
Introduction Alignment problems Refining the model

Algorithms in Bioinformatics:
Lectures 03-05 - Sequence Similarity

Lucia Moura

Fall 2011

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

1 Introduction
Motivation

2 Alignment problems

3 Refining the model

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Motivation

Lecture(s) Contents: Sequence Similarity (Chapter 2)

1 Introduction
Motivation

2 Alignment problems
Global Alignment
Local Alignment
Semi-Global Alignment

3 Refining the model
Gap Penalty (special penalty for consecutive “-”)
Scoring functions (deduce score matrices from biological info)

Notes: These slides are being developed lecture by lecture.
These slides do not cover the complete lecture contents (use textbook).
These slides are a template for material discussed in the class, blackboard.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Motivation

Motivation for the study of sequence similarity

“The first fact of biological sequence analysis: In biomolecular
sequences (DNA, RNA, or amino acid sequences), high sequence
similarity usually implies significant functional or structural
similarity.” D. Gusfield, Algorithms on strings, trees and sequences

Note that the converse is not true:
“ ... similar sequences yield similar structures, but quite different
sequences can produce remarkably similar structures.”
F. E. Cohen (1995)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Motivation

Bioinformatics Application Examples

Predicting the biological function of a gene (or a RNA or a protein):
Check similarities with genes for which we know their functions.

Finding the evolution distance (by comparing genomes)
Building Phylogenetic trees.

Helping genome assembly:
human genome project used a lot of short DNA sequences, and
reconstructed complete genome based on overlapping information.

Finding a common region in two genomes:
two similar or identical genes (from two species), may have come
from a common ancestor and have the same function.

Finding repeats within a genome:
The human genome has many repeat substrings, which need to be
identified.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

1 Introduction

2 Alignment problems
Global Alignment
Local Alignment
Semi-Global Alignment

3 Refining the model

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Measuring distance between two sequences I
The string edit problem:
Determine the minimum number of operations to transform one string into
another, where operations are:

Replace a symbol with another symbol.

Insert a symbol into a string.

Delete a symbol from a string.

S = INTERESTINGLY

6 replacements: INFORMATICSLY
3 insertions: BIOINFORMATICSLY
2 deletions: BIOINFORMATICS

T = BIOINFORMATICS

This tells us the edit distance is at most 11; it turns out to be 11.
Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Measuring distance between two sequences II
The (generalized) string edit problem:
Let S and T be two strings over the alphabet Σ.
Determine the minimum cost to transform one string into another, where
operations are:

Replace a symbol with another symbol. cost: σ(x, y)
Insert a symbol into a string. cost: σ(, x)
Delete a symbol from a string. cost: σ(x,)

and their costs of operations are given by a distance matrix
σ(x, y) with x, y ∈ Σ ∪ { }.

S = INTERESTINGLY operation cost
6 replacements: INFORMATICSLY σ(x, y) = 1

3 insertions: BIOINFORMATICSLY σ(, x) = 2
2 deletions: BIOINFORMATICS σ(x,) = 2

T = BIOINFORMATICS
Cost : 6× 1 + 3× 2 + 2× 2 = 16.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Measuring Sequence Similarity

Definition (alignment)

An alignment of two strings is formed by inserting spaces in arbitrary
locations along the string so that they end up with the same length and
there are no spaces at the same position of the two augmented sequences.

Two sequences are similar if their alignment contains:
many positions with the same symbol, while reducing the number of
positions they differ.

alignment of two strings:

- - I - N T E R E S T I N G L Y
B I O I N F O R MA T I C S - -

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Measuring Sequence Similarity: Global Alignment
The global alignment problem:
Let S and T be two strings over the alphabet Σ.
Determine an alignment A that maximizes the similarity score over all
alignments of S and T .
The similarity of a pair of aligned symbols is given by by a similarity score
matrix δ(x, y) with x, y ∈ Σ ∪ { }.

alignment of two strings:

- - I - N T E R E S T I N G L Y
B I O I N F O R MA T I C S - -

What would be the score function δ, such that the process using δ would
produce the same result for edit distance with previous σ?

