Alphabetical Statistical Symbols:

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
a		Y- intercept of least square regression line	$\mathrm{a}=\bar{y}-b \bar{x}$, for line $\mathrm{y}=\mathrm{a}+\mathrm{bx}$	Regression: y on x
b		Slope of least squares regression line	$\mathrm{b}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}} \text { for line } \mathrm{y}=\mathrm{a}+\mathrm{bx}$	Regression: y on x
B (n, p)	Binomial distribution with parameters n and p	Discrete probability distribution for the probability of number of successes in n independent random trials under the identical conditions.	If X follows $B(n, p)$ then, $\mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{n} C_{r} p^{r}(1-p)^{n-r},$ Where, $\begin{aligned} & 0<p<1, \\ & r=0,1,2, \ldots n \end{aligned}$	Binomial Distribution
c		Confidence level	$c=P\left(-z_{c}<\operatorname{Normal}(0,1)<\mathrm{z}_{c}\right)$	Confidence interval
${ }^{n} C_{r}$	n-c-r	Combinations (number of combinations of n objects taken r at a time)	${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}, \text { where } \mathrm{n} \geq \mathrm{r}$	
$C_{n, r}$	n-c-r	Combinations (number of combinations of n objects taken r at a time)	$C_{n, r}=\frac{n!}{r!(n-r)!}, \text { where } \mathrm{n} \geq \mathrm{r}$	
$\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$	Covariance between X and Y	Covariance between X \& Y	$\operatorname{Cov}(\mathrm{X})=\mathrm{E}[(\mathrm{X}-\mathrm{E}(\mathrm{X})$)(Y- E (Y)]	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
CV		Coefficient of variation	$\mathrm{CV}=\frac{S \tan \text { dard Deviation }}{\text { Arithmatic mean }} .$	
df		Degree(s) of freedom		
E		Maximal error tolerance	$E=z_{c} \frac{\sigma}{\sqrt{n}}$ for large samples.	
E (f (x))	Expected value of f (x)		$\mathrm{E}\left(\mathrm{f}(\mathrm{x}) \mathrm{)}=\sum \mathrm{f}(\mathrm{x}) P(\mathrm{x})\right.$	
f		Frequency	$\mathrm{f}=$ number of times score.	
F		F-distribution variable	$\mathrm{F}=\frac{\chi_{1}^{2}}{\chi_{2}^{2} / n_{1}}$ where n_{1} and n_{2} are the corresponding degrees of freedom.	F-distribution, Hypothesis testing for equality of 2 variances.
$\mathrm{F}(\mathrm{x})$ or F_{x}		Distribution function	$F_{x}=\int_{-\infty}^{x} f_{x} d x$	
$\mathrm{f}(\mathrm{x})$ or f_{x}		Probability mass function	Depends on the distribution. $f_{x} \geq 0 \& \int_{x} f_{x} d x=1$	
H_{0}	H-naught	Null hypothesis.	The null hypothesis is the hypothesis about the population parameter.	Testing of hypothesis
H_{1}	H-one	Alternate hypothesis.	An alternate hypothesis is constructed in such a way that it is the one to be accepted when the null hypothesis must be rejected.	Testing of hypothesis
IQR		Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$	Measures of central tendency.

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)	
MS	M-S	Mean square	$\mathrm{MS}=\frac{S S}{d f}$	Analysis of variance (ANOVA)	
n		Sample size.	n = number of units in a sample.		
N		Population size	$\mathrm{N}=$ Number of units in the population.		
$P_{n, r}$	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	$P_{n, r}=\frac{n!}{(n-r)!} \text {, where } \mathrm{n} \geq \mathrm{r}$		
${ }_{n} P_{r}$	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	${ }_{n} P_{r}=\frac{n!}{(n-r)!}, \text { where } \mathrm{n} \geq \mathrm{r}$		
\hat{p}	p-hat	Sample proportion	$\hat{p}=\frac{\text { number of success }}{\text { number of trials }} .$	Binomial distribution	
P (A \\| B	Probability of A given B	Conditional probability	$\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)}$		
P (x)	Probability of x	Probability of x	$\mathrm{P}(\mathrm{x})=\frac{\text { No.of favorable outcomes }}{\text { Total no.of outcomes }}$		
p-value		The attained level of significance.	P value is the smallest level of significance for which the observed sample statistic tells us to reject the null hypothesis.		
Q		Probability of not happening of the event	$\mathrm{q}=1-\mathrm{p}$		

