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ABSTRACT 

In recent years, the aluminum powder industry has expanded into non-aerospace 

applications. However, the alumina and aluminum hydroxide in the surface oxide film on 

aluminum powder require high cost powder processing routes. A driving force for this 

resezirch is to broaden the knowledge base about aluminum powder metallurgy to provide 

ideas for fabricating low cost aluminum powder components. The objective of this 

dissertation is to explore the hypothesis that there is a strong linkage between gas atomization 

processing conditions, as-atomized aluminum powder characteristics, and the consolidation 

methodology required to make components from aluminum powder. 

The hypothesis was tested with pure aluminum powders produced by commercial air 

atomization, commercial inert gas atomization, and gas atomization reaction synthesis 

(GARS). The conmiercial atomization methods are bench marks of current aluminum 

powder technology. The GARS process is a laboratory scale inert gas atomization facility. 

A benefit of using pure aluminum powders is an unambiguous interpretation of the results 

without considering the effects of alloy elements. 

A comparison of the GARS aluminum powders with the commercial aluminum 

powders showed the former to exhibit superior powder characteristics. The powders were 

compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, 

and oxide film thickness. Minimum explosive concentration measurements assessed the 

dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization 

processing conditions. The GARS aluminum powders were exposed to different relative 

humidity levels, demonstrating the effect of atmospheric conditions on post-atomization 

oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different 

temperatures revealed the effect of reactive alloy elements on post-atomization powder 

oxidation. 
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The pure aluminum powders were consolidated by two different routes, a 

conventional consolidation process for fabricating aerospace components with aluminum 

powder and a proposed alternative. The consolidation procedures were compared by 

evaluating the consolidated microstructures and the corresponding mechanical properties. A 

low temperature solid state sintering experiment demonstrated that tap densified GARS 

aluminum powders can form sintering necks between contacting powder particles, unlike the 

total resistance to sintering of commercial air atomization aluminum powder. 
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CHAPTER 1. INTRODUCTION 

Powder metallurgy (P/M) has become important processing method for producing 

metals parts, because of its high efficiency in moderate to high volume production of net or 

near-net shapes. Additional advantages of P/M include uniform properties: fine grain 

structures, and chemical homogeneity. Current consumer products have an increasing 

number of P/M components and are found in automotive, aerospace, and non-vehicular 

applications. In automotive applications, ferrous-based P/M parts predominate over all other 

available P/M materials. However, non-ferrous P/M components are replacing ferrous 

components for a number of reasons, for example: weight reduction, equal or superior 

strength to weight ratios, and potential reduction of production costs. 

The United States govemment regulations have compelled automobile manufacturers 

to improve fuel efficiencies and reduce emissions. To help meet these regulations, the 

automotive manufactures are exploring the use of powdered aluminum alloys and powdered 

aluminum metal matrix composites as substitutes for some incumbent ferrous materials in 

drive train components. The intrinsic properties of aluminum, for example, density and 

melting temperature, offer attractive incentives for weight reduction and lower metal working 

temperatures, which translates to lower cost. However, the automotive makers are hesitant to 

be solely dependent on aluminum P/M processing. For instance, in order for aluminum P/M 

parts to be practical for use in automobile drive train components, adequate mechanical 

properties, e.g., fatigue properties, are necessary. Another major issue reducing current costs 

of aluminum powder production and consolidation. 

Since the early 1960's, aluminum P/M processing includes aluminum powder 

production by gas (air) atomization and powder consolidation into billets for extruding, 

forging, or rolling into plate or sheet [1]. A major problem with the consolidation of the 

aluminum powder, particularly during pressing and sintering operations, was due to the 
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obtrusive and intrinsic oxide film on aluminum powder particle surfaces. In the early to mid-

1980's, when high-strength aluminum P/M alloys were consolidated into aerospace 

components, changes transpired in gas atomization practices to reduce oxide film thicknesses 

on aluminum powders. Inert gas atomization was deemed an alternate method to air 

atomization and successfully reduced surface oxide film thicknesses. 

Today, in addition to aerospace uses, aluminum P/M has the opportunity to penetrate 

broadly into high volume production of automotive components. To enhance the viability of 

the aluminum powder production and consolidation technologies, the process needs further 

refinement to reduce manufacturing costs. An investment of time and money should lead to 

improvements of the current aluminum P/M technology. The expected outcome of these 

advances would be improvements in the quality of P/M components and reduction of 

manufacturing costs. 

To facilitate the necessary research, consortia and conferences provide a forum 

whereby technical information can be exchanged between the powder producers, part 

manufactures, and the automotive industry. Throughout my research, personal active 

involvement within the United States Automotive Manufacturers Partnership (USAMP) 

consortium and powder metallurgy conferences have facilitated the opportunity to present 

various aspects of the aluminum P/M research presented in this dissertation. 

A literature survey of aluminum P/M shows that many researchers have explored 

aluminum alloy powder production practices, aluminum alloy powder characteristics, and 

aluminum alloy powder consolidation methods. However, there is significantly less 

information available about pure aluminum powders. Yet, some researchers discuss their 

results with the assumption that the alloy powders behave as pure aluminum powders and do 

not fully consider the resultant effects of the alloy elements. 

A benefit of studying pure aluminum P/M is that the results are unambiguous. The 

outcome from this research is an extensive database upon which one can more accurately 
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assess the results observed in the aluminum alloy powders. Therefore, the objective of this 

research was to broaden the knowledge base of aluminum P/M through a fundamental study 

of processing pure aluminum powder. To achieve this objective, four topics were 

investigated: assessment of current gas atomization methods used to produce aluminum 

powder; powder characterizations of the resulting pure aluminum powders; consolidation of 

the pure aluminum powders; microstructure and mechanical property analysis of the 

consolidated powder samples. 
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CHAPTER 2. BACKGROUND 

Aluminum Powder Production 

Gas atomization 

Industrial production of pure aluminum and aluminum alloy powders typically 

involves either commercial air atomization (CAA) or commercial inert gas atomization 

(CIGA). In either case, the direction of molten metal atomization is either horizontal or 

vertical. The selection of atomizing position depends on the desired production rate of 

powder and the powder size distribution. Williams [2] comments on three different 

atomization positions. The vertically upward design. Figure 2.1a and Figure 2.1b, which 

uses an aspirating mechanism of the aluminum melt to induce upward liquid metal flow, 

produces a wide particle size distribution at high production rates. The vertically downward 

position. Figure 2.2a and Figure 2.2b, relies on the liquid metal head pressure for downward 

fluid flow, has better control over the powder size distribution, but slower production rates 

than the vertically upward design. The horizontal system can use either the aspirating design 

or metal head pressure to induce flow of the molten metal. The horizontal set-up produces 

medium to coarse powder size distributions. The remainder of this document will 

concentrate on vertical gas atomization designs, both capable of the fme powder production 

that is the focus of this study. 

