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Abstract—The semantics and implementation of a memory
persistency model can significantly impact the performance
achieved on persistent memory systems. The only commercially
available and widely used x86 persistency model causes significant
performance losses by requiring redundant, expensive fence op-
erations for commonly used undo logging programming patterns.
In this work, we propose light-weight extensions to the x86
persistency model to provide some ordering guarantees without
an intervening fence operation. Our extension, Themis, eliminates
over 91.7% of the fence operations in undo-logging PM programs
and improves average performance by 45.8% while incurring
only 1.2% increase in data cache size.

Index Terms—Persistent Memory, Memory Persistency Model

I. INTRODUCTION

Persistent Memory (PM) technologies blur the difference

between main memory technologies (e.g. DRAM) and storage

technologies (e.g. SSD) [35, 41, 52, 54, 73, 81]. They offer non-

volatility, byte-addressability, and performance close to that of

DRAM. Owing to these characteristics, PMs are expected to be

placed on the memory bus, accessed using processor load and

store instructions, and host recoverable data structures (e.g.,

databases, file systems) [6, 15, 17, 19, 20, 28, 30, 44, 45, 51,

54, 61, 62, 67, 70, 74, 76, 87].

Memory persistency models [67] are extensions to the mem-

ory consistency models that enable programmers to express

the order in which different stores update persistent memory.

These ordering guarantees are necessary to develop any kind of

recoverable storage software (e.g., file systems and databases).

The hardware is responsible for enforcing this prescribed order,

even in the presence of volatile structures like processor caches.

In this work, we specifically focus on applications that use the

popular undo logging techniques [10, 15, 21, 28, 36, 45, 50]

to ensure correct recovery.

The semantics and implementation of a memory persistency

model plays a significant role in the overall performance

achieved by the applications [51]. The x86 persistency model

is the only commercially available and widely used persistency

model. In this work, we show that the x86 persistency model

results in unnecessary performance losses due to the redundant

use of expensive sfence instructions.

The x86 persistency model is unique in that it allows

programmers to use two paths to persistence. The commonly

used temporal path where a memory location is updated first

in the cache and then written back to persistence through

successive writebacks in the different levels of processor caches.

The temporal path can be exercised using instructions like

cacheline writeback (clwb) [40]. The non-temporal path is

where a memory location is updated using cache-bypassing

store instructions and results in the update going directly from

the core to the memory controller. The non-temporal path can

be exercised using instructions like movnt [39].

For updates sent along either path, the current x86 persistency

model requires using an intervening sfence instruction to

ensure that the updates reach persistence in order [16, 21, 27,

32, 39, 45, 48, 51, 57–59, 61, 62, 67, 68]. Correctly ordering

updates to persistence is the bedrock on which crash consistency

can be achieved. For example, when using undo logging, the

log updates must persist before any data updates persist to

ensure proper recovery [10]. However, sfence instructions are

expensive as they preclude coalescing, buffering, and reordering

of memory accesses and hamper out-of-order execution due

to their ordering semantics [50, 51]. So, the frequent use

of sfence to ensure crash consistency results in significant

performance losses on modern x86 processors.

In this work, we show that for certain kinds of updates,

current x86 architectures already implicitly achieve the desired

ordering and the use of an explicit sfence instruction to

enforce the order already achieved is superfluous. Specifically,

when one update is sent along the non-temporal (or cache

bypassing) path and a subsequent update is sent along the

temporal path (or through the caches), it is very likely that

the non-temporal update persists before the temporal update.

This behaviour is caused by the fact that the update along the

non-temporal path skips past the many levels of caches and

heads directly to the memory controller where as the update

along the temporal path is retained at various cache levels for

reuse and has to undergo successive writebacks at the various

levels of caches to reach persistence.

Furthermore, we observe that in the widely used undo

logging approach to crash consistency, a frequently occurring

programming pattern is to require a non-temporal update

reach persistence before a subsequent temporal update. This

pattern arises because of the requirement that within an

undo logging transaction, a log update reach persistence

before the corresponding data updates. And, logs are usually

updated using the non-temporal path to avoid polluting the

caches with logs that will never be read during failure-free

execution[9, 11, 26, 45, 62, 63]. In fact, in different undo

logging PM workloads we studied (details in §V), more than

91% of the sfence instructions used are specifically to
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enforce this exact kind of ordering. Additionally, we observed

that this specific ordering is also widely employed in the

state-of-the-art iDO logging [57]. Hence, we can significantly

improve PM application performance if this kind of ordering

can be achieved without the use of an sfence.

In this work, we propose Themis 1, an extension to the

x86 memory persistency model and implementation that

guarantees a non-temporal update persists before all subsequent

temporal updates issued on the same core, without requiring

an intervening sfence. Themis leverages the fact that non-

temporal updates likely already persist before subsequent

temporal updates (as the non-temporal path is much faster

than the temporal path). So, in the common case, the required

ordering guarantee is achieved at virtually no cost. However,

in the uncommon case where a non-temporal update is slowed

down (due to any reason), Themis builds mechanisms to detect

such cases and enforce the correct ordering by delaying the

writeback of subsequent temporal updates.

With Themis and its fence-less ordering guarantee, we

observe performance improvements as high as 87% and

an average improvement of 45.8% over the baseline x86

persistency model implementation for a suite of PM workloads.

Furthermore, Themis incurs only a 1.2% increase in the size

of the data caches (to store extra state) and requires no

modifications to the cache coherence or memory consistency

model implementations. These light-weight changes are in

contrast to other persistency model implementations [20, 51]

and make Themis much more adoptable in commercial multi-

core processors. In summary, this work:

• Highlights that x86 processors can provide a fence-less

ordering guarantee between a non-temporal update to a

PM location and a subsequent temporal update at virtually

no cost.

• Shows that such ordering primitives can be especially

useful for undo-logging based PM programs and that over

91% of sfence instructions in them can be eliminated

with this primitive.

• Presents the design and implementation of Themis, a

light-weight extension to the x86 persistency model that

leverages above insights to improve average performance

by 45.8%.

