
Alto: Lightweight VMs using Virtualization-aware Managed
Runtimes

James Larisch, James Mickens, Eddie Kohler
Harvard University

jameslarisch,mickens@g.harvard.edu; kohler@seas.harvard.edu

ABSTRACT
Virtualization enables datacenter operators to safely run computa-
tions that belong to untrusted tenants. An ideal virtual machine has
three properties: a small memory footprint; strong isolation from
other VMs and the host OS; and the ability to maintain in-memory
state across client requests. Unfortunately, modern virtualization
technologies cannot provide all three properties at once. In this
paper, we explain why, and propose a new virtualization approach,
called Alto, that virtualizes at the layer of a managed runtime inter-
face. Through careful design of (1) the application-facing managed
interface and (2) the internal runtime architecture, Alto provides
VMs that are small, secure, and stateful. Conveniently, Alto also
simplifies VM operations like suspension, migration, and resump-
tion. We provide several details about the proposed design, and
discuss the remaining challenges that must be solved to fully realize
the Alto vision.

CCS CONCEPTS
• Security and privacy→ Virtualization and security; • Com-
puter systems organization→ Cloud computing;

KEYWORDS
Virtualization, memory management, minimal TCBs, datacenters
ACM Reference Format:
James Larisch, James Mickens, Eddie Kohler. 2018. Alto: Lightweight VMs
using Virtualization-aware Managed Runtimes. In 15th International Con-
ference on Managed Languages & Runtimes (ManLang’18), September 12–14,
2018, Linz, Austria. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3237009.3237022

1 INTRODUCTION
In cloud computing, tenants decompose their applications into
individual components like web servers, databases, and pub-
lish/subscribe queues. The datacenter operator provides a virtual
machine to each component, exposing a portion of the datacenter’s
underlying physical hardware to the VM. Ideally, datacenter VMs
should be stateful, lightweight, and strongly isolated. Stateful com-
putations allow applications to maintain in-memory data across
multiple requests, without requiring the data to be recreated for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6424-9/18/09.
https://doi.org/10.1145/3237009.3237022

each request, or pulled from the storage layer. Lightweight VMs
allow a datacenter operator to quickly and efficiently launch new
VMs, migrate old VMs across physical machines, and suspend VMs
to disk for later resurrection. Strongly-isolated computations give
confidence to both datacenter operators and datacenter tenants
that misbehaving VMs can only damage themselves.

Unfortunately, no model for datacenter virtualization satisfies
all three properties.

• Hardware-level virtualization (e.g, Xen [8]) provides strong
isolation and support for persistent in-memory state. How-
ever, VM sizes are large, making VM operations like snap-
shotting and migration expensive.

• OS-level containers (e.g., Docker [16]) substantially reduce
VM sizes while keeping support for persistent RAM state.
However, in exchange for lightweight, stateful computations,
isolation becomes worse—container partitions are enforced
by a constellation of security checks dispersed throughout
a complex kernel that is shared by multiple containers. A
related side effect of poor isolation is that container snapshot-
ting and resurrection involves fragile inspection of process
state that was not designed for efficient enumeration and
serialization.

• Stateless functions like Amazon Lambda [3] dramatically
reduce the developer effort needed to scale an application.
However, in exchange for lightweight computations, these
approaches sacrifice isolation; functions execute atop con-
tainers, and thus inherit the security problems associated
with OS-level virtualization. Lambda-style approaches also
sacrifice statefulness, which is required by many services (in
particular, those that have a notion of session state).

In this paper, we suggest a new approach: datacenters should virtu-
alize at the level of a carefully-designed managed runtime interface.
This interface, called Alto, is intentionally designed to provide state-
ful, lightweight, and strongly-isolated computations. All of the code
inside an Alto VM is written in a managed language which targets
the Alto managed API. Using memory allocation and garbage col-
lection which prioritizes contiguous allocation, Alto permits an
entire VM to be snapshotted or restored in a single memcpy().

Of course, a managed process may consist of more than just its
private RAM state—the process may reference external, possibly-
shared resources like the file system, or memory pages shared by
multiple processes. To simplify a process’s ability to detach from,
and reattach to, those resources, Alto’s managed runtime inter-
nally represents external resources as network-connected Alto VMs;
these VMs can themselves be suspended, resumed, and migrated.

Alto computations are stateful because they are expressed using
managed code whose RAM data is long-lived. Alto computations
are secure because the Alto managed interface is smaller than an
OS-level interface, and has simpler semantics. Alto computations

https://doi.org/10.1145/3237009.3237022
https://doi.org/10.1145/3237009.3237022
https://doi.org/10.1145/3237009.3237022


ManLang’18, September 12–14, 2018, Linz, Austria J. Larisch et al.

are lightweight because memory images are small, and because
single-memcpy() state capture makes snapshotting, migration, and
resumption efficient. The Alto project is in its early stage, but we
believe that a single physical machine can simultaneously run an
order of magnitude more Alto VMs than Xen VMs or Docker con-
tainers.

