
Algorithms
and Data
Structures

Marcin
Sydow

Algorithms and Data Structures
Complexity of Algorithms

Marcin Sydow



Algorithms
and Data
Structures

Marcin
Sydow

Desired Properties of a Good Algorithm

Any good algorithm should satisfy 2 obvious conditions:

1 compute correct (desired) output (for the given problem)

2 be e�ective (�fast�)

ad. 1) correctness of algorithm

ad. 2) complexity of algorithm

Complexity of algorithm measures how �fast� is the algorithm
(time complexity) and what �amount� of memory it uses
(space complexity) - time and memory - 2 basic resources in
computations



Algorithms
and Data
Structures

Marcin
Sydow

Example - the Search Problem

Problem of searching a key in an array
What does the amount of work of this algorithm depend on?

find(arr, len, key)

Speci�cation:
input: arr - array of integers, len - it's length, key - integer to be found
output: integer 0 ≤ i < len being the index in arr, under which the key is
stored

(is it a complete/clear speci�cation?) or the value of -1 when there
is no speci�ed key in (�rst len positions of) the array
code:

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

What does the amount of work of this algorithm depend on?



Algorithms
and Data
Structures

Marcin
Sydow

Example - the Search Problem

Problem of searching a key in an array
What does the amount of work of this algorithm depend on?

find(arr, len, key)

Speci�cation:
input: arr - array of integers, len - it's length, key - integer to be found
output: integer 0 ≤ i < len being the index in arr, under which the key is
stored (is it a complete/clear speci�cation?)

or the value of -1 when there
is no speci�ed key in (�rst len positions of) the array
code:

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

What does the amount of work of this algorithm depend on?



Algorithms
and Data
Structures

Marcin
Sydow

Example - the Search Problem

Problem of searching a key in an array
What does the amount of work of this algorithm depend on?

find(arr, len, key)

Speci�cation:
input: arr - array of integers, len - it's length, key - integer to be found
output: integer 0 ≤ i < len being the index in arr, under which the key is
stored (is it a complete/clear speci�cation?) or the value of -1 when there
is no speci�ed key in (�rst len positions of) the array

code:

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

What does the amount of work of this algorithm depend on?



Algorithms
and Data
Structures

Marcin
Sydow

Example - the Search Problem

Problem of searching a key in an array
What does the amount of work of this algorithm depend on?

find(arr, len, key)

Speci�cation:
input: arr - array of integers, len - it's length, key - integer to be found
output: integer 0 ≤ i < len being the index in arr, under which the key is
stored (is it a complete/clear speci�cation?) or the value of -1 when there
is no speci�ed key in (�rst len positions of) the array
code:

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

What does the amount of work of this algorithm depend on?



Algorithms
and Data
Structures

Marcin
Sydow

The �speed� of algorithm

How to measure how fast (or slow) an algorithm is?

There are 2 issues to be considered when designing such a
measure:

1 independence on any programming language (and
hardware/software platform)

2 maximum independence on particular input data

It should be an internal property of the algorithm itself

Any idea?

Count basic operations of the algorithm



Algorithms
and Data
Structures

Marcin
Sydow

The �speed� of algorithm

How to measure how fast (or slow) an algorithm is?

There are 2 issues to be considered when designing such a
measure:

1 independence on any programming language (and
hardware/software platform)

2 maximum independence on particular input data

It should be an internal property of the algorithm itself

Any idea? Count basic operations of the algorithm



Algorithms
and Data
Structures

Marcin
Sydow

Dominating Operations

Simpli�cation: it is not necessary to count all the operations - it
is enough to count the �representative� ones

Before doing a complexity analysis 2 steps must be done:

1 determine the dominating operation set

2 observe what (in input) in�uences the number of
dominating operations (data size)

Dominating operations are those which cover the amount of
work which is proportional to the whole amount of work of the
algorithm (they well represent the whole)



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ?

no
comparison i < len ? yes
comparison arr[i] == key ? yes
both the above? yes
return statement return i ? no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ?

yes
comparison arr[i] == key ? yes
both the above? yes
return statement return i ? no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ? yes
comparison arr[i] == key ?

yes
both the above? yes
return statement return i ? no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ? yes
comparison arr[i] == key ? yes
both the above?

yes
return statement return i ? no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ? yes
comparison arr[i] == key ? yes
both the above? yes
return statement return i ?

no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ? yes
comparison arr[i] == key ? yes
both the above? yes
return statement return i ? no
index increment i++ ?

yes



Algorithms
and Data
Structures

Marcin
Sydow

Example - determining operating operations

What can be the dominating operation set in the following
algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

assignment i = 0 ? no
comparison i < len ? yes
comparison arr[i] == key ? yes
both the above? yes
return statement return i ? no
index increment i++ ? yes



Algorithms
and Data
Structures

Marcin
Sydow

Example, cont. - determining the data size

What is the data size in the following algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

Data size: length of array arr

Having determined the dominating operation and data size
we can determine time complexity of the algorithm



Algorithms
and Data
Structures

Marcin
Sydow

Example, cont. - determining the data size

What is the data size in the following algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

Data size: length of array arr

Having determined the dominating operation and data size
we can determine time complexity of the algorithm



Algorithms
and Data
Structures

Marcin
Sydow

Example, cont. - determining the data size

What is the data size in the following algorithm?