II. BACKGROUND AND MOTIVATION

A. Crash Consistency

Crash consistency refers to the guarantee provided by storage

software (e.g., file systems and databases) that data is in a

consistent and recoverable state even in the presence of system

failures [13] like power interruptions, kernel crashes, etc. For

example, consider the bank balance transfer transaction in

Figure 1 (a), where the objective is to transfer $50 from Alice’s

account to Bob’s account. This transaction deducts $50 from

Alice’s balance and adds the same amount to Bob’s. To ensure

that this transaction is correctly executed even in the presence

of failures, first Alice’s and Bob’s account balances have to

1Themis is an ancient Greek Titaness personifying divine order [79]

(b)(a)

1 accounts.lock();
2  alice.bal -= 50;
3  bob.bal += 50;
4 accounts.unlock();

1 accounts.lock();
2  log.prepare();
3  log.insert(alice.bal);
4  alice.bal -= 50;
5  log.insert(bob.bal);
6  bob.bal += 50;
7  log.commit();
8 accounts.unlock();

Fig. 1. Bank balance transfer example: (a) w/o crash consistency, (b) w/ crash
consistency using undo logging.

be stored in persistent locations. However, storing the balance

information in persistent locations is not enough.

If a crash happens after the $50 were deducted from Alice’s

account but before the amount gets added to Bob’s, on recovery,

we would notice a net $50 loss in the overall balance of

Alice and Bob, i.e., $50 vanishes from the system. In order

to avoid such situations, storage systems (like databases and

file systems) provide all-or-nothing guarantees, i.e., either

both the operations on Alice’s and Bob’s balances happen

or neither will. Developers can use these all-or-nothing guar-

antees to make their application crash consistent. These all-or-

nothing guarantees can be provided at different granularity

like transactions [15, 50, 56, 76], failure-atomic sections

(FASEs) [7, 10, 33, 42, 57], or synchronization-free regions

(SFRs) [28, 49], each bringing its own sets of trade-offs [48]. Fi-

nally, there are several techniques like undo/redo logging [3, 10,

14, 15, 21, 27, 28, 33, 36, 42, 45, 50, 51, 60, 76, 77], iDO [57],

shadow paging [17, 56, 66], checkpointing [23, 47, 68], and

custom data structures [5, 12, 24, 84, 85] that developers can

use to achieve these all-or-nothing guarantees and hence crash

consistency. In this paper, we are going to limit ourselves to

the popular undo logging approaches to crash consistency.

Undo logging [10, 15, 21, 28, 36, 45, 50] is a crash

consistency technique that provides all-or-nothing guarantees by

undo-ing (or rolling back) changes from an aborted transaction.

To be able to roll back changes, undo logging systems create

an undo log entry prior to every update performed within the

transaction. The undo log entry contains the current value of

the memory location/variable that is being updated. Once the

log entry has been created and persisted, only then is the actual

memory location/variable updated. If a transaction succeeds,

all the memory locations modified within the transaction are

persisted and then a commit message is atomically persisted to

the log to invalidate the log entries belonging to the transaction.

If a transaction fails, the recovery process uses all valid log

entries to roll back partial changes from that transaction.

For example, Figure 1 (b) shows how to make the balance

transfer transaction crash consistent. At the start of the trans-

action a new log area is prepared (Line 2) for the transaction.

Then before Alice’s and Bob’s balances are updated (Lines 4

and 6 respectively), the old values are inserted into the log

(Lines 3 and 5 respectively). Finally, after both the updates are

done only then is the log committed, essentially invalidating

the log entries. So, if a crash occurs in the middle of the
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transaction, the recovery process can use the log entries to roll

back the changes from the aborted transaction, guaranteeing all-

or-nothing semantics. Note that updating the logs with current

balances before updating the actual balance is the most critical

requirement of undo logging.

B. Memory Persistency

Persistent Memory (PM) technologies straddle the divide

between main memory technologies (e.g. DRAM) and storage

technologies (e.g. SSD) [35, 41, 52, 54, 81]. They offer non-

volatility, byte-addressability, and performance close to that of

DRAM while also providing a load-store interface to storage.

PMs are expected to host recoverable data structures (e.g.,

databases, file systems) [6, 15, 17, 19, 20, 28, 30, 44, 45,

51, 54, 61, 62, 67, 70, 74, 76, 87]. When used to store

recoverable data structures, PM systems are expected to provide

guarantees on the order in which stores reach the persistent

domain, in other words a memory persistency model [67].

Persistency models provide primitives that programmers can use

to communicate the desired order of persists to the hardware. It

is the responsibility of the hardware to ensure that the specified

order of persists is enforced. In this work, we focus on the

widely used x86 memory persistency model.

C. x86 Persistency Model

Studying and improving the x86 persistency model is

particularly important as it is the only persistency model that is

commercially available and widely used. The x86 persistency

model is also unique in that it provides two paths to persistence:

(i) a temporal path via the regular cache hierarchy and (ii) a

non-temporal path or a cache-bypassing path directly from the

core to the memory controller. The ISA provides mechanisms

to order persists sent along either paths. Next, we provide more

details about the persistence domain used and how to achieve

the desired order of persists in x86.

Persistence domain: x86 persistency model requires Asyn-

chronous DRAM Refresh (ADR) support [37, 38, 40], essen-

tially making the memory controllers persistent apart from the

PM devices. So, an update is considered persistent as soon as

it reaches a memory controller.

Temporal → temporal ordering: To order two PM updates

(say for location A and then B) while both updates are sent

along the temporal path (using regular store (st) instructions),

the code sequence required is:

st A; clwb A; sfence; st B;

The CacheLine WriteBack (clwb) [40] instruction writes back

the cacheline with location A back to memory controller (and

hence the persistence domain) and the subsequent sfence
ensures that the writeback operation is complete before the

store to B is performed at the L1 data cache. This sequence

ensures that temporal updates to A and B persist in that order.

