  y)), τ is an arbitrary time lag, and 〈…〉 is 
an average over all t’s. For a geometric random walk, we know that

 〈|z(t + τ) − z(t)|2〉 ∼ τ (2.3)

The ∼ means that this relationship turns into an equality with some pro-
portionality constant for large τ, but it may deviate from a straight line for 
small τ. But if the (log) price series is mean reverting or trending (i.e., has 
positive correlations between sequential price moves), Equation 2.3 won’t 
hold. Instead, we can write:

 〈|z(t + τ) − z(t)|2〉 ∼ τ2H (2.4)
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where we have defi ned the Hurst exponent H. For a price series exhibiting 
geometric random walk, H = 0.5. But for a mean-reverting series, H < 0.5, 
and for a trending series, H > 0.5. As H decreases toward zero, the price 
series is more mean reverting, and as H increases toward 1, the price series 
is increasingly trending; thus, H serves also as an indicator for the degree of 
mean reversion or trendiness.

In Example 2.2, we computed the Hurst exponent for the same cur-
rency rate series USD.CAD that we used in the previous section using the 
MATLAB code. It generates an H of 0.49, which suggests that the price 
series is weakly mean reverting. 

Because of fi nite sample size, we need to know the statistical signifi cance 
and MacKinlay of an estimated value of H to be sure whether we can reject 
the null hypothesis that H is really 0.5. This hypothesis test is provided by the 
Variance Ratio test (Lo, 2001).

The Variance Ratio Test simply tests whether

− τ
τ −
Var t t

V t

( (z ) (z− ))

( ( ) (− z− 1))

is equal to 1. There is another ready-made MATLAB Econometrics Toolbox 
function vratiotest for this, whose usage I demonstrate in Example 2.3.

Example 2.2: Computing the Hurst Exponent

Using the same USD.CAD price series in the previous example, we 
now compute the Hurst exponent using a function called genhurst we 
can download from MATLAB Central (www.mathworks.com
/matlabcentral/fi leexchange/30076-generalized-hurst-exponent). 
This function computes a generalized version of the Hurst exponent 
defi ned by 〈|z(t + τ) − z(t)|2q〉 ∼ τ2H(q), where q is an arbitrary 
number. But here we are only interested in q = 2, which we specify as 
the second input parameter to genhurst.

 H=genhurst(log(y), 2);

If we apply this function to USD.CAD, we get H = 0.49, indicating 
that it may be weakly mean reverting.

http://www.mathworks.com/matlabcentral/fileexchange/30076-generalized-hurst-exponent
http://www.mathworks.com/matlabcentral/fileexchange/30076-generalized-hurst-exponent
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Half-Life of Mean Reversion 
The statistical tests I described for mean reversion or stationarity are 
very demanding, with their requirements of at least 90 percent certainty. 
But in practical trading, we can often be profi table with much less cer-
tainty. In this section, we shall fi nd another way to interpret the λ coef-
fi cient in Equation 2.1 so that we know whether it is negative enough 
to make a trading strategy practical, even if we cannot reject the null 
hypothesis that its actual value is zero with 90 percent certainty in an 
ADF test. We shall fi nd that λ is a measure of how long it takes for a price 
to mean revert.

To reveal this new interpretation, it is only necessary to transform the 
discrete time series Equation 2.1 to a diff erential form so that the changes in 
prices become infi nitesimal quantities. Furthermore, if we ignore the drift 
(βt) and the lagged diff erences (Δy(t − 1), …, Δy(t − k)) in Equation 2.1, then 
it becomes recognizable in stochastic calculus as the Ornstein-Uhlenbeck 
formula for mean-reverting process: 

 dy(t) = (λy(t − 1) + μ)dt + dε (2.5)

where dε is some Gaussian noise. In the discrete form of 2.1, linear regres-
sion of Δy(t) against y(t − 1) gave us λ, and once determined, this value of λ 
carries over to the diff erential form of 2.5. But the advantage of writing the 

Example 2.3: Using the Variance Ratio Test for Stationarity

The vratiotest from MATALB Econometric Toolbox is applied to the 
same USD.CAD price series y that have been used in the previous 
examples in this chapter. The outputs are h and pValue: h = 1 means 
rejection of the random walk hypothesis at the 90 percent confi dence 
level, h = 0 means it may be a random walk. pValue gives the 
probability that the null (random walk) hypothesis is true. 

[h,pValue]=vratiotest(log(y));

We fi nd that h = 0 and pValue = 0.367281 for USD.CAD, indicating 
that there is a 37 percent chance that it is a random walk, so we 
cannot reject this hypothesis.
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equation in the diff erential form is that it allows for an analytical solution for 
the expected value of y(t):

 E(  y(t)) = y0exp(λt) − μ/λ(1 − exp(λt)) (2.6)

Remembering that λ is negative for a mean-reverting process, this tells us 
that the expected value of the price decays exponentially to the value −μ/λ 
with the half-life of decay equals to −log(2)/λ. This connection between a 
regression coeffi  cient λ and the half-life of mean reversion is very useful 
to traders. First, if we fi nd that λ is positive, this means the price series is 
not at all mean reverting, and we shouldn’t even attempt to write a mean-
reverting strategy to trade it. Second, if λ is very close to zero, this means 
the half-life will be very long, and a mean-reverting trading strategy will not 
be very profi table because we won’t be able to complete many round-trip 
trades in a given time period. Third, this λ also determines a natural time 
scale for many parameters in our strategy. For example, if the half life is 20 
days, we shouldn’t use a look-back of 5 days to compute a moving average 
or standard deviation for a mean-reversion strategy. Often, setting the look-
back to equal a small multiple of the half-life is close to optimal, and doing 
so will allow us to avoid brute-force optimization of a free parameter based 
on the performance of a trading strategy. We will demonstrate how to com-
pute half-life in Example 2.4.

Example 2.4: Computing Half-Life for Mean Reversion

We concluded in the previous example that the price series 
USD.CAD is not stationary with at least 90 percent probability. But 
that doesn’t necessarily mean we should give up trading this price 
series using a mean reversion model because most profi table trading 
strategies do not require such a high level of certainty. To determine 
whether USD.CAD is a good candidate for mean reversion trading, 
we will now determine its half-life of mean reversion.

To determine λ in Equations 2.1 and 2.5, we can run a regression 
fi t with y(t) − y(t − 1) as the dependent variable and y(t − 1) as 
the independent variable. The regression function ols as well as the 
function lag are both part of the jplv7 package. (You can also use the 

(Continued )
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A Linear Mean-Reverting Trading Strategy 
Once we determine that a price series is mean reverting, and that the half-
life of mean reversion for a price series short enough for our trading ho-
rizon, we can easily trade this price series profi tably using a simple linear 
strategy: determine the normalized deviation of the price (moving standard 
deviation divided by the moving standard deviation of the price) from its 
moving average, and maintain the number of units in this asset negatively 
proportional to this normalized deviation. The look-back for the moving 
average and standard deviation can be set to equal the half-life. We see in 
Example 2.5 how this linear mean reversion works for USD.CAD.

You might wonder why it is necessary to use a moving average or standard 
deviation for a mean-reverting strategy at all. If a price series is stationary, 
shouldn’t its mean and standard deviation be fi xed forever? Though we usually 
assume the mean of a price series to be fi xed, in practice it may change slowly 
due to changes in the economy or corporate management. As for the standard 
deviation, recall that Equation 2.4 implies even a “stationary” price series with 
0 < H < 0.5 has a variance that increases with time, though not as rapidly as a 
geometric random walk. So it is appropriate to use moving average and standard 
deviation to allow ourselves to adapt to an ever-evolving mean and standard de-
viation, and also to capture profi t more quickly. This point will be explored more 
thoroughly in Chapter 3, particularly in the context of “scaling-in.”

MATLAB Statistics Toolbox regress function for this as well.) This code 
fragment is part of stationaryTests.m.

ylag=lag(y, 1);  % lag is a function in the jplv7 
 % (spatial-econometrics.com) package.

deltaY=y-ylag;
deltaY(1)=[]; % Regression functions cannot handle the NaN 
 in the first bar of the time series.

ylag(1)=[];
regress_results=ols(deltaY, [ylag ones(size(ylag))]); 
halflife=-log(2)/regress_results.beta(1);

The result is about 115 days. Depending on your trading horizon, this 
may or may not be too long. But at least we know what look-back to use 
and what holding period to expect.

Example 2.4 (Continued)
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Example 2.5: Backtesting a Linear Mean-Reverting 
Trading Strategy

In this simple strategy, we seek to own a number of units of 
USD.CAD equal to the negative normalized deviation from its 
moving average. The market value (in USD) of one unit of a currency 
pair USD.X is nothing but the quote USD.X, so in this case the 
linear mean reversion is equivalent to setting the market value of 
the portfolio to be the negative of the Z-Score of USD.CAD. The 
functions movingAvg and movingStd can be downloaded from my 
website. (This code fragment is part of stationaryTests.m.)

lookback=round(halflife); % setting lookback to the halflife 
 % found above

mktVal=-(y-movingAvg(y, lookback))./movingStd(y, lookback); 
pnl=lag(mktVal, 1).*(y-lag(y, 1))./lag(y, 1); % daily P&L of 
 % the strategy

The cumulative P&L of this strategy is plotted in Figure 2.3.
Despite the long half-life, the total profi t and loss (P&L) manages 

to be positive, albeit with a large drawdown. As with most example 
strategies in this book, we do not include transaction costs. Also, 
there is a look-ahead bias involved in this particular example due to 

(Continued )

FIGURE 2.3 Equity Curve of Linear Trading Strategy on 
AUDCAD.
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the use of in-sample data to fi nd the half-life and therefore the look-
back. Furthermore, an unlimited amount of capital may be needed 
to generate the P&L because there was no maximum imposed on 
the market value of the portfolio. So I certainly don’t recommend 
it as a practical trading strategy. (There is a more practical version 
of this mean-reverting strategy in Chapter 5.) But it does illustrate 
that a nonstationary price series need not discourage us from trading 
a mean reversion strategy, and that we don’t need very complicated 
strategies or technical indicators to extract profi ts from a mean-
reverting series.

Example 2.5 (Continued)

Since the goal for traders is ultimately to determine whether the ex-
pected return or Sharpe ratio of a mean-reverting trading strategy is good 
enough, why do we bother to go through the stationarity tests (ADF or Vari-
ance Ratio) and the calculation of half-life at all? Can’t we just run a backtest 
on the trading strategy directly and be done with it? The reason why we 
went through all these preliminary tests is that their statistical signifi cance is 
usually higher than a direct backtest of a trading strategy. These preliminary 
tests make use of every day’s (or, more generally, every bar’s) price data for 
the test, while a backtest usually generates a signifi cantly smaller number 
of round trip trades for us to collect performance statistics. Furthermore, 
the outcome of a backtest is dependent on the specifi cs of a trading strategy, 
with a specifi c set of trading parameters. However, given a price series that 
passed the stationarity statistical tests, or at least one with a short enough 
half-life, we can be assured that we can eventually fi nd a profi table trading 
strategy, maybe just not the one that we have backtested.

 ■ Cointegration

As we stated in the introduction of this chapter, most fi nancial price series 
are not stationary or mean reverting. But, fortunately, we are not confi ned to 
trading those “prefabricated” fi nancial price series: We can proactively cre-
ate a portfolio of individual price series so that the market value (or price) 
series of this portfolio is stationary. This is the notion of cointegration: If we 
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can fi nd a stationary linear combination of several nonstationary price se-
ries, then these price series are called cointegrated. The most common com-
bination is that of two price series: We long one asset and simultaneously 
short another asset, with an appropriate allocation of capital to each asset. 
This is the familiar “pairs trading” strategy. But the concept of cointegration 
easily extends to three or more assets. And in this section, we will look at 
two common cointegration tests: the CADF and the Johansen test. The for-
mer is suitable only for a pair of price series, while the latter is applicable to 
any number of series. 

Cointegrated Augmented Dickey-Fuller Test
An inquisitive reader may ask: Why do we need any new tests for the sta-
tionarity of the portfolio price series, when we already have the trusty ADF 
and Variance Ratio tests for stationarity? The answer is that given a number 
of price series, we do not know a priori what hedge ratios we should use to 
combine them to form a stationary portfolio. (The hedge ratio of a particu-
lar asset is the number of units of that asset we should be long or short in a 
portfolio. If the asset is a stock, then the number of units corresponds to the 
number of shares. A negative hedge ratio indicates we should be short that 
asset.) Just because a set of price series is cointegrating does not mean that 
any random linear combination of them will form a stationary portfolio. But 
pursuing this line of thought further, what if we fi rst determine the optimal 
hedge ratio by running a linear regression fi t between two price series, use 
this hedge ratio to form a portfolio, and then fi nally run a stationarity test on 
this portfolio price series? This is essentially what Engle and Granger (1987) 
did. For our convenience, the spatial-econometrics.com jplv7 package has 
provided a cadf function that performs all these steps. Example 2.6 demon-
strates how to use this function by applying it to the two exchange-traded 
funds (ETFs) EWA and EWC.

ETFs provide a fertile ground for fi nding cointegrating price 
series—and thus good candidates for pair trading. For example, both 
Canadian and Australian economies are commodity based, so they 
seem likely to cointegrate. The program cointegrationTest.m can be 
downloaded from my website. We assume the price series of EWA is 

Example 2.6: Using the CADF Test for Cointegration

(Continued )



52

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

contained in the array x, and that of EWC is contained in the array y. 
From Figure 2.4, we can see that they do look quite cointegrating.

A scatter plot of EWA versus EWC in Figure 2.5 is even more 
convincing, as the price pairs fall on a straight line.

We can use the ols function found in the jplv7 package to fi nd the 
optimal hedge ratio.

Example 2.6 (Continued)

FIGURE 2.4 Share Prices of EWA versus EWC

FIGURE 2.5 Scatter Plot of EWA versus EWC
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regression_result=ols(y, [x ones(size(x))]);
hedgeRatio=regression_result.beta(1);

As expected, the plot of the residual EWC-hedgeRatio*EWA in 
Figure 2.6 does look very stationary.

We use the cadf function of the jplv7 package for our test. Other 
than an extra input for the second price series, the inputs are the 
same as the adf function. We again assume that there can be a nonzero 
off set of the pair portfolio’s price series, but the drift is zero. Note 
that in both the regression and the CADF test we have chosen EWA 
to be the independent variable x, and EWC to be the dependent 
variable y. If we switch the roles of EWA and EWC, will the result 
for the CADF test diff er? Unfortunately, the answer is “yes.”  The 
hedge ratio derived from picking EWC as the independent variable 
will not be the exact reciprocal of the one derived from picking EWA 
as the independent variable. In many cases (though not for EWA-
EWC, as we shall confi rm later with Johansen test), only one of those 
hedge ratios is “correct,” in the sense that only one hedge ratio will 
lead to a stationary portfolio. If you use the CADF test, you would 
have to try each variable as independent and see which order gives 
the best (most negative) t-statistic, and use that order to obtain the 

Example 2.6 (Continued)

(Continued )

FIGURE 2.6 Stationarity of Residuals of Linear 
Regression between EWA versus EWC
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hedge ratio. For brevity, we will just assume EWA to be independent, 
and run the CADF test. 

results=cadf(y, x, 0, 1); 
% Print out results

prt(results);
 

% Output:

% Augmented DF test for co-integration variables:
 % variable   1,variable   2  

% CADF t-statistic        # of lags   AR(1) estimate 

%      -3.64346635                1        -0.020411 
% 

%    1% Crit Value    5% Crit Value   10% Crit Value 

%           -3.880           -3.359           -3.038 

%           -3.880           -3.359           -3.038 

We fi nd that the ADF test statistic is about –3.64, certainly more 
negative than the critical value at the 95 percent level of –3.359. So 
we can reject the null hypothesis that λ is zero. In other words, EWA 
and EWC are cointegrating with 95 percent certainty. 

Example 2.6 (Continued)

Johansen Test
In order to test for cointegration of more than two variables, we need to 
use the Johansen test. To understand this test, let’s generalize Equation 2.1 
to the case where the price variable y(t) are actually vectors representing 
multiple price series, and the coeffi  cients λ and α are actually matrices. 
(Because I do not think it is practical to allow for a constant drift in the 
price of a stationary portfolio, we will assume βt = 0 for simplicity.) Using 
English and Greek capital letters to represent vectors and matrices respec-
tively, we can rewrite Equation 2.1 as 

 ΔY(t) = ΛY(t − 1) + M + A1ΔY(t − 1) + … + Ak ΔY(t − k) + ∋

t (2.7)

Just as in the univariate case, if Λ = 0, we do not have cointegration. 
(Recall that if the next move of Y doesn’t depend on the current price level, 
there can be no mean reversion.) Let’s denote the rank (remember this 



55

T
H

E
 B

A
SIC

S O
F M

E
A

N
 R

E
V

E
R

SIO
N

quaint linear algebraic term?) of Λ as r, and the number of price series n. 
The number of independent portfolios that can be formed by various linear 
combinations of the cointegrating price series is equal to r. The Johansen test 
will calculate r for us in two diff erent ways, both based on eigenvector de-
composition of Λ. One test produces the so-called trace statistic, and other 
produces the eigen statistic. (A good exposition can be found in Sorensen, 
2005.) We need not worry what they are exactly, since the jplv7 package 
will provide critical values for each statistic to allow us to test whether we 
can reject the null hypotheses that r = 0 (no cointegrating relationship), 
r  ≤  1, …, up to r ≤ n – 1. If all these hypotheses are rejected, then clearly 
we have r = n. As a useful by-product, the eigenvectors found can be used 
as our hedge ratios for the individual price series to form a stationary port-
folio. We show how to run this test on the EWA-EWC pair in Example 2.7, 
where we fi nd that the Johansen test confi rms the CADF test’s conclusion 
that this pair is cointegrating. But, more interestingly, we add another ETF 
to the mix: IGE, an ETF consisting of natural resource stocks. We will see 
how many cointegrating relations can be found from these three price se-
ries. We also use the eigenvectors to form a stationary portfolio, and fi nd out 
its half-life for mean reversion. 

We take the EWA and EWC price series that we used in Example 
2.6 and apply the Johansen test to them. There are three inputs to 
the johansen function of the jplv7 package: y, p, and k. y is the input 
matrix, with each column vector representing one price series. As in 
the ADF and CADF tests, we set p = 0 to allow the Equation 2.7 to 
have a constant off set (M ≠ 0), but not a constant drift term (β = 0). 
The input k is the number of lags, which we again set to 1. (This code 
fragment is part of cointegrationTests.m.)

% Combine the two time series into a matrix y2 for input 
 % into Johansen test

y2=[y, x];
results=johansen(y2, 0, 1); 
% Print out results

prt(results);
 

Example 2.7: Using the Johansen Test for Cointegration

(Continued )



56

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

% Output:

Johansen MLE estimates 

NULL:         Trace Statistic  Crit 90%  Crit 95%   Crit 99% 

r <= 0  variable 1     19.983    13.429    15.494     19.935

r <= 1  variable 2      3.983     2.705     3.841      6.635

NULL:         Eigen Statistic  Crit 90%  Crit 95%   Crit 99% 

r <= 0  variable 1     16.000    12.297    14.264     18.520

r <= 1  variable 2      3.983     2.705     3.841      6.635

We see that for the Trace Statistic test, the hypothesis r = 0 is 
rejected at the 99% level, and r ≤ 1 is rejected at the 95 percent 
level. The Eigen Statistic test concludes that hypothesis r = 0 
is rejected at the 95 percent level, and r ≤ 1 is rejected at the 
95 percent as well. This means that from both tests, we conclude 
that there are two cointegrating relationships between EWA and 
EWC. 

What does it mean to have two cointegrating relations when 
we have only two price series? Isn’t there just one hedge ratio that 
will allocate capital between EWA and EWC to form a stationary 
portfolio? Actually, no. Remember when we discussed the CADF 
test, we pointed out that it is order dependent. If we switched the 
role of the EWA from the independent to dependent variable, we 
may get a diff erent conclusion. Similarly, when we use EWA as 
the dependent variable in a regression against EWC, we will get a 
diff erent hedge ratio than when we use EWA as the independent 
variable. These two diff erent hedge ratios, which are not necessarily 
reciprocal of each other, allow us to form two independent stationary 
portfolios. With the Johansen test, we do not need to run the 
regression two times to get those portfolios: Running it once will 
generate all the independent cointegrating relations that exist. The 
Johansen test, in other words, is independent of the order of the 
price series.

Now let us introduce another ETF to the portfolio: IGE, which 
consists of natural resource stocks. Assuming that its price series is 
contained in an array z, we will run the Johansen test on all three 
price series to fi nd out how many cointegrating relationships we can 
get out of this trio.

Example 2.7 (Continued)
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y3=[y2, z];
results=johansen(y3, 0, 1); 
% Print out results

prt(results);

% Output:

%  Johansen MLE estimates 

% NULL:        Trace Statistic  Crit 90%  Crit 95%  Crit 99% 

% r <= 0  variable 1    34.429    27.067    29.796    35.463 

% r <= 1  variable 2    17.532    13.429    15.494    19.935 

% r <= 2  variable 3     4.471     2.705     3.841     6.635 

% 

% NULL:        Eigen Statistic  Crit 90%  Crit 95%  Crit 99% 

% r <= 0  variable 1    16.897    18.893    21.131    25.865 

% r <= 1  variable 2    13.061    12.297    14.264    18.520 

% r <= 2  variable 3     4.471     2.705     3.841     6.635 

Both Trace statistic and Eigen statistic tests conclude that we should 
have three cointegrating relations with 95 percent certainty.

The eigenvalues and eigenvectors are contained in the arrays 
results.eig and results.evec, respectively.

results.eig % Display the eigenvalues
 

% ans =
% 

%     0.0112

%     0.0087

%     0.0030
    

results.evec % Display the eigenvectors
 

% ans =
% 

%    -1.0460   -0.5797   -0.2647

%     0.7600   -0.1120   -0.0790

%     0.2233    0.5316    0.0952    

Notice that the eigenvectors (represented as column vectors in 
results.evec) are ordered in decreasing order of their corresponding 
eigenvalues. So we should expect the fi rst cointegrating relation to be 

Example 2.7 (Continued)

(Continued )
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the “strongest”; that is, have the shortest half-life for mean reversion. 
Naturally, we pick this eigenvector to form our stationary portfolio 
(the eigenvector determines the shares of each ETF), and we can fi nd 
its half-life by the same method as before when we were dealing with 
a stationary price series. The only diff erence is that we now have to 
compute the T × 1 array yport, which represents the net market value 
(price) of the portfolio, which is equal to the number of shares of 
each ETF multiplied by the share price of each ETF, then summed 
over all ETFs. yport takes the role of y in Example 2.4.

yport=smartsum(repmat(results.evec(:, 1)’, [size(y3, 1) ...
1]).*y3, 2); 

% Find value of lambda and thus the half-life of mean 
 % reversion by linear regression fit

ylag=lag(yport, 1);  % lag is a function in the jplv7 
 % (spatial-econometrics.com) package.

deltaY=yport-ylag;
deltaY(1)=[]; % Regression functions cannot handle the NaN 
 % in the first bar of the time series.

ylag(1)=[];
regress_results=ols(deltaY, [ylag ones(size(ylag))]); 
halflife=-log(2)/regress_results.beta(1);

The half-life of 23 days is considerably shorter than the 115 days for 
USD.CAD, so we expect a mean reversion trading strategy to work 
better for this triplet. 

Example 2.7 (Continued)

Linear Mean-Reverting Trading on a Portfolio
In Example 2.7 we determined that the EWA-EWC-IGE portfolio formed 
with the “best” eigenvector from the Johansen test has a short half-life. We 
can now confi dently proceed to backtest our simple linear mean-reverting 
strategy on this portfolio. The idea is the same as before when we own a 
number of units in USD.CAD proportional to their negative normalized de-
viation from its moving average (i.e., its Z-Score). Here, we also accumulate 
units of the portfolio proportional to the negative Z-Score of the “unit” port-
folio’s price. A unit portfolio is one with shares determined by the Johansen 
eigenvector. The share price of a unit portfolio is like the share price of a 
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mutual fund or ETF: it is the same as its market value. When a unit portfolio 
has only a long and a short position in two instruments, it is usually called a 
spread. (We express this in more mathematical form in Chapter 3.)

Note that by a “linear” strategy we mean only that the number of units 
invested is proportional to the Z-Score, not that the market value of our 
investment is proportional.

This linear mean-reverting strategy is obviously not a practical strategy, at 
least in its simplest version, as we do not know the maximum capital required 

Example 2.8: Backtesting a Linear Mean-Reverting 
Strategy on a Portfolio

The yport is a Tx1 array representing the net market value of the 
“unit” portfolio calculated in the preceding code fragment. numUnits 
is a Tx1 array representing the multiples of this unit portfolio we 
wish to purchase. (The multiple is a negative number if we wish 
to short the unit portfolio.) All other variables are as previously 
calculated. The positions is a Tx3 array representing the position 
(market value) of each ETF in the portfolio we have invested in. 
(This code fragment is part of cointegrationTests.m.)

%  Apply a simple linear mean reversion strategy to EWA-EWC-
 % IGE

lookback=round(halflife); % setting lookback to the halflife 
 % found above

numUnits =-(yport-movingAvg(yport, lookback))...
  ./movingStd(yport, lookback); % multiples of unit 
% portfolio .  movingAvg and movingStd are functions from 
% epchan.com/book2

positions=repmat(numUnits,   [1 size(y3,   2)]).*repmat(results.  ...
  evec(:, 1)’, [size(y3, 1) 1]).*y3;
% results.evec(:, 1)’ is the shares allocation, while 
% positions is the capital (dollar) 
% allocation in each ETF.

pnl=sum(lag(positions, 1).*(y3-lag(y3, 1))./lag(y3, 1), 2); 
 % daily P&L of the strategy

ret=pnl./sum(abs(lag(positions, 1)), 2); % return is P&L 
 % divided by gross market value of portfolio

 Figure 2.7 displays the cumulative returns curve of this linear mean-
reverting strategy for a stationary portfolio of EWA, EWC, and IGE.

(Continued )
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FIGURE 2.7 Cumulative Returns of a Linear Trading 
Strategy on EWA-EWC-IGE Stationary Portfolio

We fi nd that APR = 12.6 percent with a Sharpe ratio of 1.4 for the 
strategy.

Example 2.8 (Continued)

at the outset and we cannot really enter and exit an infi nitesimal number of 
shares whenever the price moves by an infi nitesimal amount. Despite such 
impracticalities, the importance of backtesting a mean-reverting price series 
with this simple linear strategy is that it shows we can extract profi ts with-
out any data-snooping bias, as the strategy has no parameters to optimize. 
(Remember that even the look-back is set equal to  the half-life, a quantity that 
depends on the properties of the price series itself, not our specifi c trading 
strategy.) Also, as the strategy continuously enters and exits positions, it is 
likely to have more statistical signifi cance than any other trading strategies that 
have more complicated and selective entry and exit rules.

 ■ Pros and Cons of Mean-Reverting Strategies

It is often fairly easy to construct mean-reverting strategies because we are 
not limited to trading instruments that are intrinsically stationary. We can 
pick and choose from a great variety of cointegrating stocks and ETFs to 
create our own stationary, mean-reverting portofolio. The fact that every 
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year there are new ETFs created that may be just marginally diff erent from 
existing ones certainly helps our cause, too.

Besides the plethora of choices, there is often a good fundamental story 
behind a mean-reverting pair. Why does EWA cointegrate with EWC? That’s 
because both the Canadian and the Australian economies are dominated by 
commodities. Why does GDX cointegrate with GLD? That’s because the 
value of gold-mining companies is very much based on the value of gold. 
Even when a cointegrating pair falls apart (stops cointegrating), we can of-
ten still understand the reason. For example, as we explain in Chapter 4, 
the reason GDX and GLD fell apart around the early part of 2008 was high 
energy prices, which caused mining gold to be abnormally expensive. We 
hope that with understanding comes remedy. This availability of fundamen-
tal reasoning is in contrast to many momentum strategies whose only justi-
fi cation is that there are investors who are slower than we are in reacting to 
the news. More bluntly, we must believe there are greater fools out there. 
But those fools do eventually catch up to us, and the momentum strategy in 
question may just stop working without explanation one day.

Another advantage of mean-reverting strategies is that they span a great 
variety of time scales. At one extreme, market-making strategies rely on 
prices that mean-revert in a matter of seconds. At the other extreme, fun-
damental investors invest in undervalued stocks for years and patiently wait 
for their prices to revert to their “fair” value. The short end of the time scale 
is particularly benefi cial to traders like ourselves, since a short time scale 
means a higher number of trades per year, which in turn translates to higher 
statistical confi dence and higher Sharpe ratio for our backtest and live trad-
ing, and ultimately higher compounded return of our strategy.

Unfortunately, it is because of the seemingly high consistency of mean-
reverting strategy that may lead to its eventual downfall. As Michael 
Dever pointed out, this high consistency often lulls traders into over-
confi dence and overleverage as a result (Dever, 2011). (Think Long Term 
Capital Management.) When a mean-reverting strategy suddenly breaks 
down, perhaps because of a fundamental reason that is discernible only 
in hindsight, it often occurs when we are trading it at maximum leverage 
after an unbroken string of successes. So the rare loss is often very painful 
and sometimes catastrophic. Hence, risk management for mean reverting 
is particularly important, and particularly diffi  cult since the usual stop 
losses cannot be logically deployed. In Chapter 8, I discuss why this is the 
case, as well as techniques for risk management that are suitable for mean-
reverting strategies.
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• Mean reversion means that the change in price is proportional to the 

difference between the mean price and the current price.

• Stationarity means that prices diffuse slower than a geometric random walk.

• The ADF test is designed to test for mean reversion.

• The Hurst exponent and Variance Ratio tests are designed to test for 

stationarity.

• Half-life of mean reversion measures how quickly a price series reverts to its 

mean, and is a good predictor of the profi tability or Sharpe ratio of a mean-

reverting trading strategy when applied to this price series.

• A linear trading strategy here means the number of units or shares of a unit 

portfolio we own is proportional to the negative Z-Score of the price series 

of that portfolio.

• If we can combine two or more nonstationary price series to form a 

stationary portfolio, these price series are called cointegrating.

• Cointegration can be measured by either CADF test or Johansen test.

• The eigenvectors generated from the Johansen test can be used as hedge 

ratios to form a stationary portfolio out of the input price series, and the one 

with the largest eigenvalue is the one with the shortest half-life.

KEY POINTS
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Implementing 
Mean Reversion 
Strategies

C H A P T E R  3

In the previous chapter, we described the statistical tests for determining 
whether a price series is stationary and therefore suitable for mean re-

version trading. This price series may be the market value of a single asset, 
though it is rare that such stationary assets exist, or it may be the market 
value of a portfolio of cointegrating assets, such as the familiar long-short 
stock pair. 

In practice, though, we should remember that we don’t necessarily 
need true stationarity or cointegration in order to implement a success-
ful mean reversion strategy: If we are clever, we can capture short-term 
or seasonal mean reversion, and liquidate our positions before the pric-
es go to their next equilibrium level. (Seasonal mean reversion means 
that a price series will mean-revert only during specific periods of the 
day or under specific conditions.) Conversely, not all stationary series 
will lead to great profits—not if their half-life for mean reversion is 
10 years long. 