We also believe that Alto will enable fundamentally new kinds
of applications. For example, Alto makes it easier for companies
to scalably provide per-user VMs, even for very popular services
that have many users. Strongly-isolated, per-user VMs allow for
easier compliance with regulations (or user demands) for control
of datacenter-side state at the granularity of individual users [18].

2 BACKGROUND
In this section, we describe the advantages and disadvantages of
preexisting approaches for virtualization.

2.1 Heavyweight VMs
Traditionally, the virtualization layer has been defined at the hard-
ware level [1, 8, 34]. A virtual machine contains the code and data
for the application of interest; the virtual machine also contains the
code and data for the guest OS which directly interacts with the
application. A hypervisor runs directly atop the physical hardware,
mediating how the guest OS interacts with the physical hardware.
Since the hypervisor interposes on sensitive instructions that ma-
nipulate page tables and IO devices, the hypervisor can safely par-
tition a single set of physical resources into multiple sets of virtual
resources.

Traditional VMs provide strong isolation, and allow arbitrary ap-
plications to run atop arbitrary guest OSes. Unfortunately, VM snap-
shots are large (often hundreds of MBs), because those snapshots
must contain the RAM state for all processes in the virtual machine,
including the operating system; ideally, a VM snapshot would con-
tain precisely the set of RAM pages that belong to an application of
interest. Because traditional hypervisors virtualize at the hardware
layer, snapshots must also capture low-level device state which can
be tricky to properly serialize and restore [17, 25, 39, 43]. Resurrect-
ing a VM is slow, often taking multiple seconds, because snapshots
are large and require non-trivial time to read into memory. In the
context of VM migration, the synchronous overhead of snapshot
generation, transmission, and resumption can be partially masked
using a variety of techniques, e.g., by migrating snapshot state in
the background, as the source VM continues to operate [11, 14, 37].
Unfortunately, the large sizes of VM images, and the intricacies of
multiplexing physical hardware across multiple VMs, still restrict
the number of VMs that a physical host can run. For example, a
VMware ESXi hypervisor has a limit of 1024 VMs [46].

2.2 Lightweight Containers
Container systems virtualize at the OS level instead of the hardware
level. For example, a process in a Docker container [16] interacts
with the outside world using the standard Linux system call inter-
face; however, the Linux kernel internally uses namespaces [26]
and cgroups [9] to restrict the process’s view of sensitive resources
like PIDs, the file system, and network interfaces. All processes in
a container are given the same restricted view.

Since a Docker container is essentially just a set of Linux pro-
cesses, Docker implements container snapshotting via CRIU [13],
a standalone tool for capturing the state of a Linux process. CRIU
uses the /proc file system and the ptrace() system call to gather
the necessary checkpoint state for a set of processes. At restore
time, CRIU uses fork() to recreate the appropriate process trees.
Then, CRIU maps the necessary code and heap pages into the
newly-created address spaces. Finally, CRIU performs a variety of
fix-ups to re-bind() sockets, chdir() threads into the appropriate
directories, reset timers, and so on.

Containers have much smaller snapshots than VMs; unlike a VM
snapshot, a container snapshot does not include state for a guest
OS. However, container frameworks have two security problems:

• The lack of a per-container guest OS means that containers
which run on a single physical host share the same host
OS. This arrangement leads to fate-sharing—if one container
manages to corrupt the host OS, then all containers are at
risk [27, 44].

• An OS interface like POSIX is wide and complex. To im-
plement container-based isolation, security checks must be
sprinkled across a large number of code paths in the ker-
nel. The result is that the container “security monitor” is
decentralized, and must defend a large threat surface.

Containers have low portability, since a container which targets
(say) the Linux interface either cannot run on a Windows machine,
or must execute atop complex, slow middleware for system call em-
ulation [2]. Container operations like snapshotting and resumption
are faster than the equivalent VM operations, but are still tricky
to get right, since OS-level process abstractions were not designed
with virtualization in mind. So, tools like CRIU must engage in
a variety of low-level skulduggery (e.g., involving ptrace()) to
identify container state, properly snapshot it, and restore it later.
This complexity hurts the efficiency of snapshot and resumption.

2.3 Stateless Functions
Web services have traditionally used long-lived datacenter compu-
tations that run inside of VMs or containers. In contrast, Amazon
Lambda [3] structures server-side code as a group of short-running
functions. Each function is triggered by an event (e.g., the recep-
tion of an HTTP request, or the mutation of a storage value in
S3). Lambda functions maintain no RAM state between invoca-
tions, so functions can only modify application state by writing
to persistent network-attached storage. Each function is executed
within a container that the datacenter may or may not discard be-
tween invocations of the function.1 Besides Lambda, other examples
of stateless, event-driven architectures include OpenLambda [21],
OpenWhisk [4], and Google Cloud Functions [20].

