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Abstract

Surface damage is one of the most problematic power limits in high-power fiber

laser systems. All-fiber Faraday components are demonstrated as a solution to

this problem, since they can be completely fusion-spliced into existing systems,

eliminating all glass-air interfaces. Beam filamentation due to self-focusing places

another limit on the peak power attainable from fiber laser systems. The limits

imposed by this phenomenon are analyzed for the first time.

The concept of an effective Verdet constant is proposed and experimentally

validated. The effective Verdet constant of light propagation in a fiber includes

contributions from the materials in both the core and the cladding. It is measured

in a 25-wt% terbium-doped-core phosphate fiber to be −6.2 rad/(Tm) at 1053

nm, which is six times larger than silica fiber. The result agrees well with Faraday

rotation theory in optical fiber.

A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated.

At the core of each of these components is an all-fiber Faraday rotator made of a 4-

cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the

terbium-doped fiber is measured to be -32 rad/(Tm), which is 27× larger than that

of silica fiber. This effective Verdet constant is the largest value measured to date

in any fiber and is 83% of the Verdet constant of commercially available crystals

used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with

fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is

measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg

grating results in an all-fiber Faraday mirror that rotates the polarization state of

the reflected light by 88± 4◦.

An all-fiber optical magnetic field sensor is also demonstrated. It consists of a

fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-

long section of 56-wt%-terbium-doped silicate fiber with a Verdet constant of -24.5

rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization

fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields

from 0.02 to 3.2 T.

An all-fiber wavelength-tunable laser based on Faraday rotation is proposed.

It consists of an all-fiber wavelength-tunable filter in a conventional fiber laser
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cavity. The filter includes a fiber polarizer and a fiber Faraday mirror in which a

chirped fiber Bragg grating is directly written onto the 65-wt% terbium fiber. The

ytterbium-doped fiber in the laser is gain flattened using a 1030/1090 nm WDM

filter, resulting a net gain ripple that is measured to be less than 0.2 dB from 1047

to 1060 nm. The wavelength tuning range of the resulting fiber laser is therefore

expected to be in this 1047 to 1060 nm range.

Filamentation is one of the nonlinear peak-power-threshold limits in high-power

fiber lasers. Starting from the paraxial wave equation, an analytic expression for

the filamentation threshold in fiber lasers is derived using a perturbation method.

The occurrence of filamentation is determined by the larger of two thresholds, one

of perturbative gain and one of spatial confinement. The threshold value is around

a few megawatts, depending on the parameters of the fiber.



ix

Table of Contents

Foreword 1

Chapter 1

Introduction 2

1.1 Brief Review of High-Power Fiber Lasers . . . . . . . . . . . . . . . 2

1.2 Power-Threshold Limits in High-Power Optical Fiber Lasers . . . . 7

1.2.1 Nonlinear Effects . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1.1 Stimulated Brillouin Scattering . . . . . . . . . . . 7

1.2.1.2 Stimulated Raman Scattering . . . . . . . . . . . . 9

1.2.1.3 Self-Focusing . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Thermal Effects . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2.1 Thermal Fracture . . . . . . . . . . . . . . . . . . . 10

1.2.2.2 Melting . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2.3 Thermal Lensing . . . . . . . . . . . . . . . . . . . 11

1.2.3 Optical Damage . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2

Faraday Effect, Magneto-optical Materials, and Magnet Design 15

2.1 Faraday Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Magneto-Optical Materials . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Diamagnetic Materials . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Paramagnetic Materials . . . . . . . . . . . . . . . . . . . . 20

2.3 Magnet Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



x

Chapter 3

Effective Verdet Constant Model for Optical Fiber 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4

Cleaving and Splicing of Terbium Fiber 36

4.1 Cleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Coupling Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5

All-Fiber Optical Faraday Components 48

5.1 All-Fiber Optical Faraday Isolator and Faraday Mirror . . . . . . . 48

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Terbium Doped Optical Fiber . . . . . . . . . . . . . . . . . 51

5.1.3 All-Fiber Polarizers . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.4 All-Fiber Optical Faraday Isolator . . . . . . . . . . . . . . . 59

5.1.5 All-Fiber Optical Faraday Mirror . . . . . . . . . . . . . . . 61

5.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 All-fiber Optical Magnetic Field Sensor . . . . . . . . . . . . . . . . 67

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 6

All-Fiber Wavelength-Tunable Continuous-Wave Laser 74

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 7

Filamentation Analysis in Large-Mode-Area Fiber Lasers 82



xi

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Theoretical Model and Steady-State Solution . . . . . . . . . . . . . 84

7.3 Linear Stability Analysis and Filament Gain . . . . . . . . . . . . . 87

7.4 Spatio-Temporal Analysis of Filament Gain in Optical Fiber Laser . 89

7.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 8

Conclusion 99

Bibliography 101



xii

List of Tables

4.1 Optimized LDC-200 parameters for terbium fiber cleaving. . . . . . 38

4.2 Optimized Fitel S183PM parameters for terbium fiber splicing. . . . 43

7.1 Parameters for ytterbium-doped fiber laser calculations. . . . . . . . 90



xiii

List of Figures

1.1 Typical dimensions of different laser geometries[4]. . . . . . . . . . . 4

1.2 Double-clad fiber with end pumping and side pumping[2]. . . . . . . 5

1.3 Examples of double-clad fiber structures[4]. . . . . . . . . . . . . . . 6

2.1 Faraday rotation in a magneto-optical crystal. . . . . . . . . . . . . 15

2.2 Excited-state splitting in diamagnetic materials. . . . . . . . . . . . 19

2.3 Excited-state and ground-state splitting in paramagnetic materials. 19

2.4 Comparison of Verdet constant in various rare-earth ions[67]. . . . . 22

2.5 Annular plane used to calculate magnetic field. . . . . . . . . . . . . 23

2.6 Dimensional configuration of a magnet tube. . . . . . . . . . . . . . 24

2.7 Dimensional configuration of a magnet cuboid. . . . . . . . . . . . . 25

2.8 Theoretical (solid) and measured (circle) magnetic density flux dis-

tribution Bz along the center axis z of the N35 magnet cuboid, the

dashed lines represent the physical ends of the magnet. . . . . . . . 26

2.9 Theoretical (solid) and measured (star) magnetic density flux dis-

tribution Bz along the center axis z of the N48 magnet tube, the

dashed lines represent the physical ends of the magnet. . . . . . . . 27

2.10 Contour plot of magnetic field integration to reach 45◦ polarization

rotation as functions of magnet length l and outer radius a2. . . . . 28

3.1 Normalized difference between factors Γ and α for single-mode fiber

as a function of normalized frequency υ. . . . . . . . . . . . . . . . 32

3.2 Experimental configuration of the Faraday rotation measurement. . 32

3.3 Measured (star) rotation angle and corresponding curve fit (solid)

at 1053 nm along the center axis z. . . . . . . . . . . . . . . . . . . 33

4.1 Fitel S323A Precision Cleaver . . . . . . . . . . . . . . . . . . . . . 37

4.2 Vytran LDC-200 Cleaver . . . . . . . . . . . . . . . . . . . . . . . . 37



xiv

4.3 Endface image of cleaved 65 wt% Tb fiber . . . . . . . . . . . . . . 39

4.4 Endface interferogram of cleaved 65 wt% Tb fiber . . . . . . . . . . 40

4.5 Endface image of mechanically cleaved standard silica fiber . . . . . 41

4.6 Schematic of fusion splice and mechanical splice . . . . . . . . . . . 41

4.7 Fitel S183PM fusion splicer . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Pictorially explanation of the Arc Mid Offset . . . . . . . . . . . . . 43

4.9 Fusion splice images of different fibers: (a) silica-to-silica, (b) Tb-

to-silica (good), (c) Tb-to-silica (bad). . . . . . . . . . . . . . . . . 45

4.10 Fresnel transmittance as a function of n2/n1. The circle represents

the case of Tb and silica fibers. . . . . . . . . . . . . . . . . . . . . 46

4.11 Coupling efficiency as a function of ω2/ω1. . . . . . . . . . . . . . . 47

5.1 Operation of a Faraday isolator illustrated in (a) the forward direc-

tion and (b) the backward direction. . . . . . . . . . . . . . . . . . 49

5.2 Operation of a Faraday mirror illustrated in (a) the forward direc-

tion and (b) the backward direction. . . . . . . . . . . . . . . . . . 50

5.3 Measured rotation angle (circle) and corresponding curve fit (solid)

of 56 wt% Tb-doped fiber at a wavelength of 1053 nm as a function

of the magnet location along the fiber axis z. . . . . . . . . . . . . 52

5.4 Theoretical rotation angle of 56 wt% Tb-doped fiber at a wave-

length of 1053 nm as a function of the N35 magnet location along

the fiber axis z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Measured rotation angle (circle) and corresponding curve fit (solid)

of 65 wt% Tb-doped fiber at a wavelength of 1053 nm as a function

of the magnet location along the fiber axis z. . . . . . . . . . . . . . 55

5.6 Measured (dot) and curve fit (line) Verdet constants of the 54 wt%

Tb fiber, 56 wt% Tb fiber, 65 wt% Tb fiber and TGG as a function

of Tb3+ concentration. . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Cross-section structure of the SP1060 fiber. . . . . . . . . . . . . . . 57

5.8 Cross-section image of the SP1060 fiber. . . . . . . . . . . . . . . . 57

5.9 Measured transmission spectra for two orthogonal polarization di-

rections in a 0.3-m-long SP1060 fiber coiled with a 15 cm diameter. 58

5.10 Longitudinal structure of the CSG (Courtesy of Chiral Photonics). . 58



xv

5.11 Measured insertion loss and extinction ratio for CSG (Courtesy of

Chiral Photonics). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.12 Experimental configuration of the first all-fiber Faraday isolator. . . 60

5.13 Experimental configuration of the second all-fiber Faraday isolator. 61

5.14 The commercial all-fiber Faraday isolator. Photo courtesy of Ad-

Value Photonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15 Experimental configuration of the first all-fiber Faraday mirror. . . 63

5.16 Polarization state measurement of the input and output light of the

first Faraday mirror. Triangles and circles are measurement points

of the input and output light, respectively. Dashed and solid lines

are curve-fits of the input and output light, respectively. . . . . . . 64

5.17 Experimental configuration of the second all-fiber Faraday mirror. . 65

5.18 Polarization state measurement of the input and output light of the

second Faraday mirror. Squares and circles are measurement points

of the input and output light, respectively. Dashed and solid lines

are curve-fits of the input and output light, respectively. . . . . . . 66

5.19 Integration of all-fiber Faraday components. . . . . . . . . . . . . . 67

5.20 Sensing principle of the all-fiber Faraday magnet sensor. . . . . . . 69

5.21 Experimental configuration of the all-fiber magnet sensor. . . . . . . 69

5.22 Theoretical (solid) and measured (circle) magnetic density flux dis-

tribution Bz along the center axis z. Dashed lines represent the

magnet ends, and the dotted line represents Bav, the magnetic den-

sity flux averaged over a 2-cm length along the axis z. . . . . . . . . 70

5.23 Measured (circle) and calculated (solid) relative transmission of the

all-fiber magnet sensor. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.24 Measured (circles) and theoretical (solid) Bav as a function of the

z axis. The dashed lines represent the end of the magnet. . . . . . . 71

6.1 Configuration of a general wavelength-tunable fiber laser. . . . . . . 75

6.2 Configuration of the all-fiber wavelength-tunable filter. . . . . . . . 76

6.3 Rotation of polarization states of different wavelengths in the all-

fiber filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Experimental configuration to measure the Yb-doped fiber gain

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xvi

6.5 Measured ASE spectra of the Yb-doped fiber at different pump

currents: 800 mA (solid), 300 mA (dashed), 150 mA (dashed-dot)

and 100 mA (dot). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Experimental configuration used to flatten the Yb-doped fiber gain

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7 Gain-flattened ASE spectrum of the Yb-doped fiber at 200 mA

pump current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Experimental configuration of the reflective all-fiber wavelength-

tunable filter using Tb fiber. . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Experimental configuration of the all-fiber wavelength-tunable laser. 80

6.10 Theoretical calculation of the wavelength tuning as a function of

the magnet location. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 An intense laser beam is focused due to the nonlinear refractive index. 83

7.2 Filamentation is induced by perturbations in a self-focused beam

condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Infrared image of the top of a broad-area gain region in a semicon-

ductor laser, illustrating the effect of filamentation[156] . . . . . . . 84

7.4 The squared second-order bessel solution J2
2 as a function of fiber

radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Normalized filament gain versus normalized filament spacing and

frequency for dcore = 100 µm,Ps = 10 KW . . . . . . . . . . . . . . . 91

7.6 Normalized filament gain versus normalized filament spacing and

frequency for dcore = 100 µm,Ps = 10 MW . . . . . . . . . . . . . . 91

7.7 (a) Normalized filament spacing and (b) normalized gain as a func-

tion of the signal peak power for various core diameters: 20 µm (dot-

ted), 50 µm(dashed-dotted), 100 µm(dashed) and 200 µm(solid)

(f = 10 GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Gain threshold power [NA=0.2 (dashed), NA=0.1 (dashed-dotted),

and NA=0.05 (solid with ”+” symbol)] and spatial threshold power

[NA=0.2 (solid), NA=0.1 (dotted), and NA=0.05 (dotted with ”+”

symbol)] as functions of core diameter for three numerical apertures

(f = 10 GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



xvii

7.9 (a) non-normalized (b) normalized filament gain and (c) normalized

filament spacing as a function of the signal peak power for three

different cavity length: 0.5 m(solid), 2 m(dotted) and 4m(dashed-

dotted)(dcore = 100 µm, f = 10 GHz). . . . . . . . . . . . . . . . . 94



1

Foreword

The following individuals are collaborators on the work presented in this thesis:

Prof. John Marciante from the Institute of Optics, Univ. of Rochester, Dr. Shibin

Jiang from AdValue Photonics, and Dr. Jonathan Zuegel from Laboratory for

Laser Energetics, Univ. of Rochester.

In chapter 1, I did the background work, the calculations, and the technical

writing. Prof. Marciante provided guidance on technical issues and writing.

In chapter 2, I did the background work, the calculations, the measurements,

and the technical writing. Prof. Marciante provided guidance on technical issues

and writing.

In chapter 3, I did the calculations, the measurements, and the technical writ-

ing. Dr. Jiang provided the terbium-doped fiber. Prof. Marciante provided

guidance on technical issues and writing.

In chapter 4, I did the background work, developed the splicing and cleaving

processes, and did the technical writing. Dr. Jiang provided the terbium-doped

fiber. Prof. Marciante provided guidance on technical issues and writing.

In chapter 5, I fabricated the devices, developed the measurement technique,

performed the measurements, analyzed the data, and did the technical writing.

Dr. Jiang provided the terbium-doped fibers. Prof. Marciante provided guidance

on technical issues and writing. Prof. Marciante and Dr. Zuegel proposed the

concept of the all-fiber isolator.

In chapter 6, I developed the concept, performed the calculations and mea-

surements, and did the technical writing. Prof. Marciante provided guidance on

technical issues and writing.

In chapter 7, I did the derivation, the calculations, and the technical writing.

Prof. Marciante provided guidance on technical issues and writing.

In chapter 8, I wrote the conclusions with guidance from Prof. Marciante.



2

Chapter 1

Introduction

1.1 Brief Review of High-Power Fiber Lasers

Lasers have become more and more important since their first demonstration by

Maiman in 1960[1]. While originally limited to science and engineering fields, peo-

ple today can find lasers in every corner of human life, for example, in consumer

electronics, medical and cosmetic surgery, communications, avionics, and print-

ing. As a subfield of lasers, high-power fiber lasers are attracting more and more

attention. Due to the advantages of low weight, small size, robustness, high ef-

ficiency, and heat dissipation, high-power fiber lasers will replace chemical lasers,

CO2 lasers, and solid-state lasers in most high-power laser applications. Industrial

welding and soldering, and commercial light detection and ranging (LIDAR) are

fields in which high-power fiber lasers are mostly being applied[2], [3], [4].

The first fiber laser was demonstrated using neodymium-doped fiber, with side

pumping and multi-spatial-mode output, by Snitzer in 1961[5]. In 1973, Stone re-

ported a longitudinally pumped neodymium-doped fiber laser[6]. The longitudinal-

pump technique had higher efficiency than the side-pump technique, and the out-

put beam was a single-spatial-mode. In the next several decades, researchers doped

different rare-earth ions into optical fiber. The first erbium-doped fiber ampli-

fier (EDFA) was demonstrated by Mears in 1987[7]. The EDFA, together with

wavelength-division-multiplexing (WDM), reduced the cost of long-haul commu-

nication systems and promoted the boom of telecommunications at the end of

the 1990’s. Due to its relatively low efficiency, erbium-doped fiber lasers are not
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suitable for high-power applications.

Among the rare-earth ions doped in fiber lasers, neodymium (Nd) was the

first considered as a dopant for high-power fiber lasers, because Nd-doped lasers

have low lasing thresholds due to the four-level energy level structure of Nd3+.

Currently, ytterbium (Yb) is primarily used in high-power fiber lasers. Although

Y b3+ has a quasi-three level energy structure, Y b3+ has a lower quantum defect

than Nd3+, which means a higher lasing efficiency. There is no ion-quenching

effect in Yb-doped fiber lasers, which would reduce the lasing efficiency and induce

self-pulsing phenomena.

Although the first Yb-doped fiber laser was demonstrated by Etzel in 1962[8], it

was not until the 1990s that high-power Yb-doped fiber lasers began to develop in

a dramatic manner. The output power of continuous-wave (CW) high-power Yb-

doped fiber lasers have already evolved from the mW level[9] to the multi-kilowatt

level[10]. This rapid development is due to the optical communication and semi-

conductor industry booms at the end of 1990s. Highly transmissive single-mode

fiber and advanced doping technologies were enabled by the optical communica-

tion industry. The semiconductor industry made high-power laser diodes possible,

which are necessary for fiber laser pumping.

