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Algorithmic randomness provides a rigorous, entropylike measure of disorder of an individual,
microscopic, definite state of a physical system. It is defined by the size (in binary digits) of the
shortest message specifying the microstate uniquely up to the assumed resolution. Equivalently, al-
gorithmic randomness can be expressed as the number of bits in the smallest program for a univer-
sal computer that can reproduce the state in question (for instance, by plotting it with the assumed
accuracy). In contrast to the traditional definitions of entropy, algorithmic randomness can be used
to measure disorder without any recourse to probabilities. Algorithmic randomness is typically
very difficult to calculate exactly but relatively easy to estimate. In large systems, probabilistic en-
semble definitions of entropy (e.g. , coarse-grained entropy of Gibbs and Boltzmann's entropy
H =ln8; as well as Shannon's information-theoretic entropy) provide accurate estimates of the al-
gorithmic entropy of an individual system or its average value for an ensemble. One is thus able to
rederive much of thermodynamics and statistical mechanics in a setting very different from the usu-

al. Physical entropy, I suggest, is a sum of (i) the missing information measured by Shannon's formu-
la and (ii) of the algorithmic information content —algorithmic randomness —present in the avail-
able data about the system. This definition of entropy is essential in describing the operation of
thermodynamic engines from the viewpoint of information gathering and using systems. These
Maxwell demon-type entities are capable of acquiring and processing information and therefore can
"decide" on the basis of the results of their measurements and computations the best strategy for ex-
tracting energy from their surroundings. From their internal point of view the outcome of each
measurement is definite. The limits on the thermodynamic efficiency arise not from the ensemble
considerations, but rather reflect basic laws of computation. Thus inclusion of algorithmic random-
ness in the definition of physical entropy allows one to formulate thermodynamics from the
Maxwell demon's point of view.

I. ENTROPY AND RANDOMNESS

Until recently it was impossible to define the entropy of
a single microscopic state of a system. Rather, one had
to consider an equilibrium ensemble of identical systems,
and calculate how many microscopic configurations have
their macroscopic properties identical with the single mi-
crostate, entropy that was being sought ~ Once the num-
ber of such macroscopically indistinguishable microscop-
ic configurations 8' was known, one could employ the
celebrated Boltzmann formula'

H= —Trp lnp . (1.2)

Here p represents the density matrix of the considered
quantum system.

The unsatisfactory feature of this definition of entropy
is well known and immediately apparent. When the sys-
tem follows the dynamical evolution prescribed by the
appropriate Hamiltonian, the quantity H defined by Eqs.
(1.1) and (1.2) is constant, as the number of microscopic
states remains the same (Liouville's theorem). In particu-
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H =ln8',
or its more general version due to Gibbs. In quantum
mechanics the analog of Gibb's formula was introduced
by von Neumann:
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lar, a single initial microstate will give rise, at any time t,
to just one future microstate. Yet, to prove the second
law, one must argue that the number of states in which
the system can be found actually increases. As the thesis
of the above statement for all reversible, Hamiltonian
evolutions is incorrect, one might have expected that the
search for a dynamical explanation of irreversibility will
lead nowhere. The success of statistical mechanics has
shown that in spite of its self-contradictory features, the
probabilistic description of deterministic systems has cap-
tured an important element of truth. Boltzmann's equa-
tion and his H theorem as well as Gibb's idea of coarse
graining serve as the most prominent examples. Both of
these ideas achieve their objective by similar means:
They selectively discard part of the information about the
investigated system, which justifies introduction of the
probabilistic description. '

Yet the success is not complete. In spite of the
numerous quantitative confirmations of thermodynamic
formalism, the issues of the "arrow of time" and, more
generally, of the nature of entropy continue to be debated
more than a century after their inception. ' Several
additional developments have added fuel to this discus-
sion. The realization that irreversibility, entropy, and in-
formation play a key role in the discussion of the mea-
surement process in quantum theory is the first of
them. " Development of the rigorous theory of com-
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munication, with the formal apparatus full of analogies to
Boltzmann-Gibbs entropy, is the second. ' ' More re-
cently, the development of black-hole thermodynamics'
as well as the discussions of the arrow of time in the
cosmological context' force one to reexamine the nature
of entropy in a setting very different from the one for
which it was originally invented.

So far all of these discussions have relied on a proba-
bilistic formalism in which the entropy of a definite, com-
pletely known microstate is always zero, and where the
membership of this microstate in an ensemble defines the
set of probabilities —the density function used to calcu-
late H. Indeed, the proof that Shannon's missing infor-
mation measure,

H = —g p, log~, , (1.3)

which we shall also call Boltzmann-G ibbs-Shannon
(BGS) entropy, is the unique reasonable additive measure
of ignorance' '' appears to have dissuaded many from
looking for alternatives, although under some specific cir-
cumstances such alternatives have proved quite useful ~

The aim of this paper is to investigate a new definition
of entropy, which does not use this ensemble strategy and
which can be applied to the individual microstates of the
system. This entropy is based on the rigorous definition
of randomness introduced independently by Solo-
monoff, ' Kolmogorov, ' and Chaitin' and further
elaborated by Kolmogorov, Chai tin, and others. '

Definition of entropy as algorithmic information content
capitalizes on an intuitive notion of what is a random
number, or a random configuration. Random means
difficult to describe or to reproduce. Consider, for exam-
ple, two binary strings:

01010101010101010101,

10011010010110110010.

The first string can be described as "ten 01's." The
second more random string has no apparent, simple
description. This does not always mean that no simple
description exists. For example, there exists an infinite
series beginning with 01110101000001001111that also
"looks random" at first sight but has a simple descrip-
tion: digits of the binary representation of &2. Algo-
rithmic entropy of the binary string s can be defined as
the shortest possible description that suffices to reproduce
s. One can make this definition rigorous by considering
the length (expressed in the number of digits) of the shor-
test algorithm —e.g. , computer program for a universal
Turing machine —that produces the output s. I shall de-
scribe this definition and discuss some properties of algo-
rithmic entropy in Sec. II.

Second III extends the definition of the algorithmic en-
tropy of a binary string to an idealized physical system-
Boltzmann gas. I describe there (and in Appendix A)
how a proper algorithmic implementation of particle in-
distinguishability allows one to avoid Gibb s mixing para-
dox and leads to the correct expression (that is, the
Sackur-Tetrode equation) for the entropy of an ideal gas.
Moreover, this concrete example provides one with the

opportunity to point out some of the difficulties encoun-
tered in an attempt to define algorithmic information
content of specific physical systems. These difficulties are
further considered and partially settled in Appendix B.

A comparison of algorithmic randomness, regarded as
entropy, with Boltzmann and Gibbs-Shannon ensemble
entropies is presented in Sec. IV. In contrast to the—Trp lnp entropies, algorithmic entropy can change even
in the course of reversible dynamical evolutions. As men-
tioned briefly in the first part of Sec. IV and considered in
more detail in Appendix C, this behavior allows one to
propose an algorithmic version of the second law obeyed
even by integrable dynamically evolving systems. By
contrast, in the usual equilibrium thermodynamic ensem-
bles algorithmic and statistical approaches are likely to
provide almost identical answers for the value of entropy.
Therefore, even if one were to claim that it is the algo-
rithmic information content alone that measures disorder
of the state of the system, the use of the less direct but
more convenient probabilistic prescriptions for entropy
could be rigorously justified.

While Secs. III and IV do contain some new applica-
tions and novel ways of looking at the algorithmic con-
cepts, they can be regarded as an extended introduction
to Sec. V, which is concerned with formulating laws of
thermodynamics from an internal viewpoint of an "infor-
mation gathering and using system" (IGUS), an observer-
like entity that can perform measurements, process the
acquired information, and use the results to take actions
aimed at optimizing thermodynamic efficiency of the en-
gine it controls. Section V proposes that both random-
ness and missing information play a role in defining physi-
caI entropy, that is, the quantity that limits the amount of
the internal energy of a physical system that can be con-
verted into useful work by an IGUS. I demonstrate there
that the physical entropy should be regarded as a sum of
two separate contributions, one measuring the random-
ness of the already known aspects of the state of the sys-
tem, the other expressing the remaining ignorance of the
observer about the actual state. This recognition of the
dual nature of physical entropy allows one to discuss the
thermodynamics of engines operated by a modern day
equivalent of a Maxwell demon —a universal Turing
machine capable of performing measurements —from the
point of view of such an entity, where the measurement
outcomes are definite, without a reference to the statisti-
cal ensemble describing all conceivable measurement out-
comes. Some of the crucial aspects of the laws of thermo-
dynamics can be regarded from that internal point of
view as a consequence of the laws of computation.

A discussion of the consequences of adopting the new
definition of physical entropy proposed in Sec. V and in-
cluding both of its complementary contributions—
randomness and ignorance —is conducted in Sec. VI.
There we shall also touch on the subject of extending the
applicability of algorithmic entropy to quantum systems.
Further implications of the new definition of entropy for
the second law and for the issues arising in the context of
the quantum theory of measurements will be explored in
future publications.

The possible relevance of algorithmic information con-
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tent to thermodynamics has been anticipated by a brief
but insightful discussion in the seminal paper by Ben-
nett. Algorithmic information has also been used to
characterize information generated by a dynamically
evolving chaotic system. This approach, advocated by
Ford, ' focuses on a sequence of states describing a tra-
jectory of a system.

The following are two notes about the manner in which
this paper was written and the way in which it should be
read.

(i) Algorithmic information theory is a branch of
mathematics, and many of the results employed in the
discussion below can be established rigorously. I have
opted instead to paraphrase them in an informal manner,
revealing the key ideas, but, for the sake of brevity and
clarity, without attempting to be rigorous. This com-
ment applies equally well to the theorems proposed below
for the first time, and to the results obtained elsewhere,
which are just described here. Moreover, in order to il-
lustrate the physical significance of the algorithmic ap-
proach as early as possible, I discuss only a comfortable
minimum of the results important from the viewpoint of
intended physical applications. Readers interested in a
more extensive and rigorous overview are directed to
Refs. 20—26.

(ii) Those looking for a quick "preview" of the con-
clusions of this work may find it useful to read the begin-
ning of Sec. V A, as well as Secs. VI and VII after the first
perusal of the body of the paper. The purpose of this pa-
per is not to advocate a complete replacement of the en-
semble entropy with the algorithmic entropy —as Secs. II,
III, and IV may appear to suggest to a casual reader, but
rather to conclude that the physically relevant entropy
should be defined from the internal viewpoint of the ob-
server, and that it has components of both probabilistic
and algorithmic origin. In a sense, the first half of the pa-
per is an extended introduction to the algorithmic in-
gredient of the new definition of physical entropy. Its
physical significance becomes clear only in Secs. V and
VI.

II. ALGORITHMIC RANDOMNESS
OF BINARY STRINGS

A natural measure of disorder or, equivalently, of the
degree of randomness of a state of a system is the size of
the smallest prescription required to specify it with some
assumed accuracy. Ordered, regular states can be recon-
structed from concise algorithms. Random states, by
comparison, require many more bits of information to
specify. In this very intuitive sense, the required amount
of information quantifies the degree of randomness.

The strategy we shall adopt to measure the randomness
of states of a physical system will involve a simple com-
puter. A program for this computer will be considered a
good description of the system if the output will contain
sufficient information in some standard format to
reconstruct —for instance, to plot —the state with the re-
quired accuracy. Positions and momenta of all the parti-
cles of an ideal gas are an example of such an output.
Binary strings —for instance, in the form of numbers
specifying these coordinates —are the key ingredient of

such prescriptions. They can be also thought of as
representing a state of a one-dimensional chain of spins
and therefore as a direct description of an elementary ex-
ample of a physical system. The aim of this section is to
discuss a measure of randomness of binary strings known
as the algorithmic information content, algorithmic ran-
domness, algorithmic entropy, or, sometimes, as the algo-
rithmic complexity. '

The algorithmic randomness K(s ) of a binary string s
is defined as the length, in the number of digits, of the
shortest program s* that will produce output s and halt
when used as input of a universal Turing machine T:

K(s)—= /s*/ . (2.1)

A computer U is universal —as the Turing machine used
in the above definition —if for any other computer C
there is a prefix ~c one can add to any program p so that
~&p will execute the same computation on computer U as

p alone did on C. Algorithmic randomness of a typical
string s is to the leading order given by its length in bits,
Is I:

K (s) = Is I
(2.2)

In other words, typical strings are random and cannot be
generated from more concise programs. Small correc-
tions to this estimate of a typical value K(s) depend on
the issues that will be considered below. When s is inter-
preted as a binary representation of an integer, Eq. (2.2)
implies that K(s) =log2(s ). We shall restrict ourselves to
binary representations in the remainder of this paper.