The vertically upward system is used by Alcoa at the gas atomization facility in 

Rockdale, Texas, for CAA of aluminum powders. Before atomization, the spray chamber is 

purged with a gas similar to the atomization gas composition to minimize undesirable gases, 

such as water vapors. The molten metal is prepared in a holding furnace and transferred to 

the atomization melt chamber. The liquid metal has a superheat of 100°C to 150°C to 

eliminate the possibility of the molten aluminum freezing in the pour tube before the melt 

exits into the spray chamber. Gas nozzles encircle the pour tube and are focused such that 
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the compressed dry air [3] impinges upon the molten stream, disintegrating the liquid metal 

into droplets. Immediately after the melt break-up, cooling air from the ambient atmosphere 

enters the spray chamber to cool the molten droplets and passivate the surface of the droplets 

with an oxide film [2]. The intent of the passivation process is to purposely oxidize the 

aluminum powders in an effort to minimize powder explosions during post-atomization 

powder handling. The cooling air may not have a low enough dew point to minimize 

To Powder To Powder 
Collection Collection 

and Exhaust and Exhaust 

Spray 

Chamber 

Compressed 
Dry Air 

Inert Gas 
Melt Chamber Melt Chamber 

Spray 
Chamber 

Figure 2.1. a) Schematic of vertically upward atomization system used by Alcoa for CAA of 
aluminum powders [2]. b) Schematic of vertically upward atomization system used by 

Alcan-Toyo America for CIGA-ATA of aluminum powders [2, 6]. 
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Figure 2.2. a) Schematic of vertically downward atomization system used by Valimet for 
CIGA-VAL aluminum powders [9]. b) Schematic of vertically downward atomization 

system used for GARS aluminum powder processing. 

hydration of the oxide film [4]. For a point of reference, Bohlen et al. [5] state in their paper 

that the air atomized process used by Alcoa to produce a 7091 aluminum alloy powder for 

their research had a dew point of 4°C. After atomization of the melt, the droplets solidify 

into powder particles and are carried up and out of the spray chamber by the flowing gas. 

The powders are transferred to cyclones for particle size classification, followed by powder 

packaging and shipping to the P/M part producers. 

A similar atomization system shown is used by Alcan-Toyo America (ATA) in 

Napierville, Illinois, for CIGA of aluminum powders (Figure 2.1b) but the spray chamber is 

isolated from the ambient air. Before atomizing, the spray chamber of a CIGA process is 

purged with an inert gas to remove residual gases, such as air and water vapor [4]. However, 

Unal further commented that the purge gas may not completely remove oxygen and gaseous 
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water from the spray chamber. The implication of incomplete removal of these residual 

gases would cause the incorporation of the oxygen and water vapor into the oxide film that 

naturally forms on nascent aluminum metal [4]. 

The atomization gas used in the CIGA-ATA atomization plant is a by-product of 

methane (CH4) combustion in air [6]. Due to proprietary rights on the part of ATA, detailed 

information about the exact atomization gas is not available. However, one may speculate 

that the CIGA-ATA atomization gas is similar to flue gas, a dried gas mixture of carbon 

dioxide (CO2) and nitrogen (N2) gases from the combustion of methane in air [7] as shown 

by equation 2.1. Other forms of inert atomization gases are 

CH4(g) + Air + Heat =» C02(g) + N2(g) + H20(g) (2.1) 

used in industry for aluminum powder production. Industrial inert gas, which is similar to 

flue gas, is composed of gas mixtures of carbon dioxide (CO2) and nitrogen (N2) gases [7]. 

Nitrogen gas produced from liquid nitrogen is another source [7]. 

The vertically downward atomization system (Figure 2.2a) is used by Valimet, Inc. 

for CIGA-VAL aluminum powders. The spray chamber is isolated from ambient air and is 

purged before atomization with an inert gas for similar reasons previously mentioned for the 

CIGA-ATA aluminum powder production process. The molten aluminum is prepared in a 

furnace and transferred to the melt chamber by a ladle. The melt chamber volume is kept full 

to maintain a constant head pressure for the melt to pour into the spray chamber at a constant 

rate. Upon exiting the pour tube, the molten stream is disintegrated into molten droplets by 

an atomizing gas nozzle system encircling the pour tube. The used atomization gas is 

recirculated for reuse to minimize gas consumption costs. 

Valimet produces two types of aluminum powders, standard spherical aluminum 

(SSA) and low oxygen (Lox) powders. The SS A powder is produced by gas atomizing the 

molten aluminum with a gas mixture of helium and a maximum of two volume percent 
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oxygen [8]. The powder surfaces oxidize in-flight due to a spontaneous reaction between the 

oxygen in the atomization gas and the nascent aluminum. The Lox powder is made by 

atomizing with argon gas and passivating the powder in a powder collection vessel by 

controlled addition of a gas mixture of nitrogen gas and two volume percent oxygen [9]. 

An alternative inert gas atomization method, and the subject of this research, is gas 

atomization reaction synthesis (GARS). The design of the GARS atomization system (Figure 

2.2b) is a vertically downward design. The details of the process are described in the 

Experimental Procedures. In brief, the GARS process uses ultra-high purity (UHP) nitrogen 

gas for atomization of the molten stream to partially suppress the inherent oxidation kinetics. 

Processing effects 

In all of the atomization practices described above, the aluminum powders are 

oxidized in-flight as they pass through the spray chamber. The degree of powder oxidation is 

proportional to the oxygen content of the atomization gas. Nyborg and Olefjord [10] have 

derived an expression (equation 2.2a) for oxide thickness, tox (A), as a function of partial 

pressure of oxygen, p(02) (Pa), and reaction time, t (seconds), for a given particle diameter, 

d (|im). The equation was applied to oxide film growth on ferrous powders during gas 

atomization, as well as aluminum powder produced by gas atomization [11]. The constant C 

(equation 2.2b) in equation 2.2a is composed of terms related to physical and chemical 

properties of the metal, oxygen, and metal oxide, where pox is the oxide density (kg/m^), 

Xo.ox is the weight fraction of oxygen in the oxide, R is the universal gas constant (J/mol-K), 

Tg is the gas temperature (K), Mq is the molar weight of elemental oxygen, Sh is the 

Sherwood number (Sh= 2+0.6Re'^Pr'^^), and D(02) is the diffusivity of O2 in the 

atomization gas (m^/s). Equation 2.2a corroborates intuition that atomization gases with 

large oxygen contents, e.g., air atomization, create thick oxide films on metal powder 

surfaces. 
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tax = CpiOi)r (2.2a) 

C = ^O.ox ' (2.2b) 
2 M o S h D { 0 , )  

During gas atomization of molten metal, the fmal particle shape is dependent upon 

several competing reactions including the oxidizing potential of the atomization gas and 

liquid metal properties of surface tension and viscosity. Powder spheroidization is a function 

of the viscosity (am) and surface tension ()Lim) properties of the aluminum melt that are 

directly dependent on temperature. Nichiporenko and Naida [12] describe an expression 

(equation 2.3) for the time to spheroidize, tgph (seconds), a molten droplet that is directly 

dependent on the melt viscosity, |im (Pa s), and inversely dependent on the melt surface 

tension, am (N/m), where V (m^) is the powder particle volume, R (m^) is the particle radius 

after transformation to the spherical shape and r (m^) is the particle radius before the 

transformation. Two assumptions are made by Nichiporenko and Naida, the ratio of R to r is 

10 to 1 and the spheroidization occurs in the absence of oxide film formation. 

