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САЖETAK 

Овај документ описује допринос аутора у развоју и тестирању ATLAS Local Trigger 

Interface (ALTI) модула. ALTI је нови модул дизајниран за ATLAS експеримент у CERN-у, и 

део је система за временску синхронизацију, такозваног Timing, Trigger and Control (TTC) 

система. Централна функционалност ALTI модула је серијски трансмисиони протокол којим 

се дистрибуирају тригери и поруке ка сваком од субдетектора у оквиру ATLAS експеримента 

путем оптичких влакана. Временска синхрoнизација тригера и порука је од кључног значаја за 

исправну аквизицију података о честицама добијеним након судара протонских снопова. ALTI 

је 6U VME64x модул који интегрише функционалности четири постојећа модула која се 

тренутно користе у експерименту: LTP, LTPI, TTCvi и TTCex. ALTI модул обједињује 

функционалности ова четири модула у један, али их и унапређује, што је последица већег 

логичког капацитета. Модул ће бити постављен у експеримент током дуготрајног искључења 

Великог Хадронског Сударача честица (Large Hardron Collider, LHC) у 2019. години. 

ALTI је систем реализован на две штампане плоче, матичној и мезанин плочи. Сва 

контролна логика је имплементирана је у оквиру фирмвера на Xilinx-овом Artix-7 FPGA чипу, 

који се налази на матичној плочи.  Одређене делове фирмвера имплементирао је и аутор, и за 

то је коришћен језик за опис хардвера Verilog и алат Xilinx Vivado. 

Контролни low-level софтвер за ALTI  модул на језику C++ извршава се на "рачунару 

на једној плочи" базираном на Intel процесору. Овај рачунар покреће Scientific Linux 

оперативни систем. Развијена је софтверска библиотека која омогућава приступ до свих делова 

хардвера и фирмвера, тј. омогућава потпуну конфигурацију ALTI модула. Поред low-level 

софтвера, развијено је неколико тест програма и скрипти за наменско тестирање појединачних 

фукционалности. Такође, у програмском језику Python развијен је програм за свеобухватно 

тестирање прототипа ALTI модула. Овај програм се користи за тестирање свих могућих 

путања различитих сигнала кроз модул. Помоћу овог програма пронађене су грешке на 

неколико модула, повезане са монтажом штампаних плоча и лоше залемљеним компонентама. 

Читав хардвер на прототипима ALTI модула је тестиран уз помоћ контролног софтвера, 

као и мерних инструмената попут осцилоскопа и анализатора спектра. То се такође односи и 

на тестирање функционалности имплементираних у оквиру фирмвера FPGA. Ова тестирања 

хардвера и функционалности помогла су да се пронађу у грешке у дизајну, као што су: обрнути 

поларитет једног диференцијалног пара, погрешан напон напајања за чипове компаратора, 

итд. Све ове грешке су исправљене у другој верзији штампаних плоча које ће се произвести за 

следећу верзију ALTI прототипа. 

Поред тестирања харвера и функционалности, урађена су и мерења перформанси ALTI 

модула. Као најважнији параметар, мерено је кашњење тј. латенца тригер сигнала од 

електричног сигнала на улазу до појаве тригера у оптичком сигналу на излазу. Резултати 

показују да систем базиран на ALTI модулу може да постигне једнаку латенцу као и систем 

базиран на постојећим модулима. 

Други битан параметар перформанси представља количина џитера у излазном сигналу 

који се даље оптички преноси до субдетектора, јер велика количина џитера може нарушити 

исправно декодовање порука и тригера од стране пријемника. Тестови су показали виши ниво 

џитера у систему базираном на ALTI модулу у односу на постојећи систем. Међутим, 

тестирања на пријемницима су показала да је дековање успешно у оба случаја. 

 



 

ABSTRACT 

This paper describes the author’s contribution in the development and testing of the ATLAS Local 

Trigger Interface (ALTI) module. The ALTI is a new module designed for the ALTAS experiment at 

CERN, a part of the Timing, Trigger and Control (TTC) system. It is a 6U VME64x module which 

integrates the functionalities of four existing modules currently used in the experiment: LTP, LTPI, 

TTCvi and TTCex. The module will be deployed during the long shutdown LS2 of the Large Hadron 

Collider (LHC) in 2019. 
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1.  INTRODUCTION 

In the ATLAS high energy physics experiment at CERN, a new module cаlled ATLAS Local 

Trigger Interface (ALTI) is being developed. This module provides the interface between the Level-

1 Central Trigger Processor (CTP) and the timing, trigger and control (TTC) optical broadcasting 

network to the front-end electronics of each of the ATLAS sub-detectors. ALTI is a replacement for 

four existing modules currently being used in the experiment: Local Trigger Processor (LTP), Local 

Trigger Processor Interface (LTPI), TTC VMEbus Interface (TTCvi) and TTC Encoder/Transmitter 

(TTCex). It has become increasingly difficult to produce spares for these four modules, and the 

current spare modules have obsolete and ageing components. In that sense, the ALTI combines and 

upgrades the functionalities of these modules while preserving backward compatibility. It also 

extends them and adds new features due to increased amount of programmable logic resources. 

ALTI is a custom-made 6U VME64x module made out of two PCBs (motherboard and 

mezzanine) and it takes up two slots in the VME64x crate. It is an FPGA-based system and uses 

Xilinx’s 7-Series FPGA chip from the Artix family (Artix-7). The module is connected with other 

modules in the same crate through a common VME backplane. Control software for the ALTI is being 

executed on a single-board computer (SBC) with Intel’s CPU, located in the first slot in the same 

crate. The SBC runs Scientific Linux operating system and has an on-board interface chip which acts 

as a PCI-to-VME bus bridge. 

As of late 2017, four fully assembled ALTI prototype modules have been available. There are 

several aspects of the ALTI development and testing that the author has contributed to since: some 

parts of the FPGA firmware, software for configuration, control and testing of the module, as well as 

module testing and various performance measurements. For the firmware development, Verilog 

hardware description language and Xilinx Vivado tool have been used. Low-level software has been 

written in C++, and it allows access to all the functionalities available in the hardware and firmware. 

For thorough and systematic testing of the module, a higher level software has been written in the 

Python programming language. 

The author’s main contribution to the ALTI project is a software suite for testing and validation 

of the ALTI prototype modules. Automatization of the testing will allow quick evaluation and 

qualification of the mass-produced modules which will be necessary for the experiment. Low-level 

software library will be used further for the run control application development, a control system 

used to operate the whole experiment. 

In Chapter 2 of this document, a brief overview of the current TTC system in the ATLAS 

experiment will be given. In this way, the reader will be introduced to the specific nomenclature of 

modules, signals and interfaces being used, so it lays the foundation necessary for the later chapters. 

This chapter will also emphasize the flaws of the current system the and further explain the motivation 

to migrate to the new, ALTI-based system. 
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The ALTI hardware architecture will be presented in the Chapter 3. Then, in Chapter 4, all the 

functionalities of the module will be explained in detail. These functionalities are reflected in the 

FPGA firmware, which is also described in Chapter 4. Relevant parts of the firmware (the one the 

author has contributed to) will be presented in detail, while the others will be described briefly. The 

software that has been developed is the main topic of the Chapter 5. This includes both the low-level 

software for configuration, control and testing of the module, as well as the software of higher level 

used for (semi-)automatized tests. Numerous tests that have been used to verify the proper functioning 

of the modules are described in Chapter 6. Performance of the ALTI module was determined with 

various measurements, all of which are described in detail in Chapter 7. The same tests have been 

done for the modules in the existing TTC system, in order to compare them to the new ALTI module. 

This comparison is also a subject of Chapter 7. Finally, Chapter 8 summarizes all the work that was 

done and the results that were obtained, and gives a conclusion to the thesis. 
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2.  OVERVIEW OF THE CURRENT SYSTEM 

A brief introduction to the relevant parts of the ATLAS experiment is given in Section 2.1. 

Then, in Section 2.2, the TTC system that the ALTI is made for is described. This description includes 

the current distribution of modules in the system, as well as the main signals being used in the TTC. 

Section 2.3 gives an overview of the four modules that are currently being used in the TTC system 

(so called "legacy" modules). Finally, Section 2.4 describes the VMEbus that these legacy modules 

are based on, as is the ALTI module. 

2.1. ATLAS experiment 

The ATLAS experiment is a general-purpose particle physics experiment operating at the 

Large Hadron Collider (LHC) at CERN [1]. The full LHC turn consists of 3564 bunch crossings 

(BC). The bunch clock is the main timing signal produced by the LHC and has the frequency of 

40.079MHz. The second timing signal is the orbit (ORB) signal, which indicates the start of a new 

LHC turn and allows one to identify the bunch crossings. The LHC orbit period is about 90µs, while 

the orbit pulse width is 40BCs, or about 1µs. 

Several tens of proton-proton collisions that happen each bunch crossing yield about a billion 

collisions each second [1]. Particles created by these collisions are then captured by various types of 

particle detectors. The Level-1 calorimeter and Level-1 muon trigger systems identify interesting 

particle candidates. The Central Trigger Processor (CTP) makes combinations of these and takes the 

final decision, reducing the event rate to a maximum of 100kHz [2].  This is called the Level-1 trigger 

system and the corresponding event signal produced by the CTP is called Level-1 Accept (L1A). The 

High Level Trigger (HLT) system of ATLAS operates at lower event accept and readout frequencies 

than the Level-1 trigger system. High level trigger systems are based on commercial computers and 

networks, unlike the Level-1 trigger system which is based on custom electronics. 

2.2. TTC system 

Level-1 central trigger system is followed by the Timing, Trigger and Control (TTC) system, 

whose backbone is the optical transmission network used for communication with the sub-detector 

front-end electronics. The TTC system is also based on custom electronics, and is composed of 

several VME modules or boards. This system is responsible for the distribution and fan-out of the 

timing signals (BC, ORB), the trigger signal (L1A, together with an 8-bit trigger type word) and the 

control commands like Bunch Counter Reset (BCR) and Event Counter Reset (ECR). Proper timing 

and control provided by the TTC system is essential for making sure that the right data ("interesting" 

physics) are read out from the sub-detector buffers in due time. A detailed overview of the TTC 

system can be found on one of the websites listed in the bibliography [3]. 

The triggers (channel A) and commands (channel B) are time-division multiplexed and 

biphase-mark encoded into an optical signal called the TTC stream, and then sent to the front-end 

electronics of each sub-detector system via optical fibre networks. Multiplexing of channels A and B 

and their encoding into the TTC stream is shown on Figure 2.2.1. 
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Figure 2.2.1. Multiplexing and encoding of the TTC channels A and B. 

 

Two bits are being transmitted on every bunch crossing, one for each channel. Channels A and 

B are thus interleaved and the carrier frequency is two times the BC frequency, which gives the rate 

of about 80M bits per second. A transition on the TTC stream indicates a logic "1", while logic "0" 

is assumed if no transition occurs, as indicated on the Figure 2.2.1. When no triggers are being 

accepted and no B-channel commands are being transmitted, the TTC stream is idle. In that case, 

channel A is a logic "0" (no transitions occurring) and channel B is a logic "1" (transitions occurring).  

The front-end electronics of the sub-detectors use a TTC Receiver (TTCrx) ASIC module to 

receive and decode the TTC stream [4]. From the TTC stream only, the receiver is able to decode and 

de-multiplex the channels A and B. First, the receiver makes an initial guess on which bit corresponds 

to which channel, since the channels are interleaved. Because of the constraint made on the maximum 

L1A rate and the fact that the idle bits are different for channels A and B, the receiver is able to switch 

the phase of the stream if the initial guess turns out to be wrong. The BC clock is also recovered in 

the process. 

TTC system is partitioned in order to be able to run sub-detectors (or parts of sub-detectors) 

independently and in parallel. Associated with each sub-detector is a link from the CTP to one or 

more TTC partitions. Currently, there are 21 connections from the CTP to 35 different TTC partitions 

in the ATLAS experiment, some of which are daisy-chained. Currently, the maximum daisy chain 

length is three partitions. Each partition is typically composed of the following modules: LTPI 

(optional), LTP, TTCvi and TTCex. A detailed sketch of the current TTC system distribution is shown 

on Figure 2.2.2. 
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Figure 2.2.2. Current TTC distribution network in the ATLAS experiment [12]. 

 

However, the next ATLAS upgrade will include new sub-detectors which will require TTC 

modules. Unfortunately, CERN is low on spare TTC modules. Also, some of the TTC modules are 

now more than 15 years old and use components that are now obsolete. Therefore, it is not possible 

to reproduce modules for the new sub-detectors and to replenish the stock of available spare modules. 