For simpler applications, or those with less stringent perfor-
mance requirements, a stateless architecture has a variety of bene-
fits. From the perspective of application developers, writing code
is simpler. For example, with persistent storage as the first and
only repository for canonical application state, many of the con-
sistency problems incurred by traditional VM-based designs are

1In addition to writing to network-attached local storage, a function can write to the
local /tmp directory. However, the contents of the directory will be lost if the function’s
old container is destroyed between function invocations [47].



Alto: Lightweight VMs using Virtualization-aware Managed Runtimes ManLang’18, September 12–14, 2018, Linz, Austria

obviated—there is no need to synchronize the RAM state of multiple
application processes. A stateless architecture also makes scaling
easier; since functions are cheap to launch and short-running, the
datacenter operator can automatically launch the requisite number
on-demand, without requiring developers to reason about how to
provision heavyweight VMs. Since stateless functions require less
RAM and less CPU than long-lived VMs, datacenter operators can
sell stateless functions at lower prices than VMs.

Despite these advantages, stateless functions are a poor fit for
many kinds of applications. For example:

• Stateless functions are unable to cache database query results
across function invocations. Thus, server-side performance
will suffer if client requests exhibit locality.

• If applications are session-oriented, then the lack of long-
lived RAM state hurts performance. For example, consider a
smartphone app for ride sharing. Without the ability to bind
a particular client’s requests to a long-lived server compu-
tation, each request will invoke a separate ephemeral func-
tion; that function must repeatedly fetch session state from
persistent storage, rebuild the appropriate in-memory data
structures for the session, and then write the updated state
to persistent storage when the function terminates.

• The start-up latencies for a stateless function can be high
if the datacenter has discarded the last container that the
function used [47, 49]. Unpredictable start-up times make it
hard for application developers to predict user-perceived ap-
plication latencies. In contrast, long-lived VMs or containers
can persist important data in RAM, offering faster response
times.

Datacenters use containers to execute functions [21, 47]. As a result,
platforms like Lambda inherit the security issues that are shared
by all container-based systems.

2.4 Unikernels
A unikernel [31–33] is a single-purpose executable that is optimized
for small memory footprints and high performance. The function-
ality of a traditional OS is split into a set of libraries; application
code is compiled, and then linked with the appropriate subset of
libraries, to create the final unikernel. The resulting VM has a single
address space, and no distinction between privileged and unprivi-
leged code, although language-level isolation can be provided if all
code is written in a strongly-typed language like OCaml [32].

Unikernels explicitly eschew backwards compatibility with
legacy code and traditional programming environments like POSIX.
Many unikernels also target limited types of applications; for exam-
ple, ClickOS [33] only targets code that runs on middleboxes, with
the only supported IO being to the network. A unikernel applica-
tion that requires more functionality also requires more libraries,
leading to a large OS footprint and recapitulating the problems of
other virtualization schemes. This makes unikernels a good fit for
low-level applications, such as packet forwarding, but less good
for applications that use a wide range of conventional OS func-
tionality, such as many of our target applications. Alto’s goal is to
support general-purpose computation, with traditional process iso-
lation via address spaces. Alto willingly trades some computational
performance to achieve this goal.

Application-specific managed code

Language-specific runtime API

(e.g., Python, Go, Java)

Language-specific Alto bindings

High-density

memory allocator and

garbage collector

User-level

file system

User-level 

network 

stack

Non-blocking IO

and epoll()

Native threading 

and synchronization

(optional)

Host kernel/hypervisor

Host syscall interface

Core Alto runtime

Language-specific

Alto compatibility 

layer

Figure 1: Our preliminary design for Alto. Applications (i.e.,
virtual machines) are written using standard managed lan-
guages, but Alto’s custom runtime ensures that VMs are
small, and that VM snapshotting, migration, and resump-
tion are fast.

3 ALTO: DESIGN CHALLENGES
Alto’s goal is to provide VMs that are small, efficient to manage,
and yet powerful enough to support complex applications. To
realize this vision, Alto must solve a variety of design challenges.
In this section, we describe some of these challenges, and propose
some initial solutions. Figure 1 provides a high-level overview of
the Alto design that we discuss below.

Challenge 1: What managed runtime features are most
important to enable compact VMs? The most obvious desider-
ata are a memory allocator and a garbage collector that prioritize
high-density liveness. High-density liveness means that, at any
given moment, the active parts of VM memory (e.g., the memory
belonging to live stack frames and heap objects) are located in a
contiguous memory region that has minimal internal fragmenta-
tion. High-density liveness enables single-memcpy() snapshotting
and resurrection of application-visible managed state.

