7
 ALKENES AND ALKYNES I:
 PROPERTIES AND SYNTHESIS.
 ELIMINATION REACTIONS OF ALKYL HALIDES

SOLUTIONS TO PROBLEMS

7.1 (a) (E)-1-Bromo-1-chloro-1-pentene or (E)-1-Bromo-1-chloropent-1-ene
(b) (E)-2-Bromo-1-chloro-1-iodo-1-butene or (E)-2-Bromo-1-chloro-1-iodobut-1-ene
(c) (Z)-3,5-Dimethyl-2-hexene or (Z)-3,5-Dimethylhex-2-ene
(d) (Z)-1-Chloro-1-iodo-2-methyl-1-butene or (Z)-1-Chloro-1-iodo-2-methylbut-1-ene
e) ($Z, 4 S$)-3,4-Dimethyl-2-hexene or ($Z, 4 S$)-3,4-Dimethylhex-2-ene
f) (Z,3S)-1-Bromo-2-chloro-3-methyl-1-hexene or ($Z, 3 S$)-1-Bromo-2-chloro-3-methylhex-1-ene

7.3 (a), (b)

(c) Yes, because hydrogenation converts each alkene into the same product.

P1: PBU/OVY	P2: PBU/OVY	QC: PBU/OVY	T1: PBU
JWCL234-07	JWCL234-Solomons-v1		Printer: Bind Rite
$21: 37$			

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 107

(d)
 $>\mathrm{H}_{>}^{\mathrm{H}} \gg$

(trisubstituted)
(disubstituted)
(monosubstituted)
Notice that this predicted order of stability is confirmed by the heats of hydrogenation. 2-Methyl-2-butene evolves the least heat; therefore, it is the most stable. 3-Methyl-1-butene evolves the most heat; therefore, it is the least stable.
(e)

cis-2-Pentene

trans-2-Pentene
(f) Order of stability: trans-2-pentene $>$ cis-2-pentene $>$ 1-pentene
7.4 (a) 2,3-Dimethyl-2-butene would be the more stable because the double bond is tetrasubstituted. 2-Methyl-2-pentene has a trisubstituted double bond.
(b) trans-3-Hexene would be the more stable because alkenes with trans double bonds are more stable than those with cis double bonds.
(c) cis-3-Hexene would be more stable because its double bond is disubstituted. The double bond of 1-hexene is monosubstituted.
(d) 2-Methyl-2-pentene would be the more stable because its double bond is trisubstituted. The double bond of trans-2-hexene is disubstituted
7.5 The location of IR absorptions between $600 \mathrm{~cm}^{-1}$ and $1000 \mathrm{~cm}^{-1}$ due to out-of-plane bending of alkene $\mathrm{C}-\mathrm{H}$ bonds can be the basis of differentiation.
(a) 2-Methyl-2-pentene, $\sim 800 \mathrm{~cm}^{-1}$ 2,3-Dimethyl-2-butene, no alkene C - H bonds
(b) cis-3-Hexene, $650-750 \mathrm{~cm}^{-1}$ trans-3-Hexene, $\sim 960 \mathrm{~cm}^{-1}$
(c) 1-Hexene, $\sim 900 \mathrm{~cm}^{-1}$ and $\sim 1000 \mathrm{~cm}^{-1}$ cis-3-Hexene, 650-750 cm ${ }^{-1}$
(d) trans-2-Hexene, $\sim 960 \mathrm{~cm}^{-1}$ 2-Methyl-2-pentene, $\sim 800 \mathrm{~cm}^{-1}$
7.6

| P1: PBU/OVY | P2: PBU/OVY | QC: PBU/OVY | T1: PBU |
| :--- | :--- | :--- | ---: |\quad Printer: Bind Rite 1

108 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
7.7 (a)

(monosubstituted
less stable)
more stable)
Major product
Minor product
(b)

(tetrasubstituted, more stable)
Major product

(disubstituted
less stable)
Minor product
$7.8 t$-BuOK in t-BuOH
7.9 An anti coplanar transition state allows the molecule to assume the more stable staggered conformation,

whereas a syn coplanar transition state requires the molecule to assume the less stable eclipsed conformation.