Ozbilen et al. [13] have shown that the volumetric oxygen content of nitrogen 

atomization gas affects the aluminum powder particle shape. Their atomization experiments 

show that increases of the oxygen content in a nitrogen-based atomization gas causes the 

shape of the powders to become more irregular or less spherical. The limiting volumetric 

oxygen content of the atomization gas was about three percent oxygen for maintaining 

spherical or near-spherical shaped powder particles. 

An argument for the formation of irregular aluminum powders is based on the 

decrease of surface tension of the molten aluminum in the presence of oxygen [14]. Ozbilen 

et al. [13] also present another argument for the formation of irregular shape of the aluminum 

(2.3) 
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powder particles. Their first opinion states that molten aluminum droplets in the presence of 

a high oxidizing potential gas, such as ambient air, will support a large number of nucleation 

sites for oxide islands to form on each droplet surface. The oxide islands act as piiming sites, 

restraining the surface tension forces, thus creating powder particles with irregular shapes. 

Another argument to support the observation of irregularly shaped aluminum powders 

is the presence of temperature gradients and compressive stresses in the vicinity of the oxide 

islands. Because the oxidation of aluminum is an exothermic reaction, the temperature in the 

region of the oxide may increase, delaying solidification in the region of the oxide. The 

compressive stresses around the oxide islands develop due to different thermal expansion 

coefficients of aluminum oxide and aluminum metal. Ozbilen et al. [13] cite Spaepen et al. 

[15] as showing that compressive stresses reduce the melting point of the aluminum, using 

the Clapeyron-Clausius relation, delaying the droplet solidification. Such an irregular 

solidification pattern could interfere with the spheroidization driving force of the surface 

tension properties. 

Ozbilen et al. concluded that the oxide film on the aluminum powder surfaces would 

vary in thickness, with thick films formed while the droplet was in the liquid state and thin 

films between the islands formed after solidification. Nyborg and OleQord [16] observed 

similar oxide film thickness variations in their XPS investigation of an aluminum alloy 

powder produced by helium gas atomization. 

Gas atomization conditions, such as pouring temperature, metal flow rate, gas 

pressure, atomization gas composition and nozzle geometry, affect the aluminum powder size 

distribution. Unal [17] discusses these variables of the gas atomization process that appear to 

be responsible for the resulting powder size distribution. His conclusions summarize his 

interpretation of the results for the production of AA 2014 aluminum alloy powder. Pouring 

temperatures greater than 825°C contribute slightly to decreases in the median powder size 

due to a reduction of the viscosity and the surface tension of the melt with increasing 
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temperature. The mass median diameter increases proportionally with the square root of the 

metal flow rate. An increase of the gas pressure shifts the median powder size to lower 

values, but beyond a certain gas pressure there are diminishing returns with respect to median 

particle size. Finally, light weight gases, such as helium gas, reduce the median particle size 

due to higher gas velocities attainable in supersonic flow conditions. A disadvantage to using 

helium gas is the unit cost, about 34% more than the cost of nitrogen gas in similar 

compressed gas cylinders. This expense needs to be balanced against the economic value of 

a finer powder size distribution. 

Aluminum Powder Characterization 

Bulk chemistry 

The bulk chemistry of P/M powders is a quality control point used by P/M parts 

producers to assure chemical consistency between the different batches of powders shipped 

to them by the aluminum powder producers. In the case of aluminum P/M, the aluminum 

alloy composition will determine the elevated metal working temperatures for powder 

consolidation processes, such as hot isostatic pressing (HIP), vacuum hot pressing (VHP), 

solid state sintering and liquid phase sintering. If the composition changes from the expected 

composition, the aluminum P/M parts produced using these types of elevated temperature 

operations may not meet the design specifications and have to be discarded as scrap. 

For example, alloy elements in aluminum metal powder, such as iron, magnesium, 

silicon, and copper, are known to form low temperature eutectics. If the scheduled 

temperature of a densification process, such as solid state sintering, is above the solidus of 

the alloy with the impurities, a liquid phase would form and the consolidated parts would 

deform. The chain of events would require disposing of the defective parts, decreasing the 

yield of P/M parts produced, increasing manufacturing costs, which would be passed on to 

the consumer. 



12 

Aluminum powder producers also provide a bulk oxygen content of the aluminum 

powders. The bulk oxygen content values, though, can be misleading, particularly if the 

particle size distribution or the surface area of the powders is not available. From a 

geometrical point of view, if all the oxygen is on the powder surface as an oxide film of 

uniform thickness and the surface area to volume ratio of the particle increases with 

decreasing particle size, then the bulk oxygen content increases with decreasing powder 

particle size. Different researchers have determined with surface analysis methods, e.g.. 

Auger electron spectroscopy (AES) [16, 18] and x-ray photoelectron spectroscopy (XPS) [18, 

19], that the oxygen is on the surface of the powder particles in the form of oxide films. 

From these aluminum powder surface investigations, the measured bulk oxygen 

content appears to arise solely from oxides and water molecules combined within the oxide 

film. A standard oxygen measurement, such as inert gas fusion (IGF), is unable to 

distinguish between oxygen associated with an oxide or oxygen from water molecules. Both 

sources of oxygen, oxides and water, originate from the atomization process, i.e., residual 

oxygen and water vapor in the atomization gas, the spray chamber and/or the powder 

collection bins. 

Powder surface area measurements 

The surface area of metal powder can be measured by gas adsorption, permeametry, 

or from particle size distribution data. The gas adsorption procedure is also known as the 

Brunauer-Emmet-Teller (BET) method [20, 21]. BET determines the surface area of a 

powder sample by measuring the amount of gas necessary to cover the powder surface with a 

monolayer of gas [20]. Typical gases included nitrogen for surface areas greater than one 

meter squared per gram or krypton for specific surface area less than one meter squared per 

gram. A strong attribute of the BET method is its ability to include surface area 

measurements of interior surface-connected pores [20], BET measurements are suitable for 
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powder particles of any size and shape. 

