
Algorithms for Web Scraping

Patrick Hagge Cording

Kongens Lyngby 2011

Technical University of Denmark
DTU Informatics
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

Web scraping is the process of extracting and creating a structured representa-
tion of data from a web site. HTML, the markup language used to structure
data on webpages, is subject to change when for instance the look-and-feel is
updated. Since current techniques for web scraping are based on the markup, a
change may lead to the extraction of incorrect data.

In this thesis we investigate the potential of using approximate tree pattern
matching based on the tree edit distance and constrained derivatives for web
scraping. We argue that algorithms for constrained tree edit distances are not
suited for web scraping. To address the high time complexity of optimal tree
edit distance algorithms, we present the lower bound pruning algorithm which,
based on the data tree TD and the pattern tree TP , will attempt to remove
branches of TD that are not part of an optimal mapping. Its running time
is O

(
|TD||TP | · σ(TD, TP)

)
, where σ(TD, TP) is the running time of the lower

bound method used. Although it asymptotically is close to the approximate tree
pattern matching algorithms, we show that in practice the total execution time
is reduced in some cases. We develop several methods for determining a lower
bound on the tree edit distance used for approximate tree pattern matching,
and we see that our generalization of the q-gram distance from strings is the
most effective with our algorithm. We also present a similar algorithm that use
the HTML grammar to prune TD, and some heuristics to guide the approximate
tree pattern matching algorithm.

ii

Preface

This master’s thesis has been prepared at DTU Informatics from february 2011
to august 2011 under supervision by associate professors Inge Li Gørtz and
Philip Bille. It has an assigned workload of 30 ECTS credits.

Source code for the software developed for the thesis is available from the fol-
lowing two mirrors.

http://www.student.dtu.dk/˜s062408/scpx.zip
http://iscc-serv2.imm.dtu.dk/˜patrick/scpx.zip

Acknowledgements. I would like to thank my supervisors for always being
enthusiastic at our meetings. The individuals who have influenced my work
include Henrik and Anne-Sofie of Kapow Software who took time out of their
schedule to discuss web scraping, my friend Christoffer who brought my atten-
tion to the challenges faced in web scraping, friend and co-student Kristoffer
who wrapped his head around the project in order to give criticism, and my
girlfriend who has provided proof-reading. I am grateful to all.

Patrick Hagge Cording

iv

Contents

Abstract i

Preface iii

1 Introduction 1
1.1 Preliminaries and Notation . 2

2 Tree Edit Distance 5
2.1 Problem Definition . 5
2.2 Algorithms . 8
2.3 Constrained Mappings . 12
2.4 Approximate Tree Pattern Matching 15

3 Web Scraping using Approximate Tree Pattern Matching 17
3.1 Basic Procedure . 17
3.2 Pattern Design . 19
3.3 Choosing an Algorithm . 21
3.4 Extracting Several Matches . 22
3.5 Related Work . 22
3.6 Summary . 24

4 Lower Bounds for Tree Edit Distance with Cuts 25
4.1 Tree Size and Height . 25
4.2 Q-gram Distance . 26
4.3 PQ-gram Distance . 28
4.4 Binary Branch Distance . 29
4.5 Euler String Distance . 32
4.6 Summary . 35

vi CONTENTS

5 Data Tree Pruning and Heuristics 37
5.1 Adapting the Fast Unit Cost Algorithm to Cuts 37
5.2 Using Lower Bounds for Pruning 41
5.3 Using the HTML Grammar for Pruning 44
5.4 Pre-selection of Subtrees . 46
5.5 Linear Matching . 47

6 Experiments 49
6.1 Setup . 49
6.2 Algorithm Execution Time . 50
6.3 Lower Bound Methods . 51
6.4 Pruning Methods . 51
6.5 Heuristics . 54
6.6 Data Extraction . 58

7 Discussion 63
7.1 Algorithms . 63
7.2 Lower Bound Methods . 64
7.3 Pruning Method and Heuristics 65

8 Conclusion 67
8.1 Further Work . 68

Bibliography 69

A Implementation 73
A.1 Design . 73
A.2 Modules . 74
A.3 Examples . 79

B Algorithms 83
B.1 Algorithm for finding Q-grams 83
B.2 Algorithm for finding Q-samples 83

C Test Case Patterns 85
C.1 Case 1 . 85
C.2 Case 2 . 87
C.3 Case 3 . 88
C.4 Case 4 . 89
C.5 Case 5 . 90
C.6 Case 6 . 90

List of Figures

2.1 Example insert, delete, and relabel operations. 6
2.2 An example of a mapping. 7
2.3 An example of a top-down mapping. 13
2.4 An example of an isolated-subtree mapping. 14
2.5 The effect from introducing the cut operation. 15

(a) A mapping between a large and small tree. 15
(b) A mapping using the tree edit distance with cuts. 15

3.1 A HTML document and its tree model. 18
3.2 A selection of entries from the frontpage of Reddit (2011-06-25). . 19
3.3 A pattern for a Reddit entry and its tree model. 20
3.4 A pattern with an anchor for a Reddit entry and its tree model. . 20
3.5 Example of the difference in outcome from using an original map-

ping and an isolated-subtree mapping. 23
(a) A Reddit entry before the change. Subtree is used as pattern. 23
(b) A Reddit entry after the change. 23
(c) The optimal mapping as produced by e.g. Zhang and Shasha’s

algorithm. 23
(d) The isolated-subtree mapping. 23

4.1 An example of a tree extended for the PQ-gram distance. 29
(a) T . 29
(b) T 2,2, the 2,2-extension of T 29

4.2 An example of a binary tree representation. 30
(a) T . 30
(b) The binary tree representation of T 30

4.3 An example of 1,2-grams affected by a delete operation on a tree. 31
(a) T . 31

viii LIST OF FIGURES

(b) T after deleting b. 31
(c) Binary tree representation of T 31
(d) Binary tree representation of T after deleting b. 31

4.4 A tree and its Euler string. 33

5.1 A problem which shows that keyroots can not be used with the
unit cost algorithm. 39

5.2 A possible solution path to a subproblem in the temporary dy-
namic programming table in Zhang and Shasha’s algorithm. . . . 40

5.3 Comparison of how subproblems are ruled out in the permanent
and temporary table of Zhang and Shasha’s algorithms. 42
(a) Algorithm using keyroots. 42
(b) Fast unit cost algorithm. 42
(c) Fast unit cost algorithm adapted for cuts. 42

5.4 Division into subforests for computing improved lower bound
when pruning. 44

6.1 Execution time of lower bound pruning methods followed by Zhang-
ShashaATM on case 1 for increasing values of k. 57

6.2 Execution time of lower bound pruning methods followed by Zhang-
ShashaATM on case 3 for increasing values of k. 57

6.3 Initial layout of web page used for data extraction experiment. . 59
6.4 Results from data extraction experiment (part 1). 61

(a) . 61
(b) . 61
(c) . 61
(d) . 61

6.5 Results from data extraction experiment (part 2). 62
(e) . 62
(f) . 62
(g) . 62
(h) . 62

A.1 Class diagram. 75

List of Tables

3.1 The number of nodes and the height of the DOM trees of selected
web sites (2011-07-17). 21

4.1 Preprocessing, space, and time requirements of the lower bounds
methods. 35

6.1 Test cases used for experiments. 50
6.2 Execution times of Zhang and Shasha’s approximate tree pattern

matching algorithm. 51
6.3 Shasha and Zhang’s fast unit cost algorithm adapted for cuts on

all test cases for increasing values of k. 52
6.4 Results for lower bounds test. 52
6.5 Results for alternative lower bounds test. 53
6.6 Results from pruning method tests. 55
6.7 Results from combining two pruning methods. 56
6.8 Results from using the heuristics with ZhangShashaATM. . . . 58

A.1 List of algorithm implementations. 76

x LIST OF TABLES

Chapter 1

Introduction

Web scraping is the process of extracting and creating a structured representa-
tion of data from a web site. A company may for instance want to autonomously
monitor its competitors product prices, or an enterprising student may want to
unify information on parties from all campus bar and dormitory web sites and
present them in a calendar on her own web site.

If the owner of the information does not provide an open API, the remedy is to
write a program that targets the markup of the web page. A common approach is
to parse the web page to a tree representation and evaluate an XPath expression
on it. An XPath denotes a path, possibly with wildcards, and when evaluated
on a tree, the result is the set of nodes at the end of any occurence of the path in
the tree. HTML, the markup language used to structure data on web pages, is
intended for creating a visually appealing interface for humans. The drawback
of the existing techniques used for web scraping is that the markup is subject
to change either because the web site is highly dynamic or simply because the
look-and-feel is updated. Even XPaths with wildcards are vulnerable to these
changes because a given change may be to a tag which can not be covered by a
wildcard.

In this thesis we show how to perform web scraping using approximate tree
pattern matching. A commonly used measure for tree similarity is the tree edit
distance which easily can be extended to be a measure of how well a pattern

2 Introduction

can be matched in a tree. An obstacle for this approach is its time complexity,
so we consider if faster algorithms for constrained tree edit distances are usable
for web scraping, and we develop algorithms and heuristics to reduce the size of
the tree representing the web page.

The aim of the project is to a develop a solution for web scraping that is

• tolerant towards as many changes in the markup as possible,

• fast enough to be used in e.g. a web service where response time is crucial,
and

• pose no constraints on the pattern, i.e. any well-formed HTML snippet
should be usable as pattern.

The rest of the report is organized as follows. Chapter 2 is a subset of the the-
ory of the tree edit distance. We accentuate parts that have relevance to web
scraping. In chapter 3 we describe how approximate tree pattern matching is
used for web scraping and we discuss pros and cons of the algorithms mentioned
in chapter 2. In chapter 4 we transform six techniques for approximation of the
tree edit distance to produce lower bounds for the pattern matching measure.
Chapter 5 presents an algorithm that uses the lower bound methods from chap-
ter 4 to prune the data tree. We also present an algorithm and two heuristics
that use knowledge of HTML to reduce the tree. In chapter 6 we conduct some
experiments and chapter 7 is a discussion of our results.

Appendix A describes the software package developed for the thesis. It gives a
brief overview of the design of the package and contains examples of how to use
it.

1.1 Preliminaries and Notation

1.1.1 General

It is assumed that the reader has basic knowledge of HTML, is familiar with
the string edit distance problem, and the concept of dynamic programming.

We use Smallcaps when referring to algorithms that have been implemented or
described using pseudocode. Typewriter is used for URL’s as well as modules

1.1 Preliminaries and Notation 3

and functions in the implementation chapter. Likewise, serif is used to refer to
classes.

For pseudocode we use ← for assignment and = for comparison. We do not
distinguish lists and sets. The union of two lists is the set of elements in the
concatenation of the lists, e.g. [x, y] ∪ [x, x, z] = [x, y, z]. We use ⊕ to denote
concatenation, e.g. [x, y] ⊕ [x, x, z] = [x, y, x, x, z]. A tuple is a list of fixed
length. We use round parenthesis for tuples to distinguish them from lists. The
concatenation operator also applies to tuples. The length of a list or tuple a is
|a|.

1.1.2 Trees and Forests

T denotes a tree and F denotes a forest. Trees and forests are rooted and
ordered if nothing else is stated. |T | is the size of the tree T . V (T) is the set of
all nodes in T . T (v) is the subtree rooted at the node v and F (v) is the forest
obtained from removing v from T (v). When nothing else is stated the nodes are
assigned postorder indices. Any arithmetic operation on two nodes is implicitly
on their indices and the result is a number. T [i] is the ith node in T . The ‘−’
operator on a tree and a node removes a subtree or a node from a tree, e.g.
T − T (v) removes the subtree rooted at v from T . The empty forest is denoted
θ.

We define the following functions on trees.

root : T → V (T). Returns the root of the tree given as input.

height : V (T)→ Z. Computes the height of the subtree rooted at the node given
as input.

depth : V (T)→ Z. Returns the length of the path from the root of T to given
node.

lml : V (T)→ V (T). Finds the leftmost leaf of the tree rooted at the node given
as input.

nca : V (T)× V (T)→ V (T). Finds the nearest common ancestor of the nodes.

leaves : T → Z. Returns the number of leaves in the tree.

degree : T → Z. Computes the max number of children of all nodes in T .

4 Introduction

For simplicity we sometimes give a tree as input to a function expecting a node.
In such cases the root of the tree is implicitly the input.

Finally, we define the anchor of a tree T as path p from the root of T to some
node v where each node on p has exactly one child and v is either a leaf or has
more than one child. If the root has more than one child, the length of the
anchor is 1.

Chapter 2

Tree Edit Distance

In this chapter we review the theory of the tree edit distance which is needed
for the rest of the thesis.

2.1 Problem Definition

Definition 2.1 (Tree Edit Distance) Let T1 and T2 be rooted, ordered trees
and let E = op0, op1, . . . , opk be an edit script (a sequence of operations on the
trees) that transforms T1 into T2. Let γ be a cost function on operations, then
the cost of an edit script is

∑k−1
i=0 γ(opi). The tree edit distance δ(T1, T2) is the

cost of a minimum cost edit script.

The tree edit distance problem is to compute the tree edit distance and its
corresponding edit script. In the general formulation of the problem, the edit
operations are insert, delete, and relabel. A node v can be inserted anywhere
in T . When inserted as the root, the old root becomes a child of v. If inserted
between two nodes u and w, v takes the place of w in the left-to-right order
of the children of u, and w becomes the only child of v. A node can also be
inserted as a leaf. When deleting a node v, its children become children of the

6 Tree Edit Distance

parent of v. Relabeling a node does not impose any structural changes on T .
An example of the operations is shown in figure 2.1.

Insert b:

a

l0 l1

. . .

lk−1
lk

⇒

a

l0 l1

. . . b

lk−1

lk

Delete c:

a

b c

l0 l1

. . .

lk−1
lk

d ⇒

a

b l0 l1

. . .

lk−1
lk d

Relabel c to e:

a

b c

l0 l1

. . .

lk−1
lk

d ⇒

a

b e

l0 l1

. . .

lk−1
lk

d

Figure 2.1: Example insert, delete, and relabel operations.

The tree edit distance can also be expressed in terms of a mapping. In the
general formulation of the tree edit distance problem the following mapping is
used.

Definition 2.2 (Mapping) Let T1 and T2 be rooted, ordered trees and M a
set of tuples from V (T1)×V (T2). M is a tree edit distance mapping between T1

and T2 if, for any pair of tuples (v1, w1), (v2, w2) ∈M , the following conditions
are satisfied.

One-to-one v1 = v2 ⇐⇒ w1 = w2.

2.1 Problem Definition 7

Ancestor v1 is an ancestor of v2 ⇐⇒ w1 is an ancestor of w2.

Sibling v1 is to the left of v2 ⇐⇒ w1 is to the left of w2.

Mappings and edit scripts are interchangeable. A pair of nodes (v, w) ∈ M
corresponds to relabeling v to w. Any node in T1 that is not in any tuple
in M should be deleted, and any node in T2 that is not in any tuple in M
should be inserted. So if an edit script creates a mapping that violates one of
the three conditions, it is not a solution to the tree edit distance problem. An
example of a mapping is shown in figure 2.2. Intuitively, the mapping conditions
are formalizations of what makes trees similar. If they are relaxed, the tree
edit distance will no longer correspond to what we believe is similarity between
trees. If they are augmented, the tree edit distance will correspond to a different
perception of similarity between trees, and the complexity of computing it may
be reduced.

a

b

d e

c

f g

a

d
e

h

i

f g

Figure 2.2: A mapping that corresponds to the edit script relabel(a,a),
delete(b), insert(h), relabel(c,i), relabel(d,d), relabel(e,e), relabel(f,f), re-
label(g,g). We usually omit relabel operations in the edit script if their
cost is zero, but they are included here to illustrate the correspondance to
mappings.

The cost function γ is a function on nodes and a special blank character λ.
Formally, we define it as γ : (V (T1) ∪ λ× V (T2) ∪ λ)\(λ× λ)→ R. A common
way of distinguishing nodes is on labels. A unit cost function is one where the
costs do not depend on the nodes. We define the simplest unit cost function γ0

to be

γ0(v → λ) = 1
γ0(λ→ w) = 1

γ0(v → w) =
{

0 if v = w
1 otherwise

∀(v, w) ∈ V (T1)× V (T2) (2.1)

8 Tree Edit Distance

The tree edit distance is a distance metric if the cost function is a distance
metric. The following are the requirements for a cost function to satisfy to be a
distance metric.

1. δ(T1, T1) = 0

2. δ(T1, T2) ≥ 0

3. δ(T1, T2) = δ(T2, T1) (symmetry)

4. δ(T1, T2) + δ(T2, T3) ≥ δ(T1, T3) (triangle inequality)

All the bounds on tree edit distance algorithms given in the following section
are symmetric because the tree edit distance is a distance metric.

2.2 Algorithms

2.2.1 Overview

This section will present the main results found in the litterature for the tree
edit distance problem chronologically and relate them to eachother.