Non-temporal → non-temporal ordering: To order two

PM updates (say for location A and then B) while both updates

are sent along the non-temporal path (using non-temporal or

cache-bypassing store (nt-st) instructions), the code sequence

required is:

nt-st A; sfence; nt-st B;

The nt-st instruction causes the updates to bypass the caches

and go directly to the memory controller using the Write-
Combining Buffer (WCB) at the processor core. Since the

updates never go to the caches, we do not need a separate

clwb instruction here. The sfence instruction ensures that

the updates to A and B reach the memory controller in order.

Non-temporal → temporal ordering: To order two PM

updates (say for location A and then B) while the update to A

is sent along the non-temporal path while the update to B is

sent along the temporal path, the code sequence required is:

nt-st A; sfence; st B;

The combination of nt-st and sfence instructions causes

the update to A to reach the memory controller before the

update to B even reaches the L1 data cache, thus ensuring that

updates to A and B reach persistence in order. For example,

in Figure 1(b), the log insert for Alice’s balance (Line 3) must

persist before the actual update to Alice’s balance (Line 4).

And, usually log updates are done using non-temporal or cache

bypassing stores as these logs are only necessary for crash

consistency and never read in failure-free execution (the most

common case). While the actual data updates are done using

temporal stores as there is expected to be some reuse. In fact,

this ordering requirement is frequently used as we see in undo

logging based systems [4, 9, 11, 26, 45, 62, 63].

Temporal → non-temporal ordering: To order two PM

updates (say for location A and then B) while the update to A

is sent along the temporal path while the update to B is sent

along the non-temporal path, the code sequence required is:

st A; clwb A; sfence; nt-st B;

The combination of clwb and sfence instructions causes the

update to A to reach the memory controller before the update

to B ensuring that they persist in order. This combination of

ordering from temporal to non-temporal stores are also quite

common in logging systems though not as common as the non-

temporal to temporal ordering. For example, in Figure 1 (b),

updates to Alice’s and Bob’s balances (lines 5 and 8) must

persist before the log is committed (line 9).

It is typical in crash-consistent software systems running on

x86 machines and relying on logging for crash consistency,

to use a combination of temporal and non-temporal store

instructions to achieve both necessary ordering guarantees

while also judiciously using available cache resources for good

performance [11, 26]. As far as we are aware, the x86 ISA is the

only ISA that provides these two paths to achieve persistence

and next we are going to detail the problem with this approach

and how we plan to address it.

D. The problem

While ordering persists is necessary for recovery correctness,

enforcing the precise order of persists comes at a steep
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(a) (b)

log(alice.bal) log(bob.bal)

commit logs

prepare log

alice.bal bob.bal alice.bal log(bob.bal)

commit logs

log(alice.bal)

bob.bal

prepare log

balance update (temporal) log update (non-temporal)

1

Fig. 2. Relative order of undo logs and the actual balance updates for the
bank balance transfer: (a) In the ideal case we only enforce order between
undo log and its corresponding write data. (b) Using fence as an ordering
semantics leads to a more conservative ordering. Black arrows represent
necessary dependencies and red arrows the unnecessary dependencies.

performance cost. This performance loss is due to two reasons:

(i) reduced opportunities to buffer, coalesce, and reorder updates

to PM and (ii) pipeline stalls caused by the use of fence

instructions to express ordering dependencies. In § II-C, we

showed that with the x86 persistency model, using an sfence
instruction is necessary for expressing any kind of persist

ordering. However, fence instructions in general are not optimal

to express ordering relationships as they enforce ordering

at a coarse granularity of everything before the fence to
everything after the fence [55]. Not all instructions after the

sfence are dependent on all instructions before the sfence.

Independent instructions after the sfence are unnecessarily

delayed. Furthermore, instructions after the sfence are not

allowed to retire until all operations before the sfence are

retired resulting in performance loss due to pipeline delays.

For example, consider the the persist ordering constraints

for the balance transfer transaction shown in Figure 2. The

figure shows the ordering constraints between updates to the

log and to the actual balances as part of the transactions.

The log operations are shown in different color (gray) from

the balances. In the ideal transaction, Figure 2(a), there is

only a pair-wise dependency between a balance update and its

corresponding log update. However, the x86 implementation

of the transaction contains some unnecessary dependencies

(red arrows in Figure 2(b)). These unnecessary dependencies

are caused because the sfence instruction used to express

ordering between the log and balance updates for Alice (arrow

1 in Figure 2(b)) unnecessarily causes a dependency between

the log and data updates of Alice and Bob (red arrows

in Figure 2(b)). Furthermore, the unnecessary dependencies

introduced increase with the number of log-data update pairs

we have in the transaction.

The central problem with the current x86 persistency model

is that the sfence used to express the ordering within a single

log-data update pair causes unnecessary persist dependencies

and these unnecessary dependencies only grow with larger

transactions. If we had an “ideal” primitive that allows us to

express the dependency within a log-data pair without having

Fig. 3. Ideal Undo logging performance improvement by removing sfence

to use an sfence instruction, significant performance gains

can be achieved. To estimate these performance gains of this

“ideal”, we simply remove the sfence instructions used for

crash-consistency in a baseline, state-of-the-art undo logging

implementation [28] and execute a range of PM workloads

on a real x86 processor. While removing the sfence may

violate crash consistency requirements, it allows us to estimate

the performance of our ideal primitive. Figure 3 illustrates

the potential improvement in performance with our “ideal”

ordering primitive. The improvement in performance ranges

from 1.09x upto 2.68x, with an average improvement of 1.67x.

These performance improvements are a result of eliminating

91.7% of sfence instructions on average.

E. Key insight

Our goal is to enforce the ordering within a log-data pair

without using an sfence instruction. We observed that the log

update is usually done with a non-temporal store instruction

while the data update is done with a temporal store instruction.

A non-temporal store heads directly to the memory controller

and hence persistence. Where as a temporal store is usually

retained at multiple cache levels for reuse and needs to be

written back or evicted from multiple caches in the cache

hierarchy to reach the PM. So, even if the non-temporal

log update and the temporal data update were to be started

simultaneously, on a modern x86 processor, the log update

will likely persist before the data update, even without any
intervening sfence instruction. This observation implies that,

most of the sfence instructions used for enforcing ordering

within a log-data pair are unnecessary. However, if the sfence
is not used, it is possible that there might be instances where

the non-temporal update gets stuck in a buffer along its path

and the temporal update reaches the memory controller first,

violating recovery ordering constraints. In this work, we develop

Themis, a light-weight x86 hardware extension that ensures that

a non-temporal update persists before all subsequent temporal

updates without using an sfence instruction.

