
C
ER

N
-T

H
ES

IS
-2

01
8-

33
5

21
/0

9/
20

18

УНИВЕРЗИТЕТ У БЕОГРАДУ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ

РАЗВОЈ И ТЕСТИРАЊЕ ALTI МОДУЛА

ЗА ВРЕМЕНСКУ СИНХРОНИЗАЦИЈУ

У ОКВИРУ ATLAS ЕКСПЕРИМЕНТА У CERN-У

Мастер рад

Ментор: Кандидат:

доц. др Јелена Поповић-Божовић Предраг Кузмановић

 3209/2016

Београд, Август 2018.

UNIVERSITY OF BELGRADE
SCHOOL OF ELECTRICAL ENGINEERING

DEVELOPMENT AND TESTING OF THE ALTI MODULE

FOR TIMING AND SYNCHRONIZATION

IN THE ATLAS EXPERIMENT AT CERN

Master thesis

Mentor: Candidate:

asst. prof. dr Jelena Popović-Božović Predrag Kuzmanović

 3209/2016

Belgrade, August 2018.

САЖETAK

Овај документ описује допринос аутора у развоју и тестирању ATLAS Local Trigger

Interface (ALTI) модула. ALTI је нови модул дизајниран за ATLAS експеримент у CERN-у, и

део је система за временску синхронизацију, такозваног Timing, Trigger and Control (TTC)

система. Централна функционалност ALTI модула је серијски трансмисиони протокол којим

се дистрибуирају тригери и поруке ка сваком од субдетектора у оквиру ATLAS експеримента

путем оптичких влакана. Временска синхрoнизација тригера и порука је од кључног значаја за

исправну аквизицију података о честицама добијеним након судара протонских снопова. ALTI

је 6U VME64x модул који интегрише функционалности четири постојећа модула која се

тренутно користе у експерименту: LTP, LTPI, TTCvi и TTCex. ALTI модул обједињује

функционалности ова четири модула у један, али их и унапређује, што је последица већег

логичког капацитета. Модул ће бити постављен у експеримент током дуготрајног искључења

Великог Хадронског Сударача честица (Large Hardron Collider, LHC) у 2019. години.

ALTI је систем реализован на две штампане плоче, матичној и мезанин плочи. Сва

контролна логика је имплементирана је у оквиру фирмвера на Xilinx-овом Artix-7 FPGA чипу,

који се налази на матичној плочи. Одређене делове фирмвера имплементирао је и аутор, и за

то је коришћен језик за опис хардвера Verilog и алат Xilinx Vivado.

Контролни low-level софтвер за ALTI модул на језику C++ извршава се на "рачунару

на једној плочи" базираном на Intel процесору. Овај рачунар покреће Scientific Linux

оперативни систем. Развијена је софтверска библиотека која омогућава приступ до свих делова

хардвера и фирмвера, тј. омогућава потпуну конфигурацију ALTI модула. Поред low-level

софтвера, развијено је неколико тест програма и скрипти за наменско тестирање појединачних

фукционалности. Такође, у програмском језику Python развијен је програм за свеобухватно

тестирање прототипа ALTI модула. Овај програм се користи за тестирање свих могућих

путања различитих сигнала кроз модул. Помоћу овог програма пронађене су грешке на

неколико модула, повезане са монтажом штампаних плоча и лоше залемљеним компонентама.

Читав хардвер на прототипима ALTI модула је тестиран уз помоћ контролног софтвера,

као и мерних инструмената попут осцилоскопа и анализатора спектра. То се такође односи и

на тестирање функционалности имплементираних у оквиру фирмвера FPGA. Ова тестирања

хардвера и функционалности помогла су да се пронађу у грешке у дизајну, као што су: обрнути

поларитет једног диференцијалног пара, погрешан напон напајања за чипове компаратора,

итд. Све ове грешке су исправљене у другој верзији штампаних плоча које ће се произвести за

следећу верзију ALTI прототипа.

Поред тестирања харвера и функционалности, урађена су и мерења перформанси ALTI

модула. Као најважнији параметар, мерено је кашњење тј. латенца тригер сигнала од

електричног сигнала на улазу до појаве тригера у оптичком сигналу на излазу. Резултати

показују да систем базиран на ALTI модулу може да постигне једнаку латенцу као и систем

базиран на постојећим модулима.

Други битан параметар перформанси представља количина џитера у излазном сигналу

који се даље оптички преноси до субдетектора, јер велика количина џитера може нарушити

исправно декодовање порука и тригера од стране пријемника. Тестови су показали виши ниво

џитера у систему базираном на ALTI модулу у односу на постојећи систем. Међутим,

тестирања на пријемницима су показала да је дековање успешно у оба случаја.

ABSTRACT

This paper describes the author’s contribution in the development and testing of the ATLAS Local

Trigger Interface (ALTI) module. The ALTI is a new module designed for the ALTAS experiment at

CERN, a part of the Timing, Trigger and Control (TTC) system. It is a 6U VME64x module which

integrates the functionalities of four existing modules currently used in the experiment: LTP, LTPI,

TTCvi and TTCex. The module will be deployed during the long shutdown LS2 of the Large Hadron

Collider (LHC) in 2019.

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my all of my colleagues at CERN that I have

collaborated with during my stay as a technical student in this organization. Without them, it would

not have been possible to contribute to the ALTI project and deliver this thesis.

 First of all, I would like to thank my supervisor, Ralf Spiwoks. He got me introduced to the

ALTI project and helped me understand the basic principles behind the ALTAS experiment and the

LHC in general. With his invaluable knowledge and years of experience as a physicist and software

developer, he has helped me get acquainted with the ATLAS TDAQ and L1CT software developing

process. His suggestions were always very helpful and led to continual improvement of ALTI low-

level software. A huge number of software packages that he has contributed to in CERN have served

as a basis and a model for the ALTI low-level software that I have been developing. Ralf gave me the

support for writing this thesis and has also helped me in reviewing it and gave me a lot of helpful

advices.

I would also like to thank Vladimir Ryzhov, who is probably the colleague I have collaborated

with the most. He is the designer of the ALTI module and has also written the FPGA firmware for

the module. I have helped him evaluate the ALTI firmware and he has used my feedback in order to

constantly improve it. I have learned a lot from him about FPGA design and electronics in general.

Stefan Haas is another colleague of mine that I am thankful to. As our coordinator, he was

always able to clearly put the most important goals in front of us and help us in the organization. He

has helped me immensely in the numerous laboratory tests that have been performed on ALTI

modules. He has also taught me to use Xilinx Vivado and some other EDA tools.

My thanks also go to Thilo Pauly, the leader of the ATLAS Level-1 Central Trigger team. He

always gave us the feedback from the sub-detector people on the ALTI features they would like us to

implement. He also helped spread the word about the ALTI among them and introduced them to the

possibility of transitioning to the new system. Therefore, if and when the ALTI suppresses and

replaces the legacy TTC system, it will be primarily thanks to him.

Many thanks also go the other L1CT colleagues, especially Antoine Marzin, who has been

developing the run control application for the ALTI based on the low-level API. His feedback was

invaluable in order to improve the low-level ALTI software. By running various laboratory tests on

ALTI on his own, he helped us improve both software and firmware of the ALTI module.

Finally, I would like to thank the colleagues from the EP-ESE-BE section that I was associated

with during my stay at CERN. They helped us by borrowing the laboratory equipment in order to do

the ALTI performance measurements. Besides that, their easy-going and friendly attitude certainly

helped me feel comfortably in my working environment.

 i

TABLE OF CONTENTS

TABLE OF CONTENTS ..I

1. INTRODUCTION ... 1

2. OVERVIEW OF THE CURRENT SYSTEM .. 3

2.1. ATLAS EXPERIMENT ... 3
2.2. TTC SYSTEM .. 3

2.2.1. TTC signals ... 6
2.3. LEGACY TTC MODULES ... 6

2.3.1. Local Trigger Processor (LTP)... 7
2.3.2. Local Trigger Processor Interface (LTPI) .. 8
2.3.3. TTC VMEbus Interface (TTCvi) .. 8
2.3.4. TTC Encoder/Transmitter (TTCex) ... 10

2.4. VMEBUS .. 10

3. ALTI HARDWARE SPECIFICATION ... 11

3.1. INTERFACES.. 11
3.2. ARCHITECTURE .. 13

3.2.1. Cross-point switches ... 15
3.2.2. Clock distribution ... 16
3.2.3. TTC signals multiplexing .. 17
3.2.4. Cable equalizers ... 18
3.2.5. Memories .. 18
3.2.6. Optical transmitter and receiver modules ... 19
3.2.7. Clock and data recovery from the TTC stream ... 19
3.2.8. Power supply... 19
3.2.9. Hardware monitoring ... 19
3.2.10. I2C network .. 19

4. ALTI FUNCTIONALITY AND FIRMWARE ... 21

4.1. CLOCKING .. 23
4.2. INPUT SIGNAL SYNCHRONIZATION .. 23
4.3. PATTERN GENERATION ... 23
4.4. SNAPSHOT TAKING ... 24
4.5. TTC ENCODER .. 24
4.6. TTC DECODER .. 25
4.7. I2C MASTER CORE .. 25
4.8. 1-WIRE MASTER CORE .. 25
4.9. BUSY AND CALIBRATION REQUEST ROUTING .. 25

5. ALTI SOFTWARE ... 28

5.1. ATLAS TDAQ .. 28
5.2. LOW-LEVEL API ... 29
5.3. MENU PROGRAM .. 32
5.4. CONFIGURATION OBJECT .. 32
5.5. TEST PROGRAMS ... 34

5.5.1. testAltiVME ... 34
5.5.2. testAltiInitial ... 35
5.5.3. testAltiQuickBoot .. 37
5.5.4. testAltiCapture .. 38

 ii

5.5.5. testAltiTtc .. 40
5.5.6. testAltiSync.. 43

6. MODULE TESTING .. 46

6.1. LABORATORY TESTS ... 46
6.2. AUTOMATED CONNECTION TEST... 47

7. PERFORMANCE MEASUREMENTS .. 51

7.1. LATENCY OF ELECTRICAL TTC SIGNALS .. 51
7.2. LEVEL-1 ACCEPT LATENCY: LAR DAISY CHAIN ... 54
7.3. TTC STREAM AND RECOVERED CLOCK JITTER .. 57

7.3.1. Oscilloscope measurements .. 57
7.3.2. Phase noise analyzer measurements ... 59

8. CONCLUSION .. 63

BIBLIOGRAPHY ... 64

LIST OF ABBREVIATIONS .. 67

LIST OF FIGURES .. 68

LIST OF TABLES .. 70

 1

1. INTRODUCTION

In the ATLAS high energy physics experiment at CERN, a new module cаlled ATLAS Local

Trigger Interface (ALTI) is being developed. This module provides the interface between the Level-

1 Central Trigger Processor (CTP) and the timing, trigger and control (TTC) optical broadcasting

network to the front-end electronics of each of the ATLAS sub-detectors. ALTI is a replacement for

four existing modules currently being used in the experiment: Local Trigger Processor (LTP), Local

Trigger Processor Interface (LTPI), TTC VMEbus Interface (TTCvi) and TTC Encoder/Transmitter

(TTCex). It has become increasingly difficult to produce spares for these four modules, and the

current spare modules have obsolete and ageing components. In that sense, the ALTI combines and

upgrades the functionalities of these modules while preserving backward compatibility. It also

extends them and adds new features due to increased amount of programmable logic resources.

ALTI is a custom-made 6U VME64x module made out of two PCBs (motherboard and

mezzanine) and it takes up two slots in the VME64x crate. It is an FPGA-based system and uses

Xilinx’s 7-Series FPGA chip from the Artix family (Artix-7). The module is connected with other

modules in the same crate through a common VME backplane. Control software for the ALTI is being

executed on a single-board computer (SBC) with Intel’s CPU, located in the first slot in the same

crate. The SBC runs Scientific Linux operating system and has an on-board interface chip which acts

as a PCI-to-VME bus bridge.

As of late 2017, four fully assembled ALTI prototype modules have been available. There are

several aspects of the ALTI development and testing that the author has contributed to since: some

parts of the FPGA firmware, software for configuration, control and testing of the module, as well as

module testing and various performance measurements. For the firmware development, Verilog

hardware description language and Xilinx Vivado tool have been used. Low-level software has been

written in C++, and it allows access to all the functionalities available in the hardware and firmware.

For thorough and systematic testing of the module, a higher level software has been written in the

Python programming language.

The author’s main contribution to the ALTI project is a software suite for testing and validation

of the ALTI prototype modules. Automatization of the testing will allow quick evaluation and

qualification of the mass-produced modules which will be necessary for the experiment. Low-level

software library will be used further for the run control application development, a control system

used to operate the whole experiment.

In Chapter 2 of this document, a brief overview of the current TTC system in the ATLAS

experiment will be given. In this way, the reader will be introduced to the specific nomenclature of

modules, signals and interfaces being used, so it lays the foundation necessary for the later chapters.

This chapter will also emphasize the flaws of the current system the and further explain the motivation

to migrate to the new, ALTI-based system.

 2

The ALTI hardware architecture will be presented in the Chapter 3. Then, in Chapter 4, all the

functionalities of the module will be explained in detail. These functionalities are reflected in the

FPGA firmware, which is also described in Chapter 4. Relevant parts of the firmware (the one the

author has contributed to) will be presented in detail, while the others will be described briefly. The

software that has been developed is the main topic of the Chapter 5. This includes both the low-level

software for configuration, control and testing of the module, as well as the software of higher level

used for (semi-)automatized tests. Numerous tests that have been used to verify the proper functioning

of the modules are described in Chapter 6. Performance of the ALTI module was determined with

various measurements, all of which are described in detail in Chapter 7. The same tests have been

done for the modules in the existing TTC system, in order to compare them to the new ALTI module.

This comparison is also a subject of Chapter 7. Finally, Chapter 8 summarizes all the work that was

done and the results that were obtained, and gives a conclusion to the thesis.

 3

2. OVERVIEW OF THE CURRENT SYSTEM

A brief introduction to the relevant parts of the ATLAS experiment is given in Section 2.1.

Then, in Section 2.2, the TTC system that the ALTI is made for is described. This description includes

the current distribution of modules in the system, as well as the main signals being used in the TTC.

Section 2.3 gives an overview of the four modules that are currently being used in the TTC system

(so called "legacy" modules). Finally, Section 2.4 describes the VMEbus that these legacy modules

are based on, as is the ALTI module.

2.1. ATLAS experiment

The ATLAS experiment is a general-purpose particle physics experiment operating at the

Large Hadron Collider (LHC) at CERN [1]. The full LHC turn consists of 3564 bunch crossings

(BC). The bunch clock is the main timing signal produced by the LHC and has the frequency of

40.079MHz. The second timing signal is the orbit (ORB) signal, which indicates the start of a new

LHC turn and allows one to identify the bunch crossings. The LHC orbit period is about 90µs, while

the orbit pulse width is 40BCs, or about 1µs.

Several tens of proton-proton collisions that happen each bunch crossing yield about a billion

collisions each second [1]. Particles created by these collisions are then captured by various types of

particle detectors. The Level-1 calorimeter and Level-1 muon trigger systems identify interesting

particle candidates. The Central Trigger Processor (CTP) makes combinations of these and takes the

final decision, reducing the event rate to a maximum of 100kHz [2]. This is called the Level-1 trigger

system and the corresponding event signal produced by the CTP is called Level-1 Accept (L1A). The

High Level Trigger (HLT) system of ATLAS operates at lower event accept and readout frequencies

than the Level-1 trigger system. High level trigger systems are based on commercial computers and

networks, unlike the Level-1 trigger system which is based on custom electronics.