K. C. Tai, 1979 [15] This paper presents the first algorithm to solve the tree
edit distance problem as it is defined in this report. It is a complicated
algorithm and is considered impractical to implement. Its time complexity
is

O
(
|T1||T2| · height(T1)2 · height(T2)2

)
which in the worst case is O

(
|T1|3|T2|3

)
.

Zhang and Shasha, 1989 [22] The authors formulate a dynamic program
and show how to compute a solution bottom-up. They reduce space re-
quirements by identifying which subproblems that are encountered more
than once and discard of those that are not. The time complexity is
reduced because the algorithm exploits that the solution to some sub-
problems is a biproduct of a solution to another. The algorithm runs
in

O
(
|T1||T2| ·min

(
leaves(T1), height(T1)

)
·min

(
leaves(T2), height(T2)

)
time (worst case O

(
|T1|2|T2|2

)
) and O

(
|T1||T2|

)
space.

2.2 Algorithms 9

The algorithm is referred to throughout the report, so an extensive de-
scription is given in section 2.2.2.

Shasha and Zhang, 1990 [14] This paper presents several (sequential and
parallel) algorithms where the authors speed up their previous algorithm
assuming a unit cost function is used. The main result is the sequential
unit cost algorithm (from now on referred to as Shasha and Zhang’s unit
cost algorithm or just the unit cost algorithm), in which subproblems are
ruled out based on a threshold k on the tree edit distance supplied as input
to the algorithm. By doing so they achieve a

O
(
k2 ·min(|T1|, |T2|) ·min(leaves(T1), leaves(T2)

)
time bound and maintain the O

(
|T1||T2|

)
space bound.

The algorithm is described in detail in section 5.1 on page 37 where it is
used as a launch pad for further work.

Philip Klein, 1998 [9] Based on the same formulation of a dynamic program
as Zhang and Shasha’s algorithm, the author propose an algorithm that
requires fewer subproblems to be computed in the worst case. In a top-
down implementation, the algorithm alternates between the formulation
by Zhang and Shasha and its symmetric version based on the sizes of the
trees in the subforest of T1, and the author shows that this leads to a time
complexity of

O
(
|T1|2|T2| · log(|T2|)

)
while maintaining a O

(
|T1||T2|

)
space bound [3].

Demaine et al., 2009 [6] The authors present an algorithm that alternates
between the two formulations of the dynamic program similarly to Klein’s
algorithm. However, the conditions for chosing one over the other, i.e. the
recursion strategy, are more elaborate. The algorithm runs in

O
(
|T1|2|T2|(1 + log

|T2|
|T1|

)
)

time (worst case O
(
|T1|2|T2|

)
) and O

(
|T1||T2|

)
space.

The authors prove that the time bound is a lower bound for algorithms
based on possible recursion strategies for the dynamic program formulation
of the tree edit distance problem by Zhang and Shasha.

2.2.2 Zhang and Shasha’s Algorithm

This section describes Zhang and Shasha’s algorithm. It is structured to show
how to go from a naive algorithm to the space bound improvement, and then
further on to the time bound improvement.

10 Tree Edit Distance

The algorithm computes the tree edit distance using the following lemma.

Lemma 2.3 (Tree edit distance [3]) Let F1 and F2 be ordered forests, γ a
distance metric cost function on nodes, and v and w the rightmost nodes of F1

and F2, respectively. The tree edit distance δ is found from the recursion:

δ(θ, θ) = 0
δ(F1, θ) = δ(F1 − v, θ) + γ(v → λ)
δ(θ, F2) = δ(θ, F2 − w) + γ(λ→ w)

δ(F1, F2) = min

δ(F1 − v, F2) + γ(v → λ)
δ(F1, F2 − w) + γ(λ→ w)
δ(F1(v), F2(w)) + δ(F1 − T1(v), F2 − T2(w))

+γ(v → w)

The intuition behind lemma 2.3 is the following. We always compare the right-
most nodes v and w of the forests∗. When comparing the nodes there are three
cases—delete v, insert w, and relabel v to w—which have to be investigated,
so we branch for each case. In the delete-branch we remove v from its forest
because it is now accounted for. Similarly w is removed from its forest in the
insert-branch. When nodes are relabeled we branch twice and the pair of rela-
beled nodes becomes a part of the mapping. This means that in order to adhere
to the mapping restrictions, nodes descending from v can only map to nodes
descending from w. Consequently, the left forest of v must be compared to the
left forest of w.

The lemma states that the tree edit distance can be found by composing re-
sults from subproblems, so the algorithm employs dynamic programming. It
computes the result bottom up, so we need a table entry for each possible sub-
problem. The forests are given postorder indices so the nodes of the subproblems
always have consecutive indices. Thus, the set of possible subforests per forest
is

S1 = {vi, vi+1, . . . , vj | 0 ≤ i ≤ j < |F1|}

If we count these we get

|S1| =
i<|F1|∑
i=0

|F1| − i ∈ O
(
|F1|2

)
∗The recursion is symmetric so it is also possible to compare the leftmost nodes.

2.2 Algorithms 11

subproblems. Since we require |F1|2|F2|2 subproblems to be computed we have
now established that a naive algorithm can compute the tree edit distance in
O
(
|T1|2|T2|2

)† time and space.

We now show how the space bounds can be improved. We observe from the
recursion that it is either the rightmost node of one of the forests that is removed
or all but the rightmost tree. Therefore, it would suffice to have a |F1||F2|
dynamic programming table if the solution to any subproblem consisting of two
trees was already known.

This is utilized by the algorithm as follows. We maintain a permanent table
of size |T1||T2| for all subproblems that consists of two trees. We solve each
subproblem from the permanent table in the function Treedist. In Treedist
we create a temporary table of at most size |T1||T2| to hold the subproblems
that are needed to solve the subproblem from the permanent table. If we need
a subproblem to solve another subproblem that is not present in the temporary
table while in Treedist, it is because it consists of two trees, and the solution
can thus be read from the permanent table. Since we maintain one table of size
|T1||T2| and one of at most size |T1||T2|, the space bound has been improved to
O
(
|T1||T2|

)
.

The time bound can also be improved. Occasionally, when in Treedist, we
solve a subproblem which consist of two trees. This happens for all pairs of
subtrees where at least one tree is rooted on the path from the root of a tree
to its leftmost leaf. Such a subproblem has already been solved in another
invocation of Treedist.

To take advantage of this, we define the notion of a keyroot. A keyroot is a
node that has one or more siblings to the left. Then we only invoke Treedist
on subproblems from the permanent table where both trees have keyroots as
roots. In Treedist we save the result of a subproblem in the permanent table
if it consists of two trees where at least one of them is not a rooted at a keyroot.
Zhang and Shasha show that there is min

(
leaves(T), height(T)

)
keyroots in a

tree T , so the running time of the algorithm is

O
(
|T1||T2| ·min

(
leaves(T1), height(T1)

)
·min

(
leaves(T2), height(T2)

)
The algorithm ZhangShasha and its subprocedure Treedist are given in the
following pseudocode.

†For simplicity we will state the time and space bounds as functions of input trees. The
preceeding derivation uses the size of the forests because it has its starting point in the
recursion. Subsequent tree edit distance algorithms do not accept forests as input.

12 Tree Edit Distance

Algorithm 1 ZhangShasha(T1, T2)
1: Let D be the permanent dynamic programming table (which is global)
2: for each node v ∈ Keyroots(T1) do
3: for each node w ∈ Keyroots(T2) do
4: Treedist(v, w)

Algorithm 2 Treedist(T1, T2)
1: Let F be the local dynamic programming table
2: F [0, 0]← 0
3: for i = 1 to |T1| do
4: F [i, 0]← F [i− 1, 0] + γ(T1[i]→ λ)
5: for j = 1 to |T2| do
6: F [0, j]← F [0, j − 1] + γ(λ→ T2[j])
7: for i = 1 to |T1| do
8: for j = 1 to |T2| do
9: if lml(T1) = lml(T1[i]) and lml(T2) = lml(T2[j]) then

10: F [i, j]← min
(

F [i, j − 1] + γ(T1[i]→ λ),
F [i− 1, j] + γ(λ→ T2[j]),
F [i, j] + γ(T1[i]→ T2[j])

)
11: D[lml(T1) + i, lml(T2) + j]← F [i, j]
12: else
13: F [i, j]← min

(
F [i, j − 1] + γ(T1[i]→ λ),
F [i− 1, j] + γ(λ→ T2[j]),
F [lml(T1[i]), lml(T2[j])] +D[lml(T1) + i, lml(T2) + j]

)

2.3 Constrained Mappings

The high complexity of the algorithms for the tree edit distance has led people to
study other formulations of the problem. By imposing an additional constraint
on the mapping, the problem becomes easier to solve.

Constrained mappings are interesting because the algorithms are approxima-
tions to the tree edit distance and their running times are faster. The cost
of a constrained mapping is always greater than or equal to the tree edit dis-
tance because the contraints are added to the original mapping requirements. In
some contexts the approximation may be so good that an algorithm producing
a contrained mapping is favorable.

Valiente [18] and Bille [3] give surveys of the different mappings found in the

2.3 Constrained Mappings 13

litterature. In this section we will describe the top-down and isolated-subtree
mappings.

2.3.1 Top-down

Definition 2.4 (Top-down mapping) Let T1 and T2 be rooted, ordered trees
and M a set of tuples from V (T1) × V (T2). A top-down mapping M is a
mapping (definition 2.2 on page 6) for which it holds that if some pair (v, w) ∈
M\(root(T1), root(T2)) then (parent(v), parent(w)) ∈M .

An example is shown in figure 2.3. The top-down mapping corresponds to
restricting insertions and deletions to leaves.

a

b

d e

c

f g

a

d
e

h

i

f g

Figure 2.3: A top-down mapping that corresponds to the edit script
relabel(a,a), relabel(b,e), relabel(c,h), delete(d), delete(f), delete(e), re-
label(g,i), insert(f), insert(g).

Top-down mappings are useful for comparing hierarchical data, e.g. instances of
an XML database. Changes to an XML database is often insertion or deletion
of one or more entries, which in either case affects a leaf or a an entire subtree.

Selkow [13] gave the first algorithm for computing a top-down mapping. It is
a simple dynamic programming algorithm which runs in O(|T1||T2|) time and
space.

Other algorithms have been proposed but they are mostly variants tailored for a
specific context [21] or require even further contraints on the mapping [11] and
have the same time and space complexity.

14 Tree Edit Distance

2.3.2 Isolated-subtree Mapping

Definition 2.5 (Isolated-subtree mapping) Let T1 and T2 be rooted, or-
dered trees and M a set of tuples from V (T1) × V (T2). An isolated-subtree
mappingM is a mapping (definition 2.2 on page 6) for which it holds that for any
three pairs (v1, w1), (v2, w2), (v3, w3) ∈M then nca(v1, v2) = nca(v1, v3) iff nca(w1, w2) =
nca(w1, w3).

The intuition of this mapping is that subtrees must map to subtrees. In the
example shown in figure 2.4 we see that the pair (d, d) is not in the mapping
M as it was in the non-contrained mapping because nca(e, d) 6= nca(e, f) in the
left tree whereas nca(e, d) = nca(e, f) in the right tree. In other words, e and d
have become part of two different subtrees in the right tree.

a

b

d e

c

f g

a

d
e

h

i

f g

Figure 2.4: An isolated-subtree mapping that corresponds to the edit
script relabel(a,a), delete(b), delete(d), relabel(e,e), relabel(c,h), rela-
bel(f,f), relabel(g,g), insert(d), insert(i).

For some applications of tree edit distance there may not be any difference
between this and the original mapping. If we know that changes in the data
is only relevant to the subtree they occur in, this mapping may even produce
more useful results.

Zhang [23] presents a O(|T1||T2|) time and space algorithm. Because it is a
dynamic programming algorithm, the time complexity is valid for both best,
average, and the worst case. However, it relies on a heavily modified version
of the recursion from lemma 2.3 on page 10 which makes it quite complex in
practice. Richter [12] presents an algorithm very similar to Zhangs but with a
different O

(
degree(|T1|) ·degree(|T2|) · |T1||T2|

)
/O
(
degree(T1) ·height(T1) · |T2|

)
time/space tradeoff. The worst case of this algorithm is of course when the trees
have a very high degree.

2.4 Approximate Tree Pattern Matching 15

2.4 Approximate Tree Pattern Matching

A tree edit distance algorithm based on lemma 2.3 on page 10 can be modified
to be used for approximate tree pattern matching. In tree pattern matching we
denote the data tree TD and the pattern tree TP .

The cut operation was introduced in [22] and enables the algorithm to remove
entire subtrees without a cost. This has the effect that the algorithm finds the
best mapping among the subtrees of TD and the pattern rather than finding the
best mapping between TD and TP as illustrated in figure 2.5.

b

a

c

a

b
c

TP

TD

(a) A mapping between a large
and small tree.

b

a

c

a

b
c

d

TP

TD

(b) A mapping using the tree
edit distance with cuts.

Figure 2.5: The effect from introducing the cut operation.

To implement the cut operation, the tree edit distance algorithm must be modi-
fied to comply with the following version of the recursion from lemma 2.3. Zhang
and Shasha [22] show how to modify their algorithm for the new recursion. The
implementation is straightforward. We denote the tree edit distance with cuts
used for approximate tree pattern matching for δc.

δc(θ, θ) = 0
δc(F1, θ) = 0
δc(θ, F2) = δc(θ, F2 − w) + γ(λ→ w)

δc(F1, F2) = min

δc(θ, F2)
δc(F1 − v, F2) + γ(v → λ)
δc(F1, F2 − w) + γ(λ→ w)
δc(F1(v), F2(w)) + δc(F1 − T1(v), F2 − T2(w))

+γ(v → w)

In mathematical terms, the tree edit distance with cuts is a pseudoquasimetric

16 Tree Edit Distance

which means δc(T1, T2) can be 0 when T1 6= T2 and δc(T1, T2) can differ from
δc(T2, T1) [27]. The proviso from this is that we consistently must give the data
tree as first argument to the algorithm.

The tree edit distance with cuts reflects changes to the subtree mapped to the
pattern as well as the depth of the mapping. Consequently, the deeper the
mapping is the less errors we allow within the actual pattern. To deal with this,
Zhang, Shasha and Wang [19] present an algorithm which takes variable length
don’t cares (abbreviated VLDC and also commonly referred to as wildcards) in
the pattern into account. It resembles Zhang and Shasha’s algorithm and has
the same time and space complexity.

Chapter 3

Web Scraping using
Approximate Tree Pattern

Matching

In this chapter it is shown how to apply approximate tree pattern matching to
web scraping. We then discuss the algorithms from the previous chapter in rela-
tion to web scraping and give an overview of related work from the litterature.

3.1 Basic Procedure

The layout of a web site, i.e. the presentation of data, is described using Hyper-
text Markup Language (HTML). An HTML document basically consists of four
type of elements: document structure, block, inline, and interactive elements.
There is a Document Type Definition (DTD) for each version of HTML which
describes how the elements are allowed to be nested∗. It is structured as a gram-
mar in extended Backus Naur form. There is a strict and a transitional version
of the DTD for backward compatability. The most common abstract model for
∗The DTD also describes optional and mandatory attributes for the elements, but this is

irrelevant to our use.

18 Web Scraping using Approximate Tree Pattern Matching

HTML documents are trees. An example of a HTML document modelled as a
tree is shown in figure 3.1.

� �
1 <html>
2 <head>
3 <title>Example </title>
4 </head>
5 <body>
6 <h1>Headline </h1>
7 <table>
8 <tr>
9 <td>a</td>

10 <td>b</td>
11 </tr>
12 <tr>
13 <td>c</td>
14 <td>d</td>
15 </tr>
16 </table >
17 </body>
18 </html>� �

html

head

title

Example

body

h1

Headline

table

tr

td

a

td

b

tr

td

c

td

d

Figure 3.1: A HTML document and its tree model.

Changes in the HTML document affects its tree model so a tree edit distance
algorithm can be used to identify structural changes. Furthermore, approximate
tree pattern matching can be used to find matchings of a pattern in the HTML
tree. For this purpose, the pattern is the tree model of a subset of a HTML
document.

Utilizing the above for web scraping is straightforward. First we have to gener-
ate† or manually define a pattern. The pattern must contain the target nodes,
i.e. the nodes from which we want to extract data. Typically, the pattern could
be defined by extracting the structure of the part of the web site we wish to
scrape the first time it is visited. Then we parse the HTML and build a data
tree. Running the algorithm with the data and pattern trees gives a mapping.
We are now able to search the mapping for the target nodes and extract the
desired data.

†Automatic generation of a pattern is more commonly referred to as learning a pattern.
Given a set of pages from a web site, a learning algorithm can detect the similarities and
create a pattern. Learning is beyond the scope of this project.

3.2 Pattern Design 19

3.2 Pattern Design

When using approximate tree pattern matching, the pattern plays an important
role to the quality of the result produced by an algorithm. We now discuss how
to design patterns for the purpose of web scraping.