Besides optical fiber, another laser geometry, the thin disk, was proposed by

Giesen in 1994[11]. Both thin disk and optical fiber have been regarded as po-

tential high-power laser geometries to replace rods in solid-state lasers. The most

prominent difference between these two geometries and the rod shape is that they

have a relatively small volume of laser-active material. Fig. 1.1. shows the typical

dimensions of the these three laser geometries[4]. It is clear that the active vol-

umes of the disk and the fiber are approximately the same and are three orders of

magnitude smaller than that of a rod.

The fiber geometry finally stands out from other two competitors because the

surface-to-volume-ratio in optical fiber is much higher than that of the other two

geometries. This feature is especially important in high-power applications, since

the larger this parameter is, the faster the heat generated in the active volume

by pump absorption can be dissipated. Heat is one of the major power-limiting

factors in high-power fiber lasers and will be discussed in the next section.

Another advantage of the fiber geometry is that it has high pump efficiency and
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Figure 1.1: Typical dimensions of different laser geometries[4].

a diffraction-limited output beam. Most high-power fiber lasers use a double-clad

structure. Unlike standard communication fiber, double-clad fiber has a three layer

structure consisting of a core, an inner cladding, and an outer cladding. The laser

beam propagates in the core and the pump light is confined in the inner cladding,

as shown in Fig. 1.2 [2]. The pump light can be coupled into the inner cladding

from the end or side of double-clad fiber. The double-clad structure is especially

suitable for laser diode (LD) pumps which have poor beam quality and can not be

coupled into the fiber core with high efficiency.

The pump light injected into the inner cladding passes the fiber core and in-

teracts with doping ions repeatedly as it travels along the fiber. However, some

of the pump light (in terms of optical rays) will not interact with the fiber core.

Since these helical rays propagate near the inner/outer cladding surface without

crossing the fiber core, the pump-absorption efficiency will inevitably be decreased.

To solve this problem, researchers proposed various asymmetric inner cladding ge-

ometries, as shown in Fig. 1.3 [4]. In such waveguides, pump rays will propagate in

an irregular or chaotic manner, thus increasing the overlap between the pump light
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Figure 1.2: Double-clad fiber with end pumping and side pumping[2].

and the core. Snitzer and Po proposed an acentric core and a rectangular inner

cladding shape in 1988 and 1989, respectively[12],[13]. Zellmer introduced a D-

shaped double-clad fiber in 1995[14], [15]. Muendel proposed a polygon sturcture

in 1996[16]. Digiovanni proposed both star and airhole structures in 1997[17], [18].

There are several popular host materials for optical fiber, such as silica, phos-

phate glass, and fluoride glass. Since the laser output power is inversely pro-

portional to the loss[19], the fiber host material should have a low intrinsic loss.

Owing to the rapid development of the optical communication industry, the loss

of standard silica fiber has been reduced to less than 0.2 dB/km at 1.55 µm. Fur-

thermore, the cost of silica fiber is very low. For these reasons, most high-power

fiber lasers use silica fiber. Phosphate glass can be advantageous when a high

doping concentration of rare-earth ions is required. However, it has limited use in

high-power fiber lasers because the high intrinsic loss will lead to excessive heating

and will eventually melt the fiber[20], [21]. Fluoride glass has two advantages over

silica. Fluoride glass is transparent in the mid-infrared region, whereas common

silica fibers absorb light beyond 2 µm. Since multi-phonon transitions in fluoride

glass are suppressed, the upper-state lifetimes of various rare-earth dopants are

greatly increased[22]. However, fluoride glass is expensive and very fragile. The
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Figure 1.3: Examples of double-clad fiber structures[4].

glass transition temperatures of phosphate and fluoride glass are half that of silica,

which makes these two glass generally incompatible with silica fiber.

Many rare-earth ions are used for fiber laser doping, for example praseodymium

(Pr), neodymium (Nd), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium

(Yb)[23]. The most popular candidate is ytterbium, because it has broad absorp-

tion and emission spectra and very small quantum defect. The quantum defect

is defined as the energy difference between pump and output photons, which is

directly related to the laser efficiency and heating. The quantum defect is only

about 6% when a 1035 nm Yb-doped fiber laser is pumped at 975 nm. In con-

trast, it is 20% for a 1064 nm Nd-doped fiber laser pumped at 808 nm. As a

result of small quantum defect, the optical-to-optical pump-conversion efficiency,

the electrical-to-optical conversion efficiency, and the wall-plug efficiency can reach

70%, 50% and 30%, respectively.

To avoid nonlinear effects in high-power fiber lasers, people often use large-

mode-area (LMA) fibers [24]. Compared with the several-µm mode field diameter

in standard single-mode fiber, the mode field diameter in LMA fibers is tens of

µm. These large core (or mode area) structures are effective in reducing laser light

intensity while maintaining high-power output. Although nonlinear and optical
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damage thresholds are increased in LMA fiber, the output beam quality becomes

worse, because it is very difficult to control the refractive index difference between

the core and inner cladding to less than ∼ 0.05, which is required to maintain

single-mode operation in LMA fibers. Fiber coiling and mode selection tapers are

popular methods to solve this problem. When multimode fiber is coiled, higher-

order modes experience larger loss than the fundamental mode. Therefore, only

the fundamental mode can resonate in the laser cavity[25]. When multimode fiber

is tapered into single-mode fiber, only the fundamental mode can propagate in the

taper region. Higher-order modes are filtered out and the laser can operate in only

a single-mode [26].

High-power fiber lasers are a fruitful field of research. There are many new

techniques and technologies emerging in this field, such as beam combination,

mode-locking, Q-switching, and specialty fibers[27]. Since the objective of this

dissertation is not focused on developing high-power fiber lasers themselves, fun-

damental background will be introduced without covering these specific topics.

1.2 Power-Threshold Limits in High-Power Op-

tical Fiber Lasers

Users of high-power fiber lasers need the output power as large as possible for

applications such as industrial welding and soldering, and commercial LIDAR. The

phenomenon limiting the scaling of high-power fiber lasers include nonlinear effects

[Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS), and

self-focusing], thermal effects (thermal fracture, melting, and thermal lensing), and

optical damage[28], [29]. Beam filamentation induced by self-focusing is a nonlinear

effect limiting the output power that will be discussed in detail in Chapter 7.

1.2.1 Nonlinear Effects

1.2.1.1 Stimulated Brillouin Scattering

In an intense laser beam, the electric field of the beam itself may produce acoustic

vibrations in the medium via electrostriction[30]. Incident optical photons can be
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inelastically scattered by these acoustic vibrations. The scattered photons have

lower optical frequency than the incident photons with the energy difference equal

to that of the acoustic phonon. The scattered light is shifted around 10 GHz and

the Brillouin gain spectrum bandwidth is around 50-100 MHz, determined by the

acoustic phonon lifetime. If the laser beam intensity is strong enough, a portion

of laser beam will be reflected backwards in the optical fiber due to SBS, reducing

the power at the output of the fiber and possibly causing catastrophic damage in

the system. The threshold power level[31] for SBS in a passive fiber is estimated

as

gBPthLeff/Aeff ≈ 21, (1.1)

where Pth is the power threshold, gB is the Brillouin gain, Aeff = πw2 is the

effective core area, w is the spot size, and Leff is the effective interaction length

defined as

Leff = [1− exp(−αL)]/α. (1.2)

α represents fiber loss, and L is the fiber length. If we assume a single-mode silica

fiber, for example α = 0.2 dB/km, gB ≈ 5× 10−11 m/W , L = 1 m and w = 5 µm,

then Pth ≈ 33 W . Clearly, SBS limits the laser power to tens of Watts in a short

piece of silica fiber, such as a fiber amplifier.

Many methods have been exploited to increase the power threshold of SBS,

such as, transverse variations of the acoustic phase velocity[32], [33] and longitu-

dinal temperature variations[34], [35]. There have also been attempts to reduce

the overlap of guided optical and acoustic waves, or to introduce significant prop-

agation loss for the acoustic wave[36], [37]. Increasing the signal bandwidth to

decrease the Brillouin gain[38] and using LMA fiber are also effective methods[39].

Although SBS is a limiting factor in high-power applications, it can be used

to make Brillouin fiber lasers[40], [41], [42]. Due to the narrow Brillouin gain

bandwidth and low resonator loss, Brillouin fiber lasers can have a relatively low

pump threshold and a very narrow linewidth. Since the Brillouin shift is dependent

on temperature, SBS is used in fiber-optic sensors for sensing temperature and

pressure[43], [44].
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1.2.1.2 Stimulated Raman Scattering

Similar to SBS, SRS is an inelastic scattering process. Incident photons are scat-

tered by the silica molecules. The scattered photons have lower frequency with

the remaining energy absorbed by the silica molecules, which end up in an excited

vibrational state. An important difference between SBS and SRS is that an optical

phonons are involved in SRS whereas acoustic phonons are involved in SBS. The

Raman frequency shift (called the Stokes shift) is around 13 THz and the Raman

gain spectrum bandwidth is around 10 THz, determined by the optical phonon

life time in silica. Different from SBS, SRS can occur in the forward direction.

If an intense laser beam is incident in the optical fiber, another light beam with

lower frequency will be generated propagating in the same direction. The power

will transfer from pump beam (incident beam) to the Stokes beam. The threshold

power, Pth, is defined as the incident power at which half of the pump power is

transferred to the Stokes field at the output end of a fiber of length L, given by[31]

gRPthLeff/Aeff ≈ 16, (1.3)

where gR is the peak value of the Raman gain. If we assume single-mode silica

fiber, for example α = 0.2 dB/km, gR ≈ 6× 10−13 m/W , L = 1 m and w = 5 µm,

then Pth ≈ 2.7 kW . Although SRS power threshold is larger than that of SBS,

it is a limiting factor for broadband light or pulsed light that do not experience

significant SBS.

The SRS power threshold can be increased by using LMA fiber, where the

light beam intensity is significantly reduced. But the mode-area in the fiber can

not be infinitely increased, due to beam quality and thermal effects. Other sup-

pression methods include chirped-pulsed amplification by reducing the pulse peak

power by stretching the pulse in the time domain[45], and the use of specialty

fiber designs that suppress Raman scattering by attenuating the Raman-shifted

wavelength component[46].

Raman scattering is often used in spectroscopy to investigate the vibrational

modes of various materials. In optical fiber communication systems, Raman fiber

amplifiers can be used to compensate for fiber losses.
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1.2.1.3 Self-Focusing

Self-focusing is a nonlinear effect induced by the refractive index change when the

optical medium is placed in an intense electromagnetic field[47]. The origin of the

self-focusing stems from the optical Kerr effect in which the refractive index, n,

depends on the light intensity I, n = n0 +n2I, where n0 and n2 are the linear and

non-linear components of the refractive index. n2 is positive in most materials.

The refractive index becomes larger in the regions where the light intensity is

higher, usually in the center of the light beam. A transverse light intensity gradient

will induce a transverse refractive index gradient that works as a focusing lens.

The light beam is focused by this lens and the peak intensity of the self-focused

region increases which strengthens the focusing lens. The focused light beam will

eventually induce beam filamentation or optical damage. The threshold of the

self-focusing is given by[48]

Pcr = α
λ2

4πn0n2

, (1.4)

where λ is the radiation wavelength in vacuum and α is a constant which depends

on the initial spatial distribution of the beam. Assume a Gaussian beam in silica

fiber, α = 1.8962, n0 = 1.45, n2 = 2.6 × 10−20 m2/W , λ = 1.06 µm, then Pcr =

4.5 MW . Self-focusing needs to be considered in pulsed fiber lasers and will be

addressed in Chapter 7.

1.2.2 Thermal Effects

1.2.2.1 Thermal Fracture

Solid-state materials are stronger in compression than in tension, making the sur-

face particularly susceptible to fracture due to the presence of tangential forces.

Thermal-induced stresses can make the fiber surface vulnerable to cracks, scratches,

and voids. The output power of laser leading to thermal fracture due to tensile-

limited stress is derived in Ref. [49],

Pfracture =
ηlaser
ηheat

4πRm

1− a2

2b2

L, (1.5)
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where ηheat is the fraction of the absorbed pump power that is converted to heat,

ηlaser is the optical-to-optical conversion efficiency, L is the length of the laser,

Rm = 2460 W/m is the rupture modulus of the silica glass[50], and a and b are

the core and cladding radius, respectively. If we assume ηlaser = 0.6, ηheat = 0.3,

L = 1 m, a = 6 µm, b = 62.5 µm, then Pfracture = 61 kW . This effect is not likely

to be a limiting factor in the near future, although commercial fiber lasers have

reached the 10 kW level.

1.2.2.2 Melting

When scaling up the power in conventional fiber lasers, the on-axis core tempera-

ture can exceed the melting temperature of fused silica. The output power leading

to melting is given by[49]

Pmelting =
ηlaser
ηheat

4πk(Tm − Tc)

1 + 2k
bh

+ 2ln( b
a
)
L, (1.6)

where k = 1.38 W/(m ·K) is the thermal conductivity of silica[51], Tm = 1983 K

is the melting temperature of silica[51], Tc is the coolant temperature, and h is

the convection heat-transfer coefficient (or film coefficient or film conductance).

The convection heat-transfer coefficient can vary significantly depending on the

cooling mechanism[52]. It may be as low as 1000 W/(m2 · K) for forced airflow

cooling or has high as 10,000 W/(m2 ·K) for forced liquid flow of the coolant. If

we assume Tc = 300 K, h = 1000 W/(m2 ·K) and other parameters as assumed

in Sec. 1.2.2.1, then Pmelting = 1.2 kW . CW high-power fiber lasers can operate

above this level, provided special attention is paid to system design and thermal

management.

1.2.2.3 Thermal Lensing

Thermal lensing is induced by temperature gradients. Due to the cylindrical ge-

ometry, the fiber is hotter on the beam axis than in the outer regions, causing a

transverse gradient of the refractive index through the thermo-optic effect. This

thermal lens can cause abberations and degrade the output beam quality. The
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output power leading to thermal lensing is given by[49]

Plensing =
ηlaser
ηheat

πkλ2

2 dn
dT
a2
L, (1.7)

where λ is the wavelength of the laser and dn/dT = 11.8×10−6 K−1 is the change in

refractive index with the core temperature in silica[51]. If we assume λ = 1.06 µm,

and other parameters are as assumed in Sec. 1.2.2.1, then Plensing = 11.5 kW .

1.2.3 Optical Damage

The optical damage mechanism in bulk fused silica is poorly understood. Optical

fiber damage is typically observed on the end facet. The bulk optical damage

threshold is usually higher than surface optical damage threshold. In practice, the

surface optical damage threshold is used for the optical damage threshold. In silica

fiber, the surface damage intensity threshold Idamage is around 10W/µm2[53]. The

output power of fiber laser leading to optical damage can be approximated by

Pdamage = Γ2Idamageπa
2, (1.8)

where Γ is the core confinement factor and w = Γa is the spot size radius. If

we assume w = 4 µm for single-mode fiber, then Pdamage = 500 W . To extend

performance to kW level, either LMA fibers or core-less fibers need to be used as

the endcap to let the light freely expand before hitting the glass-air interface[54].

In practice, the glass-air interface (or fiber facet) is particularly vulnerable to

high optical intensity due to dirt and defects. Facet damage is one of the reasons

why the maximum power of pigtailed bulk-optic components is limited to a relative

low (< 1 W) power. To solve this problem, all-fiber devices are required since they

have no glass-air interfaces. We will discuss all-fiber Faraday components in detail

in Chapters 3 through 5.

1.3 Thesis Objective

The major power-threshold limits of high-power fiber lasers have been briefly re-

viewed in Section 1.2. Among these limits, facet damage is a bottleneck for scaling
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high-power lasers. All-fiber devices are required to solve this problem. In this dis-

sertation, all-fiber Faraday components will be discussed in detail. Faraday com-

ponents are important devices in high-power laser systems as isolators or Faraday

mirrors. Currently, no all-fiber Faraday devices are available because of the small

Verdet constant in silica fiber. Terbium is doped into optical fiber to increase

the Verdet constant. The concept of an effective Verdet constant is proposed and

experimentally verified. All-fiber Faraday isolators and Faraday mirrors are then

demonstrated using terbium-doped fiber.

In strong electro-magnetic interference (EMI) environments, all-fiber (instead

of electronic) sensors are required to measure magnetic fields. Currently, all-fiber

magnet sensor techniques are based on material coatings and can not be mass

manufactured. An all-fiber magnet sensor based on Faraday rotation using terbium

fiber is demonstrated. This simply structured sensor is low cost and suitable for

strong electro-magnetic interference environments.

Wavelength-tunable lasers are required in many optical systems. All-fiber

wavelength-tunable lasers are especially desired due to the advantages of small

size, low weight, and robustness. However, current all-fiber wavelength-tunable

lasers based on fiber Bragg gratings and fiber tapers suffer from the mechanical

fatigue and can not be used practically. A new all-fiber wavelength-tunable laser

is proposed in this thesis. The tuning filter consists of a fiber polarizer and a fiber

Faraday mirror that includes a fiber faraday rotator and a chirped fiber Bragg

grating (CFBG). The CFBG is directly written on the terbium-doped fiber where

the Fraday rotation occurs. An all-fiber wavelength-tunable laser can be built by

combining a linear laser cavity and this all-fiber tuning filter. Since the electro-

magnetic field is used for tuning, high tuning speed can be achieved if a solenoid

is used, while keeping the laser mechanically untouched.

The nonlinear effect of self-focusing places another power limit on fiber devices.

Self-focusing can lead to beam filamentation and has not been thoroughly investi-

gated. The power-threshold due to filamentation has only been estimated through

numerical simulations, which are time-consuming, inconvenient, and prone to inac-

curacy. In this dissertation, filamentation in fiber core will be discussed in detail.

