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CAXETAK

OBaj JOKyMEHT OIHCYje JONPHHOC ayTopa y pa3Bojy u tectupawy ATLAS Local Trigger
Interface (ALTI) moayma. ALTI je HoBu momyn au3zajuupan 3a ATLAS exciepument y CERN-y, u
JIC0 je CHCTeMa 3a BPEMEHCKY CHHXpPOHH3aIlH]jy, Tako3Banor Timing, Trigger and Control (TTC)
cuctema. llenrpanna pynkmumonamnoct ALTI Monyna je cepujcku TpaHCMUCHOHH TTPOTOKOJ KOJUM
ce IucTpuOynpajy TpUrepH u nopyke ka cBakoM o cyoaerekropa y okBupy ATLAS excriepumenta
IyTeM ONTHYKHX BJlakaHa. BpeMeHcka cHHXpOHM3alMja TpUrepa 1 nopyka je o KJby4HOT 3Ha4aja 3a
WCIpaBHY aKBU3UIIM]Y NIOJIaTaKa O YecTHIlama JOOMjeHUM HaKOH cyiapa MpOTOHCKHUX cHomoBa. ALTI
je 6U VMEG4X Moxyn koju mHTEerpuie (pyHKIIMOHAIIHOCTH 4YeTHUpH Toctojeha Mopayna Koja ce
TpenytHo kopucte y ekcnepumenty: LTP, LTPIl, TTCvi u TTCex. ALTI monyn ojenumyje
(GYHKIIMOHATHOCTH OBa YETHPU MOAYJA Yy jelaH, ajJu uX W yHampelyje, mrTo je mocneauia Beher
JIOTWYKOT Karanurtera. Moy he OMTH MOCTaB/bEH y EKCIIEPUMEHT TOKOM JIyTOTPajHOT UCKIbYYeHa
Benukor Xaaponckor Cynapaua uectuna (Large Hardron Collider, LHC) y 2019. roxunu.

ALTI je cucrem peanus3oBaH Ha JBe LITaMIlaHe IJIoOYe, MAaTUYHO] U Me3aHUH Iuiouu. CBa
KOHTpOJIHA JIOTHKA je UMILICMEHTHPaHa je y okBupy ¢upmBepa Ha Xilinx-oBom Artix-7 FPGA uwuy,
KOjU ce HaJla3u Ha MaTu4HOj moun. Oxpelhene nenose pupmBepa UMIIJIEMEHTUPAO j€ U ayTOp, U 3a
To je kopuurheH je3uk 3a onuc xapasepa Verilog u anat Xilinx Vivado.

Kontposau low-level codpreep 3a ALTI momyn Ha jesuky C++ u3Bpiinasa ce Ha “padyHapy
Ha jemHoj rwioun” Oasupanom Ha Intel mpomecopy. OBaj pauynap mnokpehe Scientific Linux
orepaTuBHU cucTeM. Pa3BujeHa je copTBepcka 6ubiaroTeka koja oMoryhasa npucTyI 10 CBUX JI€I0Ba
xapusepa u (upmsepa, 1j. omoryhasa nornyny kondurypauujy ALTI momyna. ITopen low-level
codTBepa, pa3BHjeHO je HEKOJIMKO TECT IIPOrpamMa v CKPHUIITH 32 HAMEHCKO TeCTUPAE MOjeANHAYHIX
¢bykumnonanHoctu. Takole, y mporpamckom jesuky Python pasBujen je mporpaMm 3a cBeoOyXBaTHO
tectupame npororuna ALTI momyna. OBaj mporpam ce KOPUCTH 3a TEeCTHpame CBHX Moryhux
nmyTamka Pa3IIUTUX CUrHala Kpo3 moxayn. [lomohy oBor mporpama mpoHalieHe cy rpemike Ha
HEKOJIMKO MO/TyJIa, TOBE3aHe Ca MOHTA)KOM ILTaMITaHUX TJI0Ya U JIOIIE 3aJIeMJbEHUM KOMIIOHEHTaMa.

UYuras xapasep Ha npototunuma ALTI Moxay:a je TecTiupaH y3 momoh KOHTPOJIHOT cOPTBEPA,
Ka0 ¥ MEpHHUX MHCTpYMEHaTa MOIMyT OCIMIOCKONA U aHanu3aropa cnekTpa. To ce Takohe ogHocH U
Ha TeCTHpame PYHKINOHATHOCTH UMILIEMEHTUPaHUX y okBHpY pupmBepa FPGA. OBa tectupama
XapzaBepa 1 (yHKIIMOHATHOCTH IIOMOIJIA CY J1a ce poHal)y y rpelike y Au3ajHy, Kao ITo cy: OOpHYTH
MOJIAPUTET jeHOT AU(EpeHIMjaTHOr Napa, MMOrpellaH HaloH Halajamka 3a YUIIOBE KOMIaparopa,
uta. CBe 0Be IpelIKe Cy UCTIPaBbEHE y APYroj BEP3HjU IITAaMIIaHUX II04a Koje he ce mpous3BecTH 3a
cienehy Bep3ujy ALTI mporoTtuna.

ITopen Tectupama xapBepa 1 (QyHKIIMOHATHOCTH, ypal)eHa cy u mepewa neppopmancu ALTI
Monyna. Kao HajBakHMjU TapaMeTap, MEpPEHO j€ KallllbEemhe Tj. JIaTeHLa TPUIep CHUTHala oJ
€JIEKTPUYHOI' CUTHaJa Ha yja3y 0 MojaBe TpUrepa y ONTHYKOM CUTHATYy Ha u3iazy. Pesynraru
Mmokasyjy aa cucteM 6asupad Ha ALTI Mogymy Moxe /1a mocTUTHE jeAHAKY JaTEHITy Kao M CUCTEM
6a3upaH Ha noctojehuM MoayIHMa.

Jlpyru OutaH napamerap nephopMaHCH IpeAcTaB/ba KOJMYNHA [IUTEPA Y U31a3HOM CHTHAITY
KOjU ce JlaJbe ONTHUYKH MPEHOCH J10 Cy0/eTeKTopa, jep BelMKa KOJIMYMHA [IUTEpa MOXKE HapyLIIUTH
WCTIPaBHO JEKOJIOBak-E IMOPYyKa U TPUTEPA O] CTPaHe MPHjeMHHKA. TeCTOBH Cy IMOKa3alH BUIIA HUBO
putepa y cucremy 6asupanoM Ha ALTI monyny y omHocy Ha mocrojehm cucrem. Mehytum,
TeCTHpama Ha IPUjEMHHUIIIMA Cy TI0Ka3ajia Ja je IEKOBamke YCIEIIHO y 00a ciryJaja.



ABSTRACT

This paper describes the author’s contribution in the development and testing of the ATLAS Local
Trigger Interface (ALTI) module. The ALTI is a new module designed for the ALTAS experiment at
CERN, a part of the Timing, Trigger and Control (TTC) system. It is a 6U VMEG64x module which
integrates the functionalities of four existing modules currently used in the experiment: LTP, LTPI,
TTCvi and TTCex. The module will be deployed during the long shutdown LS2 of the Large Hadron
Collider (LHC) in 2019.
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1. INTRODUCTION

In the ATLAS high energy physics experiment at CERN, a new module called ATLAS Local
Trigger Interface (ALTI) is being developed. This module provides the interface between the Level-
1 Central Trigger Processor (CTP) and the timing, trigger and control (TTC) optical broadcasting
network to the front-end electronics of each of the ATLAS sub-detectors. ALTI is a replacement for
four existing modules currently being used in the experiment: Local Trigger Processor (LTP), Local
Trigger Processor Interface (LTPI), TTC VMEDbus Interface (TTCvi) and TTC Encoder/Transmitter
(TTCex). It has become increasingly difficult to produce spares for these four modules, and the
current spare modules have obsolete and ageing components. In that sense, the ALTI combines and
upgrades the functionalities of these modules while preserving backward compatibility. It also
extends them and adds new features due to increased amount of programmable logic resources.

ALTI is a custom-made 6U VME64x module made out of two PCBs (motherboard and
mezzanine) and it takes up two slots in the VMEG4x crate. It is an FPGA-based system and uses
Xilinx’s 7-Series FPGA chip from the Artix family (Artix-7). The module is connected with other
modules in the same crate through a common VME backplane. Control software for the ALTI is being
executed on a single-board computer (SBC) with Intel’s CPU, located in the first slot in the same
crate. The SBC runs Scientific Linux operating system and has an on-board interface chip which acts
as a PCI-to-VME bus bridge.

As of late 2017, four fully assembled ALTI prototype modules have been available. There are
several aspects of the ALTI development and testing that the author has contributed to since: some
parts of the FPGA firmware, software for configuration, control and testing of the module, as well as
module testing and various performance measurements. For the firmware development, Verilog
hardware description language and Xilinx Vivado tool have been used. Low-level software has been
written in C++, and it allows access to all the functionalities available in the hardware and firmware.
For thorough and systematic testing of the module, a higher level software has been written in the
Python programming language.

The author’s main contribution to the ALTI project is a software suite for testing and validation
of the ALTI prototype modules. Automatization of the testing will allow quick evaluation and
qualification of the mass-produced modules which will be necessary for the experiment. Low-level
software library will be used further for the run control application development, a control system
used to operate the whole experiment.

In Chapter 2 of this document, a brief overview of the current TTC system in the ATLAS
experiment will be given. In this way, the reader will be introduced to the specific nomenclature of
modules, signals and interfaces being used, so it lays the foundation necessary for the later chapters.
This chapter will also emphasize the flaws of the current system the and further explain the motivation
to migrate to the new, ALTI-based system.



The ALTI hardware architecture will be presented in the Chapter 3. Then, in Chapter 4, all the
functionalities of the module will be explained in detail. These functionalities are reflected in the
FPGA firmware, which is also described in Chapter 4. Relevant parts of the firmware (the one the
author has contributed to) will be presented in detail, while the others will be described briefly. The
software that has been developed is the main topic of the Chapter 5. This includes both the low-level
software for configuration, control and testing of the module, as well as the software of higher level
used for (semi-)automatized tests. Numerous tests that have been used to verify the proper functioning
of the modules are described in Chapter 6. Performance of the ALTI module was determined with
various measurements, all of which are described in detail in Chapter 7. The same tests have been
done for the modules in the existing TTC system, in order to compare them to the new ALTI module.
This comparison is also a subject of Chapter 7. Finally, Chapter 8 summarizes all the work that was
done and the results that were obtained, and gives a conclusion to the thesis.



2 . OVERVIEW OF THE CURRENT SYSTEM

A brief introduction to the relevant parts of the ATLAS experiment is given in Section 2.1.
Then, in Section 2.2, the TTC system that the ALTI is made for is described. This description includes
the current distribution of modules in the system, as well as the main signals being used in the TTC.
Section 2.3 gives an overview of the four modules that are currently being used in the TTC system
(so called "legacy™ modules). Finally, Section 2.4 describes the VMEDbus that these legacy modules
are based on, as is the ALTI module.

2.1. ATLAS experiment

The ATLAS experiment is a general-purpose particle physics experiment operating at the
Large Hadron Collider (LHC) at CERN [1]. The full LHC turn consists of 3564 bunch crossings
(BC). The bunch clock is the main timing signal produced by the LHC and has the frequency of
40.079MHz. The second timing signal is the orbit (ORB) signal, which indicates the start of a new
LHC turn and allows one to identify the bunch crossings. The LHC orbit period is about 90ps, while
the orbit pulse width is 40BCs, or about 1ps.

Several tens of proton-proton collisions that happen each bunch crossing yield about a billion
collisions each second [1]. Particles created by these collisions are then captured by various types of
particle detectors. The Level-1 calorimeter and Level-1 muon trigger systems identify interesting
particle candidates. The Central Trigger Processor (CTP) makes combinations of these and takes the
final decision, reducing the event rate to a maximum of 100kHz [2]. This is called the Level-1 trigger
system and the corresponding event signal produced by the CTP is called Level-1 Accept (L1A). The
High Level Trigger (HLT) system of ATLAS operates at lower event accept and readout frequencies
than the Level-1 trigger system. High level trigger systems are based on commercial computers and
networks, unlike the Level-1 trigger system which is based on custom electronics.

2.2. TTC system

Level-1 central trigger system is followed by the Timing, Trigger and Control (TTC) system,
whose backbone is the optical transmission network used for communication with the sub-detector
front-end electronics. The TTC system is also based on custom electronics, and is composed of
several VME modules or boards. This system is responsible for the distribution and fan-out of the
timing signals (BC, ORB), the trigger signal (L1A, together with an 8-bit trigger type word) and the
control commands like Bunch Counter Reset (BCR) and Event Counter Reset (ECR). Proper timing
and control provided by the TTC system is essential for making sure that the right data ("interesting"
physics) are read out from the sub-detector buffers in due time. A detailed overview of the TTC
system can be found on one of the websites listed in the bibliography [3].

The triggers (channel A) and commands (channel B) are time-division multiplexed and
biphase-mark encoded into an optical signal called the TTC stream, and then sent to the front-end
electronics of each sub-detector system via optical fibre networks. Multiplexing of channels A and B
and their encoding into the TTC stream is shown on Figure 2.2.1.



«¢— channel A—p4€—channel B—p

X : X >2 >< idle TTC stream
==

4— ~12.5ns —»  (~80Mb/s) !

~ 25ns

Figure 2.2.1. Multiplexing and encoding of the TTC channels A and B.

Two bits are being transmitted on every bunch crossing, one for each channel. Channels A and
B are thus interleaved and the carrier frequency is two times the BC frequency, which gives the rate
of about 80M bits per second. A transition on the TTC stream indicates a logic "1", while logic "0"
is assumed if no transition occurs, as indicated on the Figure 2.2.1. When no triggers are being
accepted and no B-channel commands are being transmitted, the TTC stream is idle. In that case,
channel A'is a logic "0" (no transitions occurring) and channel B is a logic "1" (transitions occurring).

The front-end electronics of the sub-detectors use a TTC Receiver (TTCrx) ASIC module to
receive and decode the TTC stream [4]. From the TTC stream only, the receiver is able to decode and
de-multiplex the channels A and B. First, the receiver makes an initial guess on which bit corresponds
to which channel, since the channels are interleaved. Because of the constraint made on the maximum
L1A rate and the fact that the idle bits are different for channels A and B, the receiver is able to switch
the phase of the stream if the initial guess turns out to be wrong. The BC clock is also recovered in
the process.

TTC system is partitioned in order to be able to run sub-detectors (or parts of sub-detectors)
independently and in parallel. Associated with each sub-detector is a link from the CTP to one or
more TTC partitions. Currently, there are 21 connections from the CTP to 35 different TTC partitions
in the ATLAS experiment, some of which are daisy-chained. Currently, the maximum daisy chain
length is three partitions. Each partition is typically composed of the following modules: LTPI
(optional), LTP, TTCvi and TTCex. A detailed sketch of the current TTC system distribution is shown
on Figure 2.2.2.
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Figure 2.2.2. Current TTC distribution network in the ATLAS experiment [12].

However, the next ATLAS upgrade will include new sub-detectors which will require TTC
modules. Unfortunately, CERN is low on spare TTC modules. Also, some of the TTC modules are
now more than 15 years old and use components that are now obsolete. Therefore, it is not possible
to reproduce modules for the new sub-detectors and to replenish the stock of available spare modules.
Other issues of the legacy modules include: aging effects, no firmware replacement flexibility and

very limited monitoring capabilities.



This is why the new ALTI module was created. It is designed to replace a combination of
LTPI, LTP, TTCvi and TTCex with a single module. The replacement also creates a benefit of getting
more free space in TTC VME crates. ALTI provides almost full backwards compatibility with the
hardware of other modules. Full compatibility is not provided from the interfaces point of view,
though, since space on the front panel is lost in the transition from four separate VME boards to a
single, 2-slot VME board. More details on the compromises made because of this will follow in the
next chapter.

From the point of view of functionality, the ALTI keeps all the functions of the previous
modules. Some of them are extended and optimized, though, since more powerful logic resources are
available. Additional useful functionalities are available, too.

2.2.1. TTC signals

In order to understand the functionality of the TTC system, it is necessary to get familiar with
the interface signals being used. There are 22 digital TTC signals in total (some of them logically
grouped together), and they are listed in the Table 2.2.1. For each of the TTC signals, once can see a
description of a typical use in the experiment in the same table. Direction column in this table serves
to make a distinction between signals going downstream (from CTP, forward) and upstream (to CTP,
backward).

Table 2.2.1. List of TTC signals.

TTCSIGNAL | DIRECTION DESCRIPTION

BC forward Bunch crossing clock: 40.079MHz, 50% duty ratio.

ORB forward Periodic signal representing one LHC turn. Period is 3564 bunch
crossings, pulse width is 40BC.

L1A forward Level-1 trigger accept signal of 1BC pulse width.

TTR[3..1] forward Auxiliary triggers generated locally by the partition.

BGOI[3..0] forward Signals for sending B-channel TTC commands.

TTYP[7..0] forward 8-bit trigger type identification word associated with each L1A.

BUSY backward Used to infor.m the CTP to introduce L1A dead-time, i.e. throttle
L1A generation when the readout buffers are overwhelmed.

CALREQ[2..0] backward 3-bit word igsueq by the sub-detector and used by the CTP to
generate calibration triggers.

2.3. Legacy TTC modules

All of the legacy TTC modules use the TTC signals mentioned in the previous section. Each
of these modules has a particular set of functionalities which will be described in this section. The
modules differ in the interfaces for the TTC signals on their front panels. This can be clearly seen on
Figure 2.3.1, where the legacy TTC modules are shown from the front panel view.
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2.3.1. Local Trigger Processor (LTP)

The main purpose of the LTP is to receive the timing, trigger and control signals from the CTP
and inject them into the TTC distribution system through TTCvi. More details can be found in the
LTP technical description and user manual [5].

Connection with the CTP is done with LVDS-LINK cables. The LTP has two female 50-pin
3M Mini Delta Ribbon (MDR) connectors, the one being an input (CTP_IN link) and the other an
output (CTP_OUT link), as can be seen on Figure 2.3.1. (b). In case of daisy-chaining the TTC
partitions, the output is used to connect the module with the downstream LTP.

Electrical signals can also be injected in the LTP using coaxial cables and LEMO connectors
on the front panel. There are also LEMO connectors for output signals, which are very useful for
looking at the signal waveforms on the oscilloscope. Input LEMO connectors are suited for standard
Nuclear Instrumentation Module (NIM) logic levels. This is a standard that uses negative logic, with
0V low voltage, and -0.8V high voltage on a 50 termination [6]. There are two sets of output LEMO
connectors: one set for local use and the other for connecting to the TTCvi downstream. All local
LEMO outputs are NIM-level. The ones used for the connection with the TTCvi are a bit different:
latency critical signals (BC, ORB and L1A) are routed in ECL logic, which is faster.



For trigger type and calibration request, there are custom made input/output ports on the front
panel. Trigger type connector is usually used as an output and is connected to the TTCvi connector
of the same type with a flat cable. This connector can also be used as an input (programmable), as
well as the calibration request connector.

In addition to being run by the CTP (so called "CTP slave™ mode), the LTP can also run in
standalone mode (so called "Master" mode). That means that the TTC signals can be generated locally
by the LTP. Master mode is typically used in laboratory testing, when the full CTP system is not
available.