We also described a simple linear mean reversion strategy that sim-
ply “scales” into an asset in proportion to its price’s deviation from the 
mean. It is not a very practical strategy due to the constant infi nitesimal 
rebalancing and the demand of unlimited buying power. In this chapter, 
we discuss a more practical, but still simple, mean reversion strategy—
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the Bollinger bands. We describe variations of this technique, including 
the pros and cons of using multiple entry and exit levels (“scaling-in”), 
and the use of the Kalman fi lter to estimate the hedge ratio and mean 
price. Finally, we highlight the danger data errors pose to mean-reverting 
strategies.

In presenting the backtests of any strategy in this book, we do not in-
clude transaction costs. We sometimes even commit a more egregious er-
ror of introducing look-ahead bias by using the same data for parameter 
optimization (such as fi nding the best hedge ratio) and for backtest. These 
are all pitfalls that we warned about in Chapter 1. The only excuse for 
doing this is that it makes the presentation and source codes simpler to 
understand. I urge readers to undertake the arduous task of cleaning up 
such pitfalls when implementing their own backtests of these prototype 
strategies.

 ■ Trading Pairs Using Price Spreads, Log Price 
Spreads, or Ratios

In constructing a portfolio for mean reversion trading in Chapter 2, we 
simply used the market value of the “unit” portfolio as the trading signal. 
This market value or price is just the weighted sums of the constituent price 
series, where the weights are the hedge ratios we found from linear regres-
sion or from the eigenvectors of the Johansen test:

 y = h1y1 + h2 y2 + … + hn  yn (3.1)

y is, by construction, a stationary time series, and the hi’s tell us the number 
of shares of each constituent stock (assuming we are trading a stock portfo-
lio). In the case of just two stocks, this reduces to a spread familiar to many 
pair traders:

 y = y1 − h y2. (3.2)

(We inserted a minus sign in Equation 3.2 to anticipate the fact that we will 
usually be long one stock and short another, so that h as defi ned this way will 
be positive.) Suppose instead of price series, we fi nd that the log of prices 
are cointegrating, such that

 log(q) = h1log(  y1) + h2log(  y2) + … + hnlog(  yn) (3.3)
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is stationary for some set of h’s derived from either a regression fi t or Johan-
sen’s eigenvectors. How do we interpret this equation, since q (for “query”) 
is just a name given to a stationary time series that may or may not be the 
market value of a portfolio? To fi nd out its properties, let’s take its fi rst dif-
ference in time:

 Δlog(q) = h1Δlog(  y1) + h2Δlog(  y2) + … + hnΔlog (  yn). (3.4)

Remembering that Δ log (x) ≡ log (x(t)) − log (x (t − 1)) = log (x(t)/x(t − 1)) 
≈ Δ x/x for small changes in x, the right hand side of Equation 3.4 be-
comes h1Δ y1/y1 + h2 Δ y2/y2 + … + hn Δ yn/yn, which is none other than 
the returns of a portfolio consisting of the n assets with weights h’s. But 
unlike the hedge ratio h’s in Equation 3.1 where they referred to the 
number of shares of each asset, here we can set the market value of each 
asset to h. So we can interpret q as the market value of a portfolio of assets 
with prices y1, y2, …, yn and with constant capital weights h1, h2, …, hn, 
together with a cash component implicitly included, and this market val-
ue will form a stationary time series. Note that a cash component must 
be implicitly included in the portfolio q because if the capital weights 
h’s are kept constant, there is no other way that the market value of the 
portfolio can vary with time. This cash does not show up in Equation 3.4 
because its market value, of course, doesn’t change from t − 1 to t as a 
result of market movement, but its value will change at t when the trader 
rebalances the portfolio to maintain the constancy of the capital weights, 
realizing some of the gains or losses, and adding to or subtracting from 
the cash balance. So to keep the market value of this portfolio stationary 
(but not constant!) requires a lot of work for the traders, as they need 
to constantly rebalance the portfolio, which is necessitated by using the 
log of prices. 

The upshot of all these is that mean reversion trading using price 
spreads is simpler than using log price spreads, but both can be theo-
retically justifi ed if both price and log price series are cointegrating. But 
what about the ratio of prices y1/y2 that many traders favor as the signal 
for a pair? If we look at Equation 3.1 in the case of just two price se-
ries, we notice that if h1 = −h2, then indeed log( y1/y2) or y1/y2 is sta-
tionary. But this is a special case: We normally don’t expect the hedge 
ratios to be equal in magnitude, or equal to −1 if we normalize them. 
So the ratio y1/y2 does not necessarily form a stationary series. But as 
one reader mentioned, using ratios may have an advantage when the 
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underlying pair is not truly cointegrating (http://epchan.blogspot
.com/2012/02/ideas-from-psychologist.html?showComment=132980
1874131#c3278677864367113894). Suppose price A = $10 and price 
B = $5 initially, so the ratio is 2. After some time, price A increases to 
$100 and price B to $50. The spread has gone from $5 to $50, and we 
will probably fi nd that it is not stationary. But the ratio remains 2, and a 
mean-reverting strategy that trades based on ratio can be equally eff ec-
tive whether their prices are $10 versus $5 or $100 versus $50. In other 
words, if your two assets are not really cointegrating but you believe their 
spread is still mean reverting on a short time frame, then using ratio as an 
indicator may work better than either price spreads or log price spreads. 
(This is the same idea as using moving average and standard deviation in 
our linear mean-reverting strategy.)

There is another good reason to use ratio when a pair is not truly coin-
tegrating. For such pairs, we often need to use a dynamically changing 
hedge ratio to construct the spread. But we can dispense with this trouble 
if we use the ratio as a signal in this situation. But does a ratio work bet-
ter than an adaptive hedge ratio with price (or log price) spreads? I don’t 
know a general answer to this, but we can look at Example 3.1, where 
we compare the use of price spreads, log price spreads, and ratios in 
the linear mean reversion strategy involving GLD and USO, the gold 
and the crude oil exchange-traded funds (ETFs). You will fi nd, in that 
example at least, price spreads with an adaptive hedge ratio work much 
better than ratio.

An interesting special case is currency trading. If we trade the currency 
pair EUR.GBP, we are using ratio because this is exactly equal to trading 
EUR.USD/GBP.USD. We already demonstrated a simple mean-reverting 
strategy on trading such currency pairs in Example 2.5 for USD.CAD using 
ratio as the signal. But about those pairs that have no ready-made cross rates 
on many brokerages or exchanges, such as MXN.NOK? Should we use the 
ratio USD.NOK/USD.MXN as the signal, or the spread USD.NOK–USD
.MXN instead? Again, because MXN.NOK is not truly stationary, using the 
ratio MXN.NOK may be more eff ective. This is true even though we can’t 
directly trade MXN.NOK, and have to trade USD.NOK and USD.MXN 
instead. (Trading USD.NOK and USD.MXN will generate profi t and loss 
[P&L] denominated in both NOK and MXN. Trading MXN.NOK would 
have generated P&L denominated only in NOK. So the two methods are 
not identical.)

http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894
http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894
http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894
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Example 3.1:  Trading Price Spread, Log Price 
Spread, and Ratio

We apply the linear mean-reverting strategy from Examples 2.5 and 
2.8 to the ETFs GLD and USO. But we try this strategy on the price 
spread, log price spread, and ratio for comparison.

Some traders believe that when oil prices go up, so do gold prices. 
The logic is that high oil price drives up infl ation, and gold prices are 
positively correlated with infl ation. But you can verify using one of 
the cointegration tests we studied in Chapter 2 that gold (represented 
by the ETF GLD) and oil prices (represented by USO) are not, in 
fact, cointegrated. (We will gloss over the diff erence between spot 
oil prices versus oil futures, which actually constitute USO. We will 
come back to this diff erence in Chapter 5). Nevertheless, we will 
see if there is enough short-term mean reversion to make a mean-
reverting strategy profi table. 

We will fi rst try the price spread as the signal. But we need to 
dynamically recalculate the hedge ratio every day using a short look-
back period (set to near-optimal 20 trading days with the benefi t 
of hindsight) in order to adapt to the changing levels of the ETFs 
over time. The method we used to calculate the hedge ratio is linear 
regression, using the ols function from the jplv7 package as before. 
You can, of course, use the fi rst eigenvector from the Johansen test 
instead.

The MATLAB source code can be downloaded from my website as 
PriceSpread.m. We assume the price series of GLD is contained in the 
Tx1 array x, and that of USO is contained in the Tx1 array y. Note 
that what is usually referred to as the “spread” USO-hedgeRatio*GLD 
is equal to the price of the unit portfolio, which we denote as yport in 
the program.

% lookback period for calculating the dynamically changing 
 % hedge ratio

lookback=20;
hedgeRatio=NaN(size(x, 1), 1);
for t=lookback:size(hedgeRatio, 1)

regression_result=ols(y(t-lookback+1:t), ...
 [x(t-lookback+1:t) ones(lookback, 1)]);
hedgeRatio(t)=regression_result.beta(1);

(Continued )
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Example 3.1 (Continued)

end

y2=[x y];
yport=sum([-hedgeRatio ones(size(hedgeRatio))].*y2, 2); 

Plotting this spread in Figure 3.1 shows that it looks very 
stationary. We will now see if we can create a profi table linear mean 
reversion strategy. Once again, the number of units (shares) of the 
unit portfolio we should own is set to be the negative Z-Score, and 
the Tx2 positions array represents the market value (in dollars) of each 
of the constituent ETFs we should be invested in.

numUnits=-(spread-movingAvg(spread, lookback)) ...
 ./movingStd(spread, lookback); 

positions=repmat(numUnits, [1 size(y2, 2)]).*[hedgeRatio ...
  -ones(size(hedgeRatio))].*y2; pnl=sum(lag(positions, ...
1).*(y2-lag(y2, 1))./lag(y2, 1), 2); % daily P&L of the 
% strategy

ret=pnl./sum(abs(lag(positions, 1)), 2); % return is P&L 
 % divided by gross market value of portfolio

We obtain an annual percentage rate (APR) of about 10.9 percent 
and Sharpe ratio of about 0.59 using price spread with a dynamic hedge 
ratio, even though GLD and USO are by no means cointegrated.

Next, we will see if using log prices will make any diff erence. The 
source code for this is in LogPriceSpread.m, but we will display here 
the only two lines that are diff erent from PriceSpread.m:

FIGURE 3.1 Spread between USO and GLD Using a 
Changing Hedge Ratio
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Example 3.1 (Continued)

regression_result=ols(log(y(t-lookback+1:t)), ...
 [log(x(t-lookback+1:t)) ones(lookback, 1)]);

and

yport=sum([-hedgeRatio ones(size(hedgeRatio))].*log(y2), ...
  2); % The net market value of the portfolio is same as 
% the “spread”

The APR of 9 percent and Sharpe ratio of 0.5 are actually 
lower than the ones using the price spread strategy, and this is 
before accounting for the extra transactions costs associated with 
rebalancing the portfolio every day to maintain the capital allocation 
to each ETF.

Next, we will try using ratio as the signal. In this case, we will also 
require the long and short side to have the same dollar capital. The 
source code is in Ratio.m. It is interesting to look at a plot of the ratio 
in Figure 3.2 fi rst.

You can see that the ratio actually doesn’t look very stationary at 
all, compared with either the price spread or adaptive hedge ratio. 
So it should not surprise us if we fi nd the mean-reverting strategy to 
perform poorly, with a negative APR. 

(Continued )

FIGURE 3.2 Ratio = USO/GLD
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 ■ Bollinger Bands

The only mean-reversal strategy I have described so far is the linear strat-
egy: simply scale the number of units invested in a stationary unit portfolio 
to be proportional to the deviation of the market value (price) of the unit 
portfolio from a moving average. This simple strategy is chosen because it 
is virtually parameterless, and therefore least subject to data-snooping bias. 
While this linear strategy is useful for demonstrating whether mean rever-
sion trading can be profi table for a given portfolio, it is not practical because 
we don’t know beforehand what the maximum capital deployed will be, as 
there is no limit to the temporary deviation of the price from its average. 

For practical trading, we can use the Bollinger band, where we enter into 
a position only when the price deviates by more than entryZscore standard 
deviations from the mean. entryZscore is a free parameter to be optimized in 
a training set, and both standard deviation and mean are computed within 
a look-back period, whose length again can be a free parameter to be op-
timized, or it can be set equal to the half-life of mean reversion. We can 
exit when the price mean-reverts to exitZscore standard deviations from the 
mean, where exitZscore < entryZscore. Note that if exitZscore = 0, this means 
we will exit when the price mean-reverts to the current mean. If exitZscore 
= −entryZscore, we will exit when the price moves beyond the opposite band 
so as to trigger a trading signal of the opposite sign. At any one time, we can 
have either zero or one unit (long or short) invested, so it is very easy to 
allocate capital to this strategy or to manage its risk. If we set the look-back 

Example 3.1 (Continued)

lookback=20; % Lookback is set arbitrarily
ratio=y./x;
ratio(1:lookback)=[]; % Removed to have same test set as 
 % price spread and log price spread strategies

x(1:lookback)=[];
y(1:lookback)=[];

% Apply a simple linear mean reversion strategy to GLD-USO

numUnits=-(ratio-movingAvg(ratio, lookback))...
  ./movingStd(ratio, lookback); positions=repmat(numUnits, ...
[1 2]).*[-ones(size(x, 1), 1) ones(size(x, 1), 1)]; 
pnl=sum(lag(positions, 1).*([x y]-lag([x y], 1)). ...
/lag([x y], 1), 2); ret=pnl./sum(abs(lag(positions, 1)), 2);
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Example 3.2: Bollinger Band Mean 
Reversion Strategy

We traded GLD-USO in Example 3.1 using price spread USO-
hedgeRatio*GLD as the signal with a linear mean reversion strategy. 
Here, we simply switch to a Bollinger band strategy, using the 
entryZscore = 1 and exitZscore = 0, with the fi rst part of the program 
identical to PriceSpread.m. The present source code is in bollinger.m. 
Notice that the entry signals longsEntry and shortsEntry are Tx1 logical 
arrays, as are the exit signals longsExit and shortsExit. We initialize the 
number of units of the unit portfolio on the long side, numUnitsLong, 
a Tx1 array, and then set one of its values to 1 if we have a long entry 
signal, and to 0 if we have a long exit signal; and vice versa for the 
number of units on the short side. For those days that do not have 
any entry or exit signals, we use the fi llMissingData function to carry 
forward the previous day’s units. (fi llMissingData starts with the 
second row of an array, and overwrites any cell’s NaN value with the 
corresponding cell’s value in the previous row. It can be downloaded 
from my website.) Once numUnitsLong and numUnitsShort are 
computed, we can combine them to fi nd the net number of units 
denoted by numUnits. The rest of the program is the same as in 
Example 3.1’s PriceSpread.m.

% Bollinger band strategy

entryZscore=1;
exitZscore=0;

zScore=(yport-movingAvg(yport, lookback))./movingStd(yport, ...
 lookback);

longsEntry=zScore < -entryZscore; % a long position means we 
 % should buy EWC

longsExit=zScore >= -exitZscore;

shortsEntry=zScore > entryZscore;
shortsExit=zScore <= exitZscore;

numUnitsLong=NaN(length(yport), 1);
(Continued )

to a short period, and small entryZscore and exitZscore magnitude, we will get 
a shorter holding period and more round trip trades and generally higher 
profi ts. We illustrate the Bollinger band technique in Example 3.2 using the 
pair GLD-USO we discussed above.
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Example 3.2 (Continued)

numUnitsShort=NaN(length(yport), 1);

numUnitsLong(1)=0;
numUnitsLong(longsEntry)=1; 
numUnitsLong(longsExit)=0;
numUnitsLong =fillMissingData(numUnitsLong);

numUnitsShort(1)=0;
numUnitsShort(shortsEntry)=-1; 
numUnitsShort(shortsExit)=0;
numUnitsShort =fillMissingData(numUnitsShort);

numUnits= numUnitsLong + numUnitsShort;

The Bollinger band strategy has an APR = 17.8 percent, and Sharpe 
ratio of 0.96, quite an improvement from the linear mean reversal 
strategy! The cumulative returns curve is shown on Figure 3.3.

FIGURE 3.3 Cumulative Returns of Bollinger Band 
Strategy on GLD-USO

 ■ Does Scaling-in Work?

The notion of scaling into a position with a mean-reverting strategy is famil-
iar to many traders. (Another name for it is averaging-in.) As the price (of an 
asset, a spread, or a portfolio) deviates further and further from its mean, 
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the potential profi t to be reaped from an eventual reversal is also increas-
ing; thus, it makes sense to increase the capital invested. This is exactly what 
our linear mean-reversal strategy does. Note also that this type of scaling-in 
strategies also scale out gradually: We do not have to wait until the price 
reverts to its mean before taking profi ts. The advantage of being able to exit 
whenever the price reverts by a small increment is that even if the price 
series is not really stationary and therefore never really reverts to its mean, 
we can still be profi table by constantly realizing small profi ts. An added ben-
efi t is that if you are trading large sizes, scaling-in and -out will reduce the 
market impact of the entry and exit trades. If we want to implement scaling-
in using Bollinger bands, we can just have multiple entries and exits: for 
example, entryZscore = 1, 2, 3, …, N and exitZscore = 0, 1, 2, …, N − 1. Of 
course, N is another parameter to be optimized using a training data set.

All of these seemed very commonsensical until the research by Schoen-
berg and Corwin proved that entering or exiting at two or more Bollinger 
bands is never optimal; that is, you can always fi nd a single entry/exit level 
that will generate a higher average return in a backtest (Schoenberg and 
Corwin, 2010). They call this optimal single entry method “all-in.”

To illustrate their point, let’s say a future contract has recently dropped to 
a price L1, and you expect it to revert to a higher fi nal price F > L1 (we have 
to assume mean reversion to compare averaging-in versus all-in), though 
there is a probability p that the price will go lower to L2 < L1 before re-
bounding to F. These possibilities are illustrated in Figure 3.4. We have just 
enough buying power to invest in a total of two contracts, whether at prices 
L1, L2, or F. Let’s compare the three diff erent methods of entry:

 I. All-in at L1: We invest all our capital when the price reaches L1, not car-
ing whether it will go lower to L2.

1-p

L1

L2

F

p

1

FIGURE 3.4 Two Possible Paths of Mean 
Reversion. Path 1 (with probability p) has price 
drops further from L1 to L2 before reverting to F. 
Path 2 (with probability 1 − p) has price imme-
diately reverts to F. (Note that mean reversion is 
guaranteed one way or the other in this example.)
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 II. All-in at L2: We wait until the price reaches L2 before investing all our 
capital. (Therefore, we invest nothing and earn zero returns if the price 
never reaches L2.)

 III. Average-in: We invest in one contract when the price reaches L1, and in 
another contract if the price reaches L2.

In all cases, we exit all contracts only when the price reaches F (so no aver-
age-out, even if there is average-in). What are the expected profi ts of each 
alternative? The expected profi ts in points are:

I.  2(F − L1)
II.  2p(F − L2)

III. p[(F − L1) + (F − L2)] + (1 − p)(F − L1) = (F − L1) + p(F − L2)

Obviously, if p = 0, method I is the most profi table. If p = 1, method II is the 
most profi table. In fact, there is a transition probability p̂ = (F − L1) / (F − L2) 
such that if p < p̂, method I is more profi table than II, and vice versa if p > p̂. 
It is also easy to show that if p < p̂, method I is also more profi table than III, 
and if p > p̂, method II is more profi table than III. So there is no situation 
where the average-in strategy is the most profi table one!

So does that mean the whole idea of scaling-in/averaging-in has been 
debunked? Not necessarily. Notice the implicit assumption made in my 
illustration: the probability of deviating to L2 before reverting to F is 
constant throughout time. In real life, we may or may not fi nd this prob-
ability to be constant. In fact, volatility is usually not constant, which 
means that p will not be constant either. In this circumstance, scaling-in 
is likely to result in a better realized Sharpe ratio if not profi ts. Another 
way to put it is that even though you will fi nd that scaling-in is never op-
timal in-sample, you may well fi nd that it outperforms the all-in method 
out-of-sample.

 ■ Kalman Filter as Dynamic 
Linear Regression

For a pair of truly cointegrating price series, determination of the hedge 
ratio is quite easy: just take as much historical data as you can fi nd, and use 
ordinary least square (OLS) for a regression fi t or use the Johansen test to 
fi nd the eigenvectors. But as we have emphasized before, stationarity and 
cointegration are ideals that few real price series can achieve. So how best to 
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estimate the current hedge ratio for a pair of real price series when it can vary 
with time? In all the mean-reverting strategies we have discussed so far, we 
just took a moving look-back period and computed the regression coeffi  cient 
or Johansen eigenvector over data in that period only. This has the disadvan-
tage that if the look-back period is short, the deletion of the earliest bar and 
the inclusion of the latest bar as time moves forward can have an abrupt and 
artifi cial impact on the hedge ratio. We face the same problem if we use mov-
ing averages or moving standard deviations to calculate the current mean and 
standard deviation of a price series. In all cases, we may be able to improve 
the estimate by using a weighting scheme that gives more weight to the latest 
data, and less weight to the earlier data, without an arbitrary cutoff  point. The 
familiar exponential moving average (EMA) is one such weighting scheme, 
but it is not clear why an exponential decrease in weights is optimal either. 
Here, we will describe a scheme of updating the hedge ratio using the Kal-
man fi lter that avoids the problem of picking a weighting scheme arbitrarily 
(Montana, Triantafyllopoulos, and Tsagaris, 2009). 

Kalman fi lter is an optimal linear algorithm that updates the expected 
value of a hidden variable based on the latest value of an observable variable. 
(For a good exposition of this topic, see Kleeman, 2007.) It is linear because 
it assumes that the observable variable is a linear function of the hidden 
variable with noise. It also assumes the hidden variable at time t is a linear 
function of itself at time t − 1 with noise, and that the noises present in these 
functions have Gaussian distributions (and hence can be specifi ed with an 
evolving covariance matrix, assuming their means to be zero.) Because of 
all these linear relations, the expected value of the hidden variable at time 
t is also a linear function of its expected value prior to the observation at 
t, as well as a linear function of the value of the observed variable at t. The 
Kalman fi lter is optimal in the sense that it is the best estimator available if 
we assume that the noises are Gaussian, and it minimizes the mean square 
error of the estimated variables. 

For every application of Kalman fi ltering, we need to fi rst fi gure out what 
these variables and matrices are:

 ■ Observable variable (vector)

 ■ Hidden variable (vector)

 ■ State transition model (matrix)

 ■ Observation model (matrix)
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This is actually the only creative part of the application because once these 
quantities are specifi ed, the rest is just a robotic application of an existing 
algorithm. As traders, we don’t need to know how to derive the relation-
ships between these quantities—we only need to know where to fi nd a good 
software package that gives us the right answer.

In our application where the focus is to fi nd the hedge ratio and the aver-
age mean and volatility of the spread, the observable variable is one of the price 
series y, and the hidden variable is the hedge ratio β. The linear function that 
relates y and β is, of course, 

 y(t) = x(t) β(t) + ∋(t),  (“Measurement equation”) (3.5)

where x is the price series of the other asset, and ∋ is a Gaussian noise with 
variance V ∋. As we typically allow the spread between x and y to have a 
nonzero mean, we will use a 2 × 1 vector β to denote both the intercept μ 
and the slope of the linear relation between x and y, and we will augment 
x(t) with a column vector of ones to create an N × 2 array to allow for the 
constant off set between x and y. x actually serves as the observation model in 
the Kalman fi lter lingo.

It may seem strange that we regard only y(t) as an observable but not x(t), 
but this is just a mathematical trick, as every variable in the Kalman fi lter 
equations is observable except for the hidden variable and the noises, and so 
we have the freedom to designate which variable is the “observable” (y) and 
which one is the “observation model” (x). Next, we make a crucial assump-
tion that the regression coeffi  cient (our hidden variable) at time t is the same 
as that at time t − 1 plus noise

 β(t) = β(t − 1) + ω(t − 1),  (“State transition”) (3.6)

where ω is also a Gaussian noise but with covariance Vω. In other words, the 
state transition model here is just the identity matrix.

Given the specifi cation of the four important quantities in italics, Kalman 
fi ltering can now iteratively generate the expected value of the hidden variable 
β given an observation at t. One noteworthy benefi t of using the Kalman fi lter 
to fi nd β is that not only do we obtain a dynamic hedge ratio between the two 
assets, we also simultaneously obtain what we used to call “the moving average” 
of the spread. This is because, as we mentioned, β includes both the slope and 
the intercept between y and x. The best current estimate of the intercept is used 
in place of the moving average of the spread. But, as your telemarketer often 
reminds you, that’s not all! As a by-product, it also generates an estimate of the 
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.1
standard deviation of the forecast error of the observable variable, which we 
can use in place of the moving standard deviation of a Bollinger band.

Despite the linearity of Kalman fi ltering, the matrix relations relating 
various quantities may seem quite complex, so I relegate them to Box 3.1 
here for the patient reader to peruse.

Actually, besides the iterative equations, we also need to specify the (co)
variances V ∋ and Vω of the measurement and state transition equations. These 
specifi cations will be included in Box 3.1 as well.

The Iterative Equations of the Kalman Filter

We denote the expected value of β at t given observation at t − 1 by β̂(t | t − 1), 

the expected value of β given observation at t by β̂(t | t), and the expected 

value of y(t) given the observation at t − 1 by ŷ(t | t − 1). Given the quantities 

β̂(t − 1 | t − 1) and R(t − 1 | t − 1) at time t − 1, we can make the one-step 

predictions

 β̂(t | t − 1) = β̂(t − 1 | t − 1)  (“State prediction”)  (3.7)

 R(t | t − 1) = R(t − 1 | t − 1) + Vw  (“State covariance prediction”) (3.8)

 ŷ (t) = x(t)β̂(t | t − 1)  (“Measurement prediction”) (3.9)

 Q(t) = x(t)´R(t | t − 1)x(t) + Ve  (“Measurement variance prediction”) (3.10)

where R(t | t − 1) is cov(β(t) − β̂(t | t − 1)), measuring the covariance of the error of 

the hidden variable estimates. (It is a covariance instead of a variance because 

β has two independent components.) Similarly, R(t | t) is cov(β(t) − β̂(t | t)). 

Remembering that the hidden variable consists of both the mean of the 

spread as well as the hedge ratio, R is a 2 × 2 matrix. e(t) = y(t) − x(t)β̂(t | t − 1) 

is the forecast error for y(t) given observation at t − 1, and Q(t) is var(e(t)), 

measuring the variance of the forecast error.

After observing the measurement at time t, the famous Kalman fi lter state 

estimate update and covariance update equations are 

 β̂(t | t) = β̂(t | t − 1) + K(t) * e(t)  (“State update”) (3.11)

R(t | t) = R(t | t − 1) − K(t) * x(t) * R(t | t − 1)  (“State covariance update”) (3.12)

where K(t) is called the Kalman gain and is given by 

 K(t) = R(t | t − 1) * x(t)/Q(t) (3.13)

 To start off these recursions, we assume β̂(1 | 0) = 0, R(0 | 0) = 0. But what 

about Vw and Ve? There is a method to estimate these variances from data 

called autocovariance least squares developed by Rajamani and Rawlings 

(2007, 2009). There is even a free Matlab/Octave package for implementing 

(Continued )
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Example 3.3: Kalman Filter Mean Reversion Strategy

We will now implement the Kalman fi lter equations 3.5 through 3.13 
and apply them to the EWA-EWC pair. The code can be downloaded 
as KF_beta_EWA_EWC.m. We assume the price series of EWA is stored 
in a Tx1 array x, and that of EWC is stored in a Tx1 array y. 

% Augment x with ones to accommodate possible offset in the 
 % regression

% between y vs x.

x=[x ones(size(x))];
 
delta=0.0001; % delta=0 allows no change (like traditional 
 % linear regression).
 
yhat=NaN(size(y)); % measurement prediction
e=NaN(size(y)); % measurement prediction error
Q=NaN(size(y)); % measurement prediction error variance
 
% For clarity, we denote R(t|t) by P(t).

% initialize P and beta.

P=zeros(2);
beta=NaN(2, size(x, 1));
Vw=delta/(1-delta)*diag(ones(2, 1));
Ve=0.001;
 
% Initialize beta(:, 1) to zero

beta(:, 1)=0;

B
O

X
 3

.1
 (

Co
nt

in
ue

d 
) this method at http://jbrwww.che.wisc.edu/software/als. But for simplicity, 

we will follow Montana and assume =ω
δ
−δv I1 , where δ is a parameter 

between 0 and 1, and I is a 2 × 2 identity matrix. If δ = 0, this means β(t) = 

β(t − 1), which reduces the Kalman fi lter to ordinary least square regression 

with a fi xed offset and slope. If δ = 1, this means the estimated β will fl uctuate 

wildly based on the latest observation. The optimal δ, just like the optimal 

lookback in a moving linear regression, can be obtained using training data. 

With the benefi t of hindsight, we pick δ = 0.0001. With the same hindsight, 

we also pick Ve = 0.001.

In Example 3.3, we describe the actual implementation of using the 
Kalman fi lter to estimate a dynamic β for the EWA-EWC pair we discussed 
in Example 2.7.

http://jbrwww.che.wisc.edu/software/als
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for t=1:length(y)
if (t > 1)

beta(:, t)=beta(:, t-1); % state prediction. 
 % Equation 3.7

R=P+Vw; % state covariance prediction. Equation 3.8
end

yhat(t)=x(t, :)*beta(:, t); % measurement prediction. 
 % Equation 3.9

 
Q(t)=x(t, :)*R*x(t, :)’+Ve; % measurement variance 
 % prediction. Equation 3.10

 
 

% Observe y(t)

e(t)=y(t)-yhat(t); % measurement prediction error

K=R*x(t, :)’/Q(t); % Kalman gain

beta(:, t)=beta(:, t)+K*e(t); % State update. 
 % Equation 3.11

P=R-K*x(t, :)*R; % State covariance update. Euqation 3.12

End

We can see from Figure 3.5 that with δ = 0.0001, the Kalman-
updated slope β(1, t) of a linear fi t between EWC (y) and EWA (x) 
oscillates around 1.

(Continued )

FIGURE 3.5 Kalman Filter Estimate of the Slope 
between EWC (y) and EWA (x)

Example 3.3 (Continued)
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We can also see from Figure 3.6 that the Kalman-updated 
intercept β(2, t) increases monotonically with time.

We can utilize these and other quantities computed from the 
Kalman fi lter to create a mean-reverting strategy. The measurement 
prediction error e(t) (previously called the forecast error for y(t) 
given observation at t − 1) is none other than the deviation of the 
spread EWC-EWA from its predicted mean value, and we will buy 
this spread when the deviation is very negative, and vice versa if 
it is very positive. How negative or positive? That depends on the 
predicted standard deviation of e(t), which is none other than Q t( ). 
We can plot e(t) and Q t( ) on the same chart (Figure 3.7) to see 
that Q t( ) changes quite slowly given our small δ. 

The Matlab code for determining the entry and exit signals follows.

y2=[x(:, 1) y];

longsEntry=e < -sqrt(Q); % a long position means we should 
 % buy EWC

longsExit=e > -sqrt(Q);
 
shortsEntry=e > sqrt(Q);
shortsExit=e < sqrt(Q);

Example 3.3 (Continued)

FIGURE 3.6 Kalman Filter Estimate of the Intercept 
between EWC (y) and EWA (x)
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Once the entry and exit signals are determined, the rest of the 
code is the same as bollinger.m—just substitute beta(1, :) in place of 
hedgeRatio. It has a reasonable APR of 26.2 percent and a Sharpe ratio 
of 2.4. Its cumulative returns are plotted on Figure 3.8.