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

Data size: length of array arr

Having determined the dominating operation and data size
we can determine time complexity of the algorithm



Algorithms
and Data
Structures

Marcin
Sydow

Time Complexity of Algorithm

De�nition

Time Complexity of Algorithm is the number of dominating
operations executed by the algorithm as the function of data
size.

Time complexity measures the �amount of work� done by the
algorithm during solving the problem in the way which is
independent on the implementation and particular input data.

The lower time complexity the �faster� algorithm



Algorithms
and Data
Structures

Marcin
Sydow

Example - time complexity of algorithm

find(arr, len, key){

i = 0

while(i < len){

if(arr[i] == key)

return i

i++

}

return -1

}

Assume:
dominating operation: comparison arr[i] == key

data size: the length of array (denote by n)
Thus, the number of dominating operations executed by this
algorithm ranges:

from 1 (the key was found under the �rst index)
to n (the key is absent or under the last index)

There is no single function which could express the dependence of the number of

executed dominating operations on the data size for this algorithm.



Algorithms
and Data
Structures

Marcin
Sydow

Pessimistic Time Complexity

let's assume the following denotations:
n - data size
Dn - the set of all possible input datasets of size n

t(d) - the number of dominating operations for dataset d (of size n)

(d ∈ Dn)

De�nition

Pessimistic Time Complexity of algorithm:
W (n) = sup{t(d) : d ∈ Dn}

(W(n) - Worst)

Pessimistic Time Complexity expresses the number of
dominating operations in the worst case of input data of size n

E.g. for our example the pessimistic time complexity is given by
the formula:

W (n) = n



Algorithms
and Data
Structures

Marcin
Sydow

Pessimistic Time Complexity

let's assume the following denotations:
n - data size
Dn - the set of all possible input datasets of size n

t(d) - the number of dominating operations for dataset d (of size n)

(d ∈ Dn)

De�nition

Pessimistic Time Complexity of algorithm:
W (n) = sup{t(d) : d ∈ Dn}

(W(n) - Worst)

Pessimistic Time Complexity expresses the number of
dominating operations in the worst case of input data of size n

E.g. for our example the pessimistic time complexity is given by
the formula:
W (n) = n



Algorithms
and Data
Structures

Marcin
Sydow

Average Time Complexity of Algorithm

let's assume the following denotations:
n - data size
Dn - the set of all possible input datasets of size n
t(d) - the number of dominating operations for dataset d (of size n) (d ∈ Dn)
Xn - random variable, its value is t(d) for d ∈ Dn

pnk - probability distribution of the random variable Xn (i.e. the probability that

for input data of size n the algorithm will execute k dominating operations

(k ≥ 0))

De�nition

Average Time Complexity of Algorithm:
A(n) =

∑
k≥0 pnk · k =

∑
P(Xn = k) · k

(expected value of the random variable representing the number
of dominating operations)

(A(n) Average)



Algorithms
and Data
Structures

Marcin
Sydow

Example - Determining the Average Time
Complexity

Let's determine the average time complexity for our exemplary
algorithm (�nd)

First, we have to assume some probabilistic model of input
data (i.e. the probabilistic distribution of possible input
datasets)

Let's make a simplistic assumption: the key to be found occurs
exactly once in array and with the same probability on each
index (uniform distribution) (∀0≤k<nP(Xn = k) = 1/n)

Thus:
A(n) =

∑
k≥0 P(Xn = k) · k =

∑
0≤k<n 1/n · k = n+1

2



Algorithms
and Data
Structures

Marcin
Sydow

Space Complexity of Algorithm

De�nition

Space Complexity of Algorithm: S(n) is the number of units
of memory used by algorithm as a function of data size

This characteristic is more dependent on particular platform than time complexity.

As a memory unit one can consider the machine word.

Note:
We will assume, that the memory used for keeping the input
data is not considered because usually arrays (and other
compound types) are passed as arguments to functions by
reference, which does not involve much memory

In our example space complexity is constant - because it consumes memory only

for a single variable (plus some �xed number of additional temporal variables),

independently on the input data size: S(n) = const



Algorithms
and Data
Structures

Marcin
Sydow

Omitting Unimportant Details

The real time spent by an implementation of the algorithm
may di�er between particular platforms by a constant
multiplicative factor. (e.g. CPU speed)

Thus, it would be very useful to have a notation allowing for
expressing the complexity functions with neglecting
unimportant details (as multiplicative or additive constant, for
example)

E.g. for the following function:
A(n) = 2.1 · n − 1
The most important information is that it is a linear function -
it's rank of complexity is linear

Does such a notation exist?