While typical strings possess algorithmic information
content comparable to their length, and are therefore
random, there exist strings which are obviously algo-
rithmically simple. We have already listed some exam-
ples from both categories in the Introduction. It is possi-
ble to define whole classes of strings which are either al-
gorithmically random or simple. For instance, the reader
can verify that minimal programs used to define algo-
rithmic information content must be algorithmically ran-
dom. Let us also note that the logarithm relating the in-
formation content of a typical string with the size of the
integer it represents is suggestive of the "log" appearing
in the probabilistic definition of entropy. To
enumerate —and, hence, to specify —8' distinct, equally
probable states of a physical system one obviously needs
numbers of order 8. Hence the typical algorithmic en-
tropy of such a state, crudely defined as the size of the
number giving its "address, " can be expected to be simi-
lar to the estimate obtained through the Boltzmann for-
mula, Eq. (1.1). We can thus anticipate that the numeri-
cal estimates of the algorithmic randomness will be com-
patible with the more traditional probabilistic, ensemble
calculations.

There are several points that must be clarified before
algorithmic entropy can be accepted as an unambiguous
measure of randomness. The first of them —potential
dependence of the size of the program on the
"addressee" —has been already largely bypassed by rely-
ing on a universal computer U. Use of different universal
computers makes at most a difference bounded from
above by a finite constant [that is, of order unity, O(1)]
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in the size of the minimal program.
The next difficulty arises from the somewhat counterin-

tuitive fact: It is often possible to generate all the
members of a certain set with a smaller algorithm than
the minimal algorithm necessary to print out just one of
them. To illustrate this fact by a simple and concrete ex-
ample (we shall come back to more physically motivated
examples later in the paper), we consider a program that
can list all finite strings corresponding to natural num-
bers. A simple "counting loop, " a Turing-machine ver-

sion of the FORTRAN loop,

X=O
PRINT X
%=%+1
GOTO I

will do the job. Given sufficient time this program will
generate every finite string s starting with 1. A slightly
more sophisticated program can print out all the binary
strings arranged in what is known as lexicographic order.

A, 0, 1,00, 01, 10, 11,000, 001,010,011,100, 101,110,111,0000, 0001,0010, . . . . (2.3)

Above, A stands for the empty string. Lexicographic or-
dering establishes a correspondence between all the
strings and the set of natural numbers. We can either al-
low such strings to be a part of one long output tape—
perhaps separated by commas —or we could add an in-
struction to erase the string (number) 1V before the string
(number) N+1 is printed. This way, instead of a tape
with all the strings we could have an erasable tape with
strings appearing "one at a time. " (The disadvantage of
this arrangement is that unless we intervene, the numbers
will all disappear. )

We have just demonstrated how one can use a concise
program to list arbitrarily many strings each of which is
supposed, typically, to have randomness given by its
length, Eq. (2.2). Clearly, we are running into a contra-
diction. Unless one specifies in more detail the require-
ments a program must satisfy, we could encounter an un-
comfortable upper limit given by the size of the binary
version of the program constructing the lexicographic
list, Eq. (2.3), on the entropy of any finite binary string.

One can dispose of the difficulty illustrated above in a
few steps. To begin with, one can demand that all the
programs halt after a finite number of steps. This ex-
cludes the program described above, but it does not settle
the issue. One can modify the loop by forcing it to halt
after some large but algorithmically simple upper limit
NMAX (e.g. , NMAX = 1111111111111.. . 111). Now
the apparent upper limit on the algorithmic entropy of all
the numbers smaller than NMAX would be somewhat
larger, but still far from reasonable. Suitably chosen
NMAX can be encoded into a very compact subroutine.

The next remedy is to demand that after the computer
halts, the output tape should contain nothing but the out-
put string s. This condition obviously settles the issue
raised above. It will be indispensable in the discussion of
the algorithmic version of the second law in Appendix C.

Another requirement often imposed on the minimal
programs is the demand that they be prePx free or self-
delimiting. Self-delimiting programs ' ' carry within
them information about their size: They allow the com-
puter to "decide" when to stop reading the input tape.
They are also known as "instantaneous" codes, since they
can be executed alone, without any additional "prefixes"
or "end markers. " An additional benefit of using self-
delimiting codes is the simplicity of employing them as
subroutines. What is most important from the point of

view of this paper is that the use of the self-delimiting
codes allows one to formulate algorithmic information
theory in a manner more closely analogous to the Shan-
non information theory. ' We shall find this especially
useful in Sec. IV, in the course of the discussion of the re-
lationship between ensemble entropies and algorithmic
randomness, where the connection between unique deco-
dability of a sequence of bits regarded as a message and
the self-delimiting property shall be further explored.

With the above considerations in mind we can now
define the joint algorithmic entropy of two strings s, t as
the size of the smallest self-delimiting program that
makes U calculate both of them. Joint entropy satisfies
the familiar inequality

K (s, t) ~ K (s)+K (t)+O(1) (2.4)

K (s, t) =K (t)+K(s it, K(t ))+O(1) . (2.6)

This differs somewhat from the "classical" Shannon in-
formation theory, where the conditional information
satisfies K (s, t) =K (t)+K (si t).

Mutual information is a quantity that has obvious in-
tuitive significance. It is defined both in the algorithmic
and classical information theory through

K(s:t)=K(s)+K(t)—K(s, t) . (2.7)

Its meaning is clear: It provides a measure of the in-

only when the admissible programs are self-delimiting.
The price one pays for having Eq. (2.4) comes in the
form of a modification of the estimate of the typical value
of algorithmic information of a single string:

K (~) = isi+O(log, isi )+O(1)= Isi+K ( isi )+O(1) .

(2.5)

The origin of this logarithmic correction to the first guess
given by Eq. (2.2) is simple: The self delimiting pr-ogram
used to reproduce s must contain the information about
the number of digits on the input tape. To encode this,
additional log2 is i

bits will be typically necessary.
Another formula modified by the requirement of self-

delimiting programs is the relation for the conditional en-
tropy of string s given t, K(sit). Defined as the size of
the program needed to calculate s from the input t, it is
connected with the joint information through the equa-
tion
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dependence of two strings. That is, it indicates how
many more bits of information one needs to calculate s
and t separately rather than jointly. Mutual information
is symmetrical. Pairs of strings which have mutual infor-
mation of zero are called algorithrnically independent.

Most of the binary strings of a certain fixed length are
algorithmically random [K(s ) = ~s

~ ] and independent
[K(s:t)=0]. However, there are obvious examples of
strings that appear random but are in fact algorithmically
simple [K(s ) « ~s ~ ]. Binary representations of easily cal-
culable numbers such as v'2, e, m, etc. , are algorithmi-
cally simple. Some of the algorithmically simple numbers
are easy to spot. Consider, for example, a string that has
a low density of randomly distributed 1's. A simple stra-
tegy designed to minimize program size is to encode sizes
of the consecutive intervals of 0's. Readers are invited to
demonstrate that this strategy will, in the limit of a very
long string, lead to the estimate of algorithmic entropy
equal to the Shannon entropy calculated on the basis of
probability of 0's and 1's.

Chaitin has demonstrated that the impossibility of
proving the randomness of a "random-looking" long
string is a natural consequence of the algorithmic
definition of randomness, and can be regarded as a mani-
festation of Godel's theorem. ' The proof can be para-
phrased as follows: Suppose that a short algorithm can
be used to demonstrate randomness of a string l much
longer than this algorithm. One could then use such pro-
gram as a subroutine of a somewhat larger program
designed to generate such l. To accomplish this, one
would include the algorithm in a loop generating proofs
of randomness of integers in order of increasing proof
size. If a proof of randomness of some integer consider-
ably greater than the program were accomplished, the
program would print that integer and halt. Thus having
a short program prove that l was random would make it
algorithmically nonrandorn. This contradiction can be
resolved only if we conclude that either the axioms used
in the proof of randomness were inconsistent, or that the
search for proofs of randomness would continue forever
without any successful case in the domain of strings
much longer than the program. Therefore it may be not
just difficult to estimate the algorithmic entropy of a
specific binary string; it will also often be impossible to
distinguish random and nonrandom configurations. In
Sec. III we shall show that in spite of this difticulty asso-
ciated with calculating K (s ) exactly, the algorithmic
viewpoint can lead to useful insights into the entropy of
Boltzmann gas.

III. ALGORITHMIC ENTROPY OF A PHYSICAL
SYSTEM: BOLTZMANN GAS

Consider a container with N particles of "gas" inside.
These "atoms" of gas can be thought of as miniature
"hard spheres" with no internal degrees of freedom, and
with dimensions much smaller than the size of the con-
tainer. In short, we are dealing with a "Boltzmann gas."

Discussion in this section shall focus on the task of
describing the system by means of the most compact

"message. " We shall imagine that the microstate of the
system is known, and our task is to communicate it to
someone else or to record it in some reproducible fashion.
For definiteness, we assume in accord with Sec. II that
the addressee is a certain specific Turing machine U. As
the proof that the message was "understood" we shall ac-
cept the ability of the addressee to reproduce, by some
reasonable means, the state of the system up to the
specified accuracy.

To describe the microstate we adopt the following stra-
tegy. (i) We divide the volume occupied by the particles
into a lattice of cells sma11 compared with the separations
of the particles so that the probability of finding two par-
ticles in the same cell is negligibly small. (This assump-
tion of one particle per cell is convenient, but not essen-
tial. ) (ii) We specify which of the cells contain particles
and which of them are empty. The size of the cells deter-
mines the resolution with which the state of the system is
given. More sophisticated strategies, which do not em-
ploy fixed grids, but, rather, explore all possible methods
of encoding that satisfy some criterion for the accuracy of
the description can be also employed. In essence, one is
dealing with an issue analogous to those encountered in
the domain of coding and information theory. ' '

Algorithmic randomness of the microstate is given by
the length of the shortest computer program sufficient to
"reproduce" its state with the requisite resolution. The
form of the reproduction is somewhat arbitrary. For
concreteness, one can imagine the following procedure
which could be regarded as a substitute for "computer
graphics. " Suppose that a possible output of the univer-
sal Turing machine U is the multidimensional "plotter"
with a discrete resolution. A state of the system will be
considered "reproduced" if the machine will fill pixels of
the plot space corresponding to empty cells with 0 and
pixels corresponding to filled cells with 1.

Machines with access to several multidimensional
tapes of this sort and other kinds of hardware [e.g. ,
random-access memory (RAM) storage, etc.] are more
convenient to use, and correspond more closely to the
real-world computers, but can perform only these very
same tasks as a one-tape universal Turing machine. Us-
ing them will not influence estimates of the algorithmic
entropy. This last statement is true in general —it is re-
sponsible for the importance attached to Turing
machines by the theory of computation —but is particu-
larly easy to see for the "graphical" representation of the
Boltzmann gas. A primitive, but for our purposes
sufficient way to produce a plot would be to have U print
out a tape with consecutive sections separated by com-
mas and corresponding to rows in the phase space of the
system partitioned into cells and organized in some
definite order.

It is important to draw the distinction between the
"binary image" of the gas microstate and the program
that can generate it. An image provides a direct descrip-
tion of the state of the system. The program generating it
contains the same information, but represented in a
different, typically more concise manner. There are, gen-
erally, at least several programs that can generate the
same plot —the same binary image. The length of the



4736 W. H. ZUREK

shortest one will define the algorithmic randomness of
the gas microstate.