For generating the BC clock internally, there is an on-board 40.079MHz quartz oscillator. The
internal ORB signal is derived directly from this clock. Orbit signal and the other TTC signals can
also be generated from the on-board memory called pattern generation memory. Pattern generation
memory can be run in continuous mode (pattern gets repeated periodically) and in single-shot mode
(triggered by the VME access or the ORB signal). Entries of this memory contain the desired values
of TTC signals, and one entry correspond to a single BC period.

To sum up, the LTP is used for TTC signal propagation and generation. Switching of the input
signals to the outputs is very flexible: signals on the CTP_OUT link and LEMO outputs can be
sourced from the CTP_IN link, front panel connectors, or generated internally in the LTP. However,
the latency for different TTC signals through the LTP is not equal because of the different circuitry.

2.3.2. Local Trigger Processor Interface (LTPI)

The main purpose of the LTPI is to help run TTC partitions in parallel. More details can be
found in the LTPI functional description [7].

Unlike the LTP, the LTPI has two pairs of LVDS-LINK connectors called CTP_IN/CTP_OUT
link and LTP_IN/LTP_OQUT link. This allows the reception of TTC signals from an upstream CTP,
as well as from another parallel LTPI. Both LVDS-LINK inputs have a separate equalizer in the LTPI
to allow the undistortion of the TTC signals when long LVDS cables are used.

As for the LEMO connectors, there are NIM-level input and output connectors for BC, ORB,
L1A, TTR and BGO signals. Separate connectors for NIM and TTL-logic levels are available for the
BUSY input signal. There are no input/output ports for trigger type and calibration request, so these
signals can be propagated only through the LVVDS connectors.

Preceding the CTP_OUT link is the delay chip, which allows fine shifting (with 0.5ns step) of
the TTC signals (all except the BC).

To summarize, the main function of the LTPI is to switch TTC signals between partitions.

2.3.3. TTC VMEDbus Interface (TTCvi)

The main purpose of the TTCvi is to endode the signals for TTC channels A and B. Channel
A is carrying the L1A triggers, while the channel B is carrying TTC commands, as described in
Section 2.2. Commands on the B channel are framed, formatted and protected with Hamming code
for error detection and correction. More details can be found in the TTCvi functional description and
user manual [8].

One can select between four external triggers: L1A and three test triggers. There is also an
ability to generate random triggers with a few predefined average frequencies, ranging from 1Hz to
100kHz.

There are two types of TTC command formats: short and long. Start bit is indicated by a logic
"0" on the B-channel portion of the TTC stream. The second bit indicates the type of the frame: logic
"0" is used for short, and logic "1" is used for long commands. Then, the remainder of the command
depends on the frame type, as shown on figures 2.3.2 and 2.3.3 for short and long commands,
respectively.



start  frame type data [7..0] checksum [4..0] stop

0 0 ddddddd cccce 1

Figure 2.3.2. Frame format for short TTC commands.

start frame type address [13..0] ext/int 1 sub-address [7..0] data [7..0] checksum [6..0] stop

0 1 aaaaaaaaaaaaaa e 1 SSSSSSSS ddddddd cceeecc 1

Figure 2.3.3. Frame format for long TTC commands.

Short commands just carry an 8-bit data field. On the other hand, the long commands carry a
few additional fields: 14-bit address field for addressing a specific TTCrx receiver, 8-bit sub-address
filed for addressing a specific register in the addressed receiver. When the address field is 0, it means
that the command is being broadcasted to all of the TTCrx receivers. Otherwise, a receiver with a
given address is being individually addressed. External/internal bit field indicates whether the data is
being written to the addressed register of the receiver, or made available externally and transmitted
to the front-end electronics. Every command is terminated with a stop bit that returns the B-channel
to the idle state.

Hamming code is used to protect the command contents. Start, stop and frame type bits are
not included in the Hamming code scheme. For short commands, Hamming code with Hamming
distance 5 is used to protect 8 information bits. On the other hand, Hamming code with Hamming
distance 7 is used to protect 32 information bits for the long commands. Single-bit error correction
and double-bit error detection is possible using this code.

Besides the short/long command distinction, there is another major distinction between the
TTC commands: synchronous and asynchronous commands.

Synchronous commands have a precise timing with respect to the LHC orbit. These are time-
critical commands like the Bunch Counter Reset, which is sent at a fixed point on each orbit in order
to adjust the phase of the bunch counters in the receivers. BCR is a short, synchronous command that
is broadcasted to all of the receivers. Its data field is equal to 1.

Asynchronous commands are those that are not time-critical, like commands for calibration of
the front-end electronics. Their timing is not fixed to the orbit and they have lower priority than
synchronous commands. Event Counter Reset (ECR) is a short, asynchronous command that is sent
to reset the 24-bit L1A (event) counters in the receivers. Data field of the ECR is equal to 2. Another
example for asynchronous commands are the trigger type cycle commands. These are the four long
commands that are being transmitted following each L1A. Trigger type word is the data content of
the first of these commands, while the other three commands are used to transmit the current value
of a 24-bit event or orbit counter in the TTCvi (programmable).

There are four independent channels for sending commands, called BGOO0, BGO1, BGO2 and
BGO3. Associated with each of the four channels is a dedicated FIFO memory for storing the
commands to be transmitted. For sending the commands in a loop after the FIFO gets empty, a so
called retransmit FIFO mode is used. Choosing the types of commands associated with each BGO
channel is completely flexible: all of them support synchronous (repetitive and single-shot) and
asynchronous commands (triggered by external BGO signal, a VME access or by a write access to
the FIFO). However, by convention in the ATLAS experiment, the BGOO channel is associated with
the BCR, and the BGOL is associated with the ECR.



The timing of synchronous commands is governed by internally generated inhibit signals.
Each BGO channel has a separate inhibit signal associated with it. The inhibit signal is a pulse train
with the period of one orbit, with fully programmable pulse width and delay with respect to the orbit.
The transmission of a synchronous command commences at the end of the inhibit pulse. Thus, the
width of the inhibit pulse must be chosen properly, such that any ongoing command gets transmitted
during that interval of time. The empirically determined value of the minimum inhibit width for the
TTCuvi is 51BCs. This allows for the full transmission of a long command over this interval of time.

Since the synchronous commands must have precise timing, they have the highest priority.
Moreover, channels associated with signals BGOO through BGOO have a descending priority. The
full list of commands ordered by priority, from highest to lowest, is the following:

1) Synchronous commands BGOO to BGO3
2) Asynchronous commands BGOO to BGO3
3) Trigger type commands

4) VME-mapped commands

2.3.4. TTC Encoder/Transmitter (TTCex)

The main purpose of the TTCex is the conversion the electrical A and B channels to the optical
TTC signal. More details can be found in the TTCex user manual [9].

Lasers for the TTCex transmitters operate at the wavelength 1280-1330nm [9]. There are 10
optical outputs available on the front panel, each providing the optical power of about 0dBm. Standard
ST-type optical connectors are used.

2.4. VMEDbus

VMEDbus has been the technology of choice in CERN for many years. It originated in 1982
and it provides an open mechanical, electrical and protocol standard [10].

VMEDbus crates provide a common backplane and include a mounted power supply. Typical
VME crate consists of 21 slots for inserting the modules, with the SBC installed in the first slot as a
master and arbiter on the bus. In particular, the Concurrent Technologies VP-E24 single-board
computer [11] has been used, which has an on-board Tundra Universe Il interface chip that acts as a
bridge from the Intel’s PCI to the VMEbus on the backplane. VME boards come in three different
standards based on their size and the connectors they utilize: 3U, 6U and 9U (1U = 1.75 inches). All
of the previously mentioned TTC modules are 6U VMEG64x boards, as is the ALTI module.

All VME lines use TTL levels with a voltage swing of 0V to 5V. Data and address lines are
active high, while the protocol lines (data and address strobes, data acknowledge, etc.) are active low.
VMEDbus is big-endian, so it stores the most significant byte a 32-bit word at the lowest address. It
supports both single cycles and block transfers. Legacy TTC modules use 24-bit addressing and the
ALT]I uses 32-bit addressing, while they all use 32-bit data on the VMEbus for communication.

By the VMEG64x standard, each VME slave has an address space of 512kB reserved
Configuration ROM (CR) and Control and Status Register (CSR) sections. This is called CR/CSR
space, and is used in 24-bit addressing mode. Included in this section are identification registers for
identifying the board and the manufacturer. However, the most important registers in the CR/CSR
space are the BAR and the ADERO. The BAR is a read-only register containing the slot number of
the given module. The ADERQO is a read/write register used to dynamically change the VME base
address of the module. By default, ADERO is preloaded upon startup with a value depending on the
BAR. This is called geographical addressing.

10



3. ALTI HARDWARE SPECIFICATION

In this chapter, the hardware specification of the ALTI module will be briefly described. A
more detailed description of the ALTI hardware is given in the ALTI specification document [12].
First, the interfaces available on the front panel of the ALTI module are described in Section 3.1.
Then, the module architecture will be presented in Section 3.2, with each relevant part of the hardware
described in a separate subsection.

3.1. Interfaces

The front panel view of the ALTI module is shown on Figure 3.1.1.

On the ALTI front panel, there are four 50-pin 3M MDR female connectors for LVDS-LINK
cables. Two of them, called CTP_IN and ALTI_IN, are used as inputs. Corresponding output ports
are called CTP_OUT and ALTI_OUT. These are analogous to the LTPI parallel cable connectors.
The connectors are fully compatible with the ones used in LTP and LTPI modules, with the pin-out
shown in Table 3.1.1. Also, the same LVDS-LINK cables with point-to-point signalling are used
interchangeably between the three modules. For the LVDS receivers, a 1002 termination is used.

Several pairs of coaxial LEMO connectors are available for local injection and monitoring of
the TTC signals. Because of the limited space on a front panel of a 2-slot VME module, not all the
TTC signals have an independent input and output LEMO connector. The list of available LEMO
connectors is shown in Table 3.1.2. Since the BGOO and BGO1 connectors are not available,
multiplexing with the inputs for TTR2 and TTR3 and outputs for BGO2 and BGO3 has been
introduced. This will be further discussed in the Subsection 3.2.3. All input and output connectors are
compatible with NIM logic levels. In addition, the input connector for the BUSY signal can be
programmed to accept both NIM and TTL logic levels. NIM inputs are terminated with 50Q resistors
internally and the outputs should be terminated with 50Q resistors to obtain the necessary logic levels
at the destination.

The cages for the Small Form-factor Pluggable (SFP) transceiver and the dual transmitters are
also available on the front panel. Five of those are for the dual transmitters, while the sixth cage is for
a transceiver. This gives a total of 11 optical outputs and a single optical input per module.

The calibration request input is in the form of an RJ45 connector, compatible with a standard
Ethernet UTP cable differential pair wiring. Hence a standard Ethernet cable can be used as an input.
In order to drive the calibration request input from an LTP, a custom patch cable has been made, with
a ribbon connector on one side, and a standard RJ45 connector on the other.

Some LED indicators for monitoring and diagnostics purposes are also available on the front
panel. These include the LEDs which indicate: power supply status, VME access, detection of L1A,
ORB, BUSY and CALREQ, PLL lock, optical link statuses. Bi-colour red/green LEDs are used for
some of these to distinguish between correct and faulty functioning.

11
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Figure 3.1.1. The ALTI module, front panel view [12].



Table 3.1.1. LVDS-LINK connector pin-out [5]. Table 3.1.2. Front panel coaxial LEMO connectors.

SIGNAL PAIR# | PIN#LEFT | PIN#RIGHT NAME DIRECTION | LOGIC LEVEL
TTR1 25 50 25 BC IN Input NIM
TTR2 24 49 24 BC OUT Output NIM
TTR3 23 48 23 ORB IN Input NIM
TTYPO 22 47 22 ORB OUT | Output NIM
TTYP1 21 46 21 L1AIN Input NIM
TTYP2 20 45 20 L1IAOUT Output NIM
TTYP3 19 44 19 TTR1IN Input NIM
TTYP4 18 43 18 TTR1 OUT | Output NIM
TTYPS 17 42 17 TTR2 IN Input NIM
TTYP6 16 41 16 TTR2 OUT | Output NIM
TTYP7 15 40 15 TTR3IN Input NIM
BGOO0 14 39 14 TTR3 OUT | Output NIM
BGO1 13 38 13 BGO2 IN Input NIM
BGO2 12 37 12 BGO2 OUT | Output NIM
BGO3 11 36 11 BGO3 IN Input NIM
CALREQO | 10 35 10 BGO3 OUT | Output NIM
CALREQ1 | 9 34 9 BUSY IN Input NIM/TTL
CALREQ2 | 8 33 8 BUSY OUT | Output NIM
BUSY 7 32 7
GND 6 31 6
L1A 5 30 5
ORB 4 29 4
GND 3 28 3
BC 2 27 2
GND 1 26 1

3.2. Architecture

The ALTI module is a 6U VME64x module that takes two slots in a VME crate. It consists of
two PCBs: a motherboard and a mezzanine. Project documents for the motherboard and the
mezzanine, including the schematics, the PCB layout and mechanical descriptions are publically
available on the CERN Engineering and Equipment Data Management System (EDMS) [13] [14].

All of the logic is located on the motherboard. This includes the Xilinx Artix-7 XCA200T
FPGA [15], the power supply network, the 12C network, RAM memories and other discrete logic and
integrated circuits. The motherboard houses the VMEbus connectors, two LVDS-LINK input
connectors, six SFP modules and the calibration request RJ45 connector.

The mezzanine plugs into the motherboard via a Samtec high-speed connector [16] carrying
180 signals, three power supplies and a ground. It houses all of the coaxial input and output connectors
as well as the two LVDS-LINK output connectors.

A fully assembled ALTI prototype module is shown on Figure 3.2.1, while the functional
block diagram of the ALTI hardware is shown on Figure 3.2.2.
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Figure 3.2.1. Fully-assembled prototype ALTI module.
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Figure 3.2.2. ALTI functional block diagram [12].
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3.2.1. Cross-point switches

All forward-going TTC signals, 18 of them in total (see Table 2.2.1), are routed through the
Texas Instruments DS10CP154A 4x4 LVDS cross-point switches [17]. This device has an 12C
interface and allows independent routing of all four inputs to any of the four outputs, with high speed
and low channel-to-channel skew.

Inputs of the cross-point switch are sourcing the corresponding TTC signal from: CTP input
LVDS-LINK connector, ALTI input LVDS-LINK connector, LEMO input connector and the FPGA
output. For convenience, we call these sources CTP_IN, ALTI_IN, LEMO_IN and FROM_FPGA,
respectively.

Outputs of the cross-point switch are driving the corresponding TTC signal on: CTP output
LVDS-LINK connector, ALTI output LVDS-LINK connector, LEMO output connector and the
FPGA input. For convenience, we call these destinations CTP_OUT, ALTI_OUT, LEMO_OUT and
TO_FPGA, respectively.

The routing of the Level-1 Accept signal through the cross-point switch is shown on Figure
3.2.3. This generic routing applies to all of the TTC signals, except the following: BC, TTR2, TTR3,
BGO2 and BGO3. The slight exceptions to this generic routing are also the TTYP[7..0] cross-point
switches, which do not have the front panel LEMO input and output connectors.

As the signal which is clocking the whole module, the BC has a special routing path. Because
of the multiplexing on the LEMO coaxial inputs and outputs for TTRs and BGOs, these routings are
special, too. These non-generic routings the TTC signals will be described in the following sections.

L1A L1A
CTP_IN » INO ouTo » || cTP_oOUT
] 4x4 ]
L1A -poi L1A
ALTI_IN Ny 1O PoINt 4y » il ALTL_OUT
switch
L] L1A L]
LEMO_IN @L> IN2 ouT2 L1A »© LEMO_OUT
——»IN3 ouT3

a N

L1A_FROM_SWITCH |«

FPGA

L—— L1A_TO_SWITCH

N /

Figure 3.2.3. Example of the generic routing of a TTC signal through the cross-point switch: Level-1 Accept.
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3.2.2. Clock distribution

The ALTI module has the following clock signal distribution, as shown on the diagram on
Figure 3.2.4.

The cross-point switch paths to and from the FPGA differ with respect to the generic TTC
signal routing. Before going to the FPGA, the clock output coming from the switch is also forwarded
to a 4-channel jitter attenuator and clock multiplier circuit Silicon Labs S15344 [18]. The role of this
circuit is to provide a clean clock to the FPGA, with decreased jitter. From here on, we will call this
circuit the "jitter cleaner". The jitter cleaner has an 12C interface and is fully programmable. It features
the holdover mode, which is automatically activated once the selected input clock becomes invalid.
In holdover mode, the jitter cleaner continues providing the output clock based on the sampled input
clock prior to the failure. This minimizes the disturbance of the phase and frequency of the TTC
clock, but can also be dangerous because of long-term drifts. It is therefore advised to acknowledge
the jitter cleaner interrupt (asserted upon entering the holdover mode) by switching to a stable clock
source.

In standalone tests when ALTI acts as a master, the clock can be provided to the FPGA logic
with an on-board fixed 40.079MHz fixed-frequency crystal oscillator (FXO). With a help of a 2/1
multiplexer, it is also possible to use the clean clock coming from the FPGA as an input to the cross-
point switch.

1 Yo BC

CTP_IN |} » INO ouTo » || ctP_our
] 4x4 ]
| sc -Doi BC

ALTIIN | oy CrOsSPOINt s || ALTL OUT
switch
L] BC L]

BC BC
LEMO_IN ©———»{IN2 ouT2 »©@ LEMO_OUT
» N3 ouT3 i

/ CLK_FROM_SWITCH \

40.079MHz FXO

2 » CLK_FROM_FXO
_ _|
3
ouT
INO > INO 0ouTo » CLEAN_CLKO
’\271)( » N1 Si5344 oumi » CLEAN_CLK1 FPGA
INL jitter
. b o——IN2  ¢leaner OUT2 » CLEAN_CLK2

’—> IN3 0ouT3 —‘

KCLK_TO_SWITCH FPGA_FXO_MUX_SEV

Figure 3.2.4. ALTI clock distribution diagram.
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3.2.3. TTC signals multiplexing

The lack of space on the ALT]I front panel has resulted in the fact that there are no dedicated
LEMO inputs and outputs for the BGOO and BGOL signals. In order to still be able to inject and
monitor these signals using the front panel connector, a multiplexing has been introduced in the
following way.

Front panel LEMO input for the TTR2 is fanned out to two cross-point switches: one
corresponding to the TTR2 itself, and the other corresponding to the BGOO. The same routing applies
to TTR3 LEMO input and TTR3/BGO1 cross-point switches.

Outputs of the BGOO and BGO2 cross-point switches corresponding to a LEMO_QUT are
connected to the inputs a 2/1 multiplexer. Selection of the desired signal on the LEMO output is done
with a single programmable pin from the FPGA. The same routing applies to the cross-point LEMO
outputs of BGO1 and BGO3.

The multiplexing of BGO0, BGO2 and TTR2 is shown on the diagram on Figure 3.2.5. The
multiplexing of BGO1, BGO3 and TTR3 is shown on the diagram on Figure 3.2.6.

| BGOO BGOO |
» INO ouTo » i
creon | i il cre_out
ii| BGO2 4x4 BGO2 |ii
: o IN1 cross-—pomt ouT1
switch
TTR2 BGOO
LEMO_IN (o) > IN2 our2
IN3 ouT3
A,
/ BGOO_FROM_SWITCH
FPGA_BGOO_OUT 3
INO
MUX BGO2
FPGA FP_BGO_SEL_20 SEL 21 ouT, '@ LEMO_OUT
FPGA_BGO2_OUT (N1
\\ BGO2_FROM_SWITCH
IN3 ouT3
BGO2
LEMO_IN (0} » IN2 out2
4x4
BGOO Ny CrossPoint o BGOO
switch NI
BGO2
ALTI_IN ALTI_OUT
| BGO2 BGO2 |ii
» INO ouTo » i

Figure 3.2.5. BGOO/TTR2 multiplexing on the input and BGO0/BGO2 multiplexing on the output.
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Figure 3.2.6. BGO1/TTR3 multiplexing on the input and BGO1/BGO3 multiplexing on the output.

