Alphabetical Statistical Symbols:

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
a	Liquituicit	Y- intercept of least square regression line	$a = \overline{y} - b\overline{x}$, for line $y = a + bx$	Regression: y on x
b		Slope of least squares regression line	$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} \text{ for line } y = a + bx$	Regression: y on x
B (n, p)	Binomial distribution with parameters n and p	Discrete probability distribution for the probability of number of successes in n independent random trials under the identical conditions.	If X follows B (n, p) then, P (X = r) = ${}^{n}C_{r}p^{r}(1-p)^{n-r}$, Where, 0 r = 0,1,2,n	Binomial Distribution
с		Confidence level	$c = P(-z_c < Normal(0,1) < z_c)$	Confidence interval
ⁿ C _r	n-c-r	Combinations (number of combinations of n objects taken r at a time)	$^{n}C_{r} = \frac{n!}{r!(n-r)!}$, where $n \ge r$	
$C_{n,r}$	n-c-r	Combinations (number of combinations of n objects taken r at a time)	$C_{n,r} = \frac{n!}{r!(n-r)!}$, where $n \ge r$	
Cov (X, Y)	Covariance between X and Y	Covariance between X & Y	Cov (X) =E $[(X-E (X))(Y-E (Y))]$	

100+ online courses in statistics

100+ online courses in statistic **Statistics.com** THE INSTITUTE FOR STATISTICS EDUCATION

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
CV		Coefficient of variation	$CV = \frac{S \tan dard \ Deviation}{Arithmatic \ mean}.$	
df		Degree(s) of freedom		
E		Maximal error tolerance	$E = z_c \frac{\sigma}{\sqrt{n}}$ for large samples.	
E (f (x))	Expected value of f (x)		$E(f(x)) = \sum f(x)P(x)$	
f		Frequency	f = number of times score.	
F		F-distribution variable	$F = \frac{\chi_1^2}{\chi_2^2}$ where n_1 and n_2 are the corresponding degrees of freedom.	F-distribution, Hypothesis testing for equality of 2 variances.
$F(x) \text{ or } F_x$		Distribution function	$F_x = \int_{-\infty}^x f_x dx$	
f (x) or f_x		Probability mass function	Depends on the distribution. $f_x \ge 0 \& \int_x f_x dx = 1.$	
H_0	H-naught	Null hypothesis.	The null hypothesis is the hypothesis about the population parameter.	Testing of hypothesis
H_1	H-one	Alternate hypothesis.	An alternate hypothesis is constructed in such a way that it is the one to be accepted when the null hypothesis must be rejected.	Testing of hypothesis
IQR		Interquartile range	$IQR = Q_3 - Q_1$	Measures of central tendency.

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
MS	M-S	Mean square	$MS = \frac{SS}{df}$	Analysis of variance (ANOVA)
n		Sample size.	n = number of units in a sample.	
N		Population size	N = Number of units in the population.	
$P_{n,r}$	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	$P_{n,r} = \frac{n!}{(n-r)!}$, where $n \ge r$	
	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	$_{n}P_{r} = \frac{n!}{(n-r)!}$, where $n \ge r$	
\hat{p}	p-hat	Sample proportion	$\hat{p} = \frac{number \ of \ success}{number \ of \ trials}.$	Binomial distribution
P (A B)	Probability of A given B	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$	
P (x)	Probability of x	Probability of x	$P(x) = \frac{No.of favorable outcomes}{Total no.of outcomes}$	
p-value		The attained level of significance.	P value is the smallest level of significance for which the observed sample statistic tells us to reject the null hypothesis.	
Q		Probability of not happening of the event	q = 1 - p	

Symbol	Text	Meaning	Formula	Link to Glossary
Q_1	Equivalent Q-one	First quartile	Q_1 = Median of the lower half of the data that is data below median.	(if appropriate) Measures of central tendency
Q_{2}	Q-two	Second quartile Or Median	Q_2 = Central value of an ordered data.	Measures of central tendency
Q_{3}	Q-three	Third quartile	Q_3 = Median of the upper half of the data that is data above the median.	Measures of central tendency
R		Sample Correlation coefficient	$r = \frac{Co \operatorname{var} iance(X, Y)}{[SD(X)] * [SD(Y)]}$	
r ²	r-square	Coefficient of determination	$r^2 = (Correlation \ coefficien \ t)^2$	
R^2	r-square	Multiple correlation coefficient	$R^{2} = 1 - \frac{mean \ square \ error}{S_{y}^{2}}$	
S		Sample standard deviation	$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} \text{ for ungrouped data.}$ $s = \sqrt{\frac{\sum f(x - \bar{x})^2}{(\sum f) - 1}} \text{ for grouped data.}$	Measures of dispersion
s ²	S-square	Sample variance	$s^{2} = \frac{\sum (x - \bar{x})^{2}}{n - 1}$ for ungrouped data. $s^{2} = \frac{\sum f(x - \bar{x})^{2}}{(\sum f) - 1}$ for grouped data	Measures of dispersion
S_e^2	s-e- square	Error variance	$S_e^2 = \frac{sum of squares of residuals}{n}$.	