We will use Reddit‡ (www.reddit.com) as the running example in our discussion.
Consider the screenshot of the front page of Reddit in figure 3.2. It shows a
small topic toolbar followed by the Reddit logo and the highest rated entries.
Notice that the entry encapsulated in a box with a light blue background is a
sponsored entry, as opposed to the other entries, which are submitted by Reddit
users.

Figure 3.2: A selection of entries from the frontpage of Reddit (2011-
06-25).

Say we want to extract the title, URL to the image, and time of submission of
the first entry. Then it suffices to use the substructure (shown in figure 3.3 on
the following page) of the entries as pattern. This pattern will actually match
the first entry that has a picture.

We may not be interested in extracting the sponsored entry. Conveniently, the
sponsored entry and the user submitted entries reside in separate <div> con-
tainers. So to exclusively target the user submitted entries we have to modify
the pattern to include an anchor that is long enough for the algorithm to dis-
tinguish between the sponsored entry and the user submitted entries. In this
case the pattern is given an anchor consisting of two div elements. The second

‡Reddit is a user driven community where users can submit links to content of the Internet
or self-authored texts. The main feature of the site is the voting system which bring about
that the best submissions are on the top of the lists.

20 Web Scraping using Approximate Tree Pattern Matching

� �
1 <div><!-- Entry -->
2 <a><!-- Image -->
3 <div>
4 <p>
5 <a><!-- Title -->
6 </p>
7 <p>
8 <time><!-- Time --></time>
9 </p>

10 </div>
11 </div>� �

div

a

img

div

p

a

p

time

Figure 3.3: A pattern for a Reddit entry and its tree model.

element is given an id attribute to distinguish the container for the sponsored
entries from the container for user entries. It is shown in figure 3.4.

� �
1 <div>
2 <div id="siteTable">
3 <div><!-- User entry -->
4 <a><!-- Image -->
5 <div>
6 <p>
7 <a><!-- Title -->
8 </p>
9 <p>

10 <a><!-- Time -->
11 </p>
12 </div>
13 </div>
14 </div>
15 </div>� �

div

div

div

a

img

div

p

a

p

time

Figure 3.4: A pattern with an anchor for a Reddit entry and its tree
model.

The main disadvantage of adding an anchor is that the pattern becomes larger
which affects the execution time of the algorithm. Using attributes in the pattern
also faces the risk that the value may be changed by the web designer. If the
id is changed in this example, the pattern will match the sponsored entry just
as well.

3.3 Choosing an Algorithm 21

3.3 Choosing an Algorithm

Having decided on using approximate tree pattern matching for web scraping,
there is still a selection of algorithms to choose from.

The most suitable algorithm for the tree edit distance with cuts to use for HTML
trees is Zhang and Shasha’s algorithm because its running time depends on the
height of the trees, which commonly is low compared to the total number of
nodes for HTML trees. Some samples of this is shown in table 3.1.

web site Type # nodes Height
google.com Simple 142 13
pol.dk News 3414 19
berlingske.dk News 3151 21
reddit.com User driven news 1935 13
python.org Simple dynamic 259 10
blog.ianbicking.org Custom blog 1105 14
crossfitmobile.blogspot.com Blogspot blog 1286 26
rjlipton.wordpress.com Wordpress blog 842 11

Table 3.1: The number of nodes and the height of the DOM trees of
selected web sites (2011-07-17).

Zhang, Shasha, and Wang’s VLDC algorithm allows wildcards in the pattern
which can be an advantage. When using the tree edit distance with cuts for
approximate tree pattern matching, the depth of the match in the data tree
influence the result. If the pattern is small, Zhang and Shasha’s algorithm
may find a match in the top of the data tree by relabeling a lot of nodes. To
circumvent this, we can add a wildcard as the root of the pattern and use the
VLDC algorithm for matching. Wildcards can also be used to develop more
advanced patterns. The reason we choose not to work with this algorithm is
because wildcards eliminate the possibility of applying the methods we later
derive to speed up the algorithms.

Algorithms for the top-down mapping are unfit because they require the pattern
to start at the <html> tag and if there are changes to the part of the HTML tree
that matches the internal nodes of the pattern, the algorithm will not produce
a useful mapping.

The isolated-subtree algorithm will not locate and match a subtree if it is split
into several subtrees or merged into one. Consider the example from Reddit.

22 Web Scraping using Approximate Tree Pattern Matching

Assume that a new visualization of the entries, where the second div is super-
flous, is introduced. This corresponds to merging the two subtrees of the root
of the pattern into one. As shown in figure 3.5 on the next page, the img tag
will not be located when using the isolated-subtree mapping.

3.4 Extracting Several Matches

Until now we have assumed that we only want to extract the optimal match.
However, it is common that we want to extract several matches. Continuing
with Reddit as example we may want to extract all entries from the front page.
In this section we discuss how to achieve this using approximate tree pattern
matching.

If we know how many entries we want to extract, one approach is to create a
pattern that matches the required number of entries. This also applies if we
want to extract the nth entry. Then we create a pattern matching the first n
entries and discard the results for the first n− 1 entries. The drawback of this
approach is that the pattern quickly becomes big and slows down the algorithm.
Also, when creating a pattern for n entries we are not guaranteed that it will
match the first n entries. It will match some n entries.

The above mentioned method is not applicable if we want to extract all entries
without knowing the exact number of entries. An alternative approach is to
create a pattern matching one entry. After matching the pattern we remove the
nodes in the mapping from the data tree. This is repeated until the cost of the
mapping exceeds some predefined threshold.

The main disadvantage of this approach is that the algorithm has to be invoked
several times. Furthermore, if the goal is to extract the first n entries we cannot
guarantee that the pattern matches the first n entries in n invocations of the
algorithm.

3.5 Related Work

The litterature on information extraction from web sites is vast. However, the
focus is mostly on learning patterns and information extraction§ from data. We

§Information extraction is extraction of meaningful content from web sites without explic-
itly specifying where the information reside.

3.5 Related Work 23

div

a

img

div

p

a

p

time

(a) A Reddit entry
before the change.
Subtree is used as
pattern.

div

a

img

p

a

p

time

(b) A Reddit entry after
the change.

div

a

img

p

a

p

time

div

a

img

div

p

a

p

time

(c) The optimal mapping as produced by e.g. Zhang and
Shasha’s algorithm.

div

a

img

p

a

p

time

div

a

img

div

p

a

p

time

(d) The isolated-subtree mapping.

Figure 3.5: Example of the difference in outcome from using an original
mapping and an isolated-subtree mapping.

24 Web Scraping using Approximate Tree Pattern Matching

will review the known results from using approximate tree pattern matching in
this context.

Xu and Dyreson [20] present an implementation of XPath which finds approxi-
mate matches. The algorithm is based on the Apache Xalan XPath evaluation
algorithm, but the criteria for the algorithm is that the result must be within k
edits of the HTML tree model. The algorithm runs in O

(
k · |TP ||TD| log |TD|

)
time, but bear in mind that this is for evaluating a path. To simulate match-
ing a tree pattern we need several paths [28] and the running time becomes
O
(
k · |TP |2|TD| log |TD|

)
(worst case), which is worse than Zhang and Shasha’s

algorithm. Also, it matches each path of the pattern separately so it does not
obey the mapping criterias we know from the tree edit distance.

Reis et al. [11] presents an algorithm for extraction of information from sets
of web sites. Given a set of web sites they generate a pattern with wildcards.
Using the pattern their algorithm computes a top-down mapping, but unlike
other algorithms for the top-down mapping it does not compute irrelevant sub-
problems based on a max distance k given as input. The worst case running
time is O

(
|T1||T2|

)
but due to the deselection of irrelevant subproblems, the

average case is a lot faster. Their algorithm works well because their pattern
generation outputs a pattern which is sufficiently restricted to be used with a
top-down algorithm.

Based on the claim that information extraction or web scraping using tree pat-
tern matching is flawed, Kim et al. [8] suggests a cost function that takes the
rendered size of tags into account when comparing them. They use the cost
function with an algorithm for the top-down mapping.

3.6 Summary

The most suited algorithm for web scraping is Zhang and Shasha’s algorithm,
but we anticipate that it will be slow on large webpages. The Reddit example
shows that there is a case where Zhang’s algorithm for the isolated-subtree
mapping fails to locate the targeted data.

The speed issue is not adressed directly in the litterature because sub-optimal
algorithms are used in return for pattern constraints. The remainder of this the-
sis will focus on speeding up the algorithm aiming at attaining a more versatile
solution than found in the litterature.

Chapter 4

Lower Bounds for Tree Edit
Distance with Cuts

In this chapter we describe six methods for approximating the tree edit distance
with cuts. The methods are all lower bounds for the tree edit distance with cuts.
The methods are derived from attempts to approximate the tree edit distance
(without cuts) in the litterature.

The methods are all based on the assumption that a unit cost function is used,
and we will use D to denote the approximations of the tree edit distance with
cuts.

4.1 Tree Size and Height

When a unit cost function is used, the edit distance between two trees is bounded
from below by the difference in the size of the trees. Consider two trees T1 and
T2 where |T1| > |T2|. To change T1 to T2 at least |T1| − |T2| nodes must be
removed from T1. Similarly, if T2 is a larger tree than T1, at least |T2| − |T1|
nodes must be inserted in T1 to change it to T2.

When using the tree edit distance for approximate tree pattern matching we

26 Lower Bounds for Tree Edit Distance with Cuts

include the cut operation, so some nodes may be deleted from T1 without af-
fecting the cost. Therefore, it is impossible to determine, based on the size of
the trees, if T2 can be obtained by using only cut on T1. As a result, the lower
bound Dsize is:

Dsize(T1, T2) = max
(
0, |T2| − |T1|

)
(4.1)

Assuming the nodes of a tree T have postorder indices, then the nodes of any
subtree T (v) is a consecutive sequence of indices starting from the index of the
leftmost leaf of the subtree to the index of the root of the tree. So the size of
a tree can be found from |T (v)| = v − lml(v), which can be found in constant
time after a O(|T |)-preprocessing of the tree.

Alternatively, the height of the trees can be used as a lower bound as shown
below. This can produce a tighter lower bound for trees that may be very similar
in terms of size but otherwise look very different.

Dheight(T1, T2) = max
(
0, height(T2)− height(T1)

)
(4.2)

4.2 Q-gram Distance

The q-gram is a concept from string matching theory. A q-gram is a substring
of length q. The q-gram distance between two strings x and y is defined as
follows. Let Σ be the alphabet of the strings and Σq all strings of length q in
Σ. Let G(x)[v] denote the number of occurrences of the string v in the string
x. The q-gram distance for strings dq is obtained from the following equation
[17].

dq(x, y) =
∑
v∈Σq

∣∣G(x)[v]−G(y)[v]
∣∣ (4.3)

If d(x, y) is the optimal string edit distance between x and y, the q-gram distance
can be 0 ≤ dq(x, y) ≤ d(x, y) ·q, given that unit cost is used for all operations on
the strings. So the q-gram distance may exceed the optimal string edit distance.
To use the q-gram distance as a lower bound for the string edit distance, we
can select a disjoint set of q-grams from x. Then one character in the string
can only affect one q-gram and thereby only account for one error in the q-gram
distance. As a result 0 ≤ dq(x, y) ≤ |x|q ≤ e.

We generalize the q-gram distance to trees by using subpaths of a tree as q-
grams. In one tree we select all subpaths of size 1 to q. In the other tree we
ensure that the tree q-gram distance is a lower bound for the tree edit distance
by selecting a disjoint set of q-grams (when disjoint we call them q-samples) of
size at most q.

4.2 Q-gram Distance 27

We select q-grams of different sizes to be able to include any node in at least one
q-gram and thereby make the lower bound on the tree edit distance tighter. If
q > 1 and the tree has more than 2q nodes, there will be more than one way to
select a disjoint set of q-grams. Therefore, the algorithm which selects q-grams
may influence on the q-gram distance for trees.

The q-gram distance can be extended to allow for the cut operation. A q-gram
that appears in T1 and not T2 may not be accounted as an error, whereas it
may if it appears in T2 and not in T1. So the tree q-gram distance with cuts is

Dq(T1, T2) =
∑
Q∈T2

max
(
0, G(T2)[Q]−G(T1)[Q]

)
(4.4)

In practice, we only have to iterate the q-grams in T2 to make the above com-
putation. Since the q-grams of T2 are disjoint, there can be at most |T2| of
them. Thus, the tree q-gram distance with cuts can be computed in O(|T2|)
time (assuming the q-grams have been computed in a pre-processing step).

Having defined the q-gram distance with cuts, we now show that it is a lower
bound for the tree edit distance with cuts if the q-grams in T2 are disjoint.

Lemma 4.1 Let Dq(T1, T2) be the tree q-gram distance with cuts for two trees
T1 and T2, and let the q-grams in T2 be disjoint. Then

Dq(T1, T2) ≤ δc(T1, T2) (4.5)

Proof. If δc(T1, T2) > 0 then there is at least one node v in T2 which is not in
T1. Let v be part of a q-gram in T2 which is not in T1. The only free operation
that makes structural changes to T1 is cut. If we remove a leaf we reduce the
set of q-grams in T1 and then the q-gram with v is still not in T1. Therefore, we
need k operations, where 1 ≤ k ≤ q, to create the q-gram of T2 in T1. If c is the
number of q-grams in T2 which are not in T1 then we have c ≤ δc(T1, T2) ≤ c · q,
and since each q-gram can account for only one error we have Dq(T1, T2) = c.
(4.5) clearly follows from this. If δc(T1, T2) = 0 then T2 is a subtree in T1 and
any q-gram in T2 is also in T1. �

The chosen value of q will affect the outcome of (4.4). A small value for q
may produce a tight bound for dissimilar trees. If the trees do not have a
lot in common, we want as many q-grams as possible in order to capture the
differences. For similar trees, a larger value for q may produce a tight bound.
Larger q-grams contain more information about the structure of the tree. If the
trees are similar, and the q-grams are small, we risk missing an error.

28 Lower Bounds for Tree Edit Distance with Cuts

We may also select overlapping q-grams from T2 if we bound the number of
q-grams a node is allowed to be part of and subsequently divide the distance
by the bound. However, there may be q-grams not present in T1 due to nodes
which are only in one q-gram in T2, and we anticipate that the extra q-grams
in T2 do not make up for this.

Algorithms for computing q-grams and q-samples for a tree are given in ap-
pendix B.1 on page 83 and appendix B.2.

4.3 PQ-gram Distance

Augsten et al. [2] present another generalization of the q-gram distance which
is based on pq-grams. A pq-gram is a subtree which consists of a path of length
p from its root to an internal node v. This is the anchor. The node v has q
children. This is the fanout. When referring to a specific set of pq-grams where
the parameters are set to for instance p = 2 and q = 3 we call them 2,3-grams.
We describe their method and show why it can not be adapted to the tree edit
distance with cuts.

The generalization of q-grams to subpaths only captures information about the
parent/child relationship between nodes. The advantage of the pq-gram is that
it is possible to capture more structural information than with q-grams, because
each pq-gram holds information of the relation between children of a node. To
enable us to select as many pq-grams as possible a tree is extended such that

• the root has p− 1 ancestors,

• every internal node has an additional q − 1 children before its first child,

• every internal node has an additional q − 1 children after its last child,

• every leaf has q children

The resulting tree is called the T p,q-extended tree of T . An example of a tree,
its extended tree, and a disjoint set of pq-grams is seen in figure 4.1 on the next
page.

The pq-gram distance is computed the same way as the q-gram distance for
strings, and Augsten et al. prove that it is a lower bound for the fanout tree
edit distance, which is obtained from using a cost function that depends on the
degree of the node to operate on.

4.4 Binary Branch Distance 29

a

b

d e

b c

f

(a) T .

ε

a

ε b

ε
d

ε ε

e

ε ε

ε

b

ε ε

c

ε
f

ε ε

ε

ε

anchor

fanout

(b) T 2,2, the 2,2-extension of T .

Figure 4.1: An example of a tree extended for the PQ-gram distance.
Gray nodes are new nodes. ε is a special character for labels on new
nodes. The highlighted subtrees are examples of 2,2-grams selected from
T 2,2.

We now show that the lower bound obtained from using the pq-gram distance
always is zero. There are three possible outcomes for each pq-gram in either T1

or T2.

1. A pq-gram in T1 is not in T2. For all we know, the nodes of the pq-gram
in T1 may be removed using the cut operation, so from this case we can
not tighten the lower bound.

2. A pq-gram in T2 is not in T1. Consider the case where removing a node
from the fanout of pq-gram in T1 generates the subtree that equals the pq-
gram from T2. Since we do not know if removing a node from the fanout
is free due to cuts, this case does not tighten the lower bound either.

