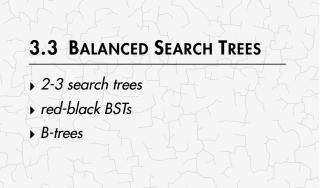
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu



Symbol table review

implementation	worst-case cost (after N inserts)		average case (after N random inserts)			ordered	key	
implementation	search	insert	delete	search hit	insert	delete	iteration?	interface
sequential search (unordered list)	Ν	Ν	N	N/2	Ν	N/2	no	equals()
binary search (ordered array)	lg N	Ν	Ν	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
goal	log N	log N	log N	log N	log N	log N	yes	compareTo()

Challenge. Guarantee performance.

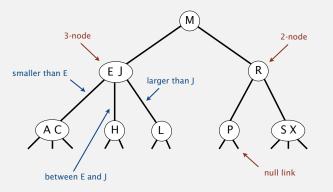
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.



3.3 BALANCED SEARCH TREES

▶ 2-3 search trees

red-black BSTs

B-frees

Algorithms

Robert Sedgewick | Kevin Wayne

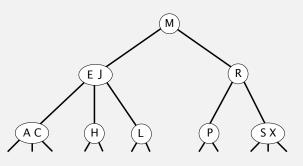
http://algs4.cs.princeton.edu

2-3 tree demo

Search.

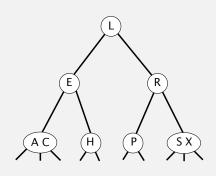
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H



2-3 tree construction demo

2-3 tree



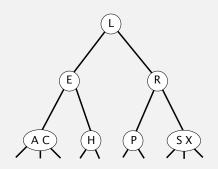
2-3 tree construction demo

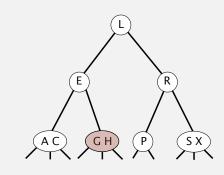
insert S

Insertion into a 2-3 tree

Insertion into a 2-node at bottom.

• Add new key to 2-node to create a 3-node.





8

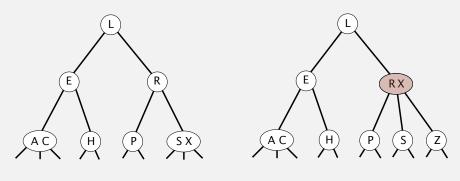
Insertion into a 2-3 tree

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

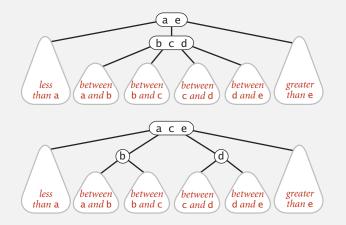
insert Z

root



Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.



Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

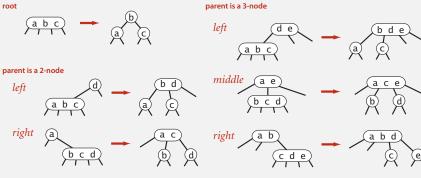
Each transformation maintains symmetric order and perfect balance. Pf.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:



9

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: lg N. [all 2-nodes]
- Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	worst-case cost (after N inserts)		average case (after N random inserts)			ordered	key	
implementation	search	insert	delete	search hit	insert	delete	iteration?	interface
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	Ν	lg N	N/2	N/2	yes	compareTo()
BST	Ν	Ν	Ν	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()

14

13

15

2-3 tree: implementation?

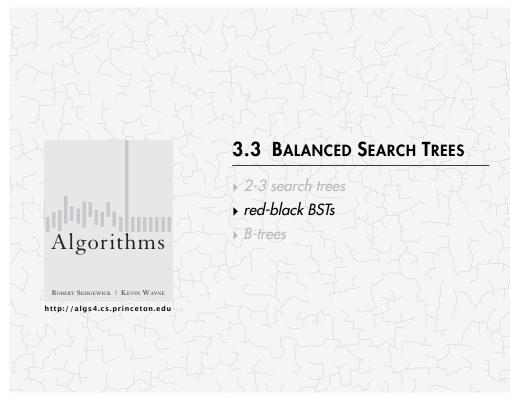
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