2.2. TTC system

Level-1 central trigger system is followed by the Timing, Trigger and Control (TTC) system,

whose backbone is the optical transmission network used for communication with the sub-detector

front-end electronics. The TTC system is also based on custom electronics, and is composed of

several VME modules or boards. This system is responsible for the distribution and fan-out of the

timing signals (BC, ORB), the trigger signal (L1A, together with an 8-bit trigger type word) and the

control commands like Bunch Counter Reset (BCR) and Event Counter Reset (ECR). Proper timing

and control provided by the TTC system is essential for making sure that the right data ("interesting"

physics) are read out from the sub-detector buffers in due time. A detailed overview of the TTC

system can be found on one of the websites listed in the bibliography [3].

The triggers (channel A) and commands (channel B) are time-division multiplexed and

biphase-mark encoded into an optical signal called the TTC stream, and then sent to the front-end

electronics of each sub-detector system via optical fibre networks. Multiplexing of channels A and B

and their encoding into the TTC stream is shown on Figure 2.2.1.

 4

Figure 2.2.1. Multiplexing and encoding of the TTC channels A and B.

Two bits are being transmitted on every bunch crossing, one for each channel. Channels A and

B are thus interleaved and the carrier frequency is two times the BC frequency, which gives the rate

of about 80M bits per second. A transition on the TTC stream indicates a logic "1", while logic "0"

is assumed if no transition occurs, as indicated on the Figure 2.2.1. When no triggers are being

accepted and no B-channel commands are being transmitted, the TTC stream is idle. In that case,

channel A is a logic "0" (no transitions occurring) and channel B is a logic "1" (transitions occurring).

The front-end electronics of the sub-detectors use a TTC Receiver (TTCrx) ASIC module to

receive and decode the TTC stream [4]. From the TTC stream only, the receiver is able to decode and

de-multiplex the channels A and B. First, the receiver makes an initial guess on which bit corresponds

to which channel, since the channels are interleaved. Because of the constraint made on the maximum

L1A rate and the fact that the idle bits are different for channels A and B, the receiver is able to switch

the phase of the stream if the initial guess turns out to be wrong. The BC clock is also recovered in

the process.

TTC system is partitioned in order to be able to run sub-detectors (or parts of sub-detectors)

independently and in parallel. Associated with each sub-detector is a link from the CTP to one or

more TTC partitions. Currently, there are 21 connections from the CTP to 35 different TTC partitions

in the ATLAS experiment, some of which are daisy-chained. Currently, the maximum daisy chain

length is three partitions. Each partition is typically composed of the following modules: LTPI

(optional), LTP, TTCvi and TTCex. A detailed sketch of the current TTC system distribution is shown

on Figure 2.2.2.

0 0

0 1

1 0

1 1

channel A channel B

~ 12.5ns

~ 25ns

(~80Mb/s)

idle TTC stream

 5

Figure 2.2.2. Current TTC distribution network in the ATLAS experiment [12].

However, the next ATLAS upgrade will include new sub-detectors which will require TTC

modules. Unfortunately, CERN is low on spare TTC modules. Also, some of the TTC modules are

now more than 15 years old and use components that are now obsolete. Therefore, it is not possible

to reproduce modules for the new sub-detectors and to replenish the stock of available spare modules.

Other issues of the legacy modules include: aging effects, no firmware replacement flexibility and

very limited monitoring capabilities.

 6

This is why the new ALTI module was created. It is designed to replace a combination of

LTPI, LTP, TTCvi and TTCex with a single module. The replacement also creates a benefit of getting

more free space in TTC VME crates. ALTI provides almost full backwards compatibility with the

hardware of other modules. Full compatibility is not provided from the interfaces point of view,

though, since space on the front panel is lost in the transition from four separate VME boards to a

single, 2-slot VME board. More details on the compromises made because of this will follow in the

next chapter.

From the point of view of functionality, the ALTI keeps all the functions of the previous

modules. Some of them are extended and optimized, though, since more powerful logic resources are

available. Additional useful functionalities are available, too.

2.2.1. TTC signals

In order to understand the functionality of the TTC system, it is necessary to get familiar with

the interface signals being used. There are 22 digital TTC signals in total (some of them logically

grouped together), and they are listed in the Table 2.2.1. For each of the TTC signals, once can see a

description of a typical use in the experiment in the same table. Direction column in this table serves

to make a distinction between signals going downstream (from CTP, forward) and upstream (to CTP,

backward).

Table 2.2.1. List of TTC signals.

TTC SIGNAL DIRECTION DESCRIPTION

BC forward Bunch crossing clock: 40.079MHz, 50% duty ratio.

ORB
forward Periodic signal representing one LHC turn. Period is 3564 bunch

crossings, pulse width is 40BC.

L1A forward Level-1 trigger accept signal of 1BC pulse width.

TTR[3..1] forward Auxiliary triggers generated locally by the partition.

BGO[3..0] forward Signals for sending B-channel TTC commands.

TTYP[7..0] forward 8-bit trigger type identification word associated with each L1A.

BUSY
backward Used to inform the CTP to introduce L1A dead-time, i.e. throttle

L1A generation when the readout buffers are overwhelmed.

CALREQ[2..0]
backward 3-bit word issued by the sub-detector and used by the CTP to

generate calibration triggers.

2.3. Legacy TTC modules

All of the legacy TTC modules use the TTC signals mentioned in the previous section. Each

of these modules has a particular set of functionalities which will be described in this section. The

modules differ in the interfaces for the TTC signals on their front panels. This can be clearly seen on

Figure 2.3.1, where the legacy TTC modules are shown from the front panel view.

 7

 (a) (b) (c) (d)

Figure 2.3.1. Legacy TTC modules, front panel view: (a) LTPI [7], (b) LTP [5], (c) TTCvi [8], (d) TTCex [9].

2.3.1. Local Trigger Processor (LTP)

The main purpose of the LTP is to receive the timing, trigger and control signals from the CTP

and inject them into the TTC distribution system through TTCvi. More details can be found in the

LTP technical description and user manual [5].

Connection with the CTP is done with LVDS-LINK cables. The LTP has two female 50-pin

3M Mini Delta Ribbon (MDR) connectors, the one being an input (CTP_IN link) and the other an

output (CTP_OUT link), as can be seen on Figure 2.3.1. (b). In case of daisy-chaining the TTC

partitions, the output is used to connect the module with the downstream LTP.

Electrical signals can also be injected in the LTP using coaxial cables and LEMO connectors

on the front panel. There are also LEMO connectors for output signals, which are very useful for

looking at the signal waveforms on the oscilloscope. Input LEMO connectors are suited for standard

Nuclear Instrumentation Module (NIM) logic levels. This is a standard that uses negative logic, with

0V low voltage, and -0.8V high voltage on a 50Ω termination [6]. There are two sets of output LEMO

connectors: one set for local use and the other for connecting to the TTCvi downstream. All local

LEMO outputs are NIM-level. The ones used for the connection with the TTCvi are a bit different:

latency critical signals (BC, ORB and L1A) are routed in ECL logic, which is faster.

 8

For trigger type and calibration request, there are custom made input/output ports on the front

panel. Trigger type connector is usually used as an output and is connected to the TTCvi connector

of the same type with a flat cable. This connector can also be used as an input (programmable), as

well as the calibration request connector.

In addition to being run by the CTP (so called "CTP slave" mode), the LTP can also run in

standalone mode (so called "Master" mode). That means that the TTC signals can be generated locally

by the LTP. Master mode is typically used in laboratory testing, when the full CTP system is not

available.

For generating the BC clock internally, there is an on-board 40.079MHz quartz oscillator. The

internal ORB signal is derived directly from this clock. Orbit signal and the other TTC signals can

also be generated from the on-board memory called pattern generation memory. Pattern generation

memory can be run in continuous mode (pattern gets repeated periodically) and in single-shot mode

(triggered by the VME access or the ORB signal). Entries of this memory contain the desired values

of TTC signals, and one entry correspond to a single BC period.

To sum up, the LTP is used for TTC signal propagation and generation. Switching of the input

signals to the outputs is very flexible: signals on the CTP_OUT link and LEMO outputs can be

sourced from the CTP_IN link, front panel connectors, or generated internally in the LTP. However,

the latency for different TTC signals through the LTP is not equal because of the different circuitry.

2.3.2. Local Trigger Processor Interface (LTPI)

The main purpose of the LTPI is to help run TTC partitions in parallel. More details can be

found in the LTPI functional description [7].

Unlike the LTP, the LTPI has two pairs of LVDS-LINK connectors called CTP_IN/CTP_OUT

link and LTP_IN/LTP_OUT link. This allows the reception of TTC signals from an upstream CTP,

as well as from another parallel LTPI. Both LVDS-LINK inputs have a separate equalizer in the LTPI

to allow the undistortion of the TTC signals when long LVDS cables are used.

As for the LEMO connectors, there are NIM-level input and output connectors for BC, ORB,

L1A, TTR and BGO signals. Separate connectors for NIM and TTL-logic levels are available for the

BUSY input signal. There are no input/output ports for trigger type and calibration request, so these

signals can be propagated only through the LVDS connectors.

Preceding the CTP_OUT link is the delay chip, which allows fine shifting (with 0.5ns step) of

the TTC signals (all except the BC).

To summarize, the main function of the LTPI is to switch TTC signals between partitions.

2.3.3. TTC VMEbus Interface (TTCvi)

The main purpose of the TTCvi is to endode the signals for TTC channels A and B. Channel

A is carrying the L1A triggers, while the channel B is carrying TTC commands, as described in

Section 2.2. Commands on the B channel are framed, formatted and protected with Hamming code

for error detection and correction. More details can be found in the TTCvi functional description and

user manual [8].

One can select between four external triggers: L1A and three test triggers. There is also an

ability to generate random triggers with a few predefined average frequencies, ranging from 1Hz to

100kHz.

There are two types of TTC command formats: short and long. Start bit is indicated by a logic

"0" on the B-channel portion of the TTC stream. The second bit indicates the type of the frame: logic

"0" is used for short, and logic "1" is used for long commands. Then, the remainder of the command

depends on the frame type, as shown on figures 2.3.2 and 2.3.3 for short and long commands,

respectively.

 9

Figure 2.3.2. Frame format for short TTC commands.

Figure 2.3.3. Frame format for long TTC commands.

Short commands just carry an 8-bit data field. On the other hand, the long commands carry a

few additional fields: 14-bit address field for addressing a specific TTCrx receiver, 8-bit sub-address

filed for addressing a specific register in the addressed receiver. When the address field is 0, it means

that the command is being broadcasted to all of the TTCrx receivers. Otherwise, a receiver with a

given address is being individually addressed. External/internal bit field indicates whether the data is

being written to the addressed register of the receiver, or made available externally and transmitted

to the front-end electronics. Every command is terminated with a stop bit that returns the B-channel

to the idle state.

Hamming code is used to protect the command contents. Start, stop and frame type bits are

not included in the Hamming code scheme. For short commands, Hamming code with Hamming

distance 5 is used to protect 8 information bits. On the other hand, Hamming code with Hamming

distance 7 is used to protect 32 information bits for the long commands. Single-bit error correction

and double-bit error detection is possible using this code.

Besides the short/long command distinction, there is another major distinction between the

TTC commands: synchronous and asynchronous commands.

Synchronous commands have a precise timing with respect to the LHC orbit. These are time-

critical commands like the Bunch Counter Reset, which is sent at a fixed point on each orbit in order

to adjust the phase of the bunch counters in the receivers. BCR is a short, synchronous command that

is broadcasted to all of the receivers. Its data field is equal to 1.

Asynchronous commands are those that are not time-critical, like commands for calibration of

the front-end electronics. Their timing is not fixed to the orbit and they have lower priority than

synchronous commands. Event Counter Reset (ECR) is a short, asynchronous command that is sent

to reset the 24-bit L1A (event) counters in the receivers. Data field of the ECR is equal to 2. Another

example for asynchronous commands are the trigger type cycle commands. These are the four long

commands that are being transmitted following each L1A. Trigger type word is the data content of

the first of these commands, while the other three commands are used to transmit the current value

of a 24-bit event or orbit counter in the TTCvi (programmable).

There are four independent channels for sending commands, called BGO0, BGO1, BGO2 and

BGO3. Associated with each of the four channels is a dedicated FIFO memory for storing the

commands to be transmitted. For sending the commands in a loop after the FIFO gets empty, a so

called retransmit FIFO mode is used. Choosing the types of commands associated with each BGO

channel is completely flexible: all of them support synchronous (repetitive and single-shot) and

asynchronous commands (triggered by external BGO signal, a VME access or by a write access to

the FIFO). However, by convention in the ATLAS experiment, the BGO0 channel is associated with

the BCR, and the BGO1 is associated with the ECR.

start stopframe type data [7..0] checksum [4..0]

0 0 ddddddd ccccc 1

start stopframe type data [7..0] checksum [6..0]

0 1 ddddddd ccccccc 1

sub-address [7..0]

ssssssss

1

1

ext/int

e

address [13..0]

aaaaaaaaaaaaaa

 10

The timing of synchronous commands is governed by internally generated inhibit signals.

Each BGO channel has a separate inhibit signal associated with it. The inhibit signal is a pulse train

with the period of one orbit, with fully programmable pulse width and delay with respect to the orbit.

The transmission of a synchronous command commences at the end of the inhibit pulse. Thus, the

width of the inhibit pulse must be chosen properly, such that any ongoing command gets transmitted

during that interval of time. The empirically determined value of the minimum inhibit width for the

TTCvi is 51BCs. This allows for the full transmission of a long command over this interval of time.

Since the synchronous commands must have precise timing, they have the highest priority.

Moreover, channels associated with signals BGO0 through BGO0 have a descending priority. The

full list of commands ordered by priority, from highest to lowest, is the following:

1) Synchronous commands BGO0 to BGO3

2) Asynchronous commands BGO0 to BGO3

3) Trigger type commands

4) VME-mapped commands

2.3.4. TTC Encoder/Transmitter (TTCex)

The main purpose of the TTCex is the conversion the electrical A and B channels to the optical

TTC signal. More details can be found in the TTCex user manual [9].

Lasers for the TTCex transmitters operate at the wavelength 1280-1330nm [9]. There are 10

optical outputs available on the front panel, each providing the optical power of about 0dBm. Standard

ST-type optical connectors are used.

2.4. VMEbus

VMEbus has been the technology of choice in CERN for many years. It originated in 1982

and it provides an open mechanical, electrical and protocol standard [10].

VMEbus crates provide a common backplane and include a mounted power supply. Typical

VME crate consists of 21 slots for inserting the modules, with the SBC installed in the first slot as a

master and arbiter on the bus. In particular, the Concurrent Technologies VP-E24 single-board

computer [11] has been used, which has an on-board Tundra Universe II interface chip that acts as a

bridge from the Intel’s PCI to the VMEbus on the backplane. VME boards come in three different

standards based on their size and the connectors they utilize: 3U, 6U and 9U (1U = 1.75 inches). All

of the previously mentioned TTC modules are 6U VME64x boards, as is the ALTI module.

All VME lines use TTL levels with a voltage swing of 0V to 5V. Data and address lines are

active high, while the protocol lines (data and address strobes, data acknowledge, etc.) are active low.

VMEbus is big-endian, so it stores the most significant byte a 32-bit word at the lowest address. It

supports both single cycles and block transfers. Legacy TTC modules use 24-bit addressing and the

ALTI uses 32-bit addressing, while they all use 32-bit data on the VMEbus for communication.

By the VME64x standard, each VME slave has an address space of 512kB reserved

Configuration ROM (CR) and Control and Status Register (CSR) sections. This is called CR/CSR

space, and is used in 24-bit addressing mode. Included in this section are identification registers for

identifying the board and the manufacturer. However, the most important registers in the CR/CSR

space are the BAR and the ADER0. The BAR is a read-only register containing the slot number of

the given module. The ADER0 is a read/write register used to dynamically change the VME base

address of the module. By default, ADER0 is preloaded upon startup with a value depending on the

BAR. This is called geographical addressing.