3. A pq-gram in T1 is also in T2. This is not an error so it does not add to
the lower bound.

4.4 Binary Branch Distance

Yang et al. [16] present a tree edit distance approximation called the binary
branch distance. It is based on pq-grams and the following observation. Any
edit operation can influence the parent/child relation between arbitrary many

30 Lower Bounds for Tree Edit Distance with Cuts

nodes whereas it can only influence exactly two sibling relations. By converting
the trees to their binary tree representations and selecting all possible 1,2-grams,
the authors show that the pq-gram distance (of the transformed problem) is at
most 4 times the tree edit distance. The result is thus a lower bound which is
found without having to select a disjoint set of pq-grams from one of the trees.
We describe their method and show why it can not be extended to include the
cut operation.

Any tree (or forest) has a binary tree representation, which preserves all struc-
tural information, i.e. all parent/child and sibling relations [10]. The conversion
is best described using following algorithm.

1. Add an edge from each node to its left and right sibling (if any)

2. Remove edges from each node to all but its first child

3. Add empty nodes such that each node has exactly zero or two children (as
it is required in a binary tree)

An example of a transformation of a tree is seen in figure 4.2. The transformation
of the trees is neccessary to ensure that a node is in at most two 1,2-grams.
Without the transformation we could only use the above observation to select
q-grams vertically among siblings, and therefore lose information about the
parent/child relations.

a

b

d

d

e

b c

f

(a) T .

a

b

d

d e

b

ε
c

f ε

ε

(b) The binary
tree representation
of T .

Figure 4.2: An example of a binary tree representation.

4.4 Binary Branch Distance 31

We now show by example that one edit operation can affect the pq-gram distance
by at most four∗. Consider the example in figure 4.3 where the internal node b is
deleted. The two 1,2-grams (a, b, ε) and (b, d, g) that contains b will no longer be
present in the new tree. Instead the new tree will contain the 1,2-grams (a, d, ε)
and (e, ε, g) which were not present in the original tree. Therefore, the pq-gram
distance will be 4. Deletion and insertion is symmetric so the same argument
also holds for insertion. Relabeling a node also affects at most four 1,2-grams
because a node can be included in at most two 1,2-grams.

a

b

d

d

e

g c

f

(a) T .

a

d

d

e g
c

f

(b) T after deleting b.

a

b

d

d e

g

ε
c

f ε

ε

(c) Binary tree repre-
sentation of T .

a

d

d
e

ε
g

ε
c

f ε

ε

(d) Binary tree
representation of
T after deleting
b.

Figure 4.3: An example of 1,2-grams affected by a delete operation on
a tree. The lightly shaded areas are shared 1,2-grams. The darkly shaded
areas are individual 1,2-grams. In this example the pq-gram distance is 4
and the binary branch distance is thus 1.

∗In the paper presenting this method it is a factor of five instead of four. This is because of
additional ε-nodes added as children of each leaf. This encodes information about the leaves
in the pq-grams. We omit it here for simplicity.

32 Lower Bounds for Tree Edit Distance with Cuts

The binary branch distance is potentially a tighter lower bound of the tree edit
distance than the q-gram and pq-gram distance because it allows us to select
overlapping pq-grams from both trees and because it captures sibling relations.
However, since the distance must be divided by 4 we need to select 4 times as
many pq-grams as we would select disjoint q-grams.

However, the binary branch distance can not be used to produce a lower bound
for the tree edit distance with cuts. This is evident from the three possible
outcomes for a 1,2-gram in either T1 or T2.

1. A pq-gram in T1 is not in T2. The nodes of the pq-gram may be part of a
subtree that can be cut away, so this can not be used to tighten the lower
bound.

2. A pq-gram in T2 is not in T1. Consider the tree T of figure 4.3 on the
preceding page. Assume that the node a has a child v between g and
c. Then the 1,2-grams (g, ε, c) and (c, f, ε) would not be present in T2.
However, if v is cut away, which is free, then the two pq-grams becomes
present in T1. Therefore, a pq-gram in T2 and not T1 can not count as an
error.

3. A pq-gram in T1 is also in T2. This is not an error so it does not add to
the lower bound.

4.5 Euler String Distance

Hierarchical structured data is commonly represented as trees, but may also be
represented as a parenthesized string called the Euler string. The parentheses
are used to maintain parent/child relationships. Consider for instance the tree in
figure 4.4 on the next page whose Euler string representation is a(b(de)cb(b)).
The Euler string is computed by doing a postorder traversal of the nodes. It
can be computed in O(|T |) time and the tree can be restored again in O(|T |)
time. However, serialization of tree data has the disadvantage that parent/child
relations no longer can be determined in constant time.

Another variant of the Euler string omits parentheses and uses a special inverted
character when backtracking from a node. An example is shown in figure 4.4
on the facing page. The special characters must not be a part of the set of
all possible labels. This variant is more suited for comparison of the strings
because the number of extra characters, i.e. parentheses, is independent of the
tree structure. We will use this variant and we denote the Euler string of a tree
T for s(T).

4.5 Euler String Distance 33

a

b

d e

c b

b

T

s(T) = bddeebccbbbb

Figure 4.4: A tree and its Euler string.

The string edit distance of two Euler strings can be used as a lower bound for
the tree edit distance based on the following observation by Akutsu [1]. Any
operation on a tree T affects at most two characters in s(T), so we have the
following theorem.

Theorem 4.2 ([1]) Let T1 and T2 be ordered, rooted trees and let s(T) denote
the Euler string of a tree T . Let d(x, y) denote the string edit distance of two
strings x and y and δ(T1, T2) the tree edit distance of the trees. Then we have

1
2
d
(
s(T1), s(T2)

)
≤ δ(T1, T2) (4.6)

For two strings of length m and n, computing the string edit distance can be
done in O(mn) time [5]. Since |s(T)| = O(T) this method can compute an
approximation of the tree edit distance in O(|T1||T2|) time.

We will now discuss approaches to convert this method to give lower bounds for
the tree edit distance with cuts. We will discuss

• making all delete operations free in the string edit distance algorithm,

• postprocessing the result from the string edit distance algorithm,

• and modifying the string edit distance algorithm to handle cuts.

Making delete operations free for the string edit distance algorithm is the only
effective way of adapting this method to act as a lower bound for the tree edit
distance with cuts. We start by showing that for any mapping obtained using
an algorithm for the tree edit distance with cuts, there is a mapping, produced
by a regular tree edit distance algorithm, with the same cost or cheaper if using
a cost function where deletes are free.

34 Lower Bounds for Tree Edit Distance with Cuts

Lemma 4.3 Let T1 and T2 be ordered, rooted trees. Let δ(T1, T2) be the tree
edit distance between T1 and T2 using a cost function γ where deletes are always
free, i.e. γ(v → λ) = 0, ∀v ∈ V (T1). Let δc(T1, T2) be the tree edit distance with
cuts. We then have

δ(T1, T2) ≤ δc(T1, T2) (4.7)

Proof. Assume that δ(T1, T2) > δc(T1, T2) for some two trees T1 and T2. Then
there is an edit script E for δc(T1, T2) consisting of a inserts, b deletes, c relabels,
and d cuts. Their accumulated cost is ca, cb, cc, and cd, respectively. The cost
of E is ca + cb + cc because cd = 0. If cuts are not available we would have
to replace cuts by deletes, so the cost of an edit script that produce the same
mapping as E would be ca + cb + cc + cd. If deletes are free it is ca + cc. From
our assumption we have that ca + cc > ca + cb + cc, which is a contradiction
because costs are non-negative, cf. the cost function is a distance metric. �

We now establish that the string edit distance, where the delete operation is
without a cost, of the Euler strings of two trees is a lower bound for the tree
edit distance with cuts.

Lemma 4.4 Let d(x, y) be the string edit distance and δc(T1, T2) the tree edit
distance with cuts. If we use a cost function for the string edit distance where
delete operations are free then half the string edit distance is a lower bound of
the tree edit distance with cuts, i.e.

1
2
d
(
s(T1), s(T2)

)
≤ δc(T1, T2) (4.8)

Proof. Since theorem 4.2 on the previous page holds for cost functions that
qualify as distance metrics, and the cost function where delete operations are
free is a distance metric, we can combine theorem 4.2 and lemma 4.3 to obtain
this lemma.

Thus, the tree Euler string edit distance De is

De(T1, T2) =
1
2
d
(
s(T1), s(T2)

)
(4.9)

The remainder of this section will discuss why the two other approaches will not
produce a lower bound as required.

We would like to be able to correct for deletes in a postprocessing phase. Here
is an approach. Once a string edit distance has been computed, the sequence of

4.6 Summary 35

edit operations can be extracted using backtracking in the dynamic program-
ming table. From the sequence of operations it is possible to compute a mapping
between characters of the two strings. Assume the data string is split into a set
of substrings by the characters in the mapping. For each of these substrings we
look for a pair of a character and its inverted character, e.g. aa. This corre-
sponds to a leaf and can be removed without a cost. This is repeated for each
substring until no more such pairs exist. The number of characters removed
is subtracted from the string edit distance and the result is a lower bound for
the tree edit distance with cuts. Unfortunately, we can not guarantee that the
resulting mapping is equal to the mapping an algorithm for the tree edit dis-
tance with cuts would produce. This means that there may be fewer pairs of
characters to remove in the postprocessing phase, and therefore this approach
can not be used to compute a lower bound.

Modifying the string edit distance algorithm to handle cuts is not possible either.
As mentioned earlier, information about the parent/child relations is lost when
tree data is serialized. An algorithm will consider one character of the data
string at a time. To determine if we can cut away a character, the algorithm
must read at least one other character, which it will have to scan through the
string to find.

4.6 Summary

In this chapter we have seen six techniques for computing a lower bound on
the tree edit distance with cuts. The binary branch distance and the pq-gram
distance always yield 0 as a lower bound, so these can be discarded of for our
further studies. Table 4.1 shows a summary of the time and space requiremens
of the techniques.

Technique Preprocessing Space Time
Size O(|T1|+ |T2|) O(|T1|+ |T2|) O(1)
Height O(|T1|+ |T2|) O(|T1|+ |T2|) O(1)
Q-gram distance O(|T1|2 · q + |T2|2)† O(|T1| · q + |T2|) O(|T2|)
Euler string distance - O(|T1||T2|) O(|T1||T2|)

† See appendix B.1 on page 83.

Table 4.1: Preprocessing, space, and time requirements of the lower
bounds methods.

36 Lower Bounds for Tree Edit Distance with Cuts

Chapter 5

Data Tree Pruning and
Heuristics

5.1 Adapting the Fast Unit Cost Algorithm to
Cuts

In [14] Shasha and Zhang present a tree edit distance algorithm which is fast
for similar trees, i.e. when the tree edit distance is small. It is fast because it
assumes that a unit cost function is used, and based on that, some subproblems
can be ruled out while the algorithm still computes an optimal solution. In this
section we adapt the algorithm to cuts.

Not as many subproblems can be ruled out after the adaption. However, the
algorithm serves as inspiration to our pruning approach. Pruning of the data
tree means reducing its size prior to running the actual algorithm. The dif-
ference between pruning and ruling out subproblems at runtime is subtle but
notable. Pruning a branch of the data tree corresponds to ruling out all sub-
problems containing any nodes in the subtree, so ruling out subproblems at
runtime causes fewer subproblems to be computed. Instead, pruning offers two
other advantages. We can apply more elaborate methods to decide if a subtree
is relevant because we do not have to do it at runtime. And, as we shall see, we
can use keyroots when the tree is pruned prior to running the algorithm, which

38 Data Tree Pruning and Heuristics

is not possible when ruling out subproblems at runtime.

5.1.1 Algorithm Description

The fast unit cost algorithm by Shasha and Zhang is based on the following two
observations.

1. The tree edit distance between two trees is at least the difference in the
size of the trees.

2. If the mapping between two subtrees T1(v) and T2(w) is part of an optimal
solution, then the mapping between the forests to the left of the subtrees
is also a part of the optimal solution∗.

The observations are combined to rule out subproblems in the permanent dy-
namic programming table as follows. The algorithm is given a threshold k as
input. A subproblem in the permanent table is ruled out if the difference in the
size of the subtrees plus the difference in the size of their left subforests exceeds
the threshold k. This is formalized in the following lemma.

Lemma 5.1 ([14]) Let T1 and T2 be two trees where the nodes are given pos-
torder indices. When computing the tree edit distance δ(T1, T2) using a unit
cost cost function, the minimum cost of the subproblem {T1(vi), T2(wj)} is
|(i− i′)− (j − j′)|+ |i′ − j′|, where vi′ = lml(vi) and uj′ = lml(wj).

Proof. From the relabel case of lemma 2.3 on page 10 we know that if the
mapping between T1(vi) and T2(wj) is part of an optimal mapping, then the
mapping of the forests v0, . . . , vi′ and w0, . . . , wj′ must also be part of the op-
timal mapping. Since we use a unit cost cost function and the nodes have
postorder indices, we know that the cost of the mapping between T1(vi) and
T2(wj) is at least

∣∣|T1(vi)| − |T2(wj)|
∣∣ =

∣∣(i − i′) − (j − j′)
∣∣, and the cost of

mapping v0, . . . , vi′ and w0, . . . , wj′ is at least |i′ − j′|. �

In practice, the lemma is implemented such that the algorithm only iterates
the subproblems where the minimum cost of the subproblem does not exceed
k. In the temporary array some subproblems can also be ruled out based on
observation 1. Furthermore, since we have to save some operations for the
mapping of the left subforests, the threshold used for the temporary array can

∗This is evident from the last case of the recursion in lemma 2.3 on page 10.

5.1 Adapting the Fast Unit Cost Algorithm to Cuts 39

be tightened to k−|i′−j′| for a subproblem {T1(vi), T2(wj)} where vi′ = lml(vi)
and uj′ = lml(wj).

The running time of the algorithm is

O
(
k2 ·min(|T1|, |T2|) ·min(leaves(T1), leaves(T2)

)
For small values of k, the algorithm is faster than the keyroot algorithm. It
is not possible to rule out trees based on lemma 5.1 when employing keyroots
because we risk missing the optimal solution. An example is shown in figure 5.1
where the tree edit distance is 1. Now assume that the unit cost algorithm is
invoked with k = 1. Then the subproblem {T1(v3), T2(w2)} is never computed
because {T1(v3), T2(w3)} is ruled out. However, {T1(v3), T2(w2)} is needed for
the optimal solution when computing {T1(v4), T2(w3)}, so the algorithm returns
a sub optimal solution.

4
a

0b 3 b

1
b

2
a

3
a

2b

0
b

1
a

T1 T2

Figure 5.1: A problem which shows that keyroots (the filled nodes) can
not be used with the unit cost algorithm.

5.1.2 Adaption to Cuts

Introducing the cut operation means that some nodes can be removed from T1

without cost. Consequently, the minimum cost from lemma 5.1 on the preceding
page is no longer symmetric. In other words, if |T1(vi)| > |T2(wj)| the tree edit
distance for these subtrees may be 0. So the minimum cost of a subproblem
{T1(vi), T2(wj)} is

max
(
0, (j − j′)− (i− i′)

)
+ max

(
0, j′ − i′

)
(5.1)

where vi′ = lml(vi) and wj′ = lml(wj).

The lack of symmetry means that a lot fewer subproblems can be ruled out
in the permanent dynamic programming table. The immediate consequence
is the same for the temporary table, however, since the temporary table is

40 Data Tree Pruning and Heuristics

monotonically non-decreasing along its diagonals, we can rule out subproblems
based on not only the estimated cost of solving it, but also the estimated cost
of getting to it.

Consider figure 5.2 which shows the temporary dynamic programming table for
a subproblem {T1(vi), T2(wj)}. Let m and n (0 ≤ m ≤ |T1(vi)| and 0 ≤ n ≤
|T2(wj)|) be the indices of some subproblem in this instance of the temporary
table. A path from (m,n) to (0, 0) is a solution to the subproblem at (m,n).
The path with the lowest cost is the optimal solution. When estimating the
cost we assign the following cost to the path. Going diagonal is free because
relabeling a pair of nodes may be free. Going up is also free because removing
nodes from T1(vi) may be free due the cut operation. Going left corresponds to
the insert operation, which has cost 1.

Until now we have ruled out a subproblem in the temporary table based on
the minimum cost of solving it, i.e. max(0, n − m) when cuts are allowed.
This cost corresponds to the path with the shortest Euclidian distance from
(m,n) to (0, 0) in the table (the gray path in figure 5.2). However, we also
know that the subproblem at (m,n) is used to ultimately solve the problem at
(|T1(vi)|, |T2(wj)|), so in order to get from (|T1(vi)|, |T2(wj)|) to (m,n) we may
have used some operations. This corresponds to the black path in figure 5.2,
and we estimate the minimum cost of it to be

max
(
0, |T2(uj)| − (|T1(vi)| −m)− n

)
(5.2)

m

n

T1(vi)

T2(wj)

Figure 5.2: A possible solution path to a subproblem in the temporary
dynamic programming table in Zhang and Shasha’s algorithm.

We formalize the above estimates in the following lemma.