Gas permeametry measures the resistance of a flowing gas through a powder bed 

[20]. The technique is limited to powder sizes ranging from 0.5 to 50 ̂ tm and is only an 

approximate measurement tool as it does not assess the dead ended surface connected 

porosity [21]. Despite some of the limitations of gas permeametry, the method is simple, 

reproducible to ± 1%, quick, and low cost compared to the equipment costs of other methods, 

such as BET. 

A particle size distribution analysis of a powder sample can also provide a calculated 

surface area measurement, assuming the shapes of the powder particles are spheres, the 

powder is not agglomerated, and there are no powder satellites attached to the surface of the 

powders. If the powder generally meets these requirements, the calculated surface area is a 

reasonable value [4]. However, the calculated surface area value should not be interchanged 

with BET measurements, because the calculated surface area does not reflect surface-

connected porosity or other topographic characteristics of the powder particles [20]. 

Aluminum powder surface characteriTations 

Surface characterization investigations of aluminum powders typically use 

instrumentation, such as transmission electron microscopy (TEM) [22, 23], AES [11, 24], 

and XPS [11, 23, 25], to analyze the oxide film. Researchers tend to use various 

combinations of these techniques for their surface oxide evaluations. Each analytical 

instrument provides a different view of the same oxide film. 

TEM can provide information about the oxide chemistry, oxide thickness, and oxide 

structure, i.e., whether or not the oxide film is crystalline or amorphous. The oxide chemistry 

can be measured by various methods, e.g., energy dispersive spectroscopy (EDS) and/or 

parallel energy electron energy loss spectroscopy (PEELS). A bright field image of the oxide 

film permits direct measurements of the oxide thickness from either individual powder 
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particles or from the oxide boundary between two powder particles [26]. The oxide structure 

can be determined with either secondary area diffraction (SAD) patterns or convergent beam 

diffraction (CBD) patterns. The difficulty with these last two measurements is focusing the 

electron beam to a small enough cross-section to minimize detection of neighboring 

crystalUne features. In general, TEM sample preparation is laborious, tedious and time 

consuming. 

AES and XPS, on the other hand, offer relatively simpler sample preparation methods 

and provide measurements of the oxide film thickness and oxide film chemistry. Both 

spectroscopic techniques use argon ions for sputtering, or etching away, successive layers of 

the oxide film and measuring the elemental composition of each layer. The data is presented 

as elemental composition depth profiles of the oxide film on aluminum powder particles. An 

advantage of AES is the ability to carry out a point analysis on individual powder particles, 

providing a comparative measure between fine and coarse powders [16]. The XPS analysis, 

on the other hand, is an average of many powder particles within a definite area on the order 

of one square millimeter. 

Another type of surface analysis of the oxide film on aluminum powder particles is 

possible with quadrupole mass spectroscopy (QMS). QMS detects and measures the gases 

that evol /e from the surfaces of the aluminum powder panicles during a continuous heating 

of the powder sample under a dynamic ultra-high vacuum (UHV). The gases typically 

measured are water and hydrogen, the sources of which comes from water physically 

adsorbed onto the powder particles' surfaces (physiosorbed water) and water chemically 

bound within the oxide film (chemisorbed water). In some instances, carbonaceous gases, 

e.g., carbon monoxide and carbon dioxide, are measured also, but carbon-based gases are 

more difficult to identify with QMS. 

The origins of the physiosorbed and chemisorbed water are traceable to the 

atomization process and post-atomization powder handling [24, 25]. Direct comparisons of 
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the QMS results show aluminum alloy powders produced by inert gas atomization have less 

chemisorbed and physiosorbed water than aluminum alloy powder manufactured by air 

atomization [27]. A similar type of investigation [25] used aluminum-magnesium base alloys 

to show that "wet" atomization gases produce more chemisorbed water in the oxide films of 

aluminum powder particles than "dry" atomization gases. The same research showed no 

significant difference of the physiosorbed water quantity on the aluminum powders produced 

by either atomization gas. 

The hydrogen detected during QMS experiments is a product of the physiosorbed 

water or chemisorbed water reacting with aluminum cations diffusing through the oxide film 

[28, 29]. Possible reactions for the hydrogen product are shown with equations 2.4, 2.5, and 

2.6. There is uncertainty and speculation as to which reaction or reactions may be dominant 

during the heating of the powder sample [28]. 

One method of hydrogen analysis is a vacuum extraction analysis as described by 

Peterson et al. [30] and Devreve et al. [31]. In brief, the aluminum sample is heated 

to a temperature of greater than 600°C and less than 800°C, under vacuum conditions of 

3.2x10"- Tort to 1x10"^ Torr. The hydrogen evolved from the aluminum specimen is 

collected in a collection volume of known capacity and the pressure increase within the 

collection volume is measured. Once the pressure reaches a constant value, the hydrogen 

from the sample is inferred to be completely removed. The equilibrium pressure value is 

directly proportional to the mass content of hydrogen that was in the aluminum sample. 

Depending on the system available, the hydrogen extraction process is the rate limiting step, 

and the calculated hydrogen content can be determined within twenty minutes to several 

2A1 + H2O =!> AI2O3 + 3H2 

2A1 + 6H2O =^> A1203-3H20+ 3H2 

2A1 + 4H2O AI2O3 H2O+ 3H2 

(2.5) 

(2.4) 

(2.6) 
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hours [30]. 

Caution though is warranted for determining the hydrogen content of aluminum. The 

measured hydrogen content of aluminum ingots may be influenced by several variables, such 

as sample porosity, surface contamination, oxide thickness, and grain size [32]. As a result, 

there are no consistent experimental hydrogen content values for aluminum [33]. 

Hydrogen analysis of aluminum powders adds one more variable to the list mentioned 

in reference [32], that needs consideration, the water content of the oxide film. Under the 

elevated temperature and vacuum conditions, the physiosorbed and chemisorbed water would 

be removed from the oxide film, and if some of the water did not react with aluminum to 

form hydrogen, the unreacted water would be gathered into the collection volume with the 

hydrogen. The water in the collection volume would contribute to the measured pressure, 

leading to an artificially high hydrogen content of the aluminum powder. 

Explosibilitv of aluminum powders 

In 1964, the United States Department of the Interior, Bureau of Mines, prepared a 

document for the explosibility of metal powders [34]. The report is a standard for all metal 

powder explosibility testing. The comprehensive investigative report provides ^plosibility 

data on 313 elemental metal, alloys, catalysts, and ores comprising 54 types of material. An 

empirical explosibility index (EI) is used to rate each material tested. The EI value is the 

mathematical product of the ignition sensitivity (IS) and the explosion severity (ES) 

(equation 2.7). Table 2.1 lists the relative explosion hazard index with the corresponding 

index of explosibility ranges. As the information in the table implies, a larger EI value 

means a more severe explosion. 