F. Beyond Undo Logging

iDO [57] is a state-of-the-art logging mechanism that takes

a different approach to achieving crash consistency. Instead of

logging every individual write to PM, iDO performs logging
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at a much coarser granularity of idempotent program regions.

Before the start of a new idempotent region (identified by a

compiler pass), all the information necessary to re-execute

the idempotent region is logged. So, if an idempotent region’s

execution is interrupted by a failure, the iDO logs are used to re-

execute the region. While iDO incurs fewer logging operations

than undo logging (due to a coarser granularity of logging), the

amount of data logged in each logging operation is much larger

than the data logged per write operation in undo logging. Due

to this trade-off, iDO performs better with programs with larger

critical sections/transactions, while undo logging performs

better in applications with smaller transactions, especially if

the transactions are read-heavy.

Themis improvements are not restricted to undo logging

implementations. The iDO [57] logging mechanism also uses

sfence instructions to enforce non-temporal to temporal store

orderings. iDO persists the address of the first instruction

in idempotent program region (and other logging metadata)

through non-temporal store before executing the region. An

sfence instruction is used to enforce the ordering between

this non-temporal write and subsequent writes in the idempotent

region. This fence instruction can be eliminated with our ideal

ordering primitive. To estimate the performance improvements

possible with a fence-less ordering primitive, we again remove

the sfence instructions required in iDO. We observe a 13.7%

increase in average performance for the same set of applications

studied earlier in the real system setup.

III. THEMIS

In this section, we delve into the details of the design,

specification, and implementation of Themis’ persistency model,

an extension to existing x86 persistency models to reduce the

use of fence instructions.

A. Design Goals

Themis is based on three key design goals:

Create a non-fence ordering primitive: As discussed

in §II-D, fence instructions, while necessary in the current

x86 architectures, are a significant source of performance

degradation. We need to develop a mechanism that allows

programmers to express an ordering dependency without a

fence instruction, especially for the common-case ordering

scenarios like non-temporal to temporal store ordering.

Exploit multiple paths to persistence in x86: x86 is

a unique architecture in that its persistency models allows

multiple paths to persistence, the fast non-temporal path and a

slow temporal path. We can exploit the differences in speeds

of requests sent along the fast vs slow paths to provide implicit

ordering guarantees to programmers without relying on a fence

instruction. To the best of our knowledge, no prior work has

sought to exploit the presence of multiple paths to persistence.

Light-weight hardware changes: Since this work targets

widely used x86 architectures, it is important that the hardware

changes proposed are light-weight to allow easy adoption. Prior

proposals on improved persistency models require invasive

changes to the cache hierarchy, caches, cache coherence

protocols, implementations, etc.

Such invasive changes imply that these proposals face a long

road to adoption we’d like to avoid.

Next, we describe Themis’ persistency model and then

describe an architectural implementation of the model.

B. Persistency Model

Formally, we express the Themis persistency model as an

ordering relation over memory events stores, non-temporal
stores, clwbs, and fences. The term persist refers to the act of

durably writing a store to the persistent domain. We assume

persists are performed atomically (with respect to failures) at

naturally aligned 8-byte granularity. By “thread”, we refer to

execution contexts—cores or hardware threads. We use the

following notation:

• Si
a: A regular temporal store from thread i to address a

• NSi
a: A non-temporal store from thread i to address a

• Ci
a: A clwb/clflush(opt) from thread i to address a

• Fi: A fence (sfence or mfence) from thread i.
We reason about two ordering relations over memory events,

execution order and persist memory order. Execution order

(EO) is a partial order over memory events that governs

the order in which different instructions get executed in an

x86 processor. For instructions within the same thread, the

program order (the order in which instructions are retired) of

the instructions decides the execution order. For instructions

across threads, the x86 architecture’s memory consistency

model (TSO [69]) and its cache coherence implementation

determines the order in which the instructions get executed.

Persist memory order (PMO) is the order of memory events

as governed by the Themis’ memory persistency model [67].

We denote these ordering relations as:

• A ≤e B: A occurs no later than B in EO

• A ≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO implies the

corresponding persist actions are ordered; that is,

A ≤p B → B may not persist before A.

We next describe the semantics of Themis’ persistency model

by describing how to ensure that two different store instructions

(of any kind) in the same or different threads will persist in

the desired order.

Temporal → temporal: Persisting two temporal stores in

order requires an intervening cacheline writeback/flush and

sfence/mfence combination in the execution order. Formally:

Si
a ≤e C j

a ≤e F j ≤e Sk
b → Si

a ≤p Sk
b (1)

Non-temporal → non-temporal: Persisting two non-

temporal stores in order requires an intervening sfence/mfence

in the execution order. Formally:

NSi
a ≤e Fi ≤e NS j

b → Si
a ≤p NS j

b (2)

Non-temporal → temporal: Persisting a non-temporal

store and a temporal store in order requires the two stores
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Fig. 4. High-level system architecture with Themis .

to be ordered in the execution order. No intervening fence

instruction is necessary, unlike the baseline x86 persistency

model. Formally:

NSi
a ≤e Si

b → NSi
a ≤p Si

b (3)

Note that here we provide this fence-less ordering guarantee

for stores executed on the same thread (an overwhelmingly

common case). If this ordering is required when the two stores

are on different threads, an intervening fence is necessary, just

in the baseline x86 model.

Temporal → non-temporal: Persisting a temporal store and

a non-temporal store in order requires an intervening cacheline

writeback/flush and sfence/mfence combination in the execution

order. Formally:

Si
a ≤e C j

a ≤e F j ≤e NSk
b → Si

a ≤p NSk
b (4)

While the above equations formally define Themis’ persis-

tency model, these ordering relationships are very similar to

the ones described for the baseline x86’s persistency model in

§II-C with one exception. The only exception is that for non-

temporal to temporal ordering, no intervening fence instruction

is required, we just have to ensure that the two stores are

correctly ordered in the execution order. If the two stores

are in the same thread, then we have to ensure that the two

stores are ordered within the program order. If the two stores

are on different threads, then we need to ensure that there

are intervening synchronization accesses (like unlock/lock

or release/acquire operations) to order the two stores in the

execution order. Next, we describe a high-level design for this

persistency model.