Lemma 5.2 Given the subproblem {T1(vi), T2(wj)}, let m and n, 0 ≤ m ≤
|T1(vi)| and 0 ≤ n ≤ |T2(wj)|, be the indices of a subproblem in the temporary

5.2 Using Lower Bounds for Pruning 41

dynamic programming table of Zhang and Shasha’s algorithm. The minimum
cost of the subproblem {T1(vi), T2(wj)} then is

max
(
0, |T2(wj)| − (|T1(vi)| −m)− n

)
+ max

(
0, n−m

)
(5.3)

Proof. The best way to get from the nth column to the 0th column is n relabels
which may be free. We can at most perform |n−m| relabels, so if n−m > 0 we
require n −m inserts, which have unit cost, otherwise we require m − n cuts,
which are free. Same argument holds for the best way from (|T1(vi)|, |T2(wj)|)
to (m,n). �

Adapting the algorithm to cuts has some drawbacks. As mentioned earlier, a lot
fewer subproblems are ruled out from the permanent table. This is also the case
in the temporary table in spite of our attempts to tighten it up with lemma 5.2.
The main drawback is in fact in the temporary table where only subproblems
of the upper right and lower left corners are ruled out, so the impact diminishes
as the difference in the size of the subtrees grows bigger.

In figure 5.2 on the preceding page a graphical comparison of the subproblems
computed by the algorithms is shown. We see that a lot fewer subproblems
are needed in (b) compared to (c). If we were to show another temporary table
where T1(v) is a lot larger than T2(w), then it would be the same number of sub-
problems required for (b) whereas it would be the same number of subproblems
ruled out in (c). Clearly, this will have a negative effect on the execution time
of our adaption of the algorithm, because the size of a subtree in T1 generally
exceeds that of T2 in a pattern matching context.

5.2 Using Lower Bounds for Pruning

In the previous section we saw how to rule out subproblems based on a lower
bound obtained from the difference in the size of the components of the sub-
problem. We anticipate that the unit cost algorithm adapted for cuts does not
outperform Zhang and Shasha’s original algorithm, so in this section we de-
scribe a technique for pruning the data tree using the lower bound methods
from chapter 4.

We would like to remove subtrees that under no circumstances are a part of an
optimal mapping. If there is a pair of subtrees for which the lower bound on
their tree edit distance with cuts is less than k, the given subtree in the data
tree can not be removed. Using lower bounds ensure that we do not remove
subtrees that are part of an optimal mapping unless the cost of the optimal

42 Data Tree Pruning and Heuristics

Permanent table

T
1

T2

T
1
(v

)

T2(w)

(a) Algorithm
using keyroots.

T
1

T2

T
1
(v

)

T2(w)

Temporary table
(b) Fast unit
cost algorithm.

T
1

T2

T
1
(v

)

T2(w)

(c) Fast unit
cost algorithm
adapted for
cuts.

Figure 5.3: Comparison of how subproblems are ruled out in the per-
manent and temporary table of Zhang and Shasha’s algorithms. White
elements are computed subproblems.

5.2 Using Lower Bounds for Pruning 43

mapping is greater than k. We define a relevant subtree and prune the data
tree by removing all subtrees that are not relevant.

Definition 5.3 (Relevant subtree (lower bound)) Given two trees T1 and
T2, a threshold k, and a lower bound function D : T × T → R, a subtree T1(v)
is relevant if there is a subtree T2(w) for which D

(
T1(v), T2(w)

)
≤ k.

Definition 5.3 suggests a worst case O
(
|T1||T2| ·σ(T1, T2)

)
time algorithm, where

σ denotes the running time of the lower bound function D. If the execution time
of the pruning approach exceeds that of the tree edit distance algorithm, its
purpose is defeated. Therefore, we require that σ(T1, T2) ∈ O(|T1||T2|), based
on the theoretical worst case of Zhang and Shasha’s algorithm.

A lower bound D(T1(v), T2(w)) for two subtrees T1(v) and T2(w) may not be
very tight, so we draw inspiration from the unit cost algorithm on how to improve
it. Recall that the difference in the size of the subforests to the left of the subtrees
also could be added to the lower bound. If we preprocess the trees such that
the depth and the leftmost leaf of a node can be found in constant time, we can
divide the tree into four subforests which all add to the lower bound. The four
subforests are shown in figure 5.4 on the following page

The difference in the size of the subforests can be added to the lower bound
D(T1(v), T2(w)) because all subforests are disjoint, so the improved lower bound
Dimp is

Dimp

(
T1(v), T2(w)

)
=D

(
T1(v), T2(w)

)
+
∣∣|F1,1| − |F2,1|

∣∣
+ max

(
0, |F2,2| − |F1,2|

)
+ max

(
0, |F2,3| − |F1,3|

) (5.4)

Assume that the trees have been preprocessed such that lml and depth queries
take constant time. The first term is computed using any of the methods from
chapter 4. The second term is the difference in the length of the path from
the roots to v and w. We assume that T1(v) and T2(w) are part of the optimal
mapping, so the cut operation does not apply to F1,1. There are no leaves to cut.
Therefore, this term can be computed from |depth(v) − depth(w)| in constant
time. The size of the left subforest of v is the index of lml(v). The size of the
right forest of v is root(T1)− (v − lml(v))− lml(v)− (depth(v)− 1). So term 3
and 4 of (5.4) can also be found in constant time.

This pruning technique excels in being independent of the context. It will have
an effect on any data. It can also be extended to use other methods for com-

44 Data Tree Pruning and Heuristics

T1(v)F1,2 F1,3

F1,1

T2(w)F2,2 F2,3

F2,1

v

w

T1(v) and T2(w): the subtrees rooted at v and w,

F1,1 and F2,1: the path from the root of the trees to v and w, respectively,

F1,2 and F1,2: the subforests to the left if v and w,

F1,3 and F1,3: the subforests to the right of v and w.

Figure 5.4: Division into subforests for computing improved lower bound
when pruning.

puting the lower bounds for the subforests. We have chosen to use the size of
the forests because it can be found in constant time.

We anticipate that the difference in the length of the paths from the roots to
v and w is an efficient contributor to the lower bound. In a pattern matching
context, the effect will be significant if the pattern is intended to match a shallow
subtree. Then deep subtrees will be removed from the data. On the contrary, the
effect from comparing the right or left subforests is small in a pattern matching
context because the subforests of T2 are smaller than those of T1 in most cases.

5.3 Using the HTML Grammar for Pruning

Nesting of HTML elements must comply with the Document Type Definition
(DTD). Given the DTD we can use the same procedure as for lower bound
pruning to remove subtrees which are likely not to be a part of an optimal

5.3 Using the HTML Grammar for Pruning 45

mapping. Consider the following definition of a relevant subtree. We remove all
subtrees that are not relevant.

Definition 5.4 (Relevant subtree (HTML grammar)) Given two trees T1

and T2, a subtree T1(v) is relevant if there is a node w in T2 such that the HTML
element represented by w can be derived from the element represented by v from
the DTD by applying one production rule or there is a relevant subtree T1(u)
where u is a descendant of v.

The definition is recursive which is utilized by the algorithm. It traverses the
nodes of the data tree in postorder. For each node it checks if there is a child
that is the root of a relevant subtree. If so, the current subtree is also relevant.
If not it tests if there is a tag in T2 that is a possible descendant of the current
node’s tag. To do this it is allowed to apply one rule from the DTD.

The traversal of the children of each node entails that each node is visited at
most two times. For each node in T1 each node in T2 is visited once. Finally,
at most |T1| nodes are deleted. Thus, the running time of the algorithm is
2|T1|+ |T1||T2| ∈ O

(
|T1||T2|

)
.

We now discuss the expected efficiency of HTML pruning. If the provided
pattern contains tags in the body branch of the HTML document, this approach
will remove at least the head branch, and vice versa. Also, inline elements
can not contain block elements, and most interactive elements can not contain
elements from any other group. For instance, all inline elements will be pruned if
the pattern is sheer block elements. Another example: the select element can
only contain optgroup and option elements. So if the pattern is composed of
div and span tags, all select, and potentially many option tags, are removed.

Unfortunately, the restrictions posed by the DTD on basic layout elements are
not very strict. For instance, given a pattern of several div containers, it is
unlikely that this is within a table cell, and it would have been nice to be able
to remove all tables from the data. Alas, table cells can contain div containers
so this is not possible. If a transitional DTD is used, the restrictions become
even more vague, and this may also influence the efficiency of the approach.

In special cases, where there is no obvious subtree to match the pattern, this
pruning approach may remove subtrees that are part of the optimal solution. In
such cases the optimal solution may be to relabel many nodes to fit the pattern.
The relabeled nodes may semantically be very different but be arranged similar
to the pattern. Because of the semantic difference they are prone to being
removed by HTML pruning.

46 Data Tree Pruning and Heuristics

5.4 Pre-selection of Subtrees

We have proposed two techniques for pruning the data tree, but in some cases
the effect from either of these may not be substantial. In this section we propose
some heuristics for selecting subtrees of the data tree based on the root of the
pattern. When using XPaths for web scraping it is common to use the id or
class attribute (or any suitable attribute or CSS property) to select subtrees
where the target data may possibly be. This is based on the assumption that
it is less likely that for instance the id of a tag changes than the path from the
root to the tag changes. We adopt this approach to approximate tree pattern
matching.

We have identified three cases where the root of the pattern will map to a node
in the data tree with zero cost, because a mapping to any other node will conflict
with the semantic meaning of the HTML tags.

Case 1. If the root of the pattern is a body or head tag it is unlikely that it
will map to a node with another tag because the three mentioned tags are
unique and only appear once each in the HTML document.

Case 2. If the root of the pattern has the id-attribute, it is unlikely that it will
map to a node representing tag with another id. Since the id uniquely
identifies a tag it is unlikely that it will change due to a modification of a
website layout. This of course depends on the extent of the modification.
For example, it is not unlikely that a tag is removed when the layout is
modified, so this only applies to tags that can be identified as playing a
key role in the layout of the website.

Case 3. If the root of the pattern is a tag with a restricted set of possible
descendants, it is unlikely that it will map to a node representing another
tag. Tags such as form and table is expected to contain certain tags, so
renaming either of these requires most of its descending tags to be renamed
as well.

The three cases can be used to select subtrees by doing a linear search for nodes
that match the tag (case 1 and 3) or the id (case 2) of the root of the pattern.
Because they are based on assumptions, using them for pre-selection of subtrees
can result in sub optimal solutions.

Case 1 is the strongest assumption, but in practice it will at most eliminate the
head or body branch of the data tree. Case 2 requires the user to identify an
element with a key role in the layout. A web site often consists of a number

5.5 Linear Matching 47

of div containers given ids and styled using a Cascading Style Sheet (CSS).
For the average user it can be difficult to determine how likely it is that for
instance a div container is discarded in a layout modification. Therefore, this
case should only be used as a last resort. Case 3 only applies to a small set of
patterns but when used it is subject to large reductions of the data tree.

5.5 Linear Matching

As we have seen in section 3.2 on pattern design, patterns naturally end up hav-
ing an anchor of some length. Likewise, we have identified that many websites
use a number of nested, styled div containers in order to create their visual ap-
pearance. The resulting HTML tree therefore contains paths among its internal
nodes where each node has exactly one child. If we apply pre-selection and the
result is a subtree with an anchor, there is a chance that the anchors of the
selected subtree and the pattern will be part of a mapping with zero cost. We
can exploit this by mapping nodes in a top-down manner for as long as the cost
of renaming nodes is zero.

Lemma 5.5 formalizes that a mapping obtained from linear matching is part of
an optimal mapping.

Lemma 5.5 (Linear matching) Let T1 and T2 be trees where nodes are given
preorder indices. The lenght of the anchor of T1 is a1 and the length of the
anchor of T2 is a2. Let γ be a unit cost function on the nodes, and let M be an
optimal mapping from T1 to T2. Let vi ∈ V (T1) and wi ∈ V (T2), then we have{

(vi, wi), 0 ≤ i ≤ min(a1, a2)∧γ(vi, wi) = 0∧
(
i = 0∨ (vi−1, wi−1) ∈M

)}
⊆M

Proof. Let v = root(T1) and w = root(T2). It is sufficient to show that (v, w) is
part of an optimal mapping if γ(v, w) = 0, because we know from lemma 2.3 on
page 10 that the algorithm will recurse on T1−v and T2−w, and the proof then
holds recursively. Assume that the cost of relabeling v to w is 0, but there is a
mapping M ′ with cost c such that w maps to some other node v′ that descends
from v. Let d be the depth of v′, then 0 < d ≤ c. We can transform M ′ to a
mapping M ′′ that contains (v, w) by removing (v′, w) and inserting (v, w). To
change the cost of the mapping accordingly, we need to subtract the depth of v′
and the cost of deleting it. Thus, the cost of M ′′ is c− (d− 1). Since we know
that d > 0 we see that M ′′, which contains the pair (v, w), is just as good or
better than M ′. �

The advantage of this heuristic is that it is very fast. If no nodes match, only

48 Data Tree Pruning and Heuristics

the roots of the data and the pattern is compared, so the overhead is constant.
If one or more nodes match, the overhead is O(height(T2)), but in return we get
a reduction in both the data and the pattern before invoking the approximate
tree pattern matching algorithm.

Chapter 6

Experiments

This chapter presents the results from conducting a range of experiments using
our implementation (described in appendix A).

6.1 Setup

The objective of the experiments is to

• compare execution time of Zhang and Shasha’s algorithm to our adaption
of their fast unit cost algorithm for cuts when used for web scraping,

• compare the lower bound methods,

• compare HTML grammar pruning and lower bound pruning using all lower
bound methods,

• substantiate the effect of the heuristic methods, and

• show how tolerant Zhang and Shasha’s algorithm is to changes in a web
page and compare it to XPath.

50 Experiments

This results in five independent experiments.

Since the main purpose of the thesis is to apply approximate tree matching to
web scraping, we want to show how the algorithms perform in scenarios where
the data is HTML and the pattern is much smaller than the data tree. For the
comparison of the pruning methods and the heuristic methods it is evident that
we use HTML data because some methods are designed only to work on HTML.
For all experiments except the data extraction experiment we use the test cases
described in table 6.1.

Case URL Purpose |TD| |TP | δc

1
http://berlingske.dk/

Extract standings in the
danish football league.

3371 58 2
2 3371 48 11
3

http://version2.dk/
Extract headline of the
most recent article.

728 24 2
4 728 16 10
5

http://reddit.com/
Extract headline of most
recent entry.

1949 17 4
6 1949 15 7

Table 6.1: Test cases used for experiments. The patterns used for the
test cases are enclosed as appendix C on page 85. 2011-08-31.

We refer to Zhang and Shasha’s approximate tree pattern matching algorithm
as ZhangShashaATM, and to our adaption of the fast unit cost algorithm for
cuts as FastUnitCostATM.

All execution times are measured using the built-in Python function clock()
which gives a good estimate of how much CPU time a process has used [26]. A
new process is spawned for each run of a test case to even out variation due to
cache misses and garbage collection.

All tests are executed on a Dell E4300 laptop with an Intel Core 2 Duo (2.26
GHz) and 4 GB of RAM running Ubuntu Linux 9.10 and Python 2.6.4.

6.2 Algorithm Execution Time

The results from running ZhangShashaATM is shown in table 6.2 on the
next page. We see that for case 1 and 2, i.e. for large data and pattern trees,
ZhangShashaATM is slow. For the other cases, it performs reasonable.

FastUnitCostATM has been run with increasing values of k starting from the

6.3 Lower Bound Methods 51

Case ZhangShashaATM
1 67.99 s
2 34.37 s
3 1.54 s
4 1.21 s
5 4.39 s
6 4.57 s

Table 6.2: Execution times of Zhang and Shasha’s approximate tree
pattern matching algorithm.

optimal tree edit distance. The results are shown in table 6.3 on the following
page. As anticipated, the algorithm does not outperform ZhangShashaATM.

6.3 Lower Bound Methods

The lower bound methods have been tested on the 6 test cases and the results
are shown in table 6.4 on the next page. We see that the only test where the
approximation is close to the optimal edit distance with cuts δc is when we use
the Euler string distance in case 3. This indicates that the methods are unfit for
use as an approximation of the cost of matching a HTML pattern to a HTML
tree.

The lower bound methods were developed with the application to pruning in
mind. In our pruning algorithm the methods are applied to all pairs of subtrees
of two trees T1 and T2. Therefore, we have run the methods on all pairs of sub-
trees in the 6 cases and accumulated the distances. The results are compared
to the accumulated tree edit distance

∑
δc =

∑
∀(v,w)∈V (T1)×V (T2) δc(v, w) be-

tween all pairs of subtrees. Based on the results shown in table 6.5 on page 53,
the q-gram tree distance, where q = 1, and the Euler string distance are the
tightest lower bound approximations.