The ignition sensitivity assumes a dependency on the ignition temperature (IT), 

minimum ignition energy (MIE), and the minimum explosive concentration (MEC) (equation 

2.8). The explosion severity assumes a dependency on the maximum explosion pressure 



17 

Table 2.1. Legend for the explosive hazard index and the designated 

Explosive Hazard Index Index of Explosibility 
None 0 
Weak <0.1 
Moderate 0.1- 1.0 
Strong 1.0- 10.0 
Severe >10 

(MEP) and maximum rate of pressure rise (MRPR) (equation 2.9). A value of unity is 

assigned to the explosibility index, ignition sensitivity, and ±e explosion severity for 

materials that have similar ignition and explosion characteristics as Pittsburgh seam coal 

dust. 

The explosibility tests are conducted in a twenty liter spherical dust explosion 

chamber as described in reference [35]. The metal powder is dispersed in the air inside the 

explosion vessel and the explosibility of the metal powder is determined. In the case of MEC 

values. Safety Consulting Engineers, Inc., advises discretion in the interpretation of the MEC 

EI = IS*ES (2.7) 

CtHxi Dust gv 

(MEP*MRPR)^^ CtHll DlLIt , ̂  Q » 

values, because the processing conditions and handling of the metal powders strongly 

influence the degree of hazard [36], i.e., the results should be considered "preliminary 

results" [37]. 

There are several variables that contribute to dust explosions, such as particle size, 

particle shape, particle reactivity, distribution in air or gas media, turbulence, size of cloud 

and confinement, ignition source size, and ignition delay. As an example of one variable 

effecting dust explosions, aluminum powder particle size has been correlated with MEC 
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values [2]. The findings show that the MEC becomes more severe with decreasing aluminum 

powder particle size. The argument for this observation is that small aluminum powder 

particles have large surface areas compared with the small surface areas of large aluminum 

powder particles. Hence, for the small aluminum powder particles, there is more area 

available for a reaction to occur between the aluminum powder particle and the atmospheric 

air. 

There is experimental evidence available that indicates nitrogen plays a major role in 

the combustion of aluminum in air [38]. These authors reference a study by Prentice [39] 

that investigated aluminum burning in an argon-oxygen atmosphere during which he 

observed a clean metal surface, whereas burning in air created an oxide on the powder. 

Boborykin also reference other research [40,41] conducted in pure nitrogen and oxygen 

mixtures with argon or nitrogen in which aluminum nitride was formed. 

Consolidation of Aluminum Powders 

Press and hi^h interparticle shear consolidation 

A typical consolidation route that an aerospace P/M parts producer would use for 

consolidating aluminum alloy powders is shown in Figure 2.3. The sequence begins with the 

production of gas atomized aluminum powder by one of the commercial methods described 

at the beginning of this chapter. The as-atomized powder is sieved or pneumatically 

classified to achieve the desired particle size distribution for cold isostatic pressing (CIP). 

Ideally, the CIP compact should be pressed to a green density of about 75% of theoretical 

density to ensure an open porosity network for effective degassing of the aluminum powders 

[42]. The compaction pressure needed for the ideal green density can be determined from a 

compressibility curve [43]. 

After the powder is consolidated by CIP, the green compact is placed in a sealed 

aluminum metal can, except for an open vent pipe to allow the escape of water vapor and 
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Figure 2.3. Conventional consolidation sequence for aluminum powders 
used in aerospace applications [1]. 

gaseous hydrogen from the can during the vacuum hot degassing (VHD) procedure. For the 

sources of hydrogen evolution refer to equations 2.4, 2.5, and 2.6 above, and see equation 

2.10 and 2.11 below for the water vapor sources in the oxide film. The maximum 

temperature for VHD depends on the solidus temperature of the aluminum alloy powder, 

which can range from 450°C to 575°C. The purpose for VHD of the green compact is to 

eliminate the physiosorbed and chemisorbed water from the oxide film on aluminum powder 

particles. Equations 2.10 and 2.11 describe the dehydration sequence according to the 

research of Litvintsev and Arbuzova [28]. 

QMS experimental evidence has shown the oxide film on aluminum powders to be a 

duplex structure of alumina (AI2O3) and alumina trihydrate (A1203-3H20), with 

physiosorbed water present on the surface of the oxide film [27], As the green billet is heated 

to the degassing temperature, the physiosorbed water evaporates from the oxide surface 

according to equation 2.10. The decomposition reactions of the hydrated alumina phases are 

represented in equation 2.11. The trihydrate phase is thermally stable to about 150°C. 

Above 150°C and below 175°C, chemisorbed water is removed from the trihydrate phase, 

forming the A1203-2.5H20 hydrated alumina phase. As the temperature continues to 

increase from 175°C to 3I0°C, more chemisorbed water is removed from the A1203-2.5H20 

phase to form the alumina monohydrate (AI2O3 H2O) phase. From 310°C to 500°C, the 

monohydrate phase is thermally stable. As the temperature increases above 500°C, the 

monohydrate phase decomposes to an anhydrous alumina (AI2O3) phase. If the aluminum 
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powder is an aluminum alloy with magnesium additions, the highly mobile and reactive 

magnesium can react with water to form MgO and hydrogen gas, equation 2.12. 

HzOphys H20(g) (2.10) 

AJ203-3H20 A1203-2.5H20 AJ203-H20 AI2O3 (2.11) 

Mg + H2O MgO + H2(g) (2.12) 

The typical size of the vacuum hot pressing (VHP) cans range from 25 cm to 76 cm in 

diameter and the billet mass is 50 kg and 1545 kg, respectively [1]. For the small billet sizes, 

Billman et al. state the VHD is conducted under a dynamic vacuum during heating and a one 

hour soak at the VHD temperature, the entire process requires about seven hours. For the 

large billets, the same authors comment that the billets are heated under argon, either static or 

hot flowing argon, with a one hour vacuum soak near the end of a thirty hour heating cycle. 

Typical degassing times at degassing temperature vary from twenty-four hours at the 

periphery of the billet to one hour at the center of the billet. The degassing temperature 

should be below the solidus of the aluminum alloy powder, and the time at temperature 

should be limited to minimize coarsening of the microstructure [1,42]. 

