
Algorithms Lecture 27: Lower Bounds [Sp’10]

It was a Game called Yes and No, where Scrooge’s nephew had to think of something, and the rest
must find out what; he only answering to their questions yes or no, as the case was. The brisk fire of
questioning to which he was exposed, elicited from him that he was thinking of an animal, a live animal,
rather a disagreeable animal, a savage animal, an animal that growled and grunted sometimes, and
talked sometimes, and lived in London, and walked about the streets, and wasn’t made a show of, and
wasn’t led by anybody, and didn’t live in a menagerie, and was never killed in a market, and was not
a horse, or an ass, or a cow, or a bull, or a tiger, or a dog, or a pig, or a cat, or a bear. At every fresh
question that was put to him, this nephew burst into a fresh roar of laughter; and was so inexpressibly
tickled, that he was obliged to get up off the sofa and stamp. At last the plump sister, falling into a
similar state, cried out :

“ I have found it out ! I know what it is, Fred ! I know what it is !”

“ What is it ?” cried Fred.

“ It’s your Uncle Scro-o-o-o-oge !”

Which it certainly was. Admiration was the universal sentiment, though some objected that the
reply to “ Is it a bear?” ought to have been “Yes;" inasmuch as an answer in the negative was sufficient
to have diverted their thoughts from Mr Scrooge, supposing they had ever had any tendency that way.

— Charles Dickens, A Christmas Carol (1843)

27 Lower Bounds

27.1 Huh? Whuzzat?

So far in this class we’ve been developing algorithms and data structures to solve certain problems as
quickly as possible. Starting with this lecture, we’ll turn the tables, by proving that certain problems
cannot be solved as quickly as we might like them to be.

Let TA(X) denote the running time of algorithm A given input X . For most of the semester, we’ve
been concerned with the the worst-case running time of A as a function of the input size:

TA(n) := max
|X |=n

TA(X).

The worst-case complexity of a problem Π is the worst-case running time of the fastest algorithm for
solving it:

TΠ(n) := min
A solves Π

TA(n) = min
A solves Π

max
|X |=n

TA(X).

Any algorithm A that solves Π immediately implies an upper bound on the complexity of Π; the inequality
TΠ(n) ≤ TA(n) follows directly from the definition of TΠ. Just as obviously, faster algorithms give us
better (smaller) upper bounds. In other words, whenever we give a running time for an algorithm, what
we’re really doing—and what most computer scientists devote their entire careers doing1—is bragging
about how easy some problem is.

Now, instead of bragging about how easy problems are, we will argue that certain problems are
hard, by proving lower bounds on their complexity. This is considerably harder than proving an upper
bound, because it’s no longer enough to examine a single algorithm. To prove an inequality of the form

1This sometimes leads to long sequences of results that sound like an obscure version of “Name that Tune”:

Lennes: “I can triangulate that polygon in O(n2) time.”
Shamos: “I can triangulate that polygon in O(n log n) time.”
Tarjan: “I can triangulate that polygon in O(n log log n) time.”
Seidel: “I can triangulate that polygon in O(n log∗ n) time.” [Audience gasps.]
Chazelle: “I can triangulate that polygon in O(n) time.” [Audience gasps and applauds.]
“Triangulate that polygon!”

c© Copyright 2011 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 27: Lower Bounds [Sp’10]

TΠ(n) = Ω(f (n)), we must prove that every algorithm that solves Π has a worst-case running time
Ω(f (n)), or equivalently, that no algorithm runs in o(f (n)) time.

27.2 Decision Trees

Unfortunately, there is no formal definition of the phrase ‘all algorithms’!2 So when we derive lower
bounds, we first have to specify precisely what kinds of algorithms we will consider and precisely how to
measure their running time. This specification is called a model of computation.

One rather powerful model of computation—and the only model we’ll talk about in this lecture—is
the decision tree model. A decision tree is, as the name suggests, a tree. Each internal node in the tree
is labeled by a query, which is just a question about the input. The edges out of a node correspond to the
possible answers to that node’s query. Each leaf of the tree is labeled with an output. To compute with a
decision tree, we start at the root and follow a path down to a leaf. At each internal node, the answer to
the query tells us which node to visit next. When we reach a leaf, we output its label.

For example, the guessing game where one person thinks of an animal and the other person tries to
figure it out with a series of yes/no questions can be modeled as a decision tree. Each internal node is
labeled with a question and has two edges labeled ‘yes’ and ‘no’. Each leaf is labeled with an animal.

Does it live in the water?