Symbol	Text	Meaning	Formula	Link to Glossary
	Equivalent			(if appropriate)
SD		Sample standard deviation	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$ for ungrouped data.	
			$s = \sqrt{\frac{\sum f(x - \overline{x})^2}{(\sum f) - 1}}$ for grouped data.	
sk _b		Bowley's coefficient of skewness	$sk_b = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_1)}$	Measures of skew ness
skp		Pearson's coefficient of skewness	$sk_p = \frac{Mean - Mode}{S \tan dard Deviation}$	Measures of skew ness
66		Sum of Squares		
SS_x		Sum of Squares	$SS_x = \sum (x - \overline{x})^2$ for ungrouped data.	
			$SS_x = \sum f(x - \overline{x})^2$ for grouped data.	
t		Student's t variable.	$t = \frac{Normal(0,1)}{\sqrt{\chi_n^2/n}}$	t-distribution
t _c	t critical	The critical value for a confidence level c.	t_c =Number such that the area under the	Testing of hypothesis
		a confidence lever e.	t distribution for a given number of degrees of freedom falling between	
			$-t_c$ and t_c is equal to c.	
Var (X)	Variance of X	Variance of X	$Var(X) = E(X - \mu)^2$	
X		Independent variable or explanatory variable in regression analysis	Eg. In the study of, yield obtained & the irrigation level, independent variable is, X= Irrigation level.	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
x	x-bar	Arithmetic mean or Average of X scores.	$\overline{x} = \frac{\sum x}{n} $ for ungrouped data. $\overline{x} = \frac{\sum fx}{\sum f} $ for grouped data.	Measures of central tendency
			<u></u> J	
У		Dependent variable or response variable in regression analysis	Eg. In the study of, yield obtained & the irrigation level, dependent variable is, Y= Yield obtained.	
Z	Z-score	Standard normal variable (Normal variable with mean = $0 \& SD$ = 1)	$z = \frac{x - \mu}{\sigma}$, where X follows Normal (μ, σ).	Standard normal distribution
Ζ _c	z critical	The critical value for a confidence level c.	z_c = Number such that the area under the standard normal curve falling between $-z_c$ and z_c is equal to c.	Testing of hypothesis Confidence interval

Greek Statistical Symbols:

Symbol	Text	Meaning	Formula	Link to Glossary (if
	Equivalent			appropriate)
α	Alpha	Type I error or Level of Significance.	$\alpha = P$ [Rejecting the null hypothesis Null hypothesis is true].	Hypothesis Testing

100+ online courses in statistics

100+ online courses in statistic **Statistics.com** THE INSTITUTE FOR STATISTICS EDUCATION

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
β	Beta	Type II error or	$\beta = P$ [Accepting the null hypothesis]	Hypothesis Testing
,		Power of the test.	Null hypothesis is False].	
€	Epsilon	"Error Term" in regression/statistics; more generally used to denote an arbitrarily small positive number	$y = \beta_0 + \beta_1 * x + \epsilon$	Regression
$\chi^{^{2}}$	Chi-square	Chi-square distribution	χ^2 = Sum of n independent Standard normal variables	Chi-square distribution.
χ^2	Chi-square	Chi-square distribution	$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ where O is the observed frequency and E is the expected frequency. Or $\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}}$ (?)	Goodness of fit test
$\Gamma(n)$	Gamma-n	Gamma function	$\Gamma(n) = (n-1)!$	
λ	Lambda	Parameter used for Poisson distribution	λ = Mean of Poisson distribution	Poisson distribution
μ	Mu	Arithmetic mean or Average of the population.	$\mu = \frac{\sum x}{N}$ $\mu = \mathbf{E} (\mathbf{x}) = \sum x P(x)$	
μ_{r}	Mu-r	r th central moment	$\boldsymbol{\mu}_{r} = \mathbf{E} \left[\left(\mathbf{X} - \boldsymbol{\mu} \right)^{\mathbf{r}} \right]$	Measures of central tendency.
$\frac{\mu_{r}}{\mu_{r}}$	Mu-r-dash	r th Raw moment	$\mu_r = E(X^r)$	Measures of central tendency.
ρ	Rho	Population correlation coefficient	$\rho = \frac{\text{Covariance}(X, Y)}{SD(X) * SD(Y)}$	

Symbol	Text	Meaning	Formula	Link to Glossary (if
	Equivalent			appropriate)
\sum	Sigma	Summation	$\sum x = $ Sum of x scores.	
σ	Sigma	Population Standard Deviation	$\sigma = \sqrt{\frac{\sum (x-\mu)^2}{N}}$ $\sigma = \sqrt{E[(x-\mu)^2]} = \sqrt{\sum (x-\mu)^2 P(x)}$	Measures of dispersion
$\sigma^{^2}$	Sigma square	Population variance	$\sigma^2 = \frac{\Sigma (x - \mu)^2}{N}$	Measures of dispersion

Mathematical Statistical Symbols:

Symbol	Text	Meaning	Formula	Link to Glossary
	Equivalent			(if appropriate)
!	Factorial	Product of all integers up	$n! = n (n-1) (n-2) \dots 1.$	
		to the given number	0! = 1	
С	Complement	not	For example: A^{c} is not A	
\cup	Union	or	For example: $(A \cup B)$ is happening of	
			either event A or event B	
\cap	Intersection	And	For example: $(A \cap B)$ is happening of	
			both event A and event B	

100+ online courses in statistics

100+ online courses in statistic **Statistics.com** THE INSTITUTE FOR STATISTICS EDUCATION