Immediately following the VHD procedure, the can is sealed to maintain an 

evacuated atmosphere within the interconnected porosity of the green billet [1]. Billman et 

al. state that sealing the evacuated sample prevents exposure to air that could react with the 

heated P/M billet to form nitrides and oxides within the interconnected porosity. After 

welding the can closed, the sample is VHP to close the interconnected porosity [42]. Kim 

continues to comment that the material flow during VHP is adequate to disrupt the 

dehydrated oxide film into alumina fragments. However, the alumina fragments remain 

along the prior particle boundaries of the powder particles, leading to incomplete powder 

particle bonding. Hot extrusion of the VHP billet is necessary to distribute the alumina 

fragments throughout the matrix. The deformation is completed at extrusion ratios about 
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20:1 [42]. The shape of these extrusions can be round bar or rectangular bar. The last step of 

the aluminum powder consolidation is the shaping of the final P/M part by closed die forging 

and/or machining methods. High economic costs are association with the energy 

consumption necessary to heat the powder samples for VHD, VHP, and hot extruding. The 

escalated expenditures limit the use of this consolidation procedure to high-tech applications, 

prohibiting its use for low cost applications, such as automotive drive train components. 

Press and sinter consolidation 

Another method used for consolidating metal powders is a pressing and sintering 

process (Figure 2.4). After the powder is gas atomized and size classified, the aluminum 

Die Press 

Blend 

LPS 

Final 
Shaping 

Die Press 
Atomize 

Aluminum 
and 
Size 

Classify 
Powder 

Figure 2.4. Press and liquid phase sintering (LPS) route for aluminum P/M components. 

powder can follow one of two routes. Either pure aluminum or aluminum alloy powder is 

immediately die pressed into the component shape or the aluminum powder is blended with 

elemental or master alloy powders and then die pressed. The blending procedure may 

involve mixing non-metallic particles, e.g., alumina and silicon carbide, and/or other metal 

powders, e.g., copper, magnesium, iron, silicon, zinc, for alloy additions. After die pressing, 

the green component is transferred to a sintering furnace to thermally enhance densification 

by liquid phase sintering. Solid state sintering is not practiced because of poor fracture 

resistance related to oxide powder surfaces. The sintered P/M aluminum part may require 
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secondary finishing operations, such as drilling, milling, turning, and grinding, which are 

easily performed on aluminum P/M components [44]. 

Die pressing 

The powders or powder blends that fill the die need to flow well for automated, high 

production rate presses. The powder particle shape and size affect the flow of the powder 

into the die. Spherical powders greater than 45 |im in diameter are ideal for die filling, 

because the powders roll into the die cavity and have low interparticle friction characteristics 

[45]. Irregular powder particle shapes or fine spherical powders have high surface area to 

volume ratios that increase the interparticle friction, decreasing the powder fiowability [45]. 

After filling the die cavity, the aluminum powders are squeezed together to make a 

densified green compact. The ability of the aluminum powders to deform depends on the 

compressibility characteristics of the powder or powder blend. The oxide film on aluminum 

powders is one variable that influences compaction of aluminum P/M parts due to the 

hardness of the oxide [43]. During the compaction process, the powders deform to fill the 

empty spaces between the powder particles. The presence of the oxide film can slow the 

deformation of the particles and even inhibit interparticle bonding. Particle shape and size 

influence the compressibility of the powders, too. Ideally, a P/M parts producer would use 

spherical powders with a good mixture of particle sizes for filling the maximum space within 

the die cavity [43]. However, irregular shaped aluminum powder particles are often 

preferred, in spite of reduced die filling capability, because of mechanical interlocking 

between the powder particles that enhances the green strength of the compact. 

The inherent hardness of the metal powder is another variable effecting 

compressibility and is dependent on whether aluminum alloy ("prealloyed") powders or 

elemental powder alloy blends are used. The elemental powder blends are powder mixtures 

of aluminum powder with other metal powders, such as copper, magnesium, iron, silicon. 
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and/or zinc. The elemental blends would deform easier at lower compacting pressures than 

the prealloyed powders [46] due to the elemental powders being softer and more ductile than 

the prealloyed aluminum powders. In other words, the prealloyed aluminum powders will 

work harden more and faster than the elemental blends, due to the alloy additions in the 

matrix, requiring higher compaction pressures for the prealloyed powders. Higher green 

densities and higher green strengths are advantages to using elemental blends for powder 

compaction [46] compared to prealloyed powder compacts. 

The powder compact ejected from the die has green properties that are dependent on 

the powder and die pressing conditions. The green density of the P/M aluminum component 

is directly proportional to the compaction pressure applied to the powder. The compacting 

pressure, compaction method, and the geometry of the P/M aluminum pan influence the 

magnitude of density gradients within the powder compact [21]. The green strength is 

directly dependent on the green density and the compaction pressure [21], in other words, as 

the number of metallurgical bonds created during the die pressing operation increases, the 

green strength increases. A thick oxide film would inhibit the formation of metallurgical 

bonds and lead to poor green properties. 

Sintering 

The green aluminum P/M compact is further densified by sintering, an elevated 

temperature process to increase the strength of the green compact by bonding adjacent 

particles by diffusion mechanisms [21]. P/M aluminum sintering may either occur in the 

solid state or partial liquid state [47]. The former is rarely used whereas the latter is widely 

used for either elemental powder blends or blends of aluminum powder with master alloy 

powders. 

During solid state sintering, five diffusion mechanisms are possible as shown in Table 

2.2. Two of the five mechanisms enhance densification and the other three merely coarsen 
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the microstructure. A major barrier to the solid state sintering process, and diffusion, is the 

oxide film thickness on aluminum powder particles [48], reported to range from 40A to over 

200A [42]. The oxide film may break during the pressing operation, creating cold welds 

between the powder particles. Gutin et al. [48] make two conclusions from their research. 

During sintering of lightly oxidized aluminum powders, atoms diffuse over the entire area of 

contact between the powder particles. On the other hand, during the sintering of severely 

oxidized aluminum powders, the aluminum atoms diffuse only in the oxide-free zones of the 

powder particle contacts and the area of interparticle contact does not increase in size. 

Munir [49] has developed a predictive model that describes the influence of the 

surface oxide layer on interparticle neck growth, as determined by the relative sintering 

Table 2.2. Possible diffusion mechanisms occurring during solid state sintering [21]. 
Diffusion Mechanism Source Sink Comments 

Volume Surface Neck Coarsening 
Surface Surface Neck Coarsening 
Vapor Mass Surface Neck Coarsening 
Volume Grain Boundary Neck Densification 
Grain Boundary Grain Boundary Neck Densification 

and diffusional fluxes, Xg and Xd, respectively. The ratio of these fluxes defines the neck 

growth rate ratio. A neck growth rate ratio greater than one would indicate a retardation of 

sintering by the oxide layer. If the same ratio is less than or equal to one, sintering continues 

uninhibited. 