 11

3. ALTI HARDWARE SPECIFICATION

In this chapter, the hardware specification of the ALTI module will be briefly described. A

more detailed description of the ALTI hardware is given in the ALTI specification document [12].

First, the interfaces available on the front panel of the ALTI module are described in Section 3.1.

Then, the module architecture will be presented in Section 3.2, with each relevant part of the hardware

described in a separate subsection.

3.1. Interfaces

The front panel view of the ALTI module is shown on Figure 3.1.1.

On the ALTI front panel, there are four 50-pin 3M MDR female connectors for LVDS-LINK

cables. Two of them, called CTP_IN and ALTI_IN, are used as inputs. Corresponding output ports

are called CTP_OUT and ALTI_OUT. These are analogous to the LTPI parallel cable connectors.

The connectors are fully compatible with the ones used in LTP and LTPI modules, with the pin-out

shown in Table 3.1.1. Also, the same LVDS-LINK cables with point-to-point signalling are used

interchangeably between the three modules. For the LVDS receivers, a 100Ω termination is used.

Several pairs of coaxial LEMO connectors are available for local injection and monitoring of

the TTC signals. Because of the limited space on a front panel of a 2-slot VME module, not all the

TTC signals have an independent input and output LEMO connector. The list of available LEMO

connectors is shown in Table 3.1.2. Since the BGO0 and BGO1 connectors are not available,

multiplexing with the inputs for TTR2 and TTR3 and outputs for BGO2 and BGO3 has been

introduced. This will be further discussed in the Subsection 3.2.3. All input and output connectors are

compatible with NIM logic levels. In addition, the input connector for the BUSY signal can be

programmed to accept both NIM and TTL logic levels. NIM inputs are terminated with 50Ω resistors

internally and the outputs should be terminated with 50Ω resistors to obtain the necessary logic levels

at the destination.

The cages for the Small Form-factor Pluggable (SFP) transceiver and the dual transmitters are

also available on the front panel. Five of those are for the dual transmitters, while the sixth cage is for

a transceiver. This gives a total of 11 optical outputs and a single optical input per module.

The calibration request input is in the form of an RJ45 connector, compatible with a standard

Ethernet UTP cable differential pair wiring. Hence a standard Ethernet cable can be used as an input.

In order to drive the calibration request input from an LTP, a custom patch cable has been made, with

a ribbon connector on one side, and a standard RJ45 connector on the other.

Some LED indicators for monitoring and diagnostics purposes are also available on the front

panel. These include the LEDs which indicate: power supply status, VME access, detection of L1A,

ORB, BUSY and CALREQ, PLL lock, optical link statuses. Bi-colour red/green LEDs are used for

some of these to distinguish between correct and faulty functioning.

 12

Figure 3.1.1. The ALTI module, front panel view [12].

 13

Table 3.1.1. LVDS-LINK connector pin-out [5].

SIGNAL PAIR # PIN # LEFT PIN # RIGHT

TTR1 25 50 25

TTR2 24 49 24

TTR3 23 48 23

TTYP0 22 47 22

TTYP1 21 46 21

TTYP2 20 45 20

TTYP3 19 44 19

TTYP4 18 43 18

TTYP5 17 42 17

TTYP6 16 41 16

TTYP7 15 40 15

BGO0 14 39 14

BGO1 13 38 13

BGO2 12 37 12

BGO3 11 36 11

CALREQ0 10 35 10

CALREQ1 9 34 9

CALREQ2 8 33 8

BUSY 7 32 7

GND 6 31 6

L1A 5 30 5

ORB 4 29 4

GND 3 28 3

BC 2 27 2

GND 1 26 1

Table 3.1.2. Front panel coaxial LEMO connectors.

NAME DIRECTION LOGIC LEVEL

BC IN Input NIM

BC OUT Output NIM

ORB IN Input NIM

ORB OUT Output NIM

L1A IN Input NIM

L1A OUT Output NIM

TTR1 IN Input NIM

TTR1 OUT Output NIM

TTR2 IN Input NIM

TTR2 OUT Output NIM

TTR3 IN Input NIM

TTR3 OUT Output NIM

BGO2 IN Input NIM

BGO2 OUT Output NIM

BGO3 IN Input NIM

BGO3 OUT Output NIM

BUSY IN Input NIM/TTL

BUSY OUT Output NIM

3.2. Architecture

The ALTI module is a 6U VME64x module that takes two slots in a VME crate. It consists of

two PCBs: a motherboard and a mezzanine. Project documents for the motherboard and the

mezzanine, including the schematics, the PCB layout and mechanical descriptions are publically

available on the CERN Engineering and Equipment Data Management System (EDMS) [13] [14].

All of the logic is located on the motherboard. This includes the Xilinx Artix-7 XCA200T

FPGA [15], the power supply network, the I2C network, RAM memories and other discrete logic and

integrated circuits. The motherboard houses the VMEbus connectors, two LVDS-LINK input

connectors, six SFP modules and the calibration request RJ45 connector.

The mezzanine plugs into the motherboard via a Samtec high-speed connector [16] carrying

180 signals, three power supplies and a ground. It houses all of the coaxial input and output connectors

as well as the two LVDS-LINK output connectors.

A fully assembled ALTI prototype module is shown on Figure 3.2.1, while the functional

block diagram of the ALTI hardware is shown on Figure 3.2.2.

 14

Figure 3.2.1. Fully-assembled prototype ALTI module.

Figure 3.2.2. ALTI functional block diagram [12].

 15

3.2.1. Cross-point switches

All forward-going TTC signals, 18 of them in total (see Table 2.2.1), are routed through the

Texas Instruments DS10CP154A 4x4 LVDS cross-point switches [17]. This device has an I2C

interface and allows independent routing of all four inputs to any of the four outputs, with high speed

and low channel-to-channel skew.

Inputs of the cross-point switch are sourcing the corresponding TTC signal from: CTP input

LVDS-LINK connector, ALTI input LVDS-LINK connector, LEMO input connector and the FPGA

output. For convenience, we call these sources CTP_IN, ALTI_IN, LEMO_IN and FROM_FPGA,

respectively.

Outputs of the cross-point switch are driving the corresponding TTC signal on: CTP output

LVDS-LINK connector, ALTI output LVDS-LINK connector, LEMO output connector and the

FPGA input. For convenience, we call these destinations CTP_OUT, ALTI_OUT, LEMO_OUT and

TO_FPGA, respectively.

The routing of the Level-1 Accept signal through the cross-point switch is shown on Figure

3.2.3. This generic routing applies to all of the TTC signals, except the following: BC, TTR2, TTR3,

BGO2 and BGO3. The slight exceptions to this generic routing are also the TTYP[7..0] cross-point

switches, which do not have the front panel LEMO input and output connectors.

As the signal which is clocking the whole module, the BC has a special routing path. Because

of the multiplexing on the LEMO coaxial inputs and outputs for TTRs and BGOs, these routings are

special, too. These non-generic routings the TTC signals will be described in the following sections.

Figure 3.2.3. Example of the generic routing of a TTC signal through the cross-point switch: Level-1 Accept.

CTP_IN

ALTI_IN

LEMO_IN

4x4
cross-point

switch
L1A

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

CTP_OUT

ALTI_OUT

LEMO_OUT

FPGA

L1A_FROM_SWITCH

L1A_TO_SWITCH

L1A

L1A

L1A

L1A

L1A

L1A

 16

3.2.2. Clock distribution

The ALTI module has the following clock signal distribution, as shown on the diagram on

Figure 3.2.4.

The cross-point switch paths to and from the FPGA differ with respect to the generic TTC

signal routing. Before going to the FPGA, the clock output coming from the switch is also forwarded

to a 4-channel jitter attenuator and clock multiplier circuit Silicon Labs SI5344 [18]. The role of this

circuit is to provide a clean clock to the FPGA, with decreased jitter. From here on, we will call this

circuit the "jitter cleaner". The jitter cleaner has an I2C interface and is fully programmable. It features

the holdover mode, which is automatically activated once the selected input clock becomes invalid.

In holdover mode, the jitter cleaner continues providing the output clock based on the sampled input

clock prior to the failure. This minimizes the disturbance of the phase and frequency of the TTC

clock, but can also be dangerous because of long-term drifts. It is therefore advised to acknowledge

the jitter cleaner interrupt (asserted upon entering the holdover mode) by switching to a stable clock

source.

In standalone tests when ALTI acts as a master, the clock can be provided to the FPGA logic

with an on-board fixed 40.079MHz fixed-frequency crystal oscillator (FXO). With a help of a 2/1

multiplexer, it is also possible to use the clean clock coming from the FPGA as an input to the cross-

point switch.

Figure 3.2.4. ALTI clock distribution diagram.

4x4
cross-point

switch
BC

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

MUX
2/1

Si5344
jitter

cleaner

40.079MHz FXO

IN0

IN1

OUT

SEL

FPGA
IN0

IN3

IN2

IN1

OUT0

OUT1

OUT2

OUT3

CLEAN_CLK0

CLEAN_CLK1

CLEAN_CLK2

CLK_FROM_SWITCH

CLK_TO_SWITCH FPGA_FXO_MUX_SEL

CTP_IN

ALTI_IN

LEMO_IN

BC

BC

BC

BC

BC

BC

CTP_OUT

ALTI_OUT

LEMO_OUT

CLK_FROM_FXO

 17

3.2.3. TTC signals multiplexing

The lack of space on the ALTI front panel has resulted in the fact that there are no dedicated

LEMO inputs and outputs for the BGO0 and BGO1 signals. In order to still be able to inject and

monitor these signals using the front panel connector, a multiplexing has been introduced in the

following way.

Front panel LEMO input for the TTR2 is fanned out to two cross-point switches: one

corresponding to the TTR2 itself, and the other corresponding to the BGO0. The same routing applies

to TTR3 LEMO input and TTR3/BGO1 cross-point switches.

Outputs of the BGO0 and BGO2 cross-point switches corresponding to a LEMO_OUT are

connected to the inputs a 2/1 multiplexer. Selection of the desired signal on the LEMO output is done

with a single programmable pin from the FPGA. The same routing applies to the cross-point LEMO

outputs of BGO1 and BGO3.

The multiplexing of BGO0, BGO2 and TTR2 is shown on the diagram on Figure 3.2.5. The

multiplexing of BGO1, BGO3 and TTR3 is shown on the diagram on Figure 3.2.6.

Figure 3.2.5. BGO0/TTR2 multiplexing on the input and BGO0/BGO2 multiplexing on the output.

CTP_IN

LEMO_IN

4x4
cross-point

switch
BGO0

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

MUX
2/1

IN0

IN1

OUT

4x4
cross-point

switch
BGO2

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

LEMO_IN

ALTI_IN

BGO0

BGO2

BGO0

BGO2

FPGA FP_BGO_SEL_20 LEMO_OUT

ALTI_OUT

CTP_OUT

FPGA_BGO0_OUT

FPGA_BGO2_OUT

BGO0_FROM_SWITCH

BGO2_FROM_SWITCH

BGO0

BGO2

BGO0

BGO2

SEL

TTR2

BGO2

BGO2

 18

Figure 3.2.6. BGO1/TTR3 multiplexing on the input and BGO1/BGO3 multiplexing on the output.

3.2.4. Cable equalizers

High-frequency transmission losses can occur when long LVDS-LINK cables are used. This

is common in the experiment, where cables up to 40 meters long are used. In order to compensate for

these losses, two cable equalizers are used in the ALTI, for both cable inputs (CTP_IN and ALTI_IN).

The circuit that is used for equalization in the ALTI is the Analog Devices AD8123 triple

differential receiver with adjustable line equalization [19]. A total of six of these devices are necessary

to equalize all 18 forward-going TTC signals coming from a single cable connector. A total of four

different analog inputs are used to adjust the equalization: V_PEAK, V_POLE, V_OFFSET and

V_GAIN. Two Analog Devices AD5305 8-bit D/A converters [20] are controlled via I2C and used

to drive these equalizer inputs. Offset DC voltage on the output is controlled with V_OFFSET. The

other three inputs are used to adjust the cable frequency response of the equalizer. Single-ended

outputs of the equalizers are converted back to differential LVDS signals using Analog Devices

ADCMP604 comparators [21].

3.2.5. Memories

The ALTI uses Cypress CY7C10612G 1Mx16 SRAM chips [22]. Six of these chips are

organized in three memory banks which are accessed as 1Mx32 memories through the VME interface.

The first memory can be used either as a pattern generation memory or a snapshot memory. The other

two memories are used for storing the TTC triggers and commands received over the optical receiver

(spy memory).

CTP_IN

LEMO_IN

4x4
cross-point

switch
BGO1

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

MUX
2/1

IN0

IN1

OUT

4x4
cross-point

switch
BGO3

IN0

IN1

IN2

IN3

OUT0

OUT1

OUT2

OUT3

LEMO_IN

ALTI_IN

BGO1

BGO3

BGO1

BGO3

FPGA FP_BGO_SEL_31 LEMO_OUT

ALTI_OUT

CTP_OUT

FPGA_BGO1_OUT

FPGA_BGO3_OUT

BGO1_FROM_SWITCH

BGO3_FROM_SWITCH

BGO1

BGO3

BGO1

BGO3

SEL

TTR3

BGO3

BGO3

 19

3.2.6. Optical transmitter and receiver modules

Five dual transmitter cages are populated with W-Optics SAA-xAF1-111 SFP modules [23],

while the Finisar FTLF1323P1xTL SFP transceiver module [24] is used. Both SFP modules use

single-mode fibre transmission and reception at 1310nm wavelength. Input and output connectors are

of type LC, so LC-ST single-mode patch cords are necessary to connect with the optical splitters

currently used in the experiment. The optical power that these SFP modules provide is smaller than

the one that the TTCex lasers provide: -9dBm to 0dBm for the dual transmitter, and -5dBm to 0dBm

for the transceiver. Whether or not this optical power is sufficient is something that needs to be

checked in the experiment.

3.2.7. Clock and data recovery from the TTC stream

The Analog Devices ADN2814 [25] is used for clock and data recovery from the signal

received TTC stream. It extracts the clock (carrier, ~160MHz) and the data (multiplexed A and B

channels) and provides them to the FPGA for further decoding.

3.2.8. Power supply

From the VME64x backplane, the ALTI module receives the following supply voltages:

+3.3V, +5V, +12V and -12V. Four Maxim Integrated MAXM17515 DC/DC converters [26] are used

to generate four more supply voltages needed to properly power the FPGA: +1.0V, +1.8V, +2.5V and

+3.3V. An additional Traco Power THN 15-1211 DC/DC converter [27] is used to generate a -5V

supply voltage, necessary for the NIM-level inputs and output drivers.

3.2.9. Hardware monitoring

All of the supply voltages can be monitored by a Linear Technology LTC2991 voltage monitor

[28]. This sensor allows the monitoring of eight input voltages, plus the supply voltage of the chip

itself. It also measures the internal temperature and has an I2C interface. Another temperature sensor,

Maxim Integrated MAX1617A [29], is used to measure both local and remote diode temperature.

Remote diode port is connected to the XADC block of the FPGA in order to measure the temperature

of the FPGA dye.

3.2.10. I2C network

Numerous devices on the ALTI board mentioned so far have an I2C interface. An I2C switch

device Texas Instruments TCA9546A [30] is used to split the devices into four bus sections, in order

to avoid conflicting I2C addresses. For example, the cross-point switch devices have input pins for

two LSBs of the I2C address. This allows for four different devices addressable on the same I2C bus

section. Without the bus switch, it would be impossible to put all 18 cross-point switches on the same

I2C bus.

The full list of I2C-addressable slave devices and their I2C sections and addresses is shown in

Table 3.2.1. The I2C master which reads from and writes to these slave devices is implemented in the

FPGA firmware.

 20

Table 3.2.1. The list of slave devices on the ALTI I2C network.