7.10 cis-1-Bromo-4-tert-butylcyclohexane can assume an anti coplanar transition state in which the bulky tert-butyl group is equatorial.

The conformation (above), because it is relatively stable, is assumed by most of the molecules present, and, therefore, the reaction is rapid.

On the other hand, for trans-1-bromo-4-tert-butylcyclohexane to assume an anti coplanar transition state, the molecule must assume a conformation in which the large tert-butyl group is axial:

Such a conformation is of high energy; therefore, very few molecules assume this conformation. The reaction, consequently, is very slow.
7.11 (a) Anti coplanar elimination can occur in two ways with the cis isomer.

cis-1-Bromo-2-methylcyclohexane
(b) Anti coplanar elimination can occur in only one way with the trans isomer.

trans-1-Bromo-2-methylcyclohexane
7.12

(b) By donating a proton to the -OH group of the alcohol in step (1), the acid allows the loss of a relatively stable, weakly basic, leaving group $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in step (2). In the absence of an acid, the leaving group would have to be the strongly basic OH^{-}ion, and such steps almost never occur.
7.13

1°

2°

3°

Order of increasing case of dehydration
7.14

(2)

1° Carbocation Transition state 3° Carbocation
[Steps (2) and (3), ionization and rearrangement, may occur simultaneously.]
(4)

\qquad

2-Methyl-2-butene

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 111

2-Methyl-1-butanol

2-Methyl-2-butene

3-Methyl-1-butanol

2-Methyl-2-butene
7.16 HO

112 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS

7.17 (a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{NaNH}_{2} \longrightarrow$ No reaction

(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{NaNH}_{2} \longrightarrow$ No reaction

7.18

(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBr}_{2} \xrightarrow[\text { mineral oil, heat }]{\text { (1) } 3 \mathrm{NaNH}_{2}} \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$ (2) $\mathrm{NH}_{4}{ }^{+}$
(c) $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br} \xrightarrow{[\text { same as (b)] }} \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$

7.20

7.23 Route 1

Route 2

Route 3

| P1: PBU/OVY | P2: PBU/OVY | QC: PBU/OVY | T1: PBU |
| :--- | :--- | :--- | ---: |\quad Printer: Bind Rite 1

114 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS

(Note that alkyl halide is branched at the carbon adjacent to the one which bears the halogen.
Neither would $\mathrm{Cl}_{\mathrm{X}}^{+}$ secondary. Both of these routes would lead to elimination instead of substitution.)
(b) For any pair of reactants above that is a feasible retrosynthetic disconnection, the steps for the synthesis would be

7.25 (a) We designate the position of the double bond by using the lower number of the two numbers of the doubly bonded carbon atoms, and the chain is numbered from the end nearer the double bond. The correct name is trans-2-pentene.

$$
5 \underbrace{}_{4} 1 \text { not } 1 \underbrace{}_{2}
$$

| P1: PBU/OVY | P2: PBU/OVY | QC: PBU/OVY | T1: PBU |
| :--- | :---: | :---: | ---: |\quad Printer: Bind Rite \mid

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 11
 115

(b) We must choose the longest chain for the base name. The correct name is 2-methylpropene.

(c) We use the lower number of the two doubly bonded carbon atoms to designate the position of the double bond. The correct name is 1-methylcyclohexene.

(d) We must number the ring starting with the double bond in the direction that gives the substituent the lower number. The correct name is 3-methylcyclobutene

(e) We number in the way that gives the double bond and the substituent the lower number. The correct name is (Z)-2-chloro-2-butene or (Z)-2-chlorobut-2-ene.

(f) We number the ring starting with the double bond so as to give the substituents the lower numbers. The correct name is 3,4-dichlorocyclohexene.