FIGURE 3.7 Measurement Prediction Error e(t) and 
Standard Deviation of e(t)

FIGURE 3.8 Cumulative Returns of Kalman Filter Strategy on 
EWA-EWC

(Continued )

Example 3.3 (Continued)
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 ■ Kalman Filter as Market-Making Model

There is another noteworthy application of Kalman fi lter to a mean-
reverting strategy. In this application we are concerned with only one 
mean-reverting price series; we are not concerned with fi nding the hedge 
ratio between two cointegrating price series. However, as before, we still 
want to fi nd the mean price and the standard deviation of the price series 
for our mean reversion trading. So the mean price m(t) is the hidden vari-
able here, and the price y(t) is the observable variable. The measurement 
equation in this case is trivial:

 y(t) = m(t) + ∋(t), (“Measurement equation”) (3.14)

with the same state transition equation

 m(t) = m(t − 1) + ω(t − 1). (“State transition”) (3.15)

So the state update equation 3.11 is just 

 m(t | t) = m(t | t − 1) + K(t)(  y(t) − m(t | t − 1)). (“State update”) (3.16)

(This may be the time to review Box 3.1 if you skipped it on fi rst reading.) 
The variance of the forecast error is

 Q(t) = Var(m(t)) + Ve. (3.17)

The Kalman gain is

 K(t) = R(t | t − 1)/(R(t | t − 1) + Ve), (3.18)

and the state variance update is

 R(t | t) = (1 − K(t))R(t | t − 1). (3.19)

Example 3.3 (Continued)

Instead of coding the Kalman fi lter yourself as we demonstrated, 
you can also use many free open-source MATLAB codes available. 
One such package can be found at www.cs.ubc.ca/~murphyk
/Software/Kalman/kalman.html. Kalman fi lters are also available 
from MATLAB’s Control System Toolbox. 

http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html
http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html
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Why are these equations worth highlighting? Because this is a favorite 
model for market makers to update their estimate of the mean price of an 
asset, as Euan Sinclair pointed out (Sinclair, 2010). To make these equations 
more practical, practitioners make further assumptions about the measure-
ment error Ve, which, as you may recall, measures the uncertainty of the ob-
served transaction price. But how can there be uncertainty in the observed 
transaction price? It turns out that we can interpret the uncertainty in such 
a way that if the trade size is large (compared to some benchmark), then the 
uncertainty is small, and vice versa. So Ve in this case becomes a function of t 
as well. If we denote the trade size as T and the benchmark trade size as Tmax, 
then Ve can have the form

 Ve = R(t | t − 1) −
⎛

⎝
⎜

⎞

⎠
⎟

T

T
1

max

 (3.20)

So you can see that if T = Tmax, there is no uncertainty in the observed 
price, and the Kalman gain is 1, and hence the new estimate of the mean 
price m(t) is exactly equal to the observed price! But what should  Tmax be? It 
can be some fraction of the total trading volume of the previous day, for ex-
ample, where the exact fraction is to be optimized with some training data.

Note the similarity of this approach to the so-called volume-weighted 
average price (VWAP) approach to determine the mean price, or fair value 
of an asset. In the Kalman fi lter approach, not only are we giving more 
weights to trades with larger trade sizes, we are also giving more weights to 
more recent trade prices. So one might compare this to volume and time-
weighted average price.

 ■ The Danger of Data Errors

Data errors have a particularly insidious eff ect on both backtesting and ex-
ecuting mean-reverting strategies. 

If there are errors, or “outliers,” in the historical data used for back-
testing, then these errors usually infl ate the backtest performance of 
mean-reverting strategies. For example, if the actual trade prices of a 
stock at 11:00, 11:01, and 11:02 were $100, $100, and $100, but the 
historical data erroneously recorded them as $100, $110, $100, then 
your mean-reverting strategy’s backtest is likely to have shorted the 
stock at 11:01 ($110), and then covered the position at 11:02 ($100) 
and made a tidy but fi ctitious profi t of $10. You can see that data quality 
is particularly important for intraday data, because they present much 
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more numerous opportunities for such errors. That’s why reputable data 
vendors took great care in incorporating the exchange-provided cancel-
and-correct codes to correct any trades that may have been canceled due 
to transaction prices that are too far from “normal.” (What constitutes a 
“normal” price is solely determined, sometimes on a case-by-case basis, 
by the relevant exchange.) Thomas Falkenberry (2002) has written more 
on data cleansing issues.

However, this type of data error will suppress the backtest performance 
of momentum strategies, so it is not as dangerous. In the preceding ex-
ample, a momentum strategy will likely buy the stock at 11:01 ($110) in 
backtest, and may be stopped out at a loss at 11:02 ($100).

The same kind of errors will, of course, trigger wrong trades in live trad-
ing as well, often resulting in real-life losses. In the preceding example, if the 
prices were bid prices, and we have the erroneous bid at $110 at 11:02, then 
our execution program may have sent a short market sell order at that time, 
which unfortunately will be fi lled at $100 instead since there was actually 
no bid at $110. 

This problem with erroneous live bid/ask quotes is particularly dan-
gerous when trading pairs or other arbitrage strategies, because in these 
strategies we often depend on the diff erences of the price quotes from 
various instruments to trigger trading signals. The diff erence of a pair of 
quotes is usually of much smaller magnitude than the quotes themselves, 
so any error in the quotes results in a much bigger percentage error in the 
spread. For example, if we are trading a pair of stocks X and  Y, and X has 
a true bid price of $100 and Y has a true ask price of $105, so the spread 
Y−X is $5, which may be too small to trigger an market order to buy X 
and sell Y. But if data error causes Y to display an ask price of $106, then 
the erroneous spread becomes $6, an increase of 20 percent over the real 
spread of $5, and this may be enough to trigger an erroneous order to buy 
X and sell Y.

I have seen this problem in live trading when I used a broker’s data feed 
to drive an equities pair-trading strategy. That data feed quite regularly trig-
gered losing trades that I could not explain, until I switched the data feed 
to a third-party provider (nothing fancier than Yahoo! real-time quotes) and 
the bad trades stopped. Later on, I had access to Bloomberg’s live data feed, 
and it didn’t trigger any of these bad trades either.

Bad ticks in live data will also cause momentum strategies to send 
wrong orders. So they are equally loss-inducing to the execution of those 
strategies.
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• Do you want to construct a mean-reverting portfolio with a fi xed number 

of shares during the duration of a trade? Use price series to determine the 

hedge ratios.

• Do you want to construct a mean-reverting portfolio with fi xed market 

values for each constituent during the duration of a trade? Use log price 

series to determine the hedge ratios.

• Ratio, instead of spreads, is often a good indicator for trading currency 

pairs.

• Afraid that the hedge ratio, mean, and standard deviation of a spread may 

vary in the future? Use a moving look-back period or the Kalman fi lter.

• A practical implementation of a linear trading strategy is the Bollinger bands 

with scaling-in.

• Scaling-in may not be optimal in backtests but is often useful for live trading 

where volatilities and probabilities do change.

• Do you want to dynamically update the expected price of an instrument 

based on its latest trade (price and size)? Use the Kalman fi lter.

• Data errors can infl ate the backtest results of mean-reverting strategies but 

not momentum strategies.

• Strategies based on spreads are particularly sensitive to small data errors, 

whether in backtest or live trading. 

KEY POINTS
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Mean Reversion of 
Stocks and ETFs

C H A P T E R  4

The stock market is, in a sense, the most fertile ground for fi nding mean-
reverting instruments and for the application of those basic mean rever-

sion trading techniques described in the previous two chapters. In theory, 
we can form pairs of stocks belonging to any sector and expect them to 
cointegrate due to their exposure to many common economic factors. Their 
number is large, so diversifi cation is easy. In practice, though, there are some 
serious diffi  culties with applying these generic techniques to trading stocks 
and ETFs. This chapter will examine issues specifi c to stocks and ETFs. I will 
also demonstrate that simple mean-reverting strategies actually work better 
for ETF pairs and triplets.

But we need not limit ourselves to those strategies described in Chap-
ter 3 when looking for mean reversion in stocks or ETFs. We fi nd that 
in the short term, most stocks exhibit mean-reverting properties under 
normal circumstances. (Normal circumstance means there isn’t any news 
on the stock, a topic that is taken up in Chapter 7.) This is despite the 
fact that stock prices follow geometric random walks over the long term. 
We will build a strategy to exploit this short-term, or “seasonal,” mean 
reversion.

Index arbitrage is another familiar mean reversion strategy. In this 
case, we are counting on the cointegration of stocks versus futures or 
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stocks versus ETFs. Because little profit is left using the traditional 
implementation of index arbitrage, we give an example of a modified 
strategy.

As mentioned before, in addition to the familiar time series mean 
reversion to which we have devoted all our attention so far, there is the 
phenomenon of cross-sectional mean reversion, which is prevalent in 
baskets of stocks. Recall that in time series mean reversion, the prices 
are reverting to a mean determined by their own historical prices, while 
cross-sectional mean reversion means that the cumulative returns of the 
instruments in a basket will revert to the cumulative return of the bas-
ket. The statistical tests for time series mean reversion are largely irrel-
evant for cross-sectional mean reversion. This additional type of mean 
reversion makes creating any sort of mean-reverting strategy for stocks 
even easier.

 Because of this ease of fi nding mean-reverting patterns, the stock market 
attracts a large number of traders, often called statistical arbitrageurs, to ex-
ploit such patterns. As a result, the returns in such strategies have generally 
decreased. We discuss a few simple tricks that can boost their otherwise 
declining performances.

Once again, we emphasize that the backtesting results in this book 
do not include transaction costs. One reason for this omission is that 
transaction costs can depend quite sensitively on the exact execution 
method used and the exact stock universe chosen for the stock models. 
A more specific pitfall included in the backtesting of the stock models 
is the use of data with survivorship bias, since survivorship bias-free 
data is more cumbersome and expensive to assemble. The hope is that 
the results are not too unrealistic, at least for results in the past year 
or two. If you intend to redo the backtests with survivorship bias–free 
databases, you should remember that the chosen stock index (typically 
Standard & Poor’s [S&P] 500) has a changing composition throughout 
its history, too. To do this properly, you would need a database contain-
ing the historical daily index compositions. Remember also the issue of 
primary versus consolidated stock prices discussed in Chapter 1. The 
historical prices used here are all consolidated opens and closes. But if 
you implement some of these strategies using market-on-open (MOO) 
or limit-on-open (LOO) orders, or similarly market-on-close (MOC) 
or limit-on-close (LOC) orders, you will be filled at the primary ex-
change open or close. Usually, this means that the actual returns will be 
lower than those reported here.



89

M
E

A
N

 R
E

V
E

R
SIO

N
 O

F ST
O

C
K

S A
N

D
 E

T
FS

 ■ The Diffi culties of Trading Stock Pairs

Pair trading of stocks is the fi rst type of algorithmic mean reversion strategy 
institutional traders invented, reportedly by Gerry Bamberger at Morgan 
Stanley (Patterson, 2010). Yet nowadays it can be surprisingly diffi  cult to 
squeeze profi ts out of it.

If we test the daily price series of individual stocks, they almost never 
meet the defi nition of stationarity as defi ned in Chapter 2. The geometric 
random walk describes their behaviors fairly well: once they walked away, 
they seldom returned to their starting points. (Their intraday and seasonal 
mean-reverting properties are special cases to be discussed later on.)

Even if you pair them up in some sensible way (e.g., Exxon versus Chev-
ron, or Citibank versus Bank of America), they are seldom cointegrating out-of-

sample. I emphasize out-of-sample because it is quite easy to fi nd cointegrating 
stock pairs in any chosen period of time, but they can just as easily lose cointe-
gration in the subsequent out-of-sample period. The reason for this diffi  culty 
is that the fortunes of one company can change very quickly depending on 
management decisions and the competition. The fact that two companies are in 
the same industry sector does not guarantee that they will be subjected to the 
same fortune (think AAPL versus BBRY). The upshot is that it is diffi  cult to be 
consistently profi table in trading a single pair of stocks using a mean-reverting 
strategy unless you have a fundamental understanding of each of the companies 
and can exit a position in time before bad news on one of them becomes public. 

What if we trade a large number of pairs of stocks, so that occasional de-
railment of some pairs would not aff ect the profi tability of the entire port-
folio? The law of large numbers will only work in our favor if the expected 
return of an individual pair in the out-of-sample period is positive, but I have 
not found this to be the case for stock pairs. Apparently, the small profi ts 
gained by the “good” pairs have been completely overwhelmed by the large 
losses of the pairs that have gone “bad.”

Other than these fundamental problems with stock pairs trading, there 
are two additional technical diffi  culties. 

The fi rst diffi  culty is short-sale constraint. It is particularly dangerous for 
a stock pair that involves shorting a hard-to-borrow stock, because even if 
your position is ultimately profi table, you may be forced to liquidate it at 
the most unprofi table and inopportune time. This may happen when you are 
short this stock and it suddenly jumps up in value due to some unexpected 
good news, and many lenders of this stock are eager to sell them. In this 
case, your borrowed stock may be recalled, and you will be forced to buy 
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to cover this position at a big loss, while selling the long position on the 
other leg. This is called the short squeeze.

Under the same heading of short-sale constraint, the new alternative uptick 
rule in eff ect in the U.S. stock markets since 2010 also creates uncertainty in 
both backtesting and live executions of stock pairs strategy. Once the circuit 
breaker is triggered, we are essentially forbidden to send short market orders.

The second diffi  culty arises in the intraday trading of stock pairs. Since the 
profi t margins in stock pairs trading have been decreasing through the years, 
it becomes imperative to enter and exit positions intraday to capture the best 
prices. Also, if traders refrain from taking overnight positions in stock pairs, 
they may be able to avoid the changes in fundamental corporate valuations 
that plague longer-term positions mentioned above. However, intraday pair 
trading of stocks runs into the problem that the national best bid and off er 
(NBBO) quote sizes for stocks (and for ETFs) have become very small. This 
may be due to the prevalence of using dark pools or undisplayed “iceberg” 
orders by institutional traders, the breaking up of large orders into very small 
child orders by smart execution algorithms, the advent of high-frequency 
traders submitting small orders that they can cancel and replace frequently, 
and, fi nally, the reluctance of market makers to display large order sizes to 
avoid being taken advantage of by high-frequency traders.

For example, it is not unusual for AAPL to have an NBBO size of just 
100 shares! Therefore, backtesting a stock pair–trading strategy using either 
trade or quote prices is not very realistic unless you trade only 100 shares 
or if you include a substantial transaction cost. The same phenomenon leads 
to diffi  culties in live execution also. If we were to submit market orders for 
both sides after a trading signal was triggered by the NBBO prices, we could 
have suff ered a substantial slippage. We are forced to send limit orders for 
one side (or for both sides with small fractions of an order and suff er tem-
porary small unhedged positions) and actively manage the possible cancella-
tions and resubmissions of this order in case they are not fully fi lled.

Why was pair trading stocks so profi table in the past? One general reason 
is that the market was much more ineffi  cient back then, so the normal profi ts 
from the pairs that do mean-revert are large enough to cover those losses from 
pairs that don’t. This is, of course, a common plague for any profi table strate-
gies, but it is particularly acute for such well-known strategies as pair trading 
of stocks. One specifi c reason for the decline in profi ts of stock pairs trading is 
the decimalization of U.S. stock prices. Decimalization caused bid-ask spreads 
to dramatically narrow, so pair traders, who act as a type of market makers, 
fi nd that their market-making profi ts decrease also (Serge, 2008). 
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Of course, the fact that pair trading of stocks is not very profi table in the 
highly effi  cient U.S. markets does not mean that they are not profi table in 
other countries. But for the U.S. market, we have the alternative of profi t-
ably pair trading ETFs instead.

 ■ Trading ETF Pairs (and Triplets)

The one advantage of trading ETF pairs instead of stock pairs is that, once 
found to be cointegrating, ETF pairs are less likely to fall apart in out-
of-sample data. That is because the fundamental economics of a basket of 
stocks changes much more slowly than that of a single company. For ex-
ample, since both Australia and Canada are commodity-based economies, 
EWA and EWC (their respective stock index ETFs) are good candidates 
for cointegration tests. And, indeed, we confi rmed their cointegration in 
Chapter 3. I mentioned this pair back in 2009 on my blog (http://epchan
.blogspot.com/2009/11/in-praise-of-etfs.html?showComment=125743
4002472#c1235760260813269054), and their cointegration continues as 
of this writing (November 2012). The pair selection process for ETFs is 
quite easy: we need to fi nd ETFs that are exposed to common econom-
ic factors. Besides country ETFs, sector ETFs are another fertile ground 
for fi nding cointegrated instruments. For example, the retail fund RTH 
cointegrates with the consumer staples fund XLP. With the proliferation of 
ETFs tracking more or less the same sector, pair-trading opportunities are 
steadily increasing.

Another favorite ETF pairing of mine is between a commodity ETF and 
an ETF of companies that produce that commodity. The gold fund GLD 
versus the gold miners fund GDX is a good example. The rationale is that 
since the main asset of a gold-mining company is gold, their values should 
cointegrate with gold spot prices. And, indeed, they have done so—until 
July 14, 2008, or thereabout. If we test for cointegration of GLD versus 
GDX between May 23, 2006, and July 14, 2008, using the Johansen test, 
we fi nd that they cointegrate with 99 percent probability, but if we test over 
the period July 15, 2008, to April 9, 2012, they have lost the cointegration. 
What happened on July 14, 2008? That’s when oil (the West Texas Interme-
diate fl avor) price peaked at around $145 per barrel, an all-time high. What 
has oil price got to do with the cointegration between gold price and gold 
miners’ share prices? A lot, apparently. It turns out that when oil prices are 
expensive, it costs a lot more to mine gold, and therefore the profi ts of gold 

http://epchan.blogspot.com/2009/11/in-praise-of-etfs.html?showComment=1257434002472#c1235760260813269054
http://epchan.blogspot.com/2009/11/in-praise-of-etfs.html?showComment=1257434002472#c1235760260813269054
http://epchan.blogspot.com/2009/11/in-praise-of-etfs.html?showComment=1257434002472#c1235760260813269054
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miners are reduced, leading to the underperformance of their share prices 
relative to gold spot prices (“The Wacky World of Gold,” 2011).

To gather empirical support for this explanation, we can introduce the 
oil fund USO into the portfolio and see if this triplet cointegrates over the 
entire period from 2006 to 2012. The Johansen test shows that they do, 
with a 99 percent probability that there exists one cointegrating relation-
ship. Hence, instead of just trading GLD and GDX, we can trade this port-
folio of triplets instead. Even if you fi nd trading a triplet too cumbersome, 
you should at least have a rule in place to cease trading GLD versus GDX 
whenever oil price exceeds a certain threshold.

This example has particular signifi cance. When scientists fi rst come upon 
an unexplained phenomenon, they form a hunch about its cause, and then 
they fi nd ways to test this hunch empirically. We should adopt the same 
scientifi c process in approaching trading. When a trading strategy stops 
working, we should form a hypothesis of the reason, and then test empiri-
cally whether that hypothesis is supported by data. The outcome of this pro-
cess is often a modifi ed strategy that regains profi tability.

One might think that the oil fund USO versus the energy sector fund 
XLE is another example of a commodity versus commodity producer pair, 
but there is a problem with this pairing. While GLD owns gold, and thus 
refl ects the gold spot price, USO doesn’t actually own oil. It invests in oil 
futures contracts. As we will discuss in Chapter 5, futures price of a com-
modity diff ers from its spot price. Even if XLE cointegrates with the spot 
price of oil, it may not necessarily cointegrate with USO. Of course, this 
problem plagues any commodity futures fund versus commodity producer 
fund. Mean reversion trading of such pairs would be much less risky if the 
commodity fund holds the actual commodity rather than the futures.

The mechanics of trading ETF pairs is the same as trading stock pairs. The 
old uptick rule exempted ETFs, but the new alternative uptick rule covers 
all securities traded on U.S. stock exchanges. However, the NBBO sizes for 
ETFs are certainly much larger than that for stocks. For example, on a typi-
cal day, the NBBO sizes for EWC can be around 5,000 shares.

 ■ Intraday Mean Reversion: Buy-on-Gap Model

Stock prices follow geometric random walks, as many fi nancial scholars 
have tirelessly reminded us (Malkiel, 2008). But this is true only if we test 
their price series for mean reversion strictly at regular intervals (such as 
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using their daily closes). Our job as traders is to fi nd special conditions, or 
special periods, such that mean reversion occurs with regularity, while at 
the same time avoiding data-snooping bias. As the following strategy will 
show, there may indeed be seasonal mean reversion occurring at the intraday 
time frame even for stocks.

The rules for the strategy are:

 1. Select all stocks near the market open whose returns from their 
previous day’s lows to today’s opens are lower than one standard 
deviation. The standard deviation is computed using the daily close-
to-close returns of the last 90 days. These are the stocks that “gapped 
down.” 

 2. Narrow down this list of stocks by requiring their open prices to be 
higher than the 20-day moving average of the closing prices. 

 3. Buy the 10 stocks within this list that have the lowest returns from their 
previous day’s lows. If the list has fewer than 10 stocks, then buy the 
entire list.

 4. Liquidate all positions at the market close.

The rationale for this strategy is that on days when the stock index futures 
are down before the open, certain stocks suff er disproportionately due to 
panic selling at the open. But once this panic selling is over, the stock will 
gradually appreciate over the course of the day.

Rule 2 is often very useful in mean-reverting strategies: it is basically a 
momentum fi lter superimposed on a mean-reverting strategy, a technique 
that we will reprise often. Usually, those stocks that dropped “just a little” 
have a better chance of reversal than those that dropped “a lot” because the 
latter are often the ones that have negative news such as poor earnings an-
nouncements. Drops caused by negative news are less likely to revert. We 
can actually develop momentum strategies based on such breaking news 
(more on this in Chapter 7). Furthermore, the fact that a stock is higher 
than a long-term moving average attracts selling pressure from larger play-
ers such as long-only funds, whose trading horizons tend to be longer. This 
demand for liquidity at the open may exaggerate the downward pressure 
on the price, but price moves due to liquidity demands are more likely to 
revert when such demands vanish than price moves due to a shift in the 
fundamental economics of the stock. Therefore, this strategy can succeed 
in a news-heavy environment where traditional interday stock pairs trading 
will likely fail.

The MATLAB code to backtest this strategy is displayed in Example 4.1.
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This strategy has an annual percentage rate (APR) of 8.7 percent and a 
Sharpe ratio of 1.5 from May 11, 2006, to April 24, 2012. The cumulative 
returns curve is depicted in Figure 4.1.

I have traded a version of it quite profi tably in my personal ac-
count as well as in a fund that I comanaged. Unfortunately, that version 

Example 4.1: Buy-on-Gap Model on SPX Stocks

This code, which backtests the Buy-on-Gap model, can be 
downloaded as bog.m. It requires as input three T × N arrays, op, lo, 
and cl, where T is the number of days, N is the number of stocks in 
the universe, and op contains the daily open prices, lo contains the 
daily lows, and cl the daily closes. The stock universe we used to 
backtest is the S&P 500, but one that has survivorship bias.

topN=10; % Max number of positions

entryZscore=1;

lookback=20; % for MA
 
stdretC2C90d=backshift(1, smartMovingStd(calculateReturns ...
 (cl, 1), 90));

buyPrice=backshift(1, lo).*(1-entryZscore*stdretC2C90d);
 
retGap=op-backshift(1, lo))./backshift(1, lo);
 
pnl=zeros(length(tday), 1);
 
positionTable=zeros(size(cl));
 
ma=backshift(1, smartMovingAvg(cl, lookback));
 
for t=2:size(cl, 1)

hasData=find(isfinite(retGap(t, :)) & op(t, :) ...
 < buyPrice(t, :) & op(t, :) > ma(t, :));

[foo idxSort]=sort(retGap(t, hasData), ‘ascend’);

positionTable(t, hasData(idxSort(1:min(topN, ...
 length(idxSort)))))=1;

end
 
retO2C=(cl-op)./op;

pnl=smartsum(positionTable.*(retO2C), 2);

ret=pnl/topN; 

ret(isnan(ret))=0;
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does not include rule 2, and it suff ered from diminishing returns from 
2009 onward. The long-only nature of the strategy also presents some 
risk management challenges. Finally, the number of stocks traded each day 
is quite small, which means that the strategy does not have a large capacity. 

The astute reader may wonder how we can use open prices to determine 
the trading signals for entry at the open and be fi lled at the offi  cial open 
prices. The short answer is, of course: We can’t! We can, however, use the 
preopen prices (for example, at ARCA) to determine the trading signals. 
The signals thus determined will not exactly match the ones determined 
by the actual open prices, but the hope is that the diff erence will not be so 
large as to wipe out the returns. We can call this diff erence signal noise. Also, 
note the pitfall of backtesting this strategy using consolidated prices versus 
primary exchange prices, as explained in Chapter 1.

What about the mirror image of this strategy? Can we short stocks 
that gap up a standard deviation but are still lower than their 20-day mov-
ing average? Yes, we can. The APR is 46 percent and the Sharpe ratio is 
1.27 over the same period. Despite the seemingly higher return than the 
long-only strategy, the short-only one does have steeper drawdown (see 
Figure 4.2), and it suff ered from the same short-sale constraint pitfall 
discussed before.

This strategy is actually quite well known among traders, and there are 
many variations on the same theme. For example, you can obviously trade 
both the long-only and short-only versions simultaneously. Or you can trade 
a hedged version that is long stocks but short stock index futures. You can 

FIGURE 4.1 Cumulative Returns of Buy-on-Gap Model
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buy a larger number of stocks, but restricting the number of stocks within 
the same sector. You can extend the buying period beyond the market open. 
You can impose intraday profi t caps. But the important message is: Price 
series that do not exhibit mean reversion when sampled with daily bars can 
exhibit strong mean reversion during specifi c periods. This is seasonality at 
work at a short time scale.

 ■ Arbitrage between an ETF and Its 
Component Stocks

Many readers would be familiar with the strategy of “index arbitrage,” 
which trades on the difference in value between a portfolio of stocks 
constituting an index and the futures on that index. If the stocks are 
weighted in the same way used to construct the index, then the market 
value of the portfolio will cointegrate very tightly with the index fu-
tures. Maybe too tightly—unfortunately, this is such a well-known strat-
egy that the difference in market values has become extremely small 
(Reverre, 2001). All but the most sophisticated traders can profit from 
this strategy, and it most certainly needs to be traded intraday, perhaps 
at high frequency (see Box 4.1). In order to increase this difference, we 
can select only a subset of the stocks in the index to form the portfolio. 
The same concept can be applied to the arbitrage between a portfolio 

FIGURE 4.2 Cumulative Returns of Short-on-Gap Model
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of stocks constituting an ETF and the ETF itself. In this case, we choose 
just a proper subset of the constituent stocks to form the portfolio. One 
selection method is to just pick all the stocks that cointegrate individu-
ally with the ETF. We will demonstrate the method by using the most 
famous ETF of all: SPY.

We will pick one year of data (in our example, January 1, 2007, to De-
cember 31, 2007) as a training set and look for all the stocks that cointe-
grate with SPY with at least 90 percent probability using the Johansen test. 
Then we form a portfolio of these stocks with equal capital on each stock, 
and confi rm using the Johansen test again that this long-only portfolio still 
cointegrates with SPY. This step is necessary because an arbitrary assign-
ment of equal capital weight to each stock does not necessarily produce a 
portfolio price series that cointegrates with that of SPY, even if each of the 
constituent stocks is cointegrating with SPY. We are using log price in this 
second test because we expect to rebalance this portfolio every day so that 
the capital on each stock is constant. (See the discussions in Chapter 3.) 
After confi rming cointegration, we can then backtest the linear mean re-
version strategy described in Chapter 2. The MATLAB source codes are 
displayed in Example 4.2.

B
O

X
 4

.1 High-Frequency Index Arbitrage

High-frequency traders have been able to exploit two defi ciencies in the 

intraday computations of the indices and arbitrage between the futures 

tracking these indices versus the component stocks. The fi rst defi ciency is 

that many major indices including Dow Jones, S&P, Nasdaq, and Russell 

are computed using only the primary exchange trades data (see Chapter 1 

on primary versus consolidated stock prices), which represent less than 

30 percent of all shares traded on those stocks (Arnuk and Saluzzi, 2012). The 

second defi ciency is that the index is updated only once every few seconds. 

Both defi ciencies lead to a discrepancy between the true, most up-to-date 

market value of a basket of component stocks and the index value itself. As a 

result, the index future value can be expected to lag the instantaneous market 

value of the stocks. If the index future value is higher than the instantaneous 

market value, we can simply short the future and vice versa. Where can we 

get this true, instantaneous market value of the stocks? We would, of course, 

need to subscribe to the direct data feed of every U.S. stock exchange and 

ECN (and not the SIAC feed) and monitor the trade prices for all the stocks 

in the index with millisecond latency in all these venues. Nobody said high-

frequency trading is easy! 
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Example 4.2: Arbitrage between SPY and Its 
Component Stocks

This code can be downloaded as indexArb.m. It requires as input a TxN 
array cl, where T is the number of days, N is the number of stocks in 
the universe, and cl the daily closes. The stock universe we used to 
backtest is the same as that used in Example 4.1, and the symbols it 
contains are in a cell array stocks. All these arrays are packaged in a 
structure stks. In addition, we need a Tx1 array cl for the daily closes 
of SPY. These are packaged in a structure etf. Of course, we must 
ensure that dates for stks and etf match. The common trading dates are 
contained in a Tx1 array tday. We will run the Johansen test on only 
the fi rst part of this data: January 1, 2007, to December 31, 2007. 
This is designated as the training set. 

trainDataIdx=find(tday>=20070101 & tday<=20071231);

testDataIdx=find(tday > 20071231);

isCoint=false(size(stks.stocks));

for s=1:length(stks.stocks)

% Combine the two time series into a matrix y2 for 
 % input into Johansen test

y2=[stks.cl(trainDataIdx, s), etf.cl(trainDataIdx)];

badData=any(isnan(y2), 2);

y2(badData, :)=[]; % remove any missing data

if (size(y2, 1) > 250)

results=johansen(y2, 0, 1); % johansen test 
  % with non-zero offset but zero drift, and with 
% the lag k=1.

if (results.lr1(1) > results.cvt(1, 1))

isCoint(s)=true;

end

end

end

length(find(isCoint))

Based on the Johansen test between each stock in SPX with SPY 
over the training set, we fi nd that there are 98 stocks that cointegrate 
(each separately) with SPY. Now we can form a long-only portfolio 
with all stocks that cointegrate with SPY, with equal capital allocation. 
We must then test the cointegration of this portfolio with SPY.
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(Continued )

Example 4.2 (Continued)

yN=stks.cl(trainDataIdx, isCoint);

logMktVal_long=sum(log(yN), 2); % The net market value of 
 the long-only portfolio is same as the “spread”

% Confirm that the portfolio cointegrates with SPY

ytest=[logMktVal_long, log(etf.cl(trainDataIdx))]; 

results=johansen(ytest, 0, 1); % johansen test with non-zero 
 offset but zero drift, and with the lag k=1.

prt(results);

 
% Output:

% Johansen MLE estimates 

% NULL: Trace Statistic Crit 90% Crit 95% Crit 99%

% r <= 0 variable 1 15.869 13.429 15.494 19.935 

% r <= 1 variable 2 6.197 2.705 3.841 6.635

% 

% NULL: Eigen Statistic Crit 90% Crit 95% Crit 99% 

% r <= 0 variable 1 9.671 12.297 14.264 18.520 

% r <= 1 variable 2 6.197 2.705 3.841 6.635 

 
results.evec

% 

% ans =

% 

% 1.0939 -0.2799

% -105.5600 56.0933

 

The Johansen test indicates that the long-only portfolio does 
cointegrate with SPY with better than 95 percent probability. So 
we can form a long-short stationary portfolio comprising both the 
stocks and SPY, using the Johansen eigenvector to determine the 
weights of SPY versus that of the stock portfolio. (There are, in 
fact, two cointegrating relations, but we will pick the one with the 
largest eigenvalue—the fi rst column of the eigenmatrix—to form 
this stationary portfolio.) As the Johansen test was performed on 
the log prices, the hedge ratios (represented by the weights array) on 
the stocks or SPY represent dollar capital allocation, not number of 
shares, as explained in Chapter 3. (The weight on each individual 
stock is, of course, the same, due to our assumption of equal capital 
allocation, but it diff ers from the weight on SPY.)
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Example 4.2 (Continued)

We then apply the linear mean reversion strategy on this portfolio 
over the test period January 2, 2008, to April 9, 2012, much in the 
same way as Example 2.8, except that in the current program we 
have fi xed the look-back used for calculating the moving average and 
standard deviations of the portfolio market value to be 5, with the 
benefi t of hindsight.