BUS SECTION # I2C SLAVE ADDRESS DEVICE

N/A 111 0000 = 0x70 I2C bus switch (TI TCA9546A)

0

000 1100 = 0x0c DAC for CTP_IN equalizer voltages (AD 5305)

000 1101 = 0x0d DAC for ALTI_IN equalizer voltages (AD 5305)

110 1000 = 0x68 Jitter cleaner (SI 5344)

1

101 1000 = 0x58 BC cross-point switch (TI DS10CP154A)

101 01XX = 0x54..0x57 TTYP[4..7] cross-point switches (4 x TI DS10CP154A)

101 00XX = 0x50..0x53 TTYP[0..3] cross-point switches (4 x TI DS10CP154A)

2

101 00XX = 0x50..0x53 BGO[0..3] cross-point switches (4 x TI DS10CP154A)

101 1000 = 0x58 ORB cross-point switch (TI DS10CP154A)

101 01XX = 0x54..0x57 L1A and TTR[1..3] cross-point switches (4 x TI DS10CP154A)

3

100 0000 = 0x40 Clock and data recovery circuit (ADN2814)

101 000X = 0x50..0x51 SFP transceiver, extended address space (Finisar FTLF1323P1xTL)

001 1000 = 0x18 Local and remote temperature sensor (MAX1617A)

100 1000 = 0x48 Voltage and temperature monitor (LTC2991)

 21

4. ALTI FUNCTIONALITY AND FIRMWARE

This chapter briefly describes the ALTI functionalities implemented in the FPGA firmware.

The emphasis is put on describing the configuration and control of various firmware blocks, which is

then used in the low-level ALTI software. A more detailed description of the ALTI firmware

implementation is given in the ALTI specification document [12].

The ALTI FPGA firmware is organized as shown on the high-level functional block diagram

on Figure 4.1. Some of the blocks shown will be briefly discussed in the following sections. For a

more detailed description of the other blocks is given in the ALTI specification document [12].

Each of the firmware blocks has a number of VME-mapped control and status registers. Some

of them are also associated with on-chip FIFO buffers and external RAM memories, which are also

VME-mapped. The full ALTI VME address space of 16MB is divided in blocks, as shown in Table

4.1.

Figure 4.1. High-level functional block diagram of the ALTI firmware.

 22

Table 4.1. ALTI VMEbus address space map.

ADDRESS RANGE DESCRIPTION

0x00000000

..

0x0000FFFF

Registers, 64kB = 16k words

0x00010000

..

0x000107FF

BGO0 FIFO, 2kB = 512 words

0x00020000

..

0x000207FF

BGO1 FIFO, 2kB = 512 words

0x00030000

..

0x000307FF

BGO2 FIFO, 2kB = 512 words

0x00040000

..

0x000407FF

BGO3 FIFO, 2kB = 512 words

0x00050000

..

0x000507FF

TTYP FIFO, 2kB = 512 words

0x00080000

..

0x00080FFF

QuickBoot FIFO, 4kB = 1k words

0x00400000

..

0x007FFFFF

TTC spy "command" RAM memory, 4MB = 1M words

0x00800000

..

0x00BFFFFF

TTC spy "timestamp" RAM memory, 4MB = 1M words

0x00C00000

..

0x00FFFFFF

Pattern/snapshot RAM memory, 4MB = 1M words

As written before, the ALTI preserves the functionalities of the TTC legacy modules: LTPI,

LTP, TTCvi and TTCex. However, it is important to emphasize here what novelties and

improvements the ALTI provides in terms of functionalities.

The biggest improvements are made in the monitoring capabilities. Phases of the input signals

can be monitored and it is possible to take snapshots of incoming TTC signals and store them in the

memory. Another new monitoring capability is the optical TTC stream analyzer, which allows to

decode and store the triggers and commands that are being sent on the TTC stream.

Improvements have also been made in the pattern generation functionality. As will be

explained, the pattern compression allows more efficient memory management and provides longer

effective patterns than the ones provided by the LTP.

It is also envisioned to implement a "miniCTP" block with some CTP-like functionalities like:

simple and complex deadtime generation for L1A throttling, random triggers with pseudo-random

prescaling, etc.

 23

4.1. Clocking

A Mixed-Mode Clock Manager (MMCM) IP provided by Xilinx is used to generate all clocks

required in the FPGA, including: ~160MHz (four times the BC frequency) clock needed for the TTC

encoding and 90 degree phase-shifted 40.079MHz clock needed for the input synchronization. The

core has two clock inputs and the user can select which one is used, i.e. multiplied and phase-lock

looped:

1) 40.079MHz on-board crystal quartz oscillator ("PRIMARY_FXO")

2) BC input coming from the cross-point switch directly, or from the jitter cleaner

("SECONDARY_EXT")

Until it was decided whether to use the jitter cleaner or not, two separate versions of the

firmware were kept, differing only in what clock was connected to the "SECONDARY_EXT" input.

In addition to the generator functionality, the MMCM also provides monitoring for four user

clocks. With three status bits for each input, it can be checked if the input clocks are present, if any

glitches were caught or if the frequency is outside some specified range. Four clocks that are

monitored are coming from the four cross-point BC sources: CTP_IN, ALTI_IN, LEMO_IN and

TO_FPGA.

Another functionality of the MMCM is the fine-tuned phase shift of the output clock. One step

is about 15ps for a VCO frequency of 40.079MHz used in this particular case. This feature is

extremely useful for the front-end electronics for shifting the TTC stream.

Most of the internal FPGA logic is running on the 40.079MHz clock provided by the MMCM.

However, some parts of the logic like the MMCM control register and the I2C master core are always

running on the FXO. In this way, it is always possible to recover from the unexpected losses of the

external TTC clocks. In such cases, the user can change the cross-point switch settings and reset the

MMCM PLL to change the external clock being used.

4.2. Input signal synchronization

The input TTC signals arriving at the FPGA are sampled by four 90 degree phase-shifted

clocks. These four clocks (shifted 0, 90, 180 and 270 degrees from the main clock) create four bins

that the input signal edges can fall into. For each of the input signals, the positive and negative edges

are counted in this way an accumulated in 3-bit histograms. These histograms allow one to monitor

the phase of the input signals.

When the main clock and the input signal are synchronized, all the edges fall into a single

histogram bin, or two bins at most (when the input signal edges are basically aligned with the clock

edges). Otherwise, the clock and the signals are not synchronized, or there is a hardware problem

with a particular signal line. Based on the histogram, the user can select which of the four phases

should be used to latch the input signal safely.

4.3. Pattern generation

The pattern memory has a capacity of 4MB or 1M 32-bit words, whose format is shown on

Figure 4.3.1. Least significant bits of each entry represent a pattern of TTC signals to be generated.

The 11 most significant bits are reserved for the multipicity, which represents the duration of the

given pattern in BCs, up to a maximum of 2048 BCs per entry. This compression mechanism allows

for longer patterns to be stored in the memory, compared to the LTP which stores a separate entry for

each BC.

 24

Figure 4.3.1. Pattern generation memory format.

Each TTC signal can be independently enabled and disabled from the pattern. Two registers

control the addresses of the start and stop entries of the pattern to be generated. The pattern can be

generated in two different modes: one-shot and repeated. In case of a repeated generation, the address

pointer returns the start address after reaching the stop address, so the pattern is generated in a loop.

4.4. Snapshot taking

The snapshot memory has a capacity of 4MB or 1M 32-bit words and is shared with the pattern

generation memory. The format is shown on Figure 4.4.1 and is basically identical to the pattern

format. The only differece is that the 11 most significant bits are here interpreted as a timestamp.

Whenever there is a change in any of the incoming 21 TTC signals (all except the BC), one

such word gets written to the snapshot memory. Each entry has an 11-bit timesamp associated to it.

Timestamps are relative, i.e. represent the number of BCs elapsed since the last change. If no changes

occur in 2k BCs, an overflow entry (with all bits equal to "1" in the timestamp) is stored in the

snapshot memory.

Figure 4.4.1. Snapshot memory format.

As for the control, the taking of a snapshot can be enabled and disabled. When it is enabled,

the snapshot memory starts being filled entries, and the current address pointer is kept in a separate

register. There is also a mask register for the snapshot memory, in which each TTC signal can be

masked. Masking the TTC signal means that the changes of that signal are not stored in the snapshot

memory.

4.5. TTC encoder

The generation and encoding of TTC B-channel commands in the ALTI module has been

implemented in the same way as in the TTCvi, which was discussed in Chapter 2. Also, the format

of the B-channel commands is the same and has already been discussed. The same is true for the

priority scheme of B-channel commands.

There are five different modes of sending commands from each of the BGO channel FIFOs:

1) "SYNCHRONOUS_SINGLE_BGO_SIGNAL" - send once at the end of the inhibit

if the corresponding BGO signal occurred

2) "SYNCHRONOUS_REPETITIVE" - send once each orbit at the end of the inhibit,

regardless of the corresponding BGO signal

3) "ASYNCHRONOUS_BGO_SIGNAL" - send when the BGO signal is received

4) "ASYNCHRONOUS_VME_ON_TRIGGER" - send when the corresponding VME

register is written

5) "ASYNCHRONOUS_VME_WHEN_NOT_EMPTY" - send whenever the

corresponding FIFO is not empty

BC_Multiplicity ORB BUSY L1A

31 21 20 19 0

TTR3..1

3 1

BGO3..0

47

TTYP7..0CALREQ2..0

8151618

BC_TimeStamp ORB BUSY L1A

31 21 20 19 0

TTR3..1

3 1

BGO3..0

47

TTYP7..0CALREQ2..0

8151618

 25

4.6. TTC decoder

The TTC decoder memory consists of two 1Mx32 memory blocks, which can logically be

viewed as a single 1Mx64 block. We call these blocks "command" and "timestamp", because of their

content. The format of the decoder memory is shown on Figure 4.6.1. Whenever a command or a

trigger gets decoded from the TTC stream, a single 64-bit entry with such format gets written into the

TTC decoder memory.

Figure 4.6.1. TTC spy memory format: "command" and "timestamp".

The control of the TTC decoder is very similar to the control of the snapshot memory. It is

possible to enable and disable the decoding, and an address pointer is kept to indicate the range of

valid entries that were written.

4.7. I2C master core

A simple, wishbone-compatible I2C master core available on OpenCores [31] has been used

in order to communicate with the devices on the ALTI I2C network.

4.8. 1-Wire master core

A 1-Wire master core provided by Dallas Semiconductor (acquired by Maxim Integrated) [32]

has been used to implement the 1-Wire protocol. This protocol is used to communicate with the 1-

Wire chip, which gives each ALTI module a unique identifier.

4.9. Busy and calibration request routing

Unlike the forward-going TTC signals, BUSY and CALREQ[2..0] are not routed through the

cross-point switches. That is why the routing logic for these signals was done in the firmware.

Functional block diagram of this routing logic for the BUSY signal is shown on Figure 4.9.1.

The local BUSY signal, used in the ALTI internal logic, is a logical OR of five possible BUSY

input sources. All of the busy sources can be independently masked. This flexible masking allows the

ALTI to logically add together BUSY inputs from multiple sources, which is used when ALTI plays

a role of a master in two parallel TTC daisy chains. Sources for the BUSY signal are the following:

1) BUSY input from the CTP_OUT connector

2) BUSY input from the ALTI_OUT connector

3) BUSY input from the LEMO_IN connector

4) BUSY from the pattern generator

5) BUSY from the internal register

Long/Short Addr SubAddr Data

31 30

E/I

17 781516 0

LinkStatus L1A DoubleBitError BC_Cnt (absolute)

31 30

SingleBitError

29 2728 0

 26

The local BUSY signal is routed to the BUSY LEMO output for monitoring purposes. For

sending the BUSY signal upstream to the CTP_IN and ALTI_IN LVDS-LINK connectors, one of the

four sources can be chosen with a VME-controllable multiplexor:

1) BUSY input from the CTP_OUT connector

2) BUSY input from the ALTI_OUT connector

3) Local BUSY signal

4) Inactive BUSY signal

Figure 4.9.1. Functional block diagram of the BUSY signal routing in the FPGA logic.

The functional block diagram of the routing logic for the CALREQ[2..0] signals is shown on

Figure 4.9.2. Each of the three CALREQ signals can be routed independently from the other two.

Local CALREQ signal, used in the ALTI internal logic, can be sourced from any of the six

possible CALREQ input sources. Compared to the BUSY signal sources, there is one additional

source because the TTR[1..3] LEMO inputs are multiplexed with the CALREQ[0..2] in order to allow

more input flexibility. Thus, the sources for the CALREQ[2..0] signals are the following:

1) CALREQ input from the CTP_OUT connector

2) CALREQ input from the ALTI_OUT connector

3) CALREQ input from the RJ45 connector

4) CALREQ input from the corresponding TTR LEMO_IN connector

5) CALREQ from the pattern generator

6) CALREQ from the internal register

CTRL (VME)

DATA (VME)

PATTERN

CTP_OUT

ALTI_OUT

LEMO_IN

ALTI_IN

LEMO_OUT

internal
logic

CTP_IN

CTRL (VME)

CTRL (VME)

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

 27

For sending the CALREQ signal upstream to the CTP_IN and ALTI_IN LVDS-LINK

connectors, one of the four sources can be chosen with a VME-controllable multiplexor:

1) CALREQ input from the CTP_OUT connector

2) CALREQ input from the ALTI_OUT connector

3) Local CALREQ signal

4) Inactive CALREQ signal

Figure 4.9.2. Functional block diagram of the CALREQ signal routing in the FPGA logic.

CTRL (VME)

DATA (VME)

CTP_OUT

ALTI_OUT

LEMO_IN

ALTI_IN

internal
logic

CTP_IN

CTRL (VME)

CTRL (VME)

RJ45

CTRL (VME)

PATTERN

STATUS (VME)

CALREQ

CALREQ

CALREQ

TTR

CALREQ

CALREQ

 28

5. ALTI SOFTWARE

This chapter is about the ALTI software, which is an essential part of the ALTI development

and is the one that the author has contributed to most. Low-level software that has been developed

for the ALTI modules makes the board "alive" by allowing an easy access to all of the hardware and

firmware that is available. Without previously developing this software, it would be impossible to

test the module and measure its performances in an efficient and reproducible way.

First, in Section 5.1, the ATLAS Trigger and Data Acquisition (TDAQ) infrastructure on

which the ALTI software relies on is briefly described. Then, the low-level API for the ALTI is

discussed in Section 5.2. In Section 5.3, the menu program which exercises the low-level API is

discussed. This is followed by the discussion of the ALTI configuration object in Section 5.4. Test

programs are independently discussed in subsections of Section 5.5.

5.1. ATLAS TDAQ

The ATLAS TDAQ system provides the software infrastructure for Level-1 Trigger, Data

Acquisition (DAQ) and HLT systems. Software packages for TDAQ are maintained on a private

GitLab server hosted in CERN. The TDAQ team provides the necessary build tools, which are based

on CMake. They also take care of tagging the software packages and making sure the software

packages with dependencies are compatible in every new TDAQ release.

Software packages for the Level-1 Trigger and the TTC modules are also a part of ATLAS

TDAQ. These packages include the low-level software for control, configuration and monitoring of

the modules. High-level run control application software that is built on top of the low-level APIs is

also included in the ATLAS TDAQ.

VME-addressable TTC legacy modules (LTPI, LTP and TTCvi) and the other modules all

have a similar low-level software organization. They provide an API for accessing all the

functionalities of a given module in the form of public methods of the module base class. All of these

methods are then exercised in a menu program, which guides the user to interactively access the

module. Besides the menu program, there are usually various test programs accompanying each

module. The ALTI module is no exception and its low-level software is organized in a similar way.