Does it have scales? Does it have more than four legs?

Does it have wings?Does it have wings?

YES
NO

NO
YE
S

fish frog

gnu eaglefly spider

YE
S N

O
YE
S N
O

YE
S N
O

A decision tree to choose one of six animals.

Here’s another simple and familiar example, called the dictionary problem. Let A be a fixed array
with n numbers. Suppose we want to determine, given a number x , the position of x in the array A, if
any. One solution to the dictionary problem is to sort A (remembering every element’s original position)
and then use binary search. The (implicit) binary search tree can be used almost directly as a decision
tree. Each internal node in the search tree stores a key k; the corresponding node in the decision tree
stores the question ‘Is x < k?’. Each leaf in the search tree stores some value A[i]; the corresponding
node in the decision tree asks ‘Is x = A[i]?’ and has two leaf children, one labeled ‘i’ and the other ‘none’.

We define the running time of a decision tree algorithm for a given input to be the number of queries
in the path from the root to the leaf. For example, in the ‘Guess the animal’ tree above, T (frog) = 2. Thus,
the worst-case running time of the algorithm is just the depth of the tree. This definition ignores other
kinds of operations that the algorithm might perform that have nothing to do with the queries. (Even
the most efficient binary search problem requires more than one machine instruction per comparison!)

2Complexity-theory snobs purists sometimes argue that ‘all algorithms’ is just a synonym for ‘all Turing machines’. This is
utter nonsense; Turing machines are just another model of computation. Turing machines might be a reasonable abstraction of
physically realizable computation—that’s the Church-Turing thesis—but it has a few problems. First, computation is an abstract
mathematical process, not a physical process. Algorithms that use physically unrealistic components (like exact real numbers,
or unbounded memory) are still mathematically well-defined and still provide useful intuition about real-world computation.
Moreover, Turing machines don’t accurately reflect the complexity of physically realizable algorithms, because (for example)
they can’t do arithmetic or access arbitrary memory locations in constant time. At best, they estimate algorithmic complexity
up to polynomial factors (although even that is unknown).

2

Algorithms Lecture 27: Lower Bounds [Sp’10]

x<11?

x<17?

x<13?

YES NO

NO
YE
S

65

YE
S N

O

x=11?

YE
S

N
O

x=13?

YE
S

N
O

- -

x<19?

87

YE
S N

O

x=17?

YE
S

N
O

x=19?

YE
S

N
O

- -

x<5?

x<3?

NO
YE
S

21

YE
S N

O

x=2?

YE
S

N
O

x=3?

YE
S

N
O

- -

x<7?

43

YE
S N

O

x=5?

YE
S

N
O

x=7?

YE
S

N
O

- -

11

5 17

3 7 1913

2 53 7 11 13 1917

2 53 7 11 13 1917

Left: A binary search tree for the first eight primes.
Right: The corresponding binary decision tree for the dictionary problem (- = ‘none’).

But the number of decisions is certainly a lower bound on the actual running time, which is good enough
to prove a lower bound on the complexity of a problem.

Both of the examples describe binary decision trees, where every query has only two answers. We
may sometimes want to consider decision trees with higher degree. For example, we might use queries
like ‘Is x greater than, equal to, or less than y?’ or ‘Are these three points in clockwise order, colinear, or
in counterclockwise order?’ A k-ary decision tree is one where every query has (at most) k different
answers. From now on, I will only consider k-ary decision trees where k is a constant.

27.3 Information Theory

Most lower bounds for decision trees are based on the following simple observation: The answers to
the queries must give you enough information to specify any possible output. If a problem has N
different outputs, then obviously any decision tree must have at least N leaves. (It’s possible for several
leaves to specify the same output.) Thus, if every query has at most k possible answers, then the depth
of the decision tree must be at least dlogk Ne= Ω(log N).

Let’s apply this to the dictionary problem for a set S of n numbers. Since there are n+ 1 possible
outputs, any decision tree must have at least n+ 1 leaves, and thus any decision tree must have depth at
least dlogk(n+1)e = Ω(log n). So the complexity of the dictionary problem, in the decision-tree model of
computation, is Ω(log n). This matches the upper bound O(log n) that comes from a perfectly-balanced
binary search tree. That means that the standard binary search algorithm, which runs in O(log n) time,
is optimal—there is no faster algorithm in this model of computation.

27.4 But wait a second. . .

We can solve the membership problem in O(1) expected time using hashing. Isn’t this inconsistent with
the Ω(log n) lower bound?