Other issues of the legacy modules include: aging effects, no firmware replacement flexibility and 

very limited monitoring capabilities. 
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This is why the new ALTI module was created. It is designed to replace a combination of 

LTPI, LTP, TTCvi and TTCex with a single module. The replacement also creates a benefit of getting 

more free space in TTC VME crates. ALTI provides almost full backwards compatibility with the 

hardware of other modules. Full compatibility is not provided from the interfaces point of view, 

though, since space on the front panel is lost in the transition from four separate VME boards to a 

single, 2-slot VME board. More details on the compromises made because of this will follow in the 

next chapter. 

From the point of view of functionality, the ALTI keeps all the functions of the previous 

modules. Some of them are extended and optimized, though, since more powerful logic resources are 

available. Additional useful functionalities are available, too. 

2.2.1. TTC signals 

In order to understand the functionality of the TTC system, it is necessary to get familiar with 

the interface signals being used. There are 22 digital TTC signals in total (some of them logically 

grouped together), and they are listed in the Table 2.2.1. For each of the TTC signals, once can see a 

description of a typical use in the experiment in the same table. Direction column in this table serves 

to make a distinction between signals going downstream (from CTP, forward) and upstream (to CTP, 

backward). 

 

Table 2.2.1. List of TTC signals. 

TTC SIGNAL DIRECTION DESCRIPTION 

BC forward Bunch crossing clock: 40.079MHz, 50% duty ratio. 

ORB 
forward Periodic signal representing one LHC turn. Period is 3564 bunch 

crossings, pulse width is 40BC. 

L1A forward Level-1 trigger accept signal of 1BC pulse width. 

TTR[3..1] forward Auxiliary triggers generated locally by the partition. 

BGO[3..0] forward Signals for sending B-channel TTC commands. 

TTYP[7..0] forward 8-bit trigger type identification word associated with each L1A. 

BUSY 
backward Used to inform the CTP to introduce L1A dead-time, i.e. throttle 

L1A generation when the readout buffers are overwhelmed.  

CALREQ[2..0] 
backward 3-bit word issued by the sub-detector and used by the CTP to 

generate calibration triggers. 

 

2.3. Legacy TTC modules 

All of the legacy TTC modules use the TTC signals mentioned in the previous section. Each 

of these modules has a particular set of functionalities which will be described in this section. The 

modules differ in the interfaces for the TTC signals on their front panels. This can be clearly seen on 

Figure 2.3.1, where the legacy TTC modules are shown from the front panel view. 
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                             (a)                                           (b)                                         (c)                                       (d) 

Figure 2.3.1. Legacy TTC modules, front panel view: (a) LTPI [7], (b) LTP [5], (c) TTCvi [8], (d) TTCex [9]. 

2.3.1. Local Trigger Processor (LTP) 

The main purpose of the LTP is to receive the timing, trigger and control signals from the CTP 

and inject them into the TTC distribution system through TTCvi. More details can be found in the 

LTP technical description and user manual [5]. 

Connection with the CTP is done with LVDS-LINK cables. The LTP has two female 50-pin 

3M Mini Delta Ribbon (MDR) connectors, the one being an input (CTP_IN link) and the other an 

output (CTP_OUT link), as can be seen on Figure 2.3.1. (b). In case of daisy-chaining the TTC 

partitions, the output is used to connect the module with the downstream LTP. 

Electrical signals can also be injected in the LTP using coaxial cables and LEMO connectors 

on the front panel. There are also LEMO connectors for output signals, which are very useful for 

looking at the signal waveforms on the oscilloscope. Input LEMO connectors are suited for standard 

Nuclear Instrumentation Module (NIM) logic levels. This is a standard that uses negative logic, with 

0V low voltage, and -0.8V high voltage on a 50Ω termination [6]. There are two sets of output LEMO 

connectors: one set for local use and the other for connecting to the TTCvi downstream. All local 

LEMO outputs are NIM-level. The ones used for the connection with the TTCvi are a bit different: 

latency critical signals (BC, ORB and L1A) are routed in ECL logic, which is faster. 
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For trigger type and calibration request, there are custom made input/output ports on the front 

panel. Trigger type connector is usually used as an output and is connected to the TTCvi connector 

of the same type with a flat cable. This connector can also be used as an input (programmable), as 

well as the calibration request connector. 

In addition to being run by the CTP (so called "CTP slave" mode), the LTP can also run in 

standalone mode (so called "Master" mode). That means that the TTC signals can be generated locally 

by the LTP. Master mode is typically used in laboratory testing, when the full CTP system is not 

available. 

For generating the BC clock internally, there is an on-board 40.079MHz quartz oscillator. The 

internal ORB signal is derived directly from this clock. Orbit signal and the other TTC signals can 

also be generated from the on-board memory called pattern generation memory. Pattern generation 

memory can be run in continuous mode (pattern gets repeated periodically) and in single-shot mode 

(triggered by the VME access or the ORB signal). Entries of this memory contain the desired values 

of TTC signals, and one entry correspond to a single BC period. 

To sum up, the LTP is used for TTC signal propagation and generation. Switching of the input 

signals to the outputs is very flexible: signals on the CTP_OUT link and LEMO outputs can be 

sourced from the CTP_IN link, front panel connectors, or generated internally in the LTP. However, 

the latency for different TTC signals through the LTP is not equal because of the different circuitry. 

2.3.2. Local Trigger Processor Interface (LTPI) 

The main purpose of the LTPI is to help run TTC partitions in parallel. More details can be 

found in the LTPI functional description [7]. 

Unlike the LTP, the LTPI has two pairs of LVDS-LINK connectors called CTP_IN/CTP_OUT 

link and LTP_IN/LTP_OUT link. This allows the reception of TTC signals from an upstream CTP, 

as well as from another parallel LTPI. Both LVDS-LINK inputs have a separate equalizer in the LTPI 

to allow the undistortion of the TTC signals when long LVDS cables are used. 

As for the LEMO connectors, there are NIM-level input and output connectors for BC, ORB, 

L1A, TTR and BGO signals. Separate connectors for NIM and TTL-logic levels are available for the 

BUSY input signal. There are no input/output ports for trigger type and calibration request, so these 

signals can be propagated only through the LVDS connectors. 

Preceding the CTP_OUT link is the delay chip, which allows fine shifting (with 0.5ns step) of 

the TTC signals (all except the BC). 

To summarize, the main function of the LTPI is to switch TTC signals between partitions. 

2.3.3. TTC VMEbus Interface (TTCvi) 

The main purpose of the TTCvi is to endode the signals for TTC channels A and B. Channel 

A is carrying the L1A triggers, while the channel B is carrying TTC commands, as described in 

Section 2.2. Commands on the B channel are framed, formatted and protected with Hamming code 

for error detection and correction. More details can be found in the TTCvi functional description and 

user manual [8]. 

One can select between four external triggers: L1A and three test triggers. There is also an 

ability to generate random triggers with a few predefined average frequencies, ranging from 1Hz to 

100kHz. 

There are two types of TTC command formats: short and long. Start bit is indicated by a logic 

"0" on the B-channel portion of the TTC stream. The second bit indicates the type of the frame: logic 

"0" is used for short, and logic "1" is used for long commands. Then, the remainder of the command 

depends on the frame type, as shown on figures 2.3.2 and 2.3.3 for short and long commands, 

respectively. 
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Figure 2.3.2. Frame format for short TTC commands. 

 

 

Figure 2.3.3. Frame format for long TTC commands. 

 

Short commands just carry an 8-bit data field. On the other hand, the long commands carry a 

few additional fields: 14-bit address field for addressing a specific TTCrx receiver, 8-bit sub-address 

filed for addressing a specific register in the addressed receiver. When the address field is 0, it means 

that the command is being broadcasted to all of the TTCrx receivers. Otherwise, a receiver with a 

given address is being individually addressed. External/internal bit field indicates whether the data is 

being written to the addressed register of the receiver, or made available externally and transmitted 

to the front-end electronics. Every command is terminated with a stop bit that returns the B-channel 

to the idle state. 

Hamming code is used to protect the command contents. Start, stop and frame type bits are 

not included in the Hamming code scheme. For short commands, Hamming code with Hamming 

distance 5 is used to protect 8 information bits. On the other hand, Hamming code with Hamming 

distance 7 is used to protect 32 information bits for the long commands. Single-bit error correction 

and double-bit error detection is possible using this code. 

Besides the short/long command distinction, there is another major distinction between the 

TTC commands: synchronous and asynchronous commands. 

Synchronous commands have a precise timing with respect to the LHC orbit. These are time-

critical commands like the Bunch Counter Reset, which is sent at a fixed point on each orbit in order 

to adjust the phase of the bunch counters in the receivers. BCR is a short, synchronous command that 

is broadcasted to all of the receivers. Its data field is equal to 1. 

Asynchronous commands are those that are not time-critical, like commands for calibration of 

the front-end electronics. Their timing is not fixed to the orbit and they have lower priority than 

synchronous commands. Event Counter Reset (ECR) is a short, asynchronous command that is sent 

to reset the 24-bit L1A (event) counters in the receivers. Data field of the ECR is equal to 2. Another 

example for asynchronous commands are the trigger type cycle commands. These are the four long 

commands that are being transmitted following each L1A. Trigger type word is the data content of 

the first of these commands, while the other three commands are used to transmit the current value 

of a 24-bit event or orbit counter in the TTCvi (programmable). 

There are four independent channels for sending commands, called BGO0, BGO1, BGO2 and 

BGO3. Associated with each of the four channels is a dedicated FIFO memory for storing the 

commands to be transmitted. For sending the commands in a loop after the FIFO gets empty, a so 

called retransmit FIFO mode is used. Choosing the types of commands associated with each BGO 

channel is completely flexible: all of them support synchronous (repetitive and single-shot) and 

asynchronous commands (triggered by external BGO signal, a VME access or by a write access to 

the FIFO). However, by convention in the ATLAS experiment, the BGO0 channel is associated with 

the BCR, and the BGO1 is associated with the ECR. 

 

start stopframe type data [7..0] checksum [4..0]

0 0 ddddddd ccccc 1

start stopframe type data [7..0] checksum [6..0]

0 1 ddddddd ccccccc 1

sub-address [7..0]

ssssssss

1

1

ext/int

e

address [13..0]

aaaaaaaaaaaaaa
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The timing of synchronous commands is governed by internally generated inhibit signals. 

Each BGO channel has a separate inhibit signal associated with it. The inhibit signal is a pulse train 

with the period of one orbit, with fully programmable pulse width and delay with respect to the orbit. 

The transmission of a synchronous command commences at the end of the inhibit pulse. Thus, the 

width of the inhibit pulse must be chosen properly, such that any ongoing command gets transmitted 

during that interval of time. The empirically determined value of the minimum inhibit width for the 

TTCvi is 51BCs. This allows for the full transmission of a long command over this interval of time. 

Since the synchronous commands must have precise timing, they have the highest priority. 

Moreover, channels associated with signals BGO0 through BGO0 have a descending priority. The 

full list of commands ordered by priority, from highest to lowest, is the following: 

 

1) Synchronous commands BGO0 to BGO3 

2) Asynchronous commands BGO0 to BGO3 

3) Trigger type commands 

4) VME-mapped commands 

2.3.4. TTC Encoder/Transmitter (TTCex) 

The main purpose of the TTCex is the conversion the electrical A and B channels to the optical 

TTC signal. More details can be found in the TTCex user manual [9]. 

Lasers for the TTCex transmitters operate at the wavelength 1280-1330nm [9]. There are 10 

optical outputs available on the front panel, each providing the optical power of about 0dBm. Standard 

ST-type optical connectors are used. 

2.4. VMEbus 

VMEbus has been the technology of choice in CERN for many years. It originated in 1982 

and it provides an open mechanical, electrical and protocol standard [10]. 

VMEbus crates provide a common backplane and include a mounted power supply. Typical 

VME crate consists of 21 slots for inserting the modules, with the SBC installed in the first slot as a 

master and arbiter on the bus. In particular, the Concurrent Technologies VP-E24 single-board 

computer [11] has been used, which has an on-board Tundra Universe II interface chip that acts as a 

bridge from the Intel’s PCI to the VMEbus on the backplane. VME boards come in three different 

standards based on their size and the connectors they utilize: 3U, 6U and 9U (1U = 1.75 inches). All 

of the previously mentioned TTC modules are 6U VME64x boards, as is the ALTI module. 

All VME lines use TTL levels with a voltage swing of 0V to 5V. Data and address lines are 

active high, while the protocol lines (data and address strobes, data acknowledge, etc.) are active low. 