The power threshold due to filamentation will be derived analytically, which will

reveal the parametric dependence of the phenomena.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses the

Faraday effect, magneto-optical materials, and magnet design. In chapter 3, the

effective Verdet constant model is proposed and experimentally verified. Chapter

4 discusses the cleaving and splicing of terbium-doped fiber. Chapter 5 presents

all-fiber Faraday components, including Faraday isolators, Faraday mirrors, and

a magnetic field sensor. Chapter 6 proposes a wavelength-tunable all-fiber laser

based on the Faraday effect. Chapter 7 analyzes spatial and temporal character-

istics of beam filametation in LMA fibers due to self-focusing. The conclusions of

the thesis is presented in chapter 8.
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Chapter 2

Faraday Effect, Magneto-optical

Materials, and Magnet Design

2.1 Faraday Effect

The Faraday effect is a magneto-optical phenomenon in which light and a magnetic

field interact. When linearly polarized light propagates through a magneto-optical

medium that is exposed to a magnetic field aligned parallel to the direction of

propagation of light, the plane of polarization (defined by the oscillations of the

electric field vector) rotates by an amount proportional to the strength of the

applied magnetic field, as shown in Fig.2.1.

The Faraday effect was discovered by Michael Faraday in 1845[55]. It was the

Magnet

Crystal

Light
Polarization

Figure 2.1: Faraday rotation in a magneto-optical crystal.
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first time people connected light waves to static magnetic fields, and it led to the

unification of electromagnetism by Maxwell in 1865. This effect occurs in most

optically transparent dielectric materials (including gases, liquids and solids).

One of the most important properties of the Faraday effect is its nonreciprocal

behavior. The rotation angle does not depend on the propagation direction of

the light, but rather on the direction of the magnetic field applied parallel to the

propagation direction of the light. If light passes a magneto-optical medium twice

in opposite directions, the Faraday rotation does not cancel, but rather doubles.

Some of important optical components, such as isolators and Faraday mirrors, are

based on this property.

The quantum nature of the Faraday effect stems from the Zeeman effect[56],

[57]. The ground and excited states split when the optical medium is placed in a

magnetic field. This induces an inequality of the refractive indices of left- and right-

circularly polarized light, which is known as circular birefringence. Since linearly

polarized light can be decomposed into left- and right-circularly polarized light,

circular birefringence induces polarization rotation of linear-polarized light when

the two circular-polarized components are composed back into linear-polarized

light. The rotation angle can be defined as,

θ =
ωl

2c
(n− − n+), (2.1)

where c is the light velocity, l is the sample thickness, n− and n+ are the refractive

index of the left and right-circularly polarized light with an angular frequency ω.

The observed Faraday rotation angle is proportional to the magnetic flux density

B and sample thickness l,

θ = V Bl, (2.2)

where V is the Verdet constant[58]. A positive Verdet constant corresponds to left-

hand-rotation (anticlockwise) when the direction of propagation is parallel to the

magnetic field, and a negative Verdet constant corresponds to right-hand-rotation

(clockwise) when the direction of propagation is parallel to the magnetic field.

The expressions of n− and n+ can be obtained from Maxwell equations[59].

Substituting these expressions into Eq. 2.1. and comparing with Eq. 2.2, the
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Verdet constant is,

V =
Ne3

2nm2

1

cϵ0

ω2

(ω2 − ω2
0)

2
, (2.3)

where N is the number of charge carriers per unit volume, e is the charge, m is the

mass, n is refractive index of the material, ω0 is the electronic resonance frequency,

and ω is the the operating frequency.

Equation 2.3 is a general equation for all magneto-optic materials. Based on the

concept of the newly discovered electron, Becquerel[60] found a simplified expres-

sion for diamagnetic materials. Although it did not include the idea of quantized

energy states introduced by Planck in 1900 or the concept of light quanta de-

veloped by Einstein in 1905, it provides a simple solution for understanding the

Farday effect, and yields quantitative predictions for the Verdet constant that are

very close to the measured values.

The Zeeman shift in a small magnetic field can be expressed as

ωZ = ± eB

2m
, (2.4)

where B is the magnetic flux density. The ± signs refer to the orientation of

the magnetic field relative to the orbital angular momentum of the electron. The

indices n− and n+ can be related to the Zeeman effect with the assumption that

the frequency dependence of the refractive index is related to the frequency of the

electron in the atom.

n+ = n+ ωZ
dn

dω
(2.5)

n− = n− ωZ
dn

dω
, (2.6)

where n is the refractive index with no magnetic field. Combining equations 2.5

and 2.6 yields

n− − n+ = −2ωZ
dn

dω
. (2.7)

When expressed in the wavelength domain,

n− − n+ =
ωZ

πc
λ2
dn

dλ
. (2.8)
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Combining Eqs. 2.1, 2.2, 2.4, and 2.8, the Verdet constant is

V =
e

2mc
λ
dn

dλ
. (2.9)

Eq. 2.9. only holds for diamagnetic materials. When dealing with paramagnetic

materials or materials with both diamagnetic and paramagnetic species, the con-

tribution from paramagnetic ions must be accounted for. In these materials, the

Verdet constant is proportional to[61], [62], [63]

V ∝ ν2[
∑
i

Ai

(ω2
i − ω2)2

+
∑
i

∑
j

Bij

(ω2
i − ω2)(ω2

j − ω2)
] = ν2(D + P ) (2.10)

where ν is the frequency of the light, D is the diamagnetic component that can

be calculated from the Becquerel equation (Eq. 2.10), and P is the paramagnetic

component that can be calculated from quantum mechanical considerations of the

ground- and excited-state splitting[64].

2.2 Magneto-Optical Materials

The magneto-optical effect can occur in gases, liquids, and solids. Because solids

exhibit much stronger magneto-optical effect than gases and liquids, solids are

typically used for Faraday components. Solids can be classified into the classes of

diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic

materials.

Ferromagnetic, antiferromagnetic, and ferrimagnetic materials are much more

complex than the other two classes. These materials exhibit a saturation effect,

which leads to a nonlinear magneto-optical response. Although the magneto-

optical effects in these materials are usually much stronger than the other two

classes, the large optical absorption limits their use in optical applications. There-

fore, they will not be covered here (detailed information can be found in ref. [65]).
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Figure 2.2: Excited-state splitting in diamagnetic materials.

Figure 2.3: Excited-state and ground-state splitting in paramagnetic materials.

2.2.1 Diamagnetic Materials

In diamagnetic materials, there is no macroscopic or microscopic magnetization

in the absence of an applied magnetic field. The Faraday effect arises from the

excited-state splitting of this material, as shown in Fig. 2.2. The spitting is pro-

portional to the applied magnetic field. Although more accurate formulas have

been developed[62], the Verdet constant of diamagnetic materials can still be ex-

pressed with a classical atomic model[59], the Becquerel formula[60] as shown in

Eq. 2.9, which is simple and has been verified experimentally[62].

The Verdet constant of diamagnetic material is weakly dependent on the tem-

perature. But in some certain applications, such as accurate sensors, this temper-
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ature dependence will be a significant problem. The temperature dependence can

be written as
1

(V L)0

d(V L)

dT
=

1

V0

dV

dT
+ α, (2.11)

where α = (dL/dT )/L is the thermal expansion coefficient. In most fused silica

glass, (1/(V L)0)(d(V L)/dT ) = 0.69× 10−4 /K, α = 0.55× 10−6 /K. Diamagnetic

materials generally exhibit a weaker Faraday effect than other classes, however,

this drawback can be outweighed by the linear response of the Faraday effect to

the applied magnetic field and the relative stability with respect to temperature.

2.2.2 Paramagnetic Materials

In paramagnetic materials, some or all of the individual atoms possess magnetic

dipole moments. In the absence of an applied magnetic field, these moments are

randomly aligned and there is no macroscopic magnetization. When an external

magnetic field is applied, these dipole moments align, which is equivalent to the

ground state splitting shown in Fig. 2.3. If there is no thermal energy, all the

ground state ions will be in the lower of the two levels. At room temperature,

some of the ions will be populated into the upper level of the ground state as well.

The Verdet constant of paramagnetic materials is usually expressed as the sum

of a diamagnetic component Vdia and a paramagnetic component Vpar,

V = Vdia + Vpar. (2.12)

Vdia is normally positive and related to the excited state splitting. On the con-

trary, Vpar is normally negative and related to the ground state splitting. If the

concentration of paramagnetic ions is relatively large, Vpar dominates. Otherwise,

the materials will exhibit diamagnetic properties of diamagnetic materials.

The Faraday effect in paramagnetic materials can not be derived using classical

analysis, but a quantum mechanical solution is available[66].

Vpar ∝
ν2χpar

g

∑
a,b

(
Cab

ν2 − ν2ab
), (2.13)

where ν is the frequency of light, Cab is a transition probability, νab is the frequency
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associated with the transition. The paramagnetic susceptibility χpar is given by[61],

χpar =
Ng2[J(J + 1)]µ2

B

3kT
, (2.14)

where N is the number of atoms or ions per unit volume, g is the Lande factor,

J is the spin orbit quantum number, k is the Boltzmann constant, and T is the

absolute temperature. The temperature term in the paramagnetic susceptibility is

a reflection of the temperature dependence of the Verdet constant.

Among all paramagnetic materials, rare-earth ions are the most important

class. Most materials with high Verdet constant are rare-earth doped glasses or

crystals. In these glass systems, rare-earth ions and their concentration are the

primary factors governing the magnitude of the paramagnetic part of the Verdet

constant. The host glass is not important in defining the Verdet constant. Among

all rare-earth ions, terbium, dysprosium, and praseodymium are most effective in

generating a large magneto-optical effect. Samarium, gadolinium, erbium, and

ytterbium have relatively small Verdet constant, as shown in Fig. 2.4 [67].

Due to its large Verdet constant and small absorption coefficient in the visible

and IR regions, terbium is the most popular rare-earth ion for practical Faraday

components. For example, FR-5 glass from Hoya, is about 50 wt% terbium-doped

borosilicate glass, with a Verdet constant of -20.6 rad/(Tm) at 1064 nm[68], [65].

The terbium gallium garnet (TGG) crystal, which is widely used in bulk-optics

based Faraday components, has a Verdet cosntant of -38 rad/(Tm) at 1064 nm[68].

2.3 Magnet Design

There are four common classes of permanent magnet materials: neodymium iron

boron (NdFeB or NIB), samarium cobalt (SmCo), aluminium nickel cobalt (Al-

nico), and ceramic (or Ferrite). Among these materials, NdFeB is the most pow-

erful magnetic material. This type of rare-earth magnet is made from an alloy of

neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline struc-

ture.

Neodymium magnets are graded by the material they are made of. As a general

rule, the higher the grade (the number following the ’N’), the stronger the magnet.
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Figure 2.4: Comparison of Verdet constant in various rare-earth ions[67].

The highest grade of neodymium magnet currently available is N52. Another

important parameter of magnets is the ”residual flux density” Br (polarization).

Br is the magnetic induction remaining in a saturated magnetic material after the

magnetizing field has been removed.

The field of a magnet can be calculated from its poles[69]. Assuming there

is a uniform distribution of poles on the ends of the magnet, the pole strength

of area ∆A on a surface whose normal makes an angle ϕ to the direction of the

polarization Br, is Br∆Acos(ϕ). If ϕ = 0, the potential at distance, r, from this

small element is

ψ = Br∆A/(4πµ0r). (2.15)

The magnetic field on the axis of a uniformly magnetized cylindrical magnet
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Figure 2.5: Annular plane used to calculate magnetic field.

tube can be treated as if produced by two annular surfaces at its ends. The surface

pole method will be illustrated by calculating the field produced by placing the

annular surface along a normal passing through its center.

As shown in Fig. 2.5, the surface is annular, with inner and outer radii, a1

and a2, respectively, and center point, O. The line from point O to point P, OP,

is normal to the annular plane, and this direction is defined as z. Consider an

element of area ∆A around a point Q on the surface at radial distance, a, from

O. The pole strength on ∆A is Br∆A and the distance OP is r, which follows the

relation r = (z2 + a2)1/2. This relation holds for any point on an annular area

between radii a and a+da, so it is convenient to take such an area as our element

of area as ∆A = 2πada. The potential at point P contributed by this annular area

is

dψ =
2πaBrda

(a2 + z2)1/24πµ0

. (2.16)

Integrating the potential contribution from the whole surface yields

ψ(z) =
Br

2µ0

∫ a2

a1

ada

(a2 + z2)1/2
=

Br

2µ0

(a2 + z2)1/2|a2a1 ,

=
Br

2µ0

[(a22 + z2)1/2 − (a21 + z2)1/2]. (2.17)
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Figure 2.6: Dimensional configuration of a magnet tube.

By symmetry, the magnetic field, H, has no components perpendicular to z and

the value of H in the direction of z is

Hz(z) = −dψ
dz

= − Br

2µ0

[
z

(a22 + z2)1/2
− z

(a21 + z2)1/2
], (2.18)

The magnetic flux density B can be obtained by multiplying µ0 with H,

Bz(z) = µ0Hz =
Br

2
[

z

(a21 + z2)1/2
− z

(a22 + z2)1/2
]. (2.19)

Eq. 2.19 is the solution in the case of one magnetic pole. If the magnet is a

cylindrical tube as shown in Fig. 2.6, the magnetic field is the sum of the two

poles.

Bz(z) =
Br

2
{ z + l/2

[a21 + (z + l/2)2]1/2
− z + l/2

[a22 + (z + l/2)2]1/2

− z − l/2

[a21 + (z − l/2)2]1/2
+

z − l/2

[a22 + (z − l/2)2]1/2
}, (2.20)

where two poles are located in the planes z=-L/2 and z=L/2 respectively, L is the

length of the magnet tube. The magnetic field integration inside the magnet tube
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Figure 2.7: Dimensional configuration of a magnet cuboid.

along the z direction can be calculated from Eq. 2.20,∫ l/2

−l/2

Bz(z)dz = Br{(a1 − a2)− [(a21 + l2)1/2 − (a22 + l2)1/2]}. (2.21)

The magnetic field derivation of a magnet cuboid is much more complicated

and only the solution is given here[69]

Bz(z) =
Br

π
[tan−1(

ab

2(z + l/2)[4(z + l/2)2 + a2 + b2]1/2
)

− tan−1(
ab

2(z − l/2)[4(z − l/2)2 + a2 + b2]1/2
)], (2.22)

where a, b and L are the height, width and length of the cuboid, respectively. Its

dimensional configuration is shown in Fig. 2.7. The magnetic field integration

along the z direction can only be calculated numerically.

Two magnets have been used in this dissertation. One is an N35 NdFeB magnet

cuboid, with dimension 15× 15× 25 cm3 and a residual flux density Br = 0.95 T .

There is a small hole in the center of this magnet for the optical fiber to go through

and its effect on magnetic field can be neglected. Fig. 2.8 shows the calculated Bz

for the N35 magnet used in the experiments along with the measured magnetic field

outside the magnet. The physical ends of the magnet are also shown for reference.

The magnetic field, measured only outside the magnet because the magnetic field

probe size is larger than the hole diameter, agrees very well with the theoretical
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Figure 2.8: Theoretical (solid) and measured (circle) magnetic density flux dis-
tribution Bz along the center axis z of the N35 magnet cuboid, the dashed lines
represent the physical ends of the magnet.

curve calculated from Eq. 2.22.

The other magnet is an N48 NdFeB magnet tube, which is 4-cm long with inner

and outer diameters of 5 mm and 6 cm respectively. The residual flux density is

Br = 1.35 T . Fig. 2.9 shows the calculated and measured magnetic fields for the

N48 magnet used in the experiments. Again, the measured magnetic field agrees

very well with the theoretical curve calculated from Eq. 2.20.

Eq. 2.2 is only valid for a uniform magnetic field. If the magnetic field is not

uniform, like the cases shown in Figs. 2.8 and 2.9, a modified equation should be

used

θ = V

∫
l

B(z)dz (2.23)

where
∫
l
B(z)dz is the magnetic density flux integration along the length L. For a

given Verdet constant, the rotation angle θ depends on the integration
∫
l
B(z)dz.

Since most Faraday applications require 45◦ polarization rotation, the size of

a magnet tube can be calculated from Eq. 2.21 for various Verdet constants.
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Figure 2.9: Theoretical (solid) and measured (star) magnetic density flux distribu-
tion Bz along the center axis z of the N48 magnet tube, the dashed lines represent
the physical ends of the magnet.

Fig. 2.10 shows the contour plot of magnetic field integration inside the magnet

tube as functions of magnet length, L, and outer radius, a2. Br = 1.35 T and

a1 = 2.5 mm are assumed in the calculation. The contour lines represent the

Verdet constant required to reach 45◦ polarization rotation level when integrated

along the path through the magnet via Eq. 2.23. The figure shows that for a fixed

Verdet constant, the length and outer radius can not be arbitrarily increased to

reach the required 45◦ polarization rotation angle. There is an optimized value for

L and a2 to reach 45◦ rotation while maintaining a small magnet size. The larger

the Verdet constant, the smaller the required magnet size. If V=32 rad/(Tm),

the optimized length and outer radius for a magnet tube are 3.2 cm and 3.3 cm

respectively.
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Chapter 3

Effective Verdet Constant Model

for Optical Fiber

3.1 Introduction

Faraday rotators are widely used in optical isolators, circulators, Faraday mirrors,

and magnetic/current field sensors. Traditional Faraday rotators are based on bulk

optics, which require optical coupling for use with fiber optic systems. All-fiber

Faraday rotation components are highly desirable, particularly for high-power fiber

laser systems, where fiber termination and small free space beams place restrictions

on how much power can be transported through such components.

Several standard silica fiber Faraday rotators have been reported[70], [71], [72],

[73], but are relatively impractical due to long fiber lengths. The bottleneck to

realize all-fiber Faraday rotators is the small Verdet constant in silica which is only

about 1.1 rad/(Tm) at 1064 nm, compared with -40 rad/(Tm) in TGG crystals

often used in bulk optics[74], [75]. This low Verdet constant will require long fiber

lengths in order to achieve the desired rotation. For example, if the magnetic field

is 0.2 T, the silica fiber length required for a 45-degree rotation is around 4 meters.

Due to the magnetic field distribution of the magnet, this long fiber can not be

coiled, making such a system impractical.

To overcome this limitation, Shiraishi[76] reported the fabrication of a high

Verdet constant (21 times greater than silica fiber) optical fiber using Hoya FR-

5 (terbium borosilicate) glass, where both the core and the cladding were doped



30

with terbium. Ballato and Snitzer[77] also reported the fabrication of a 54 wt%

terbium-doped optical fiber, measuring the Verdet constant on bulk samples to be

20 times higher than that of silica fiber.