No, it isn’t. The reason is that hashing involves a query with more than a constant number of
outcomes, specifically ‘What is the hash value of x?’ In fact, if we don’t restrict the degree of the decision
tree, we can get constant running time even without hashing, by using the obviously unreasonable query
‘For which index i (if any) is A[i] = x?’. No, I am not cheating — remember that the decision tree model
allows us to ask any question about the input!

This example illustrates a common theme in proving lower bounds: choosing the right model of
computation is absolutely crucial. If you choose a model that is too powerful, the problem you’re studying
may have a completely trivial algorithm. On the other hand, if you consider more restrictive models, the
problem may not be solvable at all, in which case any lower bound will be meaningless! (In this class,
we’ll just tell you the right model of computation to use.)

3

Algorithms Lecture 27: Lower Bounds [Sp’10]

27.5 Sorting

Now let’s consider the classical sorting problem — Given an array of n numbers, arrange them in
increasing order. Unfortunately, decision trees don’t have any way of describing moving data around, so
we have to rephrase the question slightly:

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the permutation π such that
xπ(1) < xπ(2) < · · ·< xπ(n).

Now a k-ary decision-tree lower bound is immediate. Since there are n! possible permutations π, any
decision tree for sorting must have at least n! leaves, and so must have depth Ω(log(n!)). To simplify the
lower bound, we apply Stirling’s approximation

n!=
�n

e

�np
2πn

�

1+Θ
�

1

n

��

>

�n

e

�n
.

This gives us the lower bound

�

logk(n!)
�

>

¡

logk

�n

e

�n¤

=
�

n logk n− n logk e
�

= Ω(n log n).

This matches the O(n log n) upper bound that we get from mergesort, heapsort, or quicksort, so those
algorithms are optimal. The decision-tree complexity of sorting is Θ(n log n).

Well. . . we’re not quite done. In order to say that those algorithms are optimal, we have to demon-
strate that they fit into our model of computation. A few minutes of thought will convince you that
they can be described as a special type of decision tree called a comparison tree, where every query is of
the form ‘Is x i bigger or smaller than x j?’ These algorithms treat any two input sequences exactly the
same way as long as the same comparisons produce exactly the same results. This is a feature of any
comparison tree. In other words, the actual input values don’t matter, only their order. Comparison trees
describe almost all well-known sorting algorithms: bubble sort, selection sort, insertion sort, shell sort,
quicksort, heapsort, mergesort, and so forth—but not radix sort or bucket sort.

27.6 Finding the Maximum and Adversaries

Finally let’s consider the maximum problem: Given an array X of n numbers, find its largest entry.
Unfortunately, there’s no hope of proving a lower bound in this formulation, since there are an infinite
number of possible answers, so let’s rephrase it slightly.

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that xm is the
largest element in the sequence.

We can get an upper bound of n−1 comparisons in several different ways. The easiest is probably to
start at one end of the sequence and do a linear scan, maintaining a current maximum. Intuitively, this
seems like the best we can do, but the information-theoretic bound is only dlog2 ne. And in fact, this
bound is tight! We can locate the maximum element by asking only dlog2 ne ‘unreasonable’ questions
like “Is the index of the maximum element odd?” No, this is not cheating—the decision tree model
allows arbitrary questions.

To prove a non-trivial lower bound for this problem, we must do two things. First, we need to
consider a more reasonable model of computation, by restricting the kinds of questions the algorithm is
allowed to ask. We will consider the comparison tree model, where every query must have the form “Is

4

Algorithms Lecture 27: Lower Bounds [Sp’10]

x i > x j?”. Since most algorithms3 for finding the maximum rely on comparisons to make control-flow
decisions, this does not seem like an unreasonable restriction.

Second, we will use something called an adversary argument. The idea is that an all-powerful
malicious adversary pretends to choose an input for the algorithm. When the algorithm asks a question
about the input, the adversary answers in whatever way will make the algorithm do the most work.
If the algorithm does not ask enough queries before terminating, then there will be several different
inputs, each consistent with the adversary’s answers, that should result in different outputs. In this case,
whatever the algorithm outputs, the adversary can ‘reveal’ an input that is consistent with its answers,
but contradicts the algorithm’s output, and then claim that that was the input that he was using all
along.