There are several software packages that the ALTI package depends on. Some of them are a

part of the TDAQ ReadOut Driver Crate DAQ (RCD) and some of them are specific to the Level-1

Central Trigger (L1CT):

1) ATLAS TDAQ RCD

 vme_rcc: VMEbus driver

 RCDVme: wrapper for the vme_rcc driver

 RCDBitString: manipulation of bit arrays of arbitrary size

 RCDMenu: package for interactive menus that support nesting

 RCDUtilities: common utilities like print out and error-handling

2) ATLAS L1CT

 L1CTHardwareCompiler: translation of an .xml description of a module to

low-level VME read/write methods

 I2C: driver for the I2C master core

 DS1WM: driver for the 1-Wire master core

 29

5.2. Low-level API

Low-level software has been developed in order to provide the access to the ALTI module and

all of the functionalities of hardware and firmware. It provides programmable support for control,

configuration and monitoring of the ALTI module in terms of its registers, memories, and FIFO

buffers. The software was developed for the single-board computer of the ATLAS readout driver

crate, which uses a library and a driver to communicate with the ALTI module using the VMEbus.

The first thing that was done on the ALTI software is the description of the module with an

xml file called alti.xml. This file gives a basic description of the module in terms of specific bit-

assignments and addresses of various registers, FIFOs and RAM memories within the ALTI module.

In this sense, the alti.xml closely resembles the firmware. The file format allows for dividing the

module address space into blocks with logically grouped functionalities. A glimpse of the alti.xml

file is given on figures 5.2.1 and 5.2.2. These figures show how the snapshot memory bitstring and

the I2C core block were defined, respectively.

A software package called the L1CT hardware compiler then generates low-level VME

read/write functions, such that the bit fields are addressed by their name and the specific bit-

assignments are abstracted. This allows for better maintainability of the code, because this is the only

place where changes need to be made if the register addresses or their bit-assignments are changed

as the firmware development progresses. As a result of running the L1CT hardware compiler, a class

called ALTI is automatically generated, providing the low-level VME read/write functions of the bit

fields.

Built on top of that is the AltiModule base class, which provides more user-friendly API for

control, configuration and monitoring of the ALTI module. This class incorporates an object of low-

level class ALTI as its private member and uses its automatically generated public methods. However,

AltiModule methods are not just a wrapper around the ALTI methods, since the API also includes

methods that must perform a certain sequence of operations in order to exercise some functionality

implemented in the firmware. These sequences or sets of operations are put together for convenience.

The API of the base class AltiModule is also the place where the meaning of variables and functions

are changed from a hardware point of view to a user point of view.

Figure 5.2.1. A section of the alti.xml file containing a bitstring description for the snapshot memory entry.

 30

Figure 5.2.2. A section of the alti.xml file containing the I2C block.

The API is logically grouped into blocks of the module functionalities. Each block is

distinguished by a 3-letter abbreviation, which each also serve as prefixes for the names of method

names. Base class methods are thus grouped in the following blocks:

 CSR: VME64x CR/CSR space

 CFG: AltiConfiguration object, read and write, default setup and check of setup

 CLK: PLL and jitter cleaner configuration

 SIG: signal settings - configuration of cross-point switches, equalizers and input

synchronization/shaping

 BSY: selection and routing of BUSY signal

 CRQ: selection and routing of Calibration Request signals

 PAT: pattern generation memory

 SNP: snapshot memory

 ENC: TTC encoder control

 DEC: TTC decoder control

 CNT: ALTI counters - BC, ORB, L1A, Test Triggers and BGOs

 MON: hardware monitoring - voltages/temperatures readout

 I2C: access each individual device in the I2C network

To give an example of the API methods, the list of methods associated with the functionality

blocks "SIG", "PAT" and "SNP" are shown on Figure 5.2.3, Figure 5.2.4 and Figure 5.2.5,

respectively.

 31

Figure 5.2.3. The list of low-level API methods of block "SIG".

Figure 5.2.4. The list of low-level API methods of block "PAT".

Figure 5.2.5. The list of low-level API methods of block "SNP".

 32

5.3. Menu program

This is an interactive program, which allows the user to access the module and configure it at

will. On Figure 5.3.1, the main menu of the menuAltiModule program is shown. With the use of the

menuAltiModule program, the user can execute all of the methods from the base class API, in order

to set the module up to a desired state. In this way, low-level API and the menu program proved quite

useful for hardware and firmware evaluation. Functionalities of the module are logically grouped into

the sub-menus of the menu program, in the same way as the API is partitioned.

Figure 5.3.1. Main menu of the ALTI menu program.

5.4. Configuration object

The ALTI module has many registers and memories. In fact, its current address space takes

up 16MB. Thus, the number of parameters that define a state of the module is also quite large. It was

therefore decided to design a convenient way of configuring the whole module at once, without

having to manually set each parameter using the menu program.

 33

A class for the configuration of the ALTI module, called AltiConfiguration, allows the user to

fully configure the ALTI module to a known state. The AltiConfiguration object is associated with a

specific file format which contains a list of key/value pairs for all the parameters, and provides a

complete configuration of the ALTI module. Both configuring the module and reading its current

state is possible using this configuration class. Input and output file formats are the same, so the

configuration of some module with a file that was read back as the state of some other module is also

possible. The list of parameters in the configuration file is partitioned into blocks of functionalities,

in the same way as the API. Each block can be independently included and excluded from being

configured using its "CONFIG" parameter in the configuration file. Thus, a partial configuration of

the module is also possible. There is a dedicated test program which allows the user to write or read

the configuration from the command line, which will be discussed in Subsection 5.5.2. A glimpse of

a particular ALTI configuration file is shown on Figure 5.4.1.

Figure 5.4.1. A section of the ALTI configuration file containing parameters in a form of key/value pairs.

 34

5.5. Test programs

Aside from the menu program, various test programs have been developed for testing and

diagnostics of the ALTI module. They are used for: automated specific tests (snapshot memory, and

the TTC decoder), initializing the module with a configuration given in a form of a file, remote

firmware update, etc. Each of them will be described in the following subsections.

5.5.1. testAltiVME

This test program is used to test VMEbus read/write transfers on RAM memories and FIFOs,

as well as the internal FPGA registers that are safe to write to (not used for some critical control).

Testing the VME interface is done by writing some data to a particular chunk of memory, and

making sure that the same data is then properly read back. The user specifies the base address of the

test area, a number of 32-bit words to be tested and a comparison mask. Also, both single and block

cycles are supported. Types of tests that are included are the following: simple fixed value

writes/readouts, writing incrementing/decrementing data, writing walking "1" bits to successive

addresses. The latter two types of tests are useful for checking the address and data lines, since the

value being written differs according to the address.

On Figure 5.5.1 one can see the full list of the program parameters. A common use of the

testAltiVME program is shown on Figure 5.5.2.

Figure 5.5.1. testAltiVME program help with the full list of parameters.

Figure 5.5.2. Typical use of the testAltiVME program.

 35

5.5.2. testAltiInitial

This test program is used for module initialization and configuration.

When the ALTI module is powered on, this program is used for basic initialization and setup.

That means the user can change the VME base address of the module, if the default geographical

addressing (according to the slot number) is not desired. For example, it could be that the base address

given by the geographical addressing is not the range of any of the static master mappings defined by

the SBC. On the other hand, basic setup includes the following: setting the jitter cleaner up with a

default configuration, setting the recommended clock prescaler value of the I2C master core, etc. It

is recommeded to perform the initialization and setup tasks once upon power up before using the

module.

Configuring the module is done with an AltiConfiguration object, corresponding to an input

file format discussed in Section 5.4. This file contains all the configurable parameters of the module

and it grew as each new feature got added to the firmware, and afterwards the low-level software.

The user also has an ability to read current configuration into a file, or dump it onto the standard

output screen.

Another feature of this test program is the ability to perform a basic check of the setup of the

ALTI. In this way, the user can check if the module is operational, i.e. if the PLL is locked, the I2C

prescaler and the jitter cleaner are properly set up, and so on.

By using the testAltiInitial program, it is easy to quickly configure multiple ALTI modules for

automated tests, not having to use the menu program. Various configuration files for common ALTI

modes of operation are available: "Master" (Pattern generator), "CTP slave", "ALTI slave", "LEMO

slave", TTC encoder/decoder, etc.

On Figure 5.5.3 one can see the full list of the program parameters. Two common uses of the

testAltiInitial program are shown on Figure 5.5.4.

Figure 5.5.3. testAltiInitial program help with the full list of parameters

 36

(a)

(b)

Figure 5.5.4. Typical use of the testAltiInitial program: (a) base address initialization, basic setup and check, (b)

module configuration as a "CTP slave".

 37

5.5.3. testAltiQuickBoot

This test program is used to remotely update the FPGA firmware through VME, without using

Xilinx tools. Not having to use the USB programmer makes it more convenient to update the firmware

of modules installed in the VME crate.

The remote firmware update is based on the QuickBoot mechanism, described in detail in one

of the application notes provided by Xilinx [33]. Basically, the initial bitstream stored in the

configuration memory contains "golden" and "update" images, which are identical at the beginning.

This initial bitsream contains these two exact copies of a stable firmware release, and is flashed to the

configuration memory once using the Xilinx tools. Afterwards, remote firmware update is done only

by overwriting the "update" image area, using the previously mentioned QuickBoot mechanism.

Xilinx provides a QuickBoot FlashProgrammer core in VHDL. They also provide a Perl script

for converting a standard mcs image file (result of firmware compilation in Xilinx Vivado) to two of

them: initial and update mcs files. Update mcs file is then converted to a binary file using open-source

solution SRecord [34], which handles manipulations of different EPROM load file standards. The

resulting binary file containts the sequence of 32-bit data of the update image which needs to be sent

to the flash programmer. Interfacing to the flash programmer is done via single FIFO memory in the

FPGA.

The software takes care of enabling the flash programmer and filling this FIFO with the update

image data, one 32-bit word at the time. Successful termination or error in the update process is also

reported by the flash programmer and caught by the testAltiQuickBoot program. In addition to the

update feature, this test program allows veryfing the existing update in the image by caluclating its

CRC32 checksum, which is also written in the last entry in the update image area of the configuration

memory.

QuickBoot mechanism is summarized on Figure 5.5.5. The full list of testAltiQuickBoot

program parameters can be seen on Figure 5.5.6, while the common use of this program is shown on

Figure 5.5.7.

Figure 5.5.5. The QuickBoot mechanism [33].

 38

Figure 5.5.6. testAltiQuickBoot program help with the full list of parameters.

Figure 5.5.7. Typical use of the testAltiQuickBoot program

Using the testAltiQuickBoot program proved beneficial in laboratory testing, when multiple

ALTI modules are inserted the same VME crate, and the JTAG programming port is inaccessible. It

also allowed the firmware update for the remotly installed modules, used and tested by other

colleagues. So, this feature is rather useful for release updates where bug fixes make it mandatory to

update the firmware.

5.5.4. testAltiCapture

This test program is used for reading the snapshot memory and for comparison with expected

patterns of TTC signals. Comparing the snapshot with the predefined pattern of input signals is very

useful for testing all signal paths and connections through the module.

Before using the testAltiCapture program, the user first has to send a known TTC signal

pattern to the FPGA. This is most easily acomplished by setting up one ALTI/LTP module in master

mode, as a pattern generator. So, the pattern input file of an LTP or ALTI can be used as a reference

for comparison with a snapshot memory of the ALTI module under test. Then, the ALTI module

being tested has to be set up in a slave mode, such that it receives those TTC signals.

 39

The test program repeatedly triggers the snapshot memory, reads its content and compares it

to a pattern input file. Relative timestamps in the snapshot memory make the comparison with an

LTP/ALTI pattern generation input file easier. Before actually comparing the data, the program finds

the alignment between the data read from the ALTI and the comparison data. This is necessary since

the data obtained from the snapshot memory depends on when the snapshot is actually enabled.

There are numerous parameters for the testAltiCapture program, including a comparison

mask, the amount of data to be read, the comparison file type (LTP/ALTI), etc. They are shown on

Figure 5.5.8. An example of the ALTI pattern file is shown on Figure 5.5.9, while a common use of

the testAltiCapture program to compare snapshots with the given pattern is shown on Figure 5.5.10.

Figure 5.5.8. testAltiCapture program help with the full list of parameters.

Figure 5.5.9. An example of the ALTI pattern input file used to run the pattern generator.

 40

Figure 5.5.10. Typical use of the testAltiCapture program.

5.5.5. testAltiTtc

This test program is used for reading the TTC decoder memory and for comparing the data

with the expected TTC stream commands and triggers. Both the TTC decoder and encoder are being

tested using this program.

Before using the testAltiTtc program, the user has to set up one ALTI module to send TTC

commands and triggers. It is possible to use the same ALTI module for testing by sending its optical

output to the optical receiver of the same module, too. Alternatively, one can set up a legacy TTC

partition using TTCvi and TTCex and use that optical stream, too.

 41

In order to run an automatic test in a loop, we need something as a reference, similar to a

pattern input file in the capture program. For that purpose, a software package called ttcscope was

used. This is TTC decoder software which gets the TTC stream data samples from the LeCroy

oscilloscope [35]. The processing PC is connected with an Ethertet cable to the oscilloscope and the

data is being transmitted over the TCP/IP protocol. Optical/electrical converter probe OE455 [36] is

used to feed the electrical TTC stream signal to the oscilloscope. By running the ttcscope, the printout

of decoded commands and triggers is obtained, as shown on Figure 5.5.11. Such printout gives a neat

description of the TTC commands and triggers that can be used as a reference for comparison.

Figure 5.5.11. Result of running the ttcscope program.

 42

The test program then repeatedly triggers the two TTC decoder memories (called "command"

and "timestamp"), reads their content, interprets the data and compares it to the ttcscope reference

file. Alignment and comparison is analogous to the ones used in testAltiCapture program, with a few

subtle differences. Timestamps in ttcscope and the ALTI decoder have a relative offset, so they are

masked in the alignment part of the algorithm. However, this offset is calculated after the alignment

and the timestamps are adjusted so that they can be compared. Comparing the timestamps makes sure

that the timing of periodic triggers and commands stays stable.

The testAltiTtc program was created by applying slight modifications to the testAltiCapture

program, so the list of program parameters is also very similar. The full list of parameters is shown

on Figure 5.5.12, while the typical use of the program is shown on Figure 5.5.13.

Figure 5.5.12. testAltiTtc program help with the full list of parameters.

 43

Figure 5.5.13. Typical use of the testAltiTtc program.

5.5.6. testAltiSync

This test program was developed in order to evaluate the input synchronization and monitoring

firmware. The idea was to make use of the LTPI shifting functionality and observe what happens to

the ALTI histograms for input synchronization and monitoring. Since this test program operates on

both modules, the LTPI and the ALTI, the low-level LTPI software library is used to access that

module and shift the TTC signals.

Before running the test program, a pattern of TTC signals is generated (with an LTP or an

ALTI) and propagated through the LTPI module, to its CTP_OUT connector. Then, the connection

with the downstream ALTI module under test is done using a single LVDS-LINK cable to either of

the two ALTI LVDS-LINK input connectors.

When running the testAltiSync program, the user can choose the source connector of the

signals coming from an upstream LTPI (CTP_OUT or ALTI_OUT) and the desired delay (in

nanoseconds) to be introduced by the LTPI for all the signals. The result of running the program is

the printout of ALTI histograms.

The full list of available program parameters is shown on Figure 5.5.14, while the common

use of the testAltiSync is shown on figures 5.5.15 and 5.5.16. Note the shift of the histogram content

to the next bin as a result of a different phase of the TTC signals on Figure 5.5.15 and Figure 5.5.16.

 44

Figure 5.5.14. testAltiSync program help with the full list of parameters.

Figure 5.5.15. Typical use of the testAltiSync program: without the LTPI delay.

 45

Figure 5.5.16. Typical use of the testAltiSync program: with the LTPI delay of 4ns, resulting in the histogram

shift.