There is a tension between the density of live objects, and the
runtime overhead which is needed to achieve that density. For ex-
ample, high density is trivially achieved by running the garbage
collector frequently, and aggressively compacting the live objects.
Unfortunately, garbage collection is pure overhead from the per-
spective of application-level code. This naïve approach is conse-
quently unattractive, even if long-lived objects are checked for
liveness less frequently, as in a generational garbage collector.

Figure 2 shows that if a traditional managed runtime does not
aggressively compact, high-density memory liveness will not occur.
If compaction is deferred until immediately before a snapshot
is taken, as done by some Smalltalk runtimes [41], then on-disk
snapshots will be small; however, Alto also requires high-density
in-memory heaps.

Proposed solution: Site-specific memory management.
Alto will use trace-based custom allocators for hot paths to handle
memory management. Much like traditional just-in-time compilers
emit native code for a frequently-executed computational path, a
trace-based custom allocator would use dynamic memory profiling
to guarantee high-density liveness for the objects allocated by a
particular hot path. Prior work has already shown that dynamic
profiling of objects created by a particular allocation site can guide
the decision to have that site immediately allocate objects from the



ManLang’18, September 12–14, 2018, Linz, Austria J. Larisch et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gc_mb1 nbody3 fiber_ring2 lucas_lehmer0 gc_array4

Benchmark

P
er

ce
nt

ag
e 

of
 g

ap
s 

in
 b

et
w

ee
n 

liv
e 

ob
je

ct
s

Gap size
zero

one

more

(a) Ruby’s allocator defines a “page” as a 16 KB block of contiguous
memory. Inside a page, Ruby allocates a 40 byte slot to each Ruby-
level object, representing the object as a tagged union. Ruby’s
garbage collector does not perform compaction, so inside a page,
some slots may lie unused at any given time. These bytes repre-
sent wasted space if copied to storage during a snapshot operation,
or transferred over the network during a VM migration; in the ex-
treme, a page might only contain dead objects. The graph above
shows that, within a page that has at least one live object, slot uti-
lization is often high, but not always. The graph depicts results for
five representative benchmarks, each of which was run five times.
For example, pages in the gc_mb1 benchmark enjoy 100% slot uti-
lization; in contrast, a gc_array4 page has a 32% chance that the
gap between two live objects is at least one slot.

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60%

Empty heap pages (out of total allocated)

B
en

ch
m

ar
k 

ex
ec

ut
io

ns

(b) We ran each of the 65 benchmarks five times; at the end of each
trial, we measured the fraction of pages with no live objects. The
graph above shows a CDF of the fraction across all trials. Although
75% of trials ended with fewer than 10% dead pages, a tenth of the
executions left at least 17% dead pages, and 5% of executions left at
least 24% dead pages. This kind of long-tail behavior is undesirable.
Modern web services often handle a single high-level request by
spawning tens or hundreds of subtasks, with the overall response
time determined by the slowest individual subtask [15, 23, 48]; ide-
ally, Alto could avoid a long-tail in dead memory pages to avoid
long-tail latencies for VM management operations.

Figure 2: Memory density in Ruby v2.5.1 (which uses a non-
compacting garbage collector). Workloads came from the
Ruby Benchmark Suite [10]. All experiments in this paper
ran on an 2.8 GHz eight-core machine with 16 GB of RAM.

old generation memory pool [12]. We believe that, using similar
instrumentation, the Alto runtime can optimize memory allocation
patterns across all of the sites in a hot path, ensuring high-density
liveness when the path has finished execution.

Proposed solution: Mingle stack pages and heap pages.
Alto can also benefit from a unified allocator for heap objects
and thread stacks; by interleaving stack frames with heap objects,
density will improve. Inside an Alto VM, each thread will use a
segmented stack which grows and shrinks on demand, e.g., in 2 KB
increments. Thus, each function call is a potential allocation site,
and each function return is a potential deallocation site.

Segmented stacks enable a single process to contain many
threads. This property is useful for a managed runtime that
targets server-side code. However, Go’s experience with seg-
mented stacks [35] indicates that the approach requires careful
design—without runtime tuning of allocation decisions, a thread
may repeatedly increase and then decrease its stack size, e.g., in
response to a function being called in a loop. Using trace-based
custom allocators, we hope to avoid such problems. For example,
to handle T threads which exhibit the top-of-stack “flapping”
mentioned above, Alto can allocate the T top-of-stack areas from a
pool of P < T regions; by empirically observing the best value for
P , Alto can maximize the likelihood that all P regions are live at
any given moment.