% Apply linear mean-reversion model on test set

yNplus=[stks.cl(testDataIdx, isCoint), etf.cl(testDataIdx)];  ...
 % Array of stock and ETF prices

weights=[repmat(results.evec(1, 1), size(stks.cl(testDataIdx, 
 isCoint))), ...

repmat(results.evec(2,   1),   size(etf.cl(testDataIdx)))];  ...
 % capital allocation among the stocks and SPY.

logMktVal=smartsum(weights.*log(yNplus), 2); % Log market 
 % value of long-short portfolio

 

lookback=5;

numUnits=-(logMktVal-movingAvg(logMktVal, lookback)) ...
  ./movingStd(logMktVal, lookback); 
positions=repmat(numUnits, [1 size(weights, 2)]).*weights; 
% positions is the dollar capital in each stock or SPY.

pnl=smartsum(lag(positions, 1).*(log(yNplus)- ...
  lag(log(yNplus), 1)), 2); 
ret=pnl./smartsum(abs(lag(positions, 1)), 2); 
ret(isnan(ret))=0;

The APR of this strategy is 4.5 percent, and the Sharpe ratio is 
1.3. As you can see from the cumulative returns chart (Figure 4.3), 
the performance decreases as time goes on, partly because we have 
not retrained the model periodically to select new constituent stocks 
with new hedge ratios. In a more complete backtest, we can add this 
dynamic updating of the hedge ratios. 

The same methodology can, of course, be applied to any ETFs, 
indices, or subindices you like. Furthermore, we can use a future instead 
of an ETF if such a future exists that tracks that index or subindex, 
although in this case one has to be careful that the prices of the future 
used in backtest are contemporaneous with the closing prices for the 
stocks. (This was pointed out as a potential pitfall in Chapter 1.) 
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Example 4.2 (Continued)

FIGURE 4.3 Cumulative Returns of Arbitrage 
between SPY and Its Component Stocks

You may wonder why we didn’t just directly run a Johansen cointegration 
test on all 500 stocks in SPX plus SPY, and let the algorithm automatically 
fi nd an eigenvector of cointegrating instruments that include the SPY. (Not 
all cointegrating relations from the stocks+SPY universe necessarily include 
SPY, but we need only pick one that does.) The problem with this approach 
is twofold: 

 1. The Johansen test implementation that I know of can accept a maximum 
of 12 symbols only (LeSage, 1998).

 2. The eigenvectors will usually involve both long and short stock posi-
tions. This means that we can’t have a long-only portfolio of stocks that 
is hedged with a short SPY position or vice versa. This is a problem 
because if we have short positions in the stock portfolio and a short SPY 
position simultaneously, we would be double short on some stocks even 
when we are long the stock portfolio, increasing our specifi c risks. 

There is an alternative method of constructing a long-only portfolio of 
stocks. We can still use Johansen test to individually test each stock in SPX for 
cointegration with SPY. After this subset of stocks is found, we include them 
in a stock portfolio and then use a constrained optimization method (e.g., 
genetic algorithm or simulated annealing) to minimize the average absolute 
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diff erence between this stock portfolio price series and the SPY price series. 
The variables that we want to optimize in this case are the hedge ratios of 
the stocks, and the constraints are that all hedge ratios must be positive. The 
MATLAB Global Optimization Toolbox provides functions for either genetic 
algorithm or simulated annealing for this constrained optimization task.

This strategy suff ers from the same short-sale constraint that plagued any 
strategies involving short stock positions. However, the problem is not too 
serious here because the stock portfolio is quite diversifi ed with about 98 
stocks. If a few stocks have to be removed due to the short-sale constraint, 
the impact should be limited.

 ■ Cross-Sectional Mean Reversion: A Linear 
Long-Short Model

In mean reversion trading based on cointegration, we form a portfolio with 
a fi xed set of instruments and with either a fi xed number of shares or a fi xed 
dollar capital for each instrument. This fi xed number may be determined by 
fi at (as in Example 4.2), linear regression, the Johansen test, or constrained 
optimization. But there is no reason why the portfolio has to consist of the 
same fi xed set of instruments or the same weightings over this set of in-
struments every day. For many portfolio stock-trading strategies, the edge 
comes precisely from the intelligent daily selection or reweighting of stocks. 

In this type of so-called “cross-sectional” mean reversion strategy, the in-
dividual stock (and this type of strategy most commonly involves stocks, not 
futures or currencies) price does not necessarily revert to its own historical 
mean. Rather, the focus is on their short-term relative returns, and we rely 
on the serial anti-correlation of these relative returns to generate profi ts. In 
most cases, the relative returns are computed as a stock’s return minus the 
average returns of all the stocks in a particular universe. So we expect the 
underperformance of a stock to be followed by overperformance, and vice 
versa. Since we are measuring only relative return, it is quite possible that 
we will short a stock even though its previous (absolute) return is negative, 
as long as it is not as negative as the average return across all stocks in the 
universe.

One interesting feature of cross-sectional strategies is that, in contrast to 
“time series” strategies, we should not expect profi ts from every individual 
stock, as some of them may serve as “hedges” on some days. Rather, profi ts 
can be obtained only in the aggregate across all the stocks.
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I described in my previous book just such a strategy proposed by Khan-
dani and Lo (Example 3.7 of Chan, 2009; original paper is Khandani and Lo, 
2007). With this strategy, we invest in every stock from some favorite index 
such as S&P 500, S&P 1500, or Russell 2000, but with diff erent capital al-
location per stock. Near the market close of each day, we will determine the 
long or short capital wi allocated to the ith stock as

 wi = −(ri − 〈rj〉)/ ∑k
 |rk − 〈rj〉| (4.1)

where ri is the daily return of the ith stock, and 〈rj〉 is the average daily return 
of all the stocks in the index. In other words, if a stock has a very positive 
return relative to its peers, we will short lots of it, and if it has a very nega-
tive return relative to its peers, we will buy lots of it. Note that we always 
invest the same total gross capital of $1 to the portfolio every day because of 
the normalization factor in the denominator. The MATLAB code fragment 
for this is displayed in Example 4.3.

Example 4.3: Linear Long-Short Model on Stocks

The implementation of Equation 4.1 in MATLAB is very compact. 
We assume an input T × N array cl of daily closing prices, 
where as usual T is the number of trading days and N is the 
number of stocks in the SPX. This code can be downloaded as 
andrewlo_2007_2012.m.

ret=(cl-lag(cl, 1))./lag(cl, 1); % daily returns

marketRet=smartmean(ret, 2); % equal weighted market index 
 % return

weights=-(ret-repmat(marketRet, [1 size(ret, 2)]));

weights=weights./repmat(smartsum(abs(weights), 2), ...
 [1 size(weights, 2)]);

dailyret=smartsum(backshift(1, weights).*ret, 2); % Capital 
 % is always one

It has an APR of 13.7 percent and Sharpe ratio of 1.3 from January 
2, 2007, to December 30, 2011, even if we backtest on the SPX. 
(Usually, backtesting on a smaller cap universe will generate even 
higher returns.) The cumulative returns are plotted in Figure 4.4.

(Continued )
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Example 4.3 (Continued)

FIGURE 4.4 Cumulative Returns of Linear Long-Short Model

The notable feature of this strategy is that it is completely linear, 
has no parameters, and is almost perfectly dollar neutral. What 
strategy can be simpler than this? And remarkably, it achieved an APR 
of 30 percent in 2008, the year of Lehman Brothers’ bankruptcy, and 
an APR of 11 percent in 2011, a year fi lled with high anxiety about 
the U.S. federal debt rating downgrade and the Greek default. (Its 
performance since the beginning of 2008 is a true out-of-sample test, 
as the strategy was published in 2007.)

In my previous book, I also suggested that we may enhance the returns 
of this strategy by using the return from the previous close to today’s open 
to determine the weights for entry at the open. All the positions will be 
liquidated at the market close, thus turning it into an intraday strategy. The 
modifi ed MATLAB code fragment is displayed in Example 4.4.

There are possibly other variables (also called “factors”) that are better at 
predicting cross-sectional mean reversion of stock prices than the relative 
returns that we have used in Examples 4.3 and 4.4. One popular variable 
that traders use to rank stocks is the price-earnings (P/E) ratio, where the 
earnings may be that of the last quarter, or they may be projected earnings 
estimated by the analysts or the companies themselves. The reasoning is that 
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Example 4.4: Intraday Linear Long-Short 
Model on Stocks

In addition to the inputs required in Example 4.3, we need also the 
T × N array op, which contains the daily open prices of the stocks.

ret=(op-backshift(1, cl))./backshift(1, cl); % daily returns

marketRet=smartmean(ret, 2); % equal weighted market index 
 % return

weights=-(ret-repmat(marketRet, [1 size(ret, 2)])); 
weights=weights./repmat(smartsum(abs(weights), 2), ...
 [1 size(weights, 2)]);
dailyret=smartsum(weights.*(cl-op)./op, 2) ...
 ./smartsum(abs(weights), 2);

The APR and Sharpe ratio over the same period are 73 percent 
and 4.7, respectively. Despite such seemly stellar performance, the 
open-to-close version suff ers from a few drawbacks that the close-to-
close version does not have. 

First, the transaction costs (not included in our backtests) will 
be doubled, because we are trading twice a day instead of just once 
a day. Second, since this strategy also has to use “open” prices to 
determine the trading signals for entry at the open, it is subject to the 
same trading signal noise that I mentioned in the Buy-on-Gap Model 
in Example 4.1.

Actually, even for the close-to-close strategy, we also can’t use 
the exact closing price to determine the weights and then enter at 
exactly those prices. But in that case, the prices just a few seconds 
before the close are typically much closer to the actual offi  cial 
(primary exchange) closing prices because these preclose prices are 
printed when the primary market is open and has high liquidity.

stock prices will drift toward a new equilibrium value if there are earning 
announcements or estimates changes. So a stock that experiences a posi-
tive change in earnings estimates will likely enjoy a positive return, and we 
should not expect the price to mean-revert if this return is in line with the 
percent change in its earnings estimates. We can therefore avoid shorting 
such a stock if we use P/E ratio to rank the stocks.



106

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

• Are you tempted to trade pairs of stocks because of the enormous number 

of choices? Beware of changes in companies’ fundamentals that can 

render out-of-sample performance quite poor despite stellar backtest 

results.

• Trading a portfolio of cointegrating ETFs can be better than pair-trading 

stocks.

• Are you pair trading ETFs that hold futures? Beware of the role of roll returns 

in determining total returns of futures.

• Seasonal or intraday mean reversion is hard to detect with usual stationarity 

or cointegration tests, but can be very profi table.

• Imposing momentum fi lter on mean-reversal strategies typically improves 

their consistency.

• Do you think that index arbitrage between stocks and futures is no longer 

profi table? Try selecting only a subset of the stocks in the index.

• Cross-sectional mean reversion strategies can be implemented very easily 

with a linear long-short strategy.

• The variable used for ranking stocks in a cross-sectional mean reversion 

strategy is typically relative return, but it can be other fundamental factors 

such as P/E ratio.

KEY POINTS
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Mean Reversion 
of Currencies 
and Futures

C H A P T E R  5

Conventional wisdom tells us that currencies and futures are the domain 
of momentum traders, and conventional wisdom is right about this. 

Indeed, most CTAs (Commodities Trading Advisors) are momentum based. 
It is also true that most currency or future pairs would not cointegrate, and 
most portfolios of currencies or futures do not exhibit cross-sectional mean 
reversion. So opportunities for mean reversion strategies in currencies and 
futures are limited, but not nonexistent. This chapter will guide the reader 
toward those situations where mean reversion is the exception rather than 
the rule, such as the trading of futures calendar spreads. In particular, we 
will discuss a trading strategy for one unique futures intermarket spread: the 
volatility future versus the stock index future.

In the course of exploring mean reversion in futures, we will also discuss 
a simple mathematical model of futures prices that will illuminate concepts 
such as spot versus roll returns and backwardation versus contango. Un-
derstanding this model will also help suggest new futures trading strategies 
without resorting to ad hoc technical indicators.

Trading currencies has certain nuances that are foreign to stock trad-
ers. Care must be taken when testing for cointegration of currencies or 
when computing the returns of a portfolio of currencies by making sure 
that a point move in one currency pair has the same dollar value as a 
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point move in another currency pair; otherwise, the results will not make 
sense. Furthermore, rollover interests might sometimes play an impor-
tant role in determining total returns. These nuances will be covered in 
this chapter.

 ■ Trading Currency Cross-Rates

The basic idea in forming a stationary portfolio of foreign currencies is very 
similar to the trading of stock index ETF pairs from diff erent countries: 
we need to fi nd countries that have similar economic fundamentals. Since 
we found, for example, that EWA (Australian stock index ETF) and EWC 
(Canadian stock index ETF) cointegrate, we might expect to fi nd AUD 
(Australian dollar) to cointegrate with CAD (Canadian dollar) as well. In 
addition, because both Australia and South Africa have major mining rev-
enues, we might expect AUD to cointegrate with ZAR (South African rand). 
In fact, traders have called these and other currencies such as the Norwegian 
krone commodity currencies.

Trading currency pairs has a number of advantages compared to trad-
ing their corresponding stock index ETF pairs. Usually, liquidity in curren-
cies is higher (especially for best bid/ask sizes), thus lowering transaction 
costs. The leverage that can be employed for currencies is also much higher, 
though this can be a double-edged sword of course. There are no short-sale 
constraints for currencies. Finally, currency trading can be done around the 
clock, at least fi ve days a week from 5:00 p.m. ET on Sunday to 5:00 p.m. 
ET on Friday. (ET can be either EDT or EST; i.e., it is either GMT-4 or 
GMT-5.) This means that we have a lot more trading opportunities in cur-
rencies, and we can also employ stop losses in a meaningful way. (If a market 
is closed for a long period, stop losses are useless as the market can gap up 
or down when it reopens.)

Despite the conceptual similarity with trading ETF pairs, the mechanics 
of currency trading is quite diff erent. Let’s start with some basic terminol-
ogy. If we are trading the cross-rate AUD.ZAR, then AUD is called the base 
currency, and ZAR is the quote currency. (My personal mnemonic for this: 
B is ahead of Q alphabetically, so the order is B.Q.) If AUD.ZAR is quoted 
at 9.58, it takes 9.58 South African rand to buy 1 Australian dollar. Buying 
100,000 AUD.ZAR means buying 100,000 Australian dollars, while sell-
ing the equivalent amount (100,000 × 9.58 = 958,000 at the preceding 
quote) of South African rand. However, few brokers actually off er AUD.
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ZAR as a cross-rate. So usually we have to buy X units of B.ZAR and sell X 
units of B.AUD to eff ectively buy X Australian dollar worth of AUD.ZAR, 
where B is some other base currency. We usually choose a very liquid base 
currency such as USD or EUR for this operation. We can denote such a 
synthetic pair as USD.ZAR/USD.AUD, since the quote of AUD.ZAR will 
be exactly equal to this ratio of quotes. When we actually trade this syn-
thetic pair live, the realized profi t and loss (P&L) will be denominated in 
both ZAR and AUD. In general, when we compute the returns of a strat-
egy trading B.Q, we are assuming that the profi ts are denominated in our 
local currency (USD for U.S. investors), which may be neither B nor Q. So 
in order for our actual realized P&L to conform to our backtest P&L, we 
need to regularly convert B and Q into our local currency. For example, if 
our local currency is USD, and we have realized profi ts of X units of AUD 
and Y units of ZAR after a round trip trade, we need to buy X units of 
ZAR.USD and Y units of ZAR.AUD. If we don’t do this regularly, a large 
accumulated P&L in AUD and ZAR may cause signifi cant deviation from 
our backtest results.

Even when a cross-rate such as AUD.CAD is ready-made for trading, we 
may sometimes fi nd it advantageous to weigh the two currencies diff erently 
by trading AUD.USD versus USD.CAD separately. The code in Example 5.1 
illustrates such a strategy. In this strategy we use the Johansen test to fi nd out 
the best hedge ratio of capital, or capital weights, between AUD.USD versus 
CAD.USD. Why not use the conventional quote USD.CAD instead of CAD.
USD? That’s because in order to interpret the eigenvector from the Johan-
sen test as capital weights, the two price series must have the same quote 
currency. Otherwise, the point moves of the two presumptive cointegrating 
instruments would not have the same value, rendering the Johansen test 
meaningless. Using CAD.USD in our backtest program doesn’t make live 
trading any more diffi  cult: Whenever the program sends an order to “Buy 1 
unit of CAD.USD,” we should just “Sell 1/y of USD.CAD,” provided y is the 
current quote for USD.CAD.

In Example 5.1, we focus on trading two currencies that can ultimate-
ly be reduced to a pair with a common quote currency USD: B1.USD −
B2.USD. So the returns of a portfolio with n1 units of B1.USD and n2 units 
of B2.USD is 

 =
+

+
r

n y r y t t
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as displayed in the last line of the MATLAB code in the example. Here ri is 
the return of Bi.USD:

ri(t + 1) = (  yi,U (t + 1) − yi,U (t))/yi,U (t) (5.2)

where yi,U(t) and yi,U(t + 1) are the quotes for Bi.USD at t and t + 1 respec-
tively. This is because one unit of Bi.USD is worth yi,U in U.S. dollars.

However, if a portfolio has n1́ units of USD.Q1 and n2́ units of USD.Q2
instead, then the return can be written more simply as

) ) )(
( )

+ =) ′ ′
′ + ′

r t(
n r )

+
1

))))
| |′n | |′n

1 1rr 2 2

1 2+| |n
 (5.3)

where

ri(t + 1) = (  yU,i (t + 1) − yU,i (t))/yU,i (t)  (5.4)

and yU, i(t) and yU, i(t + 1) are the quotes for USD.Q  i at t and t + 1, respec-
tively. This is because one unit of USD.Q  i is worth exactly one U.S. dollar.

Let me immediately say that Equations 5.2 and 5.4 are not strictly cor-
rect, as we have ignored the rollover interests, which we will discuss in the 
next section. But the impact of rollover interests is usually not large for 
short-term strategies like the one I describe in Example 5.1, so we have 
omitted them here for simplicity.

Example 5.1: Pair Trading USD.AUD versus 
USD.CAD Using the Johansen Eigenvector

This is a classic linear mean-reverting strategy similar to the one in 
Example 3.1 (PriceSpread.m). Previously, we used a look-back of 20 
days to compute the hedge ratio, while here we use a fi xed training 
set of 250 days (which gives better results in hindsight), though 
we are still using a look-back of 20 days for computing the moving 
average and standard deviation. However, our current strategy 
is very diff erent from a typical forex strategy such as the one in 
Example 2.5. Here, the hedge ratio between the two currencies is 
not one, so we cannot trade it as one cross-rate AUD.CAD. Instead 
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(Continued )

Example 5.1 (Continued)

of running the Johansen test on USD.AUD versus USD.CAD, we 
actually should run it on AUD.USD and CAD.USD, so that the dollar 
value of a point move in each instrument is the same. Intuitively, this 
also makes sense, since in a mean-reverting strategy we want to buy 
CAD if CAD.USD is much lower than AUD.USD.

We assume the input to be two T × 1 arrays usdcad and usdaud, 
both daily price series. The T × 1 array yport is the market value of a 
unit portfolio of AUD.USD and CAD.USD expressed in USD, while 
numUnits is the number of units of this unit portfolio our strategy asks 
us to own. The T × 2 array positions denote the market values in USD 
of AUD.USD and CAD.USD that we should own. Naturally, the P&L 
(in USD again) is just the sum of the market value of each instrument 
times their returns, and the daily return of the portfolio is the P&L 
divided by the total gross market value of the portfolio at the end of 
the previous day.

The code can be downloaded as AUDCAD_unequal.m.
cad=1./usdcad.cl;

aud=audusd.cl;
 
y=[ aud cad ];

trainlen=250;

lookback=20;

hedgeRatio=NaN(size(y));

numUnits=NaN(size(y, 1), 1); 

for t=trainlen+1:size(y, 1)

res=johansen(log(y(t-trainlen:t-1, :)), 0, 1);

hedgeRatio(t, :)=res.evec(:, 1)’;

yport=sum(y(t-lookback+1:t, :).* ...
 repmat(hedgeRatio(t, :), [lookback 1]), 2); 

ma=mean(yport);

mstd=std(yport);

zScore=(yport(end)-ma)/mstd;

numUnits(t)=-(yport(end)-ma)/mstd; 

end

positions=repmat(numUnits, [1 size(y, 2)]).*hedgeRatio.*y;

pnl=sum(lag(positions, 1).*(y-lag(y, 1))./lag(y, 1), 2); 

ret=pnl./sum(abs(lag(positions, 1)), 2); 
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Example 5.1 (Continued)

 Taking care to exclude the fi rst 250 days of rolling training 
data when computing the strategy performance, the APR is 11 
percent and the Sharpe ratio is 1.6, for the period December 18, 
2009, to April 26, 2012. The cumulative returns curve is plotted in 
Figure 5.1.

FIGURE 5.1 Cumulative Returns of USD.AUD versus 
USD.CAD Strategy

You may sometimes fi nd profi table opportunities trading two pairs of 
entirely diff erent cross-rates against each other: B1.Q1 versus B2.Q2. If the 
strategy calls for a portfolio of n1 units of B1.Q1 and n2 units of B2.Q2, the 
daily return (in the presumed local currency of USD) of the portfolio is 
given by the same Equation 5.1. The ri there will be the return of Bi.Qi, so 
Equation 5.2 is replaced by 

 ri(t + 1) = {log (  yi,Qi(t + 1)) − log(  yi,Qi(t))} (5.5)

where yi,Qi(t) is the quote for Bi.Qi. The same equations, 5.1 through 5.5, 
are valid if we had used EUR or any other currency instead of USD as the 
local currency for computing returns.

As you can see, the key diffi  culty in backtesting currency arbitrage strat-
egies is not the complexity of the strategies, but the right way to prepare 
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the data series for cointegration tests, and the right formula to measure 
returns!

 ■ Rollover Interests in Currency Trading

A feature of trading currency cross-rate is the diff erential interest rate earned 
or paid if the cross-rate position is held overnight. Note that “overnight” in 
currency trading means holding a position untill or beyond 5:00 p.m. ET. If 
we are long a pair B.Q overnight, the interest diff erential is iB − iQ, where iB 
and iQ are the daily interest rates of currency B and Q, respectively. If iQ > 
iB, then this interest diff erential, also called a rollover interest, is actually a 
debit interest (i.e., your account will be debited). Actually, for reasons that 
have to do with the T + 2 day settlement system, if a position was held past 
the 5 p.m. ET close on day T, and day T + 3 is a weekend or holiday for either 
currency of the cross-rate, the rollover interest accrued on that position will 
be multiplied by one plus the number of days the market remains closed. So 
if a position was held past 5 p.m. ET on Wednesday, the rollover interest is 
three times the daily rate since the market is closed on Saturday and Sunday. 
A further exception to this rule applies when we are trading USD.CAD or 
USD.MXN, where the settlement occurs on day T + 1, so we only multiply 
the rollover interest by one plus the number of nontrading days if day T + 2 
is a weekend or holiday. (Thus, only if a position was held past 5:00 p.m. ET 
on Thursday will the rollover interest be three times the daily rate.) All these 
considerations impinge on the accuracy of a backtest of strategies that hold 
overnight positions.

When we calculate the Sharpe ratio for any strategy, we need to calculate 
the excess return, because the Sharpe ratio is the ratio of the average excess 
return divided by the standard deviation of the excess returns, suitably an-
nualized. The excess return is the return of the positions that the strategy 
holds minus the fi nancing cost of those positions. So if we have only intraday 
positions, the fi nancing cost is zero. If we are trading a long-short dollar 
neutral equity portfolio, we can assume the fi nancing cost is close to zero, 
even though the credit interest is usually slightly less than the absolute value 
of the debit interest. For futures positions, the fi nancing cost is also zero, 
because futures positions are just contracts, not assets that require cash to 
fi nance. (We do not count the margin cash requirement, since that cash gen-
erates interest in the account.) In the case of currency cross-rates, we can 
again set the fi nancing cost to be zero, as long as we are careful to add the 
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rollover interest to the percent change of the cross-rate. That is, we need to 
modify Equation 5.5 so that the excess return rt+1 from holding a cross-rate 
position POSB.Q from day t to day t + 1 is

r(t + 1) = {log (  yB.Q(t + 1)) − log(  yB.Q(t)) + log(1 + iB(t)) − log(1 + iQ(t))}

(5.6)

where y(t) and y(t + 1) are the quotes for BQ at t and t + 1, respectively 
(Dueker, 2006). 

In Example 5.2, we see how we can take into account rollover interests in 
backtesting the linear mean-reverting strategy on AUD.CAD.

Example 5.2: Pair Trading AUD.CAD 
with Rollover Interests

We continue to use the linear mean-reverting strategy in this example, 
but in contrast to Example 5.1 and in the interest of simplicity, we 
trade the ready-made pair AUD.CAD, not USD.CAD versus AUD.
USD separately. We will take into account the overnight rollover 
interest rates because this strategy holds beyond 5 p.m. ET. We assume 
the daily closing prices of AUD.CAD are contained in a T × 1 array 
dailyCl and the corresponding trading dates in the T × 1 array tday. 
The historical interest rates are taken from the Reserve Bank of 
Australia website’s money market rate, www.rba.gov.au/statistics/
tables/#interest_rates, and the Bank of Canada web site’s overnight 
money market fi nancing rates, www.bankofcanada.ca/wp-content/
uploads/2010/09/selected_historical_page33.pdf. The daily AUD 
and CAD interest rates are assumed to be two T × 1 arrays aud_

dailyRates and cad_dailyRates respectively, matching the dates in tday.
The source code can be downloaded as AUDCAD_daily.m

lookback=20;
 
% Triple rollover interest on Wednesdays for AUD

isWednesday=weekday(datenum(num2str(tday), ‘yyyymmdd’))==4;

aud_dailyRates(isWednesday)=3*aud_dailyRates(isWednesday);
 
cad_dailyRates=zeros(size(tday));
% Triple rollover interest on Thursdays for CAD

http://www.rba.gov.au/statistics/tables/#interest_rates
http://www.bankofcanada.ca/wp-content/uploads/2010/09/selected_historical_page33.pdf
http://www.rba.gov.au/statistics/tables/#interest_rates
http://www.bankofcanada.ca/wp-content/uploads/2010/09/selected_historical_page33.pdf
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Example 5.2 (Continued)

isThursday=weekday(datenum(num2str(tday), ‘yyyymmdd’))==5;

cad_dailyRates(isThursday)=3*cad_dailyRates(isThursday);
 
ma=movingAvg(dailyCl, lookback);

z=(dailyCl-ma);
 

ret=lag(-sign(z), 1).*(log(dailyCl)- ...
  lag(log(dailyCl)+log(1+aud_dailyRates)- ...
log(1+cad_dailyRates), 1));

This simple mean reversion strategy yields an APR of 6.2 percent, with 
a Sharpe ratio of 0.54, which are much weaker results than those in 
Example 5.1, which, as you may recall, use a nonunity hedge ratio. It 
is also worth noting that even if we had neglected to take into account 
the rollover interest in this case, the APR would increase just slightly to 
6.7 percent and the Sharpe ratio to 0.58, even though the annualized 
average rollover interest would amount to almost 5 percent. 

 ■ Trading Futures Calendar Spread 

Futures contracts with diff erent expiration dates (or “maturities”) have dif-
ferent prices, and they have slightly diff erent returns. Pairing up futures con-
tracts with diff erent maturities creates what are known as calendar spreads. 
Since both legs of a calendar spread track the price of the underlying asset, 
one would think that calendar spreads potentially off er good opportunities 
for mean reversion trading. But in reality they do not generally mean-revert. 
To understand why, we need to understand more about what drives the re-
turns of futures in general.

Roll Returns, Backwardation, and Contango
The fact that futures contracts with diff erent maturities have diff erent 
prices implies that a futures position will have nonzero return even if the 
underlying spot price remains unchanged, since eventually all their prices 
have to converge toward that constant spot price. This return is called the 
roll return or roll yield. Despite its name, a futures position suff ers this return 
whether we actually “roll forward” to the next contract. It is an intrinsic 
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part of its total return, which can be decomposed into a spot return and a 
roll return.

If the contracts are in backwardation, meaning the near (close to expir-
ing) contracts have higher prices than the far contracts, then the roll returns 
will be positive; otherwise if the contracts are in contango, then the roll 
returns will be negative. To see this, imagine that the spot price is unchanged 
throughout time, represented by the horizontal line in Figure 5.2. 

We can also pretend that the log futures prices with diff erent maturities 
conform to the same linear function of time with the same slope but with 
diff erent off sets, intersecting the spot price at expirations. The question is: 
Should the slope be positive or negative? Graphically, if the nearer futures 
have a higher price than the farther futures and have to intersect the hori-
zontal line earlier, they must be upward sloping and have positive roll re-
turn, as shown in Figure 5.2. At any given time, the price of the fi rst nearby 
contract P1 is higher than that of the second nearby contract P2, and so on. 
The opposite is true if they are in contango, as illustrated in Figure 5.3. (We 
display log prices instead of raw prices so that a contract with a constant 
compounded total return will appear as a straight line.)