C. High-level Design

Figure 4 shows a simplistic multi-core system. Temporal

stores go from the core, to the data cache to its writeback

buffer (WBB), to the various levels of caches (L2$+LLC) and

finally to the corresponding memory controller (based on its

physical address). Non-temporal stores go from the core to

the write-combining buffer (WCB) where they get reordered,

buffered, and coalesced for performance and then directed to

the corresponding memory controller.

At a high-level, with Themis, the goal is to ensure that when

a non-temporal store is executed followed by a temporal store

(i.e., nt-st A ≤e st B), A persists before B, even when there

are no intervening fences (i.e., Eq 3 in §III-B). We achieve

this by making light-weight modifications to the data cache, its

WBB, and the core’s WCB. The steps involved in this process

are as follows:

(1) When nt-st A gets executed, it is first placed in the

WCB and then eventually drained to the memory controller.

(2) When st B comes along, we first check the WCB to see

what outstanding non-temporal stores are yet to be drained by

noting down the WCB’s tail pointer.

(3) When the cacheline with B is eventually written back either

due to a regular replacement or due to a clwb-like instruction,

we place the cacheline and its associated WCB tail pointer in

the data cache’s WBB.

(4) Before we let the cacheline B leave the WBB, we check if

all outstanding non-temporal stores at the time st B reached

the data cache have been drained from the WCB (by using

the tail pointer stored along with cacheline B). If all prior

non-temporal stores (including one to A) have been drained,

we let the writeback of cacheline B continue. If not, then we

wait for WCB to drain its outstanding non-temporal stores and

only then we let cacheline B to be written back to L2.

By not allowing the update to B to even leave the data

cache’s WBB before all prior executed non-temporal stores

(include the one to A), we ensure that A persists before B (i.e.,

nt-st A ≤p st B). Our approach is conservative. Ideally, we

only have to ensure that A persists only before B is written back

from the LLC (and hence reaching the persistence domain).

However, we enforce that A persists before B is written back

from the data cache, i.e., much earlier than necessary. As

we will show in the following sections, this design choice

considerably simplifies Themis’ architecture with almost no

performance penalties.

IV. IMPLEMENTATION

In this section, we detail how we extend the data cache,

WBB, and WCB to implement Themis’ persistency model.

A. Write Combining Buffer

The WCB is usually implemented as circular buffer of about

16 entries. Each entry typically has the space to buffer a

cacheline of data (64B) and the associated physical address.

As shown in Figure 5, apart from the entries with data and

addresses, the WCB consists of three important pointers: (i) tail
(t): points to the next available entry for an incoming non-

temporal store request (ii) head (h): points to the oldest

outstanding entry that needs to be drained to the memory

controller (iii) headACK (hAck): points to the oldest entry

that has not been drained to the memory controller, or has

been drained but has not yet received an acknowledgement

from the memory controller saying that the entry has been

persisted. A single bit per entry tracks if a drained entry has

been ACKed by the memory controller or not and this bit is

used to increment headACK.

The aspects of WCB described above already exist in a

modern x86 processor and Figure 5 shows how they help the

WCB operate:

(i) Incoming non-temporal store 1© gets allocated at the tail

or gets coalesced into an active entry. If it gets allocated at

the tail, the tail is incremented 2©, always pointing to the next
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available entry for incoming requests. If no space is available

in the WCB, the stall is back propagated to the core.

(ii) On draining an active entry 3© to the PM controller, the

head gets incremented 4©, always pointing to the next entry

to be drained. If the memory controller is full, a stall message

is back propagated to the WCB.

(iii) On receiving a PM controller ACK 5© signifying that

a particular drained entry has reached the PM controller (and

hence persisted), the ACK bit in the associated entry is set 6©.

If the entry pointed to by headACK has been ACKed, the

headACK is incremented 7© to point to the next oldest entry.

This headACK increment is also communicated to the WBB 8©,

so that the WBB has up-to-date information on which entries

in the WCB have been persisted.

(iv) Overflow is the corner-case situation when the tail pointer

overflows. We use 6-bit tail, head, and headACK pointers even

while using a 16-entry WCB. The least significant 4 bits are

used to index into the WCB. The most significant 2 bits are

used to track circular buffer “wrap arounds”, starting from 00

and incrementing by 1 every time a wrap around happens. Once

the WCB has been through four full uses, we force drain all the

outstanding requests and wait for ACKs for all of them from

the memory controllers. Once the WCB has been completely

drained and ACK, i.e., it is empty, we reset the head, tail, and

headACK pointers 9© and notify the core 10©. As we will see

next, the core will notify the data cache about the overflow

and this information is used to correctly enforce persist orders.

In § V-E, we show how we arrived at using 6-bit pointers.

B. L1 Data Cache

As shown in Figure 6, apart from the the usual valid (V),

tag, and data (D) fields, we extend each cacheline to store a

6-bit tail pointer value corresponding to the state of the WCB

when a particular cacheline was written. Figure 6 shows how

the data cache functions with Themis:

(i) Incoming temporal store 1© request is tagged with the

latest WCB tail pointer by the core. And this WCB tail is stored

along with tag and data in the cacheline 2©. The goal is to make

sure that this cacheline persists only after associated WCB

entries have been persisted (as indicated by the tail pointer).

We achieve this goal by making sure that this cacheline does

not even leave the writeback buffer (WBB) of the data cache

before the corresponding WCB entry persists.

(ii) While evicting a dirty cacheline either due to a clwb
request 3© or due to regular cacheline replacement, along with
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the tag and the data, the associated WCB tail pointer is also

sent to the the WBB 4©.