Challenge 2: How should VM state be represented? At
a high level, a process (managed or otherwise) has two kinds of
state: tightly-bound state and loosely-bound state. Tightly-bound
state corresponds to private state that is not shared with other
processes. Examples of such private state include executable code
pages, static data pages, heap pages, open file descriptors, and
TCP connection state. Loosely-bound state may be shared by
other processes, and is supervised with the help of the operating
system. Examples of loosely-bound state include the file system,
shared memory pages, pipes, and graphics buffers. A single Alto
application will possess both tightly-bound and loosely-bound
state. How should the Alto runtime represent this state?

Proposed solution: User-level management of traditionally
in-kernel state. In a traditional Linux process, state involving IO
management is scattered across kernel memory and user memory.
For example,

• Cached file data may reside in the kernel-level buffer cache,
as well as user-level buffers managed by libc. The kernel also
stores file descriptor metadata like the current seek position.

• For each TCP connection, the kernel maintains send and
receive queues. The kernel also tracks statistics related to
congestion control. User-level code often maintains addi-
tional buffers to pre-process data to send, or post-process
data that has been received.

To simplify VM operations like snapshotting, Alto will hoist as
much kernel state as possible into the VM itself. For example, us-
ing DPDK [30], an Alto VM can implement a user-level network-
ing stack, allowing packet processing to completely bypass the



Alto: Lightweight VMs using Virtualization-aware Managed Runtimes ManLang’18, September 12–14, 2018, Linz, Austria

kernel [24, 29]. Alto can also leverage FUSE [19] to implement
user-space file systems.

A key research challenge is ensuring that these user-level
subsystems have high-density memory liveness. File systems often
use slab allocators, and DPDK requires hugepage allocations. Both
approaches can lead to internal fragmentation.

Proposed solution: Sharing state by sharing VMs. Alto
will place shareable state inside of a VM, such that state sharing
leverages Alto’s preexisting mechanisms for cross-VM commu-
nication. In the most radical decomposition, the contents of a
single traditional Unix process would be split across multiple
VMs. For example, consider a simple echo server which receives a
message over TCP, logs the message to a file, and then echoes the
message over the TCP connection. Alto could define one VM for
the application’s code, and a separate VM for the application’s heap
data, and another VM to store the application’s network state, and
yet another VM for the file system. Each VM would communicate
via a publish/subscribe mechanism, somewhat reminiscent of the
communication between a microkernel’s servers.

This approach has several advantages. Explicitly representing
each piece of state as an addressable server makes state enumera-
tion and state serialization easier. These benefits are particularly
noticeable for multi-component applications like an N-tier web
service. For example, migrating all or part of the distributed ap-
plication can be accomplished by enumerating the individual Alto
VMs in the application, and then migrating the appropriate ones.
Aggressive decomposition into multiple VMs also facilitates the
independent modification of a subset of VMs. For example, hot
updating of code has traditionally been a complex endeavor [6, 36];
clean separation of a program’s code, stack, and heap can make
dynamic updates easier.

Even if developers colocate heap, stack, and code pages inside of
a single VM, the fact that each type of content is explicitly nameable
and enumerable will assist with VM suspension, snapshotting, and
resurrection. Alto wants to avoid the complex, fragile incantations
that CRIU must invoke to discover application state. In principle,
host OSes could be modified to support a single system call that,
when invoked, would read or write all of the information that
CRIU currently manipulates via ptrace() and /proc. However,
the hypothesized system call would over-approximate the amount
of state in an Alto VM—only the Alto runtime would know (for
example) which allocated heap pages are actually live. Further-
more, information at the granularity of ptrace() and /proc is
insufficiently expressive to perform ensemble manipulations of a
multi-VM program like an N-tier web server.

Challenge 3: How should Alto VMs be addressed? As
described above, Alto allows the stack, heap, and code of a single
Alto-level process to be colocated in the same VM, or distributed
across several VMs. We refer to the Alto-level process as a logical
VM; the one or more underlying VMs are the concrete VMs.
How should logical VMs and concrete VMs be named and made
discoverable?

Proposed solution: High-level Alto namespaces backed
by IP addressing. Alto will assign an IP address to each logical
VM. The associated concrete VMs will reside in an Alto-managed

Virtual OS interface

Real OS interface

Container security monitor

N

N

Managed interface

Real OS interface

Managed security monitor

Q

R

Figure 3: The left side represents a container technology like
Docker. The right side represents Alto. Alto’s threat surface
should be smaller if Q < N , and/or R < N .

namespace, with each concrete VM exporting descriptive metadata
using OpenAPI [38], a format for describing RESTful services.
Ensembles of logical VMs (e.g., in a multi-tier web service)
will communicate with each other using publish/subscribe
channels [5, 40].