Algorithms
and Data
Structures

Marcin
Sydow

Asymptotic Notation - �Big O�

The notation is called �asymptotic notation�.
There are a couple of �avours. The most common is �big O�:

De�nition

The function g(n) is the upper bound of rank of order of the
function f(n):
f (n) = O(g(n))⇔ ∃c>0∃n0∀n≥n0 f (n) ≤ c · g(n)

The O() notation intuitively corresponds to the �≤� symbol (in
terms of ranks of orders of functions).

E.g. the fact that W(n) of our exemplary algorithm has an
upper bound of the linear rank can be noted as:
W (n) = n+1

2 = O(n)
The constant space complexity S(n) of that algorithm can be
expressed with the following special notation:
S(n) = O(1)



Algorithms
and Data
Structures

Marcin
Sydow

Asymptotic Notation - �Big Theta�

Another important �avour of asymptotic notation is �big Theta�:

De�nition

The function f(n) has the same rank of order as the function
g(n): f (n) = Θ(g(n))⇔ f (n) = O(g(n)) ∧ g(n) = O(f (n))

The Θ() notation intuitively corresponds to the �=� symbol (in
terms of ranks of orders of functions).

Notice, that Θ() is de�ned with the use of O(), similarly as �=� symbol can be

de�ned with the use of �≤� symbol.

E.g. the expression: f (n) = n2 + n − 3 = Θ(n2)
reads as �the n2 + n − 3 function� is of square rank of order.



Algorithms
and Data
Structures

Marcin
Sydow

Other Flavours of Asymptotic Notation

We have 5 relation symbols for comparing numbers: =≤≥< >

In total, we also have 5 analogous symbols for comparing ranks
of functions:

1 Θ - �=�

2 O - �≤�
3 Ω - �≥�
4 o - �<�

5 ω - �>�
(in general, a capital letter denotes �non-sharp� inequality and lowercase denotes
a �sharp� one)

E.g.:
W(n)=o(n) (lowercase o)
means: �the rank of function W(n) is lower than linear�



Algorithms
and Data
Structures

Marcin
Sydow

Some Remarks on Using the Asymptotic Notation

Notice: in expressions like �f(n)=O(g(n))� the �=� has a special
meaning - it does not represent the �normal� equality. The
expression has it's meaning only as a whole.

E.g. it does not make sense to use asymptotic notation as the
�rst expression on the left-hand side of the �=� symbol.
E.g. expressions like �O(f(n)) = n� or �O(f(n)) = O(g(n))� do
not make any sense

Besides the standard usage of the asymptotic notation on the
right-hand side of the �=� symbol, it can be also used in the
following way:
f(n) = g(n) + O(h(n))
Which means: f(n) - g(n) = O(h(n))
(�the ranks of functions f and g di�er at most by a rank of
function h�)



Algorithms
and Data
Structures

Marcin
Sydow

Remarks: Comparing Ranks of Functions

Sometimes the following technique is useful.

Ranks of some 2 functions f(n) and g(n) can be compared by
computing the following limit:

limn→∞
f (n)
g(n)

there are 3 possible cases for the limit:

1 ∞ - in that case f(n)=ω(g(n)) (f has higher rank)

2 a positive constant - in that case f(n)=Θ(g(n)) (the same
ranks)

3 zero - in that case f(n)=o(g(n)) (�lowercase o�) (g has
higher rank)



Algorithms
and Data
Structures

Marcin
Sydow

The Most Common Ranks of Functions

constant (e.g. S(n) = 3 = Θ(1))

logarithmic (e.g. W (n) = 2 + lg2n = Θ(log(n)))

linear (e.g. A(n) = 2n + 1 = Θ(n))

linear-logarithmic (e.g.
A(n) = 1.44 · n log(n) = Θ(n log(n)))

square (e.g. W (n) = n2 + 4 = Θ(n2))

cubic (e.g. A(n) = Θ(n3))

sub-exponential (e.g. A(n) = Θ(nlog(n)))

exponential (e.g. A(n) = Θ(2n))

factorial (e.g. W (n) = Θ(n!))

In simpli�cation: in practise, an over-polynomial rank of time complexity is
considered as �unacceptably high�

In case of space complexity, even linear rank is considered as very high



Algorithms
and Data
Structures

Marcin
Sydow

Questions/Problems:

How to measure the �speed of algorithm�

What 2 things should be determined before starting
assessing the time complexity of an algorithm

What is a dominating operation

De�nition of Time Complexity of Algorithm

De�nition of Space Complexity of Algorithm

De�nition of Pessimistic Time Complexity

De�nition of Average Time Complexity

Be able to determine time complexity for simple algorithms

What is the purpose of the asymptotic notation

De�nition and interpretation of the O() notation

De�nitions (and interpretations) of the other types of
asymptotic notations

Ability to express rank of a given function with the
asymptotic notation



Algorithms
and Data
Structures

Marcin
Sydow

Thank you for your attention


	Intro
	Dominating Operations and Data Size

	Time Complexity
	Pessimistic
	Average
	Space

	Asymptotic Notation
	Summary