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Edit Distance is equivalent to Global Alignment

Lemma

Let σ be the cost matrix of the edit distance problem, and δ be the score
matrix of the global alignment problem. If δ(x, y) = −σ(x, y) for all
x, y ∈ Σ ∪ { }, then the solution to the edit distance problem is equivalent
to the solution to the string alignment problem.

Proof:
nx,y = number of occurences of operations (x, y).
Then, minimizing the edit distance

∑
x∈Σ∪{ }

∑
y∈Σ∪{ } nx,yσ(x, y) is the

same as maximizing∑
x∈Σ∪{ }

∑
y∈Σ∪{ } nx,y(−σ(x, y)) =

∑
x∈Σ∪{ }

∑
y∈Σ∪{ } nx,yδ(x, y),

which is maximizing the alignment score.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Global Alignment Algorithms

Find a global alignment of two strings of length n and m that maximizes
the similarity score.

Brute force:
Exponential Time. Why?

Needleman-Wunsch algorithm (1970): dynamic programming
Time: O(nm)
Space: O(nm)
banded Needleman-Wunsh algorithm:
Restricting the number of indel (insertions/deletions) to at most d:
Time: O((n+m)d).

Addressing space efficiency issue:
An improvement is possible leading to O(n+m) space.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Needleman-Wunsh Algorithm
Input strings: S[1..n], T [1,m]
Output: Optimal alignment V (n,m)

Dynamic Programming recurrence relation to calculate V (i, j): score of
the optimal alignment between S[1..i] and T [1..j].
When i = 0 or j = 0, we need to align with the empty string:

V (0, 0) = 0
V (0, j) = V (0, j − 1) + δ(, T [j])
V (i, 0) = V (i− 1, 0) + δ(S[i],)

When i > 0 and j > 0, last character is match/mismatch, delete or insert:

V (i, j) = max { V (i− 1, j − 1) + δ(S[i], T [j]),
V (i− 1, j) + δ(S[i],), V (i, j − 1) + δ(, T [j]) }

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Example Needleman-Wunsh Algorithm
Score matrix δ given next. For all x, y ∈ Σ:
δ(x, x) = 2 match, δ(x, y) = −1 mismatch, if x 6= y, δ(, x) = δ(x,) = −1 indel
Fill out the dynamic programming matrix row by row, for strings: S =ACAATCC
and T =AGCATGC.

V (i, j):

A G C A T G C

A
C
A
A
T
C
C
Solved in class. See book solution in page 34.

Note: use arrows to show the winner of the max, in one of 3 directions:

↑ (deletion), ← (insertion) or ↖ (match/mismatch).

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Consulting the completed table for Needleman-Wunsh algorithm in the last page

(also in page 34 of the textbook), give the optimal global alignment and its score

for the following prefixes of S and T , respectively:
1 ACAA and AGC

score:
global alignment:

2 ACAA and AGCAT
score:
global alignment:

3 ACAATC and AG
score:
global alignment:

4 S and T
score:
global alignment:

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Time and Space Complexity

Time complexity:
To fill each position of the matrix, we use time O(1) and
there are n ·m matrix positions.
The running time is O(n ·m).

Space complexity:
We need two matrices (n+ 1)× (m+ 1):
V (i, j) and a matrix to store the direction chosen by the “max”.
There are O(n ·m) matrix positions required.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Improving Running Time for Sequence Alignment?

Known lower bounds for the problem:

Aho, Hirschberg and Ullman (1976): For comparison-based methods
that determine if symbols are equal or not, problem requires Ω(n ·m).

Hirschberg (1978):
If symbols are ordered and can be compared (>,<,=), problem
requires Ω(n log n).