Challenge 4: How does Alto minimize the threat sur-
face exposed by the managed interface, while still allowing
rich applications to run atop that interface? Alto does not
directly expose the wide, difficult-to-secure POSIX interface
to application code. However, Alto’s managed runtime must
ultimately issue host-level system calls. Thus, there is a tension
between the expressiveness of Alto’s managed API, and the
security of that interface. Figure 3 provides a visual intuition for the
dilemma. In a standard container system, there is essentially a 1-1
mapping between the virtual OS interface exposed to containers,
and the real OS interface which implements the virtual one. This
1-1 mapping implies that the threat surface for the container
interface is the entire OS interface. In contrast, the Alto managed
runtime can be selective about which host resources to expose;
the runtime can also be judicious about defining higher-level
abstractions for those resources. Intuitively, Alto’s threat surface is
smaller than that of the host OS if (1) the managed runtime only
uses a subset of the full system call interface, and/or (2) Alto’s
higher-level interface is more amenable to security monitoring
than the host’s low-level system call interface. How can we
guarantee conditions (1) and/or (2)?

Proposed solution: Decrease the number of host OS
code paths that must be trusted. By leveraging user-level
code to handle the bulk of IO processing, an Alto VM reduces
its dependence on the correctness of the host OS. For example,
pulling the network stack into user-mode eliminates reliance on
the kernel’s network infrastructure. Similarly, a FUSE file system
that directly interacts with a block device can avoid many kernel
paths involving VFS and the host’s native file system.

Alto can also decrease the number of trusted kernel paths by
preventing VMs from triggering certain system calls. Consider
system calls like ptrace(), clone(), and ioctl(). These system
calls are powerful, with the ability to create, destroy, or tamper with
process state and device state. These system calls also have complex
parameters, whichmeans that these system calls have an abundance
of corner cases in which security vulnerabilities may hide. For
example, Linux defines 635 ioctl() operation codes; however,
only 52 of them are commonly used [45]. Ideally, the Alto managed
runtime would export an interface that is expressive, but whose



ManLang’18, September 12–14, 2018, Linz, Austria J. Larisch et al.

implementation only requires commonly-used system call paths
that are likely to be heavily audited (and thus more secure [28]).
Identifying that set of paths is a core research challenge. Earlier
work has identified subsets of system calls that are rarely needed [7,
45]. However, earlier work has not identified a set of system calls
that is expressive enough to create a reasonable managed interface,
and also likely to be secure. Part of Alto’s research contribution will
be to identify such a subset.

Determining the minimal syscall interface needed to support
a security-conscious managed runtime is related to, but different
than, prior investigations of minimal interfaces for supporting full
POSIX/Win32 semantics [22, 42]. Ultimately, our investigation may
reveal that Alto VMs should run atop a custom Alto hypervisor
that does not implement full POSIX/Win32 semantics, and only
strives to support Alto VMs.

Challenge 5: Can Alto support hundreds of thousands
of VMs per host? Assuming that Alto is successful in producing
very small VMs, memory pressure on the host will not be the
fundamental barrier to running many simultaneous VMs. Instead,
the difficulties will involve scheduling and IO efficiency. Both
difficulties relate to the manner in which the Alto runtime
multiplexes VMs atop OS-level resources. For example, if Alto maps
each VM to an OS-level process, then the scheduling problem is
entirely an OS problem. Alternatively, Alto could employ multiple
user-level threads inside a single OS-level process, with each
thread running a separate event loop for a different VM from
the same tenant. Regardless, the Alto runtime will have to use a
system call like epoll() to watch for activity on a large number
of file descriptors. At Alto’s target load of hundreds of thousands
of simultaneous VMs, the performance bottleneck may become
epoll() itself (or another part of the kernel’s IO subsystem).
Empirical work is needed to identify such bottlenecks, and propose
kernel-level solutions if necessary.

4 CONCLUSION
In this paper, we propose Alto, a new virtualization technique for
datacenter operators. Alto’s goal is to provide VMs that are small,
secure, and strongly isolated. To achieve this goal, Alto’s high-level
approach is to virtualize at the managed runtime layer instead of the
hardware level like Xen, or the POSIX layer like Docker. To enable
memory-compact VMs, Alto will use trace-driven, site-specific allo-
cators, and garbage collectors that prize high-density liveness. To
support efficient snapshotting, migration, and resumption of VMs,
Alto will hoist core system state, traditionally scattered across ker-
nel memory and user memory, wholly into user memory; Alto will
also make each piece of high-level VM state explicitly enumerable
and addressable, allowing datacenter operators to easily migrate
or patch an individual VM or a group of related VMs. To improve
security, Alto will identify a minimal number of host-level system
calls which must be trusted to implement the richer Alto runtime
that is exposed to VMs. Various research challenges remain to be
solved, but if Alto is successful, it will allow datacenter operators
to efficiently and securely execute hundreds of thousands of VMs
on a single physical machine.