Note that this graphical argument merely serves as a mnemonic, not a 
proof, as, of course, real log futures prices are not linear functions of time, 
they may even intersect (two contracts of diff erent maturities having the 

 

t 

First nearby
contract expires

log(P1)

log(P2)

log(P3)

 
 

Third nearby
contract expires   

FIGURE 5.2 Log Prices of Futures with 
Diff erent Maturities in Backwardation as a 
Function of Time
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same price) before they expire, and fi nally the spot price at expiration is 
unlikely to be constant throughout time. Nevertheless, Figures 5.2 and 5.3 
illustrate the typical situation. A mnemonic to help us remember whether 
backwardation means near contracts have higher prices than far contracts is 
presented in Box 5.1.

t

First nearby
contract expires

log(P1)

log(P2)

log(P3)

Third nearby
contract expires

FIGURE 5.3 Log Prices of Futures with Diff erent 
Maturities in Contango as a Function of Time

B
O

X
 5

.1 Mnemonic for Backwardation versus Contango

I can never remember whether backwardation means near contracts have 

higher or lower price. If you are like me, you can employ the mnemonic below.

 This mnemonic originated with John Maynard Keynes (Hull, 1997). He and 

John Hicks argued that for normal commodities, those who actually own 

the physical commodities (the “hedgers,” such as farmers or oil producers) 

tend to hedge their positions by shorting futures, expecting to lose money 

on their hedges. Meanwhile, the speculators are the ones who have a net 

long position, and need to be compensated for taking this risk. So they will 

buy only futures with positive roll return, or equivalently futures that have 

lower prices than the expected future spot price; that is, the ones in “normal 

backwardation.” So we should remember that “backwardation” is always 

associated with “normal,” and “normal” means the futures price is always 

lower than the spot price.

 Of course, this argument is not completely correct, since we will see that 

crude oil, a perfectly “normal” commodity, is in contango over various periods. 

But this story gives us a good mnemonic.
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To calculate the spot and roll returns for a set of futures contracts, it is 
helpful to have a simple model of futures prices. For many commodities, we 
can write 

 F(t, T  ) = S(t)exp(γ(t − T  )) (5.7)

where t is the current time, T is the expiration time, and S(t) is the spot 
price (Hull, 1997). This model implies that the (compounded) roll return 
γ is constant over time. But we can take a step further, and assume that the 
(compounded) spot return α is also constant:

 S(t) = c eαt (5.8)

Essentially, we want to mathematically describe those lines in Figures 5.2 
and 5.3, with the slight modifi cation that they terminate not on a horizontal 
line, but one that has a nonzero slope. So the model we adopt for the price 
of a future that matures at time T is 

 F(t, T  ) = c eαtexp(γ(t − T  )) (5.9)

where c, α, and γ are constants. The total return of a contract is given by 

 ∂(log F(t, T  ))/∂t = α + γ (5.10)

since T is fi xed for a specifi c contract. Finally, the roll return of the futures 
is given by 

 −∂(log F(t, T  ))/∂T = γ (5.11)

Hence, we have mathematically captured the notion that total return = spot 

return + roll return.
Based on this model, we can use linear regression to estimate the spot and 

roll returns of a futures series, as is demonstrated in Example 5.3.
Roll returns can be a curse on many seemingly attractive strategies 

based on knowledge or intuition informed by the underlying spot price. 
For example, an ETF of commodity producers (such as XLE) usually coin-
tegrates with the spot price of that commodity. But because of the presence 
of roll return, this ETF may not cointegrate with the futures price of that 
commodity. Not understanding this subtlety cost me more than $100,000 
in trading loss, and ruined my fi rst year (2006) as an independent trader. 
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Example 5.3: Estimating Spot and Roll Returns 
Using the Constant Returns Model

If we assume that spot and roll returns are truly constant throughout 
time, as we did in Equation 5.9, we can use linear regression to 
estimate their values. It is easy to fi nd the spot return this way, as we 
just need to regress the log of the spot prices against time. But to fi nd 
the roll return requires us to pick a fi xed point in time, and regress 
the prices of the various contracts against their time to maturity. In 
practice, the regression coeffi  cient will depend on that fi xed time, 
and also on the exact set of contracts available at that time. So despite 
the assumption of constant roll returns, we will still end up with a 
slowly varying estimated γ.

We will apply this procedure to a few diff erent futures in diff erent 
categories: the Brazilian Real future BR, the corn future C, the WTI 
crude oil future CL, the copper future HG, and the two-year U.S. 
Treasury Note future TU.

In the following program, we assume that the spot price is 
contained in an τ × 1 array spot, and the futures closing price data 
are stored in a τ  × M array cl, where τ  is the number of trading days, 
and M is the number of contracts. Certainly not all contracts exist 
at all times, so we will denote the prices for those days when some 
contracts are nonexistent as NaN. 

We will fi rst fi nd the average annualized (compounded) spot 
return with a simple regression below. (The program can be 
downloaded as estimateFuturesReturns.m.)

T=[1:length(spot)]’;

T(isBadData)=[];

res=ols(log(spot), [T ones(size(T, 1), 1)]);

fprintf(1, ‘Average annualized spot return=%f\n’, ...
 252*smartmean(res.beta(1)));

Next, we will fi t the forward curve (the future price as a function 
of maturity date) in order to obtain the values for the roll return γ; 
that is, we will pick one day at a time and fi t the prices of futures 
of fi ve nearest maturities to their time-to-maturity T (measured 
in months), as long as there are fi ve consecutive contracts for the 
fi tting. (The forward curve might well change from contango to 

(Continued )
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Example 5.3 (Continued)

backwardation or vice versa beyond the nearest fi ve contracts.) We 
store the values of γ in a τ  × 1 array gamma.

Gamma=NaN(size(tday));

for t=1:length(tday)

FT=cl(t, :)’;

idx=find(isfinite(FT));

idxDiff=fwdshift(1, idx)-idx; % ensure consecutive months 
 % futures

if (length(idx) >= 5 && all(idxDiff(1:4)==1))

FT=FT(idx(1:5));

T=[1:length(FT)]’;

res=ols(log(FT), [T ones(size(T, 1), 1)]);

gamma(t)=-12*res.beta(1);

end

end

To verify that Equation 5.7 is sensible, we scatter-plot the log futures 
values of CL against the time to maturity at one fi xed point in time in 
Figure 5.4 and check that they do fall on a straight line quite neatly. 
(We restrict ourselves to only fi ve nearest contracts in this scatter plot. 
Prices of contracts farther out in maturities may not fall onto the same 
straight line so neatly, indicating a breakdown in Equation 5.7)

FIGURE 5.4 Scatter Plot of Log Futures Values against 
Time-to-Maturity for CL 2007 January to May Contracts. 
The log prices fall neatly on a straight line.
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Example 5.3 (Continued)

The annualized values for γ over the period November 22, 2004, 
to August 13, 2012, for CL are plotted in Figure 5.5. 

FIGURE 5.5 Values of the Roll Return γ for CL. Positive values indicate 
backwardation and negative values indicate contango.

I listed the average annualized values for the spot returns α and the 
roll returns γ for the fi ve futures in Table 5.1. You can see that for BR, 
C, and TU, the magnitude of the roll returns is much larger than that 
of the spot returns!

TABLE 5.1 Annualized Average Spot and Roll Returns for Various Futures

Symbol α γ

BR (CME) –2.7% 10.8%

C (CBOT) 2.8% –12.8%

CL (NYMEX) 7.3% –7.1%

HG (CME) 5.0% 7.7%

TU (CBOT) –0.0% 3.2%
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Another example: Every student of fi nance knows that volatility is mean 
reverting; more precisely, we know that the VIX index is mean reverting. 
In fact, an augmented Dickey-Fuller (ADF) test will show that it is sta-
tionary with 99 percent certainty. You might think, then, that trading VX 
futures would be a great mean-reverting strategy. (VX is the future that 
tracks the VIX volatility index trading on the CBOE’s Futures Exchange 
[CFE].) However, a look at the back-adjusted front-month futures prices 
over time indicates that the mean reversion in VX only happens after vola-
tility peaked around November 20, 2008 (the credit crisis), May 20, 2010 
(aftermath of fl ash crash), and then again on October 3, 2011. At other 
times, it just inexorably declines. Indeed, the ADF test shows that the 
back-adjusted front contract prices defi nitively do not mean-revert. You 
can see the diff erence between VIX and the front-month VX in Figure 5.6, 
a diff erence that is entirely due to roll return. The VX future has been in 
contango around three fourths of the time, and the average roll return is a 
very negative annualized –50 percent (Simon and Campasano, 2012). This 
persistent contango is why we fi nd in Chapter 6 that a momentum strategy 
works pretty well with VX.

Average roll returns can be quite large compared to their average spot 
returns for other futures besides VX as well. Table 5.1 shows that the an-
nualized roll return for corn is –12.8 percent compared to a spot return 
of 2.8 percent, and Erb and Harvey calculated that the annualized roll 
return for heating oil is 4.6 percent, compared to a spot return of 0.93 
percent, over the period December 1982 to May 2004 (Erb and Harvey, 
2006). 

FIGURE 5.6 VIX Index versus Back-Adjusted VX Front 
Contract Prices
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Do Calendar Spreads Mean-Revert?
A calendar spread is a portfolio that consists of a long position in one futures 
contract, and a short position in another futures contract with the same un-
derlying but a diff erent expiration month. Based on our previous experience 
with spreads in general, calendar spreads would seem to be great candidates 
for mean reversion: Aren’t both legs tracking the exact same underlying as-
set? But here again, roll returns derail our intuition. The futures price model 
expressed in Equation 5.7 will make this clear. 

As with any spread trading, we can choose to defi ne the spread as the 
diff erences of log prices of the two legs in order to generate trading signals 
(see Chapter 3), assuming that we maintain the market value of the two legs 
to be the same at every period. The log market value of a spread portfolio 
with a long far contract and a short near contract is simply γ(T1 − T2) with 
T2 > T1, according to Equation 5.7. (Again, this simple formula may not 
hold if T2 − T1 is large.) The important point is that the calendar spread trad-
ing signal does not depend at all on the spot price, only on the roll return!

As we learned in Chapter 2, return series (as opposed to price series) 
almost always mean-revert. Here we are considering not the total return 
of a future, but the roll return component only, so things may be diff erent. 
(Though the model expressed in Equation 5.7 presupposes that the spot 
and roll returns are both constant, we may nevertheless attempt to apply it 
to situations where the roll return varies slowly.) We run the ADF test for 
12-month log calendar spread of CL, and discovered that it is indeed station-
ary with 99 percent probability, and a half-life of 36 days. Furthermore, if 
we apply our usual linear mean-reverting strategy to the log calendar spread 
for CL, we do get an APR of 8.3 percent and a Sharpe ratio of 1.3 from 
January 2, 2008, to August 13, 2012. The details of the backtest are de-
scribed in Example 5.4.

Example 5.4: Mean Reversion Trading of 
Calendar Spreads

As we discussed in the main text, the log market value of a 
calendar spread portfolio with a long far contract and a short near 
contract is simply γ(T1 − T2), with T2 > T1. Since T1 and T2 are 
fi xed for a particular calendar spread, we can use the (hopefully) 
mean- reverting γ to generate trading signals. In the program 

(Continued )
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Example 5.4 (Continued)

calendarSpdsMeanReversion.m below, we assume that the price of the 
CL contracts is stored in a τ  × M array cl, where τ  is the number 
of trading days, and M is the number of contracts. We compute γ in 
the same way as in Example 5.3, and store the resulting values γ in a 
τ × 1 array gamma. As a fi rst step, we fi nd the half-life of γ.

isGoodData=find(isfinite(gamma));

gammalag=lag(gamma(isGoodData), 1); 

deltaGamma=gamma(isGoodData)-gammalag;

deltaGamma(1)=[]; 

gammalag(1)=[];

regress_results=ols(deltaGamma, [gammalag ...
 ones(size(gammalag))]);

halflife=-log(2)/regress_results.beta(1);

The half-life is found to be about 36 days. To apply our linear mean 
reversion strategy, we need to compute the Z-Score, with the look-
back set equal to the half-life, as demonstrated in Example 2.5.

lookback=round(halflife);

ma=movingAvg(gamma, lookback);

mstd=movingStd(gamma, lookback);

zScore=(gamma-ma)./mstd;

Here comes the most diffi  cult part. We need to pick a pair of 
contracts, far and near, on each historical day, based on three criteria:

 1. The holding period for a pair of contracts is 3 months (61 trading 
days).

 2. We roll forward to the next pair of contracts 10 days before the 
current near contract’s expiration.

 3. The expiration dates of the near and far contracts are 1 year apart.

Once we have picked those contracts, we assume initially that we 
will hold a long position in the far contract, and a short position in 
the near one, subject to revisions later.

isExpireDate=false(size(cl));

positions=zeros(size(cl));
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Example 5.4 (Continued)

isExpireDate=isfinite(cl) & ~isfinite(fwdshift(1, cl));

holddays=3*21;

numDaysStart=holddays+10;

numDaysEnd=10;

spreadMonth=12; % No. months between far and near contracts.

for c=1:length(contracts)-spreadMonth

expireIdx=find(isExpireDate(:, c));

expireIdx=expireIdx(end); % There may be some missing 
 % data earlier on

if (c==1)

startIdx=max(1, expireIdx-numDaysStart);

endIdx=expireIdx-numDaysEnd;

else % ensure next front month contract doesn’t start 
 until current one ends

myStartIdx=endIdx+1;

myEndIdx=expireIdx-numDaysEnd;

if (myEndIdx-myStartIdx >= holddays)

startIdx=myStartIdx;

endIdx=myEndIdx;

else

startIdx=NaN;

end

end

if (~isempty(expireIdx) & endIdx > startIdx)

positions(startIdx:endIdx, c)=-1;

positions(startIdx:endIdx, c+spreadMonth)=1;

end

end

Finally, we apply the linear mean reversion strategy to determine 
the true positions and calculate the unlevered daily returns of the 
portfolio. (The daily return is the daily P&L divided by 2 because we 
have two contracts.)

positions(isnan(zScore), :)=0;

positions(zScore > 0, :)=-positions(zScore > 0, :);

ret=smartsum(lag(positions).*(cl-lag(cl, 1))./lag(cl, 1), ...
 2)/2;

ret(isnan(ret))=0;

(Continued )
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Students of commodities markets know that seasonality is often a promi-
nent feature. So you may fi nd that for a particular market, only calendar 
spreads of certain months (and certain months apart) mean-revert. How-
ever, we won’t pursue these market-dependent details here.

We can try this same linear mean reversion strategy on the VX calendar 
spreads. It turns out that Equation 5.7 works only for a future whose un-
derlying is a traded asset, and VIX is not one. (If you scatter-plot the log VX 
futures prices as a function of time-to-maturity as we did in Figure 5.4 for 
CL, you will fi nd that they do not fall on a straight line.) Various research-
ers have suggested alternative formulae suitable for the VX future (see, for 
example, Dupoyet, Daigler, and Chen, 2011), but I have found that none 
can explain the mean-reverting property of VX calendar spreads in the face 

Example 5.4 (Continued)

This results in an attractive unlevered APR of 8.3 percent and a 
Sharpe ratio of 1.3 from January 2, 2008, to August 13, 2012. The 
cumulative returns curve is shown in Figure 5.7.

FIGURE 5.7 Cumulative Returns of the Linear Mean Reversion Strategy 
Applied on CL 12-Month Calendar Spread
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of the non-mean reversion of the VX future itself. So we can rely on only 
our empirical observation that an ADF test on the ratio back/front of VX also 
shows that it is stationary with a 99 percent probability. If we apply our usual 
linear mean-reverting strategy using ratio as the signal (and with a 15-day 
look-back for the moving average and standard deviations), VX yields an 
APR of 17.7 percent and a Sharpe ratio of 1.5 from October 27, 2008, to 
April 23, 2012 (see Figure 5.8 for a plot of its cumulative returns), though 
it performed much more poorly prior to October 2008. In the next section, 
I will present graphic evidence that there is a regime change in the behavior 
of VIX and its futures around the time of the fi nancial crisis of 2008, so per-
haps this abrupt change in the strategy performance is related to that as well.

 ■ Futures Intermarket Spreads

As I stated in the introduction of this chapter, it is not easy to fi nd futures 
intermarket spreads (i.e., pairs of futures from diff erent underlyings) that 
are mean reverting. Nevertheless, let’s systematically round up some of the 
usual suspects.

The most obvious candidate for pair trading futures is intermarket spreads 
between markets that are closely related. For example, the energy com-
plexes (WTI crude oil CL, Brent crude oil BZ, unleaded gasoline RB, and 
heating oil HO, all traded on the New York Mercantile Exchange [NYMEX]) 
should off er rich potential opportunities. 

FIGURE 5.8 Cumulative Returns of Linear Mean 
Reversion Strategy on VX Calendar Spread
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Before we run a Johansen test on these four contracts, we can fi rst ex-
amine a well-known portfolio called the crack spread consisting of long three 
contracts of CL, short two contracts of RB, and short one contract of HO. 
This is called the crack spread because we can obtain gasoline and heating 
oil by cracking the long hydrocarbon chains of crude oil molecules, and 
the 3:2:1 hedge ratios come about because three barrels of CL produces 
approximately two barrels of RB and one barrel of heating oil, though this 
is not universally true for all refi ners. One advantage of trading the crack 
spread is that NYMEX off ers a ready-made basket for it, with a much lower 
margin requirement than if we trade them separately. 

However, running an ADF test on the crack spread from May 20, 2002, 
to May 4, 2012, shows that this spread is not mean reverting. The chart of 
this spread (Figure 5.9) reveals a dramatic increase in value around March 9, 
2007, to July 3, 2008, and then a sharp drop after that, and running the 
linear mean reversion strategy on it shows negative returns for that period. 
(Note that we must back-adjust the continuous contracts using prices rather 
than returns in this test; otherwise, this price spread will show a discontinu-
ous jump at rollovers, as explained in Chapter 1.)

Another spread that would seem to be a good candidate is CL and BZ in a 
1:1 ratio. After all, their underlyings are both crude oils. But another quick 
ADF test will show that it is far from stationary. BZ has relentlessly outper-
formed CL due to a variety of factors. The likely culprits include the in-
creasing oil production in the United States (Friedman, 2012), the pipeline 
bottleneck at Cushing, Oklahoma (Philips, 2012), and geopolitical concerns 

FIGURE 5.9 The Crack Spread
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such as the embargo against Iranian oil in 2012, which aff ected Europe and 
therefore BZ more than the United States.

If you want to backtest intermarket spreads yourself, don’t forget to 
make sure that their prices are synchronous, as I cautioned in Chapter 1. In 
particular, before BZ started trading at the NYMEX on September 5, 2001, 
it was traded at the Intercontinental Petroleum Exchange in London, which 
obviously has a diff erent closing time than NYMEX on which CL has always 
been traded. So backtesting the BZ-CL spread before September 5, 2001, 
using closing prices would be wrong. Also, we often need to multiply the 
futures prices by a factor to convert points into USD.

Our search for mean-reverting intermarket futures spreads has not been 
fruitful so far. But I will now discuss one unusual spread that will change that.

Volatility Futures versus Equity Index Futures
Many traders have observed that volatility is anti-correlated with the stock 
equity market index: When the market goes down, volatility shoots up, and 
to a lesser extent, vice versa. One way to visualize this inverse relationship is 
to plot ES, the E-mini S&P 500 futures front-month prices, against VX, the 
VIX futures front-month prices. This can be accomplished by the “scatter” 
function in MATLAB, and the result is displayed in Figure 5.10.

The fi rst obvious feature of this plot is that, indeed, the stock index has an 
inverse relationship with volatility. But, more interestingly, there appeared to 
be two main regimes, 2004 to May 2008 and August 2008 to 2012. The sec-
ond regime has a notably lower volatility for a given stock index level. In plain 

FIGURE 5.10 A Study of Volatility Regimes: ES versus VX
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English, the market is less volatile nowadays. However, the range of volatili-
ties is greater now, meaning that we have days with more extreme volatilities 
than before. (There are other, shorter periods that may represent transitional 
states, but we will ignore them in our analysis.) It would be a mistake to run 
a linear regression or apply the Johansen test to a mixture of both regimes, so 
we focus on the second one, which extends to the time of this writing.

We choose to compute the regression coeffi  cients only for the fi rst 500 
days of the post–August 2008 data as the training set because later we would 
like to use the various statistics from this regression to build our trading 
model. Before we actually run the prices through the linear regression pro-
gram, we have to remember that the futures prices of VX and ES are in dif-
ferent units: one point move in VX is $1,000, while one point move in ES is 
$50. So we need to multiply the prices of VX by 1,000 and the prices of ES 
by 50 in order for the hedge ratio to properly refl ect the ratio in the number 
of contracts.

The linear relationship is shown in Equation 5.11.

 ES × 50 = −0.3906 × VX × 1,000 + $77,150 (5.11)

where ES and VX are their re spective futures (settlement) prices. The stan-
dard deviation of the residues is $2,047. This means that a portfolio that is 
long 0.3906 contracts of VX and long one contract of ES should be stationary, 
as a plot (Figure 5.11) of this portfolio’s market value would convince us.

We can construct a Bollinger band–like mean-reverting strategy by short-
ing this portfolio whenever its value deviates from one standard deviation 

FIGURE 5.11 Stationary Portfolio of ES and VX
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of the residuals determined in the training set. The APR on the test set July 
29, 2010, to May 8, 2012, is 12.3 percent, with a Sharpe ratio of 1.4. It was 
particularly profi table starting around the time of the Standard and Poor’s 
downgrade of the U.S. credit rating. The cumulative returns curve is shown 
in Figure 5.12.

There is a diff erent VX versus ES strategy that we can employ, which does 
not rely on the mean-reverting properties of the spread VX-ES. Because that 
is a momentum strategy, I will discuss it in the next chapter.

FIGURE 5.12 Cumulative Returns of VX-ES Mean 
Reversion Strategy

• “Commodity” currencies as a group offer many opportunities for 

cointegration.

• In computing the returns of a portfolio with two currency cross-rates, did 

you pay attention to whether they have the same quote currency, the same 

base currency, or neither? The formulae for computing returns are not the 

same for all cases.

• Futures returns consist of two components: spot returns and roll returns.

• Backwardation means roll returns are positive, and far contracts are 

cheaper than near contracts. Contango means roll returns are negative, and 

far contracts are more expensive than near contracts.

• Because of roll returns, mean reversion of the spot price may not induce 

mean reversion of the futures price.

• Mean reversion of futures calendar spreads of traded assets depends on 

mean reversion of roll returns.

KEY POINTS





133

Interday 
Momentum 
Strategies

C H A P T E R  6

There are four main causes of momentum:

 1. For futures, the persistence of roll returns, especially of their signs.
 2. The slow diff usion, analysis, and acceptance of new information.
 3. The forced sales or purchases of assets of various type of funds.
 4. Market manipulation by high-frequency traders.

We will be discussing trading strategies that take advantage of each cause 
of momentum in this and the next chapter. In particular, roll returns of fu-
tures, which featured prominently in the last chapter, will again take center 
stage. Myriad futures strategies can be constructed out of the persistence of 
the sign of roll returns.

Researchers sometimes classify momentum in asset prices into two types: 
time series momentum and cross-sectional momentum, just as we classifi ed 
mean reversion into two corresponding types in Chapter 2 (Moskowitz, 
Yao, and Pedersen, 2010). Time series momentum is very simple and in-
tuitive: past returns of a price series are positively correlated with future 
returns. Cross-sectional momentum refers to the relative performance of a 
price series in relation to other price series: a price series with returns that 
outperformed other price series will likely keep doing so in the future and 
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vice versa. We will examine examples of both types in momentum in futures 
and stocks. 

The strategies I describe in this chapter tend to hold positions for mul-
tiple days, which is why I call them “interday” momentum strategies. I will 
consider the intraday, higher-frequency momentum strategies in the next 
chapter. The reason for this distinction is that many interday momentum 
strategies suff er from a recently discovered weakness, while intraday mo-
mentum strategies are less aff ected by it. I will highlight this weakness in 
this chapter, and also discuss the very diff erent properties of momentum 
strategies versus their mean-reverting counterparts, as well as their pros 
and cons.

 ■ Tests for Time Series Momentum

Before we delve into the diff erent causes of momentum, we should fi rst 
see how we can measure momentum, or more specifi cally, time series mo-
mentum. Time series momentum of a price series means that past returns 
are positively correlated with future returns. It follows that we can just 
calculate the correlation coeffi  cient of the returns together with its p-value 
(which represents the probability for the null hypothesis of no correla-
tion). One feature of computing the correlation coeffi  cient is that we have 
to pick a specifi c time lag for the returns. Sometimes, the most positive 
correlations are between returns of diff erent lags. For example, 1-day re-
turns might show negative correlations, while the correlation between past 
20-day return with the future 40-day return might be very positive. We 
should fi nd the optimal pair of past and future periods that gives the highest 
positive correlation and use that as our look-back and holding period for 
our momentum strategy. 

Alternatively, we can also test for the correlations between the signs of 
past and future returns. This is appropriate when all we want to know is that 
an up move will be followed by another up move, and we don’t care whether 
the magnitudes of the moves are similar.

If we are interested instead in fi nding out whether there is long-term 
trending behavior in the time series without regard to specifi c time frames, 
we can calculate the Hurst exponent together with the Variance Ratio test 
to rule out the null hypothesis of random walk. These tests were described 
in Chapter 2 for the detection of mean reversion, but they can just as well 
be used as momentum tests.
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 I will illustrate the use of these tests below using the two-year Treasury 
note future TU trading on the Chicago Mercantile Exchange (CME) as an 
example. The correlation coeffi  cient and its p-value can be computed using 
the MATLAB function corrcoef, while the Hurst exponent and Variance Ratio 
test are, as before, given by genhurst and vratiotest.

In computing the correlations of pairs of returns resulting from diff erent 
look-back and holding periods, we must take care not to use overlapping 
data. If look-back is greater than the holding period, we have to shift for-
ward by the holding period to generate a new returns pair. If the holding 
period is greater than the look-back, we have to shift forward by the look-
back period. This is illustrated in Figure 6.1. 

The top two bars in Figure 6.1 are for the case where look-back is greater 
than the holding period. The top bar represents the data set that forms the 
fi rst returns pair, and the second bar from the top represents the data set 
that forms the second independent returns pair. The bottom two bars are for 
the case where the look-back is smaller than the holding. The code is listed 
below (and available for download as TU_mom.m).

Look-back Hold days

Look-back Hold days

Look-back Hold days

Look-back Hold days

FIGURE 6.1 Nonoverlapping Periods for Correlation Calculations

B
O

X
 6

.1 Finding Correlations between Returns of Different Time Frames

% Correlation tests

for lookback=[1 5 10 25 60 120 250]

  for holddays=[1 5 10 25 60 120 250]

      ret_lag=(cl-backshift(lookback, cl)) ...
       ./backshift(lookback, cl);

      ret_fut=(fwdshift(holddays, cl)-cl)./cl;

      badDates=any([isnan(ret_lag) isnan(ret_fut)], 2);

(Continued )
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If we shift the data forward by one day, we will get a slightly diff erent set 
of returns for computing our correlations. For simplicity, I have only tested 
correlation of one among many possible sets of returns, but because of the 
large overlap of data between two diff erent sets of returns, the results are 
unlikely to be greatly diff erent. Some of the more signifi cant results are 
tabulated in Table 6.1.

We see that there is a compromise between the correlation coeffi  cient 
and the p-value. The following (look-back, holding days) pairs off er some of 
the best compromises: (60, 10), (60, 25), (250, 10), (250, 25), (250, 60), 
(250, 120). Of course, from a trading point of view, we prefer as short a 
holding period as possible as those tend to generate the best Sharpe ratios. 

I have also tested the correlations between the signs of past and future 
returns instead, and the results are not very diff erent from Table 6.1. I found 
the best pair candidates in that case are (60, 10), (250, 10), and (250, 25).

In contrast, we found that the Hurst exponent is 0.44, while the Variance 
Ratio test failed to reject the hypothesis that this is a random walk.

How are these two confl icting results reconciled? As we show in the cor-
relation tests, this time series (as with many other fi nancial time series) 
exhibits momentum and mean reversion at diff erent time frames. The Vari-
ance Ratio test is unable to test the specifi c time frames where the correla-
tions might be stronger than average. 

B
O

X
 6

.1
 (

Co
nt

in
ue

d 
)       ret_lag(badDates)=[];

      ret_fut(badDates)=[];

      if (lookback >= holddays)

          indepSet=[1:lookback:length(ret_lag)];

      else

          indepSet=[1:holddays:length(ret_lag)];

      end
 

      ret_lag=ret_lag(indepSet);

      ret_fut=ret_fut(indepSet);

      [cc, pval]=corrcoef(ret_lag, ret_fut);

      fprintf(1, ‘lookback=%3i holddays=%3i cc=%7.4f ...
       pval=%6.4f\n’, lookback, holddays, cc(1, 2), ...
       pval(1, 2));

  end

end
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TABLE 6.1  Correlations between TU Returns of Different Time Frames

Look-back Holding days Correlation coefficient p-value

25 1 –0.0140 0.5353

25 5  0.0319 0.5276

25 10  0.1219 0.0880

25 25  0.1955 0.0863

25 60  0.2333 0.0411

25 120  0.1482 0.2045

25 250  0.2620 0.0297

60 1  0.0313 0.1686

60 5  0.0799 0.1168

60 10  0.1718 0.0169

60 25  0.2592 0.0228

60 60  0.2162 0.2346

60 120 –0.0331 0.8598

60 250  0.3137 0.0974

120 1  0.0222 0.3355

120 5  0.0565 0.2750

120 10  0.0955 0.1934

120 25  0.1456 0.2126

120 60 –0.0192 0.9182

120 120  0.2081 0.4567

120 250  0.4072 0.1484

250 1  0.0411 0.0857

250 5  0.1068 0.0462

250 10  0.1784 0.0185

250 25  0.2719 0.0238

250 60  0.4245 0.0217

250 120  0.5112 0.0617

250 250  0.4873 0.3269

 ■ Time Series Strategies

For a certain future, if we fi nd that the correlation coeffi  cient between a 
past return of a certain look-back and a future return of a certain holding 
period is high, and the p-value is small, we can proceed to see if a profi table 
momentum strategy can be found using this set of optimal time periods. 
Since Table 6.1 shows us that for TU, the 250-25-days pairs of returns have 
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a correlation coeffi  cient of 0.27 with a p-value of 0.02, we will pick this 
look-back and holding period. We take our cue for a simple time series mo-
mentum strategy from a paper by Moskowitz, Yao, and Pedersen: simply buy 
(sell) the future if it has a positive (negative) 12-month return, and hold the 
position for 1 month (Moskowitz, Yao, and Pedersen, 2012). We will modify 
one detail of the original strategy: Instead of making a trading decision every 
month, we will make it every day, each day investing only one twenty-fi fth 
of the total capital.

Example 6.1: TU Momentum Strategy

This code assumes the closing prices are contained in a T × 1 array cl. 
This code is contained in TU_mom.m.

lookback=250;

holddays=25;

 

longs=cl > backshift(lookback, cl)  ;

shorts=cl < backshift(lookback, cl) ;

 

pos=zeros(length(cl), 1);

 

for h=0:holddays-1

    long_lag=backshift(h, longs);

    long_lag(isnan(long_lag))=false;

    long_lag=logical(long_lag);

    

    short_lag=backshift(h, shorts);

    short_lag(isnan(short_lag))=false;

    short_lag=logical(short_lag);

    

    pos(long_lag)=pos(long_lag)+1;

    pos(short_lag)=pos(short_lag)-1;

end

 

ret=(backshift(1, pos).*(cl-lag(cl))./lag(cl))/holddays;

From June 1, 2004, to May 11, 2012, the Sharpe ratio is a respectable 
1. The annual percentage rate (APR) of 1.7 percent may seem low, but our 
return is calculated based on the notional value of the contract, which is 
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about $200,000. Margin requirement for this contract is only about $400. 
So you can certainly employ a reasonable amount of leverage to boost re-
turn, though one must also contend with the maximum drawdown of 2.5 
percent. The equity curve also looks quite attractive (see Figure 6.2).