Current best method by Masek and Paterson (1980): O(nm/ log n).
Given lower bounds, not much improvement possible on the general
problem...
However, improvements can be done if we restrict the number of indel to
be at most d:
Only a band of size (2d+ 1) around the diagonal of the V (i, j) matrix
needs to be computed.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Banded Needleman-Wunsh Algorithm
If no more than d = 3 indel’s (insertions/deletions) are allowed, only the
following area of the matrix needs to be completed:

V (i, j):

A G C A T G C

* * * *

A * * * * *

C * * * * * *

A * * * * * * *

A * * * * * * *

T * * * * * *

C * * * * *

C * * * *
Complete * positions in table as an exercise. See solution in page 35 of the textbook.

Size of 2d+ 1 band is O((n+m)d). So assuming that d is small w.r.t. n
and m, the running time got reduced from O(n ·m) to O((n+m) · d)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Space Efficiency Improvement

For long sequences, using O(n ·m) space is a problem. Say, comparing the
human and mouse genome would take space proportional to 9× 1018

matrix positions.

To calculate V (i, j) alone, we can simply store two rows of the matrix at a
time (previous and current row), easily reducing space to O(m).
Call such algorithm: Algorithm NWscore (S, T)

To compute the optimal alignment (not only its score), we need to use
another method. Hirschberg’s algorithm (1975) reduces the space
requirement to be O(n+m), which in the given example would yield
space reduced to 6× 109.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Hirschberg’s Algor. for O(n + m)-space global alignment

Algorithm FindMid(mid, S[i1..i2], T [j1..j2])
NWScore(S[i1..mid], T [j1..j2]): returns last row of V (x, y) in NW [0..m]
NWScore((S[mid+ 1..i2])r, (T [j1, j2])r):

returns reverse of last row of V (x, y) in SE[1..m+ 1]
return j, 0 ≤ j ≤ m, that maximizes NW [j] + SE[j + 1].

Algorithm Alignment(S[i1..i2], T [j1..j2])
if i1 ≥ i2 return NW(S[i1..i2], T [j1, j2]) regular NW algorithm
mid = (i1 + i2)/2
j = FindMid(mid, S[i1..i2], T [j1..j2])
return concatenation of Alignment(S[i1..mid], T [j1..j]) and

Alignment(S[mid+ 1..i2], T [j + 1..j2])
Space: O(n+m)
Time: Time(n,m) = c · nm+ Time(n/2, j) + Time(n/2,m− j)
Solving the recurrence relation: Time(n,m) ∈ O(nm).
(Algorithm understanding/analysis explained in class)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Example Hirschberg’s Algorithm

S =ACTGACCT T =TGTCC
scores: match= +2; mismatch/indel= −1

Calculate values row by row, only keeping 2 rows at a time:
- T G T C C

- 0 -1 -2 -3 -4 -5
A -1 -1 -2 -3 -3 -4
C -2 -2 -2 -3 -1 -1
T -3 0 -1 0 -1 -2
G -4 -1 2 1 0 -1
j 0 1 2 3 4 5

- C C T G T
- 0 -1 -2 -3 -4 -5
T -1 -1 -2 0 -1 -2
C -2 1 1 0 -1 -2
C -3 0 3 2 1 0
A -4 -1 2 2 1 0
j 6 5 4 3 2 1

j 0 1 2 3 4 5
NW [j] + SE[j + 1] = -4 0 4 3 -1 -5

Findmid returns j = 2

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Another way of looking at the previous step:
NWScore of first half of S and reverse of second half of S, each with T
(mid element of S is maked bold)

j=2

- T G T C C -

- 0 -1 -2 -3 -4 -5
A -1 -1 -2 -3 -3 -4
C -2 -2 -2 -3 -1 -1
T -3 0 -1 0 -1 -2

mid=4 G -4 -1 2 1 0 -1

A 0 1 2 2 -1 -4
C -2 -2 -1 3 0 -3
C -2 -1 -1 0 1 2
T -2 -1 0 -2 -2 -1
- -5 -4 -3 -2 -1 0

↖

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

j=0

- T G -

- 0 -1 -2
A -1 -1 -2
C -2 -2 2

T 4 1 -2
G 1 2 -1
- -2 -1 0

↖

j=0

- -

- 0
A -1
C -1
- 0

j=1

- T G -

- 0 -1 -2
T -1 2 1

G 1 2 -1
- -2 -1 -0

NW(A,-)= (A,-) NW(T,T)=(T,T)
NW(C,-)= (C,-) NW(G,G)=(G,G)
concat: (AC,- -) concat: (TG,TG)

