
10/19/2010

1

Computer Graphics Inf4/MSc

Computer Graphics

Lecture 7

Texture Mapping, Bump-mapping,
Transparency

Computer Graphics Inf4/MSc

2

Today

• Texture mapping
– Anti-aliasing techniques

• Bump mapping

• Transparency

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Computer Graphics Inf4/MSc

3

Aliasing

• Happens when
– The camera is zoomed too much into the textured

surface (magnification)
– Several texels covering a pixel’s cell (minification)

Computer Graphics Inf4/MSc

4

Texture Magnification
• Zooming into a surface with a texture too much
• One texel covering many pixels

Computer Graphics Inf4/MSc

5

Texture Magnification
• Methods to determine the color of each pixel

– Nearest neighbour (using the colour of the
closest texel)

– Bilinear interpolation (linearly interpolating the
colours of the surrounding texels)

– NN BI

Computer Graphics Inf4/MSc

6

Bilinear Interpolation

– (pu,pv) : the pixel centre mapped into the texture space
– b(pu,pv) : the colour at point pu, pv
– t(x,y) : the texel colour at (x,y)
– u = pu – (int)pu, v = pv - (int)pv

10/19/2010

2

Computer Graphics Inf4/MSc

7

Texture Minification
• Many texels covering a pixel’s cell
• Results in aliasing (remember Nyquist limit)

• The artifacts are even more noticeable when the
surface moves

• Solution
– Mipmapping

Computer Graphics Inf4/MSc

8

MIP map
Multum In Parvo = Many things in a small place

Produce a texture of multiple resolutions
Switch the resolution according to the number of texels in one
pixel
Select a level that the ratio of the texture and the pixel is 1:1

Computer Graphics Inf4/MSc

9

Selecting the resolution in
Mipmap

Map the pixel corners to the texture space
Find the resolution that roughly covers the mapped quadrilateral
Apply a bilinear interpolation in that resolution,
Or find the two surrounding resolutions and apply a trilinear
interpolation (also along the resolution axis)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Computer Graphics Inf4/MSc

10

Texture Minification
• Multiple textures in a single pixel
• Solution:

– Nearest neighbour Bilinear blending Mipmapping

Computer Graphics Inf4/MSc

What's Missing?
• What's the difference between a real

brick wall and a photograph of the
wall texture-mapped onto a plane?

• What happens
if we change
the lighting or
the camera
position?

Computer Graphics Inf4/MSc

Bump Mapping
• Use textures to alter the surface normal

– Does not change the actual shape of the surface
– Just shaded as if it were a different shape

Sphere w/Diffuse Texture
Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

10/19/2010

3

Computer Graphics Inf4/MSc

Bump Mapping
• Treat the texture as a single-valued height function

• Compute the normal from the partial derivatives in
the texture

• Do the lighting computation per pixel

Computer Graphics Inf4/MSc

Another Bump Map Example

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

Computer Graphics Inf4/MSc

Computing the normals

• n the normal vector at the surface
• n’ the updated normal vector
• Pu, Pv are partial derivatives of

the surface in the u and v
direction

• Fu, Fv are the gradients of the
bump map along the u and v axes
in the bump texture

Computer Graphics Inf4/MSc

Computing Pu and Pv
• Do this for every triangle:

• v1,v2,v3 : 3D coordinates
• c1,c2,c3 : texture coordinates
• http://www.blacksmith-

studios.dk/projects/downloads/tangent_matrix_derivation.ph
p

vuvu

vu

vv

M
M

c
M

c

∆c2c1c1∆cc1∆c∆c2c1

c1v1∆∆vc1v1∆1∆v

c1v1∆∆v∆v2v1∆c3c1

Pv

Pu

c1-c3∆c3c1c1-c2∆c2c1

v1vv1∆vv1v2∆v2v1

33

3223

23

,

33 ,

−=

















−

−

=








==
−=−=

Computer Graphics Inf4/MSc

Some more examples
Computer Graphics Inf4/MSc

Some more examples

10/19/2010

4

Computer Graphics Inf4/MSc

Some more examples
Computer Graphics Inf4/MSc

Emboss Bump Mapping
Real bump mapping uses per-pixel lighting

Lighting calculation at each pixel based on
perturbed normal vectors

Computationally expensive

Emboss bump mapping is a hack
Diffuse lighting only, no specular component
Can use per vertex lighting
Less computation

Computer Graphics Inf4/MSc

Diffuse Lighting Calculation

C = (L•N) × Dl × Dm

L is light vector
N is normal vector
Dl is light diffuse color
Dm is material diffuse color
Bump mapping changes N per pixel
Emboss bump mapping approximates (L•N)