The use of the analogy between the actual microstate
of the many-body system —e.g. , gas or Quid —and the cor-
responding binary image (spin lattice) is, of course, not
new. It was extensively and successfully exploited in the
investigation of phase transitions. Our treatment will
focus on a different aspect of binary images. Neverthe-
less, previous successful applications are not unrelated,
and further motivate our approach.

Evaluation of the algorithmic entropy of different mi-
croscopic configurations of a gas contained in a D-
dimensional cube can be carried out with the help of a
special-purpose computer L following a straightforward,
but not necessarily optimal algorithm. L would first read
in the key data (the number of dimensions D, the number
of particles N ). Subsequently, N X 2D phase-space coor-
dinates of the individual particles would be generated in a
double loop. For a typical (that is, algorithmically ran-
dom) configuration individual coordinates would have to
be generated by NX2D separate "subroutines, " which
contain appropriate data. The first 2D numbers can be
then used to print 1 in the appropriate empty square of
the tape corresponding to the position and momentum of
the first particle —that is, at the location

(x", /b, „,x"'/b, , . . . , x"'/b. „p',"/b, , . . . , p" /b ) .

The process is repeated N times, after which the machine
fills in the remaining blank spaces with 0's, and halts.
For instance, when D=2, a binary image —a primitive
plot —could begin by printing out a string of pixels of the
plot filled in with the appropriate symbols corresponding
to the first row: x

&
/6„=0, x2/6„=0, p, /6 =0, which

are kept constant, and the variable pz/6 changing from
its minimal to its maximal value. The row with
xI/5 =x2/6 =0, p, /6 =1 follows, and so on, until
all of the volume of the phase space of the gas in the
volume of the container is mapped out. The size of the
program for the special-purpose rnachine L can now be
reported as the estimate (and, almost certainly, an overes-
timate) of the algorithmic randomness of the state of the
gas. The additional information that needs to be supplied
to a universal computer U can be clearly encoded in the
form of a compact binary string.

When the configuration of the system is nonrandom
(for example, when the particles are placed on a regular
lattice), the size of the program can be decreased by gen-
erating their coordinates by means of a simple subrou-
tine. Hence we can expect to shorten programs generat-
ing plots of less random configurations of Boltzmann gas.

The measure of randomness suggested above is very
different from the one based on ensembles. In particular,
it bypasses the concept of probability, and can be used to
define the entropy of a completely specified microscopic
state of an individual dynamical system. The question
therefore arises as to whether the value of the algorithmic
entropy is related to the value of the statistical or ther-
modynamic entropy. This issue will be considered
throughout the course of this paper. In Appendix A we
implement the strategy outlined above to estimate algo-
rithmic randomness of a typical configuration of the clas-

sical Boltzmann gas and explore one of its aspects—
indistinguishability —in more detail. It is demonstrated
there that the algorithmic randomness of a typical micro-
state of the gas of N indistinguishable particles in D di-
mensions confined to the volume Vis

E =N log2 +—log2
V D rnkT +O(1) .

NbV 2 (g )2
(3.1)

Here k is the Boltzmann constant, 1 the temperature,
while b, V=(h ) and 5 define the resolution in the
configuration and momentum halves of the phase space.

Equation (3.1) is known as the Sackur-Tetrode equa-
tion for the entropy of the ideal gas. A shortcut deriva-
tion of the Sackur-Tetrode equation would proceed as fol-
lows. There are Sl=C /N! distinct ways of distributing
N indistinguishable particles of gas among the available
C =(V/b, V)(&mkT /b, ) cells in the phase space. One
way to specify a certain configuration it to give its "ad-
dress" among the 6 possibilities. The typical value of the
address numeral is then —Q. Hence its binary
specification requires —log&A bits. The Sackur- Tetrode
equation (3.1) follows.

This second argument yields the correct answer.
Moreover, it establishes an intimate connection with
Boltzmann's approach to the entropy of a microcanonical
ensemble of ideal gas, as it is directly equivalent to the
"counting of the complexions. " Furthermore, the ap-
proach based on the size of the address can be easily
adopted for an arbitrary microcanonical ensemble. Yet it
follows a philosophy that is quite different from the ex-
plicitly descriptive strategy introduced earlier in this sec-
tion and implemented in Appendix A. Algorithmic ran-
domness is, of course, given by the shortest program that
generates the description of the state in question as an
output. However, the fact that these two very different
programming strategies result in an approximately identi-
cal answer is encouraging, as it implies that, in spite of
un decidability, finding a reasonable estimate of algo-
rithmic randomness of a typical state may not be that
difficult.

The value of the statistical entropy of a classical system
depends on the "resolution" —the volume of the cells in
the phase space corresponding to distinct microstates —as
well as on the structure of the "grid" these cells form.
Both of these issues, the dependence on the resolution as
well as the subjectivity associated with the "coarse grain-
ing, " have their algorithmic counterparts. For the pur-
pose of this paper it would have been sufficient to adopt
the attitude that both of these features of the grid are
determined by the observer: The measurements per-
formed by the observer define a certain "natural grid, "
which in turn specifies the value of the algorithmic ran-
domness in the state of the system. One might, therefore,
expect that the algorithmic randomness of a physical sys-
tem is as highly subjective as statistical entropy. As dis-
cussed in more detail in Appendix B, this remark applies
without qualifications only to the dependence on the reso-
lution. Quantum mechanics must be invoked to fix the
volume of the cells in the phase space and thus to assure
that the entropy is finite. There is, however, a strategy
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that removes some of the subjectivity associated with the
shape of the grid: In the intuitive definition of the algo-
rithmic randomness as the size of the message it is natu-
ral to demand that description of the coarse-graining
must be included as a part of the message. As demon-
strated in more detail in Appendix B, this strategy
relegates much of subjectivity to the differences between
the distinct Turing machines. This, in turn, allows such
residual subjectivity to be quantified by employing algo-
rithmic methods.

IV. ENSEMBLE ESTIMATES OF ALGORITHMIC
RANDOMNESS

The purpose of this section is to investigate the relation
between the algorithmic and statistical measures of disor-
der. Physics has traditionally employed entropy in two
distinct roles: (i) as a measure of irreversibility and (ii) as
an equilibrium thermodynamic potential.

The use of entropy in the formulation of the second
law and the conflict between the irreversibility of thermo-
dynamics and reversibility of the underlying dynamics
remains a leading theme of statistical mechanics. Indeed,
the observation that in the closed system Trp lnp is a con-
stant of motion has been (and remains) one of the key
reasons for dissatisfaction with the traditional definitions
of entropy. One might be concerned that algorithmic
definitions of entropy wi11 automatically inherit this trou-
blesome feature. In particular, one might argue that,
since the time-evolved state of the system is obtained
from the initial state by the action of the Hamiltonian,
the randomness of a11 the states along the trajectory
should not exceed the sum of the algorithmic information
content of the initial state and of the Hamiltonian.
Therefore one would be forced to conclude that all the
descendant states of an algorithmically simple state must
be algorithmically simple. I demonstrate in Appendix C
that this conclusion is incorrect: The typical algorithmic
randomness of a microstate —even if it is descended from
a simple initial condition —is consistent with Boltzmann s
entropy of the corresponding microcanonical ensemble.

One way of understanding this is to recognize that the
labeling strategy employed in the derivation of Eq. (3.1)
in Sec. III is automatically accomplished in the course of
a dynamical evolution of an ergodic system: There the
ordered sequence of microstates is generated by the Ham-
iltonian. Time —the duration of the evolution from some
initial state —can be regarded as a label of a microstate.
In a perfectly ergodic system all of the microstates are
traversed before the system returns (having completed its
Poincare cycle P) to the initial configuration. When this
initial state is chosen to be algorithmically simple, the
leading contribution to the algorithmic randomness of a
typical descendant is =log2P, which leads one to the
correct answer. As described in more detail in Appendix
C, the requirement of a specific output —corresponding to
a description of a single, definite microstate —at the corn-
pletion of the computation is crucial in arriving at the
correct algorithmic estimate of the randomness of the
time-evolved state. Indeed, for reasons analogous to
these discussed in connection with Eq. (2.2), a program
that would list all the microstates along the trajectory

would be more concise than the program that generates a
description of a definite, typical microstate.

Irreversibility is of obvious interest as a separate issue.
Therefore we shall leave a more detailed investigation of
the algorithmic approach to irreversibility for the sequel
of this paper. By contrast, the relation between algo-
rithmic randomness and Boltzmann-Gibbs-Shannon en-
tropy considered in the remainder of this section is essen-
tial for further discussion of physical entropy and is the
true focus of this section.

A result of Sec. III—the algorithmic derivation of the
Sackur-Tetrode equation for the entropy of ideal gas-
was a forerunner of the conclusion we shall reach: We
shall demonstrate that, in general, probabilistic con-
siderations result in accurate estimates of the average al-
gorithmic entropy of a member of an ensemble. In spite
of this conclusion, we shall go on in the next section to
suggest that the physical entropy, the true measure of the
amount of energy extractable from the system, contains
both algorithmic and missing information contributions.

A. Entropy of thermodynamic ensembles

K(6 ) = is*i «& H(6 ) (4.2)

will define, for the purpose of this paper, thermodynamic
ensembles. In the context of statistical mechanics, ther-
modynamic ensembles are determined by macroscopic—
which we take to mean "simply describable"—
constraints and the probabilities are easily computable
functions of the microstates. This motivates our focus on
thermodynamic ensembles. They wi11 allow us to show
that the concept of entropy in equilibrium thermodynam-
ics can be based on the algorithmic foundation. Howev-
er, as we shall discuss at some length in Sec. V, these are
not the only ensembles possible. The three kinds of en-

Consider a statistical ensemble 6, a collection of mi-
crostates Iskj that occurs with probabilities pk. The sta-
tistical entropy of this ensemble is given by the formula

H(6)= g pl, loge
1

(4.1)

In statistical mechanics Eq. (4.1) plays a key role in deriv-
ing thermodynamic characteristics of a system from mi-
crophysics. In this subsection we shall discuss ensembles
that are defined concisely. That is, we shall assume that
there exists a concise algorithm c which, given sufhcient
time, will generate as its output a description of every
relevant microstate of 8 and compute its probability with
some (arbitrarily high, but finite) predetermined accura-
cy. As 6 may contain infinitely many microstates, we
shall not demand of c to halt. Instead, we shall require
that the microstates listed as the output be "weakly sort-
ed" according to their probabilities in the following
sense: For every arbitrarily small but finite 6&0 there
should exist a finite time (number of steps) JV& after which
descriptions of all the states of 6 with the probabilities
pA & 6 must be listed. The length of the smallest program
c' which satisfies these criteria will be regarded as the al-
gorithmic information content of the ensemble D. The
inequality
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sernbles widely used in statistical mechanics-
microcanonical, canonical, and grand canonical —are
clearly "thermodynamic" for sufficiently large systems in
the sense of the defining Eq. (4.2).

Here we shall demonstrate that the average algorith-
mic entropy of member of a thermodynamic ensemble

(K)z= g p&K(sI, )

s~ E(~
(4.3)

is closely approximated by the corresponding Shannon
entropy, Eq. (4.1):

1
X p~iog2

s~ e ~'i Pk
(4.4)

x=-('s
~
) = g p, i, , (4.5)

In the context of the algorithmic information theory
this connection between (K)& and H(8) was first estab-
lished by Kolmogorov, Levin, and Zvonkin (see Ref. 24)
and was extended and strengthened —using advantages of
the definition of algorithmic randomness by means of
self-delimiting programs —by Chaitin (see especially
Theorem 3.4, as well as 3.2 and 3.5 in Ref. 21). Bennett
has pointed out the physical significance of this result for
the thermodynamic case defined by Eq. (4.2). Below, I
shall present a new, physically motivated proof of the key
inequalities and —in Sec. V—apply it to the situations in-
volving measurements that are sufficiently detailed to in-
validate Eq. (4.2).

The line of argument I shall follow to investigate the
relationship between 0( 6'), ( K ) &

and K ( 8 ) is borrowed
from the coding theory (see, e.g. , Hamming' ). One of
the fundamental problems of coding theory is the search
for efficient ways of representing symbols
s, ,sz, . . . , Sk, . . . , put out by a source of information
with the respective probabilities p, ,p2, . . . , pk, . . . , in
terms of an alphabet consisting of another set of symbols
(e.g. , 0, 1) for the purpose of convenient storage or
transmission. We shall be particularly interested in the
case when the code words s, , s2, . . . , sk, . . . , corre-
sponding to the source symbols are composed from a
binary alphabet.