7.26 (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

m

(1)

116 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
7.27
(a)

(2Z,4R)-4-Bromo-2-hexene or
(2Z,4R)-4-Bromohex-2-ene

($2 E, 4 R$)-4-Bromo-2-hexene
or
(2E,4R)-4-Bromohex-2-ene
(b)

(c) C

(2E,4S)-2,4-Dichloro-2-pentene
or
(2E,4S)-2,4-Dichloropent-2-ene

($2 Z, 4 S$)-4-Bromo-2-hexene
or
$(2 Z, 4 S)$-4-Bromohex-2-ene

($2 E, 4 S$)-4-Bromo-2-hexene
($2 E, 4 S$)-4-Bromohex-2-ene
(3S,4Z)-3-Chloro-1,4-hexadiene
or
$(3 S, 4 Z)$-3-Chlorohexa-1,4-diene
$(3 S, 4 E)$-3-Chlorohexa-1,4-diene

| P1: PBU/OVY | P2: PBU/OVY | QC: PBU/OVY | T1: PBU |
| :--- | :---: | :---: | :---: |\quad Printer: Bind Rite \mid

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 117
(d)

$3 R, 4 Z$)-5-Bromo-3-chloro-4-
hexen-1-yne
or
(3R,4Z)-5-Bromo-3-chlorohex-4-en-1-yne

(3S,4Z)-5-Bromo-3-chloro-4 hexen-1-yne
(3S,4Z)-5-Bromo-3-chlorohex-4-en-1-yne

(3R,4E)-5-Bromo-3-chloro-4-
hexen-1-yne
or
($3 R, 4 E$)-5-Bromo-3-chlorohex-
4-en-1-yne

(3S,4E)-5-Bromo-3-chloro-4-hexen-1-yne
(3S,4E)-5-Bromo-3-chlorohex-
4-en-1-yne

An IUPAC rule covers those cases in which a double bond and a triple bond occur in the same molecule:

Numbers as low as possible are given to double and triple bonds as a set, even though this may at times give "-yne" a lower number than "-ene." If a choice remains, preference for low locants is given to the double bonds.*
*International Union of Pure and Applied Chemistry, http://www.acdlabs.com/iupac/ nomenclature/93/r93_280.htm (accessed March 2003).
7.28 (a) (E)-3,5-Dimethyl-2-hexene or (E)-3,5-dimethylhex-2-ene
(b) 4-Chloro-3-methylcyclopentene
(c) 6-Methyl-3-heptyne or 6-methylhept-3-yne
(d) 1-sec-Butyl-2-methylcyclohexene or 1-methyl-2-(1-methylpropyl)cyclohexene
(e) $(4 Z, 3 R)$-3-Chloro-4-hepten-1-yne or $(4 Z, 3 R)$-3-chlorohept-4-en-1-yne
(f) 2-Pentyl-1-heptene or 2-pentylhept-1-ene
7.29 1-Pentanol $>$ 1-pentyne $>$ 1-pentene $>$ pentane (See Section 3.8 for the explanation.)

118 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS

Synthesis
7.30

(b)
 $\xrightarrow[\widehat{\mathrm{OH}}^{\mathrm{ONa}}]{\stackrel{\sim}{\mathrm{OH}}}$
(c)

(f)

7.31 (a)

(b)

(c)

7.32 (a) $\equiv \frac{\mathrm{NaNH}_{2}}{\text { liq. } \mathrm{NH}_{3}} \equiv \stackrel{-}{\mathrm{Na}^{+} \xrightarrow[(-\mathrm{NaI})]{\stackrel{\mathrm{CH}_{3}}{ } \mathrm{~S}_{\mathrm{I}}}} \overline{=}$
(b) $\equiv \underset{\text { liq. } \mathrm{NH}_{3}}{\mathrm{NaNH}_{2}} \equiv:^{-} \mathrm{Na}^{+} \xrightarrow[(-\mathrm{NaBr})]{\stackrel{\text { Br }}{\longrightarrow}} \Longrightarrow$
(c)

$\xrightarrow[(-\mathrm{NaI})]{\stackrel{\mathrm{Na}^{+}}{\mathrm{CH}_{3}} \xrightarrow{\mathrm{~S}}}$ \qquad
from (a)
(d) $\underset{[\text { from (c)] }]}{=} \frac{\mathrm{Ni}_{2} \mathrm{~B}(\mathrm{P}-2)}{}$
(e) $\underset{\text { [from (c)] }}{=} \xrightarrow[(2) \quad \mathrm{NH}_{4} \mathrm{Cl}]{\left(\text { (1) } \mathrm{Li}, \widehat{\mathrm{NH}_{2}}\right.}$
(f)