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
Q_{1}	Q-one	First quartile	$Q_{1}=$ Median of the lower half of the data that is data below median.	Measures of central tendency
Q_{2}	Q-two	Second quartile Or Median	$Q_{2}=$ Central value of an ordered data.	Measures of central tendency
Q_{3}	Q-three	Third quartile	$Q_{3}=$ Median of the upper half of the data that is data above the median.	Measures of central tendency
R		Sample Correlation coefficient	$r=\frac{\text { Co var iance }(X, Y)}{[S D(X)] *[S D(Y)]}$	
r^{2}	r-square	Coefficient of determination	$r^{2}=(\text { Correlation coefficien } t)^{2}$	
R^{2}	r-square	Multiple correlation coefficient	$R^{2}=1-\frac{\text { mean square error }}{S_{y}^{2}}$	
S		Sample standard deviation	$\begin{aligned} & s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \text { for ungrouped data. } \\ & s=\sqrt{\frac{\sum f(x-\bar{x})^{2}}{\left(\sum f\right)-1}} \text { for grouped data. } \end{aligned}$	Measures of dispersion
s^{2}	S-square	Sample variance	$S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$ for ungrouped data. $S^{2}=\frac{\sum f(x-\bar{x})^{2}}{\left(\sum f\right)-1}$ for grouped data	Measures of dispersion
S_{e}^{2}	s-e- square	Error variance	$S_{e}^{2}=\frac{\text { sumof squares of residuals }}{n} .$	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
SD		Sample standard deviation	$\begin{aligned} & s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \text { for ungrouped data. } \\ & s=\sqrt{\frac{\sum f(x-\bar{x})^{2}}{\left(\sum f\right)-1}} \text { for grouped data. } \end{aligned}$	
skb		Bowley's coefficient of skewness	$\mathrm{sk}_{\mathrm{b}}=\frac{\left(Q_{3}-Q_{2}\right)-\left(Q_{2}-Q_{1}\right)}{\left(Q_{3}-Q_{1}\right)}$	Measures of skew ness
sk ${ }_{\text {p }}$		Pearson's coefficient of skewness	$\mathrm{sk}_{\mathrm{p}}=\frac{\text { Mean }- \text { Mode }}{S \text { tan dard Deviation }}$	Measures of skew ness
SS ${ }_{x}$		Sum of Squares	$\mathrm{SS}_{x}=\sum(x-\bar{x})^{2}$ for ungrouped data. $\mathrm{SS}_{x}=\sum f(x-\bar{x})^{2}$ for grouped data.	
t		Student's t variable.	$t=\frac{\operatorname{Normal}(0,1)}{\sqrt{\chi_{n}^{2} / n}}$	t-distribution
t_{c}	t critical	The critical value for a confidence level c.	$t_{c}=$ Number such that the area under the t distribution for a given number of degrees of freedom falling between $-t_{c}$ and t_{c} is equal to c.	Testing of hypothesis
Var (X)	Variance of X	Variance of X	$\operatorname{Var}(\mathrm{X})=\mathrm{E}(\mathrm{X}-\mu)^{2}$	
X		Independent variable or explanatory variable in regression analysis	Eg. In the study of, yield obtained \& the irrigation level, independent variable is, X= Irrigation level.	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
$\bar{\chi}$	x-bar	Arithmetic mean or Average of X scores.	$\bar{x}=\frac{\sum x}{n} \quad$ for ungrouped data. $\bar{x}=\frac{\sum f x}{\sum f} \quad$ for grouped data.	Measures of central tendency
y		Dependent variable or response variable in regression analysis	Eg. In the study of, yield obtained \& the irrigation level, dependent variable is, $\mathrm{Y}=\mathrm{Y}$ ield obtained.	
Z	Z-score	Standard normal variable (Normal variable with mean $=0$ \& SD =1)	$z=\frac{x-\mu}{\sigma}$, where X follows $\operatorname{Normal}(\mu, \sigma)$.	Standard normal distribution
Z_{c}	z critical	The critical value for a confidence level c.	$z_{c}=$ Number such that the area under the standard normal curve falling between $-z_{c}$ and z_{c} is equal to c.	Testing of hypothesis Confidence interval

Greek Statistical Symbols:

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
α	Alpha	Type I error or Level of Significance.	$\alpha=\mathrm{P}$ [Rejecting the null hypothesis Null hypothesis is true].	Hypothesis Testing

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
β	Beta	Type II error or Power of the test.	$\beta=\mathrm{P}$ [Accepting the null hypothesis \| Null hypothesis is False].	Hypothesis Testing
ϵ	Epsilon	"Error Term" in regression/statistics; more generally used to denote an arbitrarily small positive number	$y=\beta_{0}+\beta_{1}{ }^{*} x+\epsilon$	Regression
χ^{2}	Chi-square	Chi-square distribution	$\chi^{2}=$ Sum of n independent Standard normal variables	Chi-square distribution.
χ^{2}	Chi-square	Chi-square distribution	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}$ where $\quad O \quad$ is the observed frequency and E is the expected frequency. Or $\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$	Goodness of fit test
$\Gamma(n)$	Gamma-n	Gamma function	$\Gamma(n)=(n-1)!$	
λ	Lambda	Parameter used for Poisson distribution	$\lambda=$ Mean of Poisson distribution	Poisson distribution
μ	Mu	Arithmetic mean or Average of the population.	$\begin{aligned} & \mu=\frac{\sum x}{N} \\ & \mu=\mathrm{E}(\mathrm{x})=\sum x P(x) \end{aligned}$	
μ_{r}	Mu-r	$\mathrm{r}^{\text {th }}$ central moment	$\mu_{r}=\mathrm{E}\left[(\mathrm{X}-\mu)^{\mathrm{r}}\right]$	Measures of central tendency.
μ_{r}	Mu-r-dash	$\mathrm{r}^{\text {th }}$ Raw moment	$\mu_{r}^{\prime}=\mathrm{E}\left(\mathrm{X}^{\mathrm{r}}\right)$	Measures of central tendency.
ρ	Rho	Population correlation coefficient	$\rho=\frac{\text { Covariance }(X, Y)}{S D(X) * S D(Y)}$	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
Σ	Sigma	Summation	$\sum x=$ Sum of x scores.	
σ	Sigma	Population Standard Deviation	$\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}$ $\sigma=\sqrt{E\left[(x-\mu)^{2}\right]}=\sqrt{\sum(x-\mu)^{2} P(x)}$	Measures of dispersion
σ^{2}	Sigma square	Population variance	$\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}$	Measures of dispersion

Mathematical Statistical Symbols:

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
$!$	Factorial	Product of all integers up to the given number	$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \ldots . .1$. $0!=1$	
${ }^{c}$	Complement	not	For example: A^{c} is not A	
\cup	Union	or	For example:(A $\cup \mathrm{B})$ is happening of either event A or event B	
\cap	Intersection	And	For example: $(\mathrm{A} \cap \mathrm{B})$ is happening of both event A and event B	