Table 2.3 is an excerpt from Table 1 in Munir's paper that shows the neck growth rate 

ratio as function of sintering temperature and the ratio of the oxide thickness (^) to the 

particle radius (r). For a given alununum powder size and sintering temperature, as the oxide 

film thickness increases, the neck growth is increasingly more difficult. Iron, on the other 

hand, would show good sintering behavior, because the neck growth rate ratio is constant or 

decreases with an increasing ^r ratio (Table 2.3). For both these metals, Munir's model 

correlates well with experimental results of solid state aluminum powder sintering [48] and 
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explains the wide spread industrial use of iron-based powder alloys in automotive 

applications. 

The successful solid state sintering of metal powders depends on sintering 

temperature, sintering time, and sintering atmosphere [50]. A limitation to solid state 

sintering of aluminum powders is the continuous native aluminum oxide on all aluminum 

powder particles that inhibits diffusion of aluminum atoms between adjacent powder 

particles. Another limit to sintering temperature is the effect of alloy elements previously 

discussed. 

Table 2.3. Neck growth rate ratio for solid state sintering aluminum and iron powders as a 
function of temperature and the ratio of the oxide thickness to 

particle radius [49], 

Metal Temperature (°C) 10-5 10-3 io-« 
Aluminum 224 1.7x1031 1.7x1033 1.5x1035 

660 3.3x1012 3.3xlO»4 3.0x1016 
Iron 633 1.0 1.0 1.0 

1539 1.0 1.0 1.0 

Liquid phase sintering (LPS) of aluminum alloy elemental blends enhances 

densification of the microstructure. The LPS temperature is based on the composition of the 

aluminum alloy, typically in the range of 595°C to 625°C [44]. The sintering time ranges 

from ten to thirty minutes in a variety of sintering atmospheres, dissociated ammonia, 

hydrogen, argon, nitrogen, and vacuum [44], A nitrogen sintering atmosphere is preferred 

over the other atmospheres, because of the relatively high, as-sintered, mechanical properties 

of the P/M aluminum parts [44]. Nitrogen gas is also quite economical in large quantities 

compared to the other gases available for sintering atmospheres. Another sintering variable 

related to the sintering atmosphere is the dew point of the protective atmosphere. The 

recommended dew point is less than -40°C, which corresponds to a maximum moisture 

content of 120 parts per million by atomic percent [44]. A dew point lower than the 

recommended value minimizes oxidation during the sintering operation [50]. 



26 

To reduce the costs of sintering green P/M aluminum parts, researchers have 

experimented with air sintering. Storchheim [51] published a paper in which he describes the 

viability of using convention P/M process equipment to sinter green aluminum P/M parts in 

air. The initial sintering experiments were generally poor, requiring thorough evaluation of 

problems related to the powder size distribution, alloy composition, heating rates, sintering 

times, and lubrication issues. After implementing solutions to address these problems, the air 

sintered P/M parts had reasonable mechanical properties after using a T-4 heat treat 

condition. 

A goal of aluminum P/M liquid phase sintering is to homogenize a green 

microstructure composed of an elemental powder blend. Homogenization occurs by the 

formation of a liquid phase between the elemental constituents, i.e., the creation of a short 

circuit diffusion path between the chemical elements [46]. There is a large chemical 

potential, and hence a large driving force for chemical homogenization, between the solute 

powders and the aluminum powders. The presence of the Uquid phase also permits 

rearrangement of the aluminum powder to enhance further densification [50]. 

The liquid phase sintering process is limited to a small number of aluminum alloy 

powder blends, such as 601AB and 201AB alloy powders. The 601AB alloy is comparable 

with the composition of the 6061 wrought aluminum alloy and the 201AB alloy has a 

composition similar to a 2014 wrought aluminum alloy. An advantage of elemental 

aluminum powder blends is the starting powders can be of high purity, whereas the primary 

constituents used to make the prealloyed powders may have undesirable impurities. 

There are disadvantages to liquid phase sintering aluminum alloy elemental powder 

blends. One drawback is the large scale heterogeneous microstructure that is present in the 

as-compacted state, which can be exaggerated with blending elemental powders of 

significantly different sizes. Another downfall to liquid phase sintering is the oxide film on 

the aluminum powders may or may not break open during compaction to allow 
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homogenization of the aluminum alloy [47]. In the case where the aluminum oxide is not 

disrupted, the oxide film may be too thick for chemical diffusion of aluminum or the 

elemental constituents through the oxide film. The dimensional control of the P/M compact 

is a variable that is difficult to maintain during liquid phase sintering. The liquid phase 

fraction must be small enough to be held by capillary force within the skeleton of the 

remaining solid phase to retain the compact shape [46]. Coarsening of ±e microstructure is 

another problem with liquid phase sintering. The average grain size increases with either the 

one-half or one-third power of time and is quite sensitive to temperature changes, i.e., 

elevated temperatures increase grain growth [21]. 

Aluminum Alloys, Reinforcement Phases, and Mechanical Properties 

During the last two decades, P/M processed, high strength aluminum based materials 

have been designed for elevated temperature use in aerospace applications, such as struts and 

other structural members. P/M aluminum materials have gained acceptance in critical 

applications because of their reduced weight and relatively high strength at elevated 

temperatures. There are two distinct examples of aluminum reinforced P/M materials. One 

is a uniform blend of aluminum powder and an "extrinsic" dispersoids like silicon carbide or 

alumina particulates. The other is a rapidly solidified aluminum powder with "intrinsic" 

dispersoids containing metastable phases such as AlfiFe found in Al-Fe-X alloys, where X is 

another transition metal or rare earth metal. The strength of these two types of reinforced 

aluminum powder materials is attributed to the distribution and thermal stability of each 

phase in the consolidated microstructure. 

Extrinsic dispersoids: Composites 

Extrinsic dispersoids include oxides, carbides, and nitrides that are blended with 

either pure aluminum or aluminum alloy powders and are bonded during composite 
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consolidation. An example is Al-SiC(p) alloys processed by blending aluminum alloy 

powder with SiC(p), typically ranging from 4-10 |im [52]. Composite strength with extrinsic 

dispersoids is improved over conventional P/M aluminum alloys, but the ductility decreases 

at elevated temperatures, due to pore opening at the aluminum-dispersoid interface [53]. The 

ambient temperature ductility of Al-SiC(p) composites is good, but extensive mechanical 

work is often necessary to provide an adequate level of ductility. The mechanical 

deformation process decreases the matrix porosity, creates new surface for aluminum powder 

bonding, and disperses the reinforcement particulates more uniformly. These composites 

have demonstrated ultimate tensile strengths to about 350 MPa at 200°C, decreasing to about 

300 MPa at 260°C [54]. This would indicate that a typical Al-SiC(p) composite could be 

used for long durations at 200°C and for short durations at 260°C. 