3.2.4. Cable equalizers

High-frequency transmission losses can occur when long LVDS-LINK cables are used. This
is common in the experiment, where cables up to 40 meters long are used. In order to compensate for
these losses, two cable equalizers are used in the ALTI, for both cable inputs (CTP_IN and ALTI_IN).

The circuit that is used for equalization in the ALTI is the Analog Devices AD8123 triple
differential receiver with adjustable line equalization [19]. A total of six of these devices are necessary
to equalize all 18 forward-going TTC signals coming from a single cable connector. A total of four
different analog inputs are used to adjust the equalization: V_PEAK, V_POLE, V_OFFSET and
V_GAIN. Two Analog Devices AD5305 8-bit D/A converters [20] are controlled via 12C and used
to drive these equalizer inputs. Offset DC voltage on the output is controlled with V_OFFSET. The
other three inputs are used to adjust the cable frequency response of the equalizer. Single-ended
outputs of the equalizers are converted back to differential LVDS signals using Analog Devices
ADCMP604 comparators [21].

3.2.5. Memories

The ALTI uses Cypress CY7C10612G 1Mx16 SRAM chips [22]. Six of these chips are
organized in three memory banks which are accessed as 1Mx32 memories through the VME interface.
The first memory can be used either as a pattern generation memory or a snapshot memory. The other
two memories are used for storing the TTC triggers and commands received over the optical receiver

(spy memory).
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3.2.6. Optical transmitter and receiver modules

Five dual transmitter cages are populated with W-Optics SAA-xAF1-111 SFP modules [23],
while the Finisar FTLF1323P1XTL SFP transceiver module [24] is used. Both SFP modules use
single-mode fibre transmission and reception at 1310nm wavelength. Input and output connectors are
of type LC, so LC-ST single-mode patch cords are necessary to connect with the optical splitters
currently used in the experiment. The optical power that these SFP modules provide is smaller than
the one that the TTCex lasers provide: -9dBm to 0dBm for the dual transmitter, and -5dBm to 0dBm
for the transceiver. Whether or not this optical power is sufficient is something that needs to be
checked in the experiment.

3.2.7. Clock and data recovery from the TTC stream

The Analog Devices ADN2814 [25] is used for clock and data recovery from the signal
received TTC stream. It extracts the clock (carrier, ~160MHz) and the data (multiplexed A and B
channels) and provides them to the FPGA for further decoding.

3.2.8. Power supply

From the VMEG64x backplane, the ALTI module receives the following supply voltages:
+3.3V, +5V, +12V and -12V. Four Maxim Integrated MAXM17515 DC/DC converters [26] are used
to generate four more supply voltages needed to properly power the FPGA: +1.0V, +1.8V, +2.5V and
+3.3V. An additional Traco Power THN 15-1211 DC/DC converter [27] is used to generate a -5V
supply voltage, necessary for the NIM-level inputs and output drivers.

3.2.9. Hardware monitoring

All of the supply voltages can be monitored by a Linear Technology LTC2991 voltage monitor
[28]. This sensor allows the monitoring of eight input voltages, plus the supply voltage of the chip
itself. It also measures the internal temperature and has an 12C interface. Another temperature sensor,
Maxim Integrated MAX1617A [29], is used to measure both local and remote diode temperature.
Remote diode port is connected to the XADC block of the FPGA in order to measure the temperature
of the FPGA dye.

3.2.10.12C network

Numerous devices on the ALTI board mentioned so far have an 12C interface. An 12C switch
device Texas Instruments TCA9546A [30] is used to split the devices into four bus sections, in order
to avoid conflicting 12C addresses. For example, the cross-point switch devices have input pins for
two LSBs of the 12C address. This allows for four different devices addressable on the same 12C bus
section. Without the bus switch, it would be impossible to put all 18 cross-point switches on the same
12C bus.

The full list of 12C-addressable slave devices and their 12C sections and addresses is shown in
Table 3.2.1. The 12C master which reads from and writes to these slave devices is implemented in the
FPGA firmware.
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BUS SECTION #

Table 3.2.1. The list of slave devices on the ALTI 12C network.

12C SLAVE ADDRESS

DEVICE

N/A 111 0000 = 0x70 12C bus switch (T1 TCA9546A)
000 1100 = 0x0c DAC for CTP_IN equalizer voltages (AD 5305)
0 000 1101 = 0x0d DAC for ALTI_IN equalizer voltages (AD 5305)
110 1000 = 0x68 Jitter cleaner (SI 5344)
101 1000 = 0x58 BC cross-point switch (T1 DS10CP154A)
1 101 01XX = 0x54..0x57 | TTYP[4..7] cross-point switches (4 x TI DS10CP154A)
101 00XX = 0x50..0x53 | TTYP[O0..3] cross-point switches (4 x TI DS10CP154A)
101 00XX = 0x50..0x53 | BGOJ0..3] cross-point switches (4 x TI DS10CP154A)
2 101 1000 = 0x58 ORB cross-point switch (TI DS10CP154A)
101 01XX = 0x54..0x57 | L1A and TTR[1..3] cross-point switches (4 x TI DS10CP154A)
100 0000 = 0x40 Clock and data recovery circuit (ADN2814)
3 101 000X = 0x50..0x51 | SFP transceiver, extended address space (Finisar FTLF1323P1xTL)

001 1000 = 0x18

Local and remote temperature sensor (MAX1617A)

100 1000 = 0x48

Voltage and temperature monitor (LTC2991)
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4 . ALTI FUNCTIONALITY AND FIRMWARE

This chapter briefly describes the ALTI functionalities implemented in the FPGA firmware.
The emphasis is put on describing the configuration and control of various firmware blocks, which is
then used in the low-level ALTI software. A more detailed description of the ALTI firmware
implementation is given in the ALTI specification document [12].

The ALTI FPGA firmware is organized as shown on the high-level functional block diagram
on Figure 4.1. Some of the blocks shown will be briefly discussed in the following sections. For a
more detailed description of the other blocks is given in the ALTI specification document [12].

Each of the firmware blocks has a number of VME-mapped control and status registers. Some
of them are also associated with on-chip FIFO buffers and external RAM memories, which are also
VME-mapped. The full ALTI VME address space of 16MB is divided in blocks, as shown in Table

4.1.

Oscillator
Jitter Cleaner

Cross-
point
Switch

TTC Receiver
CDR

VMEbus
buffers
" Clock VMEbus | 12C _ _ 12C bus
Generator Interface Master switch
BGo | B-Channel 5 >
Logic g . 11x
9 TT1C . TTC Optical
Encoder * Transmitter
L1A
»l A -
3 o
c £
o -
= - N
ec| ® b MiniCTP
w <
a Cross-
o = $ point
S o Switch
(1] o
‘%f Pattern
Generator |
_ . Pattern/Snapshot
- " Memory (1Mx32)
.| Snapshot _
Controller
> TTC _ TTC . TTC analyser
»| Decoder “| Analyzer Memory (1Mx64)

Figure 4.1. High-level functional block diagram of the ALTI firmware.
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Table 4.1. ALTI VMEDbus address space map.

ADDRESS RANGE DESCRIPTION

0x00000000

. Reqgisters, 64kB = 16k words
0x0000FFFF
0x00010000

. BGOO FIFO, 2kB =512 words
0x000107FF
0x00020000

. BGOL1 FIFO, 2kB = 512 words
0x000207FF
0x00030000

. BGO2 FIFO, 2kB = 512 words
0x000307FF
0x00040000

. BGO3 FIFO, 2kB = 512 words
0x000407FF
0x00050000

. TTYP FIFO, 2kB =512 words
0x000507FF
0x00080000

. QuickBoot FIFO, 4kB = 1k words
0x00080FFF
0x00400000

. TTC spy "command” RAM memory, 4MB = 1M words
0x007FFFFF
0x00800000

. TTC spy "timestamp” RAM memory, 4MB = 1M words
Ox00BFFFFF
0x00C00000

. Pattern/snapshot RAM memory, 4MB = 1M words
OX00FFFFFF

As written before, the ALTI preserves the functionalities of the TTC legacy modules: LTPI,
LTP, TTCvi and TTCex. However, it is important to emphasize here what novelties and
improvements the ALTI provides in terms of functionalities.

The biggest improvements are made in the monitoring capabilities. Phases of the input signals
can be monitored and it is possible to take snapshots of incoming TTC signals and store them in the
memory. Another new monitoring capability is the optical TTC stream analyzer, which allows to
decode and store the triggers and commands that are being sent on the TTC stream.

Improvements have also been made in the pattern generation functionality. As will be
explained, the pattern compression allows more efficient memory management and provides longer
effective patterns than the ones provided by the LTP.

It is also envisioned to implement a "miniCTP" block with some CTP-like functionalities like:
simple and complex deadtime generation for L1A throttling, random triggers with pseudo-random
prescaling, etc.
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4.1. Clocking

A Mixed-Mode Clock Manager (MMCM) IP provided by Xilinx is used to generate all clocks
required in the FPGA, including: ~160MHz (four times the BC frequency) clock needed for the TTC
encoding and 90 degree phase-shifted 40.079MHz clock needed for the input synchronization. The
core has two clock inputs and the user can select which one is used, i.e. multiplied and phase-lock
looped:

1) 40.079MHz on-board crystal quartz oscillator ("PRIMARY_FXQO")
2) BC input coming from the cross-point switch directly, or from the jitter cleaner
("SECONDARY_EXT")

Until it was decided whether to use the jitter cleaner or not, two separate versions of the
firmware were kept, differing only in what clock was connected to the "SECONDARY _EXT" input.

In addition to the generator functionality, the MMCM also provides monitoring for four user
clocks. With three status bits for each input, it can be checked if the input clocks are present, if any
glitches were caught or if the frequency is outside some specified range. Four clocks that are
monitored are coming from the four cross-point BC sources: CTP_IN, ALTI_IN, LEMO_IN and
TO_FPGA.

Another functionality of the MMCM is the fine-tuned phase shift of the output clock. One step
is about 15ps for a VCO frequency of 40.079MHz used in this particular case. This feature is
extremely useful for the front-end electronics for shifting the TTC stream.

Most of the internal FPGA logic is running on the 40.079MHz clock provided by the MMCM.
However, some parts of the logic like the MMCM control register and the 12C master core are always
running on the FXO. In this way, it is always possible to recover from the unexpected losses of the
external TTC clocks. In such cases, the user can change the cross-point switch settings and reset the
MMCM PLL to change the external clock being used.

4.2. Input signal synchronization

The input TTC signals arriving at the FPGA are sampled by four 90 degree phase-shifted
clocks. These four clocks (shifted 0, 90, 180 and 270 degrees from the main clock) create four bins
that the input signal edges can fall into. For each of the input signals, the positive and negative edges
are counted in this way an accumulated in 3-bit histograms. These histograms allow one to monitor
the phase of the input signals.

When the main clock and the input signal are synchronized, all the edges fall into a single
histogram bin, or two bins at most (when the input signal edges are basically aligned with the clock
edges). Otherwise, the clock and the signals are not synchronized, or there is a hardware problem
with a particular signal line. Based on the histogram, the user can select which of the four phases
should be used to latch the input signal safely.

4.3. Pattern generation

The pattern memory has a capacity of 4MB or 1M 32-bit words, whose format is shown on
Figure 4.3.1. Least significant bits of each entry represent a pattern of TTC signals to be generated.
The 11 most significant bits are reserved for the multipicity, which represents the duration of the
given pattern in BCs, up to a maximum of 2048 BCs per entry. This compression mechanism allows
for longer patterns to be stored in the memory, compared to the LTP which stores a separate entry for
each BC.
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31 21 20 19 18 16 15 8 7 4 3 1 0
BC_Multiplicity | ORB | BUSY | CALREQ2..0 | TTYP7..0 | BGO3..0 | TTR3..1| L1A

Figure 4.3.1. Pattern generation memory format.

Each TTC signal can be independently enabled and disabled from the pattern. Two registers
control the addresses of the start and stop entries of the pattern to be generated. The pattern can be
generated in two different modes: one-shot and repeated. In case of a repeated generation, the address
pointer returns the start address after reaching the stop address, so the pattern is generated in a loop.

4.4. Snapshot taking

The snapshot memory has a capacity of 4MB or 1M 32-bit words and is shared with the pattern
generation memory. The format is shown on Figure 4.4.1 and is basically identical to the pattern
format. The only differece is that the 11 most significant bits are here interpreted as a timestamp.

Whenever there is a change in any of the incoming 21 TTC signals (all except the BC), one
such word gets written to the snapshot memory. Each entry has an 11-bit timesamp associated to it.
Timestamps are relative, i.e. represent the number of BCs elapsed since the last change. If no changes
occur in 2k BCs, an overflow entry (with all bits equal to "1" in the timestamp) is stored in the
snapshot memory.

31 21 20 19 18 16 15 8 7 4 3 1 0
BC_TimeStamp | ORB | BUSY | CALREQ2..0 | TTYP7..0 | BGO3..0 | TTR3..1| L1A

Figure 4.4.1. Snapshot memory format.

As for the control, the taking of a snapshot can be enabled and disabled. When it is enabled,
the snapshot memory starts being filled entries, and the current address pointer is kept in a separate
register. There is also a mask register for the snapshot memory, in which each TTC signal can be
masked. Masking the TTC signal means that the changes of that signal are not stored in the snapshot
memory.

45. TTC encoder

The generation and encoding of TTC B-channel commands in the ALTI module has been
implemented in the same way as in the TTCvi, which was discussed in Chapter 2. Also, the format
of the B-channel commands is the same and has already been discussed. The same is true for the
priority scheme of B-channel commands.

There are five different modes of sending commands from each of the BGO channel FIFOs:

1) "SYNCHRONOUS SINGLE_BGO_SIGNAL" - send once at the end of the inhibit
if the corresponding BGO signal occurred

2) "SYNCHRONOUS REPETITIVE" - send once each orbit at the end of the inhibit,
regardless of the corresponding BGO signal

3) "ASYNCHRONOUS BGO_SIGNAL" - send when the BGO signal is received

4) "ASYNCHRONOUS_VME_ON_TRIGGER" - send when the corresponding VME
register is written

5) "ASYNCHRONOUS_VME_WHEN_NOT_EMPTY" - send whenever the
corresponding FIFO is not empty
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4.6. TTC decoder

The TTC decoder memory consists of two 1Mx32 memory blocks, which can logically be
viewed as a single 1Mx64 block. We call these blocks "command™ and "timestamp", because of their
content. The format of the decoder memory is shown on Figure 4.6.1. Whenever a command or a
trigger gets decoded from the TTC stream, a single 64-bit entry with such format gets written into the
TTC decoder memory.

31 30 17 16 15 8 7 0
Long/Short Addr E/I| SubAddr Data

31 30 29 28 27 0
LinkStatus | L1A | SingleBitError| DoubleBitError BC_Cnt (absolute)

Figure 4.6.1. TTC spy memory format: "‘command" and "‘timestamp"".

The control of the TTC decoder is very similar to the control of the snapshot memory. It is
possible to enable and disable the decoding, and an address pointer is kept to indicate the range of
valid entries that were written.

4.7. 12C master core

A simple, wishbone-compatible 12C master core available on OpenCores [31] has been used
in order to communicate with the devices on the ALTI 12C network.

4.8. 1-Wire master core

A 1-Wire master core provided by Dallas Semiconductor (acquired by Maxim Integrated) [32]
has been used to implement the 1-Wire protocol. This protocol is used to communicate with the 1-
Wire chip, which gives each ALTI module a unique identifier.

4.9. Busy and calibration request routing

Unlike the forward-going TTC signals, BUSY and CALREQI2..0] are not routed through the
cross-point switches. That is why the routing logic for these signals was done in the firmware.

Functional block diagram of this routing logic for the BUSY signal is shown on Figure 4.9.1.

The local BUSY signal, used in the ALTI internal logic, is a logical OR of five possible BUSY
input sources. All of the busy sources can be independently masked. This flexible masking allows the
ALTI to logically add together BUSY inputs from multiple sources, which is used when ALTI plays
a role of a master in two parallel TTC daisy chains. Sources for the BUSY signal are the following:

1) BUSY input from the CTP_OUT connector
2) BUSY input from the ALTI_OUT connector
3) BUSY input from the LEMO_IN connector
4) BUSY from the pattern generator

5) BUSY from the internal register
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The local BUSY signal is routed to the BUSY LEMO output for monitoring purposes. For
sending the BUSY signal upstream to the CTP_IN and ALTI_IN LVDS-LINK connectors, one of the
four sources can be chosen with a VME-controllable multiplexor:

1) BUSY input from the CTP_QOUT connector
2) BUSY input from the ALTI_OUT connector
3) Local BUSY signal

4) Inactive BUSY signal

BUSY —
il Busy
CTPIN | CTP_OUT
CTRL (VME) BUSY
ALTI_OUT
i| Busy L]

ALTI_IN

7 /7:% BOsY © LEMO_IN
— : -
4@‘* PATTERN
Lo e |

DATA (VME)

BUSY

LEMO_OUT ©+«—

internal

logic CTRL (VME)

Figure 4.9.1. Functional block diagram of the BUSY signal routing in the FPGA logic.

The functional block diagram of the routing logic for the CALREQ[2..0] signals is shown on
Figure 4.9.2. Each of the three CALREQ signals can be routed independently from the other two.

Local CALREQ signal, used in the ALTI internal logic, can be sourced from any of the six
possible CALREQ input sources. Compared to the BUSY signal sources, there is one additional
source because the TTR[1..3] LEMO inputs are multiplexed with the CALREQ[O0..2] in order to allow
more input flexibility. Thus, the sources for the CALREQ[2..0] signals are the following:

1) CALREQ input from the CTP_OUT connector

2) CALREQ input from the ALTI_OUT connector

3) CALREQ input from the RJ45 connector

4) CALREQ input from the corresponding TTR LEMO_IN connector
5) CALREQ from the pattern generator

6) CALREQ from the internal register
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For sending the CALREQ signal upstream to the CTP_IN and ALTI_IN LVDS-LINK
connectors, one of the four sources can be chosen with a VME-controllable multiplexor:

1) CALREQ input from the CTP_OUT connector
2) CALREQ input from the ALTI_OUT connector
3) Local CALREQ signal

4) Inactive CALREQ signal

CALREQ
| cArReQ
CTP_IN | [——1 CTP_OUT
CTRL (VME) CALREQ
ALTI_OUT
| cAre -
ALTI_IN [ a
s CALREQ [
== " RI45
CTRL (VME) L@ LEMO_IN
PATTERN =
STATUS (VME) CTRL (VME)
DATA (VME)

internal CTRL (VME)
logic

Figure 4.9.2. Functional block diagram of the CALREQ signal routing in the FPGA logic.
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5. ALTI SOFTWARE

This chapter is about the ALTI software, which is an essential part of the ALTI development
and is the one that the author has contributed to most. Low-level software that has been developed
for the ALTI modules makes the board "alive" by allowing an easy access to all of the hardware and
firmware that is available. Without previously developing this software, it would be impossible to
test the module and measure its performances in an efficient and reproducible way.