Doping with high-Verdet-constant materials, such as terbium, can be an effec-

tive way to increase the total Verdet constant in optical fiber. However, the Verdet

constant experienced by the optical field is different from the material Verdet con-

stants in the core and cladding when they are made of different materials. The

experiments described above did not measure or predict this effect. In this section,

the first experimental proof of the effective Verdet constant model is presented.

The effective Verdet constant in a phosphate fiber which is terbium-doped in the

core only is measured. The experimental results agree well with the theory and

describe how the effective Verdet constant differs from the value measured from

the bulk samples.

3.2 Theory

The Verdet constant experienced by light in an optical fiber is different from that in

bulk glass, where it is uniform everywhere. In an optical fiber, the core and cladding

can have different Verdet constants since they can be made of different materials.

Only a portion of the guided mode exists in the core of the fiber waveguide. Thus,

the effective Verdet constant Veff , is defined as the Verdet constant experienced

by the optical mode in the fiber,

Veff = VcoreΓ + Vclad(1− Γ), (3.1)

where Vcore and Vclad are the Verdet constants in the core and cladding respec-

tively, and the confinement factor Γ = Pcore/Ptot represents the ratio of the power

contained in the core, Pcore, to total power, Ptot. The confinement factor, Γ, can

be calculated directly by assuming that the fundamental mode profile is Gaussian,

Γ = 1 − exp(−2/ξ2). The ratio of beam spot size to fiber radius, ξ, is usually

approximated by

ξ ≃ 0.65 + 1.619υ−3/2 + 2.879υ−6, (3.2)
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which is accurate to within 1% for 1.2 ≤ υ ≤ 2.4, where υ is the normalized

frequency (or V-number)[78]. Equation 3.1 for the effective Verdet constant has

a straightforward physical meaning: the Verdet constant includes two parts con-

tributing from the core and the cladding, weighted by the mode overlap in each

region.

In recent theoretical work[79], the rotation of an optical field in a fiber was

derived using Maxwell’s equations with a magnetic field applied along the axial

direction of the fiber. An empirical equation was used to approximate the propa-

gation constant. Using these results, one can derive the effective Verdet constant

directly from the circular birefringence of the propagation constant.

θ = [αncVcore + (1− α)nclVclad]BL/[γn
2
c + (1− γ)n2

cl]
1/2. (3.3)

Eq. 3.3 was given by Yoshino[79], where α = 1.306 − 1.138/υ, γ = 1.306 −
(2.277υ − 0.992)/υ2, nc and ncl are the refractive index for core and cladding,

respectively. In most single-mode fibers, the difference between nc and ncl is very

small. Assuming nc ≈ ncl, Eq. 3.3 can be simplified to θ = [αVcore+(1−α)Vclad]BL.
An effective Verdet constant can be derived as V Y oshino

eff = Vcoreα + Vclad(1 − α),

although no physical meaning is given in Ref. [79]. Fig. 3.1 shows the relative

difference ∆ = (α − Γ)/α between factors Γ and α as a function of υ. In the

region 2 < υ < 2.4, where most single-mode fibers are designed, ∆ is less than 4%.

Considering that both models use empirical equations for their derivation, such

difference is reasonable. Although not indicated in [79], α should have the same

physical meaning as Γ, representing the light confinement in the core. This suggests

that Equation 3.1 can be derived via rigorous electromagnetic calculations.

3.3 Experiment

The phosphate optical fiber used in these experiments was fabricated at NP Pho-

tonics [80]. It is 25-wt%-terbium doped in the single-mode core (N.A.=0.147) and

6-wt%-lanthanum doped in the cladding to provide the appropriate core N.A. The

core and cladding diameters are 4.5 µm and 120 µm respectively, and the prop-

agation loss is 0.12 dB/cm at 980 nm. The Verdet constant is measured at 1053
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Figure 3.2: Experimental configuration of the Faraday rotation measurement.

nm and room temperature using the experimental configuration shown in Fig. 3.2.

A 4-cm section of Tb-doped phosphate fiber, spliced between two polarization-

maintaining (PM) fibers, goes through the N48 magnet tube described in Sec. 2.3.

Linearly polarized 1053-nm light is launched into the fiber, and the polarization

direction of the output light is monitored. As the magnet is translated along the

fiber, the magnetic field imposed on the Tb fiber is changed. By measuring the

rotation angle as a function of position of the magnet on the fiber axis, Veff can

be extracted provided the magnetic field is known.

As shown in Fig. 2.9, the magnetic field has different directions inside and
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Figure 3.3: Measured (star) rotation angle and corresponding curve fit (solid) at
1053 nm along the center axis z.

outside the magnet, such that the total integrated field along the z axis is zero, i.e.∫ +∞
−∞ Bzdz = 0. This means that if a piece of fiber with axially uniform Veff goes

through the magnet, the rotation angles inside and outside the magnet counteract

each other and the total rotation angle is zero. If the fiber consists of i different

sections of length Li, the total rotation angle, ∆θtot, can be written as a sum of

the rotation in each section ∆θi, given by

∆θtot =
∑
i

∆θi =
∑
i

V i
eff

∫
Li

Bzdz, (3.4)

where V i
eff and

∫
Li
Bzdz are the effective Verdet constant and the line integral of

the magnetic field in each section, respectively. For the experimental configuration

shown in Fig. 3.2, Eq. 3.4 can be simplified as

∆θtot = V Tb
eff

∫
Tb

Bzdz + V PM
eff

∫
PM

Bzdz, (3.5)
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where the two terms represent the Verdet constant of and the integration over the

Tb-doped and PM fibers respectively. V PM
eff can be neglected in our experiment

because the large linear birefringence in PM fiber effectively suppresses Faraday

rotation.

In the experiment, the magnet is axially translated in 5 mm steps. At each step,

the direction of the major polarization axis is measured; the power is measured

as the polarizer in front of the detector is rotated, and the polarization direction

is extracted by fitting this data to a cosine-squared function. Figure. 3.3. shows

the measured rotation angle and the corresponding curve fit at 1053 nm along

the central axis. The error in the measured angle is primarily caused by air flow

and it is determined to be 1 degree by a polarization stability measurement. In

the polarization stability measurement, same polarization direction was measured

for several times and the root mean squared deviation was taken as error. The

curve fit is obtained by adjusting V Tb
eff , yielding a measured Verdet constant of

Vmeasure = −6.2 ± 0.4 rad/(Tm). This value is 6 times higher than that of the

silica and demonstrates the potential for compact all-fiber Faraday rotators.

3.4 Discussion

The bulk value of the Tb-doped core is calculated from ref. [77] to be Vcore =

−9.3 rad/(Tm), assuming a linear dependence on the terbium-ion concentration.

Since no Verdet constant data is available for the lanthanum phosphate glass in

the near infrared region, the value is approximated based on two observations.

First, the Verdet constant dispersion curve of the lanthanum phosphate glass is

roughly 0.8 rad/(Tm) higher than the one for SiO2 in the visible region[68], [65].

Assuming a similar trend in the near infrared region, the Verdet constant of the

lanthanum phosphate glass should be 0.8 rad/(Tm) larger than that of the SiO2.

Second, the rare-earth element present in the host material is the dominating

factor in determining the Verdet constant. For example, the Verdet constant of

the terbium aluminosilicate is similar to that of the terbium phosphate with similar

concentration[65]. Therefore, the Verdet constant of the crystal LaF3 measured

at 1064 nm[68] should be also similar to that of lanthanum phosphate. These

two observations independently lead to a value of Vclad = 1.8 rad/(Tm). Using
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these values for the core and cladding Verdet constants, the theoretical models

predict Veff = −6.0 rad/(Tm) and V Y oshino
eff = −6.3 rad/(Tm), the difference

between the models is due to the approximations contained in each. They both

agree well the experimental result, which differs substantially from the bulk core

value −9.3 rad/(Tm) due to the mode confinement properties as described above.

This measurement validates the theory of the effective Verdet constant.

Several methods can be used to increase the effective Verdet constant for com-

pact all-fiber Faraday rotators. For example, the same high-Verdet-constant ma-

terial can be doped in both the core and the cladding. In this case, the Veff

will be equal to the material Verdet constant. If the high-Verdet-constant mate-

rial is doped only in the core, the N.A. and the core diameter can be increased

(while maintaining the V-number less than 2.405) to confine more light in the core,

therefore increasing Veff . Other rare-earth elements besides terbium can also be

doped. For example, praseodymium and dysprosium also have Verdet constants

much higher than that of silica. The optical loss in the Tb-doped fiber could be

decreased significantly with improvement in the fabrication process.

In conclusion, the first experimental validation of the effective Verdet constant

theory is reported. The effective Verdet constant of light propagation in a fiber in-

cludes contributions from the materials in both the core and the cladding. It is mea-

sured in a 25 wt% terbium-core-doped phosphate fiber to be −6.2± 0.4 rad/(Tm)

at 1053 nm, which is 6 times larger than silica fiber. The result agrees well with

Faraday rotation theory in optical fibers. This work has been published in reference

[81].
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Chapter 4

Cleaving and Splicing of Terbium

Fiber

Because the mechanical and thermal properties of the highly terbium-doped fiber

are much different than those of standard silica fiber, the fiber cleaver and the

fusion splicer, which are designed for silica fiber, do not work for a terbium-doped

fiber. This is a technical bottleneck to making all-fiber components. Customized

programs for the electronic cleaver and the fusion splicer solved this problem in

the lab.

4.1 Cleaving

A controlled break that is intended to create a smooth and flat fiber endface is

called fiber cleave. The endface is usually perpendicular to the fiber longitudinal

axis. If they are not perpendicular, it is called an angled cleave. When cleaving

an optical fiber, a microscopic fracture (”nick”) is introduced into the fiber with a

cleaving tool. The cleaving tool usually has a sharp blade of some hard material

such as diamond, sapphire, or tungsten carbide. Tension is introduced into the fiber

as the nick is made, or immediately afterward, causing the fracture to propagate

in the direction perpendicular to the fiber axis, resulting in an endface that is of

sufficient flatness for fiber splicing.

There are two kinds of fiber cleavers. A mechanical cleaver first clamps the

fiber. Then a diamond wheel or blade scribes the fiber. After that, a transverse
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Figure 4.1: Fitel S323A Precision Cleaver

Figure 4.2: Vytran LDC-200 Cleaver

force is applied and the fiber yields a clean break at the scribe. This kind of cleaver

is very popular in cleaving standard silica fiber due to its compact size and easy

operation. For example, the Fitel S323A Precision Cleaver used in the lab is shown

in Fig. 4.1. Such a cleaver can not be used to cleave terbium fiber because it is

optimized for standard silica fiber and can not be modified.

The second kind of cleaver uses a ”scratch and pull” technique. When cleaving,

the fiber is scribed perpendicular to the fiber by a small blade while tension is

being applied to the fiber. A clean break will then occur at the scribe point. Fig.

4.2 shows one such cleaver, the Vytran LDC-200 Cleaver which is used in our

experiments. Although this kind of cleaver is more complex than the mechanical
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Table 4.1: Optimized LDC-200 parameters for terbium fiber cleaving.
Parameter Value

Cleave Tension 310 g
Tension Velocity 15 steps/sec
Rotation Angle 0 degree

Pre-Cleave Advance 660 steps
Cleave Osc. Counter 100
Cleave Forward Steps 21
Cleave Backward Steps 21

Scribe Delay 1 ms

cleaver, it is automated and fully programmable, which allows the unit to be

modified for cleaving various types of fiber. Table 4.1 shows the parameters that are

optimized for the LDC-200 to cleave the 65 wt% Tb fiber. The ”Cleave Tension”

is the load, in grams, applied axially to the fiber prior to initiating the scribe

process. The optimal tension for cleaving is dependent upon the cross-sectional

area of the fiber and the material properties of the glass. The ”Tension Velocity”

is the velocity of the tension motor, in steps per second, which applies the load to

the fiber prior to initiating the scribe process. The ”Rotation Angle” is the angle,

in degrees, applied to the fiber prior to initiating the tension process. Zero degrees

corresponds to a perpendicular cleave; angle cleaves can be intentionally made by

using a non-zero Rotation Angle. The ”Pre-Cleave Advance” is the distance, in

steps, that the cleave blade moves forward prior to initiating the scribe process. It

is dependent on the fiber parameters and must be reduced as the fiber diameter

increases. The ”Cleave Oscillation Counter” is the maximum number of oscillations

that the cleave blade will make during the scribe process. For this particular cleave,

the scribe process consists of multiple nicks of the fiber. The ”Cleave Forward

Steps” is the distance, in steps, that the cleave blade moves forward (toward the

fiber) during each oscillation of the blade. The ”Cleave Backward Steps” is the

distance, in steps, that the cleave blade moves back (away from the fiber) during

each oscillation of the blade. The ”Scribe Delay” is the delay, in milliseconds,

between each oscillation of the blade[82].

Figure 4.3 shows a microscope image of the end face of the 65 wt% Tb fiber

after cleaving using the optimized parameters shown in Table 4.1. The dark crack

at the upper right edge of the fiber is where the scribe blade nicked the fiber.
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Figure 4.3: Endface image of cleaved 65 wt% Tb fiber

The ”fuzzy” features at the left and bottom of the fiber are imperfections in the

material interface. They appear because the propagation velocity of the fracture

is too high. Either of these types of features can be independently eliminated at

the price of increasing the other, which then reach more towards the center of the

fiber. In practice, the cleave parameters are optimized to balance the two types of

features, which keeps them confined to the edges of the fiber and minimizes their

impact in the fusion splicing process.

Figure 4.4 shows an interferometric image of the same fiber cleave. Apart from

the deformation caused by the impact of the scribe, the fiber endface is very flat

(to within a few waves).

The cleave shown in Figures 4.3 and 4.4 is very repeatable and is in fact excep-

tionally clean compared to the type of cleave resulting from a mechanical cleaver,

shown in Figure 4.5. Note that this image was taken using standard silica fiber as

cleaving the terbium-doped fiber with this cleaver resulted in a catastrophic cleave.

Although the fuzzy features are not present, the surface exhibits significant struc-

ture, particularly across the fiber core, which is located in the center of the fiber.

However, even such a coarse mechanical cleave is acceptable for fusion splicing due

to the nature of the process, described in the next section.
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Figure 4.4: Endface interferogram of cleaved 65 wt% Tb fiber

4.2 Splicing

Fiber optic splicing is the act of joining two optical fibers together end-to-end.

Light is coupled from one fiber to another fiber through such a junction. There

are two kinds of splices: mechanical splice and fusion splice, as depicted in Fig.

4.6. In a mechanical splice, two fibers are aligned together through an alignment

sleeve, which is normally filled with index matching gel to fill the space between

the slightly separated fiber ends. Mechanical splices are temporary splices. If a

permanent splice is required, a fusion splice should used. In a fusion splice, two

fibers are welded together using localized heat, as depicted in Fig. 4.6. The heat

can be provided by an electric arc, a laser, a gas flame, or a tungsten filament

through which current is passed. Both mechanical and fusion splices need well

cleaved fiber ends to produce low-loss junctions.

Since the primary reason for all-fiber Faraday components is high-power appli-

cations, all material interfaces should be eliminated. Therefore, mechanical splices

are not acceptable. In the experiments, the Fitel S183PM fusion splicer was used

to fusion splice terbium fiber and silica fiber, as shown in Fig. 4.7. This splicer

is fully automated and electronically controlled, with dozens of pre-set programs

optimized for splicing various types of fiber together. However, the programs are
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Figure 4.5: Endface image of mechanically cleaved standard silica fiber

Electric Arc


Fusion Splice


Alignment Sleeve


Index-Matching Gel


Mechanical Splice


Figure 4.6: Schematic of fusion splice and mechanical splice
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Figure 4.7: Fitel S183PM fusion splicer

optimized for silica fiber, primarily for telecommunication varieties (SMF-28, dis-

persion shifted fiber, erbium-doped fiber, etc.). Since the terbium fiber has a

substantially different melting point than standard silica, none of the pre-set pro-

grams could produce a clean fusion splice. The problem of fusion splicing in our

experiments was exacerbated by the fact that we needed to fuse the terbium fiber

with silica fiber. By offsetting the location of the arc from the joint of the two

fibers, the temperature profile can, in principle, be made to be hotter in the silica

fiber than that of the terbium fiber, which allows each of the fibers to be brought

close to their respective melting points. This was difficult to achieve in practice

since the thermal profile generated by the arc could not be controlled.

The generalized fusion-splicing program for the S183PM contains three electric

arcs. The preliminary arc is a low power arc designed to clean debris off the fiber

ends that was not removed by prior ultrasonic chemical cleaning. The next two

arcs are defined by their starting power, ending power, and duration. Table 4.2

shows the optimized Fitel S183PM parameters for 65 wt% Tb fiber splicing to

silica fiber. The ”Arc Power Compens.” corrects the arc power based on the axis

offset of the fibers. The ”Pre-fuse Time” is the time between the fibers first butting

and the arc starting. The ”Z Push Distance” is amount that the fibers are pushed
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Table 4.2: Optimized Fitel S183PM parameters for terbium fiber splicing.
Parameter Value

Cleaning Arc Power Offset -90
Cleaning Time 20 ms

Arc Pow. 1st Start 50
Arc Pow. 1st End 0
1st Arc Duration 100 ms

Arc Pow. 2nd Start 0
Arc Pow. 2nd End 0
2nd Arc Duration 0 ms

Arc Power Compens. -125
Pre-fuse Time 160 ms

Z Push Distance 10 µm
Z Pull Distance 0 µm

Z Pull Start Time 0 ms
Arc Mid Offset -200 µm

Gap 20 µm

Arc Mid Offset = 0


Arc Mid Offset > 0


Arc Mid Offset < 0


Arc Center


Arc Mid Offset


Arc Mid Offset


Figure 4.8: Pictorially explanation of the Arc Mid Offset
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together during the first arc. The ”Z Pull Distance” allows the fibers to be pulled

during the process at a time defined by the ”Z Pull Start Time”. The ”Arc Mid

Offset” is the offset between fiber joint and the arc center. Fig. 4.8 pictorially

explains the Arc Mid Offset. If the offset is greater than zero, the arc center is

shifted to the left of the fiber joint. If offset is less than zero, the arc center is

shifted to the right of the fiber joint. In this way, it is possible to offset the splice

point from the arc center to achieve an optimized temperature profile using this

parameter. The ”Gap” is the gap spacing between fibers for final position tuning

(core or clad alignment) before splicing[83].