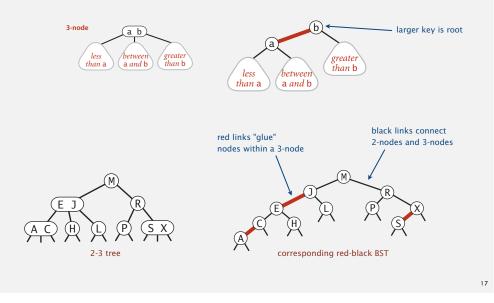
```
public void put(Key key, Value val)
{
    Node x = root;
    while (x.getTheCorrectChild(key) != null)
    {
        x = x.getTheCorrectChildKey();
        if (x.is4Node()) x.split();
    }
    if (x.is2Node()) x.make3Node(key, val);
    else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.



Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

- 1. Represent 2-3 tree as a BST.
- 2. Use "internal" left-leaning links as "glue" for 3-nodes.

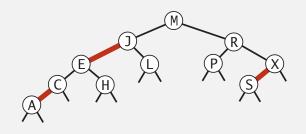


An equivalent definition

A BST such that:

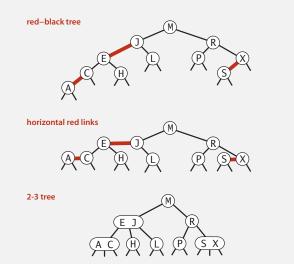
- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"



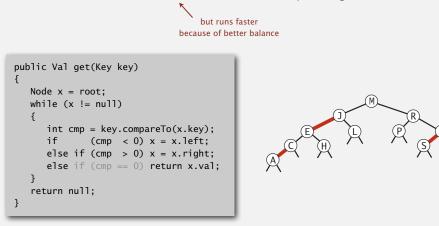
Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1–1 correspondence between 2–3 and LLRB.



Search implementation for red-black BSTs

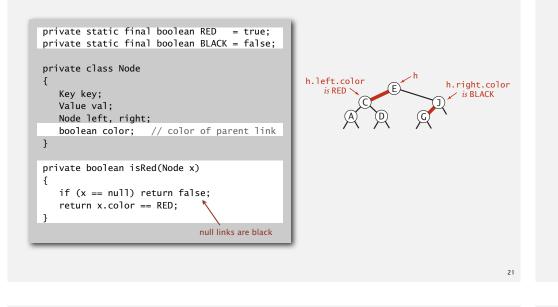
Observation. Search is the same as for elementary BST (ignore color).



Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

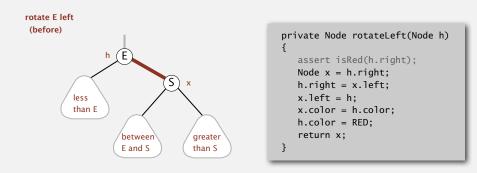
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.



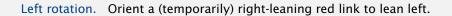
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.



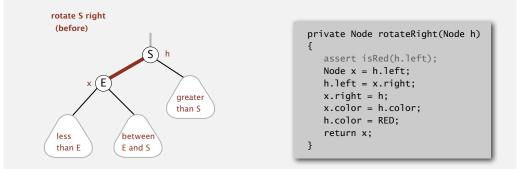
Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations



Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

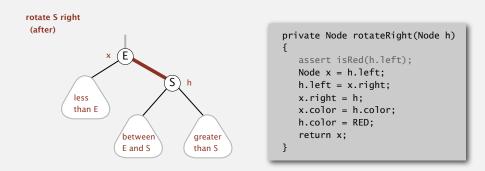


Invariants. Maintains symmetric order and perfect black balance.

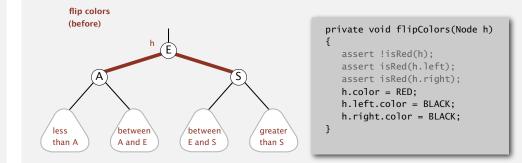
Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.



Color flip. Recolor to split a (temporary) 4-node.

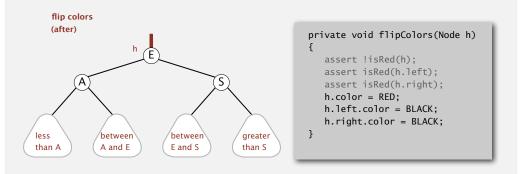


Invariants. Maintains symmetric order and perfect black balance.

25

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.



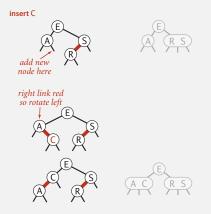
Invariants. Maintains symmetric order and perfect black balance.

26

28

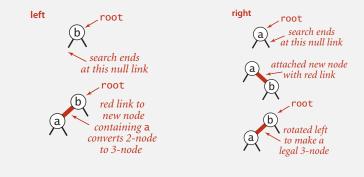
Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.



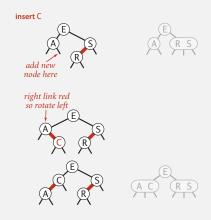
Invariants. Maintains symmetric order and perfect black balance.

Warmup 1. Insert into a tree with exactly 1 node.



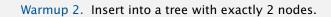
Case 1. Insert into a 2-node at the bottom.

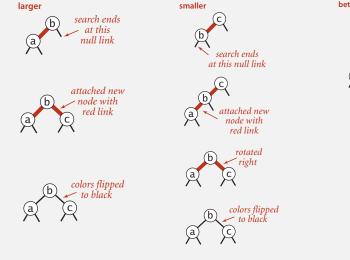
- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

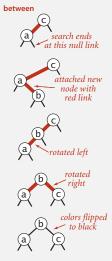