This simple strategy can be applied to all kinds of futures contracts, with 
diff erent optimal look-back periods and the holding days. The results for 
three futures we considered are listed in Table 6.2. 

Why do many futures returns exhibit serial correlations? And why do 
these serial correlations occur only at a fairly long time scale? The expla-
nation lies in the roll return component of the total return of futures we 
discussed in Chapter 5. Typically, the sign of roll returns does not vary very 
often. In other words, the futures stay in contango or backwardation over 
long periods of time. The spot returns, however, can vary very rapidly in 
both sign and magnitude. So if we hold a future over a long period of time, 
and if the average roll returns dominate the average total returns, we will 
fi nd serial correlation of total returns. This explanation certainly makes 
sense for BR, HG, and TU, since from Table 5.1 we can see that they all have 

FIGURE 6.2 Equity Curve of TU Momentum Strategy

TABLE 6.2 Time Series Momentum Strategies for Various Futures

Symbol Look-back Holding days APR Sharpe ratio Max drawdown

BR (CME) 100 10 17.7% 1.09 –14.8%

HG (CME) 40 40 18.0% 1.05 –24.0%

TU (CBOT) 250 25 1.7% 1.04 –2.5%
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roll returns that are bigger in magnitude than their spot returns. (I haven’t 
found the reason why it doesn’t work for C, despite its having the largest roll 
return magnitude compared to its average spot return, but maybe you can!)

If we accept the explanation that the time series momentum of futures 
is due to the persistence of the signs of the roll returns, then we can devise 
a cleaner and potentially better momentum signal than the lagged total re-
turn. We can use the lagged roll return as a signal instead, and go long when 
this return is higher than some threshold, go short when this return is lower 
than the negative of that threshold, and exit any existing position otherwise. 
Applying this revised strategy on TU with a threshold of an annualized roll 
return of 3 percent yields a higher APR of 2.5 percent and Sharpe ratio of 
2.1 from January 2, 2009, to August 13, 2012, with a reduced maximum 
drawdown of 1.1 percent.

There are many other possible entry signals besides the simple “sign of re-
turn” indicator. For example, we can buy when the price reaches a new N-day 
high, when the price exceeds the N-day moving average or exponential mov-
ing average, when the price exceeds the upper Bollinger band, or when the 
number of up days exceeds the number of down days in a moving period.

There is also a classic momentum strategy called the Alexander Filter, 
which tells us to buy when the daily return moves up at least x percent, and 
then sell and go short if the price moves down at least x percent from a sub-
sequent high (Fama and Blume, 1966).

Sometimes, the combination of mean-reverting and momentum rules may 
work better than each strategy by itself. One example strategy on CL is this: 
buy at the market close if the price is lower than that of 30 days ago and is high-
er than that of 40 days ago; vice versa for shorts. If neither the buy nor the sell 
condition is satisfi ed, fl atten any existing position. The APR is 12 percent, with 
a Sharpe ratio of 1.1. Adding a mean-reverting fi lter to the momentum strategy 
in Example 6.1 will add IBX (MEFF), KT (NYMEX), SXF (DE), US (CBOT), 
CD (CME), NG (NYMEX), and W (CME) to Table 6.2, and it will also im-
prove the returns and Sharpe ratios of the existing contracts in that table.

In fact, if you don’t want to construct your own time series momentum 
strategy, there is a ready-made index that is composed of 24 futures: the Stan-
dard & Poor’s (S&P) Diversifi ed Trends Indicator (DTI). The essential strat-
egy behind this index is that we will long a future if it is above its exponential 
moving average, and short it if it is below, with monthly rebalancing. (For 
details, you can visit www.standardandpoors.com.) There is a mutual fund 
(RYMFX) as well as an exchange-traded fund (WDTI) that tracks this index. 
Michael Dever computed that the Sharpe ratio of this index was 1.3 with 

http://www.standardandpoors.com
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a maximum drawdown of –16.6 percent from January 1988 to December 
2010 (Dever, 2011). (This may be compared to the S&P 500 index SPX, 
which has a Sharpe ratio of 0.61 and a maximum drawdown of –50.96 per-
cent over the same period, according to the author.) However, in common 
with many other momentum strategies, its performance is poor since the 
2008 fi nancial crisis, a point that will be taken up later.

Since there aren’t many trades in the relatively limited amount of test 
data that we used due to the substantial holding periods, there is a risk of 
data-snooping bias in these results. The real test for the strategy is, as always, 
in true out-of-sample testing.

 ■ Extracting Roll Returns through 
Future versus ETF Arbitrage

If futures’ total returns = spot returns + roll returns, then an obvious way 
to extract roll return is buy the underlying asset and short the futures, if the 
roll return is negative (i.e., under contango); and vice versa if the roll return 
is positive (i.e., under backwardation). This will work as long as the sign of 
the roll return does not change quickly, as it usually doesn’t. This arbitrage 
strategy is also likely to result in a shorter holding period and a lower risk 
than the buy-and-hold strategy discussed in the previous section, since in 
that strategy we needed to hold the future for a long time before the noisy 
spot return can be averaged out.

However, the logistics of buying and especially shorting the underlying 
asset is not simple, unless an exchange-traded fund (ETF) exists that holds 
the asset. Such ETFs can be found for many precious metals. For example, 
GLD actually owns physical gold, and thus tracks the gold spot price very 
closely. Gold futures have a negative roll return of –4.9 percent annualized 
from December 1982 to May 2004. A backtest shows that holding a long 
position in GLD and a short position in GC yields an annualized return of 
1.9 percent and a maximum drawdown of 0.8 percent from August 3, 2007, 
to August 2, 2010. This might seem attractive, given that one can apply a 
leverage of 5 or 6 and get a decent return with reasonable risk, but in reality 
it is not. Remember that in contrast to owning futures, owning GLD actu-
ally incurs fi nancing cost, which is not very diff erent from 1.9 percent over 
the backtest period! So the excess return of this strategy is close to zero.

(The astute reader might notice another caveat of our quick backtest of 
GC versus GLD: the settlement or closing prices of GC are recorded at 
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1:30 p.m. ET, while those of GLD are recorded at 4:00 p.m. ET. This asyn-
chronicity is a pitfall that I mentioned in Chapter 1. However, it doesn’t 
matter to us in this case because the trading signals are generated based on 
GC closing prices alone.)

If we try to look outside of precious metals ETFs to fi nd such arbitrage 
opportunities, we will be stumped. There are no ETFs that hold other physi-
cal commodities as opposed to commodities futures, due to the substantial 
storage costs of those commodities. However, there is a less exact form of 
arbitrage that allows us to extract the roll returns. ETFs containing com-
modities producing companies often cointegrate with the spot price of 
those commodities, since these commodities form a substantial part of their 
assets. So we can use these ETFs as proxy for the spot price and use them to 
extract the roll returns of the corresponding futures. 

One good example is the arbitrage between the energy sector ETF XLE and 
the WTI crude oil futures CL. Since XLE and CL have diff erent closing times, it 
is easier to study the arbitrage between XLE and the ETF USO instead, which 
contains nothing but front month contracts of CL. The strategy is simple: 

 ■ Short USO and long XLE whenever CL is in contango.

 ■ Long USO and short XLE whenever CL is in backwardation. 

The APR is a very respectable 16 percent from April 26, 2006, to April 9, 
2012, with a Sharpe ratio of about 1. I have plotted the cumulative returns 
curve in Figure 6.3.

FIGURE 6.3 Cumulative Returns of XLE-USO Arbitrage
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What about a future whose underlying is not a traded commodity? VX 
is an example of such a future: It is very expensive to maintain a basket of 
options that replicate the underlying VIX index, and no ETF sponsors have 
been foolish enough to do that. But, again, we do not need to fi nd an instru-
ment that tracks the spot price exactly—we just need to fi nd one that has 
a high correlation (or anti-correlation) with the spot return. In the case of 
VIX, the familiar ETF SPY fi ts the bill. Because the S&P E-mini future ES has 
insignifi cant roll return (about 1 percent annualized), it has almost the same 
returns as the underlying asset. Because it is certainly easier to trade futures 
than an ETF, we will investigate the performance of our earlier arbitrage 
strategy using ES instead.

Volatility Futures versus Equity Index Futures: 
Redux
VX is a natural choice if we want to extract roll returns: its roll returns 
can be as low as –50 percent annualized. At the same time, it is highly anti-
correlated with ES, with a correlation coeffi  cient of daily returns reaching 
–75 percent. In Chapter 5, we used the cointegration between VX and ES 
to develop a profi table mean-reverting strategy. Here, we will make use of 
the large roll return magnitude of VX, the small roll return magnitude of 
ES, and the anticorrelation of VX and ES to develop a momentum strategy. 

This strategy was proposed by Simon and Campasano (2012):

 1. If the price of the front contract of VX is higher than that of VIX by 0.1 
point (contango) times the number of trading days untill settlement, 
short 0.3906 front contracts of VX and short 1 front contract of ES. 
Hold for one day.

 2. If the price of the front contract of VX is lower than that of VIX by 0.1 
point (backwardation) times the number of trading days untill settle-
ment, buy 0.3906 front contracts of VX and buy 1 front contract of ES. 
Hold for one day.

Recall that if the front contract price is higher than the spot price, the roll 
return is negative (see Figure 5.3). So the diff erence in price between VIX and 
VX divided by the time to maturity is the roll return, and we buy VX if the 
roll return is positive. Why didn’t we use the procedure in Example 5.3 where 
we use the slope of the futures log forward curve to compute the roll return 
here? That is because Equation 5.7 doesn’t work for VX, and therefore the VX 
forward prices do not fall on a straight line, as explained in Chapter 5.
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Notice that the hedge ratio of this strategy is slightly diff erent from that 
reported by Simon and Campasano: It is based on the regression fi t between 
the VX versus ES prices in Equation 5.11, not between their returns as in 
the original paper. The settlement is the day after the contracts expire. The 
APR for July 29, 2010, to May 7, 2012 (this period was not used for hedge 
ratio determination) is 6.9 percent, with a Sharpe ratio of 1. The cumulative 
return chart is displayed in Figure 6.4. You can fi nd the MATLAB code for 
this strategy in VX_ES_rollreturn.m on my website.

 ■ Cross-Sectional Strategies

There is a third way to extract the often large roll returns in futures besides 
buying and holding or arbitraging against the underlying asset (or against an 
instrument correlated with the underlying asset). This third way is a cross-
sectional strategy: We can just buy a portfolio of futures in backwardation, 
and simultaneously short a portfolio of futures in contango. The hope is that 
the returns of the spot prices cancel each other out (a not unreasonable 
expectation if we believe commodities’ spot prices are positively correlated 
with economic growth or some other macroeconomic indices), and we are 
left with the favorable roll returns. Daniel and Moskowitz described just 
such a simple “cross-sectional” momentum strategy that is almost a mir-
ror image of the linear long-short mean-reverting stock model proposed 
by Khandani and Lo described in Chapter 3, albeit one with a much longer 
look-back and holding period (Daniel and Moskowitz, 2011). 

FIGURE 6.4 Cumulative Returns of VX-ES Roll Returns Strategy
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A simplifi ed version of the strategy is to rank the 12-month return (or 252 
trading days in our program below) of a group of 52 physical commodities 
every day, and buy and hold the future with the highest return for 1 month (or 
25 trading days) while short and hold the future with the lowest return for the 
same period. I tested this strategy from June 1, 2005, to December 31, 2007, 
and the APR is an excellent 18 percent with a Sharpe ratio of 1.37. The cumu-
lative returns are plotted in Figure 6.5. Unfortunately, this model performed 
very negatively from January 2, 2008, to December 31, 2009, with an APR of 
–33 percent, though its performance recovered afterwards. The fi nancial crisis 
of 2008–2009 ruined this momentum strategy, just like it did many others, 
including the S&P DTI indicator mentioned before.

Daniel and Moskowitz have also found that this same strategy worked for 
the universe of world stock indices, currencies, international stocks, and 
U.S. stocks—in other words, practically everything under the sun. Obvi-
ously, cross-sectional momentum in currencies and stocks can no longer be 
explained by the persistence of the sign of roll returns. We might attribute 
that to the serial correlation in world economic or interest rate growth in 
the currency case, and the slow diff usion, analysis, and acceptance of new 
information in the stock case.

Applying this strategy to U.S. stocks, we can buy and hold stocks within 
the top decile of 12-month lagged returns for a month, and vice versa for 
the bottom decile. I illustrate the strategy in Example 6.2. 

FIGURE 6.5 Cumulative Returns of Cross-Sectional 
Futures Momentum Strategy
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Example 6.2: Cross-Sectional Momentum 
Strategy for Stocks

This code assumes the close prices are contained in T × N array cl, 
where T is the number of trading days, and N is the number of the 
stocks in S&P 500. It makes use of utilities functions smartsum and 
backshift, available from http://epchan.com/book2. The code itself 
can be downloaded as kentdaniel.m.

lookback=252;

holddays=25;

topN=50;

ret=(cl- backshift(lookback,cl))./backshift(lookback,cl); 
 % daily returns

longs=false(size(ret));

shorts=false(size(ret));
 
positions=zeros(size(ret));

for t=lookback+1:length(tday)

   [foo idx]=sort(ret(t, :), ‘ascend’);

   nodata=find(isnan(ret(t, :)));

   idx=setdiff(idx, nodata, ‘stable’);

   longs(t, idx(end-topN+1:end))=true;

   shorts(t, idx(1:topN))=true;

end
 
for h=0:holddays-1

    long_lag=backshift(h, longs);

    long_lag(isnan(long_lag))=false;

    long_lag=logical(long_lag);

    

    short_lag=backshift(h, shorts);

    short_lag(isnan(short_lag))=false;

    short_lag=logical(short_lag);
    

    positions(long_lag)=positions(long_lag)+1;

    positions(short_lag)=positions(short_lag)-1;

end
 
dailyret=smartsum(backshift(1, positions).*(cl-lag(cl)) ...
 ./ lag(cl), 2)/(2*topN)/holddays;
 
dailyret(isnan(dailyret))=0;
 

http://epchan.com/book2
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Example 6.2 (Continued)

 The APR from May 15, 2007, to December 31, 2007, is 37 
percent with a Sharpe ratio of 4.1. The cumulative returns are shown 
in Figure 6.6. (Daniel and Moskowitz found an annualized average 
return of 16.7 percent and a Sharpe ratio of 0.83 from 1947 to 
2007.) However, the APR from January 2, 2008, to December 31, 
2009, is a miserable –30 percent. The fi nancial crisis of 2008–2009 
also ruined this momentum strategy. The return after 2009 did 
stabilize, though it hasn’t returned to its former high level yet.

Just as in the case of the cross-sectional mean reversion strategy discussed 
in Chapter 4, instead of ranking stocks by their lagged returns, we can rank 
them by many other variables, or “factors,” as they are usually called. While 
we wrote total return = spot return + roll return for futures, we can write 
total return = market return + factor returns for stocks. A cross-sectional portfo-
lio of stocks, whether mean reverting or momentum based, will eliminate 
the market return component, and its returns will be driven solely by the 
factors. These factors may be fundamental, such as earnings growth or book-
to-price ratio, or some linear combination thereof. Or they may be statisti-
cal factors that are derived from, for example, Principal Component Analy-
sis (PCA) as described in Quantitative Trading (Chan, 2009). All these factors 

FIGURE 6.6 Cumulative Returns of Cross-Sectional 
Stock Momentum Strategy
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with the possible exception of PCA tend to change slowly, so using them 
to rank stocks will result in as long holding periods as the cross-sectional 
models I discussed in this section.

While we are on the subject of factors, it bears mentioning that a factor 
model can be applied to a cross-sectional portfolio of futures as well. In this 
case, we can fi nd macroeconomic factors such as gross domestic product 
(GDP) growth or infl ation rate and correlate them with the returns of each 
futures instrument, or we can again employ PCA.

In recent years, with the advance of computer natural language process-
ing and understanding capability, there is one other factor that has come into 
use. This is the so-called news sentiment score, our next topic.

News Sentiment as a Fundamental Factor
With the advent of machine-readable, or “elementized,” newsfeeds, it is now 
possible to programmatically capture all the news items on a company, not 
just those that fi t neatly into one of the narrow categories such as earnings 
announcements or merger and acquisition (M&A) activities. Furthermore, 
natural language processing algorithms are now advanced enough to analyze 
the textual information contained in these news items, and assign a “senti-
ment score” to each news article that is indicative of its price impact on a 
stock, and an aggregation of these sentiment scores from multiple news ar-
ticles from a certain period was found to be predictive of its future return. 
For example, Hafez and Xie, using RavenPack’s Sentiment Index, found that 
buying a portfolio of stocks with positive sentiment change and shorting 
one with negative sentiment change results in an APR from 52 percent to 
156 percent and Sharpe ratios from 3.9 to 5.3 before transaction costs, de-
pending on how many stocks are included in the portfolios (Hafez and Xie, 
2012). The success of these cross-sectional strategies also demonstrates very 
neatly that the slow diff usion of news is the cause of stock momentum.

There are other vendors besides RavenPack that provide news senti-
ments on stocks. Examples include Recorded Future, thestocksonar.com, 
and Thomson Reuters News Analytics. They diff er on the scope of their 
news coverage and also on the algorithm they use to generate the senti-
ment score. If you believe your own sentiment algorithm is better than 
theirs, you can subscribe directly to an elementized news feed instead 
and apply your algorithm to it. I mentioned before that Newsware off ers 
a low-cost version of this type of news feeds, but off erings with lower 
latency and better coverage are provided by Bloomberg Event-Driven 
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Trading, Dow Jones Elementized News Feeds, and Thomson Reuters Ma-
chine Readable News.

Beyond such very reasonable use of news sentiment as a factor for cross-
sectional momentum trading, there has also been research that suggested 
the general “mood” of society as revealed in the content of Twitter feeds is 
predictive of the market index itself (Bollen, Mao, and Zeng, 2010). In fact, 
a multimillion-dollar hedge fund was launched to implement this outland-
ish idea (Bryant, 2010), though the validity of the research itself was under 
attack (Buy the Hype, 2012).

Mutual Funds Asset Fire Sale and 
Forced Purchases
Researchers Coval and Staff ord (2007) found that mutual funds experienc-
ing large redemptions are likely to reduce or eliminate their existing stock 
positions. This is no surprise since mutual funds are typically close to fully 
invested, with very little cash reserves. More interestingly, funds experienc-
ing large capital infl ows tend to increase their existing stock positions rather 
than using the additional capital to invest in other stocks, perhaps because 
new investment ideas do not come by easily. Stocks disproportionately held 
by poorly performing mutual funds facing redemptions therefore experi-
ence negative returns. Furthermore, this asset “fi re sale” by poorly perform-
ing mutual funds is contagious. Since the fi re sale depresses the stock prices, 
they suppress the performance of other funds holding those stocks, too, 
causing further redemptions at those funds. The same situation occurs in 
reverse for stocks disproportionately held by superbly performing mutual 
funds with large capital infl ows. Hence, momentum in both directions for 
the commonly held stocks can be ignited. 

(This ignition of price momentum due to order fl ow is actually a rather 
general phenomenon, and it happens at even the shortest time scale. We fi nd 
more details on that in the context of high-frequency trading in Chapter 7.)

A factor can be constructed to measure the selling (buying) pressure on 
a stock based on the net percentage of funds holding them that experienced 
redemptions (infl ows). More precisely, 

∑ ∑
∑

=

PRESSURE t

ll j i t flow j t

Own jww i

( ,i )
( (Sell ,i )| ( ,j ) 5< − %)

( ,j , 1−t )
j j

∑
j (6.1)
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where PRESSURE(i, t) is the factor for stock i at the end of quarter t, 
Buy( j, i, t) = 1 if fund j increased its holding in stock i during the quarter t 
and if the fund experienced infl ows greater than 5 percent of its net asset 
value (NAV) (“fl ow( j, t) > 5%”), and zero otherwise. Sell( j, i, t) is similarly 
defi ned for decreases in holdings, and ∑

j
Own( j, i, t − 1) is the total number 

of mutual funds holding stock i the beginning of quarter t.
Note that the PRESSURE variable does not take into account the size 

(NAV) of the fund, as Buy is a binary variable. One wonders whether weigh-
ing Buy by NAV will give better results.

Coval and Staff ord found that a market-neutral portfolio formed based 
on shorting stocks with highest selling pressure (bottom decile of PRESSURE 
ranking) and buying stocks with the highest (top decile of PRESSURE rank-
ing) buying pressure generates annualized returns of about 17 percent be-
fore transaction costs. (Since data on stock holdings are available generally 
on a quarterly basis only, our portfolio is updated quarterly as well.)

Furthermore, capital fl ows into and out of mutual funds can be predicted 
with good accuracy based on their past performance and capital fl ows, a 
refl ection of the herdlike behavior of retail investors. Based on this predic-
tion, we can also predict the future value of the pressure factor noted above. 
In other words, we can front-run the mutual funds in our selling (buying) 
of the stocks they currently own. This front-running strategy generates an-
other 17 percent annualized return before transaction costs.

Finally, since these stocks experience such selling and buying pressures due 
to liquidity-driven reasons, and suff er suppression or elevation of their prices 
through no fault or merit on their own, their stock prices often mean-revert 
after the mutual fund selling or buying pressure is over. Indeed, buying stocks 
that experienced the most selling pressure in the t − 4 up to the t − 1 quarters, 
and  vice versa, generates another 7 percent annualized returns.

Combining all three strategies (momentum, front running, and mean 
reverting) generates a total return of about 41 percent before transaction 
costs. However, the slippage component of the transaction costs is likely 
to be signifi cant because we may experience delays in getting mutual fund 
holdings information at the end of a quarter. In addition, the implementa-
tion of this strategy is not for the faint-of-heart: clean and accurate mu-
tual holdings and returns data have to be purchased from the Center for 
Research in Security Prices (CRSP) at a cost of about $10,000 per year 
of data.

Mutual funds are not the only type of funds that can induce momentum 
in stocks due to forced asset sales and purchases. In Chapter 7, we will 
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discover that index funds and levered ETFs ignite similar momentum as 
well. In fact, forced asset sales and purchases by hedge funds can also lead 
to momentum in stocks, and that caused the August 2007 quant funds melt-
down, as I explain in Chapter 8.

 ■ Pros and Cons of Momentum Strategies

Momentum strategies, especially interday momentum strategies, often have 
diametrically opposite reward and risk characteristics in comparison to mean 
reverting strategies. We will compare their pros and cons in this section.

Let’s start with the cons. In my own trading experience, I have often 
found that it is harder to create profi table momentum strategies, and those 
that are profi table tend to have lower Sharpe ratios than mean-reversal strat-
egies. There are two reasons for this.

First, as we have seen so far, many established momentum strategies have 
long look-back and holding periods. So clearly the number of independent 
trading signals is few and far in between. (We may rebalance a momen-
tum portfolio every day, but that doesn’t make the trading signals more 
independent.) Fewer trading signals naturally lead to lower Sharpe ratio. 
Example: The linear mean reversion model for S&P 500 stocks described in 
Chapter 4 relies on the short-term cross-sectional mean reversion proper-
ties of stocks, and the holding period is less than a day. It has a high Sharpe 
ratio of 4.7. For the same universe of stocks, the opposite cross-sectional 
momentum strategy described earlier in this chapter has a holding period of 
25 days, and though it performed similarly well pre-2008, the performance 
collapsed during the fi nancial crisis years.

Secondly, research by Daniel and Moskowitz on “momentum crashes” 
indicates that momentum strategies for futures or stocks tend to perform 
miserably for several years after a fi nancial crisis (Daniel and Moskowitz, 
2011). We can see that easily from a plot of the S&P DTI index (Figure 6.7). 
As of this writing, it has suff ered a drawdown of –25.9 percent since 
December 5, 2008. Similarly, cross-sectional momentum in stocks also van-
ished during the aftermath of the stock market crash in 2008–2009, and is 
replaced by strong mean reversion. We still don’t know how long this mean 
reversion regime will last: After the stock market crash of 1929, a represen-
tative momentum strategy did not return to its high watermark for more 
than 30 years! The cause of this crash is mainly due to the strong rebound of 
short positions following a market crisis. 
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Third, and this relates mostly to the shorter-term news-driven momentum 
that we will talk about in the next chapter, the duration over which momen-
tum remains in force gets progressively shorter as more traders catch on to 
it. For example, price momentum driven by earnings announcements used to 
last several days. Now it lasts barely until the market closes. This is quite un-
derstandable if we view price momentum as generated by the slow diff usion 
of information. As more traders learn about the information faster and earlier, 
the diff usion—and thus, momentum—also ends sooner. This of course cre-
ates a problem for the momentum trader, since we may have to constantly 
shorten our holding period, yet there is no predictable schedule for doing so.

Lest you think that we should just give up on momentum strategies, let’s 
look at the list of pros for momentum strategies. Such lists usually start with 
the ease of risk management. To see why, we observe that there are two com-
mon types of exit strategies for momentum strategies: time-based and stop 
loss. All the momentum strategies I have discussed so far involve only time-
based exits. We specify a holding period, and we exit a position when we 
reached that holding period. But we can also impose a stop loss as the exit 
condition, or maybe as an additional exit condition. Stop losses are perfectly 
consistent with momentum strategies. If momentum has changed direction, 
we should enter into the opposite position. Since the original position would 
have been losing, and now we have exited it, this new entry signal eff ectively 
served as a stop loss. In contrast, stop losses are not consistent with mean-
reverting strategies, because they contradict mean reversion strategies’ entry 
signals. (This point will be taken up again in Chapter 8.) Because of either a 
time-based exit or a stop loss, the loss of a momentum position is always lim-
ited. In contrast, we can incur an enormous drawdown with just one position 
due to a mean-reverting strategy. (This is not to say that the cumulative loss of 
successive losing positions due to a momentum strategy won’t bankrupt us!) 

Not only do momentum strategies survive risks well, they can thrive in 
them (though we have seen how poorly they did in the aftermath of risky 
events). For mean-reverting strategies, their upside is limited by their natu-
ral profi t cap (set as the “mean” to which the prices revert), but their down-
side can be unlimited. For momentum strategies, their upside is unlimited 
(unless one arbitrarily imposes a profi t cap, which is ill-advised), while their 
downside is limited. The more often “black swan” events occur, the more 
likely that a momentum strategy will benefi t from them. The thicker the 
tails of the returns distribution curve, or the higher its kurtosis, the bet-
ter that market is for momentum strategies. (Remember the simulation in 
Example 1.1? We simulated a returns series with the same kurtosis as the 
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futures series for TU but with no serial autocorrelations. We found that it 
can still generate the same returns as our TU momentum strategy in 12 per-
cent of the random realizations!)

Finally, as most futures and currencies exhibit momentum, momentum 
strategies allow us to truly diversify our risks across diff erent asset class-
es and countries. Adding momentum strategies to a portfolio of mean-
reverting strategies allows us to achieve higher Sharpe ratios and smaller 
drawdowns than either type of strategy alone.

• Time-series momentum refers to the positive correlation of a price series’ 

past and future returns.

• Cross-sectional momentum refers to the positive correlation of a price 

series’ past and future relative returns, in relation to that of other price series 

in a portfolio.

• Futures exhibit time series momentum mainly because of the persistence of 

the sign of roll returns.

• If you are able to fi nd an instrument (e.g., an ETF or another future) that 

cointegrates or correlates with the spot price or return of a commodity, 

you can extract the roll return of the commodity future by shorting that 

instrument during backwardation, or buying that instrument during 

contango.

• Portfolios of futures or stocks often exhibit cross-sectional momentum: a 

simple ranking algorithm based on returns would work.

• Profi table strategies on news sentiment momentum show that the slow 

diffusion of news is a cause for stock price momentum.

• The contagion of forced asset sales and purchases among mutual funds 

contributes to stock price momentum.

• Momentum models thrive on “black swan” events and the positive kurtosis 

of the returns distribution curve.

KEY POINTS
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Intraday 
Momentum
Strategies

C H A P T E R  7

In the preceding chapter we saw that most instruments, be they stocks or 
futures, exhibit cross-sectional momentum, and often time-series momen-

tum as well. Unfortunately, the time horizon of this momentum behavior tends 
to be long—typically a month or longer. Long holding periods present two 
problems: They result in lower Sharpe ratios and backtest statistical signifi cance 
because of the infrequent independent trading signals, and they suff er from un-
derperformance in the aftermath of fi nancial crises. In this chapter, we describe 
short-term, intraday momentum strategies that do not suff er these drawbacks. 

We previously enumerated four main causes of momentum. We will see 
that all but one of them also operate at the intraday time frame. (The only 
exception is the persistence of roll return, since its magnitude and volatility 
are too small to be relevant intraday.)

There is an additional cause of momentum that is mainly applicable to 
the short time frame: the triggering of stops. Such triggers often lead to the 
so-called breakout strategies. We’ll see one example that involves an entry 
at the market open, and another one that involves intraday entry at various 
support or resistance levels.

Intraday momentum can be triggered by specifi c events beyond just price 
actions. These events include corporate news such as earnings announcements 
or analyst recommendation changes, as well as macro-economic news. That 
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these events generate time series momentum has long been known, but I 
present some new research on the eff ects of each specifi c category of events. 

Intraday momentum can also be triggered by the actions of large funds. 
I examine how the daily rebalancing of leveraged ETFs leads to short-term 
momentum. 

Finally, at the shortest possible time scale, the imbalance of the bid and 
ask sizes, the changes in order fl ow, or the aforementioned nonuniform dis-
tribution of stop orders can all induce momentum in prices. Some of the 
common high-frequency trading tactics that take advantage of such momen-
tum will be presented in this chapter.

■ Opening Gap Strategy

In Chapter 4, we discussed a mean-reverting buy-on-gap strategy for stocks. 
The opposite momentum strategy will sometimes work on futures and cur-
rencies: buying when the instrument gaps up, and shorting when it gaps down.

After being tested on a number of futures, this strategy proved to work 
best on the Dow Jones STOXX 50 index futures (FSTX) trading on Eurex, 
which generates an annual percentage rate (APR) of 13 percent and a Sharpe 
ratio of 1.4 from July 16, 2004, to May 17, 2012. Example 7.1 shows the 
gap momentum code (available for download as gapFutures_FSTX.m).

Example 7.1: Opening Gap Strategy for FSTX

This code assumes the open, high, low, and close prices are 
contained in T × 1 arrays op, hi, lo, cl. It makes use of utilities function
smartMovingStd andd backshift available from epchan.com/book2.

entryZscore=0.1;

stdretC2C90d=backshift(1, smartMovingStd(calculateReturns ...
(cl, 1), 90));

longs=op  > backshift(1, hi).*(1+entryZscore*stdretC2C90d);

shorts=op < backshift(1, lo).*(1-entryZscore*stdretC2C90d);

positions=zeros(size(cl));

positions(longs)=1;

positions(shorts)=-1;

ret=positions.*(op-cl)./op;

The equity curve is depicted in Figure 7.1.
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The same strategy works on some currencies, too. However, the daily
“open” and “close” need to be defi ned diff erently. If we defi ne the close to 
be 5:00 p.m. ET, and the open to be 5:00 a.m. ET (corresponding to the 
London open), then applying this strategy to GBPUSD yields an APR of 
7.2 percent and a Sharpe ratio of 1.3 from July 23, 2007,  to February 20, 
2012. Naturally, you can experiment with diff erent defi nitions of opening 
and closing times for diff erent currencies. Most currency markets are closed 
from 5:00 p.m. on Friday to 5:00 p.m. on Sunday, so that’s a natural “gap” for 
these strategies.