Figure 4.9 shows fusion splice images using the S183PM splicer. Since the fusion

splicer is designed for silica fiber splices, silica fiber can be perfectly fusion spliced

with silica fiber, as shown in Fig. 4.9(a); there is no observed defect. Fig. 4.9(b)

shows a good Tb-fiber to silica-fiber splice. There is a noticeable defect between

Tb and silica fibers because the temperature at the splice point is the optimized

temperature for the Tb fiber to melt. Since the melting temperature of silica fiber

is higher than this temperature, the silica fiber does not reach the melting point. In

the Z-Push process, the melted Tb fiber is adhered to the hot silica fiber. Because

it is not a complete fusion splice, a small defect appears between the Tb fiber and

the silica fiber. If the Tb fiber gets too hot, the core will diffuse into the cladding,

as shown in Fig. 4.9(c). Since there is no waveguide in that section of fiber, the

loss will be more than 1 dB.

4.3 Coupling Efficiency

Even with a perfect material splice, there can still be loss due to misalignment

occurring in the splice process, and differences in fiber core diameters. The coupling

efficiency, η, between two fibers is given by[84]

η =
|t
∫∞
0
ψ1ψ2exp(iφ)ρdρ|2∫∞

0
ψ2
1ρdρ

∫∞
0
ψ2
2ρdρ

, (4.1)

where ψ1 and ψ2 are the optical fields in the two fibers. ρ =
√
x2 + y2 is the

radial coordinate. φ is the phase error between two fiber modes. t is the Fresnel

transmission factor. If the fibers are perfectly cleaved and spliced, there should be
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Figure 4.9: Fusion splice images of different fibers: (a) silica-to-silica, (b) Tb-to-
silica (good), (c) Tb-to-silica (bad).
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Figure 4.10: Fresnel transmittance as a function of n2/n1. The circle represents
the case of Tb and silica fibers.

no phase error (φ = 0) between the two optical fields. Substituting the Gaussian

approximations ψ1 = exp(−ρ2/ω2
1) and ψ2 = exp(−ρ2/ω2

2) into Eq. 4.1, η can be

simplified as

η =
4T (ω2/ω1)

2

[1 + (ω2/ω1)2]2
, (4.2)

where ω1 and ω2 are the mode field radii in the two fibers, and T = t2 = 4(n2/n1)
[1+(n2/n1)]2

is the Fresnel transmittance in the case of normal incidence. Fig. 4.10 shows

the Fresnel transmittance as a function of n2/n1. If the values of n1 and n2 are

relatively close, T is around 1. For example, in the case of silica and terbium fibers,

n1 = 1.45, n2 = 1.75, and T = 0.99 ≈ 1. Therefore, the Fresnel transmittance T

can be assumed to be unity in most cases, even when splicing dissimilar fibers.

Fig. 4.11 shows the coupling efficiency as a function of ω2/ω1. η is equal to

1 only in the case of ω1 = ω2. Assuming ω1 = 5.1 µm and ω2 = 3.2 µm, η

is calculated to be 0.8, corresponding to 0.97 dB loss. Although both of these

mode field radii correspond to single-mode waveguides, it is clearly not a sufficient

condition to guarantee low loss coupling.
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Chapter 5

All-Fiber Optical Faraday

Components

5.1 All-Fiber Optical Faraday Isolator and Fara-

day Mirror

5.1.1 Introduction

Optical Faraday isolators and Faraday mirrors are important components in opti-

cal communication networks and laser systems. A Faraday isolator is an optical

component that allows the transmission of light in only one direction. It is typi-

cally used to prevent unwanted feedback into an optical oscillator or amplifier. A

Faraday isolator consists of a Faraday rotator and two polarizers, as shown in Fig.

5.1. The input light becomes linearly polarized after polarizer 1, and the polariza-

tion direction rotates 45◦ through the Faraday rotator. Since polarizer 2 is aligned

at 45◦ with respect to polarizer 1, the light beam can pass through polarizer 2.

If the light is instead input through polarizer 2, the linearly polarized light after

polarizer 2 will again rotate 45◦ in the Faraday rotator. However the polarization

direction of the light will be perpendicular to polarizer 1 due to the nonreciprocal

property of the Faraday effect. Therefore, light propagating backward through the

isolator is blocked.

Faraday mirrors are widely used in optical amplifiers and oscillators to avoid
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(a) Forward Direction


(b) Backward Direction


Faraday

rotator


Polarizer 1
 Polarizer 2


Figure 5.1: Operation of a Faraday isolator illustrated in (a) the forward direction
and (b) the backward direction.

spatial hole burning[85], [86] and to stabilize the state of polarization by com-

pensating linear birefringence[87], [88], [89]. A Faraday mirror consists of a 45◦

Faraday rotator and a mirror, as shown in Fig. 5.2. Linearly polarized light is

input into the Faraday rotator and the polarization direction rotates 45◦. After

it is reflected back by the mirror, it goes through the Faraday rotator again and

the polarization direction rotates another 45◦, due to the nonreciprocal property of

Faraday effect. Therefore, the polarization direction of the reflected light rotates

90◦.

As mentioned in Sec. 1.2.3, bulk-optics-based Faraday components suffer from

the facet damage, which limits their use in high-power applications. To solve

this problem, all-fiber Faraday components are desired. However, there were no

commercial all-fiber Faraday components until this thesis, as mentioned in Sec.

3.1.

Some research groups tried to build compact all-fiber Faraday components using

standard silica fiber. In 1981, Findakly[90] first proposed a toroidal configuration.
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(a) Input Direction


(b) Output Direction


Faraday

rotator


Mirror


Figure 5.2: Operation of a Faraday mirror illustrated in (a) the forward direction
and (b) the backward direction.

In their configuration, a 15-m length of standard silica fiber was coiled 55 turns

inside a toroidal solenoid. The fiber was twisted at a rate of 124 rad/m yielding

an elasto-optic-induced circular birefringence of the order of 17 rad/m. Since

the twisting rate is far above the intrinsic and bending birefringence, the linear

birefringence can be neglected[91]. 45◦ was reached with 2.5 A current input. This

configuration only works for a solenoid, and can not applied to permanent magnets.

In 1980, a phase-matching method was proposed to build a compact Faraday

rotator[92], [71]. In this method, several meters of fiber were coiled into a multiple-

turn circle with several millimeter diameter, and placed in a magnetic field. The

circumference of the coil was exactly equal to one beat length of the birefringence

caused by the bending. The combined effect of Faraday rotation and birefringence

made this configuration work. Annovazzi-Lodi[73] further developed this idea into
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a figure-eight coil configuration to double the bending radius. One of the disad-

vantages of this method is that the bending diameter is very small: 7.5 mm at

633 nm, and less than 3 mm at 1550 nm. Such a small bending radius will induce

a large bending loss and increase the failure rate in lifetime performance. The

matching condition is precise for only one wavelength, so it can not be tuned for

different wavelengths.

In 1991, Lafortune[72] made a 40-cm standard-silica-fiber based Faraday rotator

at 633 nm. The magnet shape was optimized and phase retardation was introduced

inside the fiber. Unfortunately, the fiber length still extended to more than one

meter when used in the communication window at 1550 nm.

Although some all-silica-fiber Faraday components were realized, none of them

were commercialized due to their various drawbacks. As mentioned in Sec. 3.1,

researchers tried to dope terbium in optical fiber to increase the Verdet constant.

Although this terbium-doping method is very effective in increasing the Verdet

constant, progress in all-fiber Faraday devices has been limited due to the difficul-

ties in cleaving the Tb fiber, splicing the Tb fiber with standard silica fiber, and

developing other fiber components (such as fiber polarizers).

In this section, we demonstrate the first compact all-fiber Faraday isolator and

Faraday mirror using terbium-doped fiber. Two kinds of terbium-doped fiber were

fabricated. One is 56 wt% Tb-doped, with a Verdet constant of -24.5 rad/(Tm).

Another is 65 wt% Tb-doped with a record high Verdet constant of -32.1 rad/(Tm).

This value is 83% of that found in the commercially available crystal (TGG) used

in bulk-optics-based isolators, and 27 times larger than that of standard silica fiber.

5.1.2 Terbium Doped Optical Fiber

Terbium doping is an effective way to increase the Verdet constant in the fiber,

as described in Sec. 2.2. Highly terbium-doped silicate glasses were designed and

fabricated. Boron oxide and aluminum oxide were added into the glass composi-

tion to improve the solubility of terbium oxide. Terbium-oxide-doped glass was

used as the core glass. The rod-in-tube technique was used for single-mode fiber

fabrication. The fiber pulling temperature was around 1000 ◦C.

Two terbium-doped fibers were fabricated at AdValue Photonics Inc[93]. using
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Figure 5.3: Measured rotation angle (circle) and corresponding curve fit (solid) of
56 wt% Tb-doped fiber at a wavelength of 1053 nm as a function of the magnet
location along the fiber axis z.

in-house fiber drawing facilities. The first was 56 wt% terbium-doped. The NA

and diameter of the core were 0.14 and 4 µm, respectively, and cladding diameter

of the fiber was 130 µm. The propagation loss of the fiber was measured to be

0.11 dB/cm at 1310 nm using the cut-back technique. Using the measurement

technique described in Sec. 3, Fig. 5.3. shows the measured rotation angle and

the corresponding curve fit at the measurement wavelength of 1053 nm as the

magnet was translated along the length of the fiber. The error in the measured

angle was primarily caused by air flow and it is determined to be 1 degree by a

polarization stability measurement.

In contrast to the experimental configuration in Sec. 3, two 15-cm pieces of

straight single mode (SM) fiber were used on either side of the Tb doped fiber. All

other experimental components were identical to Sec. 3. From Eq. 3.5, the total
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rotation angle can be derived as

∆θtot = Vmeas

∫ l/2

−l/2

Bz(z)dz

= VTb

∫ l/2

−l/2

Bz(z)dz + Vsilica(

∫ −l/2

−∞
Bz(z)dz +

∫ +∞

l/2

Bz(z)dz), (5.1)

where L, Vmeas, VTb, and VSilica are length of magnet, measured Verdet constant,

and effective Verdet constants of the Tb and the silica fibers, respectively. As

described in Sec. 3.3, the axially integrated magnetic field inside and outside the

magnet tube have opposite signs but identical absolute values,
∫ l/2

−l/2
Bz(z)dz =

−(
∫ −l/2

−∞ Bz(z)dz +
∫ +∞
l/2

Bz(z)dz). Therefore, Eq. 5.1 can be simplified as

Vmeas = VTb − VSilica. (5.2)

Vmeas = −25.7±1.0 rad/(Tm) and VSilica = 1.2 rad/(Tm) at 1053 nm [94], VTb

was determined to be −24.5± 1.0 rad/(Tm), which is 22% larger than previously

reported results[77]. This measurement is in reasonable agreement with a 27%

increase in Tb3+ concentration, from 0.66×1022 in ref. [77] to 0.84×1022 ions/cm3

in this Tb fiber.

Although the rotation angle of 56 wt% Tb-doped fiber in N48 magnet tube

can not reach 45◦, the rotation angle of a piece of 21 cm long of the same fiber

in the N35 magnet cuboid can exceed 70◦, as shown in Fig. 5.4. Due to physical

geometry, the rotation angle can not be readily measured in a such large magnet.

Therefore, only the theoretical result is shown here.

The second fiber is 65 wt% Tb-doped fiber. The NA and diameter of the core

were 0.083 and 7.4 µm, respectively, with the cladding diameter of the fiber 125

µm. The propagation loss of the fiber was measured to be 0.024 dB/cm at 1310 nm

using the cut-back technique. The polarization rotation angle in the Tb fiber was

measured using the same method described above. A 4-cm Tb fiber was spliced

with two short pieces of single-mode (SM) fiber at both ends in order to increase

the total rotation angle. Figure 5.5 shows the measured rotation angle and the

corresponding curve fit at the measurement wavelength of 1053 nm as the magnet

was translated along the length of the fiber. The maximum rotation angle reached
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Figure 5.4: Theoretical rotation angle of 56 wt% Tb-doped fiber at a wavelength
of 1053 nm as a function of the N35 magnet location along the fiber axis z.

45◦. The error in the measured angle was primarily caused by air flow and it was

determined to be 1 degree by a polarization stability measurement. The effective

Verdet constant was determined to be −32.1 ± 0.8 rad/(Tm), which is 27 times

larger than that of silica fiber and the largest measured to date in any optical fiber.

Figure 5.6 shows the measured and curve-fit Verdet constants of the 54 wt%

Tb fiber[77], 56 wt% Tb fiber, 65 wt% Tb fiber and TGG[77] as a function of Tb3+

concentration. From the figure, it is clear that the Verdet constant is proportional

to the Tb3+ concentration, in agreement with Eqs. 2.13 and 2.14. The Verdet

constant of the 65 wt% Tb fiber is 31% larger than that of 56 wt% Tb fiber, and

reaches 83% of the Verdet constant of the commercially available crystal, terbium

gallium garnet (TGG), used in bulk-optics-based isolators.
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Figure 5.5: Measured rotation angle (circle) and corresponding curve fit (solid) of
65 wt% Tb-doped fiber at a wavelength of 1053 nm as a function of the magnet
location along the fiber axis z.

5.1.3 All-Fiber Polarizers

Single-polarization fiber (PZ) is a specialty fiber, in which only one polarization

mode can propagate[95], [96], [97], [98]. Generally, this kind of fiber has a large

birefringence to separate the two orthogonal polarization modes so that each has

a different cutoff wavelength. Therefore, within a certain wavelength region, one

polarization mode is eliminated due to high loss and the other propagates. In this

way, the fiber functions as an all-fiber polarizer. Birefringence is usually introduced

via stress from boron-doped rods, elliptical core/cladding, and/or air holes.

There are two current commercial products using this technique. One is Corn-

ing SP1060 fiber[99], [100], [101], [102], which has been used in our experiments.

The cross-section structure and image of this SP1060 fiber are shown in Figs. 5.7

and 5.8, respectively. With two air holes beside an elliptical core, a large birefrin-

gence and differential fundamental mode cutoff are achieved in the SP1060 fiber.
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Figure 5.6: Measured (dot) and curve fit (line) Verdet constants of the 54 wt%
Tb fiber, 56 wt% Tb fiber, 65 wt% Tb fiber and TGG as a function of Tb3+

concentration.

The core diameter along the major axis was 8 µm, and the cladding diameter was

125 µm, with a core N.A 0.14. The propagation loss was 0.1 dB/m at 1060 nm.

The measured transmission spectrum for two orthogonal polarization directions

in a 0.3 m length of SP1060 fiber coiled with a 15-cm diameter is shown in Fig.

5.9. The center wavelength was 1065 nm, and the bandwidth was 25 nm. The

extinction ratio was > 16 dB. The purpose of coiling the fiber was to shift the

polarizing bandwidth towards shorter wavelengths, which will include the 1053-nm

working wavelength. Since increasing the PZ fiber length increases the extinction

ratio[99], 1-m of PZ fiber is used in the isolator experiment. Another polarizing

fiber is Fibercore Zing fiber, which is high-birefringence bow-tie fiber. This kind

of fiber is similar to the Corning SP1060 fiber and will not be discussed further.

Besides the two polarizing fibers mentioned above, there is another commercial

product, called Helica In-Fiber Polarizers from Chiral Photonics, Inc, which uses

different physics mechanism. This fiber polarizer is a chiral scattering grating
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Core Airhole

Cladding

Figure 5.7: Cross-section structure of the SP1060 fiber.

Figure 5.8: Cross-section image of the SP1060 fiber.

(CSG) made from a twisted birefringent fiber[103], as shown in Fig. 5.10 (Courtesy

of Chiral Photonics). Two linear polarized modes from the input end can be

converted into two circular polarized modes in the adiabatically twisted region.

One circular polarized mode is blocked by the grating and the other propagates.

The propagating circular polarized mode is then adiabatically converted back into

a linear polarized mode. In this way, the CSG works as a fiber polarizer. The

fiber polarizer, which was also used in the experiments, had a 4-cm long CSG with
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Figure 5.9: Measured transmission spectra for two orthogonal polarization direc-
tions in a 0.3-m-long SP1060 fiber coiled with a 15 cm diameter.

Figure 5.10: Longitudinal structure of the CSG (Courtesy of Chiral Photonics).

polarization-maintaining (PM) fiber pigtails at both ends. The center wavelength

was around 1064 nm, with a bandwidth greater than 50 nm. The polarization

extinction ratio of the fiber polarizer was greater than 30 dB, and the insertion

loss was less than 2 dB, as shown in Fig. 5.11 (Courtesy of Chiral Photonics).

A single-polarization fiber can also be realized in photonic crystal fibers[104],

[105]. A suitable arrangement of microscopic air holes breaks the rotational sym-

metry and introduces polarization-dependent guiding properties. No commercial

products are based on this technology so it will not be discussed here.
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Figure 5.11: Measured insertion loss and extinction ratio for CSG (Courtesy of
Chiral Photonics).

5.1.4 All-Fiber Optical Faraday Isolator

Two all-fiber optical Faraday isolators have been demonstrated. The first one is

based on the 56 wt% Tb fiber, the Corning SP1060 PZ fiber polarizer, and the

N35 NdFeB magnet (as shown in Sec. 2.3 and 5.1). This isolator was relatively

heavy, large, and had a high optical propagation loss. After increasing the Tb-fiber

doping concentration and optimizing the fusion splicing program, the second all-

fiber optical Faraday isolator was built based on the 65 wt% Tb fiber, the Helica

In-Fiber Polarizers, and the N48 NdFeB magnet, as shown in Sec. 2.3 and 5.1.

This second isolator was light, compact and had much lower optical loss.