(g) $\overbrace{[\text { from (f)] }}^{=} \frac{\mathrm{NaNa}^{+}}{\stackrel{\mathrm{NaNH}_{2}}{\text { liq. } \mathrm{NH}_{3}}}$
(h)
[from (g)]
 $\underset{\substack{\text { (j) } \\ \text { [from (a)] }}}{\text { [from (g)] }} \underset{\substack{-\mathrm{NaBr})}}{\substack{\mathrm{Br} \\ \text { liq. } \mathrm{NH}_{3}}} \underset{ }{\mathrm{NaNH}_{2}}$

(k)

7.33 We notice that the deuterium atoms are cis to each other, and we conclude, therefore, that we need to choose a method that will cause a syn addition of deuterium. One way would be to use D_{2} and a metal catalyst (Section 7.14)

120 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
7.34
(a)

(b)
 $\mathrm{NH}_{4} \mathrm{Cl}$
(c)

(d)

Dehydrohalogenation and Dehydration

7.36 Dehydration of trans-2-methylcyclohexanol proceeds through the formation of a carbocation (through an E1 reaction of the protonated alcohol) and leads preferentially to the more stable alkene. 1-Methylcyclohexene (below) is more stable than 3-methylcyclohexene (the minor product of the dehydration) because its double bond is more highly substituted.

Dehydrohalogenation of trans-1-bromo-2-methylcyclohexane is an E2 reaction and must proceed through an anti coplanar transition state. Such a transition state is possible only for the elimination leading to 3-methylcyclohexene (cf. Review Problem 7.11)

7.37 (a)

major
minor
(b)

only product
(c)
(d)

major
(e)

major
$+$
minor

minor

(f)

only product
7.38 (a)

c)
 $+$
major
minor
(+ stereoisomer)
(b)

(d)

$(+$ stereoisomer $)$

122 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
(e)

7.39 (a)

(b)

(c)

(d)

(e)

$7.41 \underset{\substack{\text { heat } \\ \text { (a) }}}{\mathrm{OH}}$

(c)

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
 123

(d)

rearrangement
(
(e)

7.42 The alkene cannot be formed because the double bond in the product is too highly strained. Recall that the atoms at each carbon of a double bond prefer to be in the same plane.
7.43 Only the deuterium atom can assume the anti coplanar orientation necessary for an E2 reaction to occur

7.44 (a) A hydride shift occurs

(b) A methanide shift occurs.

| P1: PBU/OVY | P2: PBU/OVY | QC: PBU/OVY | T1: PBU |
| :--- | :--- | :--- | :--- |\quad Printer: Bind Rite 1

124 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS
(c) A methanide shift occurs.

(d) The required anti coplanar transition state leads only to (E) alkene:

Index of Hydrogen Deficiency
7.45 (a) Caryophyllene has the same molecular formula as zingiberene (Review Problem 4.21); thus it, too, has an index of hydrogen deficiency equal to 4 . That 1 mol of caryophyllene absorbs 2 mol of hydrogen on catalytic hydrogenation indicates the presence of two double bonds per molecule.
(b) Caryophyllene molecules must also have two rings. (See Review Problem 23.2 for the structure of caryophyllene.)
7.46 (a) $\mathrm{C}_{30} \mathrm{H}_{62}=$ formula of alkane
$\underline{\mathrm{C}_{30} \mathrm{H}_{50}}=$ formula of squalene
$\mathrm{H}_{12}=$ difference $=6$ pairs of hydrogen atoms
Index of hydrogen deficiency $=6$
(b) Molecules of squalene contain six double bonds.
(c) Squalene molecules contain no rings. (See Review Problem 23.2 for the structural formula of squalene.)

Structure Elucidation

7.47 That \mathbf{I} and \mathbf{J} rotate plane-polarized light in the same direction tells us that \mathbf{I} and \mathbf{J} are not enantiomers of each other. Thus, the following are possible structures for \mathbf{I}, \mathbf{J}, and \mathbf{K}. (The enantiomers of \mathbf{I}, \mathbf{J}, and \mathbf{K} would form another set of structures, and other answers are possible as well.)