What’s special about the overnight or weekend gap that sometimes trig-
gers momentum? The extended period without any trading means that the 
opening price is often quite diff erent from the closing price. Hence, stop 
orders set at diff erent prices may get triggered all at once at the open. The 
execution of these stop orders often leads to momentum because a cascad-
ing eff ect may trigger stop orders placed further away from the open price 
as well. Alternatively, there may be signifi cant events that occurred over-
night. As discussed in the next section, many types of news events generate 
momentum. 

■ News-Driven Momentum Strategy

If, as many people believe, momentum is driven by the slow diff usion of news, 
surely we can benefi t from the fi rst few days, hours, or even seconds after 
a newsworthy event. This is the rationale behind traditional post–earnings 

FIGURE 7.1 Equity Curve of FSTX Opening Gap Strategy
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announcement drift (PEAD) models, as well as other models based on vari-
ous corporate or macroeconomic news.

Post–Earnings Announcement Drift
There is no surprise that an earnings announcement will move stock price. 
It is, however, surprising that this move will persist for some time after the 
announcement, and in the same direction, allowing momentum traders to
benefi t. Even more surprising is that though this fact has been known and 
studied since 1968 (Bernard and Thomas, 1989), the eff ect still has not been 
arbitraged away, though the duration of the drift may have shortened. What
I will show in this section is that as recently as 2011 this strategy is still prof-
itable if we enter at the market open after the earnings announcement was 
made after the previous close, buying the stock if the return is very positive
and shorting if the return is very negative, and liquidate the position at the
same day’s close. Notice that this strategy does not require the trader to 
interpret whether the earnings announcement is “good” or “bad.” It does not 
even require the trader to know whether the earnings are above or below 
analysts’ expectations. We let the market tell us whether it thinks the earn-
ings are good or bad.

Before we backtest this strategy, it is necessary to have historical data of 
the times of earnings annoucements. You can use the function parseEarnings

CalendarFromEarningsDotcom.m displayed in the box to retrieve one year or
so of such data from earnings.com given a certain stock universe specifi ed 
by the stock symbols array allsyms. The important feature of this program
is that it carefully selects only earnings announcements occurring after the 
previous trading day’s market close and before today’s market open. Earn-
ings announcements occurring at other times should not be triggers for our
entry trades as they occur at today’s market open.

B
O

X
 7

.1 Function for Retrieving Earnings Calendar from earnings.com

This function takes an input 1xN stock symbols cell array allsyms and creates 

a 1 × N logical array N earnann, which tells us whether (with values true or false) 

the corresponding stock has an earnings announcement after the previous 

day’s 4:00 P.M. ET (U.S. market closing time) and before today’s 9:30 A.M. ET 

(U.S. market opening time). The inputs prevDate and todayDate should be in 

yyyymmdd format.

function [earnann]= ...
parseEarningsCalendarFromEarningsDotCom(prevDate, ...
todayDate, allsyms)
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B
O

X
 7

.1
 (

Co
nt

in
ue

d)
% [earnann]==parseEaringsCalendarFromEarningsDotCom
% (prevDate,todayDate, allsyms)

earnann=zeros(size(allsyms));

prevEarningsFile=urlread([‘http://www.earnings.com/earning  ...
.asp?date=’, num2str(prevDate), ‘&client=cb’]);

todayEarningsFile=urlread([‘http://www.earnings.com ...
/earning.asp?date=’, num2str(todayDate), ‘&client=cb’]);

prevd=day(datenum(num2str(prevDate), ‘yyyymmdd’));

todayd=day(datenum(num2str(todayDate), ‘yyyymmdd’));

prevmmm=datestr(datenum(num2str(prevDate), ‘yyyymmdd’), ...
‘mmm’);

todaymmm=datestr(datenum(num2str(todayDate), ‘yyyymmdd’), ...
‘mmm’);

patternSym=’<a\s+href=”company.asp\?ticker=([%\*\w\._ ...
/-]+)&coid’;

% prevDate

patternPrevDateTime=[‘<td align=”center”><nobr>’, ...
num2str(prevd), ‘-’, num2str(prevmmm), ‘([ :\dABPMCO]*) ...
</nobr>’];

symA=regexp(prevEarningsFile, patternSym , ‘tokens’);

timeA=regexp(prevEarningsFile, patternPrevDateTime, ...
‘tokens’);

symsA=[symA{:}];

timeA=[timeA{:}];

assert(length(symsA)==length(timeA));

isAMC=~cellfun(‘isempty’, regexp(timeA, ‘AMC’));

patternPM=’[ ]+\d:\d\d[ ]+PM’; % e.g. ‘ 6:00 PM’

isAMC2=~cellfun(‘isempty’, regexp(timeA, patternPM));

symsA=symsA(isAMC | isAMC2);

[foo, idxA, idxALL]=intersect(symsA, allsyms);

earnann(idxALL)=1;

% today

patternTodayDateTime=[‘<td align=”center”><nobr>’, ...
num2str(todayd), ‘-’, num2str(todaymmm), ...
‘([ :\dABPMCO]*)</nobr>’];

(Continued )
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We need to call this program for each day in the backtest for the PEAD 
strategy. We can then concatenate the resulting 1 × N earnann arrays into N

one big historical T × N  earnann array for the N T days in the backtest.T

Assuming that we have compiled the historical earnings announcement 
logical array, whether using our function above or through other means, 
the actual backtest program for the PEAD strategy is very simple, as shown
in Example 7.2. We just need to compute the 90-day moving standard de-
viation of previous-close-to-next day’s-open return as the benchmark for 
deciding whether the announcement is “surprising” enough to generate the 
post announcement drift.

B
O

X
 7

.1
 (

Co
nt

in
ue

d)
symA=regexp(todayEarningsFile, patternSym , ‘tokens’);

timeA=regexp(todayEarningsFile, patternTodayDateTime, ...
‘tokens’);

symsA=[symA{:}];

timeA=[timeA{:}];

symsA=symsA(1:length(timeA));

assert(length(symsA)==length(timeA));

isBMO=~cellfun(‘isempty’, regexp(timeA, ‘BMO’));

patternAM=’[ ]+\d:\d\d[ ]+AM’; % e.g. ‘ 8:00 AM’

isBMO2=~cellfun(‘isempty’, regexp(timeA, patternAM));

symsA=symsA(isBMO | isBMO2);

[foo, idxA, idxALL]=intersect(symsA, allsyms);

earnann(idxALL)=1;

end

Example 7.2: Backtest of Post-Earnings
Annoucement Drift Strategy

We assume the historical open and close prices are stored in the
T × N arrays N op and cl. The input T × N logical arrayN earnann indicates 
whether there is an earnings announcement for a stock on a given day
prior to that day’s market open but after the previous trading day’s 
market close. The utility functions backshift, smartMovingStd and
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For a universe of S&P 500 stocks, the APR from January 3, 2011, to April 
24, 2012, is 6.7 percent, while the Sharpe ratio is a very respectable 1.5. 
The cumulative returns curve is displayed in Figure 7.2. Note that we have 
used 30 as the denominator in calculating returns, since there is a maximum 
of 30 positions in one day during that backtest period. Of course, there is a
certain degree of look-ahead bias in using this number, since we don’t know 
exactly what the maximum will be. But given that the maximum number of 

Example 7.2 (Continued)

smartsum are available for download from epchan.com/book2. The
backtest program itself is named pead.m.

lookback=90;

retC2O=(op-backshift(1, cl))./backshift(1, cl);

stdC2O=smartMovingStd(retC2O, lookback);

positions=zeros(size(cl));

longs=retC2O >= 0.5*stdC2O & earnann;

shorts=retC2O <= -0.5*stdC2O & earnann;

positions(longs)=1;

positions(shorts)=-1;

ret=smartsum(positions.*(cl-op)./op, 2)/30;

FIGURE 7.2 Cumulative Returns Curve of PEAD Strategy
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announcements per day is quite predictable, this is not a very grievous bias. 
Since this is an intraday strategy, it is possible to lever it up by at least four 
times, giving an annualized average return of close to 27 percent.

You might wonder whether holding these positions overnight will gener-
ate additional profi ts. The answer is no: the overnight returns are negative 
on average. On the contrary, many published results from 10 or 20 years 
ago have shown that PEAD lasted more than a day. This may be an example 
where the duration of momentum is shortened due to increased awareness 
of the existence of such momentum. It remains to be tested whether an even 
shorter holding period may generate better returns.

Drift Due to Other Events
Besides earnings announcements, there are other corporate events that 
may exhibit post-announcement drift: An incomplete list includes earn-
ings guidance, analyst ratings and recommendation changes, same store 
sales, and airline load factors. (A reasonable daily provider of such data is 
the Dow Jones newswire delivered by Newsware because it has the code 
specifi c to the type of event attached to each story and is machine read-
able.) In theory, any announcements that prompt a reevaluation of the 
fair market value of a company should induce a change in its share price 
toward a new equilibrium price. (For a recent comprehensive study of all 
these events and their impact on the stock’s post-event returns, see Hafez, 
2011.) Among these events, mergers and acquisitions, of course, draw 
the attention of specialized hedge funds that possess in-depth fundamental 
knowledge of the acquirer and acquiree corporations. Yet a purely techni-
cal model like the one described earlier for PEAD can still extract an APR 
of about 3 percent for mergers and acquisitions (M&As). (It is interesting 
to note that contrary to common beliefs, Hafez found that the acquiree’s 
stock price falls more than the acquirer’s after the initial announcement 
of the acquisition.)

In Chapter 6, we described how momentum in a stock’s price is gener-
ated by large funds’ forced buying or selling of the stock. For index funds 
(whether mutual or exchange traded), there is one type of forced buying 
and selling that is well known: index composition changes. When a stock 
is added to an index, expect buying pressure, and vice versa when a stock 
is deleted from an index. These index rebalancing trades also generate mo-
mentum immediately following the announced changes. Though some re-
searchers have reported that such momentum used to last many days, my 
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own testing with more recent data suggests that the drift horizon has also 
been reduced to intraday (Shankar and Miller, 2006).

While we are on the subject of momentum due to scheduled announce-
ments, what about the impact of macroeconomic events such as Federal 
Open Market Committee’s rate decisions or the release of the latest con-
sumer price index? I have tested their eff ects on EURUSD, but unfortu-
nately have found no signifi cant momentum. However, Clare and Courtenay 
reported that U.K. macroeconomic data releases as well as Bank of England 
interest rate announcements induced momentum in GBPUSD for up to at 
least 10 minutes after the announcements (Clare and Courtnenay, 2001).
These results were based on data up to 1999, so we should expect that the 
duration of this momentum to be shorter in recent years, if the momentum 
continues to exist at all.

■ Leveraged ETF Strategy

Imagine that you have a portfolio of stocks that is supposed to track the
MSCI US REIT index (RMZ), except that you want to keep the leverage
of the portfolio at 3, especially at the market close. As I demonstrate in
Example 8.1, this constant leverage requirement has some counterintuitive
and important consequences. Suppose the RMZ dropped precipitously one 
day. That would imply that you would need to substantially reduce the posi-
tions in your portfolio by selling stocks across the board in order to keep the 
leverage constant. Conversely, if the RMZ rose that day, you would need to 
increase the positions by buying stocks.

Now suppose you are actually the sponsor of an ETF, and that portfolio 
of yours is none other than a 3× leveraged ETF such as DRN (a real estate 
ETF), and its equity is over a hundred million dollars. If you think that this 
rebalancing procedure (selling the component stocks when the portfolio’s 
return is negative, and vice versa) near the market close would generate 
momentum in the market value of the portfolio, you would be right.

(A large change in the market index generates momentum in the same 
direction for both leveraged long or short ETFs. If the change is positive, 
a short ETF would experience a decrease in equity, and its sponsor would 
need to reduce its short positions. Therefore, it would also need to buy 
stocks, just as the long ETF would.)

We can test this hypothesis by constructing a very simple momentum 
strategy: buy DRN if the return from previous day’s close to 15 minutes 
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before market close is greater than 2 percent, and sell if the return is smaller 
than −2 percent. Exit the position at the market close. Note that this mo-
mentum strategy is based on the momentum of the underlying stocks, so 
it should be aff ecting the near-market-close returns of the unlevered ETFs 
such as SPY as well. We use the leveraged ETFs as trading instruments sim-
ply to magnify the eff ect. The APR of trading DRN is 15 percent with a 
Sharpe ratio of 1.8 from October 12, 2011, to October 25, 2012.

Naturally, the return of this strategy should increase as the aggregate assets 
of all leveraged ETFs increase. It was reported that the total AUM of lever-
aged ETFs (including both long and short funds) at the end of January 2009 is 
$19 billion (Cheng and Madhavan, 2009). These authors also estimated that a 
1 percent move of SPX will necessitate a buying or selling of stocks constitut-
ing about 17 percent of the market-on-close volume. This is obviously going 
to have signifi cant market impact, which is momentum inducing. (A more up-
dated analysis was published by Rodier, Haryanto, Shum, and Hejazi, 2012.)

There is of course another event that will aff ect the equity of an ETF, lev-
eraged or not: the fl ow of investors’ cash. A large infl ow into long leveraged 
ETFs will cause positive momentum on the underlying stocks’ prices, while 
a large infl ow into short leveraged (“inverse”) ETFs will cause negative mo-
mentum. So it is theoretically possible that on the same day when the market 
index had a large positive return many investors sold the long leveraged ETFs 
(perhaps as part of a mean-reverting strategy). This would have neutralized 
the momentum. But our backtests show that this did not happen often.

■ High-Frequency Strategies

Most high-frequency momentum strategies involve extracting information 
from the order book, and the basic idea is simple: If the bid size is much 
bigger than the ask size, expect the price to tick up and vice versa. This 
idea is backed by academic research. For example, an approximately linear 
relationship between the imbalance of bid versus ask sizes and short-term 
price changes in the Nasdaq market was found (Maslov and Mills, 2001). As 
expected, the eff ect is stronger for lower volume stocks. The eff ect is not 
limited to just the national best bid off er (NBBO) prices: an imbalance of the
entire order book also induces price changes for a stock on the Stockholm 
stock market (Hellström and Simonsen, 2006).

There are a number of high-frequency momentum strategies based on 
this phenomenon. Many of those were described in books about market 
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microstructure or high-frequency trading (Arnuk and Saluzzi, 2012; Durbin,
2010; Harris, 2003; and Sinclair, 2010). (In my descriptions that follow, I 
focus on making an initial long trade, but, of course, there is a symmetrical 
opportunity on the short side.) 

In markets that fi ll orders on a pro-rata basis such as the Eurodollar fu-
tures trading on CME, the simplest way to benefi t from this expectation is
just to “join the bid” immediately, so that whenever there is a fi ll on the bid 
side, we will get allocated part of that fi ll. To ensure that the bid and ask 
prices are more likely to move higher rather than lower after we are fi lled, 
we join the bid only when the original bid size is much larger than the ask 
size. This is called the ratio trade, because we expect the proportion of the 
original order to be fi lled is equal to the ratio between our own order size 
and the aggregate order size at the bid price. Once the buying pressure caus-
es the bid price to move up one or more ticks, then we can sell at a profi t, 
or we can simply place a sell order at the best ask (if the bid-ask spread is 
larger than the round trip commission per share). If the bid price doesn’t 
move up or our sell limit order doesn’t get fi lled, we can probably still sell 
at the original best bid price because of the large bid size, with the loss of 
commissions only.

In markets where the bid-ask spread is bigger than two ticks, there is
another simple trade to benefi t from the expectation of an uptick. Simply
place the buy order at the best bid plus one tick. If this is fi lled, then we 
place a sell order at the best ask minus one tick and hope that it is fi lled. But 
if it is not, we can probably still sell it at the original best bid, with the loss 
of commissions plus one tick. This is called ticking or quote matching. For this 
trade to be profi table, we need to make sure that the round trip commission
per share is less than the bid-ask spread minus two ticks. This strategy is il-
lustrated in Figure 7.3.

Best  Bid

Best Ask

> 2 ticks 

1 tick

1 tick

B 

S 

S’

FIGURE 7.3 Ticking Strategy. The original spread must be greater than two ticks. 
After the buy order is fi lled at B, we will try to sell it at S for a profi t of at least one tick.
But if the sell order cannot be fi lled, then we will sell it at S′ at a loss of one tick.
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(Ticking is not a foolproof strategy, of course. The original best bid be-
fore it was front-run may be cancelled if the trader knows that he has been 
front-run, leaving us with a lower bid price to unload our inventory. Or the 
whole situation could be set up as a trap for us: the trader who placed the 
original best bid actually wanted to sell us stocks at a price better than her 
own bid. So once we bought her stocks plus one tick, she would immedi-
ately cancel the bid.)

Even when there is no preexisting buying pressure or bid-ask size imbal-
ance, we can create the illusion of one (often called momentum ignition). This 
works for markets with time priority for orders instead of using pro-rata 
fi lls. Let’s assume we start with very similar best bid and ask sizes. We will 
place a large buy limit order at the best bid to create the impression of buy-
ing pressure, and simultaneously place a small sell limit order at the best 
ask. This would trick traders to buy at the ask price since they anticipate 
an uptick, fi lling our small sell order. At this point, we immediately cancel 
the large buy order. The best bid and ask sizes are now roughly equal again. 
Many of those traders who bought earlier expecting a large buying pressure 
may now sell back their holdings at a loss, and we can then buy them at the 
original best bid. This is called fl ipping.

There is a danger to creating the illusion of buying pressure—somebody 
just might call our bluff  and actually fi ll our large buy order. In this case, we 
might have to sell it at a loss. Conversely, if we suspect a large buy order is 
due to fl ippers, then we can sell to the fl ippers and drive down the bid price. 
We hope that the fl ippers will capitulate and sell their new inventory, driv-
ing the ask price down as well, so that we can then cover our short position 
below the original bid price. How do we know that the large buy order is due 
to fl ippers in the fi rst place? We may have to record how often a large bid gets 
canceled instead of getting fi lled. If you subscribe to the private data feeds 
from the exchanges such as ITCH from Nasdaq, EDGX Book Feed from 
Direct Edge, or the PITCH feed from BATS, you will receive the detailed 
life history of an order including any modifi cations or partial fi lls (Arnuk and 
Saluzzi, 2012). Such information may help you detect fl ippers as well.

All these strategies and their defenses, bluff s, and counterbluff s illustrate 
the general point that high-frequency traders can profi t only from slower 
traders. If only high-frequency traders are left in the market, the net average 
profi t for everyone will be zero. Indeed, because of the prevalence of these 
types of high-frequency strategies that “front-run” large bid or ask orders, 
many traditional market makers no longer quote large sizes. This has led to 
a general decrease of the NBBO sizes across many markets. For example, 
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even in highly liquid stocks such as AAPL, the NBBO sizes are often just 
a few hundred shares. And even for the most liquid ETFs such as SPY on 
ARCA, the NBBO sizes are often fewer than 10,000 shares. Only after these 
small orders are fi lled will the market maker go back to requote at the same 
prices to avoid being taken advantage of by the high-frequency traders. (Of 
course, there are other reasons for avoiding displaying large quotes: market 
makers do not like to keep large inventories that can result from having their 
large quotes fi lled.) Similarly, large institutional orders that were formerly
executed as block trades are now broken up into tiny child orders to be scat-
tered around the diff erent market venues and executed throughout the day.

Stop hunting is another favorite high-frequency momentum strategy. Research 
in the currencies markets indicated that once support (resistance) levels are 
breached, prices will go further down (up) for a while (Osler, 2000, 2001). 
These support and resistance levels can be those reported daily by banks or 
brokerages, or they can just be round numbers in the proximity of the cur-
rent price levels. This short-term price momentum occurs because of the large 
number of stop orders placed at or near the support and resistance levels. 

To understand this further, let’s just look at the support levels, as the situ-
ation with resistance levels is symmetrical. Once the price drops enough to 
breach a support level, those sell stop orders are triggered and thereby drive 
the prices down further. Given this knowledge, high-frequency traders can, 
of course, create artifi cial selling pressure by submitting large sell orders 
when the price is close enough to a support level, hoping to drive the next 
tick down. Once the stop orders are triggered and a downward momentum 
is in force, these high-frequency traders can cover their short positions for 
a quick profi t.

If we have access to the order fl ow information of a market, then we have aw

highly valuable information stream that goes beyond the usual bid/ask/last 
price stream. As Lyons discussed in the context of currencies trading, “order 
fl ow” is signed transaction volume (Lyons, 2001). If a trader buys 100 units 
from a dealer/market maker/order book, the order fl ow is 100, and it is 
−100 if the trader sells 100 units instead. What “buying” from an order book 
means is that a trader buys at the ask price, or, equivalently, the trader submits 
a market order to buy. Empirical research indicates that order fl ow informa-
tion is a good predictor of price movements. This is because market makers 
can distill important fundamental information from order fl ow information, 
and set the bid-ask prices accordingly. For example, if a major hedge fund just 
learns about a major piece of breaking news, their algorithms will submit large 
market orders of the same sign in a split second. A market maker monitoring 
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the order fl ow will deduce, quite correctly, that such large one-directional 
demands indicate the presence of informed traders, and they will immediately 
adjust their bid-ask prices to protect themselves. The urgency of using market 
orders indicates that the information is new and not widely known.

Since most of us are not large market makers or operators of an exchange, 
how can we access such order fl ow information? For stocks and futures mar-
kets, we can monitor and record every tick (i.e., changes in best bid, ask, and 
transaction price and size), and thus determine whether a transaction took 
place at the bid (negative order fl ow) or at the ask (positive order fl ow). For 
the currencies market, this is diffi  cult because most dealers do not report 
transaction prices. We may have to resort to trading currency futures for 
this strategy. Once the order fl ow per transaction is computed, we can easily 
compute the cumulative or average order fl ow over some look-back period 
and use that to predict whether the price will move up or down.

• Intraday momentum strategies do not suffer from many of the

disadvantages of interday momentum strategies, but they retain some key

advantages.

• “Breakout” momentum strategies involve a price exceeding a trading range.

• The opening gap strategy is a breakout strategy that works for some futures

and currencies.

• Breakout momentum may be caused by the triggering of stop orders.

• Many kinds of corporate and macroeconomic news induce short-term price

momentum.

• Index composition changes induce momentum in stocks that are added to

or deleted from the index.

• Rebalancing of leveraged ETFs near the market close causes momentum

in the underlying index in the same direction as the market return from the

previous close.

• Many high-frequency momentum strategies involve imbalance between

bid and ask sizes, an imbalance that is sometimes artifi cially created by the

high-frequency traders themselves.

• Stop hunting is a high-frequency trading strategy that relies on triggering

stop orders that typically populate round numbers near the current market

price.

• Order fl ow can predict short-term price movement in the same direction.

KEY POINTS
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Risk Management

C H A P T E R  8

Risk management means different things to different people. To nov-
ice traders, risk management is driven by “loss aversion”: we simply 

don’t like the feeling of losing money. In fact, research has suggested 
that the average human being needs to have the potential for making $2 
to compensate for the risk of losing $1, which may explain why a Sharpe 
ratio of 2 is so emotionally appealing (Kahneman, 2011). However, this 
dislike of risk in itself is not rational. Our goal should be the maximi-
zation of long-term equity growth, and we avoid risk only insofar as it 
interferes with this goal. Risk management in this chapter is based on 
this objective.

The key concept in risk management is the prudent use of leverage, 
which we can optimize via the Kelly formula or some numerical methods 
that maximize compounded growth rate. But sometimes reality forces us 
to limit the maximum drawdown of an account. One obvious way of ac-
complishing this is the use of stop loss, but it is often problematic. The other
way is constant proportion portfolio insurance, which tries to maximize the 
upside of the account in addition to preventing large drawdowns. Both will
be discussed here. Finally, it may be wise to avoid trading altogether during
times when the risk of loss is high. We will investigate whether the use of 
certain leading indicators of risk is an eff ective loss-avoidance technique.
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■ Optimal Leverage

It is easy to say that we need to be prudent when using leverage, but much 
harder to decide what constitutes a prudent, or optimal, leverage for a par-
ticular strategy or portfolio because, obviously, if we set leverage to zero, we
will suff er no risks but will generate no returns, either.

To some portfolio managers, especially those who are managing their own 
money and answerable to no one but themselves, the sole goal of trading is the 
maximization of net worth over the long term. They pay no mind to draw-
downs and volatilities of returns. So the optimal leverage to them means one 
that can maximize the net worth or, equivalently, the compounded growth rate.

We’ll discuss here three methods of computing the optimal leverage 
that maximizes the compounded growth rate. Each method has its own as-
sumptions and drawbacks, and we try to be agnostic as to which method
you should adopt. But, in all cases, we have to make the assumption that 
the future probability distribution of returns of the market is the same as 
in the past. This is usually an incorrect assumption, but this is the best that 
quantitative models can do. Even more restrictive, many risk management 
techniques assume further that the probability distribution of returns of the 
strategy itself is the same as in the past. And fi nally, the most restrictive of all y

assumes that the probability distribution of returns of the strategy is Gauss-
ian. As is often the case in mathematical modeling, the most restrictive as-
sumptions give rise to the most elegant and simple solution, so I will start
this survey with the Kelly formula under the Gaussian assumption.

If the maximum drawdown of an account with a certain leverage is −100 
percent, this leverage cannot be optimal because the compounded growth 
rate will also be −100 percent. So an optimal leverage implies that we must 
not be ruined (equity reaching zero) at any point in history, rather self-
evidently! But sometimes our risk managers (perhaps it is a spouse for in-
dependent traders) tell us that we are allowed to have a much smaller mag-
nitude of drawdown than 1. In this case, the maximum drawdown allowed
forms an additional constraint in the leverage optimization problem.

No matter how the optimal leverage is determined, the one central 
theme is that the leverage should be kept constant. This is necessary to opti-
mize the growth rate whether or not we have the maximum drawdown con-
straint. Keeping a constant leverage may sound rather mundane, but can be 
counterintuitive when put into action. For example, if you have a long stock 
portfolio, and your profi t and loss (P&L) was positive in the last trading pe-
riod, the constant leverage requirement forces you to buy more stocks for 
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this period. However, if your P&L was negative in the last period, it forces
you to sell stocks into the loss. Example 8.1 illustrates this.

Many analysts believe that this “selling into losses” feature of the risk 
management techniques causes contagion in fi nancial crises. (In particular, 
this was cited as a cause of the August 2007 meltdown of quant funds; see 
Khandani and Lo, 2007). This is because often many funds are holding similar 
positions in their portfolios. If one fund suff ers losses, perhaps due to some 
unrelated strategies, it is prone to liquidate positions across all its portfolios 
due to the constant leverage requirement, causing losses for all other funds 
that hold those positions. The losses force all these other funds to also liq-
uidate their positions and thus exacerbate the losses for everyone: a vicious 
cycle. One might think of this as a tragedy of the commons: self-preservation 
(“risk management”) for one fund can lead to catastrophe for all.

Example 8.1:  The Implications of the
Constant Leverage Requirement

The central requirement for all ways of optimizing leverage described
in this chapter is that the leverage be kept constant at all times. This
can have some counterintuitive consequences.

If you started with $100K equity in your account, and your
strategy’s optimal leverage was determined to be 5, then you should
have a portfolio with market value of $500K.

If, however, you lost $10K in one day and your equity was reduced
to $90K, with a portfolio market value of $490K, then you need to
liquidate a further $40K of your portfolio so that its updated market r

value became 5 × $90K = $450K. This selling into the loss may make
some people uncomfortable, but it is a necessary part of many risk 
management schemes.

Suppose you then gained $20K the next day. What should your
portfolio market value be? And what should you do to achieve that
market value?

The new portfolio market value should be 5 × ($90K + $20K) =
$550K. Since your current portfolio market value was just $450K + 
$20K = $470K, this means you need to add $80K worth of (long or 
short) securities to the portfolio. Hopefully, your broker will lend
you the cash to buy all these extra securities!
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Kelly Formula
If one assumes that the probability distribution of returns is Gaussian, the 
Kelly formula gives us a very simple answer for optimal leverage f: 

f m= / ,s2 (8.1)

where m is the mean excess return, and s2 is the variance of the excess
returns. 

One of the best expositions of this formula can be found in Edward
Thorp’s (1997) paper, and I also devoted an entire chapter in Quantitative 

Trading (Chan, 2009) to it. It can be proven that if the Gaussian assumption 
is a good approximation, then the Kelly leverage f will generate the highest f

compounded growth rate of equity, assuming that all profi ts are reinvested. 
However, even if the Gaussian assumption is really valid, we will inevitably 
suff er estimation errors when we try to estimate what the “true” mean and 
variance of the excess return are. And no matter how good one’s estima-
tion method is, there is no guarantee that the future mean and variance will
be the same as the historical ones. The consequence of using an overesti-
mated mean or an underestimated variance is dire: Either case will lead to 
an overestimated optimal leverage, and if this overestimated leverage is high 
enough, it will eventually lead to ruin: equity going to zero. However, the 
consequence of using an underestimated leverage is merely a submaximal
compounded growth rate. Many traders justifi ably prefer the later scenario, 
and they routinely deploy a leverage equal to half of what the Kelly formula 
recommends: the so-called half-Kelly leverage.

My actual experience using Kelly’s optimal leverage is that it is best 
viewed as an upper bound rather than as the leverage that must be used. 
Often, the Kelly leverage given by the backtest (or a short period of walk-
forward test) is so high that it far exceeds the maximum leverage allowed by 
our brokers. At other times, the Kelly leverage would have bankrupted us 
even in backtest, due to the non-Gaussian distributions of returns. In other 
words, the maximum drawdown in backtest is −1 using the Kelly leverage,
which implies setting the leverage by numerically optimizing the growth 
rate using a more realistic non-Gaussian distribution might be more practi-
cal. Alternatively, we may just optimize on the empirical, historical returns. 
These two methods will be discussed in the next sections.

But just using Kelly optimal leverage as an upper bound can some-
times provide interesting insights. For example, I once calculated that both 
the Russell 1000 and 2000 indices have Kelly leverage at about 1.8. But
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exchange-traded fund (ETF) sponsor Direxion has been marketing triple
leveraged ETFs BGU and TNA tracking these indices. By design, they have a 
leverage of 3. Clearly, there is a real danger that the net asset value (NAV) of 
these ETFs will go to zero. Equally clearly, no investors should buy and hold
these ETFs, as the sponsor itself readily agrees.