A natural measure of the efficiency of encoding is the
average length (the number of binary symbols per source
state) of the encoded message

s] ~0 s2~ 10 s3~ 1 10, s4~ 1 1 1 ~

With this encoding symbols can be decoded as soon as
they are received.

The analogy that will be pursued in this section regards
an ensemble 6 as a "source" of individual microstates
which play a role of source symbols. These microstates
occur in the ensemble with frequencies proportional to
their probabilities pk. The most efficient encoding will
minimize the average length

(K),= gp. K(s. )

k

(4.7)

of the programs which can be used to record (or com-
municate) individual microstates.

The prefix condition corresponds to the requirement
for the program to be self-delimiting. A self-delimiting
program must carry within it the information about its
size. Hence it will be able to initiate the computation
without having to be prompted by some additional sym-
bol (e.g. , ","). In this sense it is, therefore, "instantane-
ous.

The real advantage of self-delimiting codes follows
from the relation between their sizes and the probabilities
that they will be generated by some random process, such
as the flipping of an unbiased coin. ' The probability
that a specific program of length l will be generated is ob-
viously 2 '. The sum of all such weights —the total prob-
ability that a valid, halting program will be obtained by
flipping a coin—cannot be more than 1. This in turn im-
plies that sizes of self-delimiting programs as well as the
lengths of the encoded words l, = ~s, are constrained by
the Kraft inequality For the en. coding to be uniquely
decodable l; must satisfy

can be decoded as s&s&szs4 or s3S4sz or in a few more
ways. By contrast,

s
~
~0, sz ~01, s3 ~011, s4 ~ 111

is uniquely decodable but not instantaneous. The whole
message 00111 has only one decoding (s, s, s~). However,
it must be received in toto before unique decoding is pos-
sible (e.g. , the first three digits "read" s ls2 ).

This necessity of requiring the whole message to
decode it is avoided by an instantaneous code

2 '(1. (4.8)

l=s
I I (4.6)

s] +0 s2 + 1 s3 ~00, s4~ 1 1

The encoded message should be uniquely decodable.
That is, a sequence of 0's and 1's, which constitutes an
encoded message s, s sk. . . , should correspond to a sin-
gle, unique sequence of source symbols. The best way to
accomplish this is to use the so-called "instantaneous" or
"prefix-free" coding. In the instantaneous code no code
word sk is the "prefix" (the first part) of any other code
word. For instance, the encoding

The converse of this theorem is also true; that is, whenev-
er the sizes of the words do satisfy the Kraft inequality,
an instantaneous code s, with word sizes 1, exists.

Shannon-Fano coding is a specific, efficient implemen-
tation of the coding which satisfies the Kraft inequality.
The length of the words is chosen to satisfy

(4.9)

where Ia ] is defined as the smallest natural number equal
or greater than a. The length lk of a word sk is therefore
bounded from both above and below:

is not uniquely decodable. An encoded message 00111 —
log2p& sk ~

( —logzpl +1 . (4.10)
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Taking the average over the whole ensemble one arrives
at

of 0's and 1's we consider the sum

—g pklog2pk gp; Ik & Qpklog2Pk+1 .
k k

(4. 1 1)
(4.13a)

The lower bound on the average size of the message
follows directly from the Kraft inequality: The concavity
of the log function yields immediately that

1g Pk log2
Pk

—
l~

Pk2—t„ log 'k Pk
(0 (4.12)

The upper bound exists by virtue of the specific
(Shannon-Fano) encoding strategy.

Shannon-Fano coding is not optimal: A recursive stra-
tegy known as Huffman coding can be shown to be op-
timal. To implement Huffman coding one starts with the
two least probable states and assigns them code words
that differ in only one (last) digit. The combination of
these two states is thereafter treated as a single new state.
Within this redefined list of states, the two least probable
are found and assigned the last yet unassigned digit. The
procedure is repeated until the list of redefined states con-
tains only two states, which are assigned digits 0 and 1.
In this way each state is assigned an instantaneous se-
quence of binary digits, its code word. '

Huffman coding must, of course, satisfy the left-hand
side of inequality (4.11), since it follows directly from the
Kraft inequality, which in turn follows from the require-
ment of unique decodability. Furthermore, since it is
even more concise than the Shannon-Fano coding, it
must at least obey the same upper bound on the average
message size. Indeed, the best upper bound in terms of
the Shannon entropy of the source is—even for Huffman
coding —given by the right-hand side of Eq. (4. 11).

The conclusion of the above discussion is, therefore,
that the average length of the messages of our instantane-
ous code can be made very close to the entropy of the
source. Below we shall derive a version of the inequality
(4.11) valid for self-delimiting programs.

Our strategy is based on the definition of the ensemble:
We have assumed the existence of the concise program c
which, given enough time, will generate the output con-
sisting of "weakly sorted" descriptions of microstates sk
belonging to 6 and will compute their respective proba-
bilities pk with the requisite (finite, but otherwise arbi-
trary) accuracy. This program can be now used as a sub-
routine which, in addition to (i) ensemble description c.,
contains also (ii) a sorting routine cr which (a) arranges
descriptions in the order of decreasing computed proba-
bilities (so that s, appears before s if and only if p, p )

and (b) for microstates that have, within errors, the same
computed probabilities, some other definite order (e.g. ,
lexicographic) is adopted; and (iii) a program c which
uses the ordered list containing probabilities pk to assign
each microstate sk a definite binary "code word" sk using
either the Shannon-Fano or the Huffman procedure.

Shannon-Fano coding can be illustrated in a particular-
ly straightforward manner (see Fig. 1). To set up a
definite correspondence between states sk and sequences

For definite sk the first lk binary digits of gk constitute an
instantaneous encoding of sk. (We have, of course, as-
surned that the states are presorted in the order of de-
creasing probabilities. ) The consecutive digits
a, , a2, . . . , of the code word can be then read off directly
from the binary expansion of gk

(k)2 —1+ (k j2 —2+. . . +~(k)2
CX2

/

(4.13b)

It is perhaps worth emphasizing that even when the ini-
tial digits are 0 they should not be omitted in construct-
ing the code word sk

—=a', 'az(k ). . . aI '.

Let us now return to the derivation of the analog of in-
equality (4. 11) for the average algorithmic randomness of
an ensemble D. The complete program capable of
uniquely reproducing any microstate sk of the ensemble
must, by virtue of the Kraft inequality, satisfy

H(D) & QP, K(s, ) . (4.14)

The upper bound of the average algorithmic randomness
follows from the inequality

K(s, ) & ~s, ~
+K( 6)+K(cr, c )+O(1) . (4. 15)

Here ~s, is the length of the code words, K(6) is the
length of the minimal program to generate descriptions
and probabilities of the ensemble microstates, K(cr, c ) is
the joint algorithmic complexity of the sorting and
decoding algorithms, and O(1) is the usual constant asso-
ciated with the choice of the universal computer.

For Shannon-Fano coding ~s; ~

& —logzp, + 1. More-
over, K(o, c) does not depend on 6 and therefore can be
incorporated in the constant term O(1) along with the
extra "+1." Multiplying the inequality K(s, ) & —log2P,
+K( P~)+ O(1) by p; and summing over the whole ensem-
ble, we arrive at

QP, K( s) &H(6) +K(F) +O(1) . (4.16)

We have therefore established the following.
Theorem 4.I. The ensemble average of the algorithmic

randomness of microstates belonging to the ensemble 6 is
bounded from below by the statistical entropy of that en-
semble and from above by the sum of the Shannon entro-
py and algorithmic information content of c~:

H (6') & (K(s, ))(; H&(D) +(KD) +(O1) . (4.17)

For thermodynamic ensembles K( 6 ) «& H( 6), which
implies that the relative difference between K(6') and
H(6) is negligible.

An important issue, omitted in the discussion above,
concerns the accuracy with which the probabilities of the
ensemble microstates have to be computed in order for
Theorem 4. 1 to apply. Problems would emerge if one



4740 W. H. ZUREK 40

were required to attain infinite accuracy in calculating
probabilities of states. Fortunately, it is not difficult to
see that the inequality (4.17) will be satisfied as long as
the generated probability distribution qk is a faithful ap-
proximation of the actual distribution given by pk. One
way of phrasing this requirement is to demand that the

expression

~= &p~iog~
k Ik

be of order unity.

(4.18)

1.0
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1010

1001
100

1000

011 'I

011
0110
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2

010

001

000

I

3

0101

0100

0011

0010

0001

0000
I

4

CODE WORD LENGTH gi —— — log p(s;)
FICx. 1. Efficient instantaneous encoding of the states [s;] with probabilities p(s;) is illustrated above with the help of the lexico-

graphic tree. The tree is plotted in a coordinate system, with the vertical axis corresponding to the cumulative probability and the
horizontal axis labeled with the index of the "level" l of the tree (there are 2' distinct branches at the level l). This establishes a
correspondence between each 1-digit-long binary sequence and a 2 ' section of the [0,1) interval. Determination of the code word
corresponding to the state s, begins with arranging all the states in the order of decreasing probabilities [p (s, ) ~ p(sz) ~p(s, ) ~ ].
Code words are assigned in this order. The code word corresponding to the state sj, with probability p (s& ) is picked out from the l& th
level of the tree, where I»= [log~[1/p(sl, . )]]. The actual sequence of digits assigned to s„corresponds to the first still available
branch on the level lI, of the tree. If a certain binary string is chosen as the code word (this is indicated by "framing" it in the figure),
the corresponding branch and all its "descendants" at levels greater than (to the right of) lk are "cut oA." The tree is successively

/c —l
'

Jc
—l.

"pruned, " and its whole sections contained in the intervals [g,":,' 2 ', g,",2 '
) (indicated by "ticks" on the shaded "pruning bor-

der") become unusable. This guarantees prefix-free coding. There will always be unassigned branches to encode states with the
nonincreasing probabilities p(s, ) with the code words of the length [log[1/p(s;)]]. This is apparent both from the figure and from—l.
the fact that 2 ' ~p(s;), which in turn guarantees that the Kraft inequality, Eq. (4.8), is satisfied. In fact, the proof of the Kraft in-
equality utilizes the lexicographic tree in this manner. The method shown in this figure implements Shannon-Fano coding, which is
not optimal, but which suffices to establish the upper bound in the inequality (4.17).
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V. PHYSICAL ENTROPY=MISSING
INFORMATION+ KNOWN RANDOMNESS

Section IV has demonstrated that the consequences of
the radical shift of the paradigm used for the definition of
entropy of thermodynamic ensembles would be, from the
point of view of its quantitative estimates, barely notice-
able. The average values of the algorithmic entropy and
of the Gibbs-Shannon entropy of any concisely described
ensemble are virtually identical. Indeed, in equilibrium
all the sensible definitions of entropy must approximately
coincide. Otherwise, given the excellent record of the
Boltzmann-Gibbs approach, they would be experimental-
ly ruled out.

Conceptual implications of the new definition of entro-
py are, on the other hand, very different from either
Boltzmann or Gibbs ensemble definitions. Ensemble en-
tropies bear an unmistakable formal similarity to
Shannon's information-theoretic entropy. Indeed, al-
ready Maxwell and Boltzmann expressed the suspicion
that entropy is a measure of ignorance. ' A more direct
connection between missing information and entropy was
established by Szilard in his discussion of Maxwell's
demon.

Particularly influential works arguing in favor of the
identification of entropy with missing information are
due to Jaynes ' and Brillouin. Yet all but a few of the
most fervent supporters of the information-theoretic in-
terpretation will agree with the notion that individual
states of physical systems can be either ordered or ran-
dom regardless of our information about them. A broken
glass —a frequent example of the increase of disorder in
movies illustrating the thermodynamic arrow of time —is
more random than the unbroken one not because our ig-
norance about it has dramatically increased when it was
shattered by the hammer, but because it has become
more disordered.