The experimental configuration of the first isolator is shown in Fig. 5.12. A

25-cm section of 56 wt% Tb-doped fiber, spliced between two 1-m sections of

PZ fiber (with an extinction ratio of 18 dB at 1053 nm), went through the N35

NdFeB magnet. The 1-m long PZ fiber was coiled with a 15-cm diameter. The

polarization directions of the two sections of the PZ fiber were aligned with a

rotational difference of 45◦. The location of the magnet was adjusted with respect

the Tb fiber to achieve the 45◦ rotation. The maximum possible polarization

rotation angle in this configuration was larger than 70◦.

The optical isolation of the first isolator at 1053 nm was measured to be 17



60

Polarizing
�ber

Polarizing
�ber

E17937J2

Linear
polarized
light

Magnet

Tb �ber

Figure 5.12: Experimental configuration of the first all-fiber Faraday isolator.

dB at room temperature. The loss of the isolator was 9 dB, including 0.2 dB

of propagation loss in the total 2-m of PZ fiber, 2.8 dB of propagation loss in

56 wt% Tb-doped fiber, and 3 dB from each splicing point between the PZ and

56 wt% Tb-doped fiber. The loss contribution due to the Tb-doped fiber could

be decreased to under 0.5 dB by using a higher grade magnet and a higher Tb-

doping concentration. This configuration would requires only a few centimeters

of Tb-doped fiber, as will be demonstrated below. The loss induced by the mode

mismatch between PZ and Tb-doped fiber is 1.8 dB per splicing point, which can

be reduced via fiber mode convertor. The remaining 1.2 dB loss per splice point is

due to the splicing process. The melting points of the terbium-oxide-doped silicate

fiber and silica fiber are 1200 ◦C and 1650 ◦C respectively, making it difficult to

melt them together using a conventional fusion splicer. Although this splicing loss

is high, it could be decreased further by using a custom setup, for example using

a temperature controllable heating filament.

The experimental configuration of the second isolator is shown in Fig. 5.13. A

much shorter 4-cm section of Tb-doped fiber, spliced between two short pieces of

SM fiber, went through the higher grade N48 NdFeB magnet tube. The two other

ends of the SM fibers were each spliced to a CSG fiber polarizer. The polarization

directions of the two fiber polarizers were aligned with a rotational difference of

45◦.

The reason for splicing two pieces of SM fiber is to increase the total Verdet

constant. Since the axial magnetic field outside the magnet can be neglected

beyond 4 cm past the end of the magnet, the effective length of the Faraday fiber

is 12 cm, including 4-cm Tb fiber and two 4-cm pieces of SM fiber. The SM

fiber could be eliminated by using a stronger magnet, for example, an N50 NdFeB

magnet, or by increasing the outer diameter of the magnet tube by a few percent.
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Figure 5.13: Experimental configuration of the second all-fiber Faraday isolator.

Then the effective length of the Faraday fiber could be only 4 cm.

The optical isolation of the second isolator at 1053 nm was measured to be

19 dB at room temperature. The loss of the isolator was 6.1 dB, including 2

dB insertion loss of each CSG, 0.1 dB of propagation loss in 65 wt% Tb-doped

fiber, 1 dB from each splicing point between the SM and 65 wt% Tb-doped fiber.

Recent progress in CSGs has demonstrated a reduction of insertion loss of the fiber

polarizer to less than 0.5 dB [106]. The 1 dB loss per splice point occurs because

the difference between the melting points of the terbium-oxide-doped silicate fiber

and silica fiber, as mentioned above. By implementing these improvements, an

all-fiber Faraday isolator could be made with less than 1 dB insertion loss.

Our collaborator, AdValue Photonics launched the first commercial all-fiber

Faraday isolator in CLEO 2010, as shown in Fig. 5.14. This product, which is

based on our research on all-fiber isolators, has an isolation of 20 dB, operating

wavelength of 1060 nm, and an insertion loss of 1 dB. 4 isolators are integrated in

one magnet package, which is a significant advantage of all-fiber isolators relative

to their free-space counterparts.

5.1.5 All-Fiber Optical Faraday Mirror

Similar to the isolators, two all-fiber optical Faraday mirrors have been demon-

strated here. The first one was based on the 56 wt% Tb fiber, a fiber Bragg

grating and N35 NdFeB magnet (as shown in Sec. 2.3 and 5.1), which was also

relative heavy, large, and had large optical propagation loss. After increasing the

Tb-fiber doping concentration and optimizing the fusion splicing program, the sec-

ond all-fiber optical Faraday mirror was built based on the 65 wt% Tb fiber, a

fiber Bragg grating and the N48 NdFeB magnet, as shown in Sec. 2.3 and 5.1.
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Figure 5.14: The commercial all-fiber Faraday isolator. Photo courtesy of AdValue
Photonics.

The second Faraday mirror was light, compact, and had much smaller optical loss.

A fiber Bragg grating (FBG) is a periodic structure in the optical fiber that

reflects light within a certain wavelength range. The principle and properties of

FBGs have been discussed in detail elsewhere[107], [108], therefore they will not

be covered here. An FBG with a center wavelength of 1053 nm, a reflectivity of

97% and a bandwidth of 1 nm was used in the experiment as an all-fiber mirror.

The experimental configuration used to test the first Faraday mirror is shown

in Fig. 5.15. A 21-cm section of 56 wt% Tb-doped fiber, spliced between po-

larization maintaining (PM) fiber and a 30-cm section of single-mode (SM) fiber,
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Figure 5.15: Experimental configuration of the first all-fiber Faraday mirror.

went through the N35 NdFeB magnet. The FBG was spliced to the other end of

the SM fiber. The SM fiber is short and kept straight to avoid changes to the

polarization state. A 4-port 3 dB PM coupler was spliced with the PM fiber for

testing purposes. Linearly polarized 1053-nm light was launched into the PM fiber

via port 1. Then it went through the Faraday rotator (Tb fiber), and the polar-

ization state rotated 45◦. After it was reflected back by the FBG, the polarization

state rotated another 45◦ at the Faraday rotator and the total polarization rota-

tion angle reached 90◦. The polarization states of the output and input light were

measured at ports 2 and 3 respectively. The location of the magnet was adjusted

with respect the Tb fiber to achieve the total 90◦ rotation.

When measuring the polarization state, the light went through a lens and a

polarizer, and was finally collected by a detector. When the polarizer was rotated

by an angle θ, the light intensity I at the detector was a cosine-square function

I/I0 = cos2(θ− θi0), which is the well-known Malus’ Law[109]. I0 is the maximum

light intensity received by the detector, and θi0 represents the polarization state of

the input and the output light (i=input, output). Fig. 5.16. shows the measure-

ment results. The triangles and circles are measurement points of the input and

output light, respectively. The dashed and solid lines are curve-fits of the input
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Figure 5.16: Polarization state measurement of the input and output light of the
first Faraday mirror. Triangles and circles are measurement points of the input
and output light, respectively. Dashed and solid lines are curve-fits of the input
and output light, respectively.

and output light, respectively. The polarization rotation angle is calculated to be

θoutput0 − θinput0 = 89± 2◦.

The insertion loss of the Faraday mirror was 13.7 dB, including 4.6 dB propa-

gation loss of 56 wt% Tb fiber (round trip), 0.1 dB reflection loss from the FBG,

and 2.3 dB splicing loss per slice point between 56 wt% Tb and silica fiber (PM

and SM). The extinction ratios of the input and output light were 20 and 16 dB,

respectively. If the length of SM fiber between Tb fiber and FBG was reduced, the

extinction ratio of the output light could be increased close to 20 dB.

The experimental configuration used to test the second Faraday mirror is shown

in Fig. 5.17. A 4-cm section of Tb-doped fiber, spliced between two short pieces

of SM fiber, went through the N48 NdFeB magnet. The same FBG used in the

first Faraday mirror was spliced to the other end of one of the SM fibers. The SM

fiber was short and kept straight to avoid altering the polarization state. The same

4-port 3 dB PM coupler was spliced with the other SM fiber for testing purposes.
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Figure 5.17: Experimental configuration of the second all-fiber Faraday mirror.

Fig. 5.18. shows the measurement results. Squares and circles are measurement

points of the input and output light, respectively. The dashed and solid lines are

curve-fits of the input and output light, respectively. The polarization rotation

angle was calculated to be θoutput0 − θinput0 = 88± 4◦. The error was measured from

the polarization stability measurement of the Faraday mirror configuration, which

is different from the Verdet constant measurement configuration.

The insertion loss of the second Faraday mirror was 4.3 dB, including 0.2 dB

propagation loss from 65 wt% Tb fiber (round trip), 0.1 dB reflection loss from

the FBG and 1 dB splicing loss per slice point between 65 wt% Tb and SM fiber,

which is counted four times. Similar to the isolator, the splicing loss could be

decreased by using a temperature controllable heating filament, resulting in an

all-fiber Faraday mirror with insertion loss of less than 0.5 dB. The FBG can also

be written on Tb fiber directly, which would also reduce the splicing loss by half.

The extinction ratios of the input and output light are 20 and 13 dB, respectively.

The reason of a lower extinction ratio compared with the previous experiment is

due to the defects in fiber connectors. If the SM fiber between the Tb fiber and

FBG were shortened, and the fibers were fusion spliced, the extinction ratio of the

output light could be increased to the 20 dB input level.
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Figure 5.18: Polarization state measurement of the input and output light of the
second Faraday mirror. Squares and circles are measurement points of the input
and output light, respectively. Dashed and solid lines are curve-fits of the input
and output light, respectively.

5.1.6 Discussion

The compact all-fiber Faraday isolator and Faraday mirror will have significant

impact in high-power fiber laser systems. There are no material/air interfaces or

epoxy problems found in bulk optics Faraday components, increasing the damage

thresholds required for high power applications. Since hundreds of pieces of Tb

fiber can go through one magnet tube at the same time, many Faraday components

can be integrated into a single magnet, as shown in Fig. 5.19. This would reduce

cost and size in large fiber array systems.

In conclusion, an all-fiber Faraday isolator and Faraday mirror are demon-

strated. The isolator consists of two fiber polarizers and a fiber Faraday rotator.

The latest fiber Faraday rotator was made of a 4-cm long 65 wt% terbium-doped

silicate fiber. The effective Verdet constant of the 65 wt% terbium-doped fiber was

measured to be −32.1± 0.8 rad/(Tm), which is 27 times larger than that of silica

fiber. This effective Verdet constant is the largest measured value to date in any
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fiber, and is 83% of the Verdet constant of commercially available crystal (TGG)

used in bulk optics based isolators. The isolation of this fully fusion-spliced all-

fiber isolator was measured to be 19 dB. The Faraday mirror consists of an all-fiber

Faraday rotator and a fiber Bragg grating as mirror. The polarization state of the

reflected light is rotated 88 ± 4◦. The work in this section has been published in

references [110], [111], and [112].

5.2 All-fiber Optical Magnetic Field Sensor

5.2.1 Introduction

Magnetic field sensors have been widely used for navigation, vehicle detection, cur-

rent sensing, and spatial and geophysical research. Many techniques developed for

magnetic field sensor are based on electronics, including Superconducting Quan-

tum Interference Devices (SQUIDs), Search Coils, Fluxgates, Hall effect sensors

and anisotropic magnetoresistive devices[113]. These magnet sensors can work in

many applications. However, they are not suitable for strong Electro-Magnetic

Interference (EMI) environments, because the presence of strong ancillary electro-

magnetic signals causes errors in such electronic sensors. All-fiber optical mag-

netic field sensors are desirable in strong EMI environment due to their immunity

to electromagnetic interference, low weight, small size, and long distance signal

transmission for remote operation.

Many all-fiber magnetic field sensors use material coatings. For example, if a
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magnetostrictive or metal jacket is deposited on the fiber, the optical phase can be

changed by strain or Lorentzian force, respectively, when immersed in a magnetic

field[114], [115]. In another method, a fiber end is coated with a composite material

and butt coupled to another fiber. The optical coupling between the fibers changes

with the transverse displacement of the coated fiber in the magnetic field[116]. In

yet another method, iron film is deposited on a side-polished fiber Bragg grating.

The reflective wavelength of the fiber grating shifts with the strain induced by a

magnetic field[117].

Faraday rotation can be used for magnetic field sensors. Because the Verdet

constant of silica fiber is small [∼ 1.1 rad/(Tm) at 1064 nm], the fiber is usually

coiled multiple-turns to increase the polarization rotation angle. This kind of mag-

net sensor is often used for current sensing[71], [73]. However, bend-induced linear

birefringence affects the state of polarization and quenches the desired Faraday

effect. In this section, an all-fiber optical magnetic field sensor based on Faraday

rotation is demonstrated. The device is made of a fiber Faraday rotator spliced to

a fiber polarizer. The fiber Faraday rotator is a 2-cm long 56 wt% terbium-doped

fiber, which is sufficiently short to avoid bending. The fiber polarizer is Corning

SP1060 single polarization fiber (PZ).

5.2.2 Experiment

The magnetic sensing principle is shown in Fig. 5.20. Linearly polarized input light

from the laser source is transmitted to the Tb fiber via polarization maintaining

(PM) fiber. The polarization of the light rotates when the Tb fiber experiences

a magnetic field along the axis of light propagation. The light then goes through

the fiber polarizer, which extinguishes light whose polarization is not aligned to

its principle axis. PM fiber transmits the remaining light to a detector. Due to

the polarizer, the power received at the detector is a function of the polarization

rotation angle given by Malus’ Law[109]. Since the polarization rotation angle in

the Tb fiber is related to the magnetic field strength by the Faraday effect, the

magnetic field can be measured by monitoring the output power of the sensor.

The experimental configuration used to test the sensor is shown in Fig. 5.21. A

2-cm section of 56 wt% Tb-doped fiber, spliced between the PM fiber and 1-m sec-
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Figure 5.21: Experimental configuration of the all-fiber magnet sensor.

tion of SP1060 PZ fiber, went through the N48 NdFeB magnet. Linearly polarized

1053-nm light was launched into the PM fiber. The polarization directions of the

PM and the PZ fibers were aligned with a rotational difference of θ0, which should

be set between 20◦ to 70◦ to obtain a nearly linear response curve of magnetic field

strength as a function of measured power. As the magnet was translated along the

fiber, the magnetic field imposed on the Tb fiber changed. The averaged magnetic

density flux Bav experienced by the 2-cm length of Tb fiber (calculated in the

center of Tb fiber) is shown in the Fig. 5.22. This curve is nearly linear from -3

to -1 cm along the z axis. This region was used in the measurement.

After considering the extinction ratio of the polarizing fiber, Ex, the relative

transmission through the SP1060 PZ fiber is derived as [118].

I/I0 = cos2(θ0 + θ) + sin2(θ0 + θ)10(−Ex/10) (5.3)
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Figure 5.22: Theoretical (solid) and measured (circle) magnetic density flux distri-
bution Bz along the center axis z. Dashed lines represent the magnet ends, and the
dotted line represents Bav, the magnetic density flux averaged over a 2-cm length
along the axis z.

I/I0 is the measured output power normalized to its maximum I0. θ = V BavL

is the Faraday rotation angle in the Tb fiber. V and L are the effective Verdet

constant and the length of the Tb fiber respectively. In the experiment, Ex=18 dB

and θ0 = 50◦. The experimental and theoretical curves of the relative transmission

are shown in Fig. 5.23. The error was determined to be 0.01 by a polarization

stability measurement. The experimental data agrees well with the theoretical

curve, both of which show a nearly linear response. The nominal transmission loss

through the device is 10 dB, mainly induced by the mode mismatch between PZ

fiber and 56 wt% Tb fiber, and splicing loss between the Tb fiber and silica fiber.

Using Eq. 5.3, the measured Verdet constant of the device and the relation

θ = V BavL, Bav was measured in the linear response region using the all-fiber

sensor. Figure 5.24 shows that the measurement agrees exceptionally well with

the theoretical curve, derived from the solid curve in Fig. 5.22.
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Figure 5.24: Measured (circles) and theoretical (solid) Bav as a function of the z
axis. The dashed lines represent the end of the magnet.
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5.2.3 Discussion

The sensitivity of the all-fiber sensor is given dθ/dBav = V L = 0.49 rad/T . This

can be increased by increasing the effective Verdet constant and/or length of the

Tb fiber. If the 65 wt% Tb-doped fiber described in Sec. 5.1.2 was used here, the

sensitivity would increase by 31%. Since the polarization rotation may go beyond

90◦, a maximum detected magnetic field Bmax = π/2
V L

of 3.2 T can be measured in

this configuration without ambiguity. A larger magnetic field could be measured

by decreasing the effective Verdet constant or the length of the Tb fiber.

The resolution of the magnetic sensor is obtained by taking the derivative and

absolute value of both sides of Eq. 5.3,

∆B =
∆I

I0V L sin[2(θ0 + θ)](1− 10−Ex/10)
=

∆I

I0

2Bmax

π sin[2(θ0 + θ)](1− 10−Ex/10)

≈ ∆I

I0

2Bmax

π sin[2(θ0 + θ)]
. (5.4)

In the approximate form of this equation, the effect of the extinction ratio

is neglected, which is appropriate for Ex > 18. Increasing the effective Verdet

constant and the length of the Tb fiber could increase the resolution, at the expense

of reducing Bmax. In the experiment, the length of the 56 wt% Tb fiber was set

to 2 cm to act as a point sensor. The factor I/I0 is limited by the laser source

noise. If the noise is assumed to around 1%, the minimum measurable magnetic

field is 0.02 T. This number can be substantially reduced by providing a reference

measurement for the laser source, eliminating the intensity fluctuations of the

source from the measurements. In this case, detection at the nW level (with I0 at

the mW level) yields a sensor resolution of 2 × 10−6 T. If higher resolution and

higher Bmax are both required, two all-fiber magnetic field sensors could be co-

located. In this scenario, one sensor would have a large VL product to obtain the

desired resolution; the other would have a small VL product to obtain the desired

maximum detected magnetic field by removing the ambiguity of the other sensor.

The Verdet constant of the Tb fiber depends on temperature; for example,

(1/V )dV/dT is around 10−4 /K for silica[119]. To mitigate the impact of temper-

ature on measurement results, for example, in an environment with temperature

fluctuations, a fiber-grating temperature sensor could be cascaded or co-located
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with the magnetic field sensor to monitor the temperature near the magnetic field

sensor. In this way, the sensor could give accurate results, providing the device has

been calibrated as a function of temperature. If the sensor is used in a controllable

laboratory environment, there is no need for a temperature sensor.