6.4 Pruning Methods

We want to determine how effective the pruning methods are on HTML data.
Our approach is to compare the size of the data tree before and after a pruning
method has been applied and measure the CPU time of executing the pruning

52 Experiments

k Execution time
2 304.92 s
3 314.85 s
4 319.72 s
5 322.58 s
6 327.38 s
7 330.02 s

(a) Case 1.

k Execution time
11 107.31 s
12 106.95 s
13 108.02 s
14 119.34 s
15 118.45 s
16 110.28 s

(b) Case 2.

k Execution time
2 18.41 s
3 19.17 s
4 19.13 s
5 19.73 s
6 20.13 s
7 20.63 s

(c) Case 3.

k Execution time
10 9.52 s
11 9.47 s
12 9.91 s
13 10.02 s
14 10.28 s
15 10.30 s

(d) Case 4.

k Execution time
4 14.47 s
5 14.74 s
6 15.22 s
7 15.86 s
8 15.91 s
9 16.44 s

(e) Case 5.

k Execution time
7 10.35 s
8 10.56 s
9 10.70 s
10 10.88 s
11 11.21 s
12 11.41 s

(f) Case 6.

Table 6.3: Shasha and Zhang’s fast unit cost algorithm adapted for cuts
on all test cases for increasing values of k.

Case δc Size Height Q-gram Euler string
q = 1 q = 2 q = 4 q = 8

1 2 0 0 0 0 0 0 0
2 11 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 1
4 10 0 0 0 0 0 0 0
5 4 0 0 0 0 0 1 1
6 7 0 0 0 0 0 0 2

Table 6.4: Results for lower bounds test.

6.4 Pruning Methods 53

Case
∑
δc Size Height Q-gram Euler string

q = 1 q = 2 q = 4 q = 8

1 2288 1904 402 2207 1195 679 627 2235
2 657 409 147 603 367 229 224 611
3 197 151 88 179 100 63 52 192
4 74 49 22 64 38 26 23 70
5 204 158 67 183 118 86 80 201
6 120 83 31 105 73 57 57 116

Table 6.5: Results for alternative lower bounds test. The distances are
the sum of the distance between each pair of subtrees. All numbers are
in thousands.

method. We also execute ZhangShashaATM together with the pruning meth-
ods to determine if the speed-up from pruning the data tree compensates for the
execution time of the pruning method. When using the lower bound methods
k is set to the optimal tree edit distance with cuts plus 2.

Based on the results from running pruning methods exclusively, we combine the
best pruning methods to see how big the overlap of removed nodes is. Finally,
we choose the three best combinations of pruning methods and execute them
with increasing values of k.

In table 6.6 on page 55 we see the results from using the pruning methods on
all cases. The following summarizes the findings.

• In case 1 the execution time is almost reduced by half when using q-gram
and q = 1. The lower bound method reduces the data tree by 45.24 %. In
all other cases there is little or no reduction in the execution time. In case
3, large amounts of the data tree is removed, but the pruning methods are
too slow.

• The Euler string lower bound method is the most effective. In case 3 it
reduces the data tree by 94.2 %. It is also the slowest.

• As anticipated, the HTML grammar pruning is the only algorithm that
always reduces the data tree. This is because it removes the head branch
of the HTML tree in all cases.

• In case 4, 5, and 6, lower bound pruning has no effect. This is possibly
because the data tree mostly consists of branches that resembles the pat-
tern. The pruning methods do have effect if the pattern contains nodes

54 Experiments

that are not used very frequently in the data as in case 1, or the pattern
contains many different nodes as in case 3.

Based on these findings we have combined the size, height, q-gram (q = 1), and
HTML pruning methods for a similar round of tests. However, these tests have
only been run on case 1, 2, and 3 where the pruning methods proved to have an
effect when run exclusively. The results are shown in table 6.7 on page 56, and
are summarized below.

• There is an overlap in the data removed by the pruning methods. However,
case 3 shows that the overlap between the size and q-gram methods is so
small that the combination of the two is fast.

• Combining the pruning methods generally result in an increase in the
amount of removed data, but it is too small to compensate for the overhead
of using two pruning methods.

The effectiveness of the lower bound pruning methods depends on the threshold
k. We have selected 1-gram, size+height, and size+1-gram as the three best
pruning methods, and have executed them on case 1 (figure 6.1 on page 57)
and case 3 (figure 6.2 on page 57) for increasing values of k. In both cases the
optimal tree edit distance with cuts is 2.

Figure 6.1 shows that for small values of k, the size+1-gram combination is
marginally better than using just 1-grams. Most notable is the increase in
execution time when k is changed from 6 to 7. For values greater than 7 the
pruning methods are useless. The same tendency is seen in figure 6.2, but the
break even is between k = 4 and k = 5. The latter figure also shows that if the
k-value provided is not sufficiently tight, then the pruning methods may add
significant overhead. In practice we should only use the pruning methods if we
can provide a tight k-value.

6.5 Heuristics

The results from using pre-selection and linear matching on the 6 test cases are
shown in table 6.8 on page 58. We see that pre-selection selects a subtree to
work on in case 2, 3, and 6. The patterns used in these cases have a table, body,
and a div tag with an id attribute, respectively, as roots. Linear matching has
no influence on the test cases. The execution time of the heuristic methods is
omitted from the table because it is smaller than 0.01 seconds for all cases.

6.5 Heuristics 55

C
as
e

N
on

e
Lo

w
er

bo
un

d
H
T
M
L

Si
ze

H
ei

gh
t

q-
gr

am
(q

=
1
)

q-
gr

am
(q

=
2
)

q-
gr

am
(q

=
4
)

E
ul

er
st

ri
ng

1
-

5.
68

%
1.

37
%

45
.2

4
%

45
.2

4
%

45
.2

4
%

45
.2

4
%

0.
9
%

-
0.

05
s

0.
79

s
5.

09
s

8.
65

s
14
.4

s
33
.6

6
s

0.
04

s
62
.0

6
s

58
.2

5
s

61
.9

5
s

35
.4

6
s

39
.6

8
s

46
.5

4
s

63
.9

2
s

62
.0

3
s

2
-

0.
31

%
0.

31
%

0.
31

%
0.

31
%

0.
31

%
0.

31
%

0.
91

%
-

0.
04

s
0.

33
s

2.
46

s
4.

09
s

6.
83

s
7.

45
s

0.
04

s
31
.7

6
s

31
.8

4
s

31
.6

9
s

34
.3

7
s

36
.7

6
s

40
.4

7
s

39
.5

9
s

31
.2

3
s

3
-

10
.6

4
%

7.
87

%
51
.2

4
%

75
.0

%
12
.9

8
%

94
.2

%
2.

62
%

-
0.

01
s

0.
11

s
0.

74
s

1.
24

s
2.

22
s

5.
37

s
<

0.
01

s
1.

45
s

1.
37

s
1.

50
s

1.
36

s
1.

53
s

3.
45

s
5.

44
s

1.
45

s

4
-

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

2.
62

%
-

<
0.

01
s

0.
03

s
0.

13
s

0.
23

s
0.

39
s

0.
32

s
<

0.
01

s
1.

22
s

1.
22

s
1.

16
s

1.
26

s
1.

37
s

1.
54

s
1.

43
s

1.
14

s

5
-

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

3.
42

%
-

0.
02

s
0.

08
s

0.
38

s
0.

61
s

0.
92

s
1.

07
s

0.
01

s
4.

42
s

4.
41

s
4.

51
s

5.
15

s
5.

16
s

5.
42

s
5.

56
s

4.
36

s

6
-

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

0.
0
%

3.
42

%
-

0.
02

s
0.

08
s

0.
31

s
0.

51
s

0.
73

s
0.

79
s

0.
01

s
4.

53
s

4.
55

s
4.

66
s

4.
91

s
5.

20
s

5.
49

s
5.

42
s

4.
50

s

T
ab
le

6.
6:

R
es
ul
ts

fr
om

pr
un

in
g
m
et
ho

d
te
st
s.

Fi
rs
t
ro
w

of
ea
ch

ca
se

is
pe
rc
en
ta
ge

of
da
ta

tr
ee

re
m
ov
ed
.
Se
co
nd

ro
w

is
th
e
ex
ec
ut
io
n
tim

e
of

th
e
pr
un

in
g
m
et
ho

d.
T
hi
rd

ro
w

is
th
e
ex
ec
ut
io
n
tim

e
of

th
e
pr
un

in
g
m
et
ho

d
fo
llo
w
ed

by
Z
h
a
n
g
S
h
a
sh

a
A
T

M
.

56 Experiments

C
ase

B
est

Size+
H

eight
Size+

1-gram
Size+

H
T

M
L

H
eight+

1-gram
H

eight+
H

T
M

L
1-gram

+
H

T
M

L

1
45.24

%
5.71

%
45
.24

%
6
.06

%
45
.24

%
1.72

%
45
.58

%
5.09

s
0.81

s
4
.89

s
0.08

s
5
.98

s
0
.83

s
5
.12

s
35
.46

s
59
.64

s
35.98

s
58
.89

s
37.95

s
62.31

s
36.31

s

2
0
.91

%
0.31

%
0.31

%
1
.22

%
0.31

%
1.22

%
1.22

%
0.04

s
0.37

s
2.5

s
0.07

s
2
.82

s
0
.37

s
2.5

s
31
.23

s
32
.01

s
34.76

s
31
.51

s
35.02

s
31.24

s
34.28

s

3
57.24

%
13
.89

%
52
.13

%
13
.2

%
52
.13

%
7.84

%
51
.31

%
0.74

s
0.10

s
0
.62

s
0.02

s
0
.76

s
0
.11

s
0
.71

s
1.36

s
1.41

s
1
.30

s
1.31

s
1
.42

s
1
.50

s
1
.39

s

T
able

6.7:
R
esults

from
com

bining
tw
o
pruning

m
ethods.

First
row

of
each

case
is
percentage

of
data

tree
rem

oved.
Second

row
is

the
execution

tim
e
of

the
pruning

m
ethod.

T
hird

row
is

the
execution

tim
e
of

the
pruning

m
ethod

follow
ed

by
Z
h
a
n
g
S
h
a
sh

a
A
T

M
.

6.5 Heuristics 57

k

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Lower bound pruning (q-gram, q = 1)
Lower bound pruning (size+height)

Lower bound pruning (size+q-gram (q = 1))
No pruning

Figure 6.1: Execution time of lower bound pruning methods followed by
ZhangShashaATM on case 1 for increasing values of k.

k

1
10s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
2
4
6
8
10
12
14
16
18
20
22
24

Lower bound pruning (q-gram, q = 1)
Lower bound pruning (size+height)

Lower bound pruning (size+q-gram, q = 1)
No pruning

Figure 6.2: Execution time of lower bound pruning methods followed by
ZhangShashaATM on case 3 for increasing values of k.

58 Experiments

Case None Pre-selection Pre-selection and Linear Matching

1 - 0.0 % 0.0 %
62.97 s 63.19 s 63.45 s

2 - 99.75 % 99.75 %
32.09 s 0.25 s 0.25 s

3 - 3.24 % 3.24 %
1.3 s 1.05 s 1.04 s

4 - 0.0 % 0.0 %
0.99 s 0.98 s 1.0 s

5 - 0.0 % 0.0 %
4.36 s 4.33 s 4.38 s

6 - 56.07 % 56.07 %
4.51 s 0.99 s 0.98 s

Table 6.8: Results from using the heuristics with ZhangShashaATM.
The first row for each case is the percentage of the data tree removed
and the second row is the execution time of ZhangShashaATM plus
the overhead from using the heuristic.

6.6 Data Extraction

Zhang and Shasha’s algorithm extracts the correct data from the 6 test cases
in table 6.1 on page 50, so to compare the behaviour of the algorithms we have
constructed the simple web page shown in figure 6.3 on the next page. The web
page consists of 5 div containers which are given different class attributes. The
two innermost divs contain a bold text in a paragraph and three bullet points.
We make 8 changes to the web page. The changes cover some possible changes
in markup that a website can be subject to.

The target of the experiment is to extract the text in the green div. The orange
div is present to mislead the algorithms. We compare our algorithms to the
result from applying the following two different XPaths to the web page.

XPath pattern 1 XPath pattern 2
//div/div[1]/div/p/strong |
//div/div[1]/div/ul/li

//div[@class=’green’]/p/strong |
//div[@class=’green’]/ul/li

We also include Zhang’s algorithm for the isolated-subtree mapping in the com-
parison. Although it was rejected for not being suited for web scraping in
chapter 3 we want to take this opportunity to investigate if there are more cases
where it fails to locate the correct data. The pattern used with the approximate

6.6 Data Extraction 59

Figure 6.3: Initial layout of web page used for data extraction experiment.

tree matching algorithms is shown below.� �
1 <div id="outer">
2 <div class="blue">
3 <div class="green">
4 <p><!-- target 1 --></p>
5
6 <!-- target 2 -->
7 <!-- target 3 -->
8 <!-- target 4 -->
9

10 </div>
11 </div>
12 </div>� �

We define the result from running an algorithm to be a four-tuple where each
element is either T , if the target was found, F , if another text was found, or −,
if no data was found. All algorithms are able to extract the target data from
the web page shown in figure 6.3.

The results are shown in figure 6.4 on page 61 and figure 6.5 on page 62. Below
we analyze the cases where ZhangShashaATM fails.

• In case (c) ZhangShashaATM extracts the incorrect data. Had the
algorithm relabeled the red div to the blue div instead of relabeling the
green div to the orange div, it would have extracted the target data. The
latter case has the same cost as the first, so it is a matter of breaking
ties for the algorithm. We could also argue that since the orange div has
taken the place of the green div, the data we are trying to extract is in

60 Experiments

fact the contents of the orange div. The interpretation depends on the
context. The second XPath pattern extracts the data because it targets
the green div on its class name.

• In case (f) the paragraph and the unordered list have switched place.
We know that ZhangShashaATM can not match both because it would
violate the definition of a mapping. Therefore, it chooses to remove the
smallest subtree of the two. Again, we could also argue that the original
target 1 has been removed and a new text has been inserted, in which case
the result from the algorithm is correct. Both XPath patterns extract the
data because they are a concatenation of two paths.

• In case (g) the incorrect data is extracted. The change is radical and one
might argue that in such cases the algorithm is not supposed to find a
matching. The XPaths also fails.

The results show that IsolatedSubtreeATM locates the data in the same
cases as ZhangShashaATM.

6.6 Data Extraction 61

Algorithm Result
XPath 1 (−,−,−,−)
XPath 2 (T, T, T, T)
ZhangShashaATM (T, T, T, T)
IsolatedSubtreeATM (T, T, T, T)

(a)

Algorithm Result
XPath 1 (−,−,−,−)
XPath 2 (T, T, T, T)
ZhangShashaATM (T, T, T, T)
IsolatedSubtreeATM (T, T, T, T)

(b)

Algorithm Result
XPath 1 (F, F, F, F)
XPath 2 (T, T, T, T)
ZhangShashaATM (F, F, F, F)
IsolatedSubtreeATM (F, F, F, F)

(c)

Algorithm Result
XPath 1 (F, F, F, F)
XPath 2 (T, T, T, T)
ZhangShashaATM (T, T, T, T)
IsolatedSubtreeATM (T, T, T, T)

(d)

Figure 6.4: Results from data extraction experiment (part 1).

62 Experiments

Algorithm Result
XPath 1 (T,−,−,−)
XPath 2 (T,−,−,−)
ZhangShashaATM (T, T, T, T)
IsolatedSubtreeATM (T, T, T, T)

(e)

Algorithm Result
XPath 1 (T, T, T, T)
XPath 2 (T, T, T, T)
ZhangShashaATM (F, F, F, F)
IsolatedSubtreeATM (F, F, F, F)

(f)

Algorithm Result
XPath 1 (T,−,−,−)
XPath 2 (T,−,−,−)
ZhangShashaATM (F, F, F, F)
IsolatedSubtreeATM (F, F, F, F)

(g)

Algorithm Result
XPath 1 (T, T, T, T)
XPath 2 (−,−,−,−)
ZhangShashaATM (T, T, T, T)
IsolatedSubtreeATM (T, T, T, T)

(h)

Figure 6.5: Results from data extraction experiment (part 2).

Chapter 7

Discussion

In this chapter we will consider our findings as a whole and discuss how they
are best combined to a solution for web scraping. The discussion will focus on
choosing an algorithm and suitable pruning methods, and the consequences the
choices will have.

7.1 Algorithms

In the litterature, web scraping using approximate tree pattern matching is
achieved using algorithms that create a top-down mapping, because the focus
is on generating the pattern from a set of web pages. However, there are cases
where the data to be extracted resides on just one web page, so the need for a
more versatile solution is present.

We have considered Zhang and Shasha’s algorithm and Zhang’s isolated-subtree
algorithm for web scraping, because unlike the top-down mapping, they impose
no requirements on the pattern. Although fictitious, the Reddit example shows
that there is a simple case of change in the markup where the isolated-subtree
algorithm fails to locate the targeted data. We regard this example as a change
that is likely to happen due to the fact that it is a simple way of adding or

64 Discussion

removing visual attributes to a collection of tags. Furthermore, the data ex-
traction experiment shows that there are no cases where the isolated-subtree
algorithm locates data that Zhang and Shasha’s algorithm was unable to lo-
cate. To meet our aim that the solution should be as error tolerant as possible,
the isolated-subtree algorithm is not an option for web scraping.

