Computer Graphics

Today

Texture mapping
Anti-aliasing techniques

Bump mapping

Happens when

surface (magnification)

Pixels

texels

The camera is zoomed too much into the textured

Several texels covering a pixel's cell (minification)

Lecture 7 Transparency
Texture Mapping, Bump-mapping,
Transparency
Aliasing Texture Magnification

Zooming into a surface with a texture too muc
One texel covering many pixels

Texture Magnification

Nearest neighbour (using the colour of the
closest texel)
Bilinear interpolation (linearly interpolating the
colours of the surrounding texels)

NN BI

72 xv 3.10: tank pg Cun

Methods to determine the color of each pixel

surface

Bilinear Interpolation

b(pu,po) = (1 -u)(1 = v')t(zs,3) + ' (1 = v')t(zr, 1)
+ (1=)Wtz ye) + o' t(zr, 30)-

— (pu,pv) : the pixel centre mapped into the texture space
— b(pu,pv) : the colour at point pu, pv
— t(x,y) : the texel colour at (x,y)

— U=pu—(inf)pu, V=pv - (inH)pv

Texture Minification
Many texels covering a pixel’s cell
Results in aliasing (remember Nyquist limit)

The artifacts are even more noticeable when the
surface moves

Solution
— Mipmapping

MIP map

Multum In Parvo = Many things in a small place

Produce a texture of multiple resolutions

Switch the resolution according to the number of texels in one
pixel

Select a level that the ratio of the texture and the pixel is 1:1

Selectinf\;/“tg%g%solution in

Map the pixel corners to the texture space

Find the resolution that roughly covers the mapped quadrilate
Apply a bilinear interpolation in that resolution,

Or find the two surrounding resolutions and apply a trilinear
interpolation (also along the resolution axis)

I

pixel space texture space

pixel comer’s
translation

—>u S

Figure 5.13. On the left its view of a texture. On the right is

the projection of the pix

Texture Minification

Multiple textures in a single pixel
Solution:

Nearest neighbour

Bilinear blending Mipmapping

What's Missing?

What's the difference between a real
brick wall and a photograph of the
wall texture-mapped onto a plane?

What happens
if we change
the lighting or
the camera
position?

Bump Mapping

Use textures to alter the surface normal
Does not change the actual shape of the surface
Just shaded as if it were a different shape

D

Swirly Bump Map

Sphere w/Diffuse Texture Sphere w/Diffuse Texture & Bump Map

Bump Mapping

Treat the texture as a single-valued height function

Compute the normal from the partial derivatives in
the texture

Do the lighting computation per pixel

Another Bump Map Example

AEEEEEER
EEEEEEER
Czlinderw Diffuse Texture MBE Czlinderw exture MBE & BumB MBE
Computing the normals ComputingPu andPv
/ Fun x Py) — Fy(n x Pu) s " Do this for every triangle: =
n =n+] P AV2vl=v2-vl, Av3vli=v3-vi \
= Ac2cl=c2-cl, Ac3cl=c3-cl ‘ \

* nthe normal vector at the surfe.__

* n’ the updated normal vector

» Pu, Pv are partial derivatives of
the surface in the u and v
direction

* Fu, Fv are the gradients of the
bump map along the u and v axce
in the bump texture

Av2vl1Ac3c], - Av3vlAc2cl,

Pu |
[pv :{AvslelzcluMszlecstV] el \
M <
M =Ac2cl Ac3cl, —Ac3cl, Ac2cl,
e v1,v2,v3: 3D coordinates

* cl1,c2,c3: texture coordinates
. http:_//www.bla_cksmith-

v3c3

tign.

p

Some more examples

X SimpleExample

Some more examples

BEX]

X SimpleExample

Some more examples

X SimpleExample

Emboss Bump Mappin
Real bump mapping uses per-pixel lighting
Li hting cchu ation at each pixel based on
erturbed normal vectors
Computationally expensive