(iii) On an overflow notification 5© from the core, we

know that all outstanding WCB entries have been drained

and persisted, so none of the cachelines have any unresolved

dependencies with prior non-temporal stores. Hence, all the

WCB tail pointers in the cache are nullified 6©.

C. Writeback Buffer

As shown in Figure 7, we extend each entry to store a 6-bit

“Drainable After” (DA) pointer, pointing to the entry in the

WCB after which this entry can be drained from the WBB to

the L2 cache. The WBB also maintains a copy of the WCB’s

headACK pointer (hAck’), allowing it to maintain visibility

into which non-temporal stores have been persisted and which

ones haven’t. Figure 7 shows how writeback buffer functions

with Themis:

(i) On an incoming writeback request from the data

cache 1©, we compare the tail pointer associated with the

incoming request with hAck’. If the tail pointer is lower or

equal to hAck’, we can infer that the non-temporal requests

that this writeback request is dependent upon have already

been persisted and we can mark this writeback request as

“drainable” (D) 2© and evict it to L2 at any time. If the tail

pointer is higher than hAck’ 3©, then the tail pointer is stored

along with the request in the WBB 4©.

(ii) On a notification from WCB about headACK incre-
ments 5©, WBB first increments its own copy of headACK

(hAck’) 6©. Then it traverses active WBB entries and marks

all those entries drainable whose tail pointers are smaller than

or equal to the new hAck’ 7©.

This sequence of operations in the WCB, data cache, and

the WBB ensure that all temporal stores will only reach the L2

when all prior executed non-temporal store instructions have

been persisted.
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D. Discussion

Next, we discuss some interesting corner cases and design

decisions that we made with Themis.

Coherence and consistency. Prior persistency model imple-

mentations require invasive changes to the cache coherence

and consistency model implementations [51]. However, Themis

does not require any changes to the existing coherence and

consistency model implementations and in fact is completely

orthogonal to them. All the information necessary to maintain

the correct ordering is maintained only locally at one core’s data

cache, WBB, and WCB. Cacheline invalidations and evictions

that are caused by cache coherence transactions are treated just

like any regular replacement policy related invalidations and

evictions. By only maintaining local order information, Themis

proposes a design that can be easily adopted into existing

multi-core architectures.

Volatile vs persistent memory updates. Even in PM

systems, there is expected to be some significant amount of

DRAM used and there are going to be some program variables

that do not need to be persistent (e.g., stack variables) and

are simply maintained in DRAM in volatile memory locations.

Since volatile memory updates do not update persistent state

directly, we do not always need to enforce the non-temporal

to temporal store ordering constraints for them. So, we allow

volatile cachelines (those backed by DRAM) to be evicted

out of the data cache without any restrictions for improved

performance. However, persist dependencies for stores executed

across cores may still arise due to intervening volatile memory

accesses [51] and for these cross-core persist dependencies,

programmers have to rely on fence-based ordering primitives

that they would normally use in existing x86 processors.

Enforcing non-temporal to temporal store ordering at
L1. Technically, we only have to ensure that a non-temporal

store persists before a subsequent temporal store is written

back from the LLC (and hence reaches the persistence domain).

However, we enforce that the non-temporal store persists even

before the temporal store is written back from the data cache,

i.e., much earlier than necessary. This conservative enforcement

provides three important benefits:

(i) reduced storage overheads: If ordering is enforced at the

LLC, then all the cachelines in the LLC (and other intermediate

caches) will need to maintain a WCB tail pointer. Since, LLCs

are typically about 32x [34, 78] larger than L1 data caches,

this approach would increase storage overheads by about 32x.

(ii) reduced design complexity: With the current Themis

architecture, all ordering requirements for a thread are enforced

at the private L1 cache of the thread where we can be

sure that memory accesses are generated only by the thread

currently executing at that core. If ordering enforcement

were to be moved to shared caches (like the LLC) then the

same cacheline could be modified by different threads on

different cores simultaneously and we need to maintain ordering

information on a per-core basis for each cacheline, significantly

complicating the design.

(iii) reduced implementation complexity: Even if the order-

TABLE I
SIMULATION CONFIGURATION.

Core 4-cores, 3GHz OoO
8-wide Dispatch,
8-wide Commit, 192-entry ROB,
32/32-entry Load/Store Queue

I-Cache 32KB, 4-way, 64B
1ns hit latency, 8 MSHRs

D-Cache 64KB, 4-way, 64B
2ns hit latency, 8 MSHRs
16-entry WBB

Write-combining 16 entries
Buffer (WCB) 20ns delay to PM controller
LLC 2MB per core, 16-way, 64B

20ns hit latency, 32 MSHRs
Memory controller 128/64-entry write/read queue
(DRAM, PM)
DRAM DDR4, 1200MHz
PCM 1200MHz, 346ns read latency

500ns write latency [43]

ing information were to be correctly maintained, then while

evicting a shared cacheline from the LLC, we would have to

make sure all of its dependencies have been resolved at all the

cores, requiring the LLC controller to constantly communicate

with all the per-core WCBs in a multi-core system. This

communication will be complex to implement, especially in

multi-socket machines.

These three important benefits make Themis significantly easier

to adopt, however, they come with a performance trade-off. As

we will show in § V-D, this performance loss is negligible as

most non-temporal stores persist before subsequent temporal

stores get evicted from the data cache.

Comparison to other relaxed persistency models. In

this work, we propose Themis as an extension to the x86

persistency model, the only model that provides two paths

to persistence, a temporal and a non-temporal one. ARM

has recently introduced non-temporal store instructions [1],

so, we expect that in the future Themis will be applicable

to ARM processors as well. Prior persistency models such

as [17, 44, 51, 62, 67] provide only one path to persistence.

All of those persistency models cannot facilitate Themis-

like reduction in the number of sfence instructions used.

While strand persistency models can potentially provide similar

reduction in unnecessary ordering enforced as Themis, it

comes with a radically different memory persistency model

that will necessarily require invasive changes to the cache

coherence protocol, memory consistency model, and data cache

implementations [29].