First, in Section 5.1, the ATLAS Trigger and Data Acquisition (TDAQ) infrastructure on
which the ALTI software relies on is briefly described. Then, the low-level API for the ALTI is
discussed in Section 5.2. In Section 5.3, the menu program which exercises the low-level API is
discussed. This is followed by the discussion of the ALTI configuration object in Section 5.4. Test
programs are independently discussed in subsections of Section 5.5.

5.1. ATLAS TDAQ

The ATLAS TDAQ system provides the software infrastructure for Level-1 Trigger, Data
Acquisition (DAQ) and HLT systems. Software packages for TDAQ are maintained on a private
GitLab server hosted in CERN. The TDAQ team provides the necessary build tools, which are based
on CMake. They also take care of tagging the software packages and making sure the software
packages with dependencies are compatible in every new TDAQ release.

Software packages for the Level-1 Trigger and the TTC modules are also a part of ATLAS
TDAQ. These packages include the low-level software for control, configuration and monitoring of
the modules. High-level run control application software that is built on top of the low-level APIs is
also included in the ATLAS TDAQ.

VME-addressable TTC legacy modules (LTPI, LTP and TTCvi) and the other modules all
have a similar low-level software organization. They provide an API for accessing all the
functionalities of a given module in the form of public methods of the module base class. All of these
methods are then exercised in a menu program, which guides the user to interactively access the
module. Besides the menu program, there are usually various test programs accompanying each
module. The ALTI module is no exception and its low-level software is organized in a similar way.

There are several software packages that the ALTI package depends on. Some of them are a
part of the TDAQ ReadOut Driver Crate DAQ (RCD) and some of them are specific to the Level-1
Central Trigger (L1CT):

1) ATLAS TDAQ RCD

e vme_rcc: VMEbus driver
RCDVme: wrapper for the vme_rcc driver
RCDBItString: manipulation of bit arrays of arbitrary size
RCDMenu: package for interactive menus that support nesting
RCDuUtilities: common utilities like print out and error-handling

2) ATLAS LICT

o L1CTHardwareCompiler: translation of an .xml description of a module to
low-level VME read/write methods

e |2C: driver for the 12C master core
e DSIWM: driver for the 1-Wire master core
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5.2. Low-level API

Low-level software has been developed in order to provide the access to the ALTI module and
all of the functionalities of hardware and firmware. It provides programmable support for control,
configuration and monitoring of the ALTI module in terms of its registers, memories, and FIFO
buffers. The software was developed for the single-board computer of the ATLAS readout driver
crate, which uses a library and a driver to communicate with the ALTI module using the VMEbus.

The first thing that was done on the ALTI software is the description of the module with an
xml file called alti.xml. This file gives a basic description of the module in terms of specific bit-
assignments and addresses of various registers, FIFOs and RAM memories within the ALTI module.
In this sense, the alti.xml closely resembles the firmware. The file format allows for dividing the
module address space into blocks with logically grouped functionalities. A glimpse of the alti.xml
file is given on figures 5.2.1 and 5.2.2. These figures show how the snapshot memory bitstring and
the 12C core block were defined, respectively.

A software package called the L1CT hardware compiler then generates low-level VME
read/write functions, such that the bit fields are addressed by their name and the specific bit-
assignments are abstracted. This allows for better maintainability of the code, because this is the only
place where changes need to be made if the register addresses or their bit-assignments are changed
as the firmware development progresses. As a result of running the L1CT hardware compiler, a class
called ALTI is automatically generated, providing the low-level VME read/write functions of the bit
fields.

Built on top of that is the AltiModule base class, which provides more user-friendly API for
control, configuration and monitoring of the ALTI module. This class incorporates an object of low-
level class ALTI as its private member and uses its automatically generated public methods. However,
AltiModule methods are not just a wrapper around the ALTI methods, since the API also includes
methods that must perform a certain sequence of operations in order to exercise some functionality
implemented in the firmware. These sequences or sets of operations are put together for convenience.
The API of the base class AltiModule is also the place where the meaning of variables and functions
are changed from a hardware point of view to a user point of view.

<bit ing name="SNAPSHOI">

"BC TimeStamp™

ask="0xffe00000" form="HNUMBER"/ >

"OREB™ mask="0x00100000"™
"BUOSY"™ mask="0x00080000"
"CalibrationRequest" mask="0=x00070000" orm="HUMEBER"™ />
"TriggerTypeWord” mask="0x0000££00" form="NUMBER"/:
"BGo3"™ ask="0x00000080"

=]

"BGo2"

mask="0x00000040"
mask="0x00000020"
mask="0x00000010"
mask="0x00000008"™
mask="0x00000004"
mask="0x00000002"

mask="0x00000001"
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Figure 5.2.1. A section of the alti.xml file containing a bitstring description for the snapshot memory entry.
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<block name="I2C" addr="0x0000%080":>

<reglister name="PrescaleLow"™
<register name="PrescaleHigh"
<register name="Control™

<field name="Enable"™

12 name="Enabled"”

gister name="Receiwve™

AA A A

—r

gister name="Command"
d name="5Start"

<field name="Stop™
<field name="Read"
d name="Write"
d name="Acknowledge™
<field name="IntAcknowledge"™
</regiscer>
ister name="5tatus"
d name="RxAck"

=l :ane=r| 3-_-‘3-__‘!”
d name="ArbLost™
d name="TIP"
<field name="IntFlag"

name="InterruptEnabhle™

addr="0x00000000™
addr="0x00000004™
addr="0x00000008">
mask="0x00000080™:>
data="0x00000080™
daca="0x00000000™

mask="0x00000040™:>
data="0x00000040™

>
>

>
>

>

daca="0x00000000™/ >

addr="0x0000000c™
addr="0x0000000c™
addr="0x00000010™
mask="0x00000080"™
mask="0x00000040"™
mask="0x00000020"™
mask="0x00000010"™
mask="0x00000008"™
mask="0x00000001"™

addr="0x00000010™
mask="0x00000080"™
mask="0x00000040"™
mask="0x00000020"™
mask="0x00000002"™
mask="0x00000001"™

modE="W" />
modf="R" />
modE="N">
>

VoW oM YWY

df="R"

mo
>
=
>
=
>

Figure 5.2.2. A section of the alti.xml file containing the 12C block.

The API is logically grouped into blocks of the module functionalities. Each block is
distinguished by a 3-letter abbreviation, which each also serve as prefixes for the names of method
names. Base class methods are thus grouped in the following blocks:

CSR: VMEG64x CR/CSR space

CFG: AltiConfiguration object, read and write, default setup and check of setup
CLK: PLL and jitter cleaner configuration

SIG: signal settings - configuration of cross-point switches, equalizers and input

synchronization/shaping

BSY: selection and routing of BUSY signal

CRQ: selection and routing of Calibration Request signals

PAT: pattern generation memory

SNP: snapshot memory
ENC: TTC encoder control
DEC: TTC decoder control

CNT: ALTI counters - BC, ORB, L1A, Test Triggers and BGOs
MON: hardware monitoring - voltages/temperatures readout
12C: access each individual device in the 12C network

To give an example of the API methods, the list of methods associated with the functionality
blocks "SIG", "PAT" and "SNP" are shown on Figure 5.2.3, Figure 5.2.4 and Figure 5.2.5,

respectively.
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// public S5IG methods
// Cross-point switches (SWX)

int S5IGSwitchConfigRead(const SIGNAL, const SIGNAL DESTINATION, SIGWAL SCURCE £); // 1 signal, 1 ocutput

[}
=]
ot

SIGSwitchConfigRead (const SIGNAL, std::vector<SIGNAL SCURCE> &); // 1 signal, all cutputs

=]
t

ot of ot of ot ¢

SIGSwitchConfigWrite (const SIGNAL DESTINATICN, const SIGMAL SCOURCE); // all signals, 1 ocutput
SIGSwitchConfigWrite (const SIGNAL, const SIGNAL SCURCE):; // 1 sigmal, all cutputs
5IGSwitchConfigWrite(c t SIGHNAL SOURCE); // all signals, all ocutputs
5IGSwitchConfigWrite (const ALTI MODE);

5IGSwitchPredefinedModeWrite (const PREDEFINED SWITCH_MOCLE) ;

vold S5IGSwitchPredefinedModelegendPrint (std::ostream & = std::icout);

// Egualizers (EQZ)

t S5IGEqualizersConfigRead (EQUALIZER CONFIG &, EQUALIZER CONFIG &);

1t SIGEgqualizersConfigWrite(c t EQUALIZER CONFIG, const EQUALIZER CONFIG);

// Input synchronization & shaping

// sync

5IGInputSyncEnableRead (const ASYNC INPUT SIGNAL,
S5IGInputSyncEnableWrite (const ASYNC INPUT SIGHAL, unsigned int):;
SIGInputSyncEnakbleRead (std: ivector<kbool» &, std::vector<unsi d int> &); // all
SIGInputSyncEnableWrite (const std::vector<kbool> &, const std::vector<unsigned int> &); // all
SIGInputSyncEnableWrite (const bool, const unsigned int); /7 all

unsigned int &):

of ot ot oot ot oot ot

int SIGInputSyncHistogramsReset():
J// shape

int 5IGInputShapeEnableRead (const ASYNC INPUT SIGHNAL, bo
int S5IGInputShapeEnableWrite (const ASYNC INPUT SIGHNAL, c
int S5IGInputShapeEnableRead(std::vector<bool> &); // all
int S5IGInputShapeEnableWrite (const std::vector<bool> &); // all
int S5IGInputShapeEnableWrite (const bool); // all

J// BGO LEMO outputs mux

int SIGMuxBGOCutputLEMCRead (bocl &, b
int SIGMuxBGOCutputLEMOWrite (const ko

Figure 5.2.3. The list of low-level APl methods of block "'SIG™.

Vi
onst bool); // both

J// public PAT methods
int PATGenerationEnableRead (const SIGNAL PG, bool
i PATGenerationEnableWrite (c c

PATGenerationEnableWrite (const std::vector<bool> &); // all
PATGenerationEnableWrite (const bool): // all
PATGenerationRepeatRead (ool &)
PATGenerationRepeatWrite (const
PATGenerationStartiddressRead (u
PATGenerationStartiddressWrite (con
PATGenerationStoplddressRead (unsigne

PATGenerationStoplddressWrite (const unsigned int);

PATRead (RCD: : CMEMSegment *); // read pattern generation memory

PATReadFile (RCD: :CMEMSegment *, std::ifstream &); // read pattern generation memory from file

Figure 5.2.4. The list of low-level API methods of block "PAT"™.

J// public SNP methods
int SNPEnableRead(bool &)
int SNPEnableWrite (const bool):
int SNPCurrentAddressRead (unsigned int &)
int SNPMaskRead (unsigned int &)
int SNPMaskWrite (const unsigned
int SNPMaskRead(const SIGNAL, bool 4/ 1 =signal
SNPMaskWrite (const SIGNAL, const bocol): // 1 =signal
SHPMaskRead (std: :vector<bool> &) // all =ignals
SNPMaskWrite {const bool); // all signals
SNPRead (RCD: : CHMEMSegment *); // read snapshot memory
SHNEWriteFile (RCD: :CMEMSegment #, int, std::ofstream &£); // write snapshot memory into file

Figure 5.2.5. The list of low-level API methods of block ""SNP"".

SIGSwitchConfigWrite (const SIGNAL, const SIGNAL DESTINATION, const SIGNAL SOURCE); // 1 signal,

1 output

S5IGInputSyncHistogramsRead (const ASYNC INPUT SIGNAL, std::vector<unsignesd int» &, stdi:ivector<unsignsd int> &);
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5.3. Menu program

This is an interactive program, which allows the user to access the module and configure it at
will. On Figure 5.3.1, the main menu of the menuAltiModule program is shown. With the use of the
menuAltiModule program, the user can execute all of the methods from the base class API, in order
to set the module up to a desired state. In this way, low-level APl and the menu program proved quite
useful for hardware and firmware evaluation. Functionalities of the module are logically grouped into
the sub-menus of the menu program, in the same way as the API is partitioned.

@ pkuzmano@sbcll ct-29:/mnt/ctpfs/pkuzmano/1L ct-07-01-09 E\@

[pkuzmano@sbcllct-29 1lct-07-01-09]15 menulfltiModule -
3 ALTI modules found in slots 9, 13, 18.

510t number [1..21]: 9

ALTI module in slot 9 selected

ARLTI: INFO - ALTI detected, revision = 0x12809001 (#1, 09.08.2018.), BAR = 0Ox09 «<-> =lot 9

ALTI: INFC - ALTI opened at vme = 0x08000000, size = O0x01000000, type = "A32"

I2C::I2C: INFO - opened I2C of type "ALTI™ at offset 0x0000%080

2018-08-10 10:25:34 — INFC din "LVL1::AltiModule: :AltiModule (unsigned int)™:

»>» opened CMEM segment "AltiModule™ of size 0x00400000, phys 0ix38800000, wirt Oxeal5=000

DS1WH: :DS1WH: INFC - opened DS1WM of type "ALTI™ at offset O0x000080a0

ALTI[slot 9]: INFC - ALTI "20DATALTIOO00Z"™ copened

2018-08-10 10:25:34 - INFC in "wvirtual int AltiModulelpen::action()™:

»» opened CMEM segment "menufltiModule0™ of size 0x00400000, phys 0ix38c00000, wirt 0xe9c5e000
2018-08-10 10:25:34 - INFCO din "wvirtual int AltiModuleCpen::action()™:

»>» opened CHMEM segment "menufltiModulel™ of size 0x00400000, phys 0ix39000000, wirt 0Oxe985e000

"open AltiModule™ returns 0
Py AltiModule main menu <<

quit

C5R menu
CFG menu
CLE menu
5IG menu
BSY menu
CRO menun
PAT menu
SNP menu
ENC menu
DEC menu
CHT menu
MON menu
I2C menu

R e
Wk O -] m bW RO

m

Enter number [0..13]: -

Figure 5.3.1. Main menu of the ALTI menu program.

5.4. Configuration object

The ALTI module has many registers and memories. In fact, its current address space takes
up 16MB. Thus, the number of parameters that define a state of the module is also quite large. It was
therefore decided to design a convenient way of configuring the whole module at once, without
having to manually set each parameter using the menu program.
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A class for the configuration of the ALTI module, called AltiConfiguration, allows the user to

fully configure the ALTI module to a known state. The AltiConfiguration object is associated with a
specific file format which contains a list of key/value pairs for all the parameters, and provides a
complete configuration of the ALTI module. Both configuring the module and reading its current
state is possible using this configuration class. Input and output file formats are the same, so the
configuration of some module with a file that was read back as the state of some other module is also
possible. The list of parameters in the configuration file is partitioned into blocks of functionalities,
in the same way as the API. Each block can be independently included and excluded from being
configured using its "CONFIG" parameter in the configuration file. Thus, a partial configuration of
the module is also possible. There is a dedicated test program which allows the user to write or read
the configuration from the command line, which will be discussed in Subsection 5.5.2. A glimpse of
a particular ALTI configuration file is shown on Figure 5.4.1.

FEEEREEE R ER R ER R R R R R R R R R R R R H R R R E R R B R R R R R R B R R R R R R R

# CONFIG|MOCONFIG

CLE_CONFIG = CONFIG

# PRIMARY FXO|SECCHDARY EXT

CLE_SOURCE = PRIMARY FXO
# PRIMARY FXO|SECOHMDARY EXT

CLE_JC_ SOURCE = SECONDARY EXT

R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R E R R R R R R R R R R R R R R R R R R R R 248
¥ CONFIG|HOCONFIG

SIG_CONFIG = CONFIG
# BEO0|EGO2, BGO1]BG03

SIG_BGO FP = BGO0, EBGOL

$ <CTP_OUT»>, <ALTI OUT>, <LEMO OUT>, <TO FPGA>

# <CTP_OUT> = CTP_IN|ALTI IN|LEMC IN|FROM FPGA

# <ALTI QUT> = CTP_IN|ALTI IN|LEMC IN|FRCM FPGA

# <LEMC OUT> = CTP_IN|ALTI IN|LEMC IN|FRCM FPGA

4 <TC_FPGA> = CTP_IN|ALTI_IN|LEMC_IN|FRCM FPGA

SIG_SWX_BC FRCM_FPGA, CTFP_IN, FRCOM_FPGA, CTP_IN

SIG_SWX_ORB
SIG_SWX_L1A

SIG_SWX_TTR1
SIG_SWX_TTR2
SIG_SWX_TTR3
SIG_SWX_TTYPO
SIG_SWX_TTYP1
SIG_SWX_TTYP2
SIG_SWX_TTYP3
SIG_SWX_TTYP4
SIG_SWX_TTYPS
SIG_SWX_TTYPG
SIG_SWX_TTYET
SIG_SWX_BGOO
SIG_SWX_BGO1
SIG_SWX_BGC2
SIG_SWX_BGO3

$ SHORT_CABLE |LONG_CABLE
SIG_EQZ CTP_IN SHORT_CAELE

SIG_EQZ ALTI_IN LONG_CABLE

$ SYNC: ENABLED|DISABLED,000DEG|030DEG|180DEG|270DEG
# SHAPE: ENABLED|DISABLED
SIG_IO_SYNC_SWX_ORS

FROM FPGA, CTF_IN, FROM FPGA, CTF_IN
FROM FPGA, CTF_TIN, FROM FPFGA, CTF_IN
FRCOM FPGA, CTP_IN, FROM FPGA, CTP_IN
FRCOM FPGA, CTP_IN, FROM FPGA, CTP_IN
FRCOM FPGA, CTP_IN, FROM FPGA, CTP_IN
FROM FPGA, CTPF_IN, FROM FPGA, CTP_IN
FRCM FPGA, CTP_IN, FRCM FPGR, CTP_IN
FRCM FPGA, CTP_IN, FRCM FPGR, CTP_IN
FRCM FPGA, CTP IN, FRCOM FPG4A, CTPF_IN
FRCM FPGA, CTF IN, FRCOM FPGA, CTPF_IN
FRCM FPGA, CTF IN, FRCM FPGA, CTPF_IN
FRCM FPGA, CTF IN, FRCM FPGA, CTPF_IN
FRCM FPGA, CTF IN, FRCM FPGA, CTPF_IN
FRCM FPGA, CTF IN, FRCM FPGA, CTF IN
FRCM FPGA, CTF_IN, FRCM FPGA, CTF_IN
FRCM FPGA, CTF_IN, FRCM FPGA, CTPF_IN
FROM FPGA, CTF_IN, FROM FPGA, CTF_IN

ENABLED, 270DEG

SIG_IC SHAPE SWX ORB = ENAELED
SIG_ IO SYNC SWX L1A = ENAELED, 270DEG
SIG_IC SHAPE SWX LI1A = ENRELED

¥ BGEOO..3
SIG_IC SYNC SWX BGO
S5IG IC SHAPE SWX BGO

ENABLED, 000DEG, ENABLED,000DEG, ENABLED,Z270DEG, ENABLED,1Z20DEG
ENABLED, ENABLED, ENABLED, DISABLED

Figure 5.4.1. A section of the ALTI configuration file containing parameters in a form of key/value pairs.
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5.5. Test programs

Aside from the menu program, various test programs have been developed for testing and
diagnostics of the ALTI module. They are used for: automated specific tests (snapshot memory, and
the TTC decoder), initializing the module with a configuration given in a form of a file, remote
firmware update, etc. Each of them will be described in the following subsections.