There is another usage of the Kelly formula besides setting the optimal 
leverage: it also tells us how to optimally allocate our buying power to dif-
ferent portfolios or strategies. Let’s denote F as a column vector of optimal F

leverages that we should apply to the diff erent portfolios based on a com-
mon pool of equity. (For example, if we have $1 equity, then F = [3.2 1.5]T

means the fi rst portfolio should have a market value of $3.2 while the sec-
ond portfolio should have a market value of $1.5. The T signifi es matrixT

transpose.) The Kelly formula says

 F = C −1M (8.2)M

where C is the covariance matrix of the returns of the portfolios andC M is theM

mean excess returns of these portfolios.
There is an extensive example on how to use this formula in Quantitative 

Trading. But what should we do if our broker has set a maximum leverage 
FmaxF  that is smaller than the total gross leveragex ∑n

i|FiF |? (We are concerned 
with the gross leverage, which is equal to the absolute sum of the long and 
short market values divided by our equity, not the net leverage, which is the 
net of the long and short market values divided by our equity.) The usual 
recommendation is to multiply all FiF  by the factor FmaxF /∑n

i|FiF | so that the to-
tal gross leverage is equal to FmaxF . The problem with this approach is that the
compounded growth rate will no longer be optimal under this maximum 
leverage constraint. I have constructed Example 8.2 to demonstrate this. 
The upshot of that example is that when FmaxF  is much smaller thanx ∑n

i|FiF |, it 
is often optimal (with respect to maximizing the growth rate) to just invest 
most or all our buying power into the portfolio or strategy with the highest 
mean excess return.

Optimization of Expected Growth Rate Using
Simulated Returns
If one relaxes the Gaussian assumption and substitutes another analytic 
form (e.g., Student’s t) for the returns distribution to take into account the
fat tails, we can still follow the derivations of the Kelly formula in Thorp’s 
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Example 8.2: Optimal Capital Allocation Under a
Maximum Leverage Constraint

When we have multiple portfolios or strategies, the Kelly formula 
says that we should invest in each portfolio i with leverage FiF

determined by Equation 8.2. But often, the total gross leverage 
∑n

i|FiF | computed this way exceeds the maximum leverage FmaxF

imposed on us by our brokerage or our risk manager. With this 
constraint, it is often not optimal to just multiply all these FiF  by the 
factor FmaxF /∑n

i|FiF |, as I will demonstrate here.
Suppose we have two strategies, 1 and 2. Strategy 1 has annualized 

mean excess return and volatility of 30 percent and 26 percent, 
respectively. Strategy 2 has annualized mean excess return and
volatility of 60 percent and 35 percent, respectively. Suppose further 
that their returns distributions are Gaussian, and that there is zero 
correlation between the returns of 1 and 2. So the Kelly leverages for 
them are 4.4 and 4.9, respectively, with a total gross leverage of 9.3.
The annualized compounded growth rate is (Thorp, 1997)

g F= CF /2T = 2.1, (8.3)

where we have also assumed that the risk-free rate is 0. Now, let’s say
our brokerage tells us that we are allowed a maximum leverage of 2. 

FIGURE 8.1 Constrained Growth Rate g as Function of F2
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Example 8.2 (Continued)

So the leverages for the strategies have to be reduced to 0.95 and
1.05, respectively. The growth rate is now reduced to

∑ ( )=
=

g
i 1

2
= 0.82. (8.4)

(Equation 8.3 for g applies only when the leverages used are
optimal.)

But do these leverages really generate the maximum g under our
maximum leverage constraint? We can fi nd out by setting F1 to FmaxFF

− F2F , and plot g as a function of F2F  over the allowed range 0 to FmaxFF = F2F .
It is obvious that the growth rate is optimized when F2F = FmaxFF  =x  2. =

The optimized g is 0.96, which is higher than the 0.82 given in
Equation 8.4. This shows that when we have two or more strategies 
with very diff erent independent growth rates, and when we have
a maximum leverage constraint that is much lower than the Kelly
leverage, it is often optimal to just apply all of our buying power on 
the strategy that has the highest growth rate.

paper and arrive at another optimal leverage, though the formula won’t be 
as simple as Equation 8.1. (This is true as long as the distribution has a fi nite 
number of moments, unlike, for example, the Pareto Levy distribution.) 
For some distributions, it may not even be possible to arrive at an analytic 
answer. This is where Monte Carlo simulations can help.

The expected value of the compounded growth rate as a function of the
leverage f is (assuming for simplicity that the risk-free rate is zero)f

g( f   ) = 〈log(1 + fR)〉, (8.5)

where 〈…〉 indicates an average over some random sampling of the unle-
vered return-per-bar R(t) of the strategy (not of the market prices) based on 
some probability distribution of R. (We typically use daily bars for  R(t), but 
the bar can be as long or short as we please.) If this probability distribution
is Gaussian, then g( f   ) can be analytically reduced to g( f   ) = fm − f 2m2/2, 
which is the same as Equation 8.4 in the single strategy case. Furthermore, 
the maxima of g( f   ) can of course be analytically determined by taking the 
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derivative of g( f   ) with respect to fo  and setting it to zero. This will reproducef

the Kelly formula in Equation 8.1 and will reproduce the maximum growth 
rate indicated by Equation 8.3 in the single strategy case. But this is not our 
interest here. We would like to compute Equation 8.5 using a non-Gaussian 
distribution of R.

Even though we do not know the true distribution of R, we can use the 
so-called Pearson system (see www.mathworks.com/help/toolbox/stats
/br5k833-1.html or mathworld.wolfram.com/PearsonSystem.html) to 
model it. The Pearson system takes as input the mean, standard deviation, 
skewness, and kurtosis of the empirical distribution of R, and models it as 
one of seven probability distributions expressible analytically encompassing 
Gaussian, beta, gamma, Student’s t, and so on. Of course, these are not the
most general distributions possible. The empirical distribution might have
nonzero higher moments that are not captured by the Pearson system and 
might, in fact, have infi nite higher moments, as in the case of the Pareto Levy 
distribution. But to capture all the higher moments invites data-snooping 
bias due to the limited amount of empirical data usually available. So, for 
all practical purposes, we use the Pearson system for our Monte Carlo 
sampling.

We illustrate this Monte Carlo technique by using the mean reversion 
strategy described in Example 5.1. But fi rst, we can use the daily returns in 
the test set to easily calculate that the Kelly leverage is 18.4. We should keep 
this number in mind when comparing with the Monte Carlo results. Next,
we use the fi rst four moments of these daily returns to construct a Pearson 
system and generate 100,000 random returns from this system. We can use 
the pearsrnd function from the MATLAB Statistics Toolbox for this. (Thed

complete code is in monteCarloOptimLeverage.m.)

B
O

X
 8

.1 We assume that the strategy daily returns are contained in the Nx1 array 

ret. We will use the fi rst four moments of ret to generate a Pearson systemt

distribution, from which any number of simulated returns ret_sim can be

generated.

moments={mean(ret), std(ret), skewness(ret), kurtosis(ret)};

[ret_sim, type]=pearsrnd(moments{:}, 100000, 1);

In the code, ret contains the daily returns from the backtest of the strat-
egy, whereas ret_sim are 100,000 randomly generated daily returns with 
the same four moments as ret. The pearsrnd function also returns d type, which 

http://www.mathworks.com/help/toolbox/stats/br5k833-1.html
http://www.mathworks.com/help/toolbox/stats/br5k833-1.html
http://mathworld.wolfram.com/PearsonSystem.html


177

R
ISK

 M
A

N
A

G
E

M
E

N
T

indicates which type of distribution fi ts our data best. In this example, type

is 4, indicating that the distribution is not one of the standard ones such as 
Student’s t. (But we aren’t at all concerned whether it has a name.) Now we 
can use ret_sim to compute the average of g( f   ). In our code, g( f  ) is an inline 
function with leverage f  and a return seriesf R as inputs.

B
O

X
 8

.2 An inline function for calculating the compounded growth rate based on

leverage f and return per bar of R.

g=inline(‘sum(log(1+f*R))/length(R)’, ‘f’, ‘R’);

Plotting g( f  ) for fr = 0 to fo = 23 reveals that g( f   ) does in fact have a maxi-
mum somewhere near 19 (see Figure 8.2), and a numerical optimization 
using the fminbnd function of the MATLAB Optimization Toolbox yields and

optimal f of 19, strikingly close to the Kelly’s optimalf f of 18.4!f

B
O

X
 8

.3 Finding the minimum of the negative of the growth rate based on leverage 

f and the simulated returns f ret_sim (same as fi nding the maximum of the

positive growth rate).

minusGsim=@(f)-g(f, ret_sim);

optimalF=fminbnd(minusGsim, 0, 24);

Of course, if you run this program with a diff erent random seed and
therefore diff erent series of simulated returns, you will fi nd a somewhat 
diff erent value for the optimal f, but ideally it won’t be too diff erent from
my value. (As a side note, the only reason we minimized −g−  instead of maxi-
mized g is that MATLAB does not have a fmaxbnd  function.)d

There is another interesting result from running this Monte Carlo opti-
mization. If we try f of 31, we shall fi nd that the growth rate isf −1; that is, 
ruin. This is because the most negative return per period is −0.0331, so any
leverage higher than 1 / 0.0331 = 30.2 will result in total loss during that
period.

Optimization of Historical Growth Rate
Instead of optimizing the expected value of the growth rate using our ana-
lytical probability distribution of returns as we did in the previous section, 
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one can of course just optimize the historical growth rate in the backtest 
with respect to the leverage. We just need one particular realized set of 
returns: that which actually occurred in the backtest. This method suff ers 
the usual drawback of parameter optimization in backtest: data-snooping 
bias. In general, the optimal leverage for this particular historical realization 
of the strategy returns won’t be optimal for a diff erent realization that will 
occur in the future. Unlike Monte Carlo optimization, the historical returns 
off er insuffi  cient data to determine an optimal leverage that works well for 
many realizations. 

Despite these caveats, brute force optimization over the backtest returns
sometimes does give a very similar answer to both the Kelly leverage and
Monte Carlo optimization. Using the same strategy as in the previous sec-
tion, and altering the optimization program slightly to feed in the historical 
returns ret instead of the simulated returns ret_sim.

B
O

X
 8

.4 Finding the minimum of the negative of the growth rate based on leverage f

and the historical returns ret.

minusG=@(f)-g(f, ret);

optimalF=fminbnd(minusG, 0, 21);

we obtain the optimal f of 18.4, which is again the same as the Kelly optimalf f.

FIGURE 8.2 Expected Growth Rate g as Function of ff .ff
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Maximum Drawdown
For those portfolio managers who manage other people’s assets, maximiz-
ing the long-term growth rate is not the only objective. Often, their clients
(or employers) will insist that the absolute value of the drawdown (return 
calculated from the historic high watermark) should never exceed a certain 
maximum. That is to say, they dictate what the maximum drawdown can be. 
This requirement translates into an additional constraint into our leverage 
optimization problem.

Unfortunately, this translation is not as simple as multiplying the uncon-
strained optimal leverage by the ratio of the maximum drawdown allowed 
and the original unconstrained maximum drawdown. Using the example in 
the section on optimization of expected growth rate with simulated returns 
ret_sim, the maximum drawdown is a frightening –0.999. This is with an 
unconstrained optimal f of 19.2. Suppose our risk manager allows a maxi-f

mum drawdown of only half this amount. Using half the optimal f of 9.6f

still generates a maximum drawdown of –0.963. By trial and error, we fi nd 
that we have to lower the leverage by a factor of 7, to 2.7 or so, in order to 
reduce the magnitude of the maximum drawdown to about 0.5. (Again, all 
these numbers depend on the exact series of simulated returns, and so are 
not exactly reproducible.)

B
O

X
 8

.5 Using my function calculateMaxDD (available on http://epchan.com/book2) 

to compute maximum drawdowns with different leverages on the same

simulated returns series ret_sim.

maxDD=calculateMaxDD(cumprod(1+optimalF/7*ret_sim)-1);

Of course, setting the leverage equal to this upper bound will only pre-
vent the simulated drawdown from exceeding the maximum allowed, but it 
will not prevent our future drawdown from doing so. The only way to guar-
antee that the future drawdown will not exceed this maximum is to either 
use constant proportion insurance or to impose a stop loss. We will discuss
these techniques in the next two sections. 

It is worth noting that this method of estimating the maximum draw-
down is based on a simulated series of strategy returns, not the historical 
strategy returns generated in a backtest. We can, of course, use the historical 
strategy returns to calculate the maximum drawdown and use that to deter-
mine the optimal leverage instead. In this case, we will fi nd that we just need 

http://epchan.com/book2
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to decrease the unconstrained optimal fl  by a factor of 1.5 (to 13) in order tof

reduce the maximum drawdown to below −0.49.
Which method should we use? The advantage of using simulated returns 

is that they have much better statistical signifi cance. They are akin to the 
value-at-risk (VaR) methodology used by major banks or hedge funds to 
determine the likelihood that they will lose a certain amount of money over
a certain period. The disadvantage is the maximum drawdown that occurs 
in the simulation may be so rare that it really won’t happen more than once 
in a million years (a favorite excuse for fund managers when they come to 
grief). Furthermore, the simulated returns inevitably miss some crucial se-
rial correlations that may be present in the historical returns and that may 
persist into the future. These correlations may be reducing the maximum 
drawdown in the real world. The advantage of using the historical strategy
returns is that they fully capture these correlations, and furthermore the 
drawdown would cover a realistic life span of a strategy, not a million years.
The disadvantage is, of course, that the data are far too limited for capturing 
a worst-case scenario. A good compromise may be a leverage somewhere in 
between those generated by the two methods.

■ Constant Proportion Portfolio Insurance

The often confl icting goals of wishing to maximize compounded growth
rate while limiting the maximum drawdown have been discussed already. 
There is one method that allows us to fulfi ll both wishes: constant propor-
tion portfolio insurance (CPPI). 

Suppose the optimal Kelly leverage of our strategy is determined to be f. ff

And suppose we are allowed a maximum drawdown of −D. We can simply set 
aside D of our initial total account equity for trading, and apply a leverage of ff 
to this subaccount to determine our portfolio market value. The other 1 − D 
of the account will be sitting in cash. We can then be assured that we won’t 
lose all of the equity of this subaccount, or, equivalently, we won’t suff er a 
drawdown of more than −D in our total account. If our trading strategy is
profi table and the total account equity reaches a new high water mark, then 
we can reset our subaccount equity so that it is again D of the total equity, 
moving some cash back to the “cash” account. However, if the strategy suff ers 
losses, we will not transfer any cash between the cash and the trading subac-
count. Of course, if the losses continue and we lose all the equity in the trad-
ing subaccount, we have to abandon the strategy because it has reached our 
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maximum allowed drawdown of −D. Therefore, in addition to limiting our 
drawdown, this scheme serves as a graceful, principled way to wind down a 
losing strategy. (The more common, less optimal, way to wind down a strat-
egy is driven by the emotional breakdown of the portfolio manager.)

Notice tha t because of this separation of accounts, this scheme is not

equivalent to just using a leverage of L = fD in our total account equity.ff

There is no guarantee that the maximum drawdown will not exceed −D 
even with a lowered leverage of ff D. Even if we were to further impose a stop ff

loss of −D, or if the drawdown never went below −D, applying the leverage 
of ff Dff to the full account still won’t generate the exact same compounded
return as CPPI, unless every period’s returns are positive (i.e., maximum 
drawdown is zero). As long as we have a drawdown, CPPI will decrease or-
der size much faster than the alternative, thus making it almost impossible 
(due to the use of Kelly leverage on the subaccount) that the account would
approach the maximum drawdown –D. 

I don’t know if there is a mathematical proof that CPPI will be the same 
as using a leverage of f f Dff in terms of the long-run growth rate, but we can 
use the same simulated returns in the previous sections to demonstrate that
after 100,000 days, the growth rate of CPPI is very similar to the alternative 
scheme: 0.002484 versus 0.002525 per day in one simulation with D = 0.5.
The main advantage of CPPI is apparent only when we look at the maximum 
drawdown. By design, the magnitude of the drawdown in CPPI is less than 
0.5, while that of the alternative scheme without using stop loss is a painful 
0.9 even with just half of the optimal leverage. The code for computing the 
growth rate using CPPI is shown in Box 8.6.

B
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.6 Computing Growth Rate Using CPPI

Assume the return series is ret_sim and the optimal leverage is optimalF, both

from previous calculations. Also assume the maximum drawdown allowed is 

–D = –0.5.

g_cppi=0;

drawdown=0;

D=0.5;

for t=1:length(ret_sim)

  g_cppi=g_cppi+log(1+ ret_sim (t)*D*optimalF*(1+drawdown));

  drawdown=min(0, (1+drawdown)*(1+ ret_sim (t))-1);

end

g_cppi=g_cppi/length(ret_sim);



182

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Note that this scheme should only be applied to an account with one
strategy only. If it is a multistrategy account, it is quite possible that the 
profi table strategies are “subsidizing” the nonprofi table ones such that the 
drawdown is never large enough to shut down the complete slate of strate-
gies. This is obviously not an ideal situation unless you think that the losing 
strategy will somehow return to health at some point.

There is one problem with using CPPI, a problem that it shares with the 
use of stop loss: It can’t prevent a big drawdown from occurring during
the overnight gap or whenever trading in a market has been suspended. 
The purchases of out-of-the-money options prior to an expected market
close can eliminate some of this risk.

■ Stop Loss

There are two ways to use stop losses. The common usage is to use stop 
loss to exit an existing position whenever its unrealized P&L drops below a 
threshold. But after we exit this position, we are free to reenter into a new 
position, perhaps even one of the same sign, sometime later. In other words, 
we are not concerned about the cumulative P&L or the drawdown of the 
strategy.

 The less common usage is to use stop loss to exit the strategy completely 
when our drawdown drops below a threshold. This usage of stop loss is awk-
ward—it can happen only once during the lifetime of a strategy, and ideally 
we would never have to use it. That is the reason why CPPI is preferred over 
using stop loss for the same protection. The rest of this section is concerned
with the fi rst, more common usage of stop loss.

Stop loss can only prevent the unrealized P&L from exceeding our self-
imposed limit if the market is always open whenever we are holding a posi-
tion. For example, it is eff ective if we do not hold positions after the market 
closes or if we are trading in currencies or some futures where the elec-
tronic market is always open except for weekends and holidays. Otherwise, 
if the prices “gap” down or up when the market reopens, the stop loss may 
be executed at a price much worse than what our maximum allowable loss 
dictates. As we said earlier, the purchases of options will be necessary to 
eliminate this risk, but that may be expensive to implement and is valuable
only for expected market downtime.

In some extreme circumstances, stop loss is useless even if the market 
is open but when all liquidity providers decide to withdraw their liquidity 
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simultaneously. This happened during the fl ash crash of May 6, 2010, since
modern-day market makers merely need to maintain a bid of $0.01 (the 
infamous “stub quote”) in times of market stress (Arnuk and Saluzzi, 2012). 
This is why an unfortunate sell stop order on Accenture, a company with 
multibillion-dollar revenue, was executed at $0.01 per share that day.

But even if the market is open and there is normal liquidity, it is a mat-
ter of controversy whether we should impose stop loss for mean-reverting 
strategies. At fi rst blush, stop loss seems to contradict the central assump-
tion of mean reversion. For example, if prices drop and we enter into a 
long position, and prices drop some more and thus induce a loss, we should
expect the prices to rise eventually if we believe in mean reversion of this 
price series. So it is not sensible to “stop loss” and exit this position when the 
price is so low. Indeed, I have never backtested any mean-reverting strategy 
whose APR or Sharpe ratio is increased by imposing a stop loss. 

There is just one problem with this argument: What happens if the mean 
reversion model has permanently stopped working while we are in a posi-
tion? In fi nance, unlike in physics, laws are not immutable. As I have been 
repeating, what was true of a price series before may not be true in the 
future. So a mean-reverting price series can undergo a regime change and 
become a trending price series for an extended period of time, maybe for-
ever. In this case, a stop loss will be very eff ective in preventing catastrophic 
losses, and it will allow us time to consider the possibility that we should just 
shut down the strategy before incurring a 100 percent loss. Furthermore, 
these kinds of “turncoat” price series that regime-change from mean rever-
sion to momentum would never show up in our catalog of profi table mean
reversion strategies because our catalog would not have included mean-
reverting strategies that failed in their backtests. Survivorship bias was in 
action when I claimed earlier that stop loss always lowers the performance 
of mean-reverting strategies. It is more accurate to say that stop loss always 
lowers the performance of mean-reverting strategies when the prices remain 

mean reverting, but it certainly improves the performance of those strategies
when the prices suff er a regime change and start to trend!

Given this consideration of regime change and survivorship bias, how 
should we impose a stop loss on a mean-reverting strategy, since any suc-
cessfully backtested mean-reverting strategy suff ers survivorship bias and 
will always show lowered performance if we impose a stop loss? Clearly, we 
should impose a stop loss that is greater than the backtest maximum intra-
day drawdown. In this case, the stop loss would never have been triggered in 
the backtest period and could not have aff ected the backtest performance,
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yet it can still eff ectively prevent a black swan event in the future from lead-
ing to ruin.

In contrast to mean-reverting strategies, momentum strategies benefi t
from stop loss in a very logical and straightforward way. If a momentum 
strategy is losing, it means that momentum has reversed, so logically we 
should be exiting the position and maybe even reversing the position. Thus, 
a continuously updated momentum trading signal serves as a de facto stop 
loss. This is the reason momentum models do not present the same kind of 
tail risk that mean-reverting models do.

■ Risk Indicators

Many of the risk management measures we discussed above are reactive: 
We lower the order size when we incur a loss, or we stop trading altogether 
when a maximum drawdown has been reached. But it would be much more 
advantageous if we could proactively avoid those periods of time when the 
strategy is likely to incur loss. This is the role of leading risk indicators. 

The obvious distinction between leading risk indicators and the more 
general notion of risk indicators is that leading risk indicators let us predict 
whether the next period will be risky for our investment, while general risk 
indicators are just contemporaneous with a risky period.

There is no one risk indicator that is applicable to all strategies: What is a 
risky period to one strategy may be a highly profi table period for another. For 
example, we might try using the VIX, the implied volatility index, as the lead-
ing risk indicator to predict the risk of the next-day return of the buy-on-gap 
stock strategy described in Chapter 4. That strategy had an annualized average 
return of around 8.7 percent and a Sharpe ratio of 1.5 from May 11, 2006, to 
April 24, 2012. But if the preceding day’s VIX is over 35, a common threshold 
for highly risky periods, then the day’s annualized average return will be 17.2 
percent with a Sharpe ratio of 1.4. Clearly, this strategy benefi ts from the so-
called risk! However, VIX > 35 is a very good leading risk indicator for the 
FSTX opening gap strategy depicted in Chapter 7. That strategy had an annual-
ized average return of around 13 percent and a Sharpe ratio of 1.4 from July 
16, 2004, to May 17, 2012. If the preceding day’s VIX is over 35, then the day’s 
annualized average return drops to 2.6 percent and the Sharpe ratio to 0.16. 
Clearly, VIX tells us to avoid trading on the following day.

Besides VIX, another commonly used leading risk indicator is the TED
spread. It is the diff erence between the three-month London Interbank 
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Off ered Rate (LIBOR) and the three-month T-bill interest rate, and it mea-
sures the risk of bank defaults. In the credit crisis of 2008, TED spread rose 
to a record 457 basis points. Since the credit market is dominated by large 
institutional players, presumably they are more informed than those indica-
tors based on the stock market where the herd-like instinct of retail inves-
tors contributes to its valuation. (The TED spread is useful notwithstanding 
the fraudulent manipulation of LIBOR rates by the banks to make them
appear lower, as discovered by Snider and Youle, 2010. What matters is the 
relative value of the TED spread over time, not its absolute value.)

There are other risky assets that at diff erent times have served as risk indi-
cators, though we would have to test them carefully to see if they are leading 
indicators. These assets include high yield bonds (as represented, for exam-
ple, by the ETF HYG) and emerging market currencies such as the Mexican 
peso (MXN). During the European debt crisis of 2011, the MXN became 
particularly sensitive to bad news, even though the Mexican economy re-
mained healthy throughout. Commentators attributed this sensitivity to the
fact that traders are using the MXN as a proxy for all risky assets in general.

More recently, traders can also watch the ETF’s ONN and OFF. ONN 
goes up when the market is in a “risk-on” mood; that is, when the prices of 
risky assets are bid up. ONN basically holds a basket of risky assets. OFF is 
just the mirror image of ONN. So a high value of OFF may be a good leading 
risk indicator. At the time of this writing, these ETFs have only about seven 
months of history, so there is not enough evidence to confi rm that they have
predictive value.

As we mentioned in the section on high-frequency trading in Chapter 7, at 
short time scales, those who have access to order fl ow information can detect 
a sudden and large change in order fl ow, which often indicates that important 
information has come into the possession of institutional traders. This large 
change in order fl ow is negative if the asset in question is risky, such as stocks, 
commodities, or risky currencies; it is positive if the asset is low risk, such as 
U.S. treasuries or USD, JPY, or CHF. As we learned before, order fl ow is a 
predictor of future price change (Lyons, 2001). Thus, order fl ow can be used 
as a short-term leading indicator of risk before that information becomes 
more widely dispersed in the market and causes the price to change more.

There are also risk indicators that are very specifi c to a strategy. We men-
tioned in Chapter 4 that oil price is a good leading risk indicator for the
pair trading of GLD versus GDX. Other commodity prices such as that of 
gold may also be good leading risk indicators for pair trading of ETFs for 
countries or companies that produce them. Similarly, the Baltic Dry Index 
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may be a good leading indicator for the ETFs or currencies of export-ori-
ented countries.

I should conclude, though, with one problem with the backtesting of lead-
ing risk indicators. Since the occurrence of fi nancial panic or crises is relatively 
rare, it is very easy to fall victim to data-snooping bias when we try to decide 
whether an indicator is useful. And, of course, no fi nancial indicators can pre-
dict natural and other nonfi nancial disasters. As the order fl ow indicator works 
at higher frequency, it may turn out to be the most useful of them all.

• Maximization of long-term growth rate:

• Is your goal the maximization of your net worth over the long term? If so,

consider using the half-Kelly optimal leverage.

• Are your strategy returns fat-tailed? You may want to use Monte Carlo

simulations to optimize the growth rate instead of relying on Kelly’s 

formula.

• Keeping data-snooping bias in mind, sometimes you can just directly

optimize the leverage based on your backtest returns’ compounded

growth rate.

• Do you want to ensure that your drawdown will not exceed a preset

maximum, yet enjoy the highest possible growth rate? Use constant

proportion portfolio insurance.

• Stop loss:

• Stop loss will usually lower the backtest performance of mean-reverting

strategies because of survivorship bias, but it can prevent black swan

events.

• Stop loss for mean-reverting strategies should be set so that they are 

never triggered in backtests.

• Stop loss for momentum strategies forms a natural and logical part of 

such strategies.

• Risk indicators:

• Do you want to avoid risky periods? You can consider one of these

possible leading indicators of risk: VIX, TED spread, HYG, ONN/OFF, 

MXN.

• Be careful of data-snooping bias when testing the effi cacy of leading risk 

indicators.

• Increasingly negative order fl ow of a risky asset can be a short-term

leading risk indicator.

KEY POINTS



187

C O N C L U S I O N

Even though this book contains an abundance of strategies that should be 
interesting and attractive to independent or even institutional traders, 

it has not been a recipe of strategies, or a step-by-step guide to implement-
ing them. The strategies described in this book serve only to illustrate the 
general technique or concept, but they are not guaranteed to be without 
those very pitfalls that I detailed in Chapter 1. Even if I were to carefully 
scrub them of pitfalls, good strategies can still be victims of regime changes. 
Readers are invited and encouraged to perform out-of-sample testing on the 
strategies in this book to see for themselves.

Instead of recipes, what I hope to convey is the deeper reasons, the basic 
principles, why certain strategies should work and why others shouldn’t. 
Once we grasp the basic ineffi  ciencies of certain markets (e.g., regression 
to the mean, the presence of roll returns in futures, the need for end-of-day 
rebalancing in leveraged exchange-traded funds [ETFs]), it is actually quite 
easy to come up with a strategy to exploit them. This notion of understand-
ing the ineffi  ciency fi rst and constructing a strategy later is why I empha-
sized simple and linear strategies. Why create all kinds of arbitrary rules 
when the ineffi  ciency can be exploited by a simple model?

The other notion I wanted to convey is that the approach to algorithmic 
trading can be rather scientifi c. In science, we form a hypothesis, express it 
as a quantitative model, and then test it against new, unseen data to see if 
the model is predictive. If the model failed with certain data, we try to fi nd 
out the reasons for the failures, perhaps add certain variables to the model, 
and try again. This is a very similar process to how we should approach 
algorithmic trading. Recall the ETF pair GLD versus GDX that stopped 
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cointegrating in 2008 (see Chapter 4). A hypothesis was formed that had 
to do with the high crude oil price. When oil price was added to the input 
variables, the cointegration model started to work again. This scientifi c pro-
cess is most helpful when a strategy underperforms the backtest, and we 
wanted to know why. Instead of blindly adding more rules, more indicators, 
to the model and hoping that they miraculously improve the model perfor-
mance, we should look for a fundamental reason and then quantitatively test 
whether this fundamental reason is valid.

Despite the eff orts to make the trading process scientifi c and rule based, 
there are still areas where subjective judgment is important. For example, 
when there is a major event looming, do you trust that your model will be-
have as your backtest predicted, or do you lower your leverage or even tem-
porarily shut down the model in anticipation? Another example is off ered 
by the application of the Kelly formula to a portfolio of strategies. Should 
we allocate capital among these strategies based on the equity of the whole 
portfolio, so that the good performance of some strategies is subsidizing 
the poor performance of others in the short term? Or should we apply the 
Kelly formula to each strategy on its own, so that we quickly deleverage 
those strategies that perform poorly recently? Mathematics tells us that the 
former solution is optimal, but that’s assuming the expected returns and 
volatilities of the strategies are unchanging. Can one really say that such ex-
pectations are unchanged given a recent period of severe drawdown?

(On the fi rst judgment call, my experience has been that if your model 
has survived the backtest during prior stressful periods, there is no reason 
to lower its leverage in the face of coming crisis. It is much better to start off  
with a more conservative leverage during good times than to have to lower 
it in bad ones. As Donald Rumsfeld once said, it is the “unknown unknowns” 
that will harm us, not the “known unknowns.” Unfortunately, we can’t shut 
down our models before the unknown unknowns strike. On the second 
judgment call, my experience has been that applying Kelly to each strategy 
independently so as to allow each one to wither and die quickly when it 
underperforms is more practical than applying Kelly asset allocation across 
all strategies.)

As these examples show, subjective judgment is often needed because 
the statistical properties of fi nancial time series are not stationary, and sci-
ence can really only deal with stationary statistics. (I am using stationary in 
a sense diff erent from the stationarity of time series in Chapter 2. Here, it 
means the probability distribution of prices remains unchanged through-
out time.) Often, when we fi nd that our live trading experience diverges 



189

C
O

N
C

LU
SIO

N

from the backtest, it is not because we committed any of the pitfalls during 
backtesting. It is because there has been a fundamental change in the market 
structure, a regime shift, due to government regulatory or macroeconomic 
changes. So the fund managers still have an active ongoing role even if the 
strategy is supposedly algorithmic and automated—their role is to make ju-
dicious high-level judgment calls based on their fundamental understanding 
of the markets on whether the models are still valid.

However, the fact that judgment is sometimes needed doesn’t mean 
that developing quantitative rules is useless or algorithmic traders are less 
“smart” than discretionary traders. As the oft-quoted Daniel Kahneman 
wrote, experts are uniformly inferior to algorithms in every domain that has a 
signifi cant degree of uncertainty or unpredictability, ranging  from deciding 
winners of football games to predicting longevity of cancer patients. One 
can hope that the fi nancial market is no exception to this rule.
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