 46

6. MODULE TESTING

This chapter describes the process of testing the ALTI prototype modules and lists the most

important test results. First, the laboratory tests on individual modules are discussed in Section 6.1.

An automated connection test that was designed for systematic testing and evaluation of the large

number of prototype modules is discussed in Section 6.2.

6.1. Laboratory tests

With the help of the low-level software, the menu programs (for both the ALTI and the other

legacy TTC modules) and the oscilloscope, the prototype modules have been tested. A typical

laboratory setup used in such module tests is shown on Figure 6.1.1

That laboratory tests include the checking of all the hardware on the module:

1) Complete I2C network

2) RAM memories external to the FPGA

3) LVDS-LINK cable inputs/outputs

4) LEMO NIM-level inputs/outputs

5) LEMO TTL-level BUSY input

6) All routing paths through the cross-point switches

7) Equalizers: configurations for short/long cables found

8) RJ45 calibration request inputs

9) 1-Wire ID chip for labeling the modules

Figure 6.1.1. Typical laboratory test setup with multiple ALTI and legacy TTC modules in the same VME crate.

 47

Also, laboratory tests were performed in order to check all of the ALTI functionalities and

make sure that they are properly implemented in the firmware.

In the module testing process, several PCB design issues have been found, all of which shall

be fixed in the next pre-production series:

1) ADCMP564 comparators on the NIM outputs should be supplied by +5V, instead of

+3.3.V (prototype modules have been fixed by rewiring)

2) MAX1617A temperature sensor remote diode pins polarity is swapped

3) Power-down mode pins for the AD8123 equalizers should be driven from the FPGA

to reduce the heat dissipation

4) The termination in the ALTI BUSY input needs to be slightly modified in order to

allow TTL-level inputs

Some issues related to the bad assembly and soldering have been identified on the particular

prototype modules. These were not related to any of the design issues, and were easily fixed on each

of these particular modules.

6.2. Automated connection test

The ConnectionTestAlti program was designed in order to systematically check all forward-

going signal paths through the ALTI, for varying configurations of cross-point switches. It was

written in Python and it makes extensive calls to the testAltiInitial and testAltiCapture programs.

 The ALTI module under test is put in between two "golden" ALTI modules, fully connected

with LVDS cables and LEMO-connector coaxial cables. This setup is shown on Figure 6.2.1.

Figure 6.2.1. Setup for testing of all input/output paths of TTC signals.

 48

Typically, the "Master" ALTI module sends a pattern of TTC signals given by a randomly

generated input file. The lengths of the random patterns and the probabilities for "0" or "1" occurrence

are programmable. The signals are then propagated through the "Test" ALTI module and are captured

in the "Slave" ALTI module and compared with the given pattern. Exceptions to this rule are the tests

of FROM_FPGA input paths (where the "Test" ALTI acts as a pattern generator) and TO_FPGA

output paths (where the "Test" ALTI takes snapshots). The test of a single input/output combination

consists of initializing the ALTI modules with testAltiInital program, and then taking the snapshot

with the testAltiCapture program. Predefined ALTI configurations are used for the initialization:

Pattern generator, "CTP slave", "ALTI slave" and "LEMO slave".

All input/output paths are being tested, from the front panel inputs to the front panel outputs,

as well as to and from the FPGA. Thus, there are 15 different input/output combinations that are being

tested. Paths with FROM_FPGA input ant TO_FPGA output are not being tested, since it is not

possible to use both the pattern generation and the snapshot features of the same module

simultaneously.

Table 6.2.1 shows all input/output paths being tested and the corresponding configurations of

the "Master", "Test" and "Slave" ALTI modules.

Table 6.2.1. Standard configurations of ALTI modules in the connection test for various test paths.

PATH
"MASTER" ALTI

CONFIGURATION

"TEST" ALTI

CONFIGURATION

"SLAVE" ALTI

CONFIGURATION

CTP_IN -> CTP_OUT Pattern generator CTP slave CTP slave

CTP_IN -> ALTI_OUT Pattern generator CTP slave ALTI slave

CTP_IN -> LEMO_OUT Pattern generator CTP slave LEMO slave

CTP_IN -> TO_FPGA Pattern generator CTP slave N/A

ALTI_IN -> CTP_OUT Pattern generator ALTI slave CTP slave

ALTI_IN -> ALTI_OUT Pattern generator ALTI slave ALTI slave

ALTI_IN -> LEMO_OUT Pattern generator ALTI slave LEMO slave

ALTI_IN -> TO_FPGA Pattern generator ALTI slave N/A

LEMO_IN -> CTP_OUT Pattern generator LEMO slave CTP slave

LEMO_IN -> ALTI_OUT Pattern generator LEMO slave ALTI slave

LEMO_IN -> LEMO_OUT Pattern generator LEMO slave LEMO slave

LEMO_IN -> TO_FPGA Pattern generator LEMO slave N/A

FROM_FPGA -> CTP_OUT N/A Pattern generator CTP slave

FROM_FPGA -> ALTI_OUT N/A Pattern generator ALTI slave

FROM_FPGA -> LEMO_OUT N/A Pattern generator LEMO slave

If the testAltiCapture returns an error, the corresponding input/output path failure is reported.

There can be multiple reasons for this failure: wrong equalizer settings, wrong input signal

synchronization or simply a bad soldering or some assembly issue. In order to report what TTC signal

lines are problematic, the snapshot memory masking feature is used. After the failure, TTC signals

are independently checked by masking all other signals from the snapshot, and the testAltiCapture is

ran again. This means that the changes of all the masked signals are not stored in the snapshot

memory, so only one TTC signal is checked at a time. If this call of the testAltiCapture reports failure,

that means there is a problem for this particular TTC signal for a given input/output combination of

the cross-point switch.

 49

On Figure 6.2.2, a typical use of the ConnectionTestAlti is shown. The full report gives the

user the information on which paths failed the test, and which TTC signals are in fact problematic.

As shown on Figure 6.2.3, by using the proper parameter the user can also check the BGO multiplexed

paths discussed in Subsection 3.2.3. The user is also guided on how to do the cabling between the

modules, as can be seen on figures 6.2.2 and 6.2.3.

Figure 6.2.2. Connection test results, LEMO BGO2 and BGO3 cabling.

 50

Figure 6.2.3. Connection test results, LEMO BGO0 and BGO1 cabling (multiplexed).

The reports shown on figures 6.2.2 and 6.2.3 suggest that there is a problem with L1A and

ORB LEMO inputs for this particular ALTI module, as well as TTYP0 line on the ALTI_OUT path.

Such an automated test allows for quick check and evaluation of the upcoming ALTI modules,

something that would be practically impossible to do manually using the oscilloscope.

 51

7. PERFORMANCE MEASUREMENTS

This chapter describes the performance measurements that were done on the ALTI module,

and shows the obtained results. Those tests have been done in order to qualify some critical

performance parameters of the ALTI module and compare them the legacy TTC modules. Low-level

software for the ALTI and the other legacy TTC modules (in the form of menu programs) has been

used in order to set the modules up appropriately for each measurement.

The parameters that were measured include:

1) Cable-to-cable latency of electrical TTC signals, compared to LTPI and LTP

modules

2) Level-1 Accept latency in the TTC encoded optical stream, compared to the current

daisy chain setup of LAr in the experiment

3) Jitter in the TTC stream and on-board jitter cleaner chip performance, compared to

the current system based on TTCvi and TTCex

Measurements of each of these parameters are discussed in separate sections.

7.1. Latency of electrical TTC signals

Latency is very important in the TTC system and the ATLAS experiment. In particular, the

latency of the L1A is very critical, because the front-end electronics buffers can only hold event data

for a given time, before they lose or overrun the existing data.

Latencies of most of the forward-going TTC signals from the cable inputs (CTP_IN/ALTI_IN)

to the cable outputs (CTP_OUT/ALTI_OUT) have been measured. Each of these delay paths consists

of: an LVDS receiver, an equalizer, a cross-point switch and an LVDS driver.

A setup that was used for these measurements is shown on Figure 7.1.1. The delay of a

particular signal is measured between the two ALTI modules called "Master" and "Slave". For this,

output LEMO connectors for that particular signals are used. Two coaxial cables are used to feed the

signals to the LeCroy oscilloscope and the delay between the two waveforms is then measured. On

Figure 7.1.1, one such measurement has been shown, namely the latency of L1A through the CTP_IN

to CTP_OUT path.

This is an indirect measurement, and the latency is obtained my subtracting the results of two

measurements shown on Figure 7.1.1. The first measurement includes the propagation delay through

the ALTI module under test, while the second measurement bypasses this ALTI module. In the first

measurement two LVDS-LINK cables length 0.5m are used, and in the second measurement one

LVDS-LINK cable of length 1m is used. Thus, the propagation delays through the cables are matched

in both measurements and they cancel out in the subtraction of the results. The same holds for the

propagation delays through the coaxial cables, which are the same in both measurements.

 52

(a)

(b)

Figure 7.1.1. CTP_IN->CTP_OUT path latency measurement for L1A: (a) delay of ALTI under test included,

(b) ALTI module under test bypassed.

The results of measuring the propagation delays through the ALTI module are shown in Table

7.1.1. What we can see from the table is that the latency is about 12ns, from any LVDS cable input

to any LVDS cable output of the ALTI module. So, the delays for all the signals and for all four

different input/output configurations are roughly the same. This is expected, since this circuitry in the

cross-point switch path is the same for all the TTC signals.

ALTI
“master”

CTP_IN

ALTI_IN

CTP_OUT

ALTI_OUT

ALTI
“test”

CTP_IN

ALTI_IN

CTP_OUT

ALTI_OUT

LVDS

ALTI
“slave”

CTP_IN

ALTI_IN

CTP_OUT

ALTI_OUT

LVDS

0.5m
cable

0.5m
cable

L1A L1A

LeCroy
oscillosco

pe

LeCroy
oscilloscope

ALTI
“master”

CTP_IN

ALTI_IN

CTP_OUT

ALTI_OUT

LVDS

ALTI
“slave”

CTP_IN

ALTI_IN

CTP_OUT

ALTI_OUT

1m
cable

L1A L1A

LeCroy
oscilloscope

LeCroy
oscilloscope

 53

Table 7.1.1. Cable-to-cable latencies of TTC signals for the ALTI module.

SIGNAL
CTP/CTP

DELAY [NS]

CTP/ALTI

DELAY [NS]

ALTI/CTP

DELAY [NS]

ALTI/ALTI

DELAY [NS]

BC 11.76 11.56 11.47 11.18

ORB 12.04 11.99 11.57 11.49

L1A 11.92 11.69 11.46 11.21

TTR1 11.69 11.58 11.31 11.17

TTR2 11.72 11.91 11.44 11.58

TTR3 11.63 11.61 11.26 11.19

BGO2 11.88 11.81 11.58 11.46

BGO3 11.99 11.99 11.59 11.54

With a similar setup, latencies of other modules with LVDS-LINK connectors (LTPI and LTP)

have also been measured. The only difference in the setup is that the module under test is LTP/LTPI,

instead of the ALTI. Results are shown in Table 7.1.2 and Table 7.1.3 for the LTPI and the LTP,

respectively.

Table 7.1.2. Cable-to-cable latencies of TTC signals for the LTPI module.

SIGNAL
CTP/CTP

DELAY [NS]

CTP/LTP

DELAY [NS]

LTP/CTP

DELAY [NS]

LTP/LTP

DELAY [NS]

BC 10.89 13.74 13.29 8.76

ORB 13.99 12.43 17.41 9.16

L1A 14.66 13.28 17.87 8.83

TTR1 14.48 11.27 16.56 9.49

TTR2 14.39 11.27 16.42 9.39

TTR3 14.67 11.51 16.69 9.26

BGO2 14.61 12.72 18.76 9.13

BGO3 14.88 13.09 18.51 9.02

Table 7.1.3. Cable-to-cable latencies of TTC signals for the LTP module.

SIGNAL
CTP/CTP

DELAY [NS]

BC 4.63

ORB 4.83

L1A 4.48

TTR1 11.60

TTR2 11.18

TTR3 11.94

BGO2 12.31

BGO3 12.59

 54

The results of these measurements are also expected. In the LTPI, CTP output link is preceded

by a fine-tune delay chip (0.5 ns step), which can be used to phase shift all TTC signals [7], except

the BC. Also, in the LTP, propagation delays are lower for BC, ORB and L1A because of PECL

circuitry instead of TTL (as for the rest of the TTC signals) [5].

Based on the results that were shown, one can compare latencies between systems composed

of legacy TTC modules and corresponding replacement systems based on the ALTI module. Here are

some comparisons of L1A latency in some common configurations:

 ALTI is about 7.5ns slower than LTP

 ALTI is about 10ns faster than LTPI + LTP

 ALTI + ALTI is about 2ns faster than LTPI + LTP + LTP

In these calculations, short 0.5m LVDS-LINK cables are assumed between the modules. Based

on the measurements, LVDS-LINK cables introduce the propagation delay of about 5ns per meter.

That corresponds to about 2.5ns delay for each 0.5m cable.

The comparisons show that ALTI-based system is faster in a typical TTC partition daisy chain

of length two, due to the smaller number of interconnecting LVDS-LINK cables being used in the

setup.

7.2. Level-1 Accept latency: LAr daisy chain

Level-1 Accept latency from the CTP to the TTC stream is one of the most important

performance parameters in the ATLAS experiment. As we discussed earlier, propagating the trigger

to the front-end electronics as early as possible is of the utmost importance. Actually, the liquid Argon

calorimeter sub-detector (LAr) is the sub-detector that is the most latency-critical. That is why the

Level-1 Accept latency for this particular TTC configuration was measured and compored to the

possible ALTI-based replacement setup. The LAr sub-detector uses the daisy chain of two TTC

partitions, as shown on Figure 2.2.2.

Shown on Figure 7.2.1 (a) and (b) are the legacy LAr setup and a corresponding ALTI-based

setup, respectively. The latency of L1A in the TTC stream is measured on the second stage of the

daisy chain, since only this stage is latency critical.

Legacy setup mimics the actual current configuration in the experiment. Shortest available

LVDS-LINK cables were used, the ones of length 0.5m. The same is true for coaxial cables between

the second LTP, TTCvi and TTCex: cables of 1ns and 2ns delay were used. In the LAr setup, LTPI

is used for delaying the L1A exactly 17ns (34 steps of 0.5ns each), in addition to the equalization

function. This is also shown on Figure 7.2.1 (a). The only major difference in the actual experiment

is the length of the LVDS-LINK cable from the CTP: they are longer than the 2m cables that were

used in this measurement, and the use of the LTPI for equalization is crucial.

In the replacement setup, two legacy partitions are substituted with two cascaded ALTI

modules. The interface to the CTP and the oscilloscope is the same as in the legacy setup. Fibre

lengths and propagation delays are matched in both setups, though different patch cords were used

because of different transmitter connectors in the TTCex and ALTI.

 55

(a)

(b)

Figure 7.2.1. Daisy-chained TTC partitions of LAr: (a) legacy setup, (b) proposed replacement setup based on

two ALTI modules.

Bunch clock phases at the optical TTC output of both systems were aligned by configuring

the PLL of the ALTI jitter cleaner. Then, relative comparison of two setups is possible, with the ORB

signal from CTPOUT as a reference. Propagation delays from this reference signal to the Level-1

Accept in the TTC stream waveform were measured.

The waveforms from which the delays were measured are shown on Figure 7.2.2, Figure 7.2.3

and Figure 7.2.4. Figure 7.2.2 and Figure 7.2.3 refer to the legacy system, without and with the 17ns

L1A delay induced by the LTPI, respectively. For the ALTI-based system with the optimal clock

phase chosen for L1A input synchronization, the measurement is shown on Figure 7.2.4.

Figure 7.2.2. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 0ns: 59ns.

CTPOUT LTPI LTP LTP TTCvi TTCex

A

B

BC
BC

TTC
signals

.