For the maximum problem, the adversary originally pretends that x i = i for all i, and answers all
comparison queries accordingly. Whenever the adversary reveals that x i < x j, he marks x i as an item
that the algorithm knows (or should know) is not the maximum element. At most one element x i is
marked after each comparison. Note that xn is never marked. If the algorithm does less than n− 1
comparisons before it terminates, the adversary must have at least one other unmarked element xk 6= xn.
In this case, the adversary can change the value of xk from k to n+ 1, making xk the largest element,
without being inconsistent with any of the comparisons that the algorithm has performed. In other
words, the algorithm cannot tell that the adversary has cheated. However, xn is the maximum element in
the original input, and xk is the largest element in the modified input, so the algorithm cannot possibly
give the correct answer for both cases. Thus, in order to be correct, any algorithm must perform at least
n− 1 comparisons.

The adversary argument we described has two very important properties. First, no algorithm can
distinguish between a malicious adversary and an honest user who actually chooses an input in advance
and answers all queries truthfully. But much more importantly, the adversary makes absolutely no
assumptions about the order in which the algorithm performs comparisons. The adversary forces
any comparison-based algorithm4 to either perform n− 1 comparisons, or to give the wrong answer for
at least one input sequence.

Exercises

0. Simon bar Kokhba thinks of an integer between 1 and 1,000,000 (or so he claims). You are
trying to determine his number by asking as few yes/no questions as possible. How many yes/no
questions are required to determine Simon’s number in the worst case? Give both an upper bound
(supported by an algorithm) and a lower bound.

1. Consider the following multi-dictionary problem. Let A[1 .. n] be a fixed array of distinct integers.
Given an array X [1 .. k], we want to find the position (if any) of each integer X [i] in the array A.
In other words, we want to compute an array I[1 .. k] where for each i, either I[i] = 0 (so zero
means ‘none’) or A[I[i]] = X [i]. Determine the exact complexity of this problem, as a function of
n and k, in the binary decision tree model.

3but not all—see Exercise ??
4In fact, the n− 1 lower bound for finding the maximum holds in a more powerful model called algebraic decision trees,

which are binary trees where every query is a comparison between two polynomial functions of the input values, such as ‘Is
x2

1 − 3x2 x3 + x17
4 bigger or smaller than 5+ x1 x5

3 x2
5 − 2x42

7 ?’

5

Algorithms Lecture 27: Lower Bounds [Sp’10]

2. We say that an array A[1 .. n] is k-sorted if it can be divided into k blocks, each of size n/k, such
that the elements in each block are larger than the elements in earlier blocks, and smaller than
elements in later blocks. The elements within each block need not be sorted.

For example, the following array is 4-sorted:

1 2 4 3 7 6 8 5 10 11 9 12 15 13 16 14

(a) Describe an algorithm that k-sorts an arbitrary array in O(n log k) time.

(b) Prove that any comparison-based k-sorting algorithm requires Ω(n log k) comparisons in the
worst case.

(c) Describe an algorithm that completely sorts an already k-sorted array in O(n log(n/k)) time.

(d) Prove that any comparison-based algorithm to completely sort a k-sorted array requires
Ω(n log(n/k)) comparisons in the worst case.

In all cases, you can assume that n/k is an integer.

3. Recall the nuts-and-bolts problem from the lecture on randomized algorithms. We are given n
bolts and n nuts of different sizes, where each bolt exactly matches one nut. Our goal is to find
the matching nut for each bolt. The nuts and bolts are too similar to compare directly; however,
we can test whether any nut is too big, too small, or the same size as any bolt.

(a) Prove that in the worst case, Ω(n log n) nut-bolt tests are required to correctly match up the
nuts and bolts.

(b) Now suppose we would be happy to find most of the matching pairs. Prove that in the worst
case, Ω(n log n) nut-bolt tests are required even to find n/2 arbitrary matching nut-bolt pairs.

?(c) Prove that in the worst case, Ω(n+ k log n) nut-bolt tests are required to find k arbitrary
matching pairs. [Hint: Use an adversary argument for the Ω(n) term.]

?(d) Describe a randomized algorithm that finds k matching nut-bolt pairs in O(n + k log n)
expected time.

?4. Suppose you want to determine the largest number in an n-element set X = {x1, x2, . . . , xn},
where each element x i is an integer between 1 and 2m− 1. Describe an algorithm that solves this
problem in O(n+m) steps, where at each step, your algorithm compares one of the elements x i
with a constant. In particular, your algorithm must never actually compare two elements of X !
[Hint: Construct and maintain a nested set of ‘pinning intervals’ for the numbers that you have
not yet removed from consideration, where each interval but the largest is either the upper half or
lower half of the next larger block.]

c© Copyright 2011 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

6

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