concat: (ACTG,- -TG)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

j=2

- T C C

- 0 -1 -2 -3
A -1 -1 -2 -3
C -2 -2 1 0

C 0 1 1 -2
T 0 -2 -1 -1
- -3 -2 -2 0

↖

j=1

- T C -

- 0 -1 -2
A -1 -1 -2

C 1 2 -1
- -2 -1 0

j=1

- C -

- 0 -1
C -1 2
T -1 -1
- -1 0

NW(A,T)= (A,T) NW(C,C)=(C,C)
NW(C,C)= (C,C) NW(T,-)=(T,-)
concat: (AC,TC) concat: (CT,C-)

concat: (ACCT,TCC-)

concatenating (ACTG,- -TG) and (ACCT,TCC-) leads to final answer:
(ACTGACCT, - -TGTCC-)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Example Hirschberg’s Algorithm (cont’d)

(ACTGACCT,TGTCC)j=2

(ACTG,TG)j=0 (ACCT,TCC)j=2

(AC,-)j=0 (TG,TG)j=1 (AC, TC)j=1 (CT,C)j=1

(A,-)(C,-) (T,T) (G,G) (A,T) (C,C) (C,C) (T,-)

final alignment:
A C T G A C C T
- - T G T C C -

Note that the optimal value of 4, found at the first call to FindMid, is the
score of this alignment.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

Sketch: Analysis of Hirschberg’s Algorithm
Each call to FindMid takes O(s ·m) time, where s is the size of string S;
say TFindMid(s,m) ≤ c · s ·m, for some constant c ≥ 1, and m ≥ 1.

Time(n,m) = c′m+ d, if n = 1 (for some constants c′, d)
= cnm+ Time(n/2, j) + Time(n/2,m− j), if n = 2k ≥ 2

Theorem

For all n ≥ 1,m ≥ 0, Time(n,m) ≤ 2cnm+ c′m+ dn = O(nm).

Proof: (by induction on n = 2k)
Basis: n = 1, trivial.
Ind. Step: Let N ≥ 2. Assume the inequality holds for every n = 2l < N .
Time(N,m) = cNm+ Time(N/2, j) + Time(N/2,m− j)
≤ cNm+(2c(N/2)j+ c′j+d(N/2))+(2c(N/2)(m− j)+ c′(m− j)+d(N/2)) =
cNm+ cNm+ c′m+ dN . �

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Global Alignment

More on Global Alignment

Relevant special cases of global alignment:

1 Longest Common Subsequence (LCS):
Find a subsequence of X and Y which is the longest possible.
Recall subsequence 6= substring, characters need not be contiguous.
X :CATPAPLTE and Y : XAPZPLEG yields LCS: APPLE
Global alignment with:
score for match = 1, score for mismatch = −∞, score for indel = 0

2 Hamming Distance:
Number of mismatches between two strings of same length.
hamdist(TONED,ROSES)=3 since they differ in positions 1,3,5.
Global Alignment with:
score for match = 1, score for mismatch =0, score for indel=−∞.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Local Alignment

Local Alignment

The local alignment problem:
Let S[1..n] and T [1..m] be two strings over the alphabet Σ.
Determine a pair of substrings A of S and B of T with the highest
alignment score.

Solving this by brute force:

Find all substrings A of S and B of T ;

Compute a global alignment of A and B;

Return the substring pair (A,B) with maximum score.

Time complexity for the brute force method: There are
(
n
2

)
+n+ 1 choices

for A and
(
m
2

)
+m+ 1 choices for B, time is O(

(
n
2

)(
m
2

)
mn) = O(n3m3).