Computer Graphics Inf4/MSc

Approximate diffuse factor L•N

Texture map represent height field
[0,1] height represents range of bump function
First derivative represents slope m
m increases/decreases base diffuse factor Fd
(Fd+m) approximates (L•N) per pixel

Computer Graphics Inf4/MSc

Compute the Bump

Original bump (H0) overlaid
with second bump (H1) perturbed
toward light source

Original bump
(H0)

Subtract original bump

from second (H1-H0)

brightens image

darkens image

Computer Graphics Inf4/MSc

Approximate derivative

Embossing approximates derivative
Lookup height H0 at point (s,t)
Lookup height H1 at point slightly perturbed

toward light source (s+∆s, t+∆t)
subtract original height H0 from perturbed height

H1
difference represents instantaneous slope m=H1-

H0

10/19/2010

5

Computer Graphics Inf4/MSc

Compute the Lighting

Evaluate fragment color Cf
Cf = (L•N) × Dl × Dm

(L•N) ≅ (Fd + (H1-H0))

Dm × Dl encoded in surface texture color Ct

Cf = (Fd + (H1-H0)) × Ct

Computer Graphics Inf4/MSc

Required Operations

Calculate texture coordinate offsets ∆s, ∆t
Calculate diffuse factor Fd
Both are derived from normal N and light vector

L
Only done per vertex
Computation of H1-H0 done per pixel

Computer Graphics Inf4/MSc

Calculate Texture Offsets

Rotate light vector into normal space
Need Normal coordinate system
Derive coordinate system from normal and “up”

vector
Normal is z-axis
Cross product is x-axis
Throw away up vector, derive y-axis as cross product

of x- and z-axes
Build 3x3 matrix from axes
Transform light vector into Normal space

Computer Graphics Inf4/MSc

1
221

222

222

222

2

111

111

111

1

1

,

−
→ =

















=
















=

RRR

kji

kji

kji

R

kji

kji

kji

R

zzz

yyy

xxx

zzz

yyy

xxx

Transforming the coordinates

1i

1j

1k 2i

2j
2k

Computer Graphics Inf4/MSc

Calc Texture Offsets (cont’d)

Use normal-space light vector for offsets
L’ = T(L) : T is the transformation
Use L’x, L’y for ∆s, ∆t
Use L’z for diffuse factor (Fd)

If light vector is near normal, L’x, L’y are small
If light vector is near tangent plane, L’x and L’y are

large

∆s, ∆t

L’

Computer Graphics Inf4/MSc

What's Missing?

• There are no bumps on
the silhouette of a
bump-mapped object

10/19/2010

6

Computer Graphics Inf4/MSc

Displacement Mapping

• Use the texture map to actually move the surface point

• The geometry must be displaced before visibility is
determined

Computer Graphics Inf4/MSc

32

Transparency
Sometimes we want to render transparent objects

We blend the colour of the objects along the same ray

Apply alpha blending

Computer Graphics Inf4/MSc

33

Alpha

Another variable called alpha is defined here
This describes the opacity
Alpha = 1.0 means fully opaque
Alpha = 0.0 means fully transparent

α = 1 α = 0.5 α = 0.2

Computer Graphics Inf4/MSc

34

Sorting by the depth
First, you need to save the depth and colour of all

the fragments that will be projected onto the same
pixel in a list

Then blend the colour from back towards the front

The colours of overlapping fragments are blended as
follows:
Co = α Cs + (1-α) Cd

Cs : colour of the transparent object, Cd is the pixel
colour before blending, Co is the new colour as a
result of blending

Do this for all the pixels

Computer Graphics Inf4/MSc

Sorting the fragment data by the
depth – use stl::sort

#include <algorithm>

struct FragInfo
{

float z;
float color[3];

};

bool PixelInfoSortPredicate(const PixelInfo * d1, const PixelInfo * d2)
{

return d1->z < d2->z;
}

main()
{

FragInfo f1,f2,f3;

f1.z = 1; f2.z = -2; f3.z = -5
vector <FragInfo> flist ;

flist.push_back(f1); flist.push_back(f2) ; flist.push_back(f3);

std::sort(flist.begin(), flist.end(), PixelInfoSortPredicate);

}

Computer Graphics Inf4/MSc

36

Readings
• Blinn, "Simulation of Wrinkled Surfaces", Computer

Graphics, (Proc. Siggraph), Vol. 12, No. 3, August 1978, pp.
286-292.

• Real-time Rendering, Chapter 5,1-5.2

• http://www.blacksmith-
studios.dk/projects/downloads/tangent_matri
x_derivation.php

• http://developer.nvidia.com/object/emboss_b
ump_mapping.html