29

Insertion in a LLRB tree



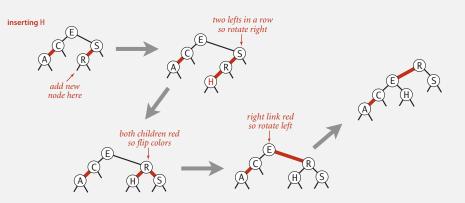




Insertion in a LLRB tree

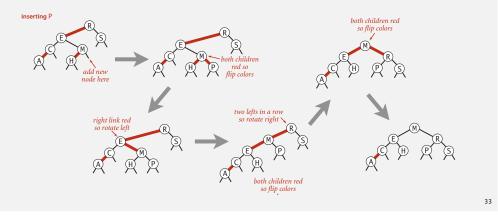
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).



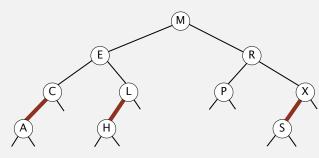
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).



Red-black BST construction demo

red-black BST



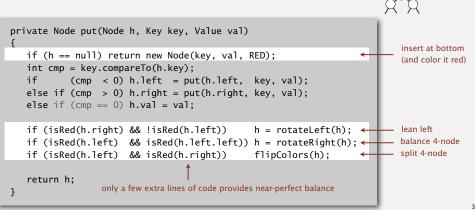
Red-black BST construction demo

insert S

Insertion in a LLRB tree: Java implementation

Same code for all cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

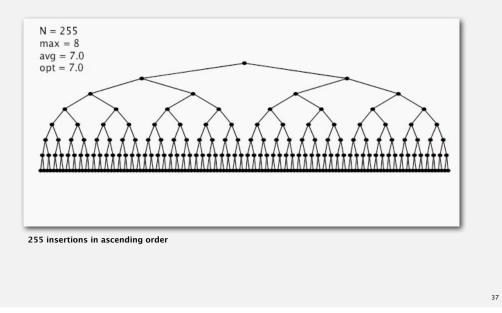


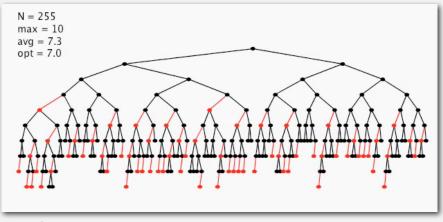
N = 255

max = 8

avg = 7.0

opt = 7.0





255 random insertions

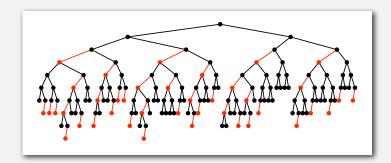
Balance in LLRB trees

255 insertions in descending order

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.



Property. Height of tree is ~ $1.00 \lg N$ in typical applications.

39

ST implementations: summary

implementation		orst-case c ter N inse			average case N random ins	erts)	ordered	key
implementation	search	insert	delete	search hit	insert	delete	iteration?	interface
sequential search (unordered list)	Ν	N	Ν	N/2	Ν	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()
red-black BST	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo()

* exact value of coefficient unknown but extremely close to 1

41

War story: why red-black?

Xerox PARC innovations. [1970s]

- Alto.
- GUI.

•

- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.

Xerox Alto

$-\Lambda$ 1	DICHROMATIC	FRAMEWORK	For	BALANCED	TREES
--------------	-------------	-----------	-----	----------	-------

Leo J. Guibas Xerox Palo Alto Research Center, Palo Alto, California, and Carnegie-Mellon University

ABSTRACT

In this paper we present a uniform framework for the implementation

and study of balanced tree algorithms. We show how to imbed in this

Robert Sedgewick* Program in Computer Science Brown University Providence, R. I,

the way down towards a leaf. As we will see, this has a number of significant advantages over the older methods. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its

War story: red-black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST search and insert; Hibbard deletion.
- Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

Extended telephone service outage.

Hibbard deletion was the problem

- Main cause = height bounded exceeded!