A. Definition of physical entropy

The intuitive notion of randomness is, we believe, for-
ma11y expressed by the algorithmic definition of entropy.
We have demonstrated that equilibrium systems are ex-
pected to have the same equilibrium thermodynamic
properties regardless of which of the two paradigms is
employed to define their entropy. Therefore we have the
"objective" quantity —algorithmic randomness —which
measures the disorder in the system. This approach is
consistent and well defined for the systems considered by
equilibrium statistical mechanics, but it does not suKce
to give a full account of the operation of idealized ther-
modynamic engines. For, consider gas entering an ap-
propriate chamber in the engine. Its initial state, from
the standpoint of the operation of the engine, is defined
by the few relevant macroscopic properties (pressure,
volume of the chamber, temperature) which can be used
to determine its entropy, and which can, in turn, be em-
ployed in the calculations of the amount of the work that
can be extracted. The fact that the gas may be in some
specific microstate does not enter into consideration at
all. Indeed, the e%ciency of the engine is largely deter-
mined by the fact that its design ignopes all but a few

where pk~d is the conditional probability of the state sj,
given d.

Definition Physica. l entropy is the sum of the missing
information and of the length of the most concise record
expressing the information already at hand:

Sd=Hd+K(d) . (5.1)

It is apparent that Sd is a good thermodynamic poten-
tial. For, by the results of Sec IV, 4'd .—=gk pk~dIC(sk ~d).
Therefore, for systems in thermodynamic equilibrium,
the ensemble average of Sd approximates the premea-
surement ensemble entropy (that is, the entropy comput-
ed in absence of d). Below, we shall prove that the quan-
tity defined by Eq. (5.1) enters into the formulation of
thermodynamics for engines operated by entities that can
acquire information through measurements and can pro-
cess it in a manner analogous to Turing machines. We
shall also drop the subscript d on Sd to simplify the nota-
tion.

The physical significance of the above formula is best
understood in the example in which a sequence of mea-
surements is being carried out on a system (see Fig. 2).
Measurements change conditional probabilities pkId of
the microstates; as a result, Hd decreases. On the other
hand, the "record tape" containing measurement out-
comes is getting more and more data about the system.
If these measurements are performed on an algorithmi-
cally random member of an equilibrium ensemble, then,
by virtue of the results discussed in Sec. IV, the measure-
ment will increase the size of the record by the amount

macroscopic characteristics of the microstate. The work
extracted is then limited not so much by the details of the
microscopic initial state, but by the combination of these
few usually macroscopic properties of that state that are
"encoded" in the design of the engine —in the "algo-
rithm" it follows. If this algorithm is unable to take ad-
vantage of all the features of the initial state of the gas,
then it will consistently miss the additional opportunities
to extract all of the extractable energy.

A more sophisticated engine designed to miss fewer
such opportunities could be operated by an IGUS (infor-
mation gathering and using system), which, following
each measurement, could perform a computation in an
attempt to optimize the strategy for each individual case
on the basis of the acquired data d. Following the mea-
surement, with a definite outcome at hand, the entity
operating the engine could also assess its ability to extract
useful work. The question therefore arises: %'hat quanti-
ty should it employ in the calculation of the net useful en-
ergy'

Motivated by such considerations, I conjecture that the
quantity relevant for this purpose is the physical entropy
g. It is a sum of two contributions: (i) The algorithmic
randomness K(d) given by the size of the most concise
description of the already available relevant data d, and
(ii) the information about the actual microstate which is
still missing, in spite of the availability of d, as measured
by the Shannon conditional entropy

Hd Q Pk d iog2Pk d
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S= Hd + K(d)
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FICs. 2. Schematic illustration of the effect of data acquisition
by measurements on (i) Hd, the information still missing in pres-
ence of the data d; (ii) K(d), the algorithmic information con-
tent of the data; and (iii) the physical entropy S=Hd+K(d),
observers internal measure of net work that can be extracted
from the system. (a) For a typical (algorithmically random) mi-
crostate of the system the size K(d) of the minimal record will
increase by the amount equal to the decrease in Hd. Hence the
physical entropy 4 will be constant, unchanged by the rneasure-
ments. (b) For a regular microstate, the increase of the minimal
size of the record describing the acquired data will be less than
the decrease of the still missing information Hd. Consequently,
the value of physical entropy can really decrease as a result of
the measurement, and the observer can gain the ability to ex-
tract useful energy from the system.

almost exactly equal to the increase of the statistical
information —decrease of Shannon's entropy —about its
state. This must be so, as, according to Eq. (4.17), the en-
semble average of the sum Hd+K(d) (that is,

gd pd[Hd+K (d)]) is bounded from below by (and in

fact, approximately equal to) the average g„pkK(k),
which, for an equilibrium thermodynamic ensemble 6, is
approximately given by the algorithmic entropy of its
typical member. Hence

(gd )„=(K)g -H(8—) .

In the limit when the measurements are successful, and
the microstate known precisely, pk =5kk, the physical en-
tropy of the system is given by the algorithmic random-
ness of the state in which the system is found.

Consider now a sequence of measurements of a "regu-
lar" (that is, simply describable) microstate. Before the
measurements are carried out, the physical entropy is
dominated by the missing information. As the measure-
ments are carried out, the information about the state of
the system is stored in the form of a concise program
record. The size of such a record will be smaller in bits
than the decrease of the missing information. In the end,
the minimal program record, equal in the number of bits
to the algorithmic entropy of the state, can be used to
store the information. However, now this implies a rela-
tively short record, as the state, by assumption, was algo-
rithmically simple.

Physical entropy defined by Eq. (5.1) can be really de-
creased by a gain of information. When the state of the
system is regular, the information about it can be record-
ed concisely, its binary image can be generated from a
short program. Moreover, the length of the record need
not be a monotonic function of the decrease in ignorance.
Often it may become possible to compress the record
only after it contains sufhcient evidence of the underlying
regular pattern.

Indeed, one can claim that the measurements are usu-
ally devised "in anticipation" of regularities. Approxi-
mate measurements of macroscopic properties performed
by our senses are particularly adept at finding familiar
patterns (see, e.g. , Ref. 33 for an interesting discussion of
visual perception in the computational context). Most of
the information reaches our consciousness already
preprocessed, with the records relatively concise com-
pared with the number of hypothetical possibilities.
Analyzing this point would take us, however, into a dis-
cussion of the theory of perception. While this is a fas-
cinating subject, one can demonstrate how the record can
be compressed by other, more rigorous and less anthro-
pocentric means.

Information processing by means of computers can ac-
complish the goal of compressing the record. To demon-
strate this, we consider a record r which can be generated
from a more concise program r', by a universal computer
(or by a special purpose computer attached to the
measuring device). We also assume that this computer
can operate reversibly.

The proof that computers can process information re-
versibly. is due to Bennett. Landauer had earlier ar-
gued that only logically irreversible operations lead to
loss of information and increase of entropy. Bennett took
the next step to show that reversibility can be accom-
plished by storing the information normally erased in
such irreversible operations, so that the computation can
"backtrack" from the output to the input along the same
logical route. A good summary of the subject can be
found in recent reviews.

To shorten the record without any thermodynamic
cost one can use a reversible computer to replace r with
r'. Here is one strategy of accomplishing compression:
The computer first uses r', which, we assume, it already
contains, to generate one more copy of r. The newly gen-
erated r can be used to cancel the "old" but identical r.
Reversible cancellation leaves one r behind. The
remaining r can be finally converted reversibly into r' by
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running the program backwards —it has now all the
"directions" to backtrack reversibly to r'.

As a result of all these reversible operations, the corn-
puter will be left with r' and the rest of the register previ-
ously occupied by r will be filled with ~r~

—~r'~ 0's. Our
discussion demonstrates an important point: If the
record r' is known to encode the same information as r
more economically —that is, using fewer bits —the sub-
stitution of r with r can be, in principle, used to
"compress" information stored in computer memory at
no cost in work or entropy increase.

It is important to emphasize that the above argument
demonstrates the possibility of compression only when a
more concise r' is known "by fiat" to generate r, the sub-
stitution can be accomplished reversibly. However, in
general, as it follows from the undecidable aspects of the
algorithmic information, it may be difficult if not impossi-
ble to determine whether a string r has a more concise
description. Nevertheless, the ability to recognize con-
cisely describable configurations will be of advantage in
the task of decreasing physical entropy.

B. Physical entropy and the demon's version
of thermodynamics

To demonstrate that the use of the term "physical en-
tropy" for the expression defining 4, Eq. (5.1), is legiti-
mate, consider a transition taking the system from the in-
itial state s, to some final state s&. We shall assume that
this transition is accomplished sufficiently slowly to be
thermodynamically reversible. To simplify the analysis,
we shall also assume that the internal energy of the sys-
tem is constant, so that the work extracted in the course
of the transition is given by

5R =ThS . (5.2)

Here T is the temperature, Boltzmann's constant kz = 1,
and ES is the difference between the entropy of the final

and initial state

(5.3)AS=S~ —S; .

Equation (5.2) defines, for the purpose of this argu-
ment, the quantity that should be regarded as physical
entropy. We shall demonstrate that when this transition
(s; ~s& ) is controlled by an automated "demon" —a
computer that can distinguish between different initial
states and which maintains a current record of the state
of the system —the physical entropy S must be given by
Eq. (5.1). In short, we shall show that S which must be
used in Eq. (5.2) is the physical entropy S.

This arrangement is clearly inspired by the "Szilard's
engine, " in which the demon controls the operation,
altering the course of the cycle depending on the outcome
of the measurement, on the information it acquires about
the new initial state of the system. ' ' The initial state
of the system is a single particle of gas located in either
the left or the right chamber. The demon's memory con-
tains the corresponding one-bit record. The final state-
in the sense of our analysis —corresponds to the particle
somewhere in the container. The demon must according-
ly "reset" its memory to be able to initiate a new cycle.
This "resetting" —as argued by Bennett ' for the clas-

sical version of the Szilard engine —is thermodynamical-
ly costly and essential in preventing the demon from
violating the second law. Indeed, the thermodynamic
cost of resetting was, to some extent, anticipated by Szi-
lard, who, nevertheless, in other parts of his paper,
viewed measurement rather than erasure as the funda-
mental thermodynamically costly operation. Bennett's
argument was based on the observation by Landauer,
who, in the context of information processing operations,
pointed out that the thermodynamic cost of the removal
of information about the past states of the computer is
kz T per bit. This conclusion was extended for the quan-
tum version of the Szilard engine by the present author.

In the general case considered here, we shall also insist
that the final state of the computer memory should
correctly reflect the demon's knowledge (or lack of it)
about the state of the system. With this assumption in
mind, we can now calculate the net work obtained by our
computer-operated engine. The gain due to the change of
Gibbs-Shannon entropy is given by the usual formula in a
somewhat unusual notation:

b, W'+'= T(HI H; ) . — (5.4)

Here H& and H; are Gibbs-Shannon entropies of the final
and initial states, respectively. A standard textbook dis-
cussion of energy extraction stops here. However, the
information-theoretic "bill" for this increase of energy
has not been settled. The computer must update its
memory to get rid of the no longer relevant record r,
about the initial state, and introduce the record r&
describing its knowledge about the final state. Below we
shall prove that the cost of such an update for a comput-
er operating in the environment of temperature T is no
less than

b, R" '=T[K(rI) K(r, )]=T(—~r~ ~

—
~r,*~) . (5.5)

Here rI* and r,
' are the minimal records —the most con-

cise programs containing the information required to
specify the ensembles describing states s& and s;. Our dis-
cussion will follow a similar but more complete account
of the computational aspects of energy extraction and re-
lated issues (e.g. , of the limitations imposed by undecida-
bility on the thermodynamic efficiency) given elsewhere.

To justify Eq. (5.5) we first note that the more verbose
record rI can be reversibly, i.e., without any work expen-
diture, substituted with rI* (providing, of course, that rI*
is known ). The record of the initial state r; plus the in-
formation about the operating procedure of the engine,
which we assume is encoded in the computer library,
suffice to compute rI. This last computation could be
also accomplished reversibly, but generally only at a cost
of being left with rI and the "historical" record of the
computation path required to assure reversibility. This
would lead to an accumulation of such a historical record
with each engine cycle, which would slowly fill up the
memory tape. Therefore the process would not be truly
cyclic, and could not be used in the discussion of the first
and of the second law of thermodynamics. Hence it
would not suffice for our purpose.