Although the resolution of this intensity-based sensor cannot exceed that of

interference-based sensors, this all-fiber magnetic-field sensor is suitable for envi-

ronments containing strong electromagnetic fields, such as nuclear facilities, mag-

netic resonance imaging (MRI), magnetic levitation (e.g., high-speed trains) and

some military harsh environments. For example, the maximum magnetic field

strength in MRI systems is around 3 T, which is a good match with this sensor.

Apart from the sensing element (i.e. the Tb-doped fiber), the rest of the proposed

sensing system is silica fiber, which is immune to perturbations by electromagnetic

fields, unlike electronic-based sensors. The proposed sensor is compact and robust

compared with bulk optics-based sensors. Additionally, it has a simple structure

and does not need material coatings, which will result in a low-cost device.

Since the all-fiber magnetic field sensor can only measure magnetic fields par-

allel to it axis, three orthogonally oriented sensors could be combined to provide

a complete three-dimensional magnetic field sensor. However, in most cases, an

applied magnetic field is to be measured requiring only a single axis sensor.

In conclusion, an all-fiber optical magnetic field sensor has been demonstrated.

It consisted of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday ro-

tator used a 2-cm-long section of 56-wt%-terbium-doped silica fiber with a Verdet

constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer was Corning SP1060

single-polarization fiber. The sensor had a sensitivity of 0.49 rad/T and can mea-

sure magnetic fields from 0.02 T to 3.2 T. This work has been published in reference

[120].
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Chapter 6

All-Fiber Wavelength-Tunable

Continuous-Wave Laser

6.1 Introduction

Wavelength-tunable lasers are desired in wavelength-scanning systems, such as

optical coherent tomography (OCT), optical instrument testing systems, sensor

array systems, and spectroscopy. They can reduce the inventory cost of fixed-

wavelength lasers in multi-wavelength systems, such as WDM telecommunica-

tions. A wavelength-tunable fiber laser usually consists of a conventional fiber

laser with an intra-cavity wavelength-tunable filter, as shown in Fig. 6.1. Various

filters have been investigated in the last two decades. These filters include Fabry-

Perot cavities[121], [122], [123], [124], free-space wavelength-selective gratings[125],

[126], [127], [128], Mach-Zehnder filters[129], fiber couplers[130], liquid crystal

mirrors[131], [132], MEMS[133], thin films[134], acousto-optic modulators[135],

[136], multimode interferometers[137], fiber tapers[138] and fiber Bragg gratings

[139], [140], [141], [142], [143]. Tuning ranges span several nm to tens of nm de-

pending on which filter is used.

Although tunable diode lasers are small, robust, and low cost, tunable fiber

lasers have narrower linewidth, lower noise floor, and are capable of much higher

power levels. Among all the wavelength-tunable lasers mentioned above, only the

fiber Bragg grating and the fiber taper filters are suitable for integrating into all-

fiber lasers. The fiber Bragg grating and fiber taper are mechanically stretched to
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Figure 6.1: Configuration of a general wavelength-tunable fiber laser.

provide tunability over a 20-nm range. These tuning-methods suffer from mechan-

ical fatigue, which prohibits their use in commercial systems.

In this chapter, a new tuning mechanism based on Faraday rotation is pro-

posed. The tuning filter consists of a fiber polarizer and a fiber Faraday mirror

that includes a fiber faraday rotator and a chirped fiber Bragg grating (CFBG).

The CFBG is directly written on the terbium-doped fiber in the Faraday rotator.

An all-fiber wavelength-tunable laser can be built by combining this filter with a

linear laser cavity. Since the electromagnetic field is used for tuning, high tuning

speeds can be achieved if a solenoid is used, while keeping the laser mechanically

untouched. Such an arrangement allows for electrical tuning in an all-fiber laser

without the long-term problems associated with mechanical fatigue.

6.2 Working Principle

The configuration of the all-fiber wavelength-tunable filter is shown in Fig. 6.2. It

consists of a fiber polarizer and a special fiber Faraday mirror. The fiber Faraday

mirror is different to the one shown in Sec. 5.1.5 in that a CFBG is directly written

into the terbium fiber. It has been demonstrated that terbium-doped silicate fiber

has photosensitivity after hydrogen loading[144]. Therefore, it is possible to write

a CFBG directly into the terbium fiber.

In the proposed filter, linearly polarized light, E0, is input into the fiber polar-

izer. The light polarization is rotated in the Tb-doped fiber while being reflected
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Figure 6.2: Configuration of the all-fiber wavelength-tunable filter.

by the CFBG. Since different wavelengths are reflected at different locations in

the CFBG, they will propagate different lengths in the Tb fiber, and their po-

larizations will rotate different angles θ via the Faraday effect. The polarization

rotation of different wavelengths are shown in Fig. 6.3. The Y direction is the

passing direction of the fiber polarizer. The polarization angle with respect to the

Y axis is θ. Only light with a polarization direction parallel to the fiber polarizer

can pass through it. Suppose the CFBG can reflect wavelengths from λ1 to λ3,

where λ2 is a wavelength in between them, i.e. λ1 < λ2 < λ3. After the light is

reflected back and goes through the fiber polarizer again, its amplitude becomes

E0cos(θ). The optical power loss, α, is α = −10log10cos
2(θ). Fig. 5.5 shows that

the rotation angle, θ, can vary from negative to positive, depending on the mag-

netic field distribution (i.e. the location or strength of the magnet). Therefore, it

is possible to select a certain wavelength for which θ = 0 by changing the mag-

netic field applied on the Tb:CFBG. Then only one wavelength has 0 dB loss and

all other wavelengths have non-zero loss, as long as −π/2 < θ < π/2 within the

bandwidth of the gain medium.

In a laser cavity, the net gain gnet = g − α determines which wavelength will

resonate, where g is the gain of the gain medium. α has a small dispersion due to

the cos2 dependence, while g has a large dispersion due to the ytterbium emission

bandwidth. This large discrepancy in the dispersions make such a laser difficult

to tune. Fig. 6.4 shows the experimental configuration used to measure the Yb-

doped-fiber gain spectrum. A 5-m length of PM Yb-doped fiber is spliced with a

976/1030 nm WDM. The pump is input from the 976 nm port, and the spectrum is
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measured through the 1030 nm port on an optical spectrum analyzer (OSA). Fig.

6.5 shows the gain spectrum of this Yb fiber at different pump currents. There are

no flat regions that are required for our dispersion tuning mechanism.

To solve this problem, the gain can be flattened using a fused-fiber WDM, whose

transmission spectrum can be approximated as a cosine-squared function[145]. Fig.

6.6 shows the experimental configuration used to flatten the Yb-doped fiber gain

spectrum. The difference from Fig. 6.4 is that a 1030/1090 nm WDM is inserted

as a filter into the cavity. The 1090 nm port is used as transmission port and

the 1030 nm port is unused. Fig. 6.7 shows the gain-flattened spectrum of the

5-m long PM Yb fiber together with this 1030/1090 nm WDM at 200 mA pump

current. Since WDMs exhibit a cosine-squared transmission, the 1090 nm port

also was a transmission port at the 976 nm pump wavelength, allowing nearly all

of the pump power to pass through to the Yb-doped fiber. The resulting net gain

is flattened to less than 0.2 dB from 1047-1060 nm.

Fig. 6.8 shows the proposed configuration of the all-fiber wavelength-tunable
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Figure 6.4: Experimental configuration to measure the Yb-doped fiber gain spec-
trum.
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Figure 6.5: Measured ASE spectra of the Yb-doped fiber at different pump cur-
rents: 800 mA (solid), 300 mA (dashed), 150 mA (dashed-dot) and 100 mA (dot).

filter. The splice point between the PM and Tb fiber is defined as the zero point

of the z axis, and z is the distance from the splice to the center of the magnet.

The length of the CFBG is z2 = 2 cm. The distance between the PM fiber and

the CFBG is z1 = 5 cm. Most of the polarization rotation occurs in this section

of Tb-fiber. The CFBG does the final rotation, with the location (or strength) of

the magnet determining the wavelength that is rotated a net zero degree.

Fig. 6.9 shows the proposed configuration of the all-fiber wavelength-tunable
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Figure 6.6: Experimental configuration used to flatten the Yb-doped fiber gain
spectrum.
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Figure 6.7: Gain-flattened ASE spectrum of the Yb-doped fiber at 200 mA pump
current.

laser. The all-fiber reflective filter is used as one end mirror of the cavity. The 4%

reflection at the cleaved output end is the other end mirror, although a partially

reflective broadband FBG could also be used. A polarizing fiber or a CSG can be

used for the fiber polarizer. If the magnet is translated along the fiber axis, the

output wavelength of such a demonstration laser would be tuned correspondingly.

The theoretical calculation of the wavelength tuning as a function of z axis (magnet

position) is shown in Fig. 6.10. This calculation uses the flattened gain spectrum
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Figure 6.8: Experimental configuration of the reflective all-fiber wavelength-
tunable filter using Tb fiber.
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Figure 6.9: Experimental configuration of the all-fiber wavelength-tunable laser.

measured in Fig. 6.7 and the polarization rotation measured for the 65 wt.% Tb-

doped fiber to calculate the wavelength with the maximum gain as a function of

the magnet position. The CFBG is assumed to have a reflection bandwidth from

1047 to 1060 nm with a linear chirp. Fig. 6.10 shows that the wavelength can be

linearly tuned by translating the magnet along the z axis. If a solenoid is used

instead of a permanent magnet, this tuning can be accomplished electronically

with no mechanical stress or moving parts.

6.3 Conclusion

In this chapter, an all-fiber wavelength-tunable fiber laser is proposed. The tuning

filter consists of a fiber polarizer and a fiber Faraday mirror which includes a fiber

Faraday rotator and a chirped fiber Bragg grating (CFBG). The CFBG is directly
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Figure 6.10: Theoretical calculation of the wavelength tuning as a function of the
magnet location.

written on the terbium-doped fiber in the Faraday rotator. An all-fiber wavelength-

tunable laser can be built by combining a linear laser cavity and this all-fiber tuning

filter. Gain flattening is demonstrated, providing 13-nm of available tuning range.

Calculations shows that linear tuning can be achieved over this range. Since the

electromagnetic field is used for tuning, the all-fiber laser is free from stress and

mechanical fatigue, and can be tuned at high speeds by using a solenoid.



82

Chapter 7

Filamentation Analysis in

Large-Mode-Area Fiber Lasers

7.1 Introduction

Fiber lasers have developed rapidly in recent years[146], [147] with output pow-

ers above the kilowatt level[148], [149]. With increasing output power, nonlinear

effects become important and can ultimately limit the power scalability in the

fiber. Two well-known nonlinear effects that have limited the output power of

fiber lasers are stimulated Brillouin scattering (SBS) and stimulated Raman scat-

tering (SRS). As mentioned in Sec. 1.2, several methods can be used to increase

the SBS threshold, including increasing the signal bandwidth to decrease the Bril-

louin gain[38], using new fiber designs to decrease the overlap between acoustic

and optics modes[150], varying the temperature along the cavity[151], [152] and

using low-numerical-aperture, large-mode-area (LMA) fibers[39]. Spectral filter-

ing and LMA fibers are used to mitigate SRS. In LMA fibers, the large mode area

decreases the optical intensity, therefore increasing the nonlinear threshold.

While many methods are being investigated to suppress SBS and SRS, other

nonlinear effects have an impact, such as self-focusing. Self-focusing can lead to

beam-quality degradation through a process called filamentation, which has been

studied extensively in semiconductor lasers over the past two decades[153], [154],

[155]. The physical nature of filamentation arises from self-focusing through the

nonlinear refractive index. When the light intensity is strong enough for self-
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Figure 7.1: An intense laser beam is focused due to the nonlinear refractive index.

focusing to occur, the beam in the laser cavity is focused, as shown in Fig. 7.1.

As a result, the laser beam is limited in a small region in the center of the core.

In a semiconductor laser, the corresponding population inversion is depleted in

the center of the core but undepleted in other areas of the core, i.e., spatial hole

burning. With spontaneous emission occurring throughout the core, it is easy

to generate other lasing beams, finally resulting in filamentation, as depicted in

Fig. 7.2. Figure 7.3 shows an infrared image of the top of a broad-area gain

region in a semiconductor laser, illustrating the effect of filamentation[156]. A

similar effect could occur in optical fiber lasers. In 1987, Baldeck et al.[157], [158]

observed the self-focusing effect in an optical fiber with picosecond laser pulses.

Self-focusing has been studied in hollow waveguides[159], [48] and more recently

in fiber amplifiers[160]. Although filamentation has not yet been observed in fiber

lasers, a theoretical analysis that can predict its threshold in fiber lasers is lacking.

In this chapter, a theoretical model for filamentation in LMA fiber lasers is

presented. Solving the paraxial wave equation and population rate equation in

three dimensions, an expression for the filament gain is derived using a perturbation

method. This expression includes both spatial and temporal characteristics, the

filament spacing, and the oscillation frequency. The filament gain also depends

on the physical parameters of the optical fiber, the nonlinear refractive index, the

pump power, and the signal power. This model can predict the output-power

thresholds at which the filamentation will occur for a given set of optical fiber

parameters, in particular the core diameter. A simplified threshold expression is
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Figure 7.2: Filamentation is induced by perturbations in a self-focused beam con-
dition.

Figure 7.3: Infrared image of the top of a broad-area gain region in a semiconductor
laser, illustrating the effect of filamentation[156]

provided. The results are shown to be consistent with previous experiments and

models.

7.2 Theoretical Model and Steady-State Solu-

tion

Starting with Maxwell’s equations in a dielectric medium, a wave equation is ob-

tained, assuming an optical field of the form Ã = As(r, ϕ, z, t)e
i(kz−ωt), and using

the slowly varying envelope approximation to neglect the second derivatives of

time t and axial coordinate z. After considering the gain, loss, nonlinear refractive
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index, and the coupling of pump and signal light in the optical fiber, the optical

field of the signal light satisfies the paraxial wave equation

∂As

∂z
+

1

vg

∂As

∂t
=

i

2ks
∇2

TAs + [
1

2
g′s + i(2γpPp + γsPs)]As, (7.1)

where As is the slowly varying amplitude of the signal light along z and t, vg is

the group velocity, ks = neffk0 is the mode propagation constant of the signal

light, neff is the effective index of the refraction, and k0 is the free-space prop-

agation constant. ∇2
T = 1

r
∂
∂r

+ ∂2

∂r2
+ 1

r2
∂2

∂ϕ2 is the transverse Laplacian operator,

representing diffraction. g′s = gs − αcav is the net gain of the signal light, where

gs = N2σ
e
s −N1σ

a
s is the local gain of the signal light. The energy-level system of

the excitation ions is assumed to be two-level system[161], where N2, N1 are the

upper and lower state population densities, respectively. σa
j , σ

e
j are the absorption

and emission cross sections at the frequency ωj with j = p, s representing pump

and signal light. To analyze the optical fiber laser, the mirror losses are distributed

throughout the cavity, αcav = αint − ln(R1R2)/2L, where αint is the internal loss,

L is the cavity length, and R1 and R2 are the reflectivities of the mirrors. For the

case of a fiber amplifier, the cavity loss is the same as the internal loss, αcav = αint.

γj = n2k0/Aeffj is the nonlinear parameter at frequency ωj, n2 is the Kerr coeffi-

cient, and Aeffj is the effective cross section area at frequency ωj. The nonlinear

parameter γj represents self-focusing in optical fibers, for γj > 0, Pj = |Aj|2 is the
optical power in the core at frequency ωj.

With the assumption of a two-level system, the rate equation of the excited

state is given by[161]

∂N2

∂t
= −N2

τ
− (N2σ

e
s −N1σ

a
s )ϕs − (N2σ

e
p −N1σ

a
p)ϕp, (7.2)

where ϕj = Pj/(Aeffjhνj) is the photon flux at the frequency νj, τ is the spon-

taneous lifetime of the excited state, and Nt = N1 + N2 is the total population

density.

Eq. 7.1. is a nonlinear equation without an exact solution. The waveguide

mode is first solved in the absence of gain and loss for low intensity levels (i.e. no
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nonlinear effects). The solution in the core can be found[78]

Ã = Asexp[i(ksz − ωst)] = As0Jm(psr)exp(imϕ)exp[i(ksz − ωst)], (7.3)

where As0 is a constant, p2s = n2
1k

2
0 − k2s , and n1 is the refractive index in the core.

The index m can only take integer values, with m = 0 for fundamental mode. The

optical field in the Eq. 7.1. should have the form As = As1(z)Jm(psr)exp(imϕ).

Substituting the Laplacian term with ∇2
TAs = −p2sAs, Eq. 7.1. can be rewritten

in the steady state as

∂As

∂z
= [

1

2
g′s −

ip2s
2ks

+ i(2γpPp + γsPs)]As. (7.4)

For simplicity, bi-directional pumping is assumed, so the pump power Pp can be

regarded as nearly constant along the cavity, which leads to a constant gain along

the cavity. When a laser is above threshold, the gain is clamped to the value

of cavity loss at threshold. Since the loss is distributed along the cavity in this

unfolded cavity model[155], the net gain, g′s, is zero and the signal power Ps = |As|2

must therefore be independent of z(|As1(z)| = As0). The solution of Eq. 7.4. has

the form As = As0Jm(psr)exp(imϕ)exp(i∆ksz), where ∆ks is given by

∆ks =
1

2
g′s −

ip2s
2ks

+ i(2γpPp + γsPs). (7.5)

Eq. 7.5. shows the change of the complex propagation constant due to the gain,

loss, nonlinearity and the waveguide mode.

The modal gain gs = Γsg includes the transverse confinement factor Γs =
Aeffs

Acore

to account for the fact that excited ions are doped only in the core. Substituting

the relation N1 = Nt −N2 into Eq. 7.2, the upper state population can be found

in the steady state as

N2 =
Nt

(
σa
s

σe
s+σa

s

Ps

P sat
s

+
σa
p

σe
p+σa

p

Pp

P sat
p

)
1 + Ps

P sat
s

+ Pp

P sat
p

, (7.6)

where Pj = |Aj|2, P sat
j =

Aeffj
hνj

(σe
j+σa

j )τ
is defined as saturation power with j = p, s.