VMEbus is big-endian, so it stores the most significant byte a 32-bit word at the lowest address. It 

supports both single cycles and block transfers. Legacy TTC modules use 24-bit addressing and the 

ALTI uses 32-bit addressing, while they all use 32-bit data on the VMEbus for communication. 

By the VME64x standard, each VME slave has an address space of 512kB reserved 

Configuration ROM (CR) and Control and Status Register (CSR) sections. This is called CR/CSR 

space, and is used in 24-bit addressing mode. Included in this section are identification registers for 

identifying the board and the manufacturer. However, the most important registers in the CR/CSR 

space are the BAR and the ADER0. The BAR is a read-only register containing the slot number of 

the given module. The ADER0 is a read/write register used to dynamically change the VME base 

address of the module. By default, ADER0 is preloaded upon startup with a value depending on the 

BAR. This is called geographical addressing. 
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3.  ALTI HARDWARE SPECIFICATION 

In this chapter, the hardware specification of the ALTI module will be briefly described. A 

more detailed description of the ALTI hardware is given in the ALTI specification document [12]. 

First, the interfaces available on the front panel of the ALTI module are described in Section 3.1. 

Then, the module architecture will be presented in Section 3.2, with each relevant part of the hardware 

described in a separate subsection. 

3.1. Interfaces 

The front panel view of the ALTI module is shown on Figure 3.1.1. 

On the ALTI front panel, there are four 50-pin 3M MDR female connectors for LVDS-LINK 

cables. Two of them, called CTP_IN and ALTI_IN, are used as inputs. Corresponding output ports 

are called CTP_OUT and ALTI_OUT. These are analogous to the LTPI parallel cable connectors. 

The connectors are fully compatible with the ones used in LTP and LTPI modules, with the pin-out 

shown in Table 3.1.1. Also, the same LVDS-LINK cables with point-to-point signalling are used 

interchangeably between the three modules. For the LVDS receivers, a 100Ω termination is used. 

Several pairs of coaxial LEMO connectors are available for local injection and monitoring of 

the TTC signals. Because of the limited space on a front panel of a 2-slot VME module, not all the 

TTC signals have an independent input and output LEMO connector. The list of available LEMO 

connectors is shown in Table 3.1.2. Since the BGO0 and BGO1 connectors are not available, 

multiplexing with the inputs for TTR2 and TTR3 and outputs for BGO2 and BGO3 has been 

introduced. This will be further discussed in the Subsection 3.2.3. All input and output connectors are 

compatible with NIM logic levels. In addition, the input connector for the BUSY signal can be 

programmed to accept both NIM and TTL logic levels. NIM inputs are terminated with 50Ω resistors 

internally and the outputs should be terminated with 50Ω resistors to obtain the necessary logic levels 

at the destination. 

The cages for the Small Form-factor Pluggable (SFP) transceiver and the dual transmitters are 

also available on the front panel. Five of those are for the dual transmitters, while the sixth cage is for 

a transceiver. This gives a total of 11 optical outputs and a single optical input per module. 

The calibration request input is in the form of an RJ45 connector, compatible with a standard 

Ethernet UTP cable differential pair wiring. Hence a standard Ethernet cable can be used as an input. 

In order to drive the calibration request input from an LTP, a custom patch cable has been made, with 

a ribbon connector on one side, and a standard RJ45 connector on the other. 

Some LED indicators for monitoring and diagnostics purposes are also available on the front 

panel. These include the LEDs which indicate: power supply status, VME access, detection of L1A, 

ORB, BUSY and CALREQ, PLL lock, optical link statuses. Bi-colour red/green LEDs are used for 

some of these to distinguish between correct and faulty functioning. 
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Figure 3.1.1. The ALTI module, front panel view [12]. 
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Table 3.1.1. LVDS-LINK connector pin-out [5].  

SIGNAL PAIR # PIN # LEFT PIN # RIGHT 

TTR1 25 50 25 

TTR2 24 49 24 

TTR3 23 48 23 

TTYP0 22 47 22 

TTYP1 21 46 21 

TTYP2 20 45 20 

TTYP3 19 44 19 

TTYP4 18 43 18 

TTYP5 17 42 17 

TTYP6 16 41 16 

TTYP7 15 40 15 

BGO0 14 39 14 

BGO1 13 38 13 

BGO2 12 37 12 

BGO3 11 36 11 

CALREQ0 10 35 10 

CALREQ1 9 34 9 

CALREQ2 8 33 8 

BUSY 7 32 7 

GND 6 31 6 

L1A 5 30 5 

ORB 4 29 4 

GND 3 28 3 

BC 2 27 2 

GND 1 26 1 
 

Table 3.1.2. Front panel coaxial LEMO connectors. 

NAME DIRECTION LOGIC LEVEL 

BC IN Input NIM 

BC OUT Output NIM 

ORB IN Input NIM 

ORB OUT Output NIM 

L1A IN Input NIM 

L1A OUT Output NIM 

TTR1 IN Input NIM 

TTR1 OUT Output NIM 

TTR2 IN Input NIM 

TTR2 OUT Output NIM 

TTR3 IN Input NIM 

TTR3 OUT Output NIM 

BGO2 IN Input NIM 

BGO2 OUT Output NIM 

BGO3 IN Input NIM 

BGO3 OUT Output NIM 

BUSY IN Input NIM/TTL 

BUSY OUT Output NIM 
 

 

3.2. Architecture 

The ALTI module is a 6U VME64x module that takes two slots in a VME crate. It consists of 

two PCBs: a motherboard and a mezzanine. Project documents for the motherboard and the 

mezzanine, including the schematics, the PCB layout and mechanical descriptions are publically 

available on the CERN Engineering and Equipment Data Management System (EDMS) [13] [14]. 

All of the logic is located on the motherboard. This includes the Xilinx Artix-7 XCA200T 

FPGA [15], the power supply network, the I2C network, RAM memories and other discrete logic and 

integrated circuits. The motherboard houses the VMEbus connectors, two LVDS-LINK input 

connectors, six SFP modules and the calibration request RJ45 connector. 

The mezzanine plugs into the motherboard via a Samtec high-speed connector [16] carrying 

180 signals, three power supplies and a ground. It houses all of the coaxial input and output connectors 

as well as the two LVDS-LINK output connectors. 

A fully assembled ALTI prototype module is shown on Figure 3.2.1, while the functional 

block diagram of the ALTI hardware is shown on Figure 3.2.2. 
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Figure 3.2.1. Fully-assembled prototype ALTI module. 

 

 

Figure 3.2.2. ALTI functional block diagram [12]. 
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3.2.1. Cross-point switches 

All forward-going TTC signals, 18 of them in total (see Table 2.2.1), are routed through the 

Texas Instruments DS10CP154A 4x4 LVDS cross-point switches [17]. This device has an I2C 

interface and allows independent routing of all four inputs to any of the four outputs, with high speed 

and low channel-to-channel skew. 

Inputs of the cross-point switch are sourcing the corresponding TTC signal from: CTP input 

LVDS-LINK connector, ALTI input LVDS-LINK connector, LEMO input connector and the FPGA 

output. For convenience, we call these sources CTP_IN, ALTI_IN, LEMO_IN and FROM_FPGA, 

respectively. 

Outputs of the cross-point switch are driving the corresponding TTC signal on: CTP output 

LVDS-LINK connector, ALTI output LVDS-LINK connector, LEMO output connector and the 

FPGA input. For convenience, we call these destinations CTP_OUT, ALTI_OUT, LEMO_OUT and 

TO_FPGA, respectively. 

The routing of the Level-1 Accept signal through the cross-point switch is shown on Figure 

3.2.3. This generic routing applies to all of the TTC signals, except the following: BC, TTR2, TTR3, 

BGO2 and BGO3. The slight exceptions to this generic routing are also the TTYP[7..0] cross-point 

switches, which do not have the front panel LEMO input and output connectors. 

As the signal which is clocking the whole module, the BC has a special routing path. Because 

of the multiplexing on the LEMO coaxial inputs and outputs for TTRs and BGOs, these routings are 

special, too. These non-generic routings the TTC signals will be described in the following sections. 

 

 

 
 

Figure 3.2.3. Example of the generic routing of a TTC signal through the cross-point switch: Level-1 Accept. 
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3.2.2. Clock distribution 

The ALTI module has the following clock signal distribution, as shown on the diagram on 

Figure 3.2.4. 

The cross-point switch paths to and from the FPGA differ with respect to the generic TTC 

signal routing. Before going to the FPGA, the clock output coming from the switch is also forwarded 

to a 4-channel jitter attenuator and clock multiplier circuit Silicon Labs SI5344 [18]. The role of this 

circuit is to provide a clean clock to the FPGA, with decreased jitter. From here on, we will call this 

circuit the "jitter cleaner". The jitter cleaner has an I2C interface and is fully programmable. It features 

the holdover mode, which is automatically activated once the selected input clock becomes invalid. 

In holdover mode, the jitter cleaner continues providing the output clock based on the sampled input 

clock prior to the failure. This minimizes the disturbance of the phase and frequency of the TTC 

clock, but can also be dangerous because of long-term drifts. It is therefore advised to acknowledge 

the jitter cleaner interrupt (asserted upon entering the holdover mode) by switching to a stable clock 

source. 

In standalone tests when ALTI acts as a master, the clock can be provided to the FPGA logic 

with an on-board fixed 40.079MHz fixed-frequency crystal oscillator (FXO). With a help of a 2/1 

multiplexer, it is also possible to use the clean clock coming from the FPGA as an input to the cross-

point switch. 

 

 

 

Figure 3.2.4. ALTI clock distribution diagram. 
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3.2.3. TTC signals multiplexing 

The lack of space on the ALTI front panel has resulted in the fact that there are no dedicated 

LEMO inputs and outputs for the BGO0 and BGO1 signals. In order to still be able to inject and 

monitor these signals using the front panel connector, a multiplexing has been introduced in the 

following way. 

Front panel LEMO input for the TTR2 is fanned out to two cross-point switches: one 

corresponding to the TTR2 itself, and the other corresponding to the BGO0. The same routing applies 

to TTR3 LEMO input and TTR3/BGO1 cross-point switches. 

Outputs of the BGO0 and BGO2 cross-point switches corresponding to a LEMO_OUT are 

connected to the inputs a 2/1 multiplexer. Selection of the desired signal on the LEMO output is done 

with a single programmable pin from the FPGA. The same routing applies to the cross-point LEMO 

outputs of BGO1 and BGO3. 

The multiplexing of BGO0, BGO2 and TTR2 is shown on the diagram on Figure 3.2.5. The 

multiplexing of BGO1, BGO3 and TTR3 is shown on the diagram on Figure 3.2.6. 

 

 

 

Figure 3.2.5. BGO0/TTR2 multiplexing on the input and BGO0/BGO2 multiplexing on the output. 
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Figure 3.2.6. BGO1/TTR3 multiplexing on the input and BGO1/BGO3 multiplexing on the output. 

3.2.4. Cable equalizers 

High-frequency transmission losses can occur when long LVDS-LINK cables are used. This 

is common in the experiment, where cables up to 40 meters long are used. In order to compensate for 

these losses, two cable equalizers are used in the ALTI, for both cable inputs (CTP_IN and ALTI_IN). 

The circuit that is used for equalization in the ALTI is the Analog Devices AD8123 triple 

differential receiver with adjustable line equalization [19]. A total of six of these devices are necessary 

to equalize all 18 forward-going TTC signals coming from a single cable connector. A total of four 

different analog inputs are used to adjust the equalization: V_PEAK, V_POLE, V_OFFSET and 

V_GAIN. Two Analog Devices AD5305 8-bit D/A converters [20] are controlled via I2C and used 

to drive these equalizer inputs. Offset DC voltage on the output is controlled with V_OFFSET. The 

other three inputs are used to adjust the cable frequency response of the equalizer. Single-ended 

outputs of the equalizers are converted back to differential LVDS signals using Analog Devices 

ADCMP604 comparators [21]. 

3.2.5. Memories 

The ALTI uses Cypress CY7C10612G 1Mx16 SRAM chips [22]. Six of these chips are 

organized in three memory banks which are accessed as 1Mx32 memories through the VME interface. 

The first memory can be used either as a pattern generation memory or a snapshot memory. The other 

two memories are used for storing the TTC triggers and commands received over the optical receiver 

(spy memory). 
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3.2.6. Optical transmitter and receiver modules 

Five dual transmitter cages are populated with W-Optics SAA-xAF1-111 SFP modules [23], 

while the Finisar FTLF1323P1xTL SFP transceiver module [24] is used. Both SFP modules use 

single-mode fibre transmission and reception at 1310nm wavelength. Input and output connectors are 

of type LC, so LC-ST single-mode patch cords are necessary to connect with the optical splitters 

currently used in the experiment. The optical power that these SFP modules provide is smaller than 

the one that the TTCex lasers provide: -9dBm to 0dBm for the dual transmitter, and -5dBm to 0dBm 

for the transceiver. Whether or not this optical power is sufficient is something that needs to be 

checked in the experiment. 