5.5.1. testAItiVME

This test program is used to test VMEDbus read/write transfers on RAM memories and FIFOs,
as well as the internal FPGA registers that are safe to write to (not used for some critical control).

Testing the VME interface is done by writing some data to a particular chunk of memory, and
making sure that the same data is then properly read back. The user specifies the base address of the
test area, a number of 32-bit words to be tested and a comparison mask. Also, both single and block
cycles are supported. Types of tests that are included are the following: simple fixed value
writes/readouts, writing incrementing/decrementing data, writing walking "1" bits to successive
addresses. The latter two types of tests are useful for checking the address and data lines, since the
value being written differs according to the address.

On Figure 5.5.1 one can see the full list of the program parameters. A common use of the
testAltiVME program is shown on Figure 5.5.2.

‘@ pkuzmano@sbellct-29:/mnt/ctpfs/pkuzmano/11ct-07-01-09 EI@
[pkuzmanofsbcllct-29 1lct-07-01-09]% testRltiVME -h -
testhltiVME <OPTICNS>:
-b <hex> =>» ALTI VME base address (def = Ox08000000)
-o <hex> =¥ offset within ALTI VME space (def = 0x00c00000)
-8 <hex> =» size of the window to be tested (in 32b words) (def = 0x00000001)
-m <hex> =» bitmask used for checking each word (def = OxEfEEFFFfE)
-n <hex> => numbker of checks (def = 0x00000001)
-t <hex> => type of test (def = 0x00000000)
0 =» simple 0, 5, a, £ test
1 => counter test
2 =» walking ones test
-B => use block transfer (def = HO)
-h => Print this help
[pkuzmanofsbellet-29 1let-07-01-09]% -

Figure 5.5.1. testAltiVME program help with the full list of parameters.

@ pkuzmano@sbecllct-29:/mnt/ctpfs/pkuzmano/I1 ct-07-01-02 EI@
[pkuzmano@sbellet-29 11et-07-01-09]1% testAltiVME -b 0x08000000 -o 0x00c00000 -= Ox00100000 -m Oxffffffff -n 5 -B -t 0 »
2018-08-10 10:37:26 - INFO in "int main({int, char*#®)":

>> opened CMEM segment "testAltiVME"™ of =size 0x00400000, phys 0ix38800000, wvirt Oxc0205000

Memory O0x08c00000..0x08fffffc test 0 CK

[pkuzmano@sbellet-29 11lct-07-01-09]5% testAltiVME -b 0x08000000 -o Ox00800000 -s Ox00100000 -m Oxffffffff -n 5 -B -t 1
2018-08-10 10:37:34 - INFC in "int main(int, char*=#)":

»» opened CMEM segment "testAl1tiVME" of size 0x00400000, phys 0ix38800000, wvirt Ox1f2ce000

Memory O0x08800000..0x08bffffc test 1 CK

[pkuzmanofsbellet-29 1lct-07-01-09]5 testAltiVME -b 0x08000000 -o 0x00400000 -s 0x00100000 -m OxEffffffff -n 5 -B -t 2
2018-08-10 10:37:42 - INFC in "int main(int, char**)":

> opened CHMEM segment "testAItiVME"™ of size 0x00400000, phys 0ix38800000, virt O0xS50el6000

Memory 0x085400000..0x087ffffc test 2 COEK

[pkuzmano@sbellcet-29 1lct-07-01-09]% -

Figure 5.5.2. Typical use of the testAltiVME program.
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5.5.2. testAltilnitial

This test program is used for module initialization and configuration.

When the ALTI module is powered on, this program is used for basic initialization and setup.
That means the user can change the VME base address of the module, if the default geographical
addressing (according to the slot number) is not desired. For example, it could be that the base address
given by the geographical addressing is not the range of any of the static master mappings defined by
the SBC. On the other hand, basic setup includes the following: setting the jitter cleaner up with a
default configuration, setting the recommended clock prescaler value of the 12C master core, etc. It
is recommeded to perform the initialization and setup tasks once upon power up before using the
module.

Configuring the module is done with an AltiConfiguration object, corresponding to an input
file format discussed in Section 5.4. This file contains all the configurable parameters of the module
and it grew as each new feature got added to the firmware, and afterwards the low-level software.
The user also has an ability to read current configuration into a file, or dump it onto the standard
output screen.

Another feature of this test program is the ability to perform a basic check of the setup of the
ALTI. In this way, the user can check if the module is operational, i.e. if the PLL is locked, the 12C
prescaler and the jitter cleaner are properly set up, and so on.

By using the testAltilnitial program, it is easy to quickly configure multiple ALTI modules for
automated tests, not having to use the menu program. Various configuration files for common ALTI
modes of operation are available: "Master" (Pattern generator), "CTP slave"”, "ALT]I slave"”, "LEMO
slave”, TTC encoder/decoder, etc.

On Figure 5.5.3 one can see the full list of the program parameters. Two common uses of the
testAltilnitial program are shown on Figure 5.5.4.

‘@ pkuzmane@sbcllct-29:/mnt/ctpfs/pkuzmanc/I1 ct-07-01-09 E @

[pkuzmano@sbcllect-29 11ct-07-01-09]% testAltilnitial -h e

testhltiInitial <OPTIONS>:

-2 =» ALTTI slot number (def = 13)

-R =>» Reset ALTI (def = "HO™)

-5 => Setup ALTI (def = "NO™)

-C =»> Config ALTI (def = "NO™)

—f «file> =>» Config RLTI file (def = "NO" =» default config)
-B =>» Change ARLTI VME base address (def = "HO")

-b =>» ALTI VME base address (def = 0x10000000)

-c => Check ALTI (def = "HO")

-r =» Read ALTTI config ({def = "HO™)

—o <filer =» Read ALTTI config file {def = "NO"™ => terminal printout)

[pkuzmano@sbecllet-29 1lct-07-01-09]% -

Figure 5.5.3. testAltilnitial program help with the full list of parameters
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EP pkuzmano@sbellct-23:/mnt/ctpfs/pkuzmanoyIL ct-07-01-09 EI
[pkuzmano@sbellet—29 11ct-07-01-09]% testAltilnitial -s 13 -B -b 0x10000000 -5 -c -
2018-08-10 11:59:38 - INFC 4in "daq::tmgr::TestResult LVL1::TestAlciInitial::initc()"™

testAltilnitial:

ALTI slot number = 13

LLTI VME base address = 0x10000000

Reset ALTI = "HO"

Setup ALTI = "YES"

Config ALTI = "HO"

Change ALTI VME base address = "YE5", 0x10000000
Check ALTI = "YES"

Read ALTTI config = "HO"

ALLII: INFO - ALTI detected, BAR = 0x0d <-» slot 13

ALTI: INFC - ALTI detected, revision = 0x12809001 (#1, 09.08.2018.), BAR = 0x0d <-> slot 13
ALTI: INFC - ALTI opened at wvme = 0x10000000, size = 0x01000000, type = "A32"

I2C::I2C: INFO - opened I2C of type "ALTI" at offset Ox0000%080

2018-08-10 11:59:38 - INFC din "LVL1::AltiModule::AltiModule (unsigned int)":

>>» opened CMEM segment "AltiModule™ of size 0x00400000, phys 0ix37c00000, wvirt Ox7fbcb000
DS1WM: :DS1IWM: INFC - opened DS1IWM of type "ALTI"™ at offset 0x000080a0

ALTI[=lot 13]: INFC - ALTI "20DATALTIOO00S"™ opened

>> TeStRITIiInitial:iiniT ... uriernernnentansasetsarsssansansananrtannnsans [BASS]

wrote 326 (addr,data) lines to CLE jitter cleaner
2018-08-10 11:59:40 - INFC din "int LVL1::AltiModule::AltiCheck()":

»>» ALTI: INFC - CLE mux = WSETUE"

2018-08-10 11:5%:40 - INFC din "int LVL1::ARltiModule::ARltiCheck()"™:

»>»> BLTI: INFC - I2C core = "SETUE"

2018-08-10 11:59:40 - INFC din "int LVL1::AltiModule::AltiCheck()":

>> RALTI: INFC - PLL = "LOCEED"

2018-08-10 11:5%:40 - INFC din "int LVL1::AltiModule::AltiCheck()":

»»> RLTI: INFC - jitter cleaner design = "RLTI 001" (DEFAULT

Pr TesthRlCiInitial i iBXer v iu e ansreanssesnassnnassnnasasnnsansnsnnsnns [BRSS]

> TestRltiInitial:ttest ... ..o i ie e et s e a et aa s s anns e saennaasnns [BAES] =
[pkuzmano@sbcllct-29 11lct-07-01-09]% -

EP pkuzmano@sbell ct-23:/mnt/ctpfs/pkuzmano/ILct-07-01-09 E @
[pkuzmano@sbellct-29 1lct-07-01-08]% testhltiInitial -= 13 -C -f ALTIfdataKnltiModule_CTP_Slave_cfg.dat -
2018-08-10 12:00:53 - INFC in "daq::tmgr::TestResult LVL1::TestAltiInitial::init()}"™

testhAltilnitial:

ALTI slot number = 13

ALTI VME base address = 0x10000000

Reset ALTI = "HC"

Setup ALTI = "HC"

Config ALTI = "YES", "A_T_'[‘I,-"data.-"AltiHod‘Jle_CTP_Slave_cfg.dat,"
Change ALTI VME base address = "HO"

Check ALTI = "HO"

Read ALTTI config = "HO"

ALTI: INFO - ALTI detected, revision = 0x12809001 (%1, 09.08.2018.), BAR = Ox0d <-> slot 13
ALTI: INFC - ALTI opened at vme = 0x10000000, =size = 0x01000000, type = "A32"

I2C::I2C: INFC - opened I2C of type "ALTI" at offset 0x00009080

2018-08-10 12:00:53 - INFCO din "LVL1l::AltiModule::AltiModule (unsigned int)":

»» opened CMEM segment "AltiModule™ of size 0x00400000, phys 0ix37c00000, virt Oxcee&0000
DS1WM: :DS1WM: INFC - opened DSIWM of type "ALTI™ at offset 0x000080a0

ALTI[slot 13]: INFO - ALTI "20DATALTIOO005S™ opened

P> TestRltiInitialiiinit oo i ereeiorneiasaesasaesaennsannnsnennssnnnnnns [BASS]

2018-08-10 12:00:53 - INFO in "int LVL1::AltiConfiguration::read(const string&)™:
»>» read AltiConfiguration from file "ALTIfdatafAltiModule_CTP_Slave_cfg.dat"

Fr TestRltiInitialiieXeC tu.iusannssasnsassnaasnssnnnsnssnsnsnssnsnsnssns [BA55]
Pr TesthRltiInitialiiteat t v iu e et asnetasassasansaenssasnssnnnnssnnnnsns [BASS]
[pkuzmanof@sbellct-29 11ct-07-01-09]% -

(b)

module configuration as a ""CTP slave".

Figure 5.5.4. Typical use of the testAltilnitial program: (a) base address initialization, basic setup and check, (b)
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5.5.3. testAltiQuickBoot

This test program is used to remotely update the FPGA firmware through VME, without using
Xilinx tools. Not having to use the USB programmer makes it more convenient to update the firmware
of modules installed in the VME crate.

The remote firmware update is based on the QuickBoot mechanism, described in detail in one
of the application notes provided by Xilinx [33]. Basically, the initial bitstream stored in the
configuration memory contains "golden™ and "update™ images, which are identical at the beginning.
This initial bitsream contains these two exact copies of a stable firmware release, and is flashed to the
configuration memory once using the Xilinx tools. Afterwards, remote firmware update is done only
by overwriting the "update" image area, using the previously mentioned QuickBoot mechanism.

Xilinx provides a QuickBoot FlashProgrammer core in VHDL. They also provide a Perl script
for converting a standard mcs image file (result of firmware compilation in Xilinx Vivado) to two of
them: initial and update mcs files. Update mcs file is then converted to a binary file using open-source
solution SRecord [34], which handles manipulations of different EPROM load file standards. The
resulting binary file containts the sequence of 32-bit data of the update image which needs to be sent
to the flash programmer. Interfacing to the flash programmer is done via single FIFO memory in the
FPGA.

The software takes care of enabling the flash programmer and filling this FIFO with the update
image data, one 32-bit word at the time. Successful termination or error in the update process is also
reported by the flash programmer and caught by the testAltiQuickBoot program. In addition to the
update feature, this test program allows veryfing the existing update in the image by caluclating its
CRC32 checksum, which is also written in the last entry in the update image area of the configuration
memory.

QuickBoot mechanism is summarized on Figure 5.5.5. The full list of testAltiQuickBoot
program parameters can be seen on Figure 5.5.6, while the common use of this program is shown on
Figure 5.5.7.

Factory/Design
Center
Updated
Bitstream
(.bit)
PROMGen
Updated
Bitstream
Remote System
(.mes) Flash
Remote Host (External or Integrated in FPGA) FPGA Memory
Perl Script ( 1\ ° =~ QuickBoot
= O H
adds CRC Host Update Code: 23 QuickBoot Header
WriteRedister (EnableBit = FlashProgrammer
l Local Memory 1. WriteRegister (EnableBit) = \ inReset EnableB Golden
Update . (T —-‘ 2. [Optional] Pause for Erase - Image
. Packet:
Image | LIdeate I 3. MemCopy (update image) acxets g_., inData32 prp———
mes mage A or DMA fra 4 \
( ) \,_ _-} 4. while (not done) outDone ; Update
- done = ReadRegister() o / i '\ Image ’!
= outError
4 Y, g & / —_——
o
g

Figure 5.5.5. The QuickBoot mechanism [33].
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@ pkuzmano@sbcll ct-29:/mnt/ ctpfs/pkuzmano,/11 ct-07-01-09 E\@

[pkuzmanoisbollct-29 1lct-07-01-09]%5 testhltiQuickBoot -h -

-5 «<int> =>» ALTI slot number {def = 13)

-f «<file> => Update image binary file (def = "ALTIfdataftop_alti_update.bin"]

-C =» Check ID only {def = "HO")

-V =» Verify only (def = "HQO")

-h =% Print this help

[pkuzmanofsbcllct-29 1lct-07-01-09]% -

Figure 5.5.6. testAltiQuickBoot program help with the full list of parameters.

@ pkuzmano@sbell ct-28:/mnt/ctpfs/pkuzmano/1ct-07-01-09 EI@
[pkuzmanof@sbellet-29 1lct-07-01-09]% testAltiQuickBoot -2 18 -f TOP ALTI update 12809001.bin +
ALTI: INFO - ALTI detected, revision = 0x12809001 (#1, 09.08.2018.), BAR = 0x12 <-» slot 18
ALTI: INFC - ALTI opened at vme = 0x20000000, size = 0Ox01000000, type = "A32"

I2C::I2C: INFC - opened I2C of type "ALTI™ at offset 0x00009080

2018-08-10 12:21:49 - INFC in "LWVL1::AltiModule::AltiModule (unsigned int)™:

>» opened CHEM segment "AltiModule™ of size 0x00400000, phys 0ix37c00000, wirt O0x8904a000
DS1WM: :DE1WM: INFO - opened DSIWM of type "ALTI™ at offzet 0x000080a0

ALTI[slot 18]: INFO - ALTI "Z0DATALTIOO004™ ocpened
FIFC pointers and state machine reset

file length (bytes): 0x00800000

update img len (32b words): 0x00100000

Update done: OFK
FIFC pointers and =state machine reset
[pkuzmanofsbellct-29 1lct-07-01-09]% -

Figure 5.5.7. Typical use of the testAltiQuickBoot program

Using the testAltiQuickBoot program proved beneficial in laboratory testing, when multiple
ALTI modules are inserted the same VME crate, and the JTAG programming port is inaccessible. It
also allowed the firmware update for the remotly installed modules, used and tested by other
colleagues. So, this feature is rather useful for release updates where bug fixes make it mandatory to
update the firmware.

5.5.4. testAltiCapture

This test program is used for reading the snapshot memory and for comparison with expected
patterns of TTC signals. Comparing the snapshot with the predefined pattern of input signals is very
useful for testing all signal paths and connections through the module.

Before using the testAltiCapture program, the user first has to send a known TTC signal
pattern to the FPGA. This is most easily acomplished by setting up one ALTI/LTP module in master
mode, as a pattern generator. So, the pattern input file of an LTP or ALTI can be used as a reference
for comparison with a snapshot memory of the ALTI module under test. Then, the ALTI module
being tested has to be set up in a slave mode, such that it receives those TTC signals.
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The test program repeatedly triggers the snapshot memory, reads its content and compares it
to a pattern input file. Relative timestamps in the snapshot memory make the comparison with an
LTP/ALTI pattern generation input file easier. Before actually comparing the data, the program finds
the alignment between the data read from the ALTI and the comparison data. This is necessary since
the data obtained from the snapshot memory depends on when the snapshot is actually enabled.

There are numerous parameters for the testAltiCapture program, including a comparison
mask, the amount of data to be read, the comparison file type (LTP/ALTI), etc. They are shown on
Figure 5.5.8. An example of the ALT]I pattern file is shown on Figure 5.5.9, while a common use of
the testAltiCapture program to compare snapshots with the given pattern is shown on Figure 5.5.10.