Emboss bump maPplngs a hack
Diffuse lighting only, no specular component
Can use per vertex lighting
Less computation

Diffuse Lighting Calculation

C = (L*N) x DI x Dm

L is light vector

N is normal vector

Dl is light diffuse color

Dmis material diffuse color

Bump mapping changeéséper pixel
Emboss bump mapping approximagkesN)

Approximate diffuse factor LeN

Texture map represent height field
[0,1] height represents range of bump function
First derivative represents slope
mincreases/decreases base diffuse fdedor
(Fd+m) approximategL+N) per pixel

Compute the Bump

Orlglﬁ_?é)bump Original bu 1) perturbed

tOWa?S Igplt source

brightens image

L
darkens image
L

Subtract original bump
from secondH1-HO)

Approximate derivative

Embossing approximates derivative
Lookup heightHO at point(s,t)

ook FIANEH 2L poIDkSlgy perturbed
s%ﬁraot original heightlO from perturbed height
di]j‘%rence represents instantaneous stopéll1-

|

Bump Mapping: Shift And Subtract Image (Ermboss)

Compute the Lighting

Evaluate fragment color Cf
Cf = (L*N) x DI x Dm
(LeN) Od(Fd + (H1-H0))
Dm x DI encoded in surface texture color
Cf = (Fd + (H1-H0)) x Ct

Required Operations

Calculate texture coordinate offsets, At
Calculate diffuse factdrd
B?_th are derived from norm&l and light vector

Only done per vertex
Computation of H1-HO done per pixel

Calculate Texture Offsets

Rotate light vector into normal space
Need Normal coordinate system
Dt\a/g\é?ogoordinate system from normal and “up”

Normal is z-axis)
Cross product is x-axis

Throw away up vector, derive y-axis as cross product
of X- and"l %—ages ¥ P

Build 3x3 matrix from axes
Transform light vector into Normal space

/

_—

Transforming the coordinates

AL oK
R,: il jl kl ,Rzz i2 j2 kZ
S B G
R..=RR"
)1\14 j2
kz‘\(
1 I N
k i2

Calc Texture Offsets (cont'd)

Use normal-space light vector for offsets
L'=T(L) : T is the transformation
Use L'x, L'y for 4s, At
Use L’z for diffuse factor (Fd)
If light vector is near normal, L'x, L'y are small
If fagrgte vector is near tangent plane, L'x and L'y are

What's Missing?

There are no bumps on
the silhouette of a
bump-mapped object

Displacement Mapping

Use the texture map to actually move the surface point

The geometry must be displaced before visibility is
determined

Transparency

Sometimes we want to render transparent objec

=3

We blend the colour of the objects along the saay

Apply alpha blending

Sorting by the depth |
Alpha First, you need to save the depth and colourlof jal
Another variable called alpha is defined here the frggme_:nts that will be projected onto the spme
This describes the opacity pixel in a list
Alpha = 1.0 means iully opaque Then blend the colour from back towards the frgnt
Alpha = 0.0 means fully transparent)
The colours of overlapping fragments are blen
follows:
Co= aCs+ (10) Cd
Cs: colour of the transparentol
colour before blending, dds tt =
result of blending g
Do this for all the pixels L
Sortmg th frag } data by the '
% TRel- ga Readings
#include <algorithm>
« Blinn, "Simulation of Wrinkled Surfaces", Computer,
gtruct Fraginfo Graphlcs (Proc. Siggraph), Vol. 12, No.'3, August 1978, pp
" foat Colo(a); . Real tlme Rendering, Chapter 5,1-5.2
bool PixellnfoSortPredicate(const Pixellnfo * d1, const Pixellnfo * d2) .
return d1->z < d2->z;

main()

Fraginfo fL,{2,f3; . htt :/ldevelo er nvidia.com/object/emboss_b

flz=1102=-2132=-5 p_mapping.html

vector <Fraginfo> flist ;

flist.push_back(f1); flist.push_back(f2) ; flist.push_back(f3);
}