3.2.7. Clock and data recovery from the TTC stream 

The Analog Devices ADN2814 [25] is used for clock and data recovery from the signal 

received TTC stream. It extracts the clock (carrier, ~160MHz) and the data (multiplexed A and B 

channels) and provides them to the FPGA for further decoding. 

3.2.8. Power supply 

From the VME64x backplane, the ALTI module receives the following supply voltages: 

+3.3V, +5V, +12V and -12V. Four Maxim Integrated MAXM17515 DC/DC converters [26] are used 

to generate four more supply voltages needed to properly power the FPGA: +1.0V, +1.8V, +2.5V and 

+3.3V. An additional Traco Power THN 15-1211 DC/DC converter [27] is used to generate a -5V 

supply voltage, necessary for the NIM-level inputs and output drivers. 

3.2.9. Hardware monitoring 

All of the supply voltages can be monitored by a Linear Technology LTC2991 voltage monitor 

[28]. This sensor allows the monitoring of eight input voltages, plus the supply voltage of the chip 

itself. It also measures the internal temperature and has an I2C interface. Another temperature sensor, 

Maxim Integrated MAX1617A [29], is used to measure both local and remote diode temperature. 

Remote diode port is connected to the XADC block of the FPGA in order to measure the temperature 

of the FPGA dye. 

3.2.10. I2C network 

Numerous devices on the ALTI board mentioned so far have an I2C interface. An I2C switch 

device Texas Instruments TCA9546A [30] is used to split the devices into four bus sections, in order 

to avoid conflicting I2C addresses. For example, the cross-point switch devices have input pins for 

two LSBs of the I2C address. This allows for four different devices addressable on the same I2C bus 

section. Without the bus switch, it would be impossible to put all 18 cross-point switches on the same 

I2C bus. 

The full list of I2C-addressable slave devices and their I2C sections and addresses is shown in 

Table 3.2.1. The I2C master which reads from and writes to these slave devices is implemented in the 

FPGA firmware. 
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Table 3.2.1. The list of slave devices on the ALTI I2C network. 

BUS SECTION # I2C SLAVE ADDRESS DEVICE 

N/A 111 0000 = 0x70 I2C bus switch (TI TCA9546A) 

0 

000 1100 = 0x0c DAC for CTP_IN equalizer voltages (AD 5305) 

000 1101 = 0x0d DAC for ALTI_IN equalizer voltages (AD 5305) 

110 1000 = 0x68 Jitter cleaner (SI 5344) 

1 

101 1000 = 0x58 BC cross-point switch (TI DS10CP154A) 

101 01XX = 0x54..0x57 TTYP[4..7] cross-point switches (4 x TI DS10CP154A) 

101 00XX = 0x50..0x53 TTYP[0..3] cross-point switches (4 x TI DS10CP154A) 

2 

101 00XX = 0x50..0x53 BGO[0..3] cross-point switches (4 x TI DS10CP154A) 

101 1000 = 0x58 ORB cross-point switch (TI DS10CP154A) 

101 01XX = 0x54..0x57 L1A and TTR[1..3] cross-point switches (4 x TI DS10CP154A) 

3 

100 0000 = 0x40 Clock and data recovery circuit (ADN2814) 

101 000X = 0x50..0x51 SFP transceiver, extended address space (Finisar FTLF1323P1xTL) 

001 1000 = 0x18 Local and remote temperature sensor (MAX1617A) 

100 1000 = 0x48 Voltage and temperature monitor (LTC2991) 
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4.  ALTI FUNCTIONALITY AND FIRMWARE 

This chapter briefly describes the ALTI functionalities implemented in the FPGA firmware. 

The emphasis is put on describing the configuration and control of various firmware blocks, which is 

then used in the low-level ALTI software. A more detailed description of the ALTI firmware 

implementation is given in the ALTI specification document [12]. 

The ALTI FPGA firmware is organized as shown on the high-level functional block diagram 

on Figure 4.1. Some of the blocks shown will be briefly discussed in the following sections. For a 

more detailed description of the other blocks is given in the ALTI specification document [12]. 

Each of the firmware blocks has a number of VME-mapped control and status registers. Some 

of them are also associated with on-chip FIFO buffers and external RAM memories, which are also 

VME-mapped. The full ALTI VME address space of 16MB is divided in blocks, as shown in Table 

4.1. 

 

 
 

Figure 4.1. High-level functional block diagram of the ALTI firmware. 
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Table 4.1. ALTI VMEbus address space map. 

ADDRESS RANGE DESCRIPTION 

0x00000000 

.. 

0x0000FFFF 

 

Registers, 64kB = 16k words 

0x00010000 

.. 

0x000107FF 

 

BGO0 FIFO, 2kB = 512 words 

0x00020000 

.. 

0x000207FF 

 

BGO1 FIFO, 2kB = 512 words 

0x00030000 

.. 

0x000307FF 

 

BGO2 FIFO, 2kB = 512 words 

0x00040000 

.. 

0x000407FF 

 

BGO3 FIFO, 2kB = 512 words 

0x00050000 

.. 

0x000507FF 

 

TTYP FIFO, 2kB = 512 words 

0x00080000 

.. 

0x00080FFF 

 

QuickBoot FIFO, 4kB = 1k words 

0x00400000 

.. 

0x007FFFFF 

 

TTC spy "command" RAM memory, 4MB = 1M words 

0x00800000 

.. 

0x00BFFFFF 

 

TTC spy "timestamp" RAM memory, 4MB = 1M words 

0x00C00000 

.. 

0x00FFFFFF 

 

Pattern/snapshot RAM memory, 4MB = 1M words 

 

 

As written before, the ALTI preserves the functionalities of the TTC legacy modules: LTPI, 

LTP, TTCvi and TTCex. However, it is important to emphasize here what novelties and 

improvements the ALTI provides in terms of functionalities. 

The biggest improvements are made in the monitoring capabilities. Phases of the input signals 

can be monitored and it is possible to take snapshots of incoming TTC signals and store them in the 

memory. Another new monitoring capability is the optical TTC stream analyzer, which allows to 

decode and store the triggers and commands that are being sent on the TTC stream. 

Improvements have also been made in the pattern generation functionality. As will be 

explained, the pattern compression allows more efficient memory management and provides longer 

effective patterns than the ones provided by the LTP. 

It is also envisioned to implement a "miniCTP" block with some CTP-like functionalities like: 

simple and complex deadtime generation for L1A throttling, random triggers with pseudo-random 

prescaling, etc. 
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4.1. Clocking 

A Mixed-Mode Clock Manager (MMCM) IP provided by Xilinx is used to generate all clocks 

required in the FPGA, including: ~160MHz (four times the BC frequency) clock needed for the TTC 

encoding and 90 degree phase-shifted 40.079MHz clock needed for the input synchronization. The 

core has two clock inputs and the user can select which one is used, i.e. multiplied and phase-lock 

looped: 

 

1) 40.079MHz on-board crystal quartz oscillator ("PRIMARY_FXO") 

2) BC input coming from the cross-point switch directly, or from the jitter cleaner 

("SECONDARY_EXT") 

 

Until it was decided whether to use the jitter cleaner or not, two separate versions of the 

firmware were kept, differing only in what clock was connected to the "SECONDARY_EXT" input. 

In addition to the generator functionality, the MMCM also provides monitoring for four user 

clocks. With three status bits for each input, it can be checked if the input clocks are present, if any 

glitches were caught or if the frequency is outside some specified range. Four clocks that are 

monitored are coming from the four cross-point BC sources: CTP_IN, ALTI_IN, LEMO_IN and 

TO_FPGA. 

Another functionality of the MMCM is the fine-tuned phase shift of the output clock. One step 

is about 15ps for a VCO frequency of 40.079MHz used in this particular case. This feature is 

extremely useful for the front-end electronics for shifting the TTC stream. 

Most of the internal FPGA logic is running on the 40.079MHz clock provided by the MMCM. 

However, some parts of the logic like the MMCM control register and the I2C master core are always 

running on the FXO. In this way, it is always possible to recover from the unexpected losses of the 

external TTC clocks. In such cases, the user can change the cross-point switch settings and reset the 

MMCM PLL to change the external clock being used. 

4.2. Input signal synchronization 

The input TTC signals arriving at the FPGA are sampled by four 90 degree phase-shifted 

clocks. These four clocks (shifted 0, 90, 180 and 270 degrees from the main clock) create four bins 

that the input signal edges can fall into. For each of the input signals, the positive and negative edges 

are counted in this way an accumulated in 3-bit histograms. These histograms allow one to monitor 

the phase of the input signals. 

When the main clock and the input signal are synchronized, all the edges fall into a single 

histogram bin, or two bins at most (when the input signal edges are basically aligned with the clock 

edges). Otherwise, the clock and the signals are not synchronized, or there is a hardware problem 

with a particular signal line. Based on the histogram, the user can select which of the four phases 

should be used to latch the input signal safely. 

4.3. Pattern generation 

The pattern memory has a capacity of 4MB or 1M 32-bit words, whose format is shown on 

Figure 4.3.1. Least significant bits of each entry represent a pattern of TTC signals to be generated. 

The 11 most significant bits are reserved for the multipicity, which represents the duration of the 

given pattern in BCs, up to a maximum of 2048 BCs per entry. This compression mechanism allows 

for longer patterns to be stored in the memory, compared to the LTP which stores a separate entry for 

each BC. 
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Figure 4.3.1. Pattern generation memory format. 

Each TTC signal can be independently enabled and disabled from the pattern. Two registers 

control the addresses of the start and stop entries of the pattern to be generated. The pattern can be 

generated in two different modes: one-shot and repeated. In case of a repeated generation, the address 

pointer returns the start address after reaching the stop address, so the pattern is generated in a loop. 

4.4. Snapshot taking 

The snapshot memory has a capacity of 4MB or 1M 32-bit words and is shared with the pattern 

generation memory. The format is shown on Figure 4.4.1 and is basically identical to the pattern 

format. The only differece is that the 11 most significant bits are here interpreted as a timestamp. 

Whenever there is a change in any of the incoming 21 TTC signals (all except the BC), one 

such word gets written to the snapshot memory. Each entry has an 11-bit timesamp associated to it. 

Timestamps are relative, i.e. represent the number of BCs elapsed since the last change. If no changes 

occur in 2k BCs, an overflow entry (with all bits equal to "1" in the timestamp) is stored in the 

snapshot memory. 

 

 

Figure 4.4.1. Snapshot memory format. 

As for the control, the taking of a snapshot can be enabled and disabled. When it is enabled, 

the snapshot memory starts being filled entries, and the current address pointer is kept in a separate 

register. There is also a mask register for the snapshot memory, in which each TTC signal can be 

masked. Masking the TTC signal means that the changes of that signal are not stored in the snapshot 

memory. 

4.5. TTC encoder 

The generation and encoding of TTC B-channel commands in the ALTI module has been 

implemented in the same way as in the TTCvi, which was discussed in Chapter 2. Also, the format 

of the B-channel commands is the same and has already been discussed. The same is true for the 

priority scheme of B-channel commands. 

There are five different modes of sending commands from each of the BGO channel FIFOs: 

 

1) "SYNCHRONOUS_SINGLE_BGO_SIGNAL" - send once at the end of the inhibit 

if the corresponding BGO signal occurred 

2) "SYNCHRONOUS_REPETITIVE" - send once each orbit at the end of the inhibit, 

regardless of the corresponding BGO signal 

3) "ASYNCHRONOUS_BGO_SIGNAL" - send when the BGO signal is received 

4) "ASYNCHRONOUS_VME_ON_TRIGGER" - send when the corresponding VME 

register is written 

5) "ASYNCHRONOUS_VME_WHEN_NOT_EMPTY" - send whenever the 

corresponding FIFO is not empty 

BC_Multiplicity ORB BUSY L1A

31 21 20 19 0

TTR3..1

3 1

BGO3..0

47

TTYP7..0CALREQ2..0

8151618

BC_TimeStamp ORB BUSY L1A

31 21 20 19 0

TTR3..1

3 1

BGO3..0

47

TTYP7..0CALREQ2..0

8151618
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4.6. TTC decoder 

The TTC decoder memory consists of two 1Mx32 memory blocks, which can logically be 

viewed as a single 1Mx64 block. We call these blocks "command" and "timestamp", because of their 

content. The format of the decoder memory is shown on Figure 4.6.1. Whenever a command or a 

trigger gets decoded from the TTC stream, a single 64-bit entry with such format gets written into the 

TTC decoder memory. 