Unless rI and the operating procedure of the engine
determine r, uniquely, the computation of r& from r,.



must be necessarily irreversible, as some of the informa-
tion about the initial state is irreversibly erased from the
memory. In short, a computation that disposes of some
of the information about the initial state is logically ir-
reversible, and hence, in accord with Landauer's remark,
must be thermodynamically irreversible.

The key question relevant to our discussion is then:
What is the least possible thermodynamic cost of com-
puting rf from r, , in a manner which disposes of the
record of the computation path by a universal computer
operating in the environment of temperature T. We be-
gin by noting that r, contains obviously the information
required to compute rf.

K(r;, rf)=K(r;)=Ir, *I . (5.6)

Moreover, rf does constrain r, partially. This fact can be
expressed by noting that to compute r, one can use rf
supplemented by the conditional information. According
to the algorithmic information theory,

K(r, , rf ) =K(rf )+K(r, Irg ) . (5.7a)

In the above equation we have assumed that the compu-
tation of r, is carried out from the minimal program rf
rather than directly from rf, this is a technical assump-
tion important in avoiding small (logarithmic) correc-
tions to the equation for the size of the conditional
string. Another possibility of avoiding such corrections
would involve assuming that the computation starts from
rf, but that K(rf ) is also available. For, in accord with
Eq. (2.6), one can write

K (rf r, )=K (rf )+K(r, Irf K (rf )) (5.7b)

Here K(r; Irf, K(rf )) is the algorithmic content of the
conditional information —the size of the minimal pro-
gram to computer r, given both rf and K (rf ). Moreover,

K(r, , rf)=K(rf, r, ) . (5.8)

Erasure of Ir,*I—Irf*I bits of information in the environ-
ment of temperature T can be accomplished only at the
expense of no less than b, W' ' of work, Eq. (5.5).

Note that these computations, Eqs. (5.6)—(5.9), recog-
nize the fact that the relevant algorithmic randomness is
defined with respect to the specific computer which hap-
pens to be operating the engine. Therefore computer-

We are now ready to show that no less than
I r,*I—

I rf I

bits must be erased in the calculation of rf from r, . To
this end, we note that reversible computation is capable
of obtaining r, from the record containing jointly rf and
r.~~, where r,

~

+ stands for the conditional string relevant
in the context of Eq. (5.7a). Therefore one can also em-
ploy a reversible computer in the manner outlined before
to substitute r; with rf and r.

~

+. Now to finish the up-

date procedure, one can irreversibly erase the bits of r.
~

The number of bits that have to be erased is readily cal-
culated from Eqs. (5.6) —(5.8). The length of the condi-
tional information string is

(5.9)

=T(Sf—S, ) . (5.10)

This justifies our conjecture about the formula for physi-
cal entropy.

Proper accounting for the cost of the "information
disposal" is essential in arriving at this formula. I have
demonstrated that such accounting must be carried out
in terms of the minimally sized programs capable of
describing ensembles corresponding to the initial and
final states of the active medium in the engine. Again, I
have assumed that the minimal programs are already
available and ready to use.

Possession of minimal programs can only increase the
efficiency of the engine. b. W in Eq. (5.2) refers to the
maximal extractable energy. Therefore, if one can prove
that Eq. (5.5) for the minimal cost of erasure holds when
the efficiency of compression is optimized, this assump-
tion can be made without danger: The computer cannot
do better than we have assumed above, and we were try-
ing to find out the maximal attainable efficiency.

However, in this sense, the above discussion assumes
that the most difficult part of the procedure —finding the
minimal algorithm for generation of the record describ-
ing the initial state given the minimal program describing
the final state —has been somehow accomplished. In
reality, the inability to guess or derive the most concise
description will be the rule. It will increase the cost of
erasure —more bits will have to be erased if the compres-
sion does not attain the limit defined by the algorithmic
information content —and the efficiency of the engine
will decrease. I shall discuss this fundamental inefficiency
of information processing mandated by the undecidabili-
ty and its relation to the thermodynamic efficiency of en-
gines elsewhere in more detail (see Ref. 40). However, it
is already tempting to conjecture that it provides the
motivation for efficient acquisition and processing of in-
formation in systems which exist in and depend on an
evolving nonequilibrium environment.

With the above caveats in mind we conclude that the
absolute best Maxwell's demon can do is given by physi-
cal entropy which does include the algorithmic random-
ness of the relevant states in its definitions. This observa-
tion, expressed formally by Theorem 5.1, allows one to
extend the range of applicability of suitably modified
thermodynamics to engines operated by computers and
by other systems capable of acquiring and processing in-
formation. The key result relevant to the discussion of
the thermodynamic costs of information processing can
be stated as follows. Suppose string r2 can be computed
from the program r

&
by a Turing machine T. If we

demand that the computation should start with only r,

dependent error terms usually appearing in the discussion
of the algorithmic randomness [O(1)] do not enter into
consideration.

We have demonstrated the following.
Theorem 5.1.
The net work gained by an engine coupled with a com-

puterized demon, which can perform measurements and
control the operation of the engine, is no more than

b, W=b. W'+'+b, W' '= T[(Hf+Kf )
—(H, +K, )]
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on the tape (which assumes that r~ is self-delimiting) and
end with nothing but r2, then the Turing machine must
erase no less than K (r, ) —K (r2 ) bits in the process.

The crucial result for statistical mechanics is the recog-
nition that the entropy of an object can be properly
defined as a sum of its statistical entropy with the ensem-
ble defined by the data d and of the algorithmic informa-
tion content associated with the description of that en-
semble. This new definition of physical entropy will have
to be reexamined both in the context of the standard is-
sues of thermodynamics (e.g. , second law) and from the
point of view of its implications for the theory of mea-
surements in classical and especially quantum physics.

VI. DISCUSSION

In this paper we have considered three measures of en-
tropy. Boltzmann-Gibbs-Shannon entropy has an
information-theoretic Aavor and is a subjective property
of the microstates in the following sense. The same rni-
crostate can be endowed with a very different value of the
BGS entropy depending on the ensemble it is assigned to.
This entropy is an (objective) property of an ensemble
rather than of a microstate. However, ensembles are usu-
ally defined subjectively in a manner that may depend on
the state of the knowledge of the observer. Moreover,
both in classical and quantum physics the system is
presumably in just one of the microstates constituting the
ensemble. '

Algorithmic entropy is defined for a single microstate.
It is difficult to calculate exactly, but typically relatively
easy to estimate. In spite of the very different conceptual
setting, its value is related to the number of microstates
in much the same way as the Boltzmann-Gibbs-Shannon
entropy. Therefore one could shift the foundations of
thermodynamics and statistical mechanics from the en-
semble to the algorithmic basis without endangering any
of its key conclusions. Algorithmic entropy is an objec-
tive property of a microstate, except for the 0 ( l ) correc-
tions which are related to the size of the description —the
algorithmic information content —of the universal corn-
puter used to define it.

Each of these two quantities is a satisfactory measure
of disorder when applied from the outside of a complete
(that is, including the Maxwell demon-type observer) sys-
tem. However, physical entropy, the sum of the algo-
rithmic randomness of the available data and of the still

missing information, is necessary to discuss the process of
energy extraction from the "inside, " from the viewpoint
of the observer.

In the experience of this author the only systems that
are interested in the amounts of extractable work and
capable of estimating entropy always seem to belong to
the category of "observers. " Therefore it is tempting to
argue that the only entropy that should ever be used is
the physical entropy. Indeed, even the traditional ensem-
ble entropies are defined subject to the knowledge of the
type of ensemble and its macroscopic parameters, which
constitute the relevant data. From this point of view, the
usual statistical entropy is the physical limit applicable in

the case of almost complete ignorance, K(d) ((Hd. Al-
gorithmic entropy of a microstate is the opposite limit.

Having said all that, one must recognize that the sta-
tistical entropy is almost always an excellent approxima-
tion of the physical entropy —we are invariably in the vi-

cinity of such a thermodynamic limit. Moreover, statisti-
cal entropy is far more convenient to calculate and to use,
and there is certainly no reason to try to replace it with
physical entropy in engineering applications of thermo-
dynamics. One should, on the other hand, use physical
entropy 4 whenever issues of principle are considered
from the internal point of view of the information gather-
ing and using systems.

To further investigate the connection between the
physical and statistical entropy it is useful to recast the
discussion of Sec. V in the ensemble language. Consider
a system and a fine partition of its phase space
g= I co, ci, . . . , cz ). The standard entropy is

H(g)= —gp(c;)log@(c;) . (6.l)

Suppose now that the Maxwell demon can make a dissi-
pationless measurement corresponding to a coarse parti-
tion p. Suppose also that g' is a refinement of /3. The
demon can now operate by (a) measuring the observable
associated with the partition /3 to determine which b H/3
contains the microstate, (b) constraining the system to lie
within b in a dissipation-free manner, and (c) extracting
the work by relaxing the constraints in a slow isothermal
reversible fashion.

Before the process begins with step (a) and after it is
completed with step (c), the entropy is H(g). However,
at the intermediate step (b), it is equal to the conditional
Shannon entropy H ( g'~ p). Thus the work extracted in
the course of a cycle, when averaged over all the possible
measurement outcomes equals

b, W= T [H (g) —H(g~P)] = TJ(g P) . (6.2)

Here J(g:P) is the mutual Shannon information defined
by the statistical, ensemble analog of Eq. (2.7). Mutual
information is a measure of correlation between two en-
sembles. '2'3

So far, the demon has gained A8'of work at the price
of having its memory cluttered by the no longer relevant
historical information about a "used-up" measurement
outcome. Clearly, it would be possible for the demon to
operate the "engine" outlined above ad infinitum only if
its memory had infinite capacity. However, in order to
achieve a truly cyclic process, the memory of the demon
should be returned to the initial uncluttered state. This,
according to Landauer and Bennett, can be accorn-
plished by resetting the demon's memory at a cost given
by kz T times the number of erased bits.

In order to operate at maximum efficiency, the demon
has to minimize that cost. Hence it must "compress" the
block of memory occupied by the results of past measure-
ments to the absolute minimum. Such compression can
be achieved at no additional cost as long as it does not
alter the information content. The absolute minimum in
the size of the description is achieved by the minimal pro-
gram b*, the length of which defines the algorithmic en-
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tropy of the measurement outcome with respect to this
universal computer U which models operations of
Maxwell's demon. As the optimal sizes of programs are
related to the Shannon entropy via Eq. (4.17), the average
algorithmic randomness —typical number of memory
bits required to represent the outcome of the
measurement —is almost exactly equal to Ãg:P). Thus,
already on the ensemble level, one can conclude that the
demon will, at best, get nowhere.

We have just described the process of energy extraction
by the demon in the ensemble language. Why should one
then bother introducing "physical entropy, " which is
clearly more complicated than the probabilistic ensemble
quantities'

The answer is straightforward: Physical entropy al-
lows the demon to give its "private and personal" ac-
count of the attempts to extract energy. Each of these in-
dividual attempts is associated with the definite outcome
of the measurement. Each of them involves a computa-
tion in an attempt to represent the measurement outcome
in the simplest possible way. Maximum efficiency can be
ascertained only when the computation leads to a
minimal description. Moreover, the demon will miss the
opportunity to extract all of the energy from these out-
comes for which it will be unable to produce the most
concise description because of the incompleteness. . Hence
the incompleteness emerges as one of the reasons for
inefficiency. One could, of course, ascertain optimal per-
formance by furnishing the demon ahead of time with the
complete list of all the possible outcomes arranged in the
order corresponding to probability —a "Huffman code"
for a given ensemble. This would, however, require enor-
mous, possibly infinite memory as well as a prior
knowledge of the ensemble. Moreover, it would neces-
sarily be a very inAexible strategy, locked to a single,
definite ensemble. In practice, living systems that at-
tempt to extract useful energy from their surroundings
are faced with a variety of unanticipated circumstances.
Therefore, rather than store a ready solution for every
possibility, it is advantageous to let some elementary
equivalent of computation choose the strategy. For-
tunately, there are usually sufficiently many opportunities
to allow for a decrease of physical entropy to sustain
their activity. Moreover, on longer time scales it may be
of enormous advantage to modify the information-
processing system. Such modifications take advantage of
the remaining subjectivity of the definition of algorithmic
information content —of its dependence on the computer
U with respect to which it is calculated.