V. EVALUATION

A. Methodology

Simulation infrastructure. We evaluate Themis using the

gem5 architectural simulator [8] in full-system mode. We

model a four-core system with the ARMv8 ISA [1] and

the key architectural parameters of the evaluated system are

summarized in Table I. Note that we used ARM cores as a

starting point for our evaluation due to the stability and maturity

of the ARM core implementations in gem5 [25]. Even though

we use ARM cores, we implemented the entire x86 memory
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TABLE II
WORKLOAD DESCRIPTIONS. WORKLOADS WITH AN * WERE ONLY RUN ON

REAL HARDWARE IN §II.

Workload Description
CQ En/Dequeue nodes in concurrent queue
CTree Insert/delete nodes in crit-bit tree
Hashmap Insert/delete nodes in hashmap
LL Insert/delete nodes in linked-list
PC Update in hash-table
Redis* Object-based KV store workload,

lru-test, 1M keys [62]
RB Insert/delete nodes in a red-black tree
SPS Swap random entries of an array
TATP update_location transaction [64]
TPCC add_new_order transaction [72]
Vacation* RB + LL KV store workload,

4 clients, 2M transactions [62]
YCSB* BTree KV store database, 4 clients

8M transactions, 80% writes [62]

Fig. 8. Number of stores per transaction distribution

persistency model (with clwb, sfence, and non-temporal

store instructions). This approach is similar to the one used by

Kolli et al. [51] and we firmly believe that our implementations

are representative of the behaviors of modern x86 processors.

All gem5 and real system experiments are executed on c6420

Xeon servers on CloudLab [22].

Workloads. We assess Themis with several PM-centric

multi-threaded workloads [48, 51, 62, 64, 72] listed in Table II.

These workloads vary from those that modify a single data

structure, like CTree [62] to database workloads like TPCC [72].

Each workload executes transactions of various different sizes,

i.e., different number of log-data update pairs, we will simply

refer to the size of a transactions as the number of stores per

transaction. For example, the bank balance transfer transaction

from Figure 1 has two stores in the transaction for the

balance updates, one temporal store each. Figure 8 shows the

distribution of size of transactions seen in each of the workloads.

The smallest transactions have only one store within them

(e.g., TATP’s update location transaction [64]) while the larger

transactions can have over hundred stores within them (e.g.,

SPS). These workloads provide a range of average transaction

sizes and also a varied distribution in the sizes of individual

transactions. Note that “stores within a transaction” refers to

only the temporal stores, the non-temporal stores required for

logging are not considered as part of the original transaction.

The logging technique we use to make these transactions

crash consistent is built upon the state-of-the-art “coupled undo

logging” approach introduced by Gogte et al. [28]. We use

Fig. 9. Speedup for Baseline, Themis, and Ideal.

their code as the starting point and improve the performance

of the transactions by moving from using a linked-list-based

log to an array-based log. This optimization not only reduces

the time required to index into a specific portion of the log, it

also reduces the number of stores necessary to add new entries

into the log. With list we had to perform two operations one to

create a new log entry and the second to splice the new entry

onto the list. With an array based structure, we simply have to

create a new log entry. We also observed that the code made a

number of redundant function calls some of which we were able

to completely elide and others we accelerated through function

inlining. Furthermore, we also make use of non-temporal store

instructions to reduce cache pollution from logging updates.

These simple software engineering optimization techniques

allowed us to improve the performance of transactions by

2.63x on average. We use these optimized transactions as our

baseline and improve their performance with Themis.

Designs evaluated. In this work, we evaluate three different

designs. (i) Baseline refers to the scenario where the workloads

are run with our optimized logging techniques and the baseline

x86 persistency model, so, this design requires the use of

sfence instructions to ensure non-temporal to temporal store

ordering. (ii) Themis refers to the scenario where the workloads

are run on a processor with our Themis persistency model

implementation. This design does not require a sfence
instruction to ensure non-temporal to temporal store ordering.

(iii) Ideal is the baseline system with no sfence instructions

for non-temporal to temporal store ordering. This design is not

crash consistent, but represents the upper bound on performance

that can be achieved by eliminating sfence instructions.

Finally, in this evaluation section, we’d like to answer the

following questions:

• How does Themis perform? (§V-B)

• What factors impact workload performance? (§V-C)

• What are the implications of Themis’ restrictions on

writebacks on overall performance? (§V-D)

• What are the hardware overheads of Themis? (§V-E)

• How are differently sized transactions impacted? (§V-F)

B. Performance Comparison

Figure 9 contrasts the speedup of Themis and Ideal over

Baseline. The key takeaways from this analysis are:

Themis consistently outperforms Baseline: Themis out-

performs Baseline in all benchmarks as it eliminates the use
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Fig. 10. Number of instructions between two consecutive fences that are
removed by Themis.

of expensive sfence instructions to enforce non-temporal to

temporal store ordering. Themis improves performance by as

much as 87% (for PC) and by 45.8% on average across all

workloads.

Themis achieves near-ideal performance: Themis almost

completely bridges the gap between baseline and ideal perfor-

mance. This level of performance shows that the restrictions

imposed by Themis on the writeback operations at the L1 data

cache results in barely any performance degradation.

Best performing workloads: SPS, PC, and LL are the three

best performing workloads with performance improvements

ranging from 77.4% to 87%.

Worst performing workloads: RB, TATP, and TPCC

are the three worst performing workloads with performance

improvements ranging from 12.8% to 20.6%.

C. Performance analysis

To better understand the reason behind why some workloads

perform better than others, we analyzed the frequency with

which sfence instructions appear in the baseline that can

be removed by using Themis. The higher the frequency with

which removable fence instructions appear in a program (i.e.,

lower inter fence distance), the larger these fences contribute

to overall execution time and removing them yields larger

performance gains. It is important to note that the absolute

number of fence instructions removed or the fraction of fence

instructions removed matters less than the frequency with

which these fence instructions appear in the program. Larger

the frequency or lower the distance between two consecutive

removable fence instructions, the higher is the potential for

performance improvement.

Figure 10 plots the cumulative distribution function (CDF) of

distance between two consecutive removable fence instructions

(measured as the number of intervening instructions) for the two

best performing (SPS and PC) and worst performing (TATP and

TPCC) workloads. As expected, the best performing workloads

see that an overwhelming majority of consecutive removable

fence instructions have only about 200 instructions between

them. Where as for the lower performing TATP and TPCC

workloads the distance between removable fence instructions

skews much higher.