 

 

Figure 4.6.1. TTC spy memory format: "command" and "timestamp". 

 

The control of the TTC decoder is very similar to the control of the snapshot memory. It is 

possible to enable and disable the decoding, and an address pointer is kept to indicate the range of 

valid entries that were written. 

4.7. I2C master core 

A simple, wishbone-compatible I2C master core available on OpenCores [31] has been used 

in order to communicate with the devices on the ALTI I2C network. 

4.8. 1-Wire master core 

A 1-Wire master core provided by Dallas Semiconductor (acquired by Maxim Integrated) [32] 

has been used to implement the 1-Wire protocol. This protocol is used to communicate with the 1-

Wire chip, which gives each ALTI module a unique identifier. 

4.9. Busy and calibration request routing 

Unlike the forward-going TTC signals, BUSY and CALREQ[2..0] are not routed through the 

cross-point switches. That is why the routing logic for these signals was done in the firmware. 

Functional block diagram of this routing logic for the BUSY signal is shown on Figure 4.9.1. 

The local BUSY signal, used in the ALTI internal logic, is a logical OR of five possible BUSY 

input sources. All of the busy sources can be independently masked. This flexible masking allows the 

ALTI to logically add together BUSY inputs from multiple sources, which is used when ALTI plays 

a role of a master in two parallel TTC daisy chains. Sources for the BUSY signal are the following: 

 

1) BUSY input from the CTP_OUT connector 

2) BUSY input from the ALTI_OUT connector 

3) BUSY input from the LEMO_IN connector 

4) BUSY from the pattern generator 

5) BUSY from the internal register 

 

 

Long/Short Addr SubAddr Data

31 30

E/I

17 781516 0

LinkStatus L1A DoubleBitError BC_Cnt (absolute)

31 30

SingleBitError

29 2728 0
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The local BUSY signal is routed to the BUSY LEMO output for monitoring purposes. For 

sending the BUSY signal upstream to the CTP_IN and ALTI_IN LVDS-LINK connectors, one of the 

four sources can be chosen with a VME-controllable multiplexor: 

 

1) BUSY input from the CTP_OUT connector 

2) BUSY input from the ALTI_OUT connector 

3) Local BUSY signal 

4) Inactive BUSY signal 

 

 

Figure 4.9.1. Functional block diagram of the BUSY signal routing in the FPGA logic. 

 

The functional block diagram of the routing logic for the CALREQ[2..0] signals is shown on 

Figure 4.9.2. Each of the three CALREQ signals can be routed independently from the other two. 

Local CALREQ signal, used in the ALTI internal logic, can be sourced from any of the six 

possible CALREQ input sources. Compared to the BUSY signal sources, there is one additional 

source because the TTR[1..3] LEMO inputs are multiplexed with the CALREQ[0..2] in order to allow 

more input flexibility. Thus, the sources for the CALREQ[2..0] signals are the following: 

 

1) CALREQ input from the CTP_OUT connector 

2) CALREQ input from the ALTI_OUT connector 

3) CALREQ input from the RJ45 connector 

4) CALREQ input from the corresponding TTR LEMO_IN connector 

5) CALREQ from the pattern generator 

6) CALREQ from the internal register 
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For sending the CALREQ signal upstream to the CTP_IN and ALTI_IN LVDS-LINK 

connectors, one of the four sources can be chosen with a VME-controllable multiplexor: 

 

1) CALREQ input from the CTP_OUT connector 

2) CALREQ input from the ALTI_OUT connector 

3) Local CALREQ signal 

4) Inactive CALREQ signal 

 

 

Figure 4.9.2. Functional block diagram of the CALREQ signal routing in the FPGA logic. 
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5.  ALTI SOFTWARE 

This chapter is about the ALTI software, which is an essential part of the ALTI development 

and is the one that the author has contributed to most. Low-level software that has been developed 

for the ALTI modules makes the board "alive" by allowing an easy access to all of the hardware and 

firmware that is available. Without previously developing this software, it would be impossible to 

test the module and measure its performances in an efficient and reproducible way. 

First, in Section 5.1, the ATLAS Trigger and Data Acquisition (TDAQ) infrastructure on 

which the ALTI software relies on is briefly described. Then, the low-level API for the ALTI is 

discussed in Section 5.2. In Section 5.3, the menu program which exercises the low-level API is 

discussed. This is followed by the discussion of the ALTI configuration object in Section 5.4. Test 

programs are independently discussed in subsections of Section 5.5. 

5.1. ATLAS TDAQ 

The ATLAS TDAQ system provides the software infrastructure for Level-1 Trigger, Data 

Acquisition (DAQ) and HLT systems. Software packages for TDAQ are maintained on a private 

GitLab server hosted in CERN. The TDAQ team provides the necessary build tools, which are based 

on CMake. They also take care of tagging the software packages and making sure the software 

packages with dependencies are compatible in every new TDAQ release. 

Software packages for the Level-1 Trigger and the TTC modules are also a part of ATLAS 

TDAQ. These packages include the low-level software for control, configuration and monitoring of 

the modules. High-level run control application software that is built on top of the low-level APIs is 

also included in the ATLAS TDAQ. 

VME-addressable TTC legacy modules (LTPI, LTP and TTCvi) and the other modules all 

have a similar low-level software organization. They provide an API for accessing all the 

functionalities of a given module in the form of public methods of the module base class. All of these 

methods are then exercised in a menu program, which guides the user to interactively access the 

module. Besides the menu program, there are usually various test programs accompanying each 

module. The ALTI module is no exception and its low-level software is organized in a similar way. 

There are several software packages that the ALTI package depends on. Some of them are a 

part of the TDAQ ReadOut Driver Crate DAQ (RCD) and some of them are specific to the Level-1 

Central Trigger (L1CT): 

 

1) ATLAS TDAQ RCD 

 vme_rcc: VMEbus driver 

 RCDVme: wrapper for the vme_rcc driver 

 RCDBitString: manipulation of bit arrays of arbitrary size 

 RCDMenu: package for interactive menus that support nesting 

 RCDUtilities: common utilities like print out and error-handling 

 

2) ATLAS L1CT 

 L1CTHardwareCompiler: translation of an .xml description of a module to 

low-level VME read/write methods 

 I2C: driver for the I2C master core 

 DS1WM: driver for the 1-Wire master core 
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5.2. Low-level API 

Low-level software has been developed in order to provide the access to the ALTI module and 

all of the functionalities of hardware and firmware. It provides programmable support for control, 

configuration and monitoring of the ALTI module in terms of its registers, memories, and FIFO 

buffers. The software was developed for the single-board computer of the ATLAS readout driver 

crate, which uses a library and a driver to communicate with the ALTI module using the VMEbus. 

The first thing that was done on the ALTI software is the description of the module with an 

xml file called alti.xml. This file gives a basic description of the module in terms of specific bit-

assignments and addresses of various registers, FIFOs and RAM memories within the ALTI module. 

In this sense, the alti.xml closely resembles the firmware. The file format allows for dividing the 

module address space into blocks with logically grouped functionalities. A glimpse of the alti.xml 

file is given on figures 5.2.1 and 5.2.2. These figures show how the snapshot memory bitstring and 

the I2C core block were defined, respectively. 

A software package called the L1CT hardware compiler then generates low-level VME 

read/write functions, such that the bit fields are addressed by their name and the specific bit-

assignments are abstracted. This allows for better maintainability of the code, because this is the only 

place where changes need to be made if the register addresses or their bit-assignments are changed 

as the firmware development progresses. As a result of running the L1CT hardware compiler, a class 

called ALTI is automatically generated, providing the low-level VME read/write functions of the bit 

fields. 

Built on top of that is the AltiModule base class, which provides more user-friendly API for 

control, configuration and monitoring of the ALTI module. This class incorporates an object of low-

level class ALTI as its private member and uses its automatically generated public methods. However, 

AltiModule methods are not just a wrapper around the ALTI methods, since the API also includes 

methods that must perform a certain sequence of operations in order to exercise some functionality 

implemented in the firmware. These sequences or sets of operations are put together for convenience. 

The API of the base class AltiModule is also the place where the meaning of variables and functions 

are changed from a hardware point of view to a user point of view. 

 

 

Figure 5.2.1. A section of the alti.xml file containing a bitstring description for the snapshot memory entry. 
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Figure 5.2.2. A section of the alti.xml file containing the I2C block. 

 

The API is logically grouped into blocks of the module functionalities. Each block is 

distinguished by a 3-letter abbreviation, which each also serve as prefixes for the names of method 

names. Base class methods are thus grouped in the following blocks: 

 

 CSR: VME64x CR/CSR space 

 CFG: AltiConfiguration object, read and write, default setup and check of setup 

 CLK: PLL and jitter cleaner configuration 

 SIG: signal settings - configuration of cross-point switches, equalizers and input 

synchronization/shaping 

 BSY: selection and routing of BUSY signal 

 CRQ: selection and routing of Calibration Request signals 

 PAT: pattern generation memory 

 SNP: snapshot memory 

 ENC: TTC encoder control 

 DEC: TTC decoder control 

 CNT: ALTI counters - BC, ORB, L1A, Test Triggers and BGOs 

 MON: hardware monitoring - voltages/temperatures readout 

 I2C: access each individual device in the I2C network 

 

To give an example of the API methods, the list of methods associated with the functionality 

blocks "SIG", "PAT" and "SNP" are shown on Figure 5.2.3, Figure 5.2.4 and Figure 5.2.5, 

respectively. 
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Figure 5.2.3. The list of low-level API methods of block "SIG". 

 

 

Figure 5.2.4. The list of low-level API methods of block "PAT". 

 

 

Figure 5.2.5. The list of low-level API methods of block "SNP". 
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5.3. Menu program 

This is an interactive program, which allows the user to access the module and configure it at 

will. On Figure 5.3.1, the main menu of the menuAltiModule program is shown. With the use of the 

menuAltiModule program, the user can execute all of the methods from the base class API, in order 

to set the module up to a desired state. In this way, low-level API and the menu program proved quite 

useful for hardware and firmware evaluation. Functionalities of the module are logically grouped into 

the sub-menus of the menu program, in the same way as the API is partitioned. 

 

 

Figure 5.3.1. Main menu of the ALTI menu program. 

5.4. Configuration object 

The ALTI module has many registers and memories. In fact, its current address space takes 

up 16MB. Thus, the number of parameters that define a state of the module is also quite large. It was 

therefore decided to design a convenient way of configuring the whole module at once, without 

having to manually set each parameter using the menu program. 
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A class for the configuration of the ALTI module, called AltiConfiguration, allows the user to 

fully configure the ALTI module to a known state. The AltiConfiguration object is associated with a 

specific file format which contains a list of key/value pairs for all the parameters, and provides a 

complete configuration of the ALTI module. Both configuring the module and reading its current 

state is possible using this configuration class. Input and output file formats are the same, so the 

configuration of some module with a file that was read back as the state of some other module is also 

possible. The list of parameters in the configuration file is partitioned into blocks of functionalities, 

in the same way as the API. Each block can be independently included and excluded from being 

configured using its "CONFIG" parameter in the configuration file. Thus, a partial configuration of 

the module is also possible. There is a dedicated test program which allows the user to write or read 

the configuration from the command line, which will be discussed in Subsection 5.5.2. A glimpse of 

a particular ALTI configuration file is shown on Figure 5.4.1. 

 

 

Figure 5.4.1. A section of the ALTI configuration file containing parameters in a form of key/value pairs. 
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5.5. Test programs 

Aside from the menu program, various test programs have been developed for testing and 

diagnostics of the ALTI module. They are used for: automated specific tests (snapshot memory, and 

the TTC decoder), initializing the module with a configuration given in a form of a file, remote 

firmware update, etc. Each of them will be described in the following subsections. 

5.5.1. testAltiVME 

This test program is used to test VMEbus read/write transfers on RAM memories and FIFOs, 

as well as the internal FPGA registers that are safe to write to (not used for some critical control). 

Testing the VME interface is done by writing some data to a particular chunk of memory, and 

making sure that the same data is then properly read back. The user specifies the base address of the 

test area, a number of 32-bit words to be tested and a comparison mask. Also, both single and block 

cycles are supported. Types of tests that are included are the following: simple fixed value 

writes/readouts, writing incrementing/decrementing data, writing walking "1" bits to successive 

addresses. The latter two types of tests are useful for checking the address and data lines, since the 

value being written differs according to the address. 