.

.CTP CTP CTP

0.5m
cable

0.5m
cable

2m
cable

1ns
LEMO
cable

LeCroy
oscilloscope

OE455
fibre

L1A
delay = 17ns

CTPOUT

CTP

2m
cable

ALTI

CTP

0.5m
cable

ALTI
LeCroy

oscilloscope
OE455

fibre

 56

Figure 7.2.3. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 17ns: 84ns.

Figure 7.2.4. Level-1 Accept latency for the ALTI-based LAr setup and optimal input synchronization: 84ns.

For the legacy TTC setup, the latency is either 59ns or 84ns (L1A jumps to the next bunch

crossing), depending on the L1A delay that is used in the LTPI (0ns or 17ns, respectively). Latency

of L1A for this setup could also be up to 1BC longer than this if a bigger L1A delay was used, since

30ns is the maximum possible delay that the LTPI supports.

For the ALTI-based setup, the latency is either 84ns or 109ns (L1A jumps to the next bunch

crossing), depending on which clock phase is chosen to synchronize the incoming L1A signal.

To conclude, the L1A latency can be the same (84ns) as for the legacy TTC modules using the

settings in the experiment. Depending on the L1A signal phase, the delay could also be 1BC longer

for the new system.

 57

7.3. TTC stream and recovered clock jitter

The level of jitter in the optical TTC stream that the ALTI introduces had to be addressed, in

order to see if the receiver modules of the sub-detectors can cope with it. Comparison with the legacy

TTCex-based setup was also made. On Figure 7.3.1, the two setups are shown. The first setup, shown

on Figure 7.3.1 (a), measures the TTC stream jitter in a typical partition composed of LTP, TTCvi

and TTCex. In the second setup, shown on Figure 7.3.1 (b), this legacy TTC partition is replaced by

a single ALTI module. In fact, three different setups were compared, since ALTI-based setups with

and without using the on-board jitter cleaner were tested.

Both setups use a common bunch clock, one that has been injected through the BC LEMO

input of an additional LTP module. The clock comes from the clock generator with a modulation

input for adding jitter. The nominal value of the clock signal frequency is 40.079MHz, which is the

standard LHC clock frequency. The modulation signal in the form of white noise is provided with a

signal generator. Increasing the peak-to-peak voltage of the white noise generator has an effect of

adding jitter to the bunch clock.

For both setups, the optical TTC stream is sent to the TTCrq receiver mezzanine board [37].

This is a combination of TTCrx receiver and a Quartz-crystal based PLL (QPLL) [38] ASICs. The

QPLL was designed for jitter cleaning applications in the LHC to accompany the TTCrx.

The levels of jitter in the TTC stream and the bunch clock recovered from it by the TTCrq are

then measured by the LeCroy oscilloscope and the Agilent Phase Noise Analyzer (PNA) [39].

(a)

(b)

Figure 7.3.1. Setups for the TTC stream jitter measurement where the optical transmitter module is: (a) TTCex,

(b) ALTI.

7.3.1. Oscilloscope measurements

For measuring the jitter, the Time Interval Error (TIE) method of the digital LeCroy

oscilloscope has been used. The TIE of a particular rising or falling edge is the deviation of that edge

from its ideal position. The ideal signal is created based on the average estimate of the signal period.

The measurements are accumulated by the oscilloscope and shown on its display overlaid on top of

the signal waveform. This gives a Gaussian-shaped distribution histogram, with the mean value

ideally equal to zero. Standard deviation of this distribution is a good measure of jitter and is

expressed in pico-seconds. Usually, this metric is called the RMS jitter. The effect of adding white-

noise jitter is clearly shown on Figure 7.3.2: the histogram is more spread when there is more jitter,

i.e. it has larger standard deviation or RMS jitter.

LTP LTP TTCvi TTCex

A

B

BC
BC

TTC
signals

.

.

.CTP

BCclock
generator

+
optional

white noise
jitter

TTCrq
fibre

OEfibre

BC
Agilent
phase
noise

analyzer

LeCroy
oscilloscope/

LTP ALTI

CTP

BCclock
generator

+
optional

white noise
jitter

TTCrq
fibre

OEfibre

BC
Agilent
phase
noise

analyzer

LeCroy
oscilloscope/

 58

(a)

(b)

Figure 7.3.2. TTC stream RMS jitter oscilloscope measurements for ALTI setup without the jitter cleaner:

(a) without added jitter, RMS jitter equals 21.9ps, (b) with added jitter, RMS jitter equals 35.4ps.

The results of the oscilloscope measurements of the TTC stream jitter for various setups are

shown in Table 7.3.1. Similarly, results for the jitter of the recovered clock are shown in Table 7.3.2.

Please note that the TTC stream was idle (no triggers and commands were sent) for these

measurements.

 59

Table 7.3.1. TTC stream jitter for different setups (oscilloscope measurements).

SETUP
TTC STREAM RMS JITTER [PS]

(WITHOUT ADDED JITTER)

TTC STREAM RMS JITTER [PS]

(WITH ADDED JITTER)

TTCex 7.9 8

ALTI, JC = OFF 21.9 35.4

ALTI, JC = ON 16.7 16.7

Table 7.3.2. Recovered clock jitter for different setups (oscilloscope measurements).

SETUP
RECOVERED CLOCK RMS JITTER [PS]

(WITHOUT ADDED JITTER)

RECOVERED CLOCK RMS JITTER [PS]

(WITH ADDED JITTER)

TTCex 8.1 8.1

ALTI, JC = OFF 8.0 8.1

ALTI, JC = ON 8.0 8.1

Based on the measurements that were shown, we can draw several conclusions. First of all,

the ALTI jitter cleaner removes all the added jitter. However, it cannot remove intrinsic jitter in the

ALTI. On the other hand, TTCex also removes all the added jitter with its PLL, and this setup has a

lower overall intrinsic jitter compared to ALTI. But, although the overall jitter level is higher in the

ALTI setup compared to the TTCex setup, the TTCrq which contains the QPLL can handle these

levels of jitter for both systems, as can be seen in the recovered clock jitter. From this point on, it was

decided to keep sing the ALTI jitter cleaner.

The TIE jitter measurements were also repeated on a non-idle TTC stream. Random patterns

with the 100kHz L1-Accept rate and heavy B-channel activity (four asynchronous long commands

following each L1-Accept) were used. However, it was observed that the A and B-channel activity

does not affect the jitter of the TTC stream in the ALTI, nor in the TTCex.

Another measurements was done for the ALTI TTC encoder driven from the same ALTI board

using its pattern generation memory. The idea was to investigate if this increases the jitter. However,

this does not have an effect on the jitter, either.

7.3.2. Phase noise analyzer measurements

Measuring the jitter with the oscilloscope can be very sensitive to the measurement settings.

For example, if the time division is too small (waveform zoomed in too much), low-frequency jitter

will not be included in the measurement, thus giving lower RMS jitter. A more accurate measurement

of jitter was done with the Agilent PNA, which measures the frequency spectrum of the jitter. In

addition, this tool also measures the RMS jitter by integrating the spectrum.

The phase noise analyzer measures the "cleanliness" of the periodic, 50% duty cycle clock

signal. In order to use the phase noise analyzer on the TTC stream, the L1A signal was set to be

always active, which results in a TTC output bit pattern that corresponds to an 80MHz clock signal,

as can be seen on Figure 2.2.1.

From the oscilloscope measurements we have understood that the added jitter is successfully

removed by TTCex PLL and the ALTI jitter cleaner. This was also confirmed by the PNA

measurements. The results shown below ware obtained without adding the white-noise jitter.

Common input clock was the internal oscillator in the LTP with the RMS jitter of 6.6ps. The results

of the PNA measurements of TTC stream jitter for various setups are shown in Table 7.3.3. Similarly,

results for the jitter of the recovered clock are shown in Table 7.3.4.

 60

Table 7.3.3. TTC stream jitter for different setups (PNA measurements).

SETUP
TTC STREAM RMS JITTER [PS]

(WITHOUT ADDED JITTER)

TTCex 5.1

ALTI, JC = OFF 24.0

ALTI, JC = ON 19.6

Table 7.3.4. Recovered clock jitter for different setups (PNA measurements).

SETUP
RECOVERED CLOCK RMS JITTER [PS]

(WITHOUT ADDED JITTER)

TTCex 5.7

ALTI, JC = OFF 7.6

ALTI, JC = ON 6.0

The same conclusions follow as the ones obtained after the oscilloscope measurements,

although the numbers are slightly different. To compare the TTC stream jitter spectrums of the three

setups, please refer to Figure 7.3.3. On Figure 7.3.3 (a), ALTI without using the jitter cleaner is

compared against TTCex. On Figure 7.3.3 (b), ALTI with the jitter cleaner is compared against

TTCex. Similarly, jitter spectrums of the recovered clock are compared on Figure 7.3.4 (a) and Figure

7.3.4 (b).

By looking more closely on the ALTI jitter spectrums, one can clearly see a few spikes in the

~30kHz to ~300kHz range. This could be related to the power supply noise on the ALTI, but certainly

requires further investigation. The on-chip PLL settings might also provide a way to reduce the

intrinsic ALTI jitter. So, there might be room for improvement on the ALTI intrinsic jitter by some

modifications to the PCB, or the FPGA firmware.

 61

(a)

(b)

Figure 7.3.3. TTC stream jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against TTCex

(pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale).

 62

(a)

(b)

Figure 7.3.4. Recovered clock jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against

TTCex (pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale).

 63

8. CONCLUSION

The low-level software for the ALTI module has been developed. All its features are fully

available to the users in the interactive menu program. The software is also available to the other

L1CT colleagues who are using it in order to develop the run control applications for integration of

the ALTI into the experiment. Besides the low level API, utilities in the form of test programs and

scripts have been developed. These have been used for testing the ALTI functionalities like pattern

generation, snapshot memory, TTC decoder, etc. An automated production testbench for the

upcoming ALTI modules has also been developed. This testbench is used to test all input/output paths

of the signals through the module, and thus can be used to identify soldering assembly issues.

All of the devices and interfaces on the available prototype boards have been fully tested. That

is, the tests have been performed on a total of seven ALTI prototype modules that have been fully-

assembled until August 2018. These module tests helped to find several design issues. The list of

modifications to be done in the next series of pre-production ALTI modules has been noted and a

new version of the schematics and the layout has been published for both the motherboard and the

mezzanine board.

Five out of seven modules have passed all the automated tests. On the other two modules, the

automated tests have shown problems with particular TTC signal paths. These modules are currently

being investigated, and the fact that the problematic lines have been pinpointed will certainly help to

understand what the problems are. Some working modules were made available to colleagues in the

L1CT team in order to perform additional tests and write the high-level run control software. The

other modules that have passed the tests will be lent to the sub-detectors to perform the initial tests

with the ALTI module in their setup. In particular, it is planned to have tests with the LAr test stand

in September 2018.

The performance measurements have shown how the ALTI module compares against the

legacy TTC system. In particular, the Level-1 Accept latency in the LAr setup, using a daisy chain of

two modules, is the same for the ALTI and the TTC legacy modules, if the L1A input synchronization

has been chosen to be optimal.

The jitter measurements have shown that the jitter cleaner in the ALTI can effectively remove

the low-frequency jitter. This encouraged the use of the jitter cleaner in the firmware, which was

initially put in the design as a safety measure. Also, from the jitter measurements it has been

concluded that the TTC stream jitter is higher in the ALTI-based system compared to the legacy TTC-

ex based system. To be precise, the RMS jitter in the ALTI TTC stream is 19.6ps, compared to 5.1ps

in the legacy system, using the same input clock with RMS jitter of 6.6ps. However, the tests with

TTC receiver modules have shown that they can effectively remove the intrinsic ALTI jitter. The

clock recovered from the TTC stream basically has the same RMS jitter in both setups: 6.0ps for the

ALTI-based system, compared to 5.7ps for the legacy system. Nevertheless, the jitter measurements

have shown the need to further investigate the ALTI design to see if the intrinsic jitter can be reduced.

Another possible issue to be addressed in the future is the optical power requirements needed

by the sub-detectors, since the ALTI SFP modules provide lower power than the TTCex lasers.

Several SFP modules with the same pin-out and higher optical power have already been ordered and

tested. Going forward, they could be used if the sub-detector tests show a need to increase the optical

power.

 64

BIBLIOGRAPHY

[1] ATLAS Fact Sheet (https://cds.cern.ch/record/1457044/files/ATLAS%20fact%20sheet.pdf)

[2] S. Ask, D. Berge, P. Borrego-Amaral, D. Caracinha, N. Ellis, P. Farthouat, P. Gällnö, S. Haas,

J. Haller, P. Klofver, A. Krasznahorkay, A. Messina, C. Ohm, T. Pauly, M. Perantoni, H.

Pessoa Lima Junior, G. Schuler, D. Sherman, R. Spiwoks, T. Wengler, J. M. de Seixas and R.

Torga Teixeira, "ATLAS central level-1 trigger logic and TTC system", Journal of

Instrumentation (JINST), 2008. (http://iopscience.iop.org/article/10.1088/1748-

0221/3/08/P08002/pdf)

[3] S. Baron, "Timing, Trigger and Control (TTC) Systems for the LHC"

(http://ttc.web.cern.ch/TTC/intro.html, 27.07.2018.)

[4] J. Christiansen, A. Marchioro, P. Moreira and T. Toifl, "TTCrx Reference Manual, A Timing

Trigger and Control Receiver ASIC for LHC Detectors"

(http://ttc.web.cern.ch/TTC/TTCrx_manual3.9.pdf)

[5] P. Gällnö, "ATLAS Local Trigger Processor - LTP, Technical description and users manual"

(https://edms.cern.ch/ui/file/551992/2/LTP_manual_051.pdf)

[6] U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental

Research, "Standard NIM Instrumentation System", U.S. NIM Committee, May 1990.

(https://cds.cern.ch/record/2026631/files/nim-standard.pdf)

[7] P. Farthouat, "LTP Interface"

(https://twiki.cern.ch/twiki/bin/viewfile/Main/MyATLASDocumentation?rev=1.1;filename=

Interface_spec-v4.3.pdf)

[8] P. Farthouat, P. Gällnö, "TTC-VMEbus Interface"

(http://ttc.web.cern.ch/TTC/TTCviSpec.pdf)

[9] B. G. Taylor, "TTC laser transmitter (TTCex, TTCtx, TTCmx) User Manual"

(http://ttc.web.cern.ch/TTC/TTCtxManual.pdf)

[10] M. Joos, "An introduction to VMEbus"

(https://indico.cern.ch/event/68278/contributions/1234555/attachments/1024465/1458672/V

MEbus.pdf)

[11] Concurrent Technologies VP-E24 VME single-board computer based on Intel Atom E3800

Processor (http://www.gocct.com/wp-content/uploads/2017/09/vpe2xmsd_0617.pdf)

[12] S. Haas, P. Kuzmanovic, T. Pauly, V. Ryzhov, R. Spiwoks, "ALTI Specification", ALTI

specification review and preliminary design review, June 2008.

(https://indico.cern.ch/event/735376/attachments/1673160/2684944/ALTI-

Specification_Rev_1_2.pdf)

[13] "EDA-03627 ALTI - Atlas LTrg Interface", CERN EDMS

(https://edms.cern.ch/ui/#!master/navigator/project?P:1844187571:1844187571:subDocs,

18.08.2018.)

[14] "EDA-03628 ALTI - Atlas LTrg Interface - Mezzanine", CERN EDMS

(https://edms.cern.ch/ui/#!master/navigator/project?P:1059917782:1059917782:subDocs,

18.08.2018.)