@ pkuzmano@sbcllct-29:/mnt/ctpfs/pkuzmano,/T ct-07-01-09 E'@
[pkuzmano@sbcllct-29 11lct-07-01-09]5 testAltiCapture -h -
testAltiCapture <OPTICHNS>:

TEST MOCDE:

-3 <int> =» ALTI slot nunmber {def = 11)

=5 «<file> =» Snapshot file (def = ™"

-I <file> =» Input data file (def = ™"

=J <uint> =» Input data file type (0=ALTI,1=LTF) {def = ALTI)

TRIGGER DATA CCMPARISCN:

-i <file> =» Input data size (def = 1048576)

-f «<file> =» Comparison file (def = ™"

=F <uint> =» Comparison file type (0=ALTI,1=LTF) {def = ALTI)

-t <uintd> =» TIYP words (file type LIF) (def = 0x00,0x00,0x00,0x00)
-X <int> =» Comparison size (def = 3564)

-y <int> =» Comparison minimum matches (def = 3564)

-m <uint(,uint)> => Comparison mask (def = OXELffffff)

-n <int> => Maximum #data (—1=INF) (def = 1048575)

—-a <int> =» Maximum #errors (—1=INF) (def = 0)

PRINT & DEBUG LEVEL:

=P <int> =» Print number (def = 100)

-d <int> =» Print level {def = 1)
[pkuzmanofsbcllct-28 1llct-07-01-09]% -

Figure 5.5.8. testAltiCapture program help with the full list of parameters.
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Figure 5.5.9. An example of the ALTI pattern input file used to run the pattern generator.
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EP pkuzmano@sbell ct-29:/mnt/ctpfs/pkuzmano/[l ct-07-01-09 = Ech ==

[pkuzmano@sbcllct—-29 1lct-07-01-09]% testAltiCapture -s 13 -i 3564 -f pg alti.dat -m OxfEFOfEFf -
2018-08-20 10:18:12 - INFC 4in "daqg::tmgr::TestResult LVL1::TestAltiCapture::init(}"™

testAltiCapture:

ALTI =lot number = 13
Snapshot file = N{O SHAPSHOT
Input data =size = 3564
Compariszon file = "pg_alci.dat”
Comparison file type = BLTT
Comparison size = 3564
Comparison mask = OxffFOFFfT
Comparison matches = 3564
Maximum number of data = 1048575
Maximum number of errors = a
Print number = 100
Print lewvel = 1

2018-08-20 10:18:12 - INFC in "dagq::tmgr::TestResult LVL1::TestAltiCapture: :readCompFile () ":
>» limiting number of data read from comparison file to file size

Comparison file =status = CEBENED

Comparison file =ize = 11

Comparison minimum matches = 11

ALTI: INFO - ALTI detected, revision = 0x1280f001 (#1, 15.08.2018.), BAR = 0x0d <-» slot 13
ALTI: INFO - ALTI opened at vme = 0x10000000, =size = Ox01000000, type = "A32"

I2C::I2C: INFC - opened I2C of type "ALTI" at offset Ox00009080

2018-08-20 10:18:12 - INFO in "LVL1::&AltiModule::&ltiModule (unsigned int)™:

»>» opened CMEM segment "AltiModule™ of size 0x00400000, phys 0ix37c00000, wirt Oxaff39000
DS1WM: :D51WM: INFC - opened DS1IWM of type "ALTI"™ at offset 0x000080a0

ALTI[=1lot 13]: INFC - ALTI "20DATALTIOQOO0T" opened

TesthAlciCapture: :TestAltiCapturel: INFO - opened CMEM buffer of size 0x000037kO
2018-08-20 10:18:12 - INFC in "daqg::tmgr::TestcBResult LVL1::TestAlciCapture::initc()™:
»» signal handler installed for SIGINT

2018-08-20 10:18:16 - INFCO in "daqg::tmgr::TestResult LVL1::TesthltiCapture::stat(}™

number of loop : 100 => 30.377 Hz
number of data read : 355361 => 421.669 kByte/s
nunmber of data errors : 0 => 0% and 0 bits per word
2018-08-20 10:18:19 - INFO in "daqg::tmgr::TestEResult LVL1::TestAltiCapture::stat ()™
number of loop : 200 =» 30.358 H=z
numkber of data read : T10727 => 421.410 kByte/s
number of data errors : 0 =» 0% and 0 bit=s per word
2018-08-20 10:18:22 - INFC in "daq::tmgr::TestResult LVL1::TesthltciCapture::stat(}™
number of loop : 296 => 30.350 H=z
numkber of data read : 1048575 => 419,382 kByte/s=
number of data errors : 0 => 0% and 0 bits per word

2018-08-20 10:18:22 - INFC in "daqg::tmgr::TestBResult LVL1::TestAltiCapture::exit()"™:
>» previous signal handler re-installed for SIGINT
B - 3 o o - o o v T - T [BASS]

[pkuzmanofsbcllct-29 1llct-07-01-09]% -

m

Figure 5.5.10. Typical use of the testAltiCapture program.

5.5.5. testAltiTtc

This test program is used for reading the TTC decoder memory and for comparing the data
with the expected TTC stream commands and triggers. Both the TTC decoder and encoder are being
tested using this program.

Before using the testAltiTtc program, the user has to set up one ALTI module to send TTC
commands and triggers. It is possible to use the same ALTI module for testing by sending its optical
output to the optical receiver of the same module, too. Alternatively, one can set up a legacy TTC
partition using TTCvi and TTCex and use that optical stream, too.
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In order to run an automatic test in a loop, we need something as a reference, similar to a
pattern input file in the capture program. For that purpose, a software package called ttcscope was
used. This is TTC decoder software which gets the TTC stream data samples from the LeCroy
oscilloscope [35]. The processing PC is connected with an Ethertet cable to the oscilloscope and the
data is being transmitted over the TCP/IP protocol. Optical/electrical converter probe OE455 [36] is
used to feed the electrical TTC stream signal to the oscilloscope. By running the ttcscope, the printout
of decoded commands and triggers is obtained, as shown on Figure 5.5.11. Such printout gives a neat
description of the TTC commands and triggers that can be used as a reference for comparison.

[pkuzmanofpcphese03 ~]1% ttcWaveforminalyser -ip 182.168.0.2 -ch 2 -p > ttcscope.dat

List of TIC messages:

| Msg | IICx=x E SUB DATA CHCE | Pseudo-L1ID | CHCK VAL | BCID | BC Id:fied | BC Count

| | [Type CHT-HEX (CNT-DEC )] | | | | | |

| |--- e | - |-——-——-- | -1 -1 -1

| Short | 0D Ox01 0x13 | | CK | 0000 | j2ie] | 00000448

| Long | A Ox1111 1 5 0Ox00 D Ox1l Ox3a | | CK | 0387 | YES | 00001436

| Long | R 0Ox2222 1 5 0x00 D Ox22 0Ox42 | | CK | 1491 | YES | 00001940

| Long | A Ox3333 1 5 0x00 D Ox33 Oxlg | | CK | 1%%8 | YES | 00002445

| Liz | | 0x00000000 | | 2145 | YES | 00002594

| Lizn | | 0x00000001 | | 2158 | YES | 00002607

| Liza | | 0x00000002 | | 2172 | YES | 00002621

| Lizn | | 0x00000003 | | 2187 | YES | 00002636

| Long | R 0Ox1234 0 5 0Ox00 D Ox55 Ox4b | | CK | 2200 | YES | 00002649

| Lia | | 0x00000004 | | 2203 | YES | 00002652

| Lia | | 0x00000005 | | 2228 | YES | 00002675

| Long | A 0x1234 0 5 0x01 D Oxdf Ox63 | | OK | 2247 | YES | 00002696 |

| Lizn | | 0x00000006 | | 2253 | YES | 00002708

| Lizn | | 0x00000007 | | 2293 | YES | 00002742 |

| Long | R Ox1234 0 5 0x02 D Ox3f 0x02 | | CK | 2294 | YES | 00002743

| Lin | | 0x00000008 | | 2338 | YES | 00002785

| Long | R 0x1234 0 5 0x03 D OxTb Oxlb | | CK | 2341 | YES | 00002790

| Liz | | 0x00000009 | | 2380 | YES | 00002829

| Long | A 0x1234 0 S 0x00 D Oxaa O0x53 | | OK | 2388 | YES | 00002837 |

| Long | R Ox1234 0 5 0x01 D Oxdf 0Ox63 | | CK | 2435 | YES | 00002884

| Long | R 0Ox1234 0 5 0x02 D Ox3f 0O=02 | | CK | 2482 | YES | 00002931

| Long | R Ox1234 0 5 0x03 D OxTc 0Ox62 | | CK | 2523 | YES | 00002978

| TTwvpe | [Oxaa Oxdf3f7c (14630780)] | | CK | 2523 | YES | 00002978

| Long | A Oxl1234 0 5 0Ox00 D Oxff Oxéc | | O | 2576 | YES | 00003025

| Long | A 0Ox1234 0 5 0Ox01 D Oxdf 0Ox63 | | 16):4 | 2823 | YES | 00003072

| Long | R Ox1234 0 5 0x02 D Ox3f 0x02 | | OF | 2870 | YES | 00003119

| Long | & Ox1234 0 5 0x03 D Ox7d 0Tk | | CK | 2717 | YES | 00003166

| TTwpe | [Oxff Oxdf3f7d (14630781)] | | CK | 2717 | YES | 00003166

| Long | R 0Ox1234 0 5 0Ox00 D Oxde 0Oxl4 | | OK | 2764 | YES | 00003213

| Long | R 0Oxl1234 0 5 0x01 D Oxdf 0Ox63 | | CK | 2811 | YES | 00003260

| Long | R Oxl1234 0 5 0Ox02 D Ox3f Ox02 | | 16):4 | 2858 | YES | 00003307

| Long | A 0x1234 0 5 0x03 D OxTe Oxdb | | OK | 2%05 | YES | 00003354 |

| TTwype | [Oxde Oxdf3fT7e (14630782)] | | CK | 2805 | YES | 00003354
Statisticsa:

Data acguisition time H Mon Aug 20 11:46:42.9514837000 2018 CEST

Scope trigger time H Mon Aung 20 12:01:41.374810706 2018 CEST

Scope sampling interwval H 0.2000 ns

BC clock interval (mean) H 24.3502 ns

BC clock interval (RMS) H 24,9510 ns

Sequence duration H 4008 BC counts (1 orbits + 444 BC counts)

Liis H 10

Commands (consistent) : 20 | 20)

Long commands (consistent) H 13 | 13)

Short commands (consistent) H 1 1)

BCEs

ECEs

Joint BCRs and ECREs
Unrecognised short commands

(== I = I

Figure 5.5.11. Result of running the ttcscope program.
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The test program then repeatedly triggers the two TTC decoder memories (called "command”
and "timestamp"), reads their content, interprets the data and compares it to the ttcscope reference
file. Alignment and comparison is analogous to the ones used in testAltiCapture program, with a few
subtle differences. Timestamps in ttcscope and the ALTI decoder have a relative offset, so they are
masked in the alignment part of the algorithm. However, this offset is calculated after the alignment
and the timestamps are adjusted so that they can be compared. Comparing the timestamps makes sure
that the timing of periodic triggers and commands stays stable.

The testAltiTtc program was created by applying slight modifications to the testAltiCapture
program, so the list of program parameters is also very similar. The full list of parameters is shown
on Figure 5.5.12, while the typical use of the program is shown on Figure 5.5.13.

@ pkuzmano@sbcll ct-29:/mnt/ ctpfs/pkuzmano/[1 ct-07-01-09 EI@
[pkuzmano@sbellct-29 1llct-07-01-09]% testRltiTtc -h -
testRltiTtc <OPTICHS>:

TEST MCDE:

-8 <int> =» ALTI slot number (def = 11)

-5 «<file> =» Snapshot file (def = "")

-1 <file> => Input data file (def = mm)

TRIGGER DATAZ COMPARISCN:

-i <file> => Imnput data size (def = 1048578&)

-f «<file> =» Comparison file (def = mm)

-t <uintlé,uint8> => TIYF address, subaddress (def = 0x0000,0x00)

-p <int> => TTYP address space (0O-INTERNAL/1-EXTERNAL) (def = EXTERNAL)

-xX <inti =» Comparison size (def = 3564)

-y <inti> =» Comparison minimum matches (def = 3564)

-m <uint(,uint)> => Comparison mask (def = O=xffffffff, OxfELfEFfEFT)
-n <int> => Maximum #data (—1=INF) (def = 1048575)

—-e <int> =» Maximum #errors (—1=INF) (def = 0)

PRINT & DEBUG LEVEL:

-P <int: =» Print number {def = 100)

-d <int> => Print lewvel {def = 1)

[pkuzmano@sbellet-29 11et-07-01-09]% -

Figure 5.5.12. testAltiTtc program help with the full list of parameters.
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EP pkuzmano@sbell ct-29:/mnt/ctpfs/pkuzmano/IL ct-07-01-09 EI@

[pkuzmano@sbcllct-29 11ct-07-01-09]% testAltiTte -3 9 -f ttcscope.dat -t 0x1234,0%00 -m Oxffffffff, Ox5fFFEFFff -p 0 -n 1000 -i 128 =
2018-08-21 12:07:45 - INFO in "daq::tmgr::TestResult LVL1::TestRltiTtc::init()}"

testhltiToc:

ALTI slot number
Snapshot file

Input data size
Comparison file

]
NO SHNAPSHOT
128

"ttescope.dat™

TTYP address, subaddress = 0Ox1234,0x00

TITYP address space = INTERNAL

Comparison size = 3564

Comparison mask = OxfLLffffff, OXSELLESTE
Comparison matches = 3564

Maximum number of data = 1000

Maximum number of errors = 1]

Print number = 100

Print lewvel = 1

2018-08-21 12:07:45 - INFO 1in "dadq::tmgr::TestResult LVL1::TestAltiTtc::readCompFile()":
»>» limiting number of data read from comparison file to file size

Comparison file status = CPENED
Comparison file size = 30
Comparison minimum matches = 30

ALTI: INFQO - ALTI detected, revision = 0x1280£001 (#1, 15.08.2018.), BAR = 0r08 <-> slot 9
ALTI: INFO - ALTI opened at vme = 0x08000000, size = 0x01000000, type = "A32"

I2C::1I2C: INFO - opened I2C of type "ALTI" at offset 0x00009080

2018-08-21 12:07:45 - INFO in "LVL1::AltiModule::AltiModule (unsigned int)™:

>> opened CMEM segment "AltiModule” of size 0x00400000, phys 0ix37c00000, wvirt 0xa0Zdc000
DS1WM: :DS1WM: INFO - opened DS1WM of type "ALII™ at offset 0x000080a0

ALTI[=slot 9]: INFO - ALTI "20DATALTIO0002" cpened

TestAltiTtc: :TestAltiTtcl: INFC - opened CMEM buffer of size 0x00000200
TestAltiTtc: :TestAltiTtcl: INFC - opened CMEM buffer of size 0x00000200
2018-08-21 12:07:45 - INFO in "daq::tmgr::TestResult LVL1::TestAltiTtc::init()":
»>» signal handler installed for SIGINT

2018-08-21 12:07:46 - INFO 1in "dadq::tmgr::IestResult LVL1::TestAltiTtc::stat()"

number of loop H 33 =» 285.835 H=z
number of data read H 1000 =» 35.025 kByte/s
number of data errors H 0 =» 0% and 0 bits per word

2018-08-21 12:07:46 - INFDO in "daq::tmgr::TestResult LVL1::TestRAltiTtc::exit()™:
»>> previous signal handler re-installed for SIGINT
B = F - o e T < o - T [BASS]

[pkuzmano@sbellct-29 11ct-07-01-09]1% il

Figure 5.5.13. Typical use of the testAltiTtc program.

5.5.6. testAltiSync

This test program was developed in order to evaluate the input synchronization and monitoring
firmware. The idea was to make use of the LTPI shifting functionality and observe what happens to
the ALTI histograms for input synchronization and monitoring. Since this test program operates on
both modules, the LTPI and the ALTI, the low-level LTPI software library is used to access that
module and shift the TTC signals.

Before running the test program, a pattern of TTC signals is generated (with an LTP or an
ALTI) and propagated through the LTPI module, to its CTP_OUT connector. Then, the connection
with the downstream ALTI module under test is done using a single LVDS-LINK cable to either of
the two ALTI LVDS-LINK input connectors.

When running the testAltiSync program, the user can choose the source connector of the
signals coming from an upstream LTPI (CTP_OUT or ALTI_OUT) and the desired delay (in
nanoseconds) to be introduced by the LTPI for all the signals. The result of running the program is
the printout of ALTI histograms.

The full list of available program parameters is shown on Figure 5.5.14, while the common
use of the testAltiSync is shown on figures 5.5.15 and 5.5.16. Note the shift of the histogram content
to the next bin as a result of a different phase of the TTC signals on Figure 5.5.15 and Figure 5.5.16.

43



@ pkuzmano@sbcll ct-29:/mnt/ctpfs/pkuzmano/1ct-07-01-09
[pkuzmano@sbcllct-29 1lct-07-01-09]% testAltiSync -h -

testAltiSync <OPTIONS>:

=» LTPI VME base address (def = 0x00ee2000)

-a <uint>

-d <int> =» LTPI CTF link delay, 0.5ns step [0-860] (def = 0O

-3 <int> =» ALTI =slot number (def = 13)

-c <int> =» ALTI input cable (0-CTP_IN/1-ALTI_IN) (def = CTP_IN)
[pkuzmanofsbecllct-29 1lct-07-01-091% -

Figure 5.5.14. testAltiSync program help with the full list of parameters.

@ pkuzmano@sbcll ct-29:/mnt/ctpfs/pkuzmano/1ct-07-01-09

[pkuzmanofsbellect-29 11ct-07-01-09]% testAltiSync -3 13 -c 0 -d O -
2018-08-21 11:48:00 - INFO in "dag::tmgr::TestResult LVL1::TestAltiSync::init(}"

testRlciSync:
LIPFI VME base address = 0x00ee2000
LTPI CTP link delay =0 (0.0ns=)

ALTI slot number = 13

ALTI input cable CTP_IN

ALTI: INFO — ALTI detected, revision = 0Ox1280f001 ($#1, 15.08.2018.), BAR = 0x0d <-> slot 13
ALTI: INFO - ALTYI opened at vme = 0x10000000, size = 0x01000000, type = "A32"

I2C::I2C: INFC - opened I2C of type "ALTI™ at offset Ox00009080

2018-08-21 11:48:00 - INFO in "LVL1::AltiModule::AltiModule (unsigned int)™:

>>» opened CMEM segment "&ltiModule™ of size 0x00400000, phys 0ix38800000, wvirt 0x9f4cb000
DS1WM: :DS1WM: INFO - opened DSIWM of type "ALTI" at offset Ox000080a0

ALTI[slot 13]: INFO - ALTI "20DATALTICO000T" opened

2018-08-21 11:48:00 - INFC in "daq::tmgr::TestResult LVL1l::TestAltiSync::init()":
>» opened module "LTPI" at vme = 0x00ee2000, =size = 0x00000100, type = "AZ4"

R R R R R R R R R R R R AR R R R R A AR AR R R R AR R R AR AR R AR AR AR AR AR R R AR AR AR AR
Manufacturer ID = 0=x080030
Board ID = 0x01081034
Revision number = 0x01022008

T T

LIPI CTIP link delay set to 0

2018-08-21 11:48:01 - INFO
>> signal handler installed

({0.0ns)

in "dag::tmgr::TestResult LVL1::TestAltiSync::init()":
for SIGINT

Histogram statistics (delay = 0.0ns):

+——- -— -— -+
| Asynchronous input =ignal | Histogram count by phase [pos/neg] |
+——- -— -— -+
| | O deg | 90 deg | 180 deg | 270 deg |
+——- -— -— -+
| [00]SWX _ORB | 7,7 | 0/0 | 0/0 | 0/0 |
| [01]SWX L1A | 747 I 0/0 | 0/0 | 0/0 |
| [02]SWX BGOO | 777 | 0/0 | 0/0 | 0/0 |
| [03]SWX BGO1 | 747 I 0/0 | 0/0 | 0/0 |
| [04]5WX_BGO2 | ki I 0/0 | 0/0 | 0/0 |
| [05]5WX_BGO3 | 747 I 0/0 | 0/0 | 0/0 |
| [06]SWX_TTYPO | ki I 0/0 | 0/0 | 0/0 |
| [07]1SWX _TTYP1 | 7/7 | o/0 | o/0 | 0/0 I
| [08]SWX _TTYP2 | 777 I 0/0 | 0/0 | 0/0 |
| [09]SWX TTYP3 | 777 | 0/0 | 0/0 | 0/0 |
| [10]SWX TTYP4 | 747 I 0/0 | 0/0 | 0/0 |
| [11]SWX_TTYPS | /7 | 0/0 | 0/0 | 0/0 |
| [12]5WX_TTYPé& | 747 I 0/0 | 0/0 | 0/0 |
| [13]SWX_TTYPT | ki I 0/0 | 0/0 | 0/0 |
| [14]15W¥ TTR1 | 777 I 0/0 | 0/0 | 0/0 |
| [15]SWX_TTR2 | 777 I 0/0 | 0/0 | 0/0 |
+——- —— —— -+

2018-08-21 11:48:01 - INFO

in "dag::tmgr::TestResult LVL1::TestAltiSync::exit()™:

>» previous signal handler re-installed for SIGINT
b o I o T8 - o = [PASS]

[pkuzmanofsbellct-29 1lct-07-01-09]1%

m

Figure 5.5.15. Typical use of the testAltiSync program: without the LTPI delay.
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2018-08-21 11:48:34 - INFO

@ pkuzmano@sbcll ct-29:/mnt/ctpfs/pkuzmano/1ct-07-01-09
[pkuzmanofsbellet-29 11ct-07-01-09]% testAltiSync -3 13 -c 0 -d 8 -

in "dag::tmgr::TestResult LVL1::TestRltiSync::init ()"

testRlciSync:

LTPFI VME base address
LTPI CTP link delay
ALTI slot number

ALTI input cable

0x00ee2000
8 (4.0ns)
= 13
CTP_IN

ALTI: INFC - ALTI detected,
ALTI: INFO - ALTI opened at
I2C::I2C: INFC - opened IZ2C
2018-08-21 11:48:34 - INFO

DS1WM: :D51WM: INFC - opened

revision = Ox1280£001 (#1, 15.08.2018.), BAR = 0x0d <-» slot 13
vme = 0x10000000, size = 0x01000000, type = "A32"

of type "ALTI"™ at offset 0x00009080

in "LVL1::AltiModule::AltiModule (unsigned int)™:

>> opened CMEM segment "&ltiModule™ of size 0x00400000, phys 0ix38800000, wirt O0xb3c31000

DS1IWM of type "ALTI" at offset Ox000080a0

ALTI[slot 13]: INFO - ALTI

"20DATALTIOO00T" opened

2018-08-21 11:48:34 - INFO

L T T T T T

RRRERRRRRRRRRRRRARRRRRRRRAR

LTPI CTP link delay set to

2018-08-21 11:48:35 - INFO
>>» signal handler installed

in "dag::tmgr::TestResult LVL1::TesthAltiSync::init()":

>>» opened module "LTPI" at vme = 0x00ee2000, size = 0x00000100, type = "A24"

e T T e T T e T

Manufacturer ID = 0=x080030
Board ID = 0x01081034
Revision number = 0x01022008

R R R R R R AR R R R AR R R R AR R R AR R R AR AR AR R R ARRRRARRRRARR

8 (4.0ns)

in "dag::tmgr::TestResult LVL1::TestRAltiSync::init()":
for SIGINT

2018-08-21 11:48:35 - INFO

»» TestAltiSynec::test .....