On Figure 5.5.1 one can see the full list of the program parameters. A common use of the 

testAltiVME program is shown on Figure 5.5.2. 

 

 

Figure 5.5.1. testAltiVME program help with the full list of parameters. 

 

 

Figure 5.5.2. Typical use of the testAltiVME program. 
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5.5.2. testAltiInitial 

This test program is used for module initialization and configuration. 

When the ALTI module is powered on, this program is used for basic initialization and setup. 

That means the user can change the VME base address of the module, if the default geographical 

addressing (according to the slot number) is not desired. For example, it could be that the base address 

given by the geographical addressing is not the range of any of the static master mappings defined by 

the SBC. On the other hand, basic setup includes the following: setting the jitter cleaner up with a 

default configuration, setting the recommended clock prescaler value of the I2C master core, etc. It 

is recommeded to perform the initialization and setup tasks once upon power up before using the 

module. 

Configuring the module is done with an AltiConfiguration object, corresponding to an input 

file format discussed in Section 5.4. This file contains all the configurable parameters of the module 

and it grew as each new feature got added to the firmware, and afterwards the low-level software. 

The user also has an ability to read current configuration into a file, or dump it onto the standard 

output screen. 

Another feature of this test program is the ability to perform a basic check of the setup of the 

ALTI. In this way, the user can check if the module is operational, i.e. if the PLL is locked, the I2C 

prescaler and the jitter cleaner are properly set up, and so on. 

By using the testAltiInitial program, it is easy to quickly configure multiple ALTI modules for 

automated tests, not having to use the menu program. Various configuration files for common ALTI 

modes of operation are available: "Master" (Pattern generator), "CTP slave", "ALTI slave", "LEMO 

slave", TTC encoder/decoder, etc. 

On Figure 5.5.3 one can see the full list of the program parameters. Two common uses of the 

testAltiInitial program are shown on Figure 5.5.4. 

 

 

Figure 5.5.3. testAltiInitial program help with the full list of parameters 
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(a) 

 

 
(b) 

Figure 5.5.4. Typical use of the testAltiInitial program: (a) base address initialization, basic setup and check, (b) 

module configuration as a "CTP slave". 
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5.5.3. testAltiQuickBoot 

This test program is used to remotely update the FPGA firmware through VME, without using 

Xilinx tools. Not having to use the USB programmer makes it more convenient to update the firmware 

of modules installed in the VME crate. 

The remote firmware update is based on the QuickBoot mechanism, described in detail in one 

of the application notes provided by Xilinx [33]. Basically, the initial bitstream stored in the 

configuration memory contains "golden" and "update" images, which are identical at the beginning. 

This initial bitsream contains these two exact copies of a stable firmware release, and is flashed to the 

configuration memory once using the Xilinx tools. Afterwards, remote firmware update is done only 

by overwriting the "update" image area, using the previously mentioned QuickBoot mechanism. 

Xilinx provides a QuickBoot FlashProgrammer core in VHDL. They also provide a Perl script 

for converting a standard mcs image file (result of firmware compilation in Xilinx Vivado) to two of 

them: initial and update mcs files. Update mcs file is then converted to a binary file using open-source 

solution SRecord [34], which handles manipulations of different EPROM load file standards. The 

resulting binary file containts the sequence of 32-bit data of the update image which needs to be sent 

to the flash programmer. Interfacing to the flash programmer is done via single FIFO memory in the 

FPGA. 

The software takes care of enabling the flash programmer and filling this FIFO with the update 

image data, one 32-bit word at the time. Successful termination or error in the update process is also 

reported by the flash programmer and caught by the testAltiQuickBoot program. In addition to the 

update feature, this test program allows veryfing the existing update in the image by caluclating its 

CRC32 checksum, which is also written in the last entry in the update image area of the configuration 

memory. 

QuickBoot mechanism is summarized on Figure 5.5.5. The full list of testAltiQuickBoot 

program parameters can be seen on Figure 5.5.6, while the common use of this program is shown on 

Figure 5.5.7. 

 

 

Figure 5.5.5. The QuickBoot mechanism [33]. 
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Figure 5.5.6. testAltiQuickBoot program help with the full list of parameters. 

 

 

Figure 5.5.7. Typical use of the testAltiQuickBoot program 

 

Using the testAltiQuickBoot program proved beneficial in laboratory testing, when multiple 

ALTI modules are inserted the same VME crate, and the JTAG programming port is inaccessible. It 

also allowed the firmware update for the remotly installed modules, used and tested by other 

colleagues. So, this feature is rather useful for release updates where bug fixes make it mandatory to 

update the firmware. 

5.5.4. testAltiCapture 

This test program is used for reading the snapshot memory and for comparison with expected 

patterns of TTC signals. Comparing the snapshot with the predefined pattern of input signals is very 

useful for testing all signal paths and connections through the module. 

Before using the testAltiCapture program, the user first has to send a known TTC signal 

pattern to the FPGA. This is most easily acomplished by setting up one ALTI/LTP module in master 

mode, as a pattern generator. So, the pattern input file of an LTP or ALTI can be used as a reference 

for comparison with a snapshot memory of the ALTI module under test. Then, the ALTI module 

being tested has to be set up in a slave mode, such that it receives those TTC signals. 
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The test program repeatedly triggers the snapshot memory, reads its content and compares it 

to a pattern input file. Relative timestamps in the snapshot memory make the comparison with an 

LTP/ALTI pattern generation input file easier. Before actually comparing the data, the program finds 

the alignment between the data read from the ALTI and the comparison data. This is necessary since 

the data obtained from the snapshot memory depends on when the snapshot is actually enabled. 

There are numerous parameters for the testAltiCapture program, including a comparison 

mask, the amount of data to be read, the comparison file type (LTP/ALTI), etc. They are shown on 

Figure 5.5.8. An example of the ALTI pattern file is shown on Figure 5.5.9, while a common use of 

the testAltiCapture program to compare snapshots with the given pattern is shown on Figure 5.5.10. 

 

 

Figure 5.5.8. testAltiCapture program help with the full list of parameters. 

 

Figure 5.5.9. An example of the ALTI pattern input file used to run the pattern generator. 
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Figure 5.5.10. Typical use of the testAltiCapture program. 

5.5.5. testAltiTtc 

This test program is used for reading the TTC decoder memory and for comparing the data 

with the expected TTC stream commands and triggers. Both the TTC decoder and encoder are being 

tested using this program. 

Before using the testAltiTtc program, the user has to set up one ALTI module to send TTC 

commands and triggers. It is possible to use the same ALTI module for testing by sending its optical 

output to the optical receiver of the same module, too. Alternatively, one can set up a legacy TTC 

partition using TTCvi and TTCex and use that optical stream, too. 
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In order to run an automatic test in a loop, we need something as a reference, similar to a 

pattern input file in the capture program. For that purpose, a software package called ttcscope was 

used. This is TTC decoder software which gets the TTC stream data samples from the LeCroy 

oscilloscope [35]. The processing PC is connected with an Ethertet cable to the oscilloscope and the 

data is being transmitted over the TCP/IP protocol. Optical/electrical converter probe OE455 [36] is 

used to feed the electrical TTC stream signal to the oscilloscope. By running the ttcscope, the printout 

of decoded commands and triggers is obtained, as shown on Figure 5.5.11. Such printout gives a neat 

description of the TTC commands and triggers that can be used as a reference for comparison. 

 

 
 

 

Figure 5.5.11. Result of running the ttcscope program. 
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The test program then repeatedly triggers the two TTC decoder memories (called "command" 

and "timestamp"), reads their content, interprets the data and compares it to the ttcscope reference 

file. Alignment and comparison is analogous to the ones used in testAltiCapture program, with a few 

subtle differences. Timestamps in ttcscope and the ALTI decoder have a relative offset, so they are 

masked in the alignment part of the algorithm. However, this offset is calculated after the alignment 

and the timestamps are adjusted so that they can be compared. Comparing the timestamps makes sure 

that the timing of periodic triggers and commands stays stable. 

The testAltiTtc program was created by applying slight modifications to the testAltiCapture 

program, so the list of program parameters is also very similar. The full list of parameters is shown 

on Figure 5.5.12, while the typical use of the program is shown on Figure 5.5.13. 

 

 

 

Figure 5.5.12. testAltiTtc program help with the full list of parameters. 
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Figure 5.5.13. Typical use of the testAltiTtc program. 

5.5.6. testAltiSync 

This test program was developed in order to evaluate the input synchronization and monitoring 

firmware. The idea was to make use of the LTPI shifting functionality and observe what happens to 

the ALTI histograms for input synchronization and monitoring. Since this test program operates on 

both modules, the LTPI and the ALTI, the low-level LTPI software library is used to access that 

module and shift the TTC signals. 

Before running the test program, a pattern of TTC signals is generated (with an LTP or an 

ALTI) and propagated through the LTPI module, to its CTP_OUT connector. Then, the connection 

with the downstream ALTI module under test is done using a single LVDS-LINK cable to either of 

the two ALTI LVDS-LINK input connectors. 

When running the testAltiSync program, the user can choose the source connector of the 

signals coming from an upstream LTPI (CTP_OUT or ALTI_OUT) and the desired delay (in 

nanoseconds) to be introduced by the LTPI for all the signals. The result of running the program is 

the printout of ALTI histograms. 

The full list of available program parameters is shown on Figure 5.5.14, while the common 

use of the testAltiSync is shown on figures 5.5.15 and 5.5.16. Note the shift of the histogram content 

to the next bin as a result of a different phase of the TTC signals on Figure 5.5.15 and Figure 5.5.16. 
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Figure 5.5.14. testAltiSync program help with the full list of parameters. 

 

 

Figure 5.5.15. Typical use of the testAltiSync program: without the LTPI delay. 
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Figure 5.5.16. Typical use of the testAltiSync program: with the LTPI delay of 4ns, resulting in the histogram 

shift. 
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6.  MODULE TESTING 

This chapter describes the process of testing the ALTI prototype modules and lists the most 

important test results. First, the laboratory tests on individual modules are discussed in Section 6.1. 

An automated connection test that was designed for systematic testing and evaluation of the large 

number of prototype modules is discussed in Section 6.2. 

6.1. Laboratory tests 

With the help of the low-level software, the menu programs (for both the ALTI and the other 

legacy TTC modules) and the oscilloscope, the prototype modules have been tested. A typical 

laboratory setup used in such module tests is shown on Figure 6.1.1 

That laboratory tests include the checking of all the hardware on the module: 

 

1) Complete I2C network 

2) RAM memories external to the FPGA 

3) LVDS-LINK cable inputs/outputs 

4) LEMO NIM-level inputs/outputs 

5) LEMO TTL-level BUSY input 

6) All routing paths through the cross-point switches 

7) Equalizers: configurations for short/long cables found 

8) RJ45 calibration request inputs 

9) 1-Wire ID chip for labeling the modules 

 

 

Figure 6.1.1. Typical laboratory test setup with multiple ALTI and legacy TTC modules in the same VME crate. 
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Also, laboratory tests were performed in order to check all of the ALTI functionalities and 

make sure that they are properly implemented in the firmware. 

In the module testing process, several PCB design issues have been found, all of which shall 

be fixed in the next pre-production series: 

 

1) ADCMP564 comparators on the NIM outputs should be supplied by +5V, instead of 

+3.3.V (prototype modules have been fixed by rewiring) 

2) MAX1617A temperature sensor remote diode pins polarity is swapped 

3) Power-down mode pins for the AD8123 equalizers should be driven from the FPGA 

to reduce the heat dissipation 

4) The termination in the ALTI BUSY input needs to be slightly modified in order to 

allow TTL-level inputs 

 

Some issues related to the bad assembly and soldering have been identified on the particular 

prototype modules. These were not related to any of the design issues, and were easily fixed on each 

of these particular modules. 

6.2. Automated connection test 

The ConnectionTestAlti program was designed in order to systematically check all forward-

going signal paths through the ALTI, for varying configurations of cross-point switches. It was 

written in Python and it makes extensive calls to the testAltiInitial and testAltiCapture programs. 

 The ALTI module under test is put in between two "golden" ALTI modules, fully connected 

with LVDS cables and LEMO-connector coaxial cables. This setup is shown on Figure 6.2.1. 