Consequently, while introducing physical entropy does
not improve thermodynamic limits on engine efficiency, it
does allow for their discussion in a very different context,
which ties statistical physics with the theory of computa-
tion, and which provides a physical motivation for
efficient information processing. Further implications
may include a combined physico-computational insight
into biological systems and their evolution. Ensemble
formulations provide neither a motivation nor a language
to explore such questions. Physical entropy —tailored to
represent information from the viewpoint of the system
that acquires and makes use of it —appears to be an in-

dispensable tool. It forces one to adopt a hybrid —partly
probabilistic and partly algorithmic —definition of entro-
py.

It is interesting to contemplate an extension of the ap-
proach developed in this paper to quantum theory. We
shall pursue this subject in more detail elsewhere. Two
brief remarks anticipating some of the conclusions of the
more complete discussion are nevertheless appropriate.
Let us first note that the algorithmic entropy of a quan-
tum system can be defined in much the same way as that
of the ideal Boltzmann gas. Pure states can have different
algorithmic entropies depending on how "random" and
"disordered" they are. The choice of the basis in the Hil-
bert space can be regarded as equivalent to the choice of
the "grid. " All simply defined choices of the basis are ex-
pected to result in a similar algorithmic entropy for the
same state.

Physical entropy of a quantum system can be defined
for a mixture in a manner analogous to the "classical"
physical entropy defined in Sec. V. However, the discus-
sion of the problem of measurement is now somewhat
different: Measurements performed on a mixture will de-
crease missing information and alter the record. Mea-
surements performed on pure states can only alter these
states (and update the records about them). This distinc-
tion as well as other issues usually raised in the context of
quantum measurements are sufficiently complicated to
warrant a separate paper.

One may inquire as to why this algorithmic aspect of
physical entropy was not considered earlier. There are,
of course, obvious historical reasons: Questions concern-
ing entropy, Maxwell demons, etc. , were generally con-
sidered either settled or hopeless by the second part of
this century, and only rather recently was the cornputer-
oriented point of view of information sufficiently
developed to be of help in the issues of principle.

The success of the ensemble definition of entropy, com-
bined with the fact that ensemble and algorithmic esti-
mates of entropy almost always coincide, is the other im-
portant reason for concealing the alternative view of en-

tropy. This is not to claim that the role of randomness
was underestimated: The influential paper of
Ehrenfest's' emphasized the role of randomness in the
origin of irreversibility and interpreted Boltzmann's and
Gibb's definitions from that point of view. Prigogine and
his co-workers ' have advocated the use of the formal-
ism in which entropy is defined through probability dis-
tributions, but in a manner that has no information-
theoretic connotations. These efforts, however, invari-
ably associated randomness with probabilities. While
this association is not incorrect, it bypasses the alterna-
tive, and conceptually very fruitful, algorithmic ap-
proach.

VII. CONCLUSIONS

Questions concerning physics and computation have
been so far focused on the basic limitations placed by
physical laws on information-processing systems. By
contrast, this paper is concerned with the problem of a
"complementary" nature: I have explored some of the
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implications that information acquisition and processing
have for physics.

The definition of the physical entropy proposed here is
made possible by the algorithmic definition of random-
ness. It is made necessary to the desire to discuss the
function of the Maxwell's demon from its own perspec-
tive. Moreover, the demon's role can be successfully
played by an automaton capable of (i) acquiring informa-
tion through reversible measurements, (ii) processing it in
a manner analogous to the universal computer, and (iii)
adopting strategies that aim to optimize its behavior so
that, for example, it can economically extract useful ener-
gy from the available sources.

Physical entropy, which must be used in the discussion
of the laws of thermodynamics from the internal point of
view of such an automated engine, is the sum of the miss-
ing information and of the thermodynamic cost of updat-
ing the memory with the record of the measurement out-
comes. It provides one with a new perspective of the pro-
cess of measurement. It extends the Boltzmann-Gibbs-
Shannon missing information paradigm by taking into ac-
count the cost of storage of the information about the
system. It is no longer necessary for the parameters
defining ensembles of concern in the process of energy ex-
traction to be few and "macroscopic:" They can be
numerous and correspond to microscopic data, but the
price for this information must be taken into considera-
tion in evaluating the efficiency of the engines controlled
by computers.

K=K +K -=X log V/AV+ —1og
D mkT

v p 2 (& )'
p

+0(1) . (A2)

The expression for entropy, Eq. (A2), has a sensible
form, but results in a counterintuitive prediction. Con-
sider N gas particles in a container separated in the mid-
dle by a partition. Suppose that the partition is removed.
Particles which were on the opposite sides of the parti-
tion in approximately equal numbers can now begin to
mix. Using Eq. (A2) to calculate the difference of entro-
pies before and after the removal of the partition results
in a change of the value of the "candidate entropy, " Eq.
(A2):

the additional expenditure would be -D 'log& V/b. V.
This brief discussion outlining two different possible

programs that can generate the same binary image illus-
trates an important point: Estimates of algorithmic entro-
py are quite insensitive to the details of the method of en-
coding. We can now consider the space on the program
tape required to accomplish a similar "encoding" pro-
cedure for the momentum of an individual particle. In
each degree of freedom a typical number of digits will be
log2(p/b, ). As the expected value of one component of p
is (mkT), a typical size of the program required to en-
code all of the components for one particle must be, to
leading order, D logz&mkT/b, . The estimate of algo-
rithmic entropy is then

APPENDIX A: INDISTINGUISHABILITY
AND THE SACKUR-TETRODE EQUATION

&&av=N log22=N . (A3)

Consider a gas of N particles distributed "at random"
in volume V in D-dimensional space. To within a
predetermined accuracy AV=A the location of each of
these particles is described by D integers. When these in-
tegers are algorithmically random, the length of a pro-
gram needed to encode the location of a single particle is
-1og2V/AV. In order to take care of all N particles, a
program of typical length

K~ =X log2( V/b, V)+ 0(log2(XD) )+0 (1) (A 1)

is usually needed. Note that this formula has only a
small self-delimiting correction 0(1og2(XD)) rather than
the correction 0(log2K~) of the type appearing in Eq.
(2.5). This correction does not depend on the actual algo-
rithmic randomness of the microstate, but rather solely
on the particle number and dimensionality. It can there-
fore be incorporated as a part of the constant 0 (1)
correction for the purpose of further discussion.

Such a small upper limit on the size of the correction
comes from the recognition that the most economical
way of writing a self-delimiting program is to specify
once and for all the sizes of blocks of digits describing
coordinates of particles in the phase space. The other
possibility would be to write a program in which each of
the coordinates is encoded by means of a separate self-
delimiting subroutine. In some cases this would save
space on the input tape. However, as the reader is en-
couraged to verify, for a random distribution of particles,

However, change of entropy should be zero, as no real
event occurs as a result of the removal of the partition.

The cause of the increase of entropy by 6K&"v can be
traced to the fact that we have not taken advantage of the
indistinguishability of the particles in devising the pro-
gram designed to encode the state of the system. Infor-
mation about individual particles comes in separate
blocks, each of which carries an "implicit" index (i.e. , it
arrives as a "number 17 input block" on a tape). In other
words, the special-purpose rnachine L we have described
at the beginning of Sec. III could print in the pixels occu-
pied by the particles not just 1 to signify that the corre-
sponding cell in the phase space is occupied: It could
also print out a label of each particle implicitly encoded
in its order of appearance on the input data tape.

To compress further the program and to take advan-
tage of the particle indistinguishability, we can employ a
modified version of L, our special purpose computer. In-
stead of the coordinates of individua1 particles in one of
the dimensions, one can supply only differences in their
locations.

Any coordinate of the phase space would do. Consid-
er, for instance, spatial coordinate x, . Integers needed to
describe the distribution of particles in this dimension
will be now smaller. Where, before, a number of the or-
der of an average value of x, {x) -L /2, was required,
now a smaller number —{(b,x) )'~ = {x)/X will be
sufficient. This one small number has to be followed by
D —1 other numbers characterizing other coordinates of
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+N—log2 +O(1),
(& )'

which readily simplifies. We are therefore led to the key
result of this section.

Theorem Al. Algorithmic randomness of a typical mi-
crostate of an ideal gas of indistinguishable particles is
given by

E =N log2 +—log2
V D mkT +O(1) .'NbV 2 '(g )2

(A4)

This is the Sackur-Tetrode equation for the entropy of
the monoatomic gas. Its additive properties are entirely
satisfactory. In particular, the experiment with a parti-
tion being removed now leads to 5K =0, in accord with
the physically motivated expectations.

APPENDIX 8: HOW OBJECTIVE
IS ALGORITHMIC RANDOMNESS?

Algorithmic entropy is sufficiently different from the
traditional definition of entropy to be regarded with
suspicion. There were several points that were left out
from the discussion in Sec. III in an attempt to gain a
first quick, physical insight into the relation between the
algorithmic randomness defined through its information
content and the equilibrium entropy of an idealized phys-
ical system. We return to them now.

The first of them concerns the container in which the
gas is enclosed: It is conceivable that the container will be
so complex in shape that the program required to specify
it will be comparable in size with the algorithmic ran-
dornness of the particle configuration inside. Yet one
would like the entropy to characterize the state of the gas
alone. A "brute force" solution to this problem is to in-
sist on simple containers. A more sophisticated solution
is to employ conditional information. That is, one can
define the entropy of the gas alone as the number of addi-
tional bits that must be supplied —given a description of
the container —to specify the state of the gas with the as-
sumed resolution.

The second issue that was glossed over is more impor-
tant. It concerns the grid that was used to discretize the
system. The first, simple aspect of this issue concerns the
size adopted for individual cells. Obviously, in the limit
of infinitesimally small cells, algorithmic entropy of a
typical microstate of the system diverges logarithmically.
This difficulty is not new. Before the advent of the quan-
tum theory entropy was also thought to be logarithmical-
ly divergent for the same reason. Entropy is finite only
because the volume of the cells in the phase space is limit-
ed by the quantum of action. There is, however, a way of
partially dealing with this problem which does not call on
the quantum: One can compare different configurations
of the gas on the grid with the same resolution. While

the same particle, which have retained their previous
values. The algorithmic entropy of the gas in a D-
dimensional cubic box with the volume V=L is there-
fore given by

(L /N) LD —1

K =N log2, +(D —1)N log2 g 1/1/D ( g y)(D —I )/D

the absolute value of algorithmic randomness is still un-
determined, it is now possible, at least in principle, to
compute differences of algorithmic randomness of
different configurations.

While the problem of the logarithmic divergence of en-
tropy with the resolution of the grid is rather similar for
both the statistical and the algorithmic approach, the is-
sue of the shape of the grid is not. This problem is re-
sponsible for the ambiguity in defining the coarse-grained
entropy S& of Gibbs . By shifting cells defining coarse-
grained entropy one can usually make SG assume any
value between its equilibrium value and the smallest value
consistent with the fine-grained distribution. (This
difficulty is particularly acute in the context of Gibb's
"proof" of the second law. If the grid defining coarse
graining is continually deformed with the same evolution
Hamiltonian that generates evolution of the fine-grained
distribution, then the coarse-grained entropy will be con-
stant. Hence, unless one restricts possible grids in some
suitable fashion, Gibb's arguments in favor of the validity
of the second law are obviously incomplete. )

A natural resolution of this ambiguity is to insist that
the grid should be "simple. " The algorithmic informa-
tion theory allows one to give a rigorous definition of
what is simple: A simple grid is concisely describable by
the (specific) universal computer U. For instance, a grid
with hexagonal cells may be more appropriate for some
configurations, and it is still concisely describable. A
simple and natural requirement —to include the prescrip-
tion for the grid as a part of the program describing the
state of the gas —will eliminate the advantage of using
fanciful grids. In other words, when the optimal strategy
of describing the state of the system includes using an
unusual and complex coordinate system, it still is a per-
fectly legal strategy, as long as the cost of specifying the
grid is counted as part of the cost of this strategy.