That being said, the data extraction experiment shows a couple of cases where
Zhang and Shasha’s algorithm extract incorrect data. It goes to show that the
optimal solution is not always what we intuitively would call the correct solution.
To deal with this, we could guide the algorithm using the cost function. However,
this is not covered in this thesis because the pruning methods assume that a
unit cost function is used. On the other hand, the experiment also shows that
the correct data is found in 7 out of the 8 cases using either the evaluation of the
second XPath or approximate tree pattern matching. This suggests a hybrid
between the methods where e.g. approximate tree pattern matching is used as
fallback if at least one of the XPaths yields an empty result set.

We have shown that Shasha and Zhang’s fast unit cost algorithm is not suited for
pattern matching when the pattern is small compared to the data tree. There
may still be a speed-up compared to Zhang and Shasha’s algorithm in cases
where the pattern is close to the size of the data tree. To be faster, the fast unit
cost algorithm must rule out about as many subproblems as ruled out when
Zhang and Shasha’s algorithm selects keyroots.

7.2 Lower Bound Methods

The cut operation has made it difficult to obtain tight lower bounds. Two
novel approximation methods from the litterature, the PQ-gram distance and
the binary branch distance, were not tranformable to produce lower bounds at
all, and the size and height methods only apply if the pattern tree is bigger or
higher than the data tree.

The tightest lower bounds are obtained from the Euler string distance and q-
gram distance where q = 1. The two methods are in fact quite similar. When q =
1 we check if the nodes in the pattern tree are also present in the data tree. This
is basically the same that happens when comparing the Euler strings because
the delete operation in the string edit distance algorithm is free. However, the
order of the nodes in the Euler string embeds some information about the tree
structure, so the Euler string distance gives slightly better approximations. In
return it is slow.

7.3 Pruning Method and Heuristics 65

Our experiments show that if the data is HTML and the pattern is found one
or more times in the data, the methods are poor approximations. However,
further experiments show that if the cost of an optimal mapping of a pattern
to the data is high, the approximations become better. This is useful when the
methods are used in our pruning algorithm.

7.3 Pruning Method and Heuristics

We lower bound pruning algorithm is independant of the type of data the tree
models. Our experiments show that when the data is HTML the combination
between the size and 1-gram distance lower bound methods are the most effective
as long as the threshold k is reasonably tight.

An important property of the algorithm is that branches used in an optimal
solution is not removed. The drawback of the algorithm is its running time,
which is O

(
|T1||T2| ·σ(T1, T2)

)
, where σ(T1, T2) is the running time of the lower

bound method used. If using the Euler string distance with the algorithm, the
running time becomes O

(
|T1|2|T2|2

)
, which is worse than the actual running

time of Zhang and Shasha’s algorithm. However, from our experiments we see
that the constant factor of overhead of the algorithm is little, so there are cases
where pruning is beneficial and cases where the data tree is not reduced but the
overhead is negligible.

The lower bound pruning algorithm becomes more effective when the pattern is
large and has many nodes with distinct labels. However, if it is too large and
pruning fails to reduce the data tree significantly, the whole process is slowed
down by both the pruning algorithm and subsequently by the approximate tree
pattern matching algorithm.

Our experiments show that the HTML grammar pruning algorithm is not very
effective. However, the patterns used in the tests consist mostly of generic block
and inline, so the algorithm may become more effective if more diverse patterns
are used. HTML inherits a lot of its properties from XML, so the algorithm
is applicable to any tree model of semi-structured data with a DTD. In other
domains, the algorithm may also be more effective. It is not guaranteed not to
remove a branch that is part of an optimal solution, but for sufficiently large
patterns, we regard it as unlikely.

Finally, we have defined some heuristics for reducing the data tree. Pre-selection
yields large reductions in the size of the data tree. To take advantage of the
heuristic we must strive to select a pattern where the root is either the body, the

66 Discussion

head, a table or a form tag or has the id attribute. However, the size of the
pattern should not be too small. If pre-selection fails, the node that is expected
to map to the root of the pattern should not be too deep because this may result
in incorrect data being extracted. Therefore, the pattern should have an anchor
of suitable length.

Linear matching is only applicable in a limited set of cases. There may be some
subtle differences in the mapping of the nodes in the anchors compared to the
mapping obtained from using Zhang and Shasha’s algorithm, but since we often
want to extract data from leaf nodes (or deep nodes) in the pattern, this should
not influence the outcome when used for web scraping.

Chapter 8

Conclusion

The aim of this thesis was to develop a fast and error tolerant solution for web
scraping based on the tree edit distance without imposing any restrictions on
the pattern. The litterature treats web scraping as the second phase in a two-
phase procedure, where the first phase deals with learning a pattern. If the set
of web pages to learn from is not sufficiently large, the web scraping phase will
fail because algorithms for the top-down mapping are used. Since we often want
to extract data from just one web page, the methods from the litterature are
inadequate.

First, we proposed using an algorithm for the optimal mapping or an algorithm
for the isolated-subtree mapping. We gave an example of a simple and likely
change to the markup of a web page that made the algorithm for the isolated-
subtree mapping fail. In our experiments, the result from the algorithm for
the optimal mapping and the algorithm for the isolated-subtree mapping was
the same. Based on the first example, the isolated-subtree mapping is not apt
for web scraping. Among the algorithms for the optimal mapping, Zhang and
Shasha’s algorithm is the most suited because its running time depends on the
height of the input trees, which generally is low for HTML trees.

We adapted Shasha and Zhang’s fast unit cost tree edit distance algorithm to
pattern matching, but our experiments confirmed that the fourth edit operation,
cut, which is required for pattern matching, makes it difficult to rule out a

68 Conclusion

significant number of subproblems. However, the work on the algorithm served
as inspiration for the two pruning algorithms that were developed.

The lower bound pruning algorithm extends the technique from the fast unit cost
algorithm to prune the data tree prior to running an approximate tree pattern
matching algorithm. In particular, it uses one of the lower bound methods
that were developed from novel tree edit distance approximation methods found
in the litterature. Transforming these methods to produce tight lower bound
approximations for the tree edit distance with cuts proved to be difficult because
of the issue of distinguishing between the free cut operation and the non-free
delete operation when comparing parts of the trees. The second algorithm uses
the HTML grammar from the DTD to exclude branches of the data tree. Of the
two algorithms, the lower bound pruning algorithm is the most effective, given
that the 1-gram distance is used as lower bound method. It is also the slowest
because the lower bound methods are slow.

Our experiments showed that in one case, the data tree could be reduced by 95
% using the lower bound pruning algorithm with the Euler string distance lower
bound method. In another case, the execution time was reduced from 62 seconds
to 35 seconds due to pruning using the lower bound pruning algorithm and the
1-gram distance lower bound method. In both cases the algorithm tolerated two
more errors than the cost of the optimal mapping. Furthermore, our experiments
showed that the algorithm needs to be provided with a relatively small value of
k in order to be beneficial.

Algorithms, pruning algorithms, and lower bound methods were implemented
in Python such that they could be combined arbitrarily for the experiments.

8.1 Further Work

The data extraction experiment showed that the there are cases where the ap-
proximate tree pattern matching algorithm extracts incorrect data. To avoid
this and thus cover more cases, a final solution requires more work.

We only briefly discussed how to utilize this technique for web scraping when we
want to extract several matches of a pattern. Since this is a common use case
in web scraping, it will require some further work to determine how to achieve
this effectively.

We also believe that there are faster and better methods for finding lower bounds
for the tree edit distance with cuts that are waiting to be uncovered.

Bibliography

[1] Tatsuya Akutsu. A relation between edit distance for ordered trees and edit
distance for Euler strings. Information Processing Letters, Vol. 100, Issue
3, 105–109, 2006.

[2] Nikolaus Augsten, Michael Böhlen, Johann Gamper. The pq-gram distance
between ordered labeled trees. ACM Trans. Database Syst., Vol. 35, ACM,
New York, 24:1–4:36, 2010.

[3] Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci, Vol. 337, 217–239, 2005.

[4] Sudarshan S. Chawathe. Comparing Hierarchical Data in External Memory.
In Proceedings of the Twenty-fifth International Conference on Very Large
Data Bases, Morgan Kaufmann Publishers Inc, 90–101, 1999.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.
Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill 2001.
ISBN 0-262-53196-8.

[6] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An
Optimal Decomposition Algorithm for Tree Edit Distance. ACM Transac-
tions on Algorithms, Vol. 6, No. 1, Article 2, 2009.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Pat-
terns – Element of Reusable Object-Oriented Software. Addison-Wesley
1995. ISBN 0-201-63361-2.

[8] Yeonjung Kim, Jeahyun Park, Teahwan Kim, Joongmin Choi. Web Infor-
mation Extraction by HTML Tree Edit Distance Matching. In Proceedings

70 BIBLIOGRAPHY

of the 2007 International Conference on Convergence Information Tech-
nology, pages 2455–2460, IEEE Computer Society, Washington, DC, USA,
2007.

[9] P.N. Klein. Computing the edit-distance between unrooted ordered trees. In
Proceedings of the 6th annual European Symposium on Algorithms (ESA)
1998., pages 91–102. Springer-Verlag, 1998.

[10] Donald Erwin Knuth. The Art of Computer Programming: Volume 1, Fun-
damental Algorithms (section 2.3.2, Binary Tree Representation of Trees).
Addison-Wesley, 1997. ISBN 0-201-89683-4.

[11] Davi De Castro Reis, Reis Paulo, Alberto H. F. Laender, Paulo B. Goglher,
Altrigran S. da Silva. Automatic Web News Extraction Using Tree Edit
Distance. In Proceedings of World Wide Web Conference (WWW04), New
York, USA, 2004.

[12] Thorsten Richter. A new algorithm for the ordered tree inclusion prob-
lem. In Proceedings of the 8th Annual Symposium on Combinatorial Pat-
tern Matching (CPM), in Lecture Notes of Computer Science (LNCS), Vol.
1264, Springer, 150–166, 1997.

[13] Stanley M. Selkow. The tree-to-tree editing problem. Information Process-
ing Letters, 6(6):184–186, 1977.

[14] Dennis Shasha and Kaizhong Zhang. Fast algorithms for the unit cost edit-
ing distance between trees. Journal of Algorithms, 11:581–621, 1990.

[15] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the Asso-
ciation for Computing Machinery (JACM), 26:422–433, 1979.

[16] Rui Yang, Panos Kalnis, Anthony K. H. Tung. Similarity evaluation on
tree-structured data. Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, ACM, Baltimore, Maryland, 754–765,
2005.

[17] Esko Ukkonen. Approximate string matching with q-grams and maximal
matches. Theoretical Computer Science 1, 191–211, 1994.

[18] Gabriel Valiente. An efficient bottom-up distance between trees. In Pro-
ceedings of the 8th International Symposium of String Processing and In-
formation Retrieval, Press, 212–219, 2001.

[19] Kaizhong Zhang, Dennis Shasha, Jason T. L. Wang. Approximate Tree
Matching in the Presence of Variable Length Don’t Cares. Journal of Al-
gorithms, 16:33–66, 1993.

BIBLIOGRAPHY 71

[20] Lin Xu, Curtis Dyreson. Approximate retrieval of XML data with ApproX-
Path. In Proceedings of the nineteenth conference on Australasian database
- Volume 75, pages 85–96, ADC ’08, Gold Coast, Australia, 2007.

[21] Wuu Yang. Identifying Syntactic Differences Between Two Programs. Soft-
ware – Practice and Experience, 21:739–755, 1991.

[22] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing
distance between trees and related problems. SIAM Journal of Computing,
18:1245–1262, 1989.

[23] Kaizhong Zhang. Algorithms for the constrained editing problem between
ordered labeled trees and related problems. Pattern Recognition, 28:463–
474, 1995.

Web sites

[24] Algorithm Implementation/Strings/Levenshtein distance – Wikibooks,
open books for an open world.
http://en.wikibooks.org/wiki/Algorithm_implementation/Strings/
Levenshtein_distance#Python.
2011-07-24.

[25] HTML 4.01 Transitional Document Type Definition.
http://www.w3.org/TR/html401/sgml/loosedtd.html.
2011-07-26.

[26] Time access and conversions – Python documentation.
http://docs.python.org/library/time.html#time.clock.
2011-08-31.

[27] Wikipedia. Metric (mathematics).
http://en.wikipedia.org/wiki/Metric_(mathematics).
2011-08-09.

[28] XPath Syntax.
http://www.w3schools.com/Xpath/xpath_syntax.asp.
2011-08-12.

72 BIBLIOGRAPHY

Appendix A

Implementation

In this chapter we give a brief overview of the implementation with emphasis
on the overall design and the implementation of the approximate tree pattern
matching algorithms.

A.1 Design

We have implemented a number of algorithms, the lower bound and pruning
methods, and the heuristics described in this report. The implementation is
in Python (version 2.6.4) which enables easy integration with for instance web
services written in Python. The result is a Python package with a fairly simple
API.

The functional requirements to the package is that it should be possible to

• combine pruning methods, linear matching, and pre-selection arbitrarily,
and

• easily use it with other applications.

74 Implementation

To achieve the first goal, the pruning methods, linear matching, and pre-selection
has been implemented as decorators for the algorithms∗. Any number of deco-
rators can be wrapped around the algorithm in arbitrary order.

Using decorators introduce an overhead besides the extra functionality. The
input trees must be preprocessed for each decorator because the trees may have
been manipulated by a previous decorator. Particularly when adding several
LowerBoundPruning decorators the superflous tree preprocessing is done.

To make the algorithms usable for many purposes they operate on a generic
datastructure. To use the algorithm for a specific purpose such as web scraping,
the calling application either has to be designed to use the generic datastructure,
or define a context for the algorithm†, which must create a mapping between the
generic datastructure and the one used by the calling application. The latter
option introduces some extra computation from creating the mapping between
the datastructures. However, we opt for the context approach because we want
to use the lxml‡ library for parsing HTML.

Algorithms, decorators, lower bound methods, and cost functions are subclasses
of base classes that define the minimum requirement for functions in order to
be used with the rest of the package§.

A class diagram is shown in figure A.1 on the facing page. For the sake of clarity,
private attributes and empty constructors for non-abstract classes are omitted.
If no constructor is specified, it is inherited from its superclass.

A.2 Modules

The implementation consists of five Python modules which will be described in
this section.

∗The decorator pattern [7, pp. 175] allows functionality to be added transparently to a
core function which in this case is the algorithm.
†The purpose of the context pattern [7, pp. 317] is to be able reuse an implementation of

an algorithm in other applications without having to redeclare types, etc.
‡lxml is Python library for parsing and processing XML and HTML. http://lxml.de/.
§This is sometimes referred to as the strategy pattern, but because Python is typeless,

abstract classes are considered superflous. We opt to use it anyway for the sake of clarity for
future contributors.

A.2 Modules 75

Fi
gu

re
A
.1
:
C
la
ss

di
ag
ra
m
.

76 Implementation

A.2.1 algorithms

This module contains implementations of the algorithms and the unit cost func-
tion. The Algorithm class defines the interface used by all algorithms. An
algorithm is executed by invoking its object. Subsequently, the results can be
retrieved from the functions get_distance() and get_edit_script(). An
overview of the implemented algorithms is given in table A.1.

Class Algorithm
ZhangShasha Zhang and Shasha’s algorithm [22]
ZhangShashaATM Zhang and Shasha’s algorithm modified for cuts [22]
ZhangShashaUC Shasha and Zhang’s fast unit cost algorithm [14]
ZhangShashaUCATM Shasha and Zhang’s fast unit cost algorithm modified

for cuts (section 5.1.2 on page 39)
IsolatedSubtreeATM Zhang’s algorithm for the isolated-subtree mapping

modified for cuts [23]

Table A.1: List of algorithm implementations.

The implementation of the first four algorithms is naturally very similar. They
are implemented as bottom-up dynamic programs as described in the papers.
They have a shared _distmap two-dimensional list which represents the perma-
nent table. The function _treedist() computes the distance between a pair
of subtrees, and local to this function is a two-dimensional list, _forestdist,
which is the temporary table.

The first four algorithms have been implemented such that edit scripts are com-
puted with constant overhead. Edit scripts are linked lists and a reference to
the head of the list is stored together with the cost of each subproblem. When
relabeling nodes we need to concatenate a list from the permanent table and
from the temporary table. To do this in constant time we maintain a reference
to the tail of the lists as well. The edit script of a subproblem in the perma-
nent table may be part of a solution to a bigger subproblem which means it has
other edit scripts concatenated to it. A subproblem may later be needed in an
even bigger subproblem, so to be able to detach the subproblem from other edit
scripts, the tail is a reference to the end of the edit script of the subproblem
and not the actual tail of the linked list.

Zhang’s algorithm for the isolated-subtree mapping also appears in a version
for pattern matching in the paper. However, Zhang has chosen to give the
pattern as the first input to the algorithm and the cut operation on a node only
removes the children of said node. Consequently, insert and delete operations are

A.2 Modules 77

swapped in the edit script and the cut operation has the same cost as deleting
the root of the subtree to be cut. For conformance to the other algorithms
we have corrected for the misbehaviour in our implementation. Although not
impossible, this implementation does not compute edit scripts in constant time.