Too slow!!!

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Local Alignment

Local Alignment: Smith-Waterman Algorithm(1981)
For 0 ≤ i ≤ n, 0 ≤ j ≤ m, define
V (i, j)= maximum score of the global alignment of A and B over all substrings
A of S that end at i and all substrings B of T that end at j. (by definition
always empty substrings is a valid choice for both)
When i = 0 or j = 0, the best alignment aligns empty substrings:

V (0, j) = 0 for 0 ≤ j ≤ m
V (i, 0) = 0 for 0 ≤ i ≤ n

When i > 0 and j > 0, best scenario can be given by both empty substrings
(score of 0) or the best alignment where last character (i and j, respectively) is
match/mismatch, delete or insert:

V (i, j) = max { 0, V (i− 1, j − 1) + δ(S[i], T [j]),
V (i− 1, j) + δ(S[i],), V (i, j − 1) + δ(, T [j]) }

Optimal Local alignment score: maxi,j V (i, j).
Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Local Alignment

Local Alignment Example
S =ACAATCG; T =CTCATGC; scores: match +2; indel/mismatch -1.
Filling row by row, matrix V (i, j): ↖(match/mismatch); ↑ (delete); ← (insert)

Two optimal local alignments (score 6) can be found.
Optimal solution: Back-tracing from table:

V (7, 6) CAATCG
C AT G

V (6, 7) CAAT C
C ATGC

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Local Alignment

Time and Space complexity for Smith-Waterman Algorithm

Analysis is identical to the one for optimal global alignment:

Space and Time: O(m · n)

A similar space reduction is possible to O(m+ n).

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Semi-Global Alignment

Semi-global alignment
It is like a global alignment, but spaces at the beginning and/or end of an
alignment are ignored (cost of 0).
Example:
S = ATCCGAACATCCAATCGAAGC
T = AGCATGCAAT

Optimal global alignment: score= 9 ∗ 2 + 1 ∗ −1 + 11 ∗ −1 = 6

ATCCGAACATCCAATCGAAGC
A G CATGCAAT

Optimal semi-global alignment: score = 8 ∗ 2 + 1 ∗ −1 + 1 ∗ −1 = 14

ATCCGAA CATCCAATCGAAGC
AGCATGCAAT

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Semi-Global Alignment

Semi-global alignment bioinformatics applications

Ignoring flanking (starting or trailing) spacing may be desirable in some
situations.

Prokaryotes: aligning genes.

Eukaryotes: aligning an exon to the original gene sequence; spaces
adjacent to the exon may be due to an untranslated region or introns.

Sequence assembly: ignore starting spaces of the first sequence
and trailing spaces of the second sequence.
Example:

ACCTCACGATCCGA
TCAACGATCACCGCA

In this case, the semiglobal score can helps us deciding whether the
two DNA segments are overlapping.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Semi-Global Alignment

Semi-global Alignment Algorithm:

Modify the global alignment algorithm in the following way:
spaces not charged implementation:

spaces at the beginning of S initialize first row with 0’s
spaces at the end of S look for the maximum in the last row
spaces at the beginning of T initialize first column with 0’s
spaces at the end of T look for the maximum in the last column

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

1 Introduction

2 Alignment problems

3 Refining the model
Gap Penalty (special penalty for consecutive “-”)
Scoring functions (deduce score matrices from biological info)

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Gap Penalty (special penalty for consecutive “-”)

Gap Penalty

So far, we penalize l contiguous spaces (1 gap) the same as l “dispersed”
spaces. It makes sense to reduce the penalty for contiguous spaces:
e.g. mutations may cause the insertion or deletion of a substring which
may be as likely as indel of a single base.
Therefore, we will consider a general gap penalty g(q) for a gap of
length q. Example: match: 2, indels:-1

A - C A A C T C G C C T C C
A G C A - - - - - - - T G C

g(q) score for above alignment

q 10− 1 + (−1− (7)) = 1
1 10− 1 + (−1− (1)) = 7
1 + (1/10)q 10− 1 + (−1− (1.7)) = 6.3