[15] Xilinx 7 Series FPGAs Data Sheet: Overview

(https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf)

[16] Samtec QSH/QTH high-speed ground plane socket connectors

(http://suddendocs.samtec.com/catalog_english/qsh.pdf)

[17] Texas Instruments DS10CP154A 1.5Gbps 4x4 Crosspoint Switch

(http://www.ti.com/lit/ds/symlink/ds10cp154a.pdf)

https://cds.cern.ch/record/1457044/files/ATLAS%20fact%20sheet.pdf
http://iopscience.iop.org/article/10.1088/1748-0221/3/08/P08002/pdf
http://iopscience.iop.org/article/10.1088/1748-0221/3/08/P08002/pdf
http://ttc.web.cern.ch/TTC/intro.html
http://ttc.web.cern.ch/TTC/TTCrx_manual3.9.pdf
https://edms.cern.ch/ui/file/551992/2/LTP_manual_051.pdf
https://cds.cern.ch/record/2026631/files/nim-standard.pdf
https://twiki.cern.ch/twiki/bin/viewfile/Main/MyATLASDocumentation?rev=1.1;filename=Interface_spec-v4.3.pdf
https://twiki.cern.ch/twiki/bin/viewfile/Main/MyATLASDocumentation?rev=1.1;filename=Interface_spec-v4.3.pdf
http://ttc.web.cern.ch/TTC/TTCviSpec.pdf
http://ttc.web.cern.ch/TTC/TTCtxManual.pdf
https://indico.cern.ch/event/68278/contributions/1234555/attachments/1024465/1458672/VMEbus.pdf
https://indico.cern.ch/event/68278/contributions/1234555/attachments/1024465/1458672/VMEbus.pdf
http://www.gocct.com/wp-content/uploads/2017/09/vpe2xmsd_0617.pdf
https://indico.cern.ch/event/735376/attachments/1673160/2684944/ALTI-Specification_Rev_1_2.pdf
https://indico.cern.ch/event/735376/attachments/1673160/2684944/ALTI-Specification_Rev_1_2.pdf
https://edms.cern.ch/ui/#!master/navigator/project?P:1844187571:1844187571:subDocs
https://edms.cern.ch/ui/#!master/navigator/project?P:1059917782:1059917782:subDocs
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://suddendocs.samtec.com/catalog_english/qsh.pdf
http://www.ti.com/lit/ds/symlink/ds10cp154a.pdf

 65

[18] Silicon Labs SI5344 4-channel jitter attenuating clock multiplier

(https://www.silabs.com/documents/public/data-sheets/Si5345-44-42-D-DataSheet.pdf)

[19] Analog Devices AD8123 Triple Differential Receiver with Adjustable Line Equalization

(http://www.analog.com/media/en/technical-documentation/data-sheets/AD8123.pdf)

[20] Analog Devices AD5305 Quad Voltage Output 8-bit DAC

(http://www.analog.com/media/en/technical-documentation/data-

sheets/AD5305_5315_5325.pdf)

[21] Analog Devices ADCMP604 Rail-to-Rail Single-Supply LVDS Comparator

(http://www.analog.com/media/en/technical-documentation/data-

sheets/ADCMP604_605.pdf)

[22] Cypress CY7C10612G 16Mbit (1Mx16) Static RAM

(http://www.cypress.com/file/46696/download)

[23] W-Optics SAA-xAF1-111 1250Mb/s Dual Optical Duplex LC SFP Transmitter

(https://indico.cern.ch/event/735376/attachments/1671862/2682296/W-Optics_SAA-1AF1-

111SFP_2T_GbE_SM_10km_V04.pdf)

[24] Finisar FTLF1323P1xTL 155Mb/s Duplex LC SFP Transceiver

(https://www.finisar.com/sites/default/files/downloads/finisar_ftlf1323p1xtl_oc-3_lr-

1_stm_l-1.1_rohs_compliant_pluggable_sfp_transceiver_product_specification_0.pdf)

[25] Analog Devices ADN2814 Clock and Data Recovery IC with Integrated Limiting Amp

(http://www.analog.com/media/en/technical-documentation/data-sheets/ADN2814.pdf)

[26] Maxim Integrated MAXM17515 5A High-Efficiency Power Module

(https://datasheets.maximintegrated.com/en/ds/MAXM17515.pdf)

[27] Traco Power THN 15-1211 15W DC/DC converter

(https://www.tracopower.com/products/thn15.pdf)

[28] Linear Technology LTC2991 Octal Voltage, Current and Temperature Monitor

(http://www.analog.com/media/en/technical-documentation/data-sheets/2991ff.pdf)

[29] Maxim Integrated MAX1617A Remote/Local Temperature Sensor with SMBus Serial

Interface (https://datasheets.maximintegrated.com/en/ds/MAX1617A.pdf)

[30] Texas Instruments TCA9546A Low Voltage 4-Channel I2C Switch

(http://www.ti.com/lit/ds/symlink/tca9546a.pdf)

[31] Richard Herveille, "I2C-Master Core Specification", OpenCores

(https://opencores.org/websvn/filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2

Fi2c_specs.pdf)

[32] Maxim Integrated, "Embedding the 1-Wire Master in FPGAs or ASICs", Application Note

(https://pdfserv.maximintegrated.com/en/an/AN119.pdf)

[33] Randal Kuramoto, "QuickBoot Method for FPGA Design Remote Update", Application Note

(https://www.xilinx.com/support/documentation/application_notes/xapp1081-quickboot-

remote-update.pdf)

[34] SRecord 1.64 tool for manipulating EPROM load files (http://srecord.sourceforge.net/,

19.08.2018.)

[35] Teledyne LeCroy WaveRunner 104MXi-A 1GHz 10GS/s oscilloscope

(http://teledynelecroy.com/japan/pdf/cata/waverunner_xi-a_spec.pdf)

[36] Teledyne LeCroy OE455 Optical-to-Electrical Converter

(http://cdn.teledynelecroy.com/files/manuals/o_e_maunal_insert.pdf)

[37] P. Moreira, "TTCrq Manual" (https://proj-qpll.web.cern.ch/proj-

qpll/images/manualTTCrq.pdf)

[38] P. Moreira, "QPLL Manual – Quartz Crystal Based Phase-Locked Loop for Jitter Filtering

Application in LHC" (https://proj-qpll.web.cern.ch/proj-qpll/images/qpllManual.pdf)

https://www.silabs.com/documents/public/data-sheets/Si5345-44-42-D-DataSheet.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD8123.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD5305_5315_5325.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD5305_5315_5325.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADCMP604_605.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADCMP604_605.pdf
http://www.cypress.com/file/46696/download
https://indico.cern.ch/event/735376/attachments/1671862/2682296/W-Optics_SAA-1AF1-111SFP_2T_GbE_SM_10km_V04.pdf
https://indico.cern.ch/event/735376/attachments/1671862/2682296/W-Optics_SAA-1AF1-111SFP_2T_GbE_SM_10km_V04.pdf
https://www.finisar.com/sites/default/files/downloads/finisar_ftlf1323p1xtl_oc-3_lr-1_stm_l-1.1_rohs_compliant_pluggable_sfp_transceiver_product_specification_0.pdf
https://www.finisar.com/sites/default/files/downloads/finisar_ftlf1323p1xtl_oc-3_lr-1_stm_l-1.1_rohs_compliant_pluggable_sfp_transceiver_product_specification_0.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADN2814.pdf
https://datasheets.maximintegrated.com/en/ds/MAXM17515.pdf
https://www.tracopower.com/products/thn15.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/2991ff.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1617A.pdf
http://www.ti.com/lit/ds/symlink/tca9546a.pdf
https://opencores.org/websvn/filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
https://opencores.org/websvn/filedetails?repname=i2c&path=%2Fi2c%2Ftrunk%2Fdoc%2Fi2c_specs.pdf
https://pdfserv.maximintegrated.com/en/an/AN119.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1081-quickboot-remote-update.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1081-quickboot-remote-update.pdf
http://srecord.sourceforge.net/
http://teledynelecroy.com/japan/pdf/cata/waverunner_xi-a_spec.pdf
http://cdn.teledynelecroy.com/files/manuals/o_e_maunal_insert.pdf
https://proj-qpll.web.cern.ch/proj-qpll/images/manualTTCrq.pdf
https://proj-qpll.web.cern.ch/proj-qpll/images/manualTTCrq.pdf
https://proj-qpll.web.cern.ch/proj-qpll/images/qpllManual.pdf

 66

[39] Agilent E505 2B Signal Source Analyzer

(http://literature.cdn.keysight.com/litweb/pdf/5989-7273EN.pdf)

http://literature.cdn.keysight.com/litweb/pdf/5989-7273EN.pdf

 67

LIST OF ABBREVIATIONS

ALTI ATLAS Local Trigger Interface

ATLAS A Toroidal LHC ApparatuS

BCR Bunch Counter Reset

CERN
Conseil Européen pour la Recherche Nucléaire (European Organization for

Nuclear Research)

CTP Central Trigger Processor

ECR Event Counter Reset

HLT High Level Trigger

L1CT Level-1 Central Trigger

LAr Liquid Argon calorimeter sub-detector

LHC Large Hadron Collider

LTP Local Trigger Processor

LTPI Local Trigger Processor Interface

MDR Mini Delta Ribbon

MMCM Mixed-Mode Clock Manager

NIM Nuclear Instrumentation Module

PNA Phase Noise Analyzer

QPLL Quartz-crystal based PLL

RCD ReadOut Driver Crate DAQ

SBC Single-Board Computer

SFP Small Form-factor Pluggable

TDAQ Trigger and Data Acquisition

TTC Timing, Trigger and Control

TTCex TTC Encoder/Transmitter

TTCrq TTCrx and QPLL

TTCrx TTC Receiver

TTCvi TTC VMEbus Interface (TTCvi)

VMEbus Versa Module Europa bus

 68

LIST OF FIGURES

Figure 2.2.1. Multiplexing and encoding of the TTC channels A and B. .. 4
Figure 2.2.2. Current TTC distribution network in the ATLAS experiment [12]. 5
Figure 2.3.1. Legacy TTC modules, front panel view: (a) LTPI [7], (b) LTP [5], (c) TTCvi [8], (d)

TTCex [9]. .. 7

Figure 2.3.2. Frame format for short TTC commands. .. 9
Figure 2.3.3. Frame format for long TTC commands. ... 9
Figure 3.1.1. The ALTI module, front panel view [12]. .. 12
Figure 3.2.1. Fully-assembled prototype ALTI module. ... 14
Figure 3.2.2. ALTI functional block diagram [12]. ... 14

Figure 3.2.3. Example of the generic routing of a TTC signal through the cross-point switch: Level-

1 Accept. .. 15
Figure 3.2.4. ALTI clock distribution diagram. ... 16

Figure 3.2.5. BGO0/TTR2 multiplexing on the input and BGO0/BGO2 multiplexing on the output.

 .. 17
Figure 3.2.6. BGO1/TTR3 multiplexing on the input and BGO1/BGO3 multiplexing on the output.

 .. 18
Figure 4.1. High-level functional block diagram of the ALTI firmware. .. 21
Figure 4.3.1. Pattern generation memory format. .. 24

Figure 4.4.1. Snapshot memory format.. 24
Figure 4.6.1. TTC spy memory format: "command" and "timestamp". .. 25

Figure 4.9.1. Functional block diagram of the BUSY signal routing in the FPGA logic. 26
Figure 4.9.2. Functional block diagram of the CALREQ signal routing in the FPGA logic. 27

Figure 5.2.1. A section of the alti.xml file containing a bitstring description for the snapshot

memory entry. .. 29

Figure 5.2.2. A section of the alti.xml file containing the I2C block. .. 30
Figure 5.2.3. The list of low-level API methods of block "SIG". .. 31
Figure 5.2.4. The list of low-level API methods of block "PAT". ... 31
Figure 5.2.5. The list of low-level API methods of block "SNP". ... 31

Figure 5.3.1. Main menu of the ALTI menu program. .. 32
Figure 5.4.1. A section of the ALTI configuration file containing parameters in a form of key/value

pairs. ... 33
Figure 5.5.1. testAltiVME program help with the full list of parameters. .. 34
Figure 5.5.2. Typical use of the testAltiVME program. ... 34

Figure 5.5.3. testAltiInitial program help with the full list of parameters ... 35
Figure 5.5.4. Typical use of the testAltiInitial program: (a) base address initialization, basic setup

and check, (b) module configuration as a "CTP slave". .. 36
Figure 5.5.5. The QuickBoot mechanism [33]... 37
Figure 5.5.6. testAltiQuickBoot program help with the full list of parameters. 38
Figure 5.5.7. Typical use of the testAltiQuickBoot program ... 38
Figure 5.5.8. testAltiCapture program help with the full list of parameters. 39

Figure 5.5.9. An example of the ALTI pattern input file used to run the pattern generator. 39
Figure 5.5.10. Typical use of the testAltiCapture program. .. 40
Figure 5.5.11. Result of running the ttcscope program. ... 41
Figure 5.5.12. testAltiTtc program help with the full list of parameters. ... 42
Figure 5.5.13. Typical use of the testAltiTtc program. .. 43

 69

Figure 5.5.14. testAltiSync program help with the full list of parameters.. 44

Figure 5.5.15. Typical use of the testAltiSync program: without the LTPI delay. 44
Figure 5.5.16. Typical use of the testAltiSync program: with the LTPI delay of 4ns, resulting in the

histogram shift.. 45
Figure 6.1.1. Typical laboratory test setup with multiple ALTI and legacy TTC modules in the same

VME crate. ... 46

Figure 6.2.1. Setup for testing of all input/output paths of TTC signals. .. 47
Figure 6.2.2. Connection test results, LEMO BGO2 and BGO3 cabling. ... 49
Figure 6.2.3. Connection test results, LEMO BGO0 and BGO1 cabling (multiplexed). 50
Figure 7.1.1. CTP_IN->CTP_OUT path latency measurement for L1A: (a) delay of ALTI under test

included, (b) ALTI module under test bypassed. ... 52

Figure 7.2.1. Daisy-chained TTC partitions of LAr: (a) legacy setup, (b) proposed replacement

setup based on two ALTI modules. ... 55

Figure 7.2.2. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 0ns: 59ns. 55

Figure 7.2.3. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 17ns: 84ns. 56
Figure 7.2.4. Level-1 Accept latency for the ALTI-based LAr setup and optimal input

synchronization: 84ns. ... 56
Figure 7.3.1. Setups for the TTC stream jitter measurement where the optical transmitter module is:

(a) TTCex, (b) ALTI. ... 57
Figure 7.3.2. TTC stream RMS jitter oscilloscope measurements for ALTI setup without the jitter

cleaner: (a) without added jitter, RMS jitter equals 21.9ps, (b) with added jitter, RMS jitter

equals 35.4ps. ... 58
Figure 7.3.3. TTC stream jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold)

against TTCex (pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale). 61
Figure 7.3.4. Recovered clock jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold)

against TTCex (pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale). 62

 70

LIST OF TABLES

Table 2.2.1. List of TTC signals. ... 6
Table 3.1.1. LVDS-LINK connector pin-out [5]. .. 13
Table 3.1.2. Front panel coaxial LEMO connectors. ... 13
Table 3.2.1. The list of slave devices on the ALTI I2C network. .. 20

Table 4.1. ALTI VMEbus address space map. .. 22
Table 6.2.1. Standard configurations of ALTI modules in the connection test for various test paths.

 .. 48
Table 7.1.1. Cable-to-cable latencies of TTC signals for the ALTI module. 53
Table 7.1.2. Cable-to-cable latencies of TTC signals for the LTPI module. 53

Table 7.1.3. Cable-to-cable latencies of TTC signals for the LTP module. 53
Table 7.3.1. TTC stream jitter for different setups (oscilloscope measurements). 59
Table 7.3.2. Recovered clock jitter for different setups (oscilloscope measurements). 59

Table 7.3.3. TTC stream jitter for different setups (PNA measurements). .. 60
Table 7.3.4. Recovered clock jitter for different setups (PNA measurements). 60