Fig. 11. Distribution of number of cycles a writeback waits in WBB because
of Themis’ restrictions.

D. Implications of Themis restrictions

Themis achieves the desired persist ordering guarantees by

placing restrictions on when a writeback may be drained from

WBB in L1 data cache. The larger the wait times, the WBBs get

full and the delays are back propagated to the core and show up

as pipeline stalls. Note that not all delays result in performance

degradation due the latency hiding powers of modern out-

of-order processors. However, excessive delays do end up

hurting performance. As shown in Figure 9, Themis’ near-ideal

performance indicates that the restrictions are minimal.

Figure 11 shows the effects of these restrictions in more

detail. This figure shows the distribution of a writeback requests

categorized by the number of cycles they are delayed. A

majority of writebacks see no delays, where as some writebacks

see few tens of cycles of delays. Writebacks in LL and TATP

see the longest delays (about 38 cycles), while CQ and TPCC

see the shortest delays. These delay numbers highlight that

Themis places minimal restrictions on cache writebacks.

E. Hardware overheads

The main hardware overhead of Themis arises because of the

WCB tail pointers that are stored along with each cacheline

in the data caches. So, the size of the tail pointer ends up

determining the Themis’ storage overhead. As the tail pointer

width increases, there will be fewer overflows (as discussed in

§ IV-A) and lesser performance degradation. However, longer

tail pointers result in larger storage overheads. We performed a

sensitivity analysis with increasing hardware overheads: 0.5KB

(4-bit tail pointer), 0.75KB (6-bit), 1KB (8-bit), and 1.25KB

(10-bit). And found very little performance variation among

all configurations. We use 6-bit tail pointer, incurring 0.75KB

(or 1.2%) of hardware overhead per data cache.

F. Sensitivity to transaction sizes

Finally, we see how the performance of Themis changes

with different transaction sizes. Figure 12 shows the speedup

achieves with Themis over baseline for different transaction

sizes. We change the workloads to artificially set the number

of stores per transaction in each of the workloads and see how

Themis performs with increasing transaction sizes.

As expected, with increasing transaction sizes, the frequency

of removable fence instructions (those required to enforce non-

temporal to temporal store orderings) increase and we observe
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Fig. 12. Speedup for different number of stores per transaction (Geo-Mean)

an increase in speedup with Themis. We observe this pattern

in all workloads, however, different workloads exhibit different

rates of performance improvements. Note that we omit TATP

and TPCC from this experiment as these changes violate the

definitions of those workloads.

VI. RELATED WORK

In this section we discuss the prior work on facilitating crash

consistency solutions to PM systems.

A. Software-based Solutions

Runtimes. A wide range of works have been proposed

optimizing file systems for PM in different levels of system

stack [17, 21, 46, 53, 75, 80, 82, 83, 86]. Atlas [10] is a

compiler and runtime solution for providing undo logging

that ensures crash consistency at the granularity of outer-most

lock. Gogte et al. [28] proposes an undo logging approach

at the granularity of Synchronization Free Regions (SFRs)

and addresses drawbacks of providing failure atomicity at the

granularity outer-most lock, as Atlas [10] offers. Kolli et al. [50]

provides an efficient transaction implementation to reduce

the constraints on the order of persistent updates. JUSTDO

logging [42] makes sure that the program’s execution resumes

immediately where the application is interrupted in the critical

section by persisting the architectural state prior to the critical

section’s execution in a system. iDO [57] extends JUSTDO

logging to finer grained idempotent program regions.

Libraries. NV-Heaps [15] and Mnemosyne [76] expose

interface for applications to build and modify persistent objects

that guarantee failure atomicity with granularity of transaction

using write-ahead logging. SoftWrAP [27], Rewind [11], and

DUDETM [56] employ different logging techniques to provide

applications efficient crash-consistent transactions.

All software approaches rely on the underlying memory

persistency model and can not provide the same ordering

guarantees without the use of sfence instruction.

B. Hardware-based Solutions

Multi-versioning. Kiln [87] employs persistent LLC along-

side PM to enable in-place updates with no logging. ATOM [45]

relies on hardware structures to provide atomic durability using

undo logging. Proteus [70] proposes a logging mechanism

to enable persisting the transactions by applying drastic

modification to the core to manage the logs and order them with

respect to the write data. Gupta et al. [31] leverages persistent

memory controllers to accumulate the updates in a transaction

until they are commited to PM. ThyNVM [68] and PiCL [65]

propose hardware-based checkpointing mechanisms to achieve

crash consistency.

Ordering. Prior work [2, 40, 67] propose memory persis-

tency model to determine the necessary orderings in which

persistent updates need to reach to PM. BPFS [17] provides

atomicity and ordering via epoch barriers, allowing reordering

of persistent updates only inside of an epoch. Doshi et al. [20],

Kolli et al. [51], Nalli et al. [62] and Shin et al. [71] explore

different approaches for implementing the epoch persistency

model in hardware. Lu et al. [61] proposes loose-ordering

consistency to relax the constraints among persistent writes and

employ hardware support to resolve the conflicts of transitions

that should be persisted. Dananjaya et al. [18] strengthens the

one-sided barrier semantics in ARP [48] and proposes release

persistency model(RP) to guarantee that any pair of stores are

persisted in the same order as the consistency model enforces

the ordering. Gogte et al. [29] propose an implementation for

strand persistency model to reduce the ordering overheads.

Unlike these set of approaches, Themis requires no invasive

changes to the cache hierarchy.

VII. CONCLUSION

The x86 memory persistency model offers two non-overlap-

ping paths to persistence. And it only provides ordering guar-

antees using expensive fence instructions across or along these

paths. In this work, we propose Themis, a light-weight x86

persistency model extension to provide some implcicit ordering

guarantees without using an intervening fence instruction. We

improve the average performance of undo-logging based PM

workloads by 45.8% while incurring as hardware overhead

only 1.2% increase in data cache size.
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