Printer: Bind Rite
December 8, 2009 21:37

7.48 The following are possible structures:

(other answers are possible as well)

Challenge Problems

7.49


```
P1:PBU/OVY P2: PBU/OVY QC:PBU/OVY T1:PBU

7.50 (a) We are given (Section 7.3A) the following heats of hydrogenation:
\[
\begin{aligned}
& \text { cis-2-Butene }+\mathrm{H}_{2} \xrightarrow{\mathrm{Pt}} \text { butane } \Delta H^{\circ}=-120 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { trans-2-Butene }+\mathrm{H}_{2} \xrightarrow{\mathrm{Pt}} \text { butane } \Delta H^{\circ}=-115 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { cis-2-Butene } \longrightarrow \text { trans-2-butene } \Delta H^{\circ}=-5.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\]

Thus, for
(b) Converting cis-2-butene into trans-2-butene involves breaking the \(\pi\) bond. Therefore, we would expect the energy of activation to be at least as large as the \(\pi\)-bond strength, that is, at least \(264 \mathrm{~kJ} \mathrm{~mol}^{-1}\).
(c)

7.51 (a) With either the \((1 R, 2 R)\) - or the \((1 S, 2 S)\)-1,2-dibromo-1,2-diphenylethane, only one conformation will allow an anti coplanar arrangement of the H - and Br -. In either case, the elimination leads only to ( \(Z\) )-1-bromo-1,2-diphenylethene:

(1R,2R)-1,2-Dibromo-1,2-diphenylethane
(Z)-1-Bromo-1,2-diphenylethene (anti coplanar orientation of \(\mathrm{H}-\) and -Br )

B:-
(1S,2S)-1,2-Dibromo-1,2-diphenylethane (anti coplanar orientation of \(\mathrm{H}-\) and -Br )
\begin{tabular}{|lllr} 
P1: PBU/OVY & P2: PBU/OVY & QC: PBU/OVY & T1: PBU
\end{tabular}\(\quad\) Printer: Bind Rite 1

ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS 127
b) With ( \(1 R, 2 S\) )-1,2-dibromo-1,2-diphenylethane, only one conformation will allow an anti coplanar arrangement of the \(\mathrm{H}-\) and \(\mathrm{Br}-\). In either case, the elimination leads only to (E )-1-bromo-1,2-diphenylethene:

\((1 R, 2 S)\)-1,2-Dibromo-1,2-diphenylethane (E)-1-Bromo-1,2-diphenylethene (anti coplanar orientation of H and Br )
(c) With ( \(1 R, 2 S\) )-1,2-dibromo-1,2-diphenylethane, only one conformation will allow an anti coplanar arrangement of both bromine atoms. In this case, the elimination leads only to ( \(E\) )-1,2-diphenylethene

( \(1 R, 2 S\) )-1,2-Dibromo-1,2-diphenylethane ( \(E\) )-1,2-Diphenylethene (anti coplanar orientation of both -Br atoms)
7.52 (a)


(b) No, tetrasubstituted double bonds usually show no \(\mathrm{C}=\mathrm{C}\) stretching absorption in their infrared spectra.
7.53

 \(\xrightarrow{\mathrm{HA}}\)

A
B

7.54 (a) Three
(b) Six
\begin{tabular}{|lcc:c} 
P1: PBU/OVY & P2: PBU/OVY & QC: PBU/OVY & T1: PBU
\end{tabular}\(\quad\) Printer: Bind Rite \(\mid\)

128 ALKENES AND ALKYNES I: PROPERTIES AND SYNTHESIS

QUIZ
7.1 Which conditions/reagents would you employ to obtain the best yields in the following reaction?

(a) \(\mathrm{H}_{2} \mathrm{O} /\) heat

(c) \(\sim_{\mathrm{OK} / \mathrm{OH}_{\mathrm{O}} \text { heat }}\)
(d) Reaction cannot occur as shown
7.2 Which of the following names is incorrect?
(a) 1-Butene
(b) trans-2-Butene
(c) (Z)-2-Chloro-2-pentene
(d) 1,1-Dimethylcyclopenten
(e) Cyclohexene
7.3 Select the major product of the reaction

(a)

(c)

(e)

(b)

(d)

7.4 Supply the missing reagents.

7.5 Arrange the following alkenes in order of decreasing stability. 1-Pentene, cis-2-pentene, trans-2-pentene, 2-methyl-2-butene

7.6 Complete the following synthesis
```