For the case of the fiber laser, with the threshold condition of gs = αcav and
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the assumption of constant pump power, the signal power is constant along the z

direction in the cavity as determined by Eq. 7.6,

Ps =
[
− (Ntσ

a
s +

αcav

Γs

)− (
Nt(σ

e
pσ

a
s − σa

pσ
e
s)

σe
p + σa

p

+
αcav

Γs

)
Pp

P sat
p

]αcavP
sat
s

Γs

. (7.7)

7.3 Linear Stability Analysis and Filament Gain

The stability of the single-mode solution against nonlinear spatial perturbations

must be determined under what condition beam filamentation will occur. If small

perturbations grow with propagation, then the steady state solution is unstable,

and the beam can break up under propagation through the fiber. Small perturba-

tions a and n are introduced in the optical field As = [
√
Ps+a(r, ϕ, z, t)]exp(i∆ksz)

and upper state population density N ′
2 = N2 + n(r, ϕ, z, t). Linearizing Eqs. 7.1

and 7.2 in a and n, while using the steady-state solutions, leads to two coupled

linear equations,

∂a

∂z
+

1

vg

∂a

∂t
=

i

2ks
(p2sa+∇2

Ta) +
1

2
g′sa (7.8)

+
1

2
Γsn

√
Ps(σ

e
s + σa

s ) + iγsPs(a+ a∗), and

−τ ∂n
∂t

= n(1 +
Ps

P sat
s

+
Pp

P sat
p

) + (N2 −Nt
σa
s

σe
s + σa

s

)

√
Ps

P sat
s

(a+ a∗). (7.9)

Due to the cylindrical geometry, the perturbation is assumed to have the form

of Bessel solution,

a = a1Jkϕ(pr)exp[i(kϕϕ+ kzz − Ωt)] (7.10)

+a2Jkϕ(pr)exp[−i(kϕϕ+ kzz − Ωt)]

n = n0Jkϕ(pr)exp[i(kϕϕ+ kzz − Ωt)] (7.11)

+n∗
0Jkϕ(pr)exp[−i(kϕϕ+ kzz − Ωt)],

where p is a Bessel parameter and kϕ has integer value. kz is the propagation

constant of the perturbation and Ω is its oscillation frequency. n0, a1 and a2 are
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constants. The two field perturbation parameters originate from the fact that a

represents a complex field, which is determined by two independent variables[162].

The perturbation in population density, n, is a real number, which can be deter-

mined by one variable. Substituting Eqs. 7.10 and 7.11 into the coupled equations

leads to linear equations about a1 and a
∗
2. In the condition that they have nontrivial

solutions, kz needs to satisfy

kz =
Ω

vg
+ i

1

2
[G(1 + iξ)− g′s]±

√
p′2

2ks
(
p′2

2ks
− 2γsPs)−

1

4
[G2(1 + iξ)2 + g′2s ], (7.12)

where p′2 = p2 − p2s. The factor ξ and the saturated power gain G are defined

respectively as

ξ =
Ωτ

1 + Ps

P sat
s

+ Pp

P sat
p

, and (7.13)

G = Γsg
′
s

Ps

P sat
s

(1 + Ps

P sat
s

+ Pp

P sat
p

)

(1 + Ps

P sat
s

+ Pp

P sat
p

)2 + (Ωτ)2
. (7.14)

The steady state solution is stable provided the perturbation gain (which is the

imaginary part of the kz) is less than the cavity loss, a reflection of the growth of

the laser field in the cavity. With the relation g = −2Im(kz), the perturbation

gain can be extracted from Eq. 7.14, where the factor 2 is added to define the

power gain,

g = Re

√
2p′2

ks
(2γsPs −

p′2

2ks
) + [G2(1 + iξ)2 + g′2s ]− (G− g′s). (7.15)

The negative root from Eq. 7.12. is selected because the gain needs to be positive

for filamentation to occur. Eq. 7.15. gives a general expression for the filament

gain. In a fiber laser, when the population inversion is clamped to the threshold,

the net gain g′s is zero. The filament spacing is defined as w = π/p, with an

oscillation frequency, f = |Ω|/2π.
It is proposed that the solution of perturbation must have the form of Bessel

solution due to the cylindrical geometry of the fiber. Because the perturbation is

an electromagnetic field, it needs to satisfy the boundary condition on the inter-
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face between the core and cladding, which means for every kϕ the Bessel parameter

p or filament spacing w only has discrete values. In another words, the pertur-

bation has mode structure that is similar to the well-known mode properties of

the electromagnetic field in fibers. The filament gain shown in Eq. 7.15. has no

dependence of kϕ because all terms in kϕ cancel out during the derivation. But

that does not imply that all the modes can resonate. Mathematically, lower order

modes, especially fundamental mode of the perturbation do not have dense enough

mode structure for filamentation to occur. Physically, the largest amplitude of the

fundamental mode is in the center of the core, where the population is depleted.

The amplitudes of higher order modes are zero at center and large at margin where

the population is undepleted. Therefore higher order modes of perturbation are

more likely to occur than lower order modes. The peak-to-peak period of squared

higher order Bessel solutions approximately equals to π, which accounts for the

factor π in the definition of filament spacing. The squared second-order bessel

solution J2
2 and peak-to-peak period w are shown in Fig. 7.4.

7.4 Spatio-Temporal Analysis of Filament Gain

in Optical Fiber Laser

Most high-power fiber lasers are Yb-doped due to high quantum efficiency, high

doping density, the absence of excited-state absorption, and a long upper-state

lifetime. Therefore the parameters used in this section, shown in Table 7.1, are for

typical Yb-doped fiber lasers. Since high-beam-quality fiber lasers are of the most

practical interest, the analysis focuses on the destabilization of single-mode opera-

tion by filamentation; the steady-state solution is assumed to be the fundamental

fiber mode.

Fig. 7.5. shows a 3-D plot of normalized filament gain v.s. normalized filament

spacing and oscillation frequency for the signal peak power Ps = 10 kW and core

diameter dcore = 100 µm. The figure is symmetric in frequency space, therefore

only the positive frequency is plotted. To facilitate understanding of the figure,

normalized gain gnorm = g/αcav and normalized filament spacing wnorm = w/acore

are used, where acore is the radius of the fiber core. If perturbation gain is larger
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Figure 7.4: The squared second-order bessel solution J2
2 as a function of fiber

radius.

Table 7.1: Parameters for ytterbium-doped fiber laser calculations.
Parameter Value

λp 0.976 µm
λs 1.053 µm
σa
p 2476× 10−27 m2

σe
p 2483× 10−27 m2

σa
s 20.65× 10−27 m2

σe
s 343.0× 10−27 m2

Nt 9.4× 1024 m−3

τ 0.84 ms
Γp 0.01
ncore 1.46
nclad 1.45562
n2 2.6× 10−20 m2/W
R1 1
R2 0.5
L 0.5 m
αint 0.003 m−1
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Figure 7.5: Normalized filament gain versus normalized filament spacing and fre-
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92

E15024J1

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

li
ze

d
fi

la
m

e
n

t 
sp

a
ci

n
g

10–5

100

105

1010

N
o

rm
a

li
ze

d
 g

a
in

102 104 106 108 1010

Signal peak power (W)

(a)

(b)

Figure 7.7: (a) Normalized filament spacing and (b) normalized gain as a function
of the signal peak power for various core diameters: 20 µm (dotted), 50 µm(dashed-
dotted), 100 µm(dashed) and 200 µm(solid) (f = 10 GHz).

than cavity loss(gnorm > 1), the filament can grow in the cavity; if filament spacing

is less than core radius(wnorm < 1), a filament can appear in the core. Both of

these conditions need to be satisfied for a filament to occur, since the gain only

exists within the fiber core. In Fig. 7.5 there is a peak in the spatial dimension

that defines the filament spacing at which the perturbation will grow most rapidly,
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Figure 7.8: Gain threshold power [NA=0.2 (dashed), NA=0.1 (dashed-dotted), and
NA=0.05 (solid with ”+” symbol)] and spatial threshold power [NA=0.2 (solid),
NA=0.1 (dotted), and NA=0.05 (dotted with ”+” symbol)] as functions of core
diameter for three numerical apertures (f = 10 GHz).

where g > αcav. The normalized filament spacing corresponding to the peak region

is larger than unity, which means the filament is outside the core, and filamentation

can not occur. In the temporal dimension, the curve is constant with a dip at low

frequencies. Since the noise perturbation is dynamic, there is less possibility for

filament to growth statically or in low frequency.

In Fig. 7.6., the signal peak power Ps is increased to 10 MW . The gain peak

becomes much larger, and the corresponding filament spacing falls into the core.

Because both the thresholds are reached (gnorm > 1 and wnorm < 1), filamentation

can occur. There is no observable feature in the temporal dimension. Thus for

signal peak power high above the gain threshold, the temporal modulation of the

filamentation can occur at any frequency.

Fig. 7.7. shows normalized filament spacing and normalized filament gain

corresponding to the gain peak as a function of signal peak power for the core
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diameters ranging from 20 µm to 200 µm when f = 10 GHz. With the increase

of the signal peak power, the filament gain peak will move towards the small

filament spacing and the filament gain will increase. This agrees with conventional

understanding: the higher the power, the denser the filaments and the larger

possibility for filamentation to occur. From Fig. 7.7. the gain threshold for

the filamentation to occur (g = αcav) can be determined. It is from magnitude of

100 W to 10 kW for core diameters ranging from 20 µm to 200 µm. The filament

spacing threshold, however, is around a few MW , which then determines the

filamentation threshold. Self-focusing and thus filamentation is only determined

by the peak power(highest power) in fiber lasers, regardless of different average

powers. Correspondingly, CW (continuous-wave) operation, is represented by the

same curves in Fig. 7.7.

The gain peak with respect to the normalized filament spacing can be obtained

by solving ∂g
∂w

= 0. Correspondingly, the filament spacing and signal peak power

have the relation π2

w2 = 2γsksPs + p2s. At spatial threshold, w = acore, the spatial

threshold power is,

P spatial
th =

π2

a2core
− p2s

2γsks
. (7.16)

At high frequency, the saturation gain G and factor ξ can be neglected from Eq.

7.15, and the filament gain can be simplified at the gain peak as g = 2γsPs. At

gain threshold, g = αcav, the gain threshold power is

P gain
th =

αcav

2γs
(7.17)

Figure 7.8 shows the spatial and gain threshold powers as a function of core diam-

eter for three numerical apertures(NA). A smaller NA will reduce the waveguide

confinement and result in a larger mode diameter. As would be expected from

an intensity-dependent process, the gain threshold power increases when the core

diameter (and thus mode diameter) increases and the NA decreases. Conversely,

the spatial threshold power decreases with increasing core diameter and decreas-

ing NA. For larger modes (larger core diameter and smaller NA), the effects of

diffraction and waveguiding are weaker, and thus the mode becomes more suscep-

tible to filamentation. For all core diameters below 1000 µm, the spatial threshold
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dominates.

Figure 7.9 shows the normalized and non-normalized filament gain as a func-

tion of the signal peak power for three cavity lengths, from 0.5 m to 4 m when

dcore = 100 µm and f = 10 GHz. It is instructive to see that the normalized gain,

changes with cavity length, since the cavity length relates to the cavity loss in the

unfolded cavity model. The non-normalized gain is not affected by the fiber length

since it only depends on the signal peak power. In the laser cavity, light propagates

back and forth, and the optical path is effectively infinitely long. Thus filamenta-

tion can occur as long as the filament gain is larger than cavity loss and it does

not depend on cavity length. Figure 7.9(c) shows the corresponding normalized

filament spacing versus signal peak power. The filament spatial properties also do

not change with cavity length, since they have the same transverse spatial struc-

ture. Because spatial threshold determines total threshold here, total threshold is

independent of cavity length.

7.5 Discussion and Conclusion

Since perturbation theory is used in this paper, our model cannot be used to

accurately describe the filament properties once they dominate the behavior of

the system; however, the thresholds obtained in this paper can be compared to

previous work. The self-focusing threshold power in bulk media has already been

studied extensively[48],[30], and is given by

Pcr = α
λ2

4πn0n2

, (7.18)

where n0 is the refractive index in bulk media, and α is a constant, while Boyd[30]

gives α ≈ 1.8362. Fibich and Gaeta[48] showed that α can range from 1.86225 to

6.58 for various beam profiles in bulk media and hollow waveguides, although α

is close to the lower limit from their numerical simulations. Equation 7.16 shows

that the threshold power can vary from 2 to more than 10 MW for different fiber

diameters and numerical aperture, while Eq. 7.18 predicts a fixed threshold 4.4

MW regardless of fiber parameters. In the limit of an infinite waveguide, our

theory can be used to model bulk media. As the core diameter increases, the
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effective index of the fundamental mode approaches the core refractive index, and

the mode approaches 100% confinement in the core. This latter condition can

mathematically be written as J0(psacore) = 0. From this condition, the effective

area of the mode, Aeff = πr20 can be obtained by solving J0(psr0) = 1/e where r0

is the conventional definition of spot size. In this case, Eq. 7.16 simplifies to yield

the exact form of Eq. 7.18 with α = 2.6188. Not only does our theory simplify

to the well known results for bulk media, but it yields excellent agreement with

numerical value of α calculated for the J0 Bessel beam profile[48].

However, for a fiber with a typical NA and core diameter approaching 1 mm,

the filament threshold is around 2.6 MW, smaller than the self-focusing threshold

predicted by the case of free-space propagation in bulk media(i.e Eq. 7.18 and

simplified Eq. 7.16), due to the presence of the waveguide and material gain.

Under such conditions, the light beam is confined mainly in the center of the

core, leaving sufficient undepleted gain near the cladding that filamentation can

occur before whole beam self-focusing. In the case of a small core diameter and

a small NA, filamentation can not immediately appear in the core even after the

occurrence of self-focusing, due to the weak waveguide confinement of higher-order

filamentation modes. For this case, the filamentation threshold is much larger than

the self-focusing threshold. In practice, LMA optical fibers are typically coiled to

eliminate the higher-order modes from the output beam. This method increases

the bend loss of the higher-order filamentation modes, increasing the filamentation

threshold above 2.6 MW as is shown in Fig. 7.8.

The thresholds of SBS and SRS are around ∼ 30 W and ∼ 2.7 kW for short-

length cw fiber lasers[151]. For short-pulse fiber lasers, SBS can be neglected due

to the broad band spectral; the threshold of SRS can be increased to the MW level

using the LMA fibers. Recently, Brooks[163] reported on a 4.5-MW-peak-power

laser system using 100 µm core Yb-doped photonic crystal fibers with M2 = 1.3.

No filamentation occurs since this peak power is still under the filament spacing

threshold (9.7MW from our model). Given the rapid rate of progress in high-peak-

power fiber lasers, self-focusing and filamentation will soon become a problem that

needs to be addressed to retain high-beam-quality output. It is important to note

that since these phenomena effectively increase the spatial frequency of the light

in the fiber, bend loss will have a beneficial impact on the filamentation threshold.
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In summary, an expression for filament power threshold was derived, using a

perturbation method, starting from the paraxial wave equation. The spatial and

temporal characteristics of the filament gain were analyzed. Two conditions must

be satisfied simultaneously for filamentation to occur: the filament gain larger than

cavity loss and filament spacing less than the core radius. The filamentation has

the mode characteristics of optical fibers, and its threshold is on the order of a few

MW depending on the parameters of the fiber. This work has been published in

reference [164].
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Chapter 8

Conclusion

Surface damage is one of the most problematic power limits in high-power fiber

laser systems. All-fiber Faraday components are demonstrated as a solution to

this problem, since they can be completely fusion-spliced into existing systems,

eliminating all glass-air interfaces. Beam filamentation due to self-focusing places

another limit on the peak power attainable from fiber laser systems. The limits

imposed by this phenomenon are analyzed for the first time.

The concept of an effective Verdet constant is proposed and experimentally

validated. The effective Verdet constant of light propagation in a fiber includes

contributions from the materials in both the core and the cladding. It is measured

in a 25-wt% terbium-doped-core phosphate fiber to be −6.2 rad/(Tm) at 1053

nm, which is six times larger than silica fiber. The result agrees well with Faraday

rotation theory in optical fiber.

A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated.

At the core of each of these components is an all-fiber Faraday rotator made of a 4-

cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the

terbium-doped fiber is measured to be -32 rad/(Tm), which is 27× larger than that

of silica fiber. This effective Verdet constant is the largest value measured to date

in any fiber and is 83% of the Verdet constant of commercially available crystals

used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with

fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is

measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg

grating results in an all-fiber Faraday mirror that rotates the polarization state of
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the reflected light by 88± 4◦.

An all-fiber optical magnetic field sensor is also demonstrated. It consists of a

fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-

long section of 56-wt%-terbium-doped silicate fiber with a Verdet constant of -24.5

rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization

fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields

from 0.02 to 3.2 T.

An all-fiber wavelength-tunable laser based on Faraday rotation is proposed.

It consists of an all-fiber wavelength-tunable filter in a conventional fiber laser

cavity. The filter includes a fiber polarizer and a fiber Faraday mirror in which a

chirped fiber Bragg grating is directly written onto the 65-wt% terbium fiber. The

ytterbium-doped fiber in the laser is gain flattened using a 1030/1090 nm WDM

filter, resulting a net gain ripple that is measured to be less than 0.2 dB from 1047

to 1060 nm. The wavelength tuning range of the resulting fiber laser is therefore

expected to be in this 1047 to 1060 nm range.

Filamentation is one of the nonlinear peak-power-threshold limits in high-power

fiber lasers. Starting from the paraxial wave equation, an analytic expression for

the filamentation threshold in fiber lasers is derived using a perturbation method.

The occurrence of filamentation is determined by the larger of two thresholds, one

of perturbative gain and one of spatial confinement. The threshold value is around

a few megawatts, depending on the parameters of the fiber.
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