UnitCost implements the simple unit cost cost function. Its relabel() function
considers both label and attributes of the nodes when comparing them. For
two nodes to be equal, the latter node must have the same label and the same
attributes with the same values as the first node. Cost function classes must
implement the functions insert(), delete(), and relabel().

A.2.2 context

This module contains the class PatternMatchingContext. The purpose of this
class is to create a mapping between the datastructure used by the lxml library
and the generic datastructure used by the algorithms, and to create a matching
from the edit script produced by the algorithm. This is handled by the following
functions.

make_mapping() Requires the root of a lxml tree as input parameter. Then it
copies the provided lxml tree to the generic datastructure Node and sets
the map field to reference to the corresponding lxml nodes.

make_matching() Creates a matching from the edit script generated by the
algorithm. The matching is a dictionary with lxml nodes as keys and lxml
nodes as data.

get_matching() Executes the above functions and the approximate tree match-
ing algorithm.

The module also serves as an example of how to write a context.

A.2.3 datastructures

This module contains the class Node which is the generic datastructure used by
the algorithms. The important fields of Node are:

index The nodes index in the tree. The node indices must be set manually or
by calling the set_postorder_indices() function on the root node when
the tree has been built.

78 Implementation

label A string label of the node. In the web scraping context this is the tag
name.

attr A dictionary of attributes. In the web scraping context this is the tag
attributes id, class, and name if available for the given tag.

children An array of Node instances. It is empty if the node is a leaf.

map This field can be used as a reference to a node in another datastructure.

Additionally it contains some fields used by the algorithms. The Node class
also implements a number of functions which operate on the tree that is rooted
at the node. Most of these function are required by the algorithms and the
decorators. Refer to the comments in the source code for further descriptions
of the functions.

The module also contains the class EditScriptEntry which is an element in a
linked list and has the following three fields.

operation A string defining the operation, i.e. insert, delete, relabel, and
cut.

apply_to If the operation is insert, this is a tuple of Node instances. The first
instance is the node to insert and the second, optional, instance is the
node which becomes a child of the new node. If the operation is delete
or cut, this is the Node to remove. It is a tuple of Node instances if the
operation is relabel.

next A reference to the next entry in the edit script.

A.2.4 decorators

The module contains the classes LinearMatching, PreSelection, LowerBoundPrun-
ing, and HTMLPruning which implement the pruning methods described in chap-
ter 5 as decorators for the algorithms. This means they have the same interface
as the algorithms, but their constructors require an algorithm (or another dec-
orator) to be given as input. This is the core algorithm seen from the point
of view of the decorator and will be invoked at some point in the algorithm
implemented by the decorator.

When using the PreSelection decorator the edit script will be missing some delete
and cut operations. The algorithm selects one or more subtrees to match and

A.3 Examples 79

applies the core algorithm to these. The result is an edit script applying only
to one of the selected subtrees. To correct this, the edit script would have
to be extended by the deletion of all nodes on the path from the actual root
of the data tree to the root of the subtree, and the cut of all other branches.
Since it introduces further overhead to add these operation to the edit script,
and because it has no influence on the resulting matching, we choose not to
implement the correctional behaviour in the decorator.

The HTMLPruning class requires a path to a local DTD file when instanciated.
The _parse_dtd() function will be invoked and the information about allowed
tag relations will be stored in the local dictionary _elements.

A.2.5 lowerbounds

The module contains the classes Size, Height, QGram, and EulerString which
implement the approximation methods described in chapter 4. To use the classes
with the LowerBoundPruning decorator they must accept two Node instances (the
roots of the trees) as input and return an integer.

To represent q-grams we use a dictionary that maps tuples of nodes (paths) to
a list of indices to the nodes where a given path appears.

The EulerString class uses a string edit distance algorithm from Wikibooks [24].
It has been modified such that deletes are free, cf. the requirements for the
method to produce a lower bound, and it operates on the datastructure produced
by the euler_array() function on Node in the datastructures module.

A.3 Examples

In this section we give some examples of how to use the application. The
PatternMatchingContext class serves as an example on how to write a context.

A.3.1 Tree Edit Distance and Printing Edit Script

The first example shows how to get the tree edit distance and print the edit
script for two trees, t1 and t2.� �

1 from algorithms import ZhangShashaATM , UnitCost

80 Implementation

2
3 atm = ZhangShasha(UnitCost ())
4 atm(t1, t2)
5 print ’Edit distance: ’ + str(atm.get_distance ())
6 eds = alg2.get_edit_script ()
7 while eds:
8 print str(eds)
9 eds = eds.next� �

A.3.2 Using Pruning

In this example we show how to use a decorator with the approximate tree
matching algorithm. First we instanciate the algorithm which is then passed as
input to the LowerBoundPruning decorator when the latter is instanciated.� �

1 from algorithms import ZhangShashaATM , UnitCost
2 from lowerbounds import QGram
3 from decorators import LowerBoundPruning
4
5 k = 10
6 q_gram_size = 3
7 atm = ZhangShashaATM(UnitCost ())
8 lwb = QGram(q_gram_size)
9 dec = LowerBoundPruning(atm , k, lwb)

10 dec(t1, t2)
11 print ’Edit distance: ’ + str(dec.get_distance ())� �

A.3.3 Combining Decorators

Finally we show how to combine four decorators. In this example we apply
pre-selection followed by linear matching. Neither of these are guaranteed to
reduce the data tree, so regardless of the outcome we apply Euler string distance
pruning and q-gram distance pruning.

The order in which the decorators are applied is significant. For instance, it
makes no sense to apply lower bound pruning before pre-selection, because the
lower bound algorithm will spend computation time removing branches from
parts of the data tree that are not considered after pre-selection.� �

1 from algorithms import ZhangShashaATM , UnitCost
2 from lowerbounds import QGram , EulerString
3 from decorators import PreSelection , LinearMatching , LowerBoundPruning
4
5 k = 10
6 q_gram_size = 3
7 atm = ZhangShashaATM(UnitCost ())
8 lwb1 = QGram(q_gram_size)
9 lwb2 = EulerString ()

A.3 Examples 81

10 dec1 = LowerBoundPruning(atm , k, lwb1)
11 dec2 = LowerBoundPruning(dec1 , k, lwb2)
12 dec3 = LinearMatching(dec2)
13 dec4 = PreSelection(dec3)
14 dec4(t1, t2)
15 print ’Edit distance: ’ + str(dec.get_distance ())� �

82 Implementation

Appendix B

Algorithms

B.1 Algorithm for finding Q-grams

Below the algorithm for finding Q-grams is shown. A q-gram profile is a tuple
(vx, vy, . . . , vz) of nodes.

The Q-gram algorithm takes a tree T and a value q as input and computes all
paths of length 1, 2, . . . , q for each subtree T (v). The index of the highest node
is stored in a dictionary qgram (Q-gram profile → [index]) at v. It also uses
a dictionary path (length of path → [Q-gram profile]) for each node v to store
all q-grams starting at v. This is to avoid computing a q-gram more than once.
The running time of the algorithm is O

(
q|T |2

)
.

B.2 Algorithm for finding Q-samples

The q-sample algorithm takes a tree T and a q value as input and computes as
many disjoint q-grams of size at most q as possible. It is a greedy algorithm
in the sense that it will attempt to create the biggest possible q-gram for the
current node. Since this may result in one large and several small q-grams it

84 Algorithms

Algorithm 3 Q-gram(T, q)
1: for each node vx in T in postorder do
2: vx.qgram[(vx)]← [x]
3: for each child wy of vx do
4: for each q-gram profile p in wy.qgram do
5: vx.qgram[p]← vx.qgram[p] ∪ wy.qgram[p]
6: if q ≥ 2 then
7: vx.qgram[(vx, wy)]← vx.qgram[(vx, wy)] ∪ [x]
8: vx.path[2]← vx.path[2] ∪ (vx, wy)
9: for i← 2 . . . q do

10: for each path p in wy.path[i] do
11: vx.qgram[(vx)⊕ p]← vx.qgram[(vx)⊕ p] ∪ [x]
12: vx.path[i+ 1]← vx.path[i+ 1] ∪ (vx)⊕ p

may not be an optimal strategy. It uses the same dictionary qgram as Q-gram.
The running time of the algorithm is O

(
|T |2

)
.

Algorithm 4 Q-sample(T, q)
1: Let nodes be a FIFO queue of the nodes of T in post order
2: while nodes 6= ∅ do
3: vx ← nodes.pop()
4: k ← q
5: s← (vx)
6: n← vx
7: while n has at least one child and k > 1 do
8: Let n be the some child c of n
9: Remove c from nodes

10: s← s⊕ (n)
11: k ← k − 1
12: vx.qgram[s]← x
13: for each node v in T in postorder do
14: for each child w of v do
15: for each q-gram profile p in w.qgram do
16: v.qgram[p]← v.qgram[p] ∪ w.qgram[p]

Appendix C

Test Case Patterns

C.1 Case 1� �
1 <div class="st_content container_24">
2 <div class="grid -wrapper clearfix">
3 <div class="grid_24 panel -region region -bottom">
4 <div class="panel -pane">
5 <div class="content">
6 <div class="section">
7 <section >
8 <div class="grid_5 panel -region d">
9 <div class="module block -league -table">

10 <h2 class="section -sub -header section -sub -header -
style3">

11 </h2>
12 <table>
13 <tbody >
14 <tr>
15 <td class="text -b last">
16
17
18
19 </td>
20 </tr>
21 <tr>
22 <td class="text -b last">
23
24 </td>
25 </tr>
26 <tr>
27 <td class="text -b last">
28

86 Test Case Patterns

29
30
31 </td>
32 </tr>
33 <tr>
34 <td class="text -b last">
35
36
37
38 </td>
39 </tr>
40 <tr>
41 <td class="text -b last">
42
43
44
45 </td>
46 </tr>
47 <tr>
48 <td class="text -b last">
49
50
51
52 </td>
53 </tr>
54 <tr>
55 <td class="text -b last">
56
57
58
59 </td>
60 </tr>
61 <tr>
62 <td class="text -b last">
63
64
65
66 </td>
67 </tr>
68 <tr>
69 <td class="text -b last">
70
71
72
73 </td>
74 </tr>
75 <tr>
76 <td class="text -b last">
77
78
79
80 </td>
81 </tr>
82 <tr>
83 <td class="text -b last">
84
85
86
87 </td>
88 </tr>
89 <tr>
90 <td class="text -b last">
91
92
93

C.2 Case 2 87

94 </td>
95 </tr>
96 </tbody >
97 </table >
98 </div>
99 </div>

100 </section >
101 </div>
102 </div>
103 </div>
104 </div>
105 </div>
106 </div>� �
C.2 Case 2� �

1 <table>
2 <tbody >
3 <tr>
4 <td class="text -b last">
5
6
7
8 </td>
9 </tr>

10 <tr>
11 <td class="text -b last">
12
13
14 </td>
15 </tr>
16 <tr>
17 <td class="text -b last">
18
19
20
21 </td>
22 </tr>
23 <tr>
24 <td class="text -b last">
25
26
27
28 </td>
29 </tr>
30 <tr>
31 <td class="text -b last">
32
33
34
35 </td>
36 </tr>
37 <tr>
38 <td class="text -b last">
39
40
41
42 </td>
43 </tr>

88 Test Case Patterns

44 <tr>
45 <td class="text -b last">
46
47
48
49 </td>
50 </tr>
51 <tr>
52 <td class="text -b last">
53
54
55
56 </td>
57 </tr>
58 <tr>
59 <td class="text -b last">
60
61
62
63 </td>
64 </tr>
65 <tr>
66 <td class="text -b last">
67
68
69
70 </td>
71 </tr>
72 <tr>
73 <td class="text -b last">
74
75
76
77 </td>
78 </tr>
79 <tr>
80 <td class="text -b last">
81
82
83
84 </td>
85 </tr>
86 </tbody >
87 </table >� �

C.3 Case 3� �
1 <body class="html front not -logged -in one -sidebar sidebar -second">
2 <div id="page -wrapper">
3 <div id="page" class="clearfix">
4 <section id="zones -content" class="clearfix">
5 <div id="content -outer -wrapper" class="clearfix">
6 <div id="content -container" class="clearfix container -12 zone

-dynamic zone -content zone content -zone">
7 <div id="region -content" class="region region -content

content -region grid -8 even">
8 <div id="block -system -main" class="block block -system

block -without -title odd first">
9 <div class="block -inner clearfix">

C.4 Case 4 89

10 <div class="content">
11 <div class="view -Forside view -id -Forside view -

display -id-toparticles view -dom -id -1">
12 <div class="view -content">
13 <div class="frontpage -standalone">
14 <aside class="illustration">
15 <div class="frontpage -standalone -image">
16
17 </div>
18 </aside >
19 <section >
20 <div class="frontpage -standalone -node -title

">
21 <h1 class="node -title">
22 <a>
23
24 </h1>
25 </div>
26 <div class="frontpage -standalone -teaser">
27 <p>
28 <a>
29
30 </p>
31 </div>
32 <div class="article -equipment">
33 <div class="post -date">
34 </div>
35 </div>
36 </section >
37 </div>
38 </div>
39 </div>
40 </div>
41 </div>
42 </div>
43 </div>
44 </div>
45 </div>
46 </section >
47 </div>
48 </div>
49 </body>� �

C.4 Case 4� �
1 <div class="block -inner clearfix">
2 <div class="content">
3 <div class="view -Forside view -id -Forside view -display -id -

toparticles view -dom -id -1">
4 <div class="view -content">
5 <div class="frontpage -standalone">
6 <aside class="illustration">
7 <div class="frontpage -standalone -image">
8
9 </div>

10 </aside >
11 <section >
12 <div class="frontpage -standalone -node -title">
13 <h1 class="node -title">

90 Test Case Patterns

14 <a>
15
16 </h1>
17 </div>
18 <div class="frontpage -standalone -teaser">
19 <p>
20 <a>
21
22 </p>
23 </div>
24 <div class="article -equipment">
25 <div class="post -date">
26 </div>
27 </div>
28 </section >
29 </div>
30 </div>
31 </div>
32 </div>
33 </div>� �

C.5 Case 5� �
1 <html>
2 <body>
3 <div class="content">
4 <div id="siteTable" class="sitetable linklisting">
5 <div>
6
7
8
9 <div>

10 <p class="title">
11
12
13 <a>
14 </p>
15 <p class="tagline">
16 <time></time>
17 <a>
18 </p>
19 <ul class="flat -list buttons">
20 <li class="first">
21
22
23
24 </div>
25 </div>
26 </div>
27 </div>
28 </body>
29 </html>� �

C.6 Case 6

C.6 Case 6 91

� �
1 <div id="siteTable" class="sitetable linklisting">
2 <div>
3
4
5
6 <div>
7 <p class="title">
8
9

10
11 <a>
12
13 </p>
14 <p class="tagline">
15 <time>
16 </time>
17 <a>
18
19 </p>
20 <ul class="flat -list buttons">
21 <li class="first">
22
23
24
25
26 </div>
27 </div>
28 </div>� �

92 Test Case Patterns

	Abstract
	Preface
	1 Introduction
	1.1 Preliminaries and Notation

	2 Tree Edit Distance
	2.1 Problem Definition
	2.2 Algorithms
	2.3 Constrained Mappings
	2.4 Approximate Tree Pattern Matching

	3 Web Scraping using Approximate Tree Pattern Matching
	3.1 Basic Procedure
	3.2 Pattern Design
	3.3 Choosing an Algorithm
	3.4 Extracting Several Matches
	3.5 Related Work
	3.6 Summary

	4 Lower Bounds for Tree Edit Distance with Cuts
	4.1 Tree Size and Height
	4.2 Q-gram Distance
	4.3 PQ-gram Distance
	4.4 Binary Branch Distance
	4.5 Euler String Distance
	4.6 Summary

	5 Data Tree Pruning and Heuristics
	5.1 Adapting the Fast Unit Cost Algorithm to Cuts
	5.2 Using Lower Bounds for Pruning
	5.3 Using the HTML Grammar for Pruning
	5.4 Pre-selection of Subtrees
	5.5 Linear Matching

	6 Experiments
	6.1 Setup
	6.2 Algorithm Execution Time
	6.3 Lower Bound Methods
	6.4 Pruning Methods
	6.5 Heuristics
	6.6 Data Extraction

	7 Discussion
	7.1 Algorithms
	7.2 Lower Bound Methods
	7.3 Pruning Method and Heuristics

	8 Conclusion
	8.1 Further Work

	Bibliography
	A Implementation
	A.1 Design
	A.2 Modules
	A.3 Examples

	B Algorithms
	B.1 Algorithm for finding Q-grams
	B.2 Algorithm for finding Q-samples

	C Test Case Patterns
	C.1 Case 1
	C.2 Case 2
	C.3 Case 3
	C.4 Case 4
	C.5 Case 5
	C.6 Case 6