 

 

Figure 6.2.1. Setup for testing of all input/output paths of TTC signals. 
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Typically, the "Master" ALTI module sends a pattern of TTC signals given by a randomly 

generated input file. The lengths of the random patterns and the probabilities for "0" or "1" occurrence 

are programmable. The signals are then propagated through the "Test" ALTI module and are captured 

in the "Slave" ALTI module and compared with the given pattern. Exceptions to this rule are the tests 

of FROM_FPGA input paths (where the "Test" ALTI acts as a pattern generator) and TO_FPGA 

output paths (where the "Test" ALTI takes snapshots). The test of a single input/output combination 

consists of initializing the ALTI modules with testAltiInital program, and then taking the snapshot 

with the testAltiCapture program. Predefined ALTI configurations are used for the initialization: 

Pattern generator, "CTP slave", "ALTI slave" and "LEMO slave". 

All input/output paths are being tested, from the front panel inputs to the front panel outputs, 

as well as to and from the FPGA. Thus, there are 15 different input/output combinations that are being 

tested. Paths with FROM_FPGA input ant TO_FPGA output are not being tested, since it is not 

possible to use both the pattern generation and the snapshot features of the same module 

simultaneously. 

Table 6.2.1 shows all input/output paths being tested and the corresponding configurations of 

the "Master", "Test" and "Slave" ALTI modules. 

 

Table 6.2.1. Standard configurations of ALTI modules in the connection test for various test paths. 

PATH 
"MASTER" ALTI 

CONFIGURATION 

"TEST" ALTI 

CONFIGURATION 

"SLAVE" ALTI 

CONFIGURATION 

CTP_IN -> CTP_OUT Pattern generator CTP slave CTP slave 

CTP_IN -> ALTI_OUT Pattern generator CTP slave ALTI slave 

CTP_IN -> LEMO_OUT Pattern generator CTP slave LEMO slave 

CTP_IN -> TO_FPGA Pattern generator CTP slave N/A 

ALTI_IN -> CTP_OUT Pattern generator ALTI slave CTP slave 

ALTI_IN -> ALTI_OUT Pattern generator ALTI slave ALTI slave 

ALTI_IN -> LEMO_OUT Pattern generator ALTI slave LEMO slave 

ALTI_IN -> TO_FPGA Pattern generator ALTI slave N/A 

LEMO_IN -> CTP_OUT Pattern generator LEMO slave CTP slave 

LEMO_IN -> ALTI_OUT Pattern generator LEMO slave ALTI slave 

LEMO_IN -> LEMO_OUT Pattern generator LEMO slave LEMO slave 

LEMO_IN -> TO_FPGA Pattern generator LEMO slave N/A 

FROM_FPGA -> CTP_OUT N/A Pattern generator CTP slave 

FROM_FPGA -> ALTI_OUT N/A Pattern generator ALTI slave 

FROM_FPGA -> LEMO_OUT N/A Pattern generator LEMO slave 

 

If the testAltiCapture returns an error, the corresponding input/output path failure is reported. 

There can be multiple reasons for this failure: wrong equalizer settings, wrong input signal 

synchronization or simply a bad soldering or some assembly issue. In order to report what TTC signal 

lines are problematic, the snapshot memory masking feature is used. After the failure, TTC signals 

are independently checked by masking all other signals from the snapshot, and the testAltiCapture is 

ran again. This means that the changes of all the masked signals are not stored in the snapshot 

memory, so only one TTC signal is checked at a time. If this call of the testAltiCapture reports failure, 

that means there is a problem for this particular TTC signal for a given input/output combination of 

the cross-point switch. 
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On Figure 6.2.2, a typical use of the ConnectionTestAlti is shown. The full report gives the 

user the information on which paths failed the test, and which TTC signals are in fact problematic. 

As shown on Figure 6.2.3, by using the proper parameter the user can also check the BGO multiplexed 

paths discussed in Subsection 3.2.3. The user is also guided on how to do the cabling between the 

modules, as can be seen on figures 6.2.2 and 6.2.3. 

 

 

Figure 6.2.2. Connection test results, LEMO BGO2 and BGO3 cabling. 
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Figure 6.2.3. Connection test results, LEMO BGO0 and BGO1 cabling (multiplexed). 

 

The reports shown on figures 6.2.2 and 6.2.3 suggest that there is a problem with L1A and 

ORB LEMO inputs for this particular ALTI module, as well as TTYP0 line on the ALTI_OUT path. 

Such an automated test allows for quick check and evaluation of the upcoming ALTI modules, 

something that would be practically impossible to do manually using the oscilloscope. 
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7.  PERFORMANCE MEASUREMENTS 

This chapter describes the performance measurements that were done on the ALTI module, 

and shows the obtained results. Those tests have been done in order to qualify some critical 

performance parameters of the ALTI module and compare them the legacy TTC modules. Low-level 

software for the ALTI and the other legacy TTC modules (in the form of menu programs) has been 

used in order to set the modules up appropriately for each measurement. 

The parameters that were measured include: 

 

1) Cable-to-cable latency of electrical TTC signals, compared to LTPI and LTP 

modules 

2) Level-1 Accept latency in the TTC encoded optical stream, compared to the current 

daisy chain setup of LAr in the experiment 

3) Jitter in the TTC stream and on-board jitter cleaner chip performance, compared to 

the current system based on TTCvi and TTCex 

 

Measurements of each of these parameters are discussed in separate sections. 

7.1. Latency of electrical TTC signals 

Latency is very important in the TTC system and the ATLAS experiment. In particular, the 

latency of the L1A is very critical, because the front-end electronics buffers can only hold event data 

for a given time, before they lose or overrun the existing data. 

Latencies of most of the forward-going TTC signals from the cable inputs (CTP_IN/ALTI_IN) 

to the cable outputs (CTP_OUT/ALTI_OUT) have been measured. Each of these delay paths consists 

of: an LVDS receiver, an equalizer, a cross-point switch and an LVDS driver. 

A setup that was used for these measurements is shown on Figure 7.1.1. The delay of a 

particular signal is measured between the two ALTI modules called "Master" and "Slave". For this, 

output LEMO connectors for that particular signals are used. Two coaxial cables are used to feed the 

signals to the LeCroy oscilloscope and the delay between the two waveforms is then measured. On 

Figure 7.1.1, one such measurement has been shown, namely the latency of L1A through the CTP_IN 

to CTP_OUT path. 

This is an indirect measurement, and the latency is obtained my subtracting the results of two 

measurements shown on Figure 7.1.1. The first measurement includes the propagation delay through 

the ALTI module under test, while the second measurement bypasses this ALTI module. In the first 

measurement two LVDS-LINK cables length 0.5m are used, and in the second measurement one 

LVDS-LINK cable of length 1m is used. Thus, the propagation delays through the cables are matched 

in both measurements and they cancel out in the subtraction of the results. The same holds for the 

propagation delays through the coaxial cables, which are the same in both measurements. 
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(a) 

 

 
(b) 

Figure 7.1.1. CTP_IN->CTP_OUT path latency measurement for L1A: (a) delay of ALTI under test included, 

(b) ALTI module under test bypassed. 

 

The results of measuring the propagation delays through the ALTI module are shown in Table 

7.1.1. What we can see from the table is that the latency is about 12ns, from any LVDS cable input 

to any LVDS cable output of the ALTI module. So, the delays for all the signals and for all four 

different input/output configurations are roughly the same. This is expected, since this circuitry in the 

cross-point switch path is the same for all the TTC signals. 
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Table 7.1.1. Cable-to-cable latencies of TTC signals for the ALTI module. 

SIGNAL 
CTP/CTP 

DELAY [NS] 

CTP/ALTI 

DELAY [NS] 

ALTI/CTP 

DELAY [NS] 

ALTI/ALTI 

DELAY [NS] 

BC 11.76 11.56 11.47 11.18 

ORB 12.04 11.99 11.57 11.49 

L1A 11.92 11.69 11.46 11.21 

TTR1 11.69 11.58 11.31 11.17 

TTR2 11.72 11.91 11.44 11.58 

TTR3 11.63 11.61 11.26 11.19 

BGO2 11.88 11.81 11.58 11.46 

BGO3 11.99 11.99 11.59 11.54 

 

With a similar setup, latencies of other modules with LVDS-LINK connectors (LTPI and LTP) 

have also been measured. The only difference in the setup is that the module under test is LTP/LTPI, 

instead of the ALTI. Results are shown in Table 7.1.2 and Table 7.1.3 for the LTPI and the LTP, 

respectively. 

 

Table 7.1.2. Cable-to-cable latencies of TTC signals for the LTPI module. 

SIGNAL 
CTP/CTP 

DELAY [NS] 

CTP/LTP 

DELAY [NS] 

LTP/CTP 

DELAY [NS] 

LTP/LTP 

DELAY [NS] 

BC 10.89 13.74 13.29 8.76 

ORB 13.99 12.43 17.41 9.16 

L1A 14.66 13.28 17.87 8.83 

TTR1 14.48 11.27 16.56 9.49 

TTR2 14.39 11.27 16.42 9.39 

TTR3 14.67 11.51 16.69 9.26 

BGO2 14.61 12.72 18.76 9.13 

BGO3 14.88 13.09 18.51 9.02 

 

Table 7.1.3. Cable-to-cable latencies of TTC signals for the LTP module. 

SIGNAL 
CTP/CTP 

DELAY [NS] 

BC 4.63 

ORB 4.83 

L1A 4.48 

TTR1 11.60 

TTR2 11.18 

TTR3 11.94 

BGO2 12.31 

BGO3 12.59 
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The results of these measurements are also expected. In the LTPI, CTP output link is preceded 

by a fine-tune delay chip (0.5 ns step), which can be used to phase shift all TTC signals [7], except 

the BC. Also, in the LTP, propagation delays are lower for BC, ORB and L1A because of PECL 

circuitry instead of TTL (as for the rest of the TTC signals) [5]. 

Based on the results that were shown, one can compare latencies between systems composed 

of legacy TTC modules and corresponding replacement systems based on the ALTI module. Here are 

some comparisons of L1A latency in some common configurations: 

 

 ALTI is about 7.5ns slower than LTP 

 ALTI is about 10ns faster than LTPI + LTP 

 ALTI + ALTI is about 2ns faster than LTPI + LTP + LTP 

 

In these calculations, short 0.5m LVDS-LINK cables are assumed between the modules. Based 

on the measurements, LVDS-LINK cables introduce the propagation delay of about 5ns per meter. 

That corresponds to about 2.5ns delay for each 0.5m cable. 

The comparisons show that ALTI-based system is faster in a typical TTC partition daisy chain 

of length two, due to the smaller number of interconnecting LVDS-LINK cables being used in the 

setup. 

7.2. Level-1 Accept latency: LAr daisy chain 

Level-1 Accept latency from the CTP to the TTC stream is one of the most important 

performance parameters in the ATLAS experiment. As we discussed earlier, propagating the trigger 

to the front-end electronics as early as possible is of the utmost importance. Actually, the liquid Argon 

calorimeter sub-detector (LAr) is the sub-detector that is the most latency-critical. That is why the 

Level-1 Accept latency for this particular TTC configuration was measured and compored to the 

possible ALTI-based replacement setup. The LAr sub-detector uses the daisy chain of two TTC 

partitions, as shown on Figure 2.2.2. 

Shown on Figure 7.2.1 (a) and (b) are the legacy LAr setup and a corresponding ALTI-based 

setup, respectively. The latency of L1A in the TTC stream is measured on the second stage of the 

daisy chain, since only this stage is latency critical. 

Legacy setup mimics the actual current configuration in the experiment. Shortest available 

LVDS-LINK cables were used, the ones of length 0.5m. The same is true for coaxial cables between 

the second LTP, TTCvi and TTCex: cables of 1ns and 2ns delay were used. In the LAr setup, LTPI 

is used for delaying the L1A exactly 17ns (34 steps of 0.5ns each), in addition to the equalization 

function. This is also shown on Figure 7.2.1 (a). The only major difference in the actual experiment 

is the length of the LVDS-LINK cable from the CTP: they are longer than the 2m cables that were 

used in this measurement, and the use of the LTPI for equalization is crucial. 

In the replacement setup, two legacy partitions are substituted with two cascaded ALTI 

modules. The interface to the CTP and the oscilloscope is the same as in the legacy setup. Fibre 

lengths and propagation delays are matched in both setups, though different patch cords were used 

because of different transmitter connectors in the TTCex and ALTI. 
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(a) 

 

 
(b) 

Figure 7.2.1. Daisy-chained TTC partitions of LAr: (a) legacy setup, (b) proposed replacement setup based on 

two ALTI modules. 

 

Bunch clock phases at the optical TTC output of both systems were aligned by configuring 

the PLL of the ALTI jitter cleaner. Then, relative comparison of two setups is possible, with the ORB 

signal from CTPOUT as a reference. Propagation delays from this reference signal to the Level-1 

Accept in the TTC stream waveform were measured. 