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Gap Penalty (special penalty for consecutive “-”)

General Gap Penalty Model
Using g(q) as gap penalty, we need to slightly modify global alignment:
When i = 0 or j = 0, we have:

V (0, 0) = 0
V (0, j) = −g(j)
V (i, 0) = −g(i)

When i > 0 and j > 0, last character is match/mismatch,
end of a deletion gap or end of an insertion gap:

V (i, j) = max { V (i− 1, j − 1) + δ(S[i], T [j]),
max

0≤k≤i−1
{V (k, j)− g(i− k))} (delete S[k + 1..i])

max
0≤k≤j−1

{V (i, k)− g(j − k)} (insert T [k + 1, j]) }

Complexity: Time O(nm(n+m)), Space O(nm).
Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Gap Penalty (special penalty for consecutive “-”)

Affine Gap Penalty Model

h= penalty for initiating the gap
s= penalty proportional to the length of the gap

g(q) = h+ qs

Better time complexity is possible: O(nm).

For every table position, we will keep information for:
G(i, j): score for S[1..i] and T [1..j] with S[i] aligning with T [j]
F (i, j):(same)........... S[i] matching a space
E(i, j):(same)........... T [j] matching a space

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Gap Penalty (special penalty for consecutive “-”)

Dynamic Programming for Global Alignment with Affine
Gap Penalty

V (0, 0) = 0;
V (i, 0) = F (i, 0) = −g(i) = −h− is
V (0, j) = E(0, j) = −g(j) = −h− js
E(i, 0) = F (0, j) = G(i, 0) = G(0, j) = −∞

When i > 0 and j > 0:
V (i, j) = max{G(i, j), F (i, j), E(i, j)}
G(i, j) = V (i− 1, j − 1) + δ(S[i], T [j])
F (i, j) = max{F (i− 1, j)− s, V (i− 1, j)− h− s}
E(i, j) = max{E(i, j − 1)− s, V (i, j − 1)− h− s}

Complexity: Time O(nm); Space O(nm).

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Scoring functions (deduce score matrices from biological info)

Scoring Functions

To measure similarity between two sequences need to choose the scoring
function δ(x, y).

• Scoring function for DNA
simpler; positive score for match and negative score for mismatch

different algorithms use different values:
score: match mismatch best for homol. align. with

NCBI-BLASTN +2 -1 95% identity
WU-BLASTN,FastA +5 -4 65% identity

some use transition/traversion matrix:
remember purines are A,G, and pyrimidines are C,T.
scores: match +1; mismatch in same group -1; mismatch across
groups -5.

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

Introduction Alignment problems Refining the model

Scoring functions (deduce score matrices from biological info)

Scoring Functions (cont’d)
• Scoring function for protein: two approaches

1 similarity score based on chemical/physical properties of amino acids.
assume: 2 amino acids w/similar properties are more likely substituted

2 assign similarity purely based on statistics.

a and b are similar if they have a big score log Oa,b

Ea,b
(log of: observed

substitution frequency over expected substitution frequency)
I Point accepted mutation (PAM) score matrix - (Dayhoff, 1970’s)

family of matrices: PAM-i (higher i, assume higher evolut. distance)
calculated by observing differences in closely related proteins.

I BLOSUM (BLOck SUbstitution Matrix) - (Hernikoff & Hernikoff, 1992)
family of matrices: BLOSUM p (higher p, for smaller evolut. distance)
better for evolutionary divergent sequences;
calculated using “blocks” of highly conserved sequences found in
multiple protein alignments.

BLOSUM 62 is the default matrix for BLAST 2.0

Algorithms in Bioinformatics: Lectures 03-05 - Sequence Similarity Lucia Moura

	Introduction
	Motivation

	Alignment problems
	Global Alignment
	Local Alignment
	Semi-Global Alignment

	Refining the model
	Gap Penalty (special penalty for consecutive ``-")
	Scoring functions (deduce score matrices from biological info)