- Telephone company sues database provider.
- Legal testimony:

"If implemented properly, the height of a red-black BST with N keys is at most 2 lg N." — expert witness

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk). Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

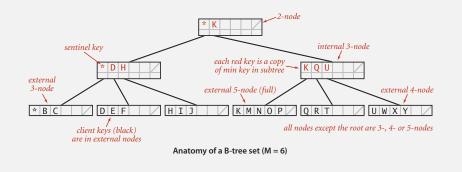
Cost model. Number of probes.

Goal. Access data using minimum number of probes.

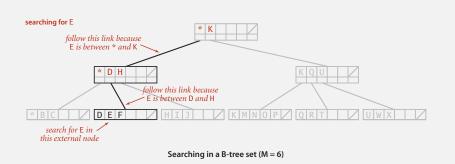
B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

- At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes. that M links fit in a page, e.g., M = 1024
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

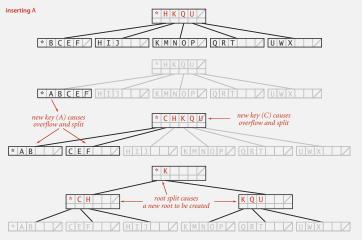


- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.



Insertion in a B-tree

- Search for new key.
- · Insert at bottom.
- Split nodes with *M* key-link pairs on the way up the tree.



Inserting a new key into a B-tree set

46

Balance in B-tree

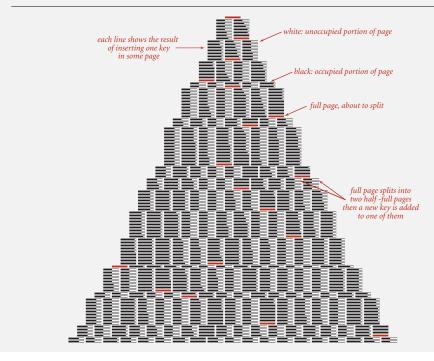
Proposition. A search or an insertion in a B-tree of order *M* with *N* keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

In practice. Number of probes is at most 4. \leftarrow M = 1024; N = 62 billion log _{M/2} N \leq 4

Optimization. Always keep root page in memory.

Building a large B tree



Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.
- Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Red-black BSTs in the wild

Common sense. Sixth sense. Together they're the FBI's newest team.

Red-black BSTs in the wild

	ACT FOUR	
	FADE IN:	
48	INT. FBI HQ - NIGHT	48
	Antonio is at THE COMPUTER as Jess explains herself to Nicole and Pollock. The CONFERENCE TABLE is covered with OPEN REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.	
	JESS It was the red door again.	
	POLLOCK I thought the red door was the storage container.	
	JESS But it wasn't red anymore. It was black.	
	ANTONIO So red turning to black means what?	
	POLLOCK Budget deficits? Red ink, black ink?	
	NICOLE Yes. I'm sure that's what it is. But maybe we should come up with a couple other options, just in case.	
	Antonio refers to his COMPUTER SCREEN, which is filled with mathematical equations.	
	ANTONIO It could be an algorithm from a binary search tree. A <u>red-black</u> tree tracks every simple path from a node to a descendant leaf with the same number of black nodes.	
	JESS Does that help you with girls?	