The waveforms from which the delays were measured are shown on Figure 7.2.2, Figure 7.2.3 

and Figure 7.2.4. Figure 7.2.2 and Figure 7.2.3 refer to the legacy system, without and with the 17ns 

L1A delay induced by the LTPI, respectively. For the ALTI-based system with the optimal clock 

phase chosen for L1A input synchronization, the measurement is shown on Figure 7.2.4. 

 

  

Figure 7.2.2. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 0ns: 59ns. 
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Figure 7.2.3. Level-1 Accept latency for the legacy LAr setup and LTPI delay = 17ns: 84ns. 

 

 

Figure 7.2.4. Level-1 Accept latency for the ALTI-based LAr setup and optimal input synchronization: 84ns. 

 

For the legacy TTC setup, the latency is either 59ns or 84ns (L1A jumps to the next bunch 

crossing), depending on the L1A delay that is used in the LTPI (0ns or 17ns, respectively). Latency 

of L1A for this setup could also be up to 1BC longer than this if a bigger L1A delay was used, since 

30ns is the maximum possible delay that the LTPI supports. 

For the ALTI-based setup, the latency is either 84ns or 109ns (L1A jumps to the next bunch 

crossing), depending on which clock phase is chosen to synchronize the incoming L1A signal. 

To conclude, the L1A latency can be the same (84ns) as for the legacy TTC modules using the 

settings in the experiment. Depending on the L1A signal phase, the delay could also be 1BC longer 

for the new system. 
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7.3. TTC stream and recovered clock jitter 

The level of jitter in the optical TTC stream that the ALTI introduces had to be addressed, in 

order to see if the receiver modules of the sub-detectors can cope with it. Comparison with the legacy 

TTCex-based setup was also made. On Figure 7.3.1, the two setups are shown. The first setup, shown 

on Figure 7.3.1 (a), measures the TTC stream jitter in a typical partition composed of LTP, TTCvi 

and TTCex. In the second setup, shown on Figure 7.3.1 (b), this legacy TTC partition is replaced by 

a single ALTI module. In fact, three different setups were compared, since ALTI-based setups with 

and without using the on-board jitter cleaner were tested. 

Both setups use a common bunch clock, one that has been injected through the BC LEMO 

input of an additional LTP module. The clock comes from the clock generator with a modulation 

input for adding jitter. The nominal value of the clock signal frequency is 40.079MHz, which is the 

standard LHC clock frequency. The modulation signal in the form of white noise is provided with a 

signal generator. Increasing the peak-to-peak voltage of the white noise generator has an effect of 

adding jitter to the bunch clock. 

For both setups, the optical TTC stream is sent to the TTCrq receiver mezzanine board [37]. 

This is a combination of TTCrx receiver and a Quartz-crystal based PLL (QPLL) [38] ASICs. The 

QPLL was designed for jitter cleaning applications in the LHC to accompany the TTCrx. 

The levels of jitter in the TTC stream and the bunch clock recovered from it by the TTCrq are 

then measured by the LeCroy oscilloscope and the Agilent Phase Noise Analyzer (PNA) [39]. 

 

 
(a) 

 
(b) 

Figure 7.3.1. Setups for the TTC stream jitter measurement where the optical transmitter module is: (a) TTCex, 

(b) ALTI. 

7.3.1. Oscilloscope measurements 

For measuring the jitter, the Time Interval Error (TIE) method of the digital LeCroy 

oscilloscope has been used. The TIE of a particular rising or falling edge is the deviation of that edge 

from its ideal position. The ideal signal is created based on the average estimate of the signal period. 

The measurements are accumulated by the oscilloscope and shown on its display overlaid on top of 

the signal waveform. This gives a Gaussian-shaped distribution histogram, with the mean value 

ideally equal to zero. Standard deviation of this distribution is a good measure of jitter and is 

expressed in pico-seconds. Usually, this metric is called the RMS jitter. The effect of adding white-

noise jitter is clearly shown on Figure 7.3.2: the histogram is more spread when there is more jitter, 

i.e. it has larger standard deviation or RMS jitter. 
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(a) 

 

 
(b) 

Figure 7.3.2. TTC stream RMS jitter oscilloscope measurements for ALTI setup without the jitter cleaner:       

(a) without added jitter, RMS jitter equals 21.9ps, (b) with added jitter, RMS jitter equals 35.4ps. 

 

The results of the oscilloscope measurements of the TTC stream jitter for various setups are 

shown in Table 7.3.1. Similarly, results for the jitter of the recovered clock are shown in Table 7.3.2. 

Please note that the TTC stream was idle (no triggers and commands were sent) for these 

measurements. 
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Table 7.3.1. TTC stream jitter for different setups (oscilloscope measurements). 

SETUP 
TTC STREAM RMS JITTER [PS] 

(WITHOUT ADDED JITTER) 

TTC STREAM RMS JITTER [PS] 

(WITH ADDED JITTER) 

TTCex 7.9 8 

ALTI, JC = OFF 21.9 35.4 

ALTI, JC = ON 16.7 16.7 

 

Table 7.3.2. Recovered clock jitter for different setups (oscilloscope measurements). 

SETUP 
RECOVERED CLOCK RMS JITTER [PS] 

(WITHOUT ADDED JITTER) 

RECOVERED CLOCK RMS JITTER [PS] 

(WITH ADDED JITTER) 

TTCex 8.1 8.1 

ALTI, JC = OFF 8.0 8.1 

ALTI, JC = ON 8.0 8.1 

 

Based on the measurements that were shown, we can draw several conclusions. First of all, 

the ALTI jitter cleaner removes all the added jitter. However, it cannot remove intrinsic jitter in the 

ALTI. On the other hand, TTCex also removes all the added jitter with its PLL, and this setup has a 

lower overall intrinsic jitter compared to ALTI. But, although the overall jitter level is higher in the 

ALTI setup compared to the TTCex setup, the TTCrq which contains the QPLL can handle these 

levels of jitter for both systems, as can be seen in the recovered clock jitter. From this point on, it was 

decided to keep sing the ALTI jitter cleaner. 

The TIE jitter measurements were also repeated on a non-idle TTC stream. Random patterns 

with the 100kHz L1-Accept rate and heavy B-channel activity (four asynchronous long commands 

following each L1-Accept) were used. However, it was observed that the A and B-channel activity 

does not affect the jitter of the TTC stream in the ALTI, nor in the TTCex. 

Another measurements was done for the ALTI TTC encoder driven from the same ALTI board 

using its pattern generation memory. The idea was to investigate if this increases the jitter. However, 

this does not have an effect on the jitter, either. 

7.3.2. Phase noise analyzer measurements 

Measuring the jitter with the oscilloscope can be very sensitive to the measurement settings. 

For example, if the time division is too small (waveform zoomed in too much), low-frequency jitter 

will not be included in the measurement, thus giving lower RMS jitter. A more accurate measurement 

of jitter was done with the Agilent PNA, which measures the frequency spectrum of the jitter. In 

addition, this tool also measures the RMS jitter by integrating the spectrum. 

The phase noise analyzer measures the "cleanliness" of the periodic, 50% duty cycle clock 

signal. In order to use the phase noise analyzer on the TTC stream, the L1A signal was set to be 

always active, which results in a TTC output bit pattern that corresponds to an 80MHz clock signal, 

as can be seen on Figure 2.2.1. 

From the oscilloscope measurements we have understood that the added jitter is successfully 

removed by TTCex PLL and the ALTI jitter cleaner. This was also confirmed by the PNA 

measurements. The results shown below ware obtained without adding the white-noise jitter. 

Common input clock was the internal oscillator in the LTP with the RMS jitter of 6.6ps. The results 

of the PNA measurements of TTC stream jitter for various setups are shown in Table 7.3.3. Similarly, 

results for the jitter of the recovered clock are shown in Table 7.3.4. 
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Table 7.3.3. TTC stream jitter for different setups (PNA measurements). 

SETUP 
TTC STREAM RMS JITTER [PS] 

(WITHOUT ADDED JITTER) 

TTCex 5.1 

ALTI, JC = OFF 24.0 

ALTI, JC = ON 19.6 

 

Table 7.3.4. Recovered clock jitter for different setups (PNA measurements). 

SETUP 
RECOVERED CLOCK RMS JITTER [PS] 

(WITHOUT ADDED JITTER) 

TTCex 5.7 

ALTI, JC = OFF 7.6 

ALTI, JC = ON 6.0 

 

The same conclusions follow as the ones obtained after the oscilloscope measurements, 

although the numbers are slightly different. To compare the TTC stream jitter spectrums of the three 

setups, please refer to Figure 7.3.3. On Figure 7.3.3 (a), ALTI without using the jitter cleaner is 

compared against TTCex. On Figure 7.3.3 (b), ALTI with the jitter cleaner is compared against 

TTCex. Similarly, jitter spectrums of the recovered clock are compared on Figure 7.3.4 (a) and Figure 

7.3.4 (b). 

By looking more closely on the ALTI jitter spectrums, one can clearly see a few spikes in the 

~30kHz to ~300kHz range. This could be related to the power supply noise on the ALTI, but certainly 

requires further investigation. The on-chip PLL settings might also provide a way to reduce the 

intrinsic ALTI jitter. So, there might be room for improvement on the ALTI intrinsic jitter by some 

modifications to the PCB, or the FPGA firmware. 
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(a) 

 

 
(b) 

Figure 7.3.3. TTC stream jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against TTCex 

(pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale). 
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(a) 

 

 
(b) 

Figure 7.3.4. Recovered clock jitter spectrum comparisons (a) ALTI without the jitter cleaner (bold) against 

TTCex (pale), (b) ALTI with the jitter cleaner (bold) against TTCex (pale). 
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8.  CONCLUSION 

The low-level software for the ALTI module has been developed. All its features are fully 

available to the users in the interactive menu program. The software is also available to the other 

L1CT colleagues who are using it in order to develop the run control applications for integration of 

the ALTI into the experiment. Besides the low level API, utilities in the form of test programs and 

scripts have been developed. These have been used for testing the ALTI functionalities like pattern 

generation, snapshot memory, TTC decoder, etc. An automated production testbench for the 

upcoming ALTI modules has also been developed. This testbench is used to test all input/output paths 

of the signals through the module, and thus can be used to identify soldering assembly issues. 

All of the devices and interfaces on the available prototype boards have been fully tested. That 

is, the tests have been performed on a total of seven ALTI prototype modules that have been fully-

assembled until August 2018. These module tests helped to find several design issues. The list of 

modifications to be done in the next series of pre-production ALTI modules has been noted and a 

new version of the schematics and the layout has been published for both the motherboard and the 

mezzanine board. 

Five out of seven modules have passed all the automated tests. On the other two modules, the 

automated tests have shown problems with particular TTC signal paths. These modules are currently 

being investigated, and the fact that the problematic lines have been pinpointed will certainly help to 

understand what the problems are. Some working modules were made available to colleagues in the 

L1CT team in order to perform additional tests and write the high-level run control software. The 

other modules that have passed the tests will be lent to the sub-detectors to perform the initial tests 

with the ALTI module in their setup. In particular, it is planned to have tests with the LAr test stand 

in September 2018. 

The performance measurements have shown how the ALTI module compares against the 

legacy TTC system. In particular, the Level-1 Accept latency in the LAr setup, using a daisy chain of 

two modules, is the same for the ALTI and the TTC legacy modules, if the L1A input synchronization 

has been chosen to be optimal. 

The jitter measurements have shown that the jitter cleaner in the ALTI can effectively remove 

the low-frequency jitter. This encouraged the use of the jitter cleaner in the firmware, which was 

initially put in the design as a safety measure. Also, from the jitter measurements it has been 

concluded that the TTC stream jitter is higher in the ALTI-based system compared to the legacy TTC-

ex based system. To be precise, the RMS jitter in the ALTI TTC stream is 19.6ps, compared to 5.1ps 

in the legacy system, using the same input clock with RMS jitter of 6.6ps. However, the tests with 

TTC receiver modules have shown that they can effectively remove the intrinsic ALTI jitter. The 

clock recovered from the TTC stream basically has the same RMS jitter in both setups: 6.0ps for the 

ALTI-based system, compared to 5.7ps for the legacy system. Nevertheless, the jitter measurements 

have shown the need to further investigate the ALTI design to see if the intrinsic jitter can be reduced. 

Another possible issue to be addressed in the future is the optical power requirements needed 

by the sub-detectors, since the ALTI SFP modules provide lower power than the TTCex lasers. 

Several SFP modules with the same pin-out and higher optical power have already been ordered and 

tested. Going forward, they could be used if the sub-detector tests show a need to increase the optical 

power. 
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