REFERENCES
[1] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam. 2010. The Evolution

of an x86 Virtual Machine Monitor. SIGOPS Operating Systems Review 44, 4
(December 2010), 3–18.

[2] F. Akita. 2017. Windows Subsystem For Linux Is Good, But Not Enough Yet.
(September 20, 2017). Akita On Rails Blog. http://www.akitaonrails.com/2017/
09/20/windows-subsystem-for-linux-is-good-but-not-enough-yet.

[3] Amazon. 2017. AWS Lambda. (2017). https://aws.amazon.com/lambda/.
[4] Apache Software Foundation. 2017. Apache OpenWhisk. (2017). https://

openwhisk.apache.org/.
[5] Apache Software Foundation. 2018. Kafka: A Distributed Streaming Platform.

(2018). https://kafka.apache.org/.
[6] J. Arnold andM. F. Kaashoek. 2009. Ksplice: Automatic Rebootless Kernel Updates.

In Proceedings of EuroSys.
[7] V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropoulos, and J. Nieh. 2016. POSIX

Abstractions in Modern Operating Systems: The Old, the New, and the Missing.
In Proceedings of EuroSys.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield. 2003. Xen and the Art of Virtualization. In Proceedings of
SOSP.

[9] N. Brown. 2014. Control Groups Series. (July 7, 2014). Linux Weekly News.
https://lwn.net/Articles/604609/.

[10] A. Cangiano. 2013. ruby-benchmark-suite: A set of Ruby benchmarks for
testing Ruby implementations. (2013). https://github.com/acangiano/
ruby-benchmark-suite.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A.
Warfield. 2005. Live Migration of Virtual Machines. In Proceedings of NSDI.

[12] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. 2015. Memento Mori: Dynamic
Allocation-Site-Based Optimizations. In Proceedings of ACM ISMM.

[13] CRIU. 2017. Checkpoint/Restore Tool. (October 22 2017). https://github.com/
checkpoint-restore/criu.

[14] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. 2008.
Remus: High Availability via Asynchronous Virtual Machine Replication. In
Proceedings of NSDI.

[15] J. Dean and L. Barraso. 2013. The Tail at Scale. Commun. ACM 56, 2 (February
2013).

[16] Docker. 2017. Docker Overview. (2017). https://docs.docker.com/engine/
docker-overview/.

[17] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. 2012. High performance
network virtualization with SR-IOV. Parallel and Distributed Computing 72, 11
(November 2012), 1471–1480.

[18] EU Parliament. 2017. GDPR Portal. (2017). http://www.eugdpr.org/eugdpr.org.
html.

[19] FUSE. 2018. Reference implementation of the Linux FUSE (Filesystem in
Userspace) interface. (2018). https://github.com/libfuse/libfuse.

[20] Google. 2017. Cloud Functions: A serverless environment to build and connect
cloud services. (2017). https://cloud.google.com/functions/.

[21] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. 2016. Serverless Computation with OpenLambda. In
Proceedings of HotCloud.

[22] J. Howell, B. Parno, and J. R. Douceur. 2013. Embassies: Radically Refactoring
the Web. In Proceedings of NSDI.

[23] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. 2013.
Speeding up Distributed Request-Response Workflows. In Proceedings of SIG-
COMM.

[24] EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-
level TCP Stack for Multicore Systems. In Proc. 11th USENIX NSDI.

[25] A. Kadav and M. Swift. 2009. Live Migration of Direct-access Devices. SIGOPS
Operating Systems Review 43, 3 (July 2009), 95–104.

[26] M. Kerrisk. 2013. Namespaces in Operation, Part 1: Namespaces Overview.
(January 4, 2013). Linux Weekly News. https://lwn.net/Articles/531114/.

[27] G. Lawrence. 2016. Dirty COW (CVE-2016-5195): Docker Container Escape.
(October 26, 2016). Paranoid Software Blog. https://blog.paranoidsoftware.com/
dirty-cow-cve-2016-5195-docker-container-escape/.

[28] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos. 2017. Lock-in-Pop: Securing Priv-
ileged Operating System Kernels by Keeping on the Beaten Path. In Proceedings
of USENIX ATC.

[29] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. 2014. MICA: A Holistic
Approach to Fast In-Memory Key-Value Storage. In Proceedings of NSDI.

[30] Linux Foundation. 2018. Data Plane Development Kit (DPDK). (2018). http:
//dpdk.org/.

[31] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. Scott, R.
Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft, and I. Leslie. 2015. Jitsu:
Just-In-Time Summoning of Unikernels. In Proceedings of NSDI.