Histogram statistics (delay = 4.0ns):

+—— —— —— -+
| Asynchronous input signal | Histogram count by phase [pos/neq] |
+——- —— —— -+
| | O deg | 90 deg | 180 deg | 270 deg |
+——- —— —— -+
| [00]SWX ORB | 0/7 I 747 I 0/0 | 0/0 |
| [01]SWX LiA | 0/0 | /7 | 0/0 | 0/0 |
| [02]5W¥_BGCO | 0/0 | 747 I 0/0 | 0/0 |
| [03]SWX _BGO1 | 0/0 | 747 I 0/0 | 0/0 |
| [04]SWX BGO2 | 7,7 I 747 | 0/0 | 0/0 |
| [05]SWX BGO3 | 747 I 747 I 0/0 | 0/0 |
| [06]SWX TTYPO | o/0 | 777 | 0/0 | 0/0 |
| [0T]SWX _TTYP1 | 0/0 | 747 | 0/0 ] 0/0 |
| [08]SWX_TTYP2 | ki I 747 I 0/0 | 0/0 |
| [03]15WX TTYP3 | 0/0 | 777 I 0/0 | 0/0 |
| [10]SWX TTYP4 | 0/0 | 777 I 0/0 | 0/0 |
| [11]SWX TTYPS | 7/0 | 777 I 7/0 | 0/0 |
| [12]SWX TTYP& | 0/0 | 747 I 0/0 | 0/0 |
| [13]SWX_TTYP7 | 0/0 | /7 | 0/0 | 0/0 |
| [14]5W¥_TTR1 | 747 I 0/0 | 0/0 | 0/0 |
| [15]SWX_TTR2 | ki I 0/0 | 0/0 | 0/0 |
+——- —— —— -+

in "dag::tmgr::TestResult LVL1::TesthAltiSync::exit()":

m

>» previous signal handler re-installed for SIGINT

.............................................. [PASS]

[pkuzmanofsbellct-29 1lct-07-01-09]1% I [

Figure 5.5.16. Typical use of the testAltiSync program: with the LTPI delay of 4ns, resulting in the histogram

shift.
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6 . MODULE TESTING

This chapter describes the process of testing the ALTI prototype modules and lists the most
important test results. First, the laboratory tests on individual modules are discussed in Section 6.1.
An automated connection test that was designed for systematic testing and evaluation of the large
number of prototype modules is discussed in Section 6.2.

6.1. Laboratory tests

With the help of the low-level software, the menu programs (for both the ALTI and the other
legacy TTC modules) and the oscilloscope, the prototype modules have been tested. A typical
laboratory setup used in such module tests is shown on Figure 6.1.1

That laboratory tests include the checking of all the hardware on the module:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Complete 12C network

RAM memories external to the FPGA

LVDS-LINK cable inputs/outputs

LEMO NIM-level inputs/outputs

LEMO TTL-level BUSY input

All routing paths through the cross-point switches
Equalizers: configurations for short/long cables found
RJ45 calibration request inputs

1-Wire ID chip for labeling the modules

Figure 6.1.1. Typical laboratory test setup with multiple ALTI and legacy TTC modules in the same VME crate.
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Also, laboratory tests were performed in order to check all of the ALTI functionalities and
make sure that they are properly implemented in the firmware.
In the module testing process, several PCB design issues have been found, all of which shall
be fixed in the next pre-production series:

1) ADCMP564 comparators on the NIM outputs should be supplied by +5V, instead of
+3.3.V (prototype modules have been fixed by rewiring)
2) MAX1617A temperature sensor remote diode pins polarity is swapped
3) Power-down mode pins for the AD8123 equalizers should be driven from the FPGA
to reduce the heat dissipation
4) The termination in the ALTI BUSY input needs to be slightly modified in order to

allow TTL-level inputs

Some issues related to the bad assembly and soldering have been identified on the particular
prototype modules. These were not related to any of the design issues, and were easily fixed on each
of these particular modules.

6.2. Automated connection test

The ConnectionTestAlti program was designed in order to systematically check all forward-
going signal paths through the ALTI, for varying configurations of cross-point switches. It was
written in Python and it makes extensive calls to the testAltilnitial and testAltiCapture programs.

The ALTI module under test is put in between two "golden” ALTI modules, fully connected

with LVDS cables and LEMO-connector coaxial cables. This setup is shown on Figure 6.2.1.

_ — LVDS —
|ctPaN cTPOUT | | cTPN
_ — LVDS -
| ALTLIN - ALTLOUT | | AN
ALTI
“master” LEMO
(@) BC BC (o) (o) BC
(o) ORB ORB (2} (o) ORB
@© L1A L1A (o) ©) L1A
(© TTR1 TTR1 (5) (@) TTR1
(© TTR2 TTR2 (o) (©) TTR2
(3 TTR3 TTR3 (3) (@) TTR3
(@) BGO2 BGO2 () (o) BGO2
©) BGO3 BGOS3 (o) (©) BGO3

ALTI
l.’testﬂ

_ LVDS — _
cTP_OUT || |ctPaN cTP_OUT |
— | Lbs - —
ALTLOUT || | ALTLIN ALTLOUT |
ALTI
LEMO “slave”
BC © (@) BC BC ()
ORB () ) ORB ORB (2)
L1A (o © L1A L1A (o)
TTR1 (O) (3) TTR1 TTR1 (@)
TTR2 (o) @) TTR2 TTR2 @)
TTR3 () @) TTR3 TTR3 (9
BGO2 () ©) BGO2 BGO2 (3
BGO3 (o) (©) BGO3 BGO3 ()

Figure 6.2.1. Setup for testing of all input/output paths of TTC signals.
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Typically, the "Master" ALTI module sends a pattern of TTC signals given by a randomly
generated input file. The lengths of the random patterns and the probabilities for "0" or "1" occurrence
are programmable. The signals are then propagated through the "Test™ ALTI module and are captured
in the "Slave" ALTI module and compared with the given pattern. Exceptions to this rule are the tests
of FROM_FPGA input paths (where the "Test" ALTI acts as a pattern generator) and TO_FPGA
output paths (where the "Test" ALTI takes snapshots). The test of a single input/output combination
consists of initializing the ALTI modules with testAltilnital program, and then taking the snapshot
with the testAltiCapture program. Predefined ALTI configurations are used for the initialization:
Pattern generator, "CTP slave”, "ALTI slave" and "LEMO slave".

All input/output paths are being tested, from the front panel inputs to the front panel outputs,
as well as to and from the FPGA. Thus, there are 15 different input/output combinations that are being
tested. Paths with FROM_FPGA input ant TO_FPGA output are not being tested, since it is not
possible to use both the pattern generation and the snapshot features of the same module
simultaneously.

Table 6.2.1 shows all input/output paths being tested and the corresponding configurations of
the "Master"”, "Test" and "Slave™ ALTI modules.

Table 6.2.1. Standard configurations of ALTI modules in the connection test for various test paths.

PATH "MASTER" ALTI "TEST" ALTI "SLAVE" ALTI
CONFIGURATION | CONFIGURATION | CONFIGURATION

CTP_IN->CTP_OUT Pattern generator | CTP slave CTP slave
CTP_IN -> ALTI_OUT Pattern generator | CTP slave ALTI slave
CTP_IN -> LEMO_OUT Pattern generator | CTP slave LEMO slave
CTP_IN->TO_FPGA Pattern generator | CTP slave N/A
ALTI_IN -> CTP_OUT Pattern generator | ALTI slave CTP slave
ALTIL_IN -> ALTI_OUT Pattern generator | ALTI slave ALTI slave
ALTI_IN -> LEMO_OUT Pattern generator | ALTI slave LEMO slave
ALTIL_IN ->TO_FPGA Pattern generator | ALTI slave N/A
LEMO_IN ->CTP_OUT Pattern generator | LEMO slave CTP slave
LEMO_IN -> ALTI_OUT Pattern generator | LEMO slave ALTI slave
LEMO_IN -> LEMO_OUT Pattern generator | LEMO slave LEMO slave
LEMO_IN -> TO_FPGA Pattern generator | LEMO slave N/A
FROM_FPGA -> CTP_OUT N/A Pattern generator | CTP slave
FROM_FPGA -> ALTI_OUT | N/A Pattern generator | ALTI slave
FROM_FPGA -> LEMO_OUT | N/A Pattern generator | LEMO slave

If the testAltiCapture returns an error, the corresponding input/output path failure is reported.
There can be multiple reasons for this failure: wrong equalizer settings, wrong input signal
synchronization or simply a bad soldering or some assembly issue. In order to report what TTC signal
lines are problematic, the snapshot memory masking feature is used. After the failure, TTC signals
are independently checked by masking all other signals from the snapshot, and the testAltiCapture is
ran again. This means that the changes of all the masked signals are not stored in the snapshot
memory, so only one TTC signal is checked at a time. If this call of the testAltiCapture reports failure,
that means there is a problem for this particular TTC signal for a given input/output combination of
the cross-point switch.
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On Figure 6.2.2, a typical use of the ConnectionTestAlti is shown. The full report gives the
user the information on which paths failed the test, and which TTC signals are in fact problematic.
As shown on Figure 6.2.3, by using the proper parameter the user can also check the BGO multiplexed
paths discussed in Subsection 3.2.3. The user is also guided on how to do the cabling between the
modules, as can be seen on figures 6.2.2 and 6.2.3.

EP pkuzmano@sbellct-20:/mnt/ctpfs/pkuzmano/ILct-07-01-09 EI@

[pkuzmanofsbellect-29 11let-07-01-09]1% pyvthon ALTI/src/test/ConnectionTestAlti.py -n 100 »
"Master™ ALTI: slot 9
"Test™ ALTI: slot 13
"Slave™ ALTI: slot 18

Pattern file:
ALTI/=rc/test/../../datafalti pg random forward.dat

Connection instructions:
(BGO2/3 LEMD inputs/outputs tested)

] | CIF_OUT CIPF_IN | | CTP_OUT CTF_IN | |
| ALTI - >| ALTI |- >| ALTI |
| master | | test | | slave |
| =lot 9 | ALTI OUT ALTI IN | =lot 13 | ALTI OUT ALTI IN | slot 18 |
| |l-—— = |- =] I
| I I | | I
| | NIM OUT NIM IN | | NIM OUT NIM IN | |
| BC |-———————————————— >| BC BC |-———————————————— >| BC |
| OFB |-————————————————— »>| CREB CFB |-—————————————————— >| CRB |
| L1a |-————————————————— >| L1A Lia |-—-——————————————— >| L1A |
| TIRl |-————————————————— >| TTR1 TIRl1 |--———————————————— >| TTR1 |
| TIRZ |-————————————————— »>| TTR2 TIR2 |-—-———————————————— >| TTR2 |
| TIR3 |-————————————————— >| TTR3 TIR3 |--———————————————— >| TIR3 |
| B&CoZ2 |-————————————————— >| BGDZ2 BGDZ2 |- ——— >| BGD2 |
| BGO3 |- ———— >| BGD23 BGO3 |- ——— >| BGD3 |
| I I | | I
After recakling, press any key to continue...

CTP_IN -> CTPF_OUT connection OK

CTP_IN -> ALTI OUT connection failed

"ITYPD " connection failed

CTP_IN -> LEMO OUT connection OK

CTP_IN -> TO FPGA connection OK

ALTT IN -> CTP_OUT connection OK
ALTT IN -> ALTI OUT connection failed

"TTYPD " connection failed

ALTT IN -> LEMO OUT connection OK
ALTI_IN -> TO _FPGA connection OK
LEMO_IN -» CTP_OUT connection failed
"ORB " connection failed

"L1& " connection failed

LEMO_IN -> RLTI_OUT connection failed
"ORB " connection failed

"L1& " connection failed

LEMO_IN -> LEMO OUT connection failed
"ORB " connection failed

"L1& " connection failed

LEMO_IN -> TO _FPGA connection failed
"ORB " connection failed

"L1& " connection failed

FROM_FPGA -»> CTPF_OUT connection OK
FROM_FPGA -»> ALTI OUT connection failed

"TTYPO " connection failed =
FROM FPGA -»> LEMO OUT connection OK
[pkuzmanofsbellct-29 1let-07-01-09]18 -

Figure 6.2.2. Connection test results, LEMO BGO2 and BGO3 cabling.
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EP pkuzmano@sbell ct-29:/mnt/ctpfs/phuzmanc/i1ct-07-01-09 EI@

[pkuzmanofsbellet-29 11ct-07-01-08]% python ALTI/src/test/ConmectionTesthAlti.py -n 100 -M =
"Master™ ALTI: slot 9
"Test™ ATLTI: slot 13
"Slave™ ALTI: slot 18

Pattern file:
ALTIfsrcftest/../../datasalti pg random forward.dat

Connection instructions:
(BGOO/1 LEMO inputs/outputs tested)

| | CTP_OUT CTP_IN | | CTF_OUT CTP_IN | |
| ALTI |----— >| ALTI l----— >| ALTI |
| master | | test | | =lave |
| =slot % | ALTII OUT ALTI IN | slot 13 | ALTI OUT ALTI IN | slot 18 |
| |-———- =] |-————- =] I
| | | | I I
| | WIM OUT NIM IN | | WIM OUT NIM IN | |
| BEC |-~ >| BC BEC |- >| BC |
| CRE |-~ »| CRB CRE |-~ >| CRB |
| La |-———————— e I L2 |- >| L1& |
| ITR1 |- »| TIR1 TTRl |- >| TIR1 |
| TTR2 | f—— »| TIR2 TTR2 | f »| TIR2 |
| TIR3 | / /f———————————— »| TTR3 TTR2 | / /———————— >| TIR3 |
| BGDZ |-/ / | BGO2 BGOZ2 |-/ / | BGC2 |
| BGO3 |--/ | BGO3 BGO3 |-/ | BGC3 |
| | | | I I
After recabling, press any key to continue...

CIF_IN -> CTIP_OUT connection OK

CIF_IN -> ALTI OUT connection failed

"ITYPD ™ connection failed

CIF_IN -> LEMO OUT connection OK

CIF_IN -> TO FPGA connection OK

ALTI IN -> CTP_OUT connection OK

ALTI IN ->» ALTI OUT connection failed

"ITYPO ™ connection failed

ALTI IN ->» LEMO OUT connection OK

ALTI_IN -» TO _FPGA connection OK

LEMO_IN -» CTIP_OUT connection failed

"ORB " connection failed

"L1a " connection failed

LEMO_IN -» RLTI OUT connection failed

"ORB " connection failed

"L1a " connection failed

LEMC_IN -» LEMO OUT connection failed

"ORB " connection failed

"Ll " connection failed

LEMC_IN -» TO _FPGA connection failed

"ORB " connection failed

"Ll " connection failed

FROM _FPGA -»> CTF_OUT connection OK
FROM FPGA -» ALTI OUT connection failed

"ITYPO " connection failed 2
FROM FPGA -» LEMO OUT connection OK
[pkuzmanofsbellct-29 11lct-07-01-09]% -

Figure 6.2.3. Connection test results, LEMO BGOO0 and BGO1 cabling (multiplexed).

The reports shown on figures 6.2.2 and 6.2.3 suggest that there is a problem with L1A and
ORB LEMO inputs for this particular ALTI module, as well as TTYPO line on the ALTI_OUT path.
Such an automated test allows for quick check and evaluation of the upcoming ALTI modules,
something that would be practically impossible to do manually using the oscilloscope.
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7 . PERFORMANCE MEASUREMENTS

This chapter describes the performance measurements that were done on the ALTI module,
and shows the obtained results. Those tests have been done in order to qualify some critical
performance parameters of the ALTI module and compare them the legacy TTC modules. Low-level
software for the ALTI and the other legacy TTC modules (in the form of menu programs) has been
used in order to set the modules up appropriately for each measurement.

The parameters that were measured include:

1) Cable-to-cable latency of electrical TTC signals, compared to LTPI and LTP
modules

2) Level-1 Accept latency in the TTC encoded optical stream, compared to the current
daisy chain setup of LAr in the experiment

3) Jitter in the TTC stream and on-board jitter cleaner chip performance, compared to
the current system based on TTCvi and TTCex

Measurements of each of these parameters are discussed in separate sections.

7.1. Latency of electrical TTC signals

Latency is very important in the TTC system and the ATLAS experiment. In particular, the
latency of the L1A is very critical, because the front-end electronics buffers can only hold event data
for a given time, before they lose or overrun the existing data.

Latencies of most of the forward-going TTC signals from the cable inputs (CTP_IN/ALTI_IN)
to the cable outputs (CTP_OUT/ALTI_OUT) have been measured. Each of these delay paths consists
of: an LVDS receiver, an equalizer, a cross-point switch and an L\VVDS driver.

A setup that was used for these measurements is shown on Figure 7.1.1. The delay of a
particular signal is measured between the two ALTI modules called "Master" and "Slave". For this,
output LEMO connectors for that particular signals are used. Two coaxial cables are used to feed the
signals to the LeCroy oscilloscope and the delay between the two waveforms is then measured. On
Figure 7.1.1, one such measurement has been shown, namely the latency of L1A through the CTP_IN
to CTP_OUT path.