The difficulty of Gibb's "coarse-graining" approach
arose from the inability to measure the complexity of the
different coarse-graining schemes and to account for
them in units of entropy: All grids, no matter how "per-
verse, " had to be regarded as equally valid. Algorithmic
randomness settles this difficulty to some extent: It
makes it possible to quantify the intuitive concept of
"simplicity. " In particular, this allows one to rule out
co-evolving grids used in arguments against coarse grain-
ing simply because they are too complex.

In view of the importance of the concept of coarse
graining and the long-standing concern with its subjec-
tivity, it is useful to delineate more precisely what can
and what cannot be accomplished by using algorithmic
prescriptions. The discussion above assumes (i) a definite
universal computer and (ii) a definite metric on the phase
space, which must be unaffected by the choice of the grid.
Given these two assumptions one can expect to arrive at
the algorithmic definition of entropy which, for a given
computer, does not significantly depend on the deforma-
tions of the grid.

Algorithmic randomness is by definition equal to the
size of the smallest message program for a given universal
computer needed to reproduce the state of the system.
Once the resolution is fixed by demanding, for example,
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APPENDIX C: SECOND LAW AND EVOLUTION
OF A DISCRETE DYNAMICAL SYSTEM

The aim of this appendix is to discuss the behavior of
the algorithmic randomness in the course of the dynami-
cally reversible evolution of a discrete system. We con-
sider reuersible transformations of aconite string s:

s~+1= Us, (Cl)

Equation (C1) can be regarded as a deterministic law of

that the sum of squares of the difFerences between the lo-
cations of the real microstate particles and their "im-
ages" on the plot, evaluated in some natural units (e.g.,
units related to the total volume of the phase space avail-
able to the system), is less than the specified tolerance, the
grid can be varied in attempts to meet the criterion with
the shortest message. There is just one smallest size for
such a program. This minimal size is the one that gives
the algorithmic entropy of the system. Such minimiza-
tion includes possible variations of the grid.

At first, one might worry that this freedom to choose
the grid makes K completely grid dependent. This is not
the case. If this were true, one could prove that the size
of the message, including both the description of the grid
and the location of the system within the grid, can be
made arbitrarily small for a giuen Turing machine U by
making a judicious grid choice. The theory of informa-
tion and coding proves that this must be impossible. For,
if it were the case, one could violate Shannon's noiseless
channel coding theorem' ' by first encoding messages in
particle configurations on the source end, then using the
"variable grid trick" to make message programs very
short, and finally decoding it on the other end with the
help of the computer.

Eliminating the subjectivity associated with the coarse
graining does not, however, banish it altogether. Rather
it reemerges under the guise of the definition of a univer-
sal computer employed to do the plotting of microstates.
In this new form, it is, however, easier to deal with and
quantify than in the form of coarse graining. In particu-
lar, all concisely describable Turing machines (i.e., all
computers that have algorithmically short descriptions)
will yield comparable estimates for algorithmic complexi-
ty. They define (approximately) "standard" algorithmic
randomness. More generally, the algorithmic complexity
of a machine with a long description can di6'er from such
a standard by no more than the size of its description.

Issues of the freedom of choice of coarse graining, sub-
jectivity of algorithmic randomness, and the resulting es-
timates of entropy are of course particularly important in
the discussion of the second law. Therefore we shall re-
turn to them in a future paper in more detail. For the
purpose of the present paper, which is mostly concerned
with the definition of physical entropy by specific, indivi-
dual observers, it is entirely sufticient to adopt the natural
grid defined by the observer's measurements and use it to
define algorithmic randomness.

motion generating the phase-space trajectory of a simple
example of an elementary, idealized system. We will
demonstrate how the reversible, deterministic, dynamical
evolution can lead to an increase of the algorithmic ran-
domness. We shall conclude that (i) algorithmic random-
ness K(s, ) tends to increase in the course of evolution if
the initial state is algorithmically simple, K (so )« ~so~-log2W; (ii) K(s, ) approaches the equilibrium
value consistent with the Boltzmann estimate log&8' of
entropy; and (iii) it fiuctuates around this equilibrium.

We shall require the transformation U to be reversible
to establish a closer analogy with the Hamiltonian dy-
namics. The old problem of statistical mechanics —the
fundamental incompatibility of reversible dynamics with
the second law —can be posed only when U is reversible.
That is, we assume that there should exist U ' such that

—1
sr U sr+1 . (C2)

We shall also require U to be concisely describable, i.e.,
for a typical instant t

K(s„s,+&)
—K(s„s,):—K(U) «K(s„s, )=K(s, )+O(l) .

Ciphers used in cryptography provide an example of such
transformations. Another, related example is afforded
by "random-number" generators used in Monte Carlo
programs. For example, dynamical evolution of a
discrete system can be described by

s, +, =As, +p(mod P) . (C3)

The analogy between classical dynamics and transforma-
tions described by Eq. (C3) can be pursued further by
noting that the n separate orbits of the quasiperiodic
discrete maps can be associated with the constants of
motion.

Above, the string s is treated as an integer which it
represents in the binary natation. Constants A. , p, and P
characterize U. It is not dificult to find examples where
these numbers are easily describable.

The phase space in which the string s evolves is a set of
all strings that correspond to natural numbers contained
in the interval [O,P]. The evolution shall be called per
fectly ergodic if after P iterations the system would have
passed through all states of the phase space. The evolu-
tion shall be called quasiergodic of order n if only Pln
states were occupied in that time. Evolutions for which
n & log2log2P shall be termed ergodie.

For example, the random-number generator, Eq. (C3),
is perfectly ergodic when P, A. , and p satisfy the following
conditions.

(i) The greatest common divisor of p and P is l.
(ii) A, :—1(mad q) for every prime factor q of P.
(iii) A, = 1(mod 4) if P is a multiple of 4.
In particular, when P=2 (which means that P is con-

cisely describable), A, =4a+ 1 and p=2P+ 1, where a and
P are arbitrary natural numbers, transformation given by
Eq. (C3) will result in a perfectly ergodie random number
generator. Hence it is quite easy to construct a concisely
describable, ergodic U, with a very large volume of the
phase space given by

(C4)
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Consider now the behavior of the algorithmic complex-
ity of the time-dependent state of the system s, in the
course of the dynamical evolution defined by Eq. (C3).
Let us first point out that this problem can be formulated
in two different, but equivalent ways: One can either (i)
consider the relative complexity of the initial string so
and the evolved string s, = U'so, K(s, /so), or (ii) one can
inquire directly about K(s, ). It is the first option that al-
lows one to pose the problem of the apparent irreversibil-
ity of dynamical evolutions in an "observer-independent"
manner. For one may now propose to measure the in-
crease of algorithmically defined entropy by

6K=K(s, ~so) . (C5)

Therefore the entropy will be defined relative to the initial
configuration. This configuration may or may not appear
"simple" to an observer. Below, we shall see that the rel-
ative entropy will typically increase, although with fluc-
tuations, over time scales smaller than the "Poincare re-
currence time. "

On the other hand, if we were to assume that the initial
state, wh&ch was presumably prepared by the observer,
were algorithmically simple [K(so)« log2P], then, in-
stead of the conditional randomness of Eq. (C5), one can
directly estimate

bK—=K(s, ) . (C6)

This equation will be valid whenever K(s, ) ))K(so), that
is, for an overwhelming majority of the phase space.

To prove that AK will tend to increase on time scales
less than the Poincare recurrence time P/n, we must
show that a program capable of reproducing the pair
(so, so ) is much less complex than the program reproduc-
ing (so, s, ). We can anticipate that the difference of com-
plexity should be of the order of the typical randomness
of the state s, . Typically, it should be similar to the aver-
age complexity of an algorithmically random number of
order P/n:

b,K =—log~P/n =log2P . (C7)

Above, and further in this appendix we assume that the
evolution of the system is ergodic.

This expectation, Eq. (C7), appears to lead to a para-
dox. After all, the evolution from so to s, can be readily
expressed as

s, = U'so . (Cg)

Why should s, be significantly more difficult to describe
than so, if U is, by assumption, concisely describable? It
is straightforward to estimate the complexity of the pro-
gram that starts from so and proceeds to generate recur-
sively all states of the string s in its phase space as given
by K(so)+K(U)+0(1). This number can be clearly
made much smaller than logiP. How can one then ex-
pect a program that generates s, from so to be, for a typi-
cal t, as long as log2P?

The requirement that the program must have a unique
output, emphasized already in Sec. II, provides a resolu-
tion of this apparent paradox. Apart from the informa-

tion about so and U the program must contain the infor-
mation on when to halt the calculation. This is given by t
itself, and typical t is of order P/n. Consequently, a
binary string of the length -log2t must be added to the
simple program generating the whole trajectory. The in-
crease of the algorithmic randomness, as defined by Eqs.
(C5) —(Cg), will then be bounded from above by

AK=log2t . (C9)

It is not difficult to see that this estimate of entropy
satisfies, for t significantly smaller than the recurrence
period P, not only the Boltzmann H theorem, but its gen-
eralized version

(C10)

as well. These results strongly indicate that the algo-
rithmic complexity can be regarded as an interesting con-
tender for the "objective" (that is, relatively observer-
independent) definition of physical entropy. Moreover, it
demonstrates that to give a rigorous definition of entropy
one need not try to argue that dynamical evolutions
transform definite, pure states into mixtures. Probability
is not indispensable as the foundation of statistical
mechanics.

It is of course of great interest to inquire as to what is
the relation between the algorithmic complexity and the
more traditional recipes for calculating entropy. It is also
of fundamental importance to consider how our idealized
model of a dynamical system can be used to deduce the
behavior of entropy in real physical systems.

The "equilibrium value" of entropy, given by the typi-
cal size of the program which must be used to generate s,
is given by

AK —= log2P+ log2log2P . (C 1 1)

There is one prevailing reason for large fluctuations that
approach bE-0: recurrences which occur on the time
scale of the order of P. As in the usual discussions of
classical mechanics, they are forced upon the system by
the finite volume of the accessible phase space, given here
directly by P. Apart from these rare occurrences AK
may fluctuate significantly above the equilibrium value
whenever the string s& is either intrinsically concisely
describable, or can be easily generated by transforming
so. Of course, these two cases need not be discussed sepa-
rately when so is itself concisely describable. Small fluc-
tuations around the equilibrium value can be discussed
more naturally in the context of the relationship between
complexity and traditional, probabilistically defined en-
tropies, which we have considered in Sec. IV. However,
it is easy to anticipate their origin. Clearly, for some spe-
cial time ti, -P there may be a concise algorithm V cap-
able of generating s, from so which does not employ the

V

transformation U. When K(V) «K(U')-K(t), the al-
gorithmic complexity of s, relative to so will be small,

V

and a large and very unlikely fluctuation —the spontane-
ous departure from the state of equilibrium —will have
occurred.
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It is important to emphasize that while the above dis-
cussion is clearly relevant for the dynamical understand-
ing of the second law, it is only a part of the whole story.
In particular, in the above example, entropy increases
only very slowly (it gets "half way" to its equilibrium
value only after a time -P'~ ), which is inconsistent with
the relaxation of systems such as the Boltzmann gas.
Moreover, the system is stable in the sense that a collec-
tion of several natural states —binary strings —always
leads to a similar collection with the same number of nat-
ural states at a later time. This is not the case in systems
which, like Boltzmann gas, exhibit exponential relaxation
and where a single "cell" in the phase space is rapidly
smeared by the dynamical evolution over many "natural"
cells. Indeed, the example we have considered here can
be regarded as "integrable. "

I shall discuss relaxation from the algorithmic point of
view in more realistic systems elsewhere in more detail.
The point of this appendix was only to demonstrate that
integrability of the system does not preclude the possibili-
ty that in the course of its evolution it will reach algo-
rithrnically random —disordered —configurations even if
the initial configuration were regular and the Hamiltoni-
an responsible for the evolution of the system were sim-
ple.
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