[32] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S.
Smith, S. Hand, and J. Crowcroft. 2013. Unikernels: Library Operating Systems

http://www.akitaonrails.com/2017/09/20/windows-subsystem-for-linux-is-good-but-not-enough-yet
http://www.akitaonrails.com/2017/09/20/windows-subsystem-for-linux-is-good-but-not-enough-yet
https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://kafka.apache.org/
https://lwn.net/Articles/604609/
https://github.com/acangiano/ruby-benchmark-suite
https://github.com/acangiano/ruby-benchmark-suite
https://github.com/checkpoint-restore/criu
https://github.com/checkpoint-restore/criu
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
http://www.eugdpr.org/eugdpr.org.html
http://www.eugdpr.org/eugdpr.org.html
https://github.com/libfuse/libfuse
https://cloud.google.com/functions/
https://lwn.net/Articles/531114/
https://blog.paranoidsoftware.com/dirty-cow-cve-2016-5195-docker-container-escape/
https://blog.paranoidsoftware.com/dirty-cow-cve-2016-5195-docker-container-escape/
http://dpdk.org/
http://dpdk.org/


Alto: Lightweight VMs using Virtualization-aware Managed Runtimes ManLang’18, September 12–14, 2018, Linz, Austria

for the Cloud. In Proceedings of ASPLOS.
[33] J. Martins, M. Ahmed, C. Raiciu, and F. Huici. 2013. Enabling Fast, Dynamic

Network Processing with ClickOS. In Proceedings of HotSDN.
[34] Microsoft. 2017. Hyper-V Architecture. (2017). https://msdn.microsoft.com/

en-us/library/cc768520(v=bts.10).aspx.
[35] D. Morsing. 2014. How Stacks are Handled in Go. (September 15, 2014). Cloud-

Flare. https://blog.cloudflare.com/how-stacks-are-handled-in-go/.
[36] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. 2008. Contextual Effects for

Version-Consistent Dynamic Software Updating and Safe Concurrent Program-
ming. In Proceedings of POPL.

[37] M. Nelson, B.-H. Lim, and G. Hutchins. 2005. Fast Transparent Migration for
Virtual Machines. In Proceedings of USENIX ATC.

[38] OpenAPI Initiative. 2018. OpenAPI Specification Repository. (2018). https:
//github.com/OAI/OpenAPI-Specification.

[39] Z. Pan, Y. Dong, Y. Chen, L. Zhang, and Z. Zhang. 2012. CompSC: Live Migration
with Pass-through Devices. In Proceedings of VEE.

[40] Pivotal. 2018. RabbitMQ: Messaging That Just Works. (2018). https://www.
rabbitmq.com/.

[41] G. Polito, S. Ducasse, L. Fabresse, and N. Bouraqadi. 2013. Virtual Smalltalk
Images: Model and Applications. In Proceedings of the International Smalltalk
Conference.

[42] D. E. Porter, S. Boyd-Wickizer, J.Howell, R. Olinsky, and G. C. Hunt. 2011. Re-
thinking the Library OS from the Top Down. In Proceedings of ASPLOS.

[43] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt. 2008. Bridging the Gap
between Software and Hardware Techniques for I/O Virtualization. In Proceedings
of USENIX ATC.

[44] D. Shapira. 2017. Escaping Docker container using waitid(): CVE-2017-5123.
(December 27, 2017). Twistlock. https://www.twistlock.com/2017/12/27/
escaping-docker-container-using-waitid-cve-2017-5123/.

[45] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter. 2016. A Study of Modern Linux
API Usage and Compatibility: What to Support When YouâĂŹre Supporting. In
Proceedings of EuroSys.

[46] VMware. 2017. Configuration Maximums: vSphere 6.0. (2017). https://www.
vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf.

[47] T. Wagner. 2014. Understanding Container Reuse in AWS Lambda. (Decem-
ber 31, 2014). AWS Compute Blog. https://aws.amazon.com/blogs/compute/
container-reuse-in-lambda/.

[48] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. 2013. Bobtail: Avoiding Long Tails
in the Cloud. In Proceedings of NSDI.

[49] A. Yigal. 2017. Should You Go “Serverless”? The Pros and Cons. (January 2, 2017).
https://devops.com/go-serverless-pros-cons/.

https://msdn.microsoft.com/en-us/library/cc768520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/cc768520(v=bts.10).aspx
https://blog.cloudflare.com/how-stacks-are-handled-in-go/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.twistlock.com/2017/12/27/escaping-docker-container-using-waitid-cve-2017-5123/
https://www.twistlock.com/2017/12/27/escaping-docker-container-using-waitid-cve-2017-5123/
https://www.vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf
https://www.vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.pdf
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://devops.com/go-serverless-pros-cons/

	Abstract
	1 Introduction
	2 Background
	2.1 Heavyweight VMs
	2.2 Lightweight Containers
	2.3 Stateless Functions
	2.4 Unikernels

	3 Alto: Design Challenges
	4 Conclusion
	References