This is an indirect measurement, and the latency is obtained my subtracting the results of two
measurements shown on Figure 7.1.1. The first measurement includes the propagation delay through
the ALTI module under test, while the second measurement bypasses this ALTI module. In the first
measurement two LVDS-LINK cables length 0.5m are used, and in the second measurement one
LVDS-LINK cable of length 1m is used. Thus, the propagation delays through the cables are matched
in both measurements and they cancel out in the subtraction of the results. The same holds for the
propagation delays through the coaxial cables, which are the same in both measurements.
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LVDS LVDS
CTP_IN CTP_OUT |: || cTP_IN CTP_OUT |: || cTP_IN CTP_OUT
0.5m 0.5m
|: cable |: cable
ALTI_IN ALTI_OUT ALTI_IN ALTI_OUT ALTI_IN ALTI_OUT
ALTI ALTI ALTI
“master” “test” “slave”
L1A) L1A(®)
4 4
LeCroy
oscilloscope
(@
LVDS

CTPIN  CTP_OUT :| CTPIN  CTP_OUT

1m
H H cable H H
ALTI_IN ALTI_OUT ALTI_IN ALTI_OUT
ALTI ALTI
“master” “slave”

L1A®) L1IA®

LeCroy

oscilloscope
(b)

Figure 7.1.1. CTP_IN->CTP_OUT path latency measurement for L1A: (a) delay of ALTI under test included,
(b) ALTI module under test bypassed.

The results of measuring the propagation delays through the ALTI module are shown in Table
7.1.1. What we can see from the table is that the latency is about 12ns, from any LVDS cable input
to any LVDS cable output of the ALTI module. So, the delays for all the signals and for all four
different input/output configurations are roughly the same. This is expected, since this circuitry in the
cross-point switch path is the same for all the TTC signals.
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Table 7.1.1. Cable-to-cable latencies of TTC signals for the ALTI module.

SIGNAL CTP/CTP | CTP/ALTI | ALTI/CTP | ALTI/ALTI
DELAY [NS] | DELAY [NS] | DELAY [NS] | DELAY [NS]

BC 11.76 11.56 11.47 11.18

ORB 12.04 11.99 11.57 11.49

L1A 11.92 11.69 11.46 11.21

TTR1 11.69 11.58 11.31 11.17

TTR2 11.72 11.91 11.44 11.58

TTR3 11.63 11.61 11.26 11.19

BGO2 | 11.88 11.81 11.58 11.46

BGO3 | 11.99 11.99 11.59 11.54

With a similar setup, latencies of other modules with LVDS-LINK connectors (LTPI and LTP)
have also been measured. The only difference in the setup is that the module under test is LTP/LTPI,
instead of the ALTI. Results are shown in Table 7.1.2 and Table 7.1.3 for the LTPI and the LTP,
respectively.

Table 7.1.2. Cable-to-cable latencies of TTC signals for the LTPI module.

SIGNAL CTP/CTP | CTP/LTP | LTP/CTP | LTP/LTP
DELAY [NS] | DELAY [NS] | DELAY [NS] | DELAY [NS]

BC 10.89 13.74 13.29 8.76

ORB 13.99 12.43 17.41 9.16

L1A 14.66 13.28 17.87 8.83

TTR1 14.48 11.27 16.56 9.49

TTR2 14.39 11.27 16.42 9.39

TTR3 14.67 11.51 16.69 9.26

BGO2 | 14.61 12.72 18.76 9.13

BGO3 | 14.88 13.09 18.51 9.02

Table 7.1.3. Cable-to-cable latencies of TTC signals for the LTP module.

SIGNAL CTP/CTP
DELAY [NS]

BC 4.63

ORB 4.83

L1A 4.48

TTR1 11.60

TTR2 11.18

TTR3 11.94

BGO2 | 1231

BGO3 | 12.59
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The results of these measurements are also expected. In the LTPI, CTP output link is preceded
by a fine-tune delay chip (0.5 ns step), which can be used to phase shift all TTC signals [7], except
the BC. Also, in the LTP, propagation delays are lower for BC, ORB and L1A because of PECL
circuitry instead of TTL (as for the rest of the TTC signals) [5].

Based on the results that were shown, one can compare latencies between systems composed
of legacy TTC modules and corresponding replacement systems based on the ALTI module. Here are
some comparisons of L1A latency in some common configurations:

e ALTI is about 7.5ns slower than LTP
e ALTI is about 10ns faster than LTPI + LTP
e ALTI + ALTI is about 2ns faster than LTPI + LTP + LTP

In these calculations, short 0.5m LVDS-LINK cables are assumed between the modules. Based
on the measurements, LVDS-LINK cables introduce the propagation delay of about 5ns per meter.
That corresponds to about 2.5ns delay for each 0.5m cable.

The comparisons show that ALTI-based system is faster in a typical TTC partition daisy chain
of length two, due to the smaller number of interconnecting LVDS-LINK cables being used in the
setup.

7.2. Level-1 Accept latency: LAr daisy chain

Level-1 Accept latency from the CTP to the TTC stream is one of the most important
performance parameters in the ATLAS experiment. As we discussed earlier, propagating the trigger
to the front-end electronics as early as possible is of the utmost importance. Actually, the liquid Argon
calorimeter sub-detector (LAr) is the sub-detector that is the most latency-critical. That is why the
Level-1 Accept latency for this particular TTC configuration was measured and compored to the
possible ALTI-based replacement setup. The LAr sub-detector uses the daisy chain of two TTC
partitions, as shown on Figure 2.2.2.

Shown on Figure 7.2.1 (a) and (b) are the legacy LAr setup and a corresponding ALTI-based
setup, respectively. The latency of L1A in the TTC stream is measured on the second stage of the
daisy chain, since only this stage is latency critical.

Legacy setup mimics the actual current configuration in the experiment. Shortest available
LVDS-LINK cables were used, the ones of length 0.5m. The same is true for coaxial cables between
the second LTP, TTCvi and TTCex: cables of 1ns and 2ns delay were used. In the LAr setup, LTPI
is used for delaying the L1A exactly 17ns (34 steps of 0.5ns each), in addition to the equalization
function. This is also shown on Figure 7.2.1 (a). The only major difference in the actual experiment
is the length of the LVDS-LINK cable from the CTP: they are longer than the 2m cables that were
used in this measurement, and the use of the LTPI for equalization is crucial.

In the replacement setup, two legacy partitions are substituted with two cascaded ALTI
modules. The interface to the CTP and the oscilloscope is the same as in the legacy setup. Fibre
lengths and propagation delays are matched in both setups, though different patch cords were used
because of different transmitter connectors in the TTCex and ALTI.
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CTPOUT

CcTP
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LEMO
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CTP
fibre LeCro
ALTI ALTI  — [ oeass | ==Y
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cable

(b)

LeCroy
oscilloscope

Figure 7.2.1. Daisy-chained TTC partitions of LAr: (a) legacy setup, (b) proposed replacement setup based on
two ALTI modules.

Bunch clock phases at the optical TTC output of both systems were aligned by configuring
the PLL of the ALTI jitter cleaner. Then, relative comparison of two setups is possible, with the ORB
signal from CTPOUT as a reference. Propagation delays from this reference signal to the Level-1
Accept in the TTC stream waveform were measured.

The waveforms from which the delays were measured are shown on Figure 7.2.2, Figure 7.2.3
and Figure 7.2.4. Figure 7.2.2 and Figure 7.2.3 refer to the legacy system, without and with the 17ns
L1A delay induced by the LTPI, respectively. For the ALTI-based system with the optimal clock
phase chosen for L1A input synchronization, the measurement is shown on Figure 7.2.4.

.

100 WWidiv 100 mV/div
n

-363.6 yW 4135 mV|

%@L@E@

- T o= - - o~
. vefgwherayoulook
|
|
|

X1= 58.90 ns =
X2= 0.00 ns 1/AX= -16.98 MHz

Figure 7.2.2. Level-1 Accept latency for the legacy LAr setup and LTPI delay = Ons: 59ns.
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Figure 7.2.4. Level-1 Accept latency for the ALTI-based LAr setup and optimal input synchronization: 84ns.

For the legacy TTC setup, the latency is either 59ns or 84ns (L1A jumps to the next bunch
crossing), depending on the L1A delay that is used in the LTPI (Ons or 17ns, respectively). Latency
of L1A for this setup could also be up to 1BC longer than this if a bigger L1A delay was used, since
30ns is the maximum possible delay that the LTPI supports.

For the ALTI-based setup, the latency is either 84ns or 109ns (L1A jumps to the next bunch
crossing), depending on which clock phase is chosen to synchronize the incoming L1A signal.

To conclude, the L1A latency can be the same (84ns) as for the legacy TTC modules using the
settings in the experiment. Depending on the L1A signal phase, the delay could also be 1BC longer
for the new system.
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7.3. TTC stream and recovered clock jitter

The level of jitter in the optical TTC stream that the ALTI introduces had to be addressed, in
order to see if the receiver modules of the sub-detectors can cope with it. Comparison with the legacy
TTCex-based setup was also made. On Figure 7.3.1, the two setups are shown. The first setup, shown
on Figure 7.3.1 (a), measures the TTC stream jitter in a typical partition composed of LTP, TTCvi
and TTCex. In the second setup, shown on Figure 7.3.1 (b), this legacy TTC partition is replaced by
a single ALTI module. In fact, three different setups were compared, since ALTI-based setups with
and without using the on-board jitter cleaner were tested.

Both setups use a common bunch clock, one that has been injected through the BC LEMO
input of an additional LTP module. The clock comes from the clock generator with a modulation
input for adding jitter. The nominal value of the clock signal frequency is 40.079MHz, which is the
standard LHC clock frequency. The modulation signal in the form of white noise is provided with a
signal generator. Increasing the peak-to-peak voltage of the white noise generator has an effect of
adding jitter to the bunch clock.

For both setups, the optical TTC stream is sent to the TTCrq receiver mezzanine board [37].
This is a combination of TTCrx receiver and a Quartz-crystal based PLL (QPLL) [38] ASICs. The
QPLL was designed for jitter cleaning applications in the LHC to accompany the TTCrx.

The levels of jitter in the TTC stream and the bunch clock recovered from it by the TTCrq are
then measured by the LeCroy oscilloscope and the Agilent Phase Noise Analyzer (PNA) [39].

TTC

signals

clock [©8C ] B
generator CTP Agilent
fib
’ LTP LTP » TTCvi TTCex 2 sl TTCrg oo —» Phase Lecroy
optional E—] noise oscilloscope
white noise BC ) analyzer
fibi
jitter BC m
(a)
clock (©BC
generator cTP Agilent
* LTP ALTI fibre TTerg L5 ,| phase LeCroy
optional — q noise oscilloscope
white noise ] analyzer
.. fibre OE
jitter
(b)
Figure 7.3.1. Setups for the TTC stream jitter measurement where the optical transmitter module is: (a) TTCex,
(b) ALTI.

7.3.1. Oscilloscope measurements

For measuring the jitter, the Time Interval Error (TIE) method of the digital LeCroy
oscilloscope has been used. The TIE of a particular rising or falling edge is the deviation of that edge
from its ideal position. The ideal signal is created based on the average estimate of the signal period.
The measurements are accumulated by the oscilloscope and shown on its display overlaid on top of
the signal waveform. This gives a Gaussian-shaped distribution histogram, with the mean value
ideally equal to zero. Standard deviation of this distribution is a good measure of jitter and is
expressed in pico-seconds. Usually, this metric is called the RMS jitter. The effect of adding white-
noise jitter is clearly shown on Figure 7.3.2: the histogram is more spread when there is more jitter,
i.e. it has larger standard deviation or RMS jitter.
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(b)

Figure 7.3.2. TTC stream RMS jitter oscilloscope measurements for ALTI setup without the jitter cleaner:
(a) without added jitter, RMS jitter equals 21.9ps, (b) with added jitter, RMS jitter equals 35.4ps.

The results of the oscilloscope measurements of the TTC stream jitter for various setups are
shown in Table 7.3.1. Similarly, results for the jitter of the recovered clock are shown in Table 7.3.2.
Please note that the TTC stream was idle (no triggers and commands were sent) for these
measurements.
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Table 7.3.1. TTC stream jitter for different setups (oscilloscope measurements).

SET TTC STREAM RMS JITTER [PS] | TTC STREAM RMS JITTER [PS]
(WITHOUT ADDED JITTER) (WITH ADDED JITTER)
TTCex 7.9 8
ALTI,JC=0OFF | 21.9 35.4
ALTI,JC=ON | 16.7 16.7

Table 7.3.2. Recovered clock jitter for different setups (oscilloscope measurements).

SETUP RECOVERED CLOCK RMS JITTER [PS] | RECOVERED CLOCK RMS JITTER [PS]
(WITHOUT ADDED JITTER) (WITH ADDED JITTER)
TTCex 8.1 8.1
ALTI,JC=0FF | 8.0 8.1
ALTI,JC=0ON | 8.0 8.1

Based on the measurements that were shown, we can draw several conclusions. First of all,
the ALTI jitter cleaner removes all the added jitter. However, it cannot remove intrinsic jitter in the
ALTI. On the other hand, TTCex also removes all the added jitter with its PLL, and this setup has a
lower overall intrinsic jitter compared to ALTI. But, although the overall jitter level is higher in the
ALTI setup compared to the TTCex setup, the TTCrq which contains the QPLL can handle these
levels of jitter for both systems, as can be seen in the recovered clock jitter. From this point on, it was
decided to keep sing the ALTI jitter cleaner.

The TIE jitter measurements were also repeated on a non-idle TTC stream. Random patterns
with the 100kHz L1-Accept rate and heavy B-channel activity (four asynchronous long commands
following each L1-Accept) were used. However, it was observed that the A and B-channel activity
does not affect the jitter of the TTC stream in the ALT]I, nor in the TTCex.

Another measurements was done for the ALTI TTC encoder driven from the same ALTI board
using its pattern generation memory. The idea was to investigate if this increases the jitter. However,
this does not have an effect on the jitter, either.

7.3.2. Phase noise analyzer measurements

Measuring the jitter with the oscilloscope can be very sensitive to the measurement settings.
For example, if the time division is too small (waveform zoomed in too much), low-frequency jitter
will not be included in the measurement, thus giving lower RMS jitter. A more accurate measurement
of jitter was done with the Agilent PNA, which measures the frequency spectrum of the jitter. In
addition, this tool also measures the RMS jitter by integrating the spectrum.

The phase noise analyzer measures the "cleanliness™ of the periodic, 50% duty cycle clock
signal. In order to use the phase noise analyzer on the TTC stream, the L1A signal was set to be
always active, which results in a TTC output bit pattern that corresponds to an 80MHz clock signal,
as can be seen on Figure 2.2.1.

From the oscilloscope measurements we have understood that the added jitter is successfully
removed by TTCex PLL and the ALTI jitter cleaner. This was also confirmed by the PNA
measurements. The results shown below ware obtained without adding the white-noise jitter.
Common input clock was the internal oscillator in the LTP with the RMS jitter of 6.6ps. The results
of the PNA measurements of TTC stream jitter for various setups are shown in Table 7.3.3. Similarly,
results for the jitter of the recovered clock are shown in Table 7.3.4.
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Table 7.3.3. TTC stream jitter for different setups (PNA measurements).

TTC STREAM RMS JITTER [PS]
(WITHOUT ADDED JITTER)

TTCex 5.1

ALTI, JC=OFF | 24.0

ALTI,JC=0ON | 19.6

SETUP

Table 7.3.4. Recovered clock jitter for different setups (PNA measurements).

RECOVERED CLOCK RMS JITTER [PS]

SETUP
(WITHOUT ADDED JITTER)

TTCex 5.7
ALTI,JC=0FF | 7.6
ALTI,JC=0ON | 6.0

The same conclusions follow as the ones obtained after the oscilloscope measurements,
although the numbers are slightly different. To compare the TTC stream jitter spectrums of the three
setups, please refer to Figure 7.3.3. On Figure 7.3.3 (a), ALTI without using the jitter cleaner is
compared against TTCex. On Figure 7.3.3 (b), ALTI with the jitter cleaner is compared against
TTCex. Similarly, jitter spectrums of the recovered clock are compared on Figure 7.3.4 (a) and Figure
7.3.4 (b).

By looking more closely on the ALT] jitter spectrums, one can clearly see a few spikes in the
~30kHz to ~300kHz range. This could be related to the power supply noise on the ALTI, but certainly
requires further investigation. The on-chip PLL settings might also provide a way to reduce the
intrinsic ALTI jitter. So, there might be room for improvement on the ALTI intrinsic jitter by some
modifications to the PCB, or the FPGA firmware.
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Figure 7.3.3. TTC stream jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against TTCex
(pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale).
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Figure 7.3.4. Recovered clock jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against
TTCex (pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale).
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8. CONCLUSION

The low-level software for the ALTI module has been developed. All its features are fully
available to the users in the interactive menu program. The software is also available to the other
L1CT colleagues who are using it in order to develop the run control applications for integration of
the ALTI into the experiment. Besides the low level API, utilities in the form of test programs and
scripts have been developed. These have been used for testing the ALTI functionalities like pattern
generation, snapshot memory, TTC decoder, etc. An automated production testbench for the
upcoming ALTI modules has also been developed. This testbench is used to test all input/output paths
of the signals through the module, and thus can be used to identify soldering assembly issues.

All of the devices and interfaces on the available prototype boards have been fully tested. That
is, the tests have been performed on a total of seven ALTI prototype modules that have been fully-
assembled until August 2018. These module tests helped to find several design issues. The list of
modifications to be done in the next series of pre-production ALTI modules has been noted and a
new version of the schematics and the layout has been published for both the motherboard and the
mezzanine board.

Five out of seven modules have passed all the automated tests. On the other two modules, the
automated tests have shown problems with particular TTC signal paths. These modules are currently
being investigated, and the fact that the problematic lines have been pinpointed will certainly help to
understand what the problems are. Some working modules were made available to colleagues in the
L1CT team in order to perform additional tests and write the high-level run control software. The
other modules that have passed the tests will be lent to the sub-detectors to perform the initial tests
with the ALTI module in their setup. In particular, it is planned to have tests with the LAr test stand
in September 2018.

The performance measurements have shown how the ALTI module compares against the
legacy TTC system. In particular, the Level-1 Accept latency in the LAr setup, using a daisy chain of
two modules, is the same for the ALTI and the TTC legacy modules, if the L1A input synchronization
has been chosen to be optimal.

The jitter measurements have shown that the jitter cleaner in the ALTI can effectively remove
the low-frequency jitter. This encouraged the use of the jitter cleaner in the firmware, which was
initially put in the design as a safety measure. Also, from the jitter measurements it has been
concluded that the TTC stream jitter is higher in the ALTI-based system compared to the legacy TTC-
ex based system. To be precise, the RMS jitter in the ALTI TTC stream is 19.6ps, compared to 5.1ps
in the legacy system, using the same input clock with RMS jitter of 6.6ps. However, the tests with
TTC receiver modules have shown that they can effectively remove the intrinsic ALTI jitter. The
clock recovered from the TTC stream basically has the same RMS jitter in both setups: 6.0ps for the
ALTI-based system, compared to 5.7ps for the legacy system. Nevertheless, the jitter measurements
have shown the need to further investigate the ALTI design to see if the intrinsic jitter can be reduced.

Another possible issue to be addressed in the future is the optical power requirements needed
by the sub-detectors, since the ALTI SFP modules provide lower power than the TTCex lasers.
Several SFP modules with the same pin-out and higher optical power have already been ordered and
tested. Going forward, they could be used if the sub-detector tests show a need to increase the optical
power.
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