Intrinsic dispersoids: Rapidly solidified allovs 

Intrinsic dispersoids are hard intermetallic compounds that form within the aluminum 

matrix during P/M aluminum powder processing, and exist as either equilibrium or 

metastable compounds. For example, the Al-Fe-X alloys, where X is either vanadium, 

cerium, cobalt, or molybdenum, have been processed to produce equilibrium Al3Fe, its 

precursors 0' and 0", or metastable AlgFe. The ternary additions have high liquid solubility 

and low solid solubility to promote copious precipitation of the desired intermetallic phases. 

These aluminum alloys are produced by either gas atomization or melt spinning to promote 

supersaturation of the alloying elements in the aluminum powder matrix by a rapid 

solidification process. By controlling the rapid solidification process and fabrication 

techniques, high volume fractions of finely dispersed intermetallic phases can be produced, 

giving a dispersion strengthened alloy with high strength and dispersoid thermal stability at 

elevated temperatures [55]. The size of the dispersoids in a Al-12Fe-2V alloy, i.e., 0", 0', or 

AlsFe [56] can vary from 40 to 100 nm [57]. The ultimate tensile strength begins to decrease 
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rapidly from 500 MPa at temperatures greater than 240°C [56]. Cerium additions to the Al-

Fe system have been observed to retard coarsening of the intermetallic phases and suppress 

the formation of AlsFe in favor of more stable, high temperature ternary phases [58], 

AlioFe2Ce and Al8Fe4Ce [59]. The tensile strength of Al-Fe-Ce alloys begins to decrease 

significantly from 300 MPa at 290°C [55] due to microstructural phase coarsening [60]. Al-

Fe-Ce alloys have fair ductility, about 6% elongation at 230°C, and fair toughness at elevated 

temperatures, but thermomechanical processing improves these properties [58]. All 

aluminum P/M materials form an oxide surface film on the particles during atomization [61], 

requiring extensive mechanical deformation to disrupt the oxide layer and develop adequate 

interparticle bonding for sufficient ductility. 

Residual gas contamination within the P/M aluminum alloy matrix, such as hydrogen 

gas, may have deleterious effects on the microstructure and mechanical properties of the 

aluminum or aluminum alloy P/M component. Kim [61] discusses how the presence of 

hydrogen is one variable that influences the microstructure and tensile properties of Al-

8.4Fe-7.2 Ce, an aluminum alloy produced by gas atomization with flue gas. The tensile 

properties measured as a function of temperature showed a decrease of tensile strength with 

increasing temperature. Kim attributes the tensile strength decrease to hydrogen gas released 

from the decomposition of hydrated oxide fragments. In tension, the neck area relaxes and 

the newly formed hydrogen assists in crack formation. The size and number of cracks 

increase with temperature and have the effect of decreasing the cross-sectional area of the 

tensile specimen. 

A New "Hope": Gas Atomization Reaction Syntiiesis 

The problems described so far with aluminum powder processing can be minimized 

or even eliminated with an atomization method developed at the Ames Laboratory, Gas 

Atomization Reaction Synthesis (GARS) [62]. The GARS project had the original intent of 
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producing intrinsic-like dispersoids in the aluminum matrix by a reaction between the 

atomization gas and the molten aluminum. The key to manufacturing materials with intrinsic 

dispersoids is to take advantage of a rapid solidification process, such as gas atomization, 

which extends the solid solubility in many metal alloy systems. However, instead of an 

enhanced solute addition to the melt in the crucible, the GARS method adds an excess of a 

reactive gas solute into the molten aluminum droplet, which is trapped in the rapidly 

solidified aluminum particle. A dispersion hardened aluminum material can be produced by 

annealing the supersaturated aluminum powders to promote uniform precipitation of 

refractory compounds, such as nitrides or carbides, within the aluminum matrix. Ideally, 

each annealed aluminum powder particle would essentially be a metal matrix composite with 

refractory dispersoids, similar in nature to SiC, dispersed homogeneously as a highly refined 

reinforcement particulate. After consolidation of these powders, the result would be an 

aluminum P/M composite formed by an intrinsic dispersoid precipitation mechanism. 

To test the GARS process, high-purity aluminum metal was gas atomized with UHP 

nitrogen gas. The specific goal was to react the nitrogen gas with the aluminum droplets to 

create a P/M Al-AIN metal matrix composite. During the atomization process, no 

measurable temperature increases were recorded with a two color optical pyrometer that 

would indicate an exothermic reaction between the nitrogen gas and the molten aluminum. 

Extensive post-atomization analysis of the GARS aluminum powders revealed no conclusive 

evidence of nitrogen supersaturation of the aluminum matrix or formation of AIN. The 

reaction between the nitrogen gas and the aluminum metal was apparently by-passed because 

of two physical barriers, a) the limited liquid solubility and negligible solid solubility of 

nitrogen gas in aluminum [63], and b) the competition between nitridation and oxidation. 

Even though gas atomization has the potential to extend the solubility limits of metal alloy 

systems, any extension of the nitrogen solubility limit in the aluminum-nitrogen system was 

negligible. The dominant physical barrier to nitridation was oxidation [18], both from a 
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thermodynamic argument, i.e., the nitrogen and oxygen EUingham diagrams [64, 65], and 

from kinetic evidence [66]. 

A re-evaluation of the results from another perspective did reveal the GARS pure 

aluminum powders to exhibit superior powder characteristics as compared with the CAA, 

CIGA-ATA, and CIGA-VAL pure aluminum powders. Consequently, the emphasis of the 

GARS project shifted to a comprehensive investigation of the "clean" aluminum powder in 

an effort to exploit its potential for new aluminum P/M processing methods. For example, 

the GARS aluminum powder has a thinner surface oxide film that may enhance the 

development of metallurgical bonds during aluminum powder consolidation, especially for 

solid state sintering operations. The contribution of this dissertation to the aluminum P/M 

industry is to show the strong linkage between gas atomization processing conditions, as-

atomized powder characteristics, consolidation behavior, and structure-property relationships 

of consolidated pure aluminum powders. 
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CHAPTER 3. EXPERIMENTAL PROCEDURES 

To achieve the research goals, four avenues were followed: gas atomization of pure 

aluminum to produce aluminum metal powder; characterization of the as-atomized aluminum 

powder; consolidation of the pure aluminum powder; mechanical testing of samples taken 

from the consolidated specimens. Conunercial sources of pure aluminum powder (CAA, 

CIGA-ATA, and CIGA-VAL) were selected for direct comparative analyses. 

Two forms of nomenclature will be used throughout the remainder of this 

dissertation. First, all mass percentages are reported in weight percent. Second, powder size 

classifications will be denoted with + and/or - symbols, the former meaning greater than and 

the latter meaning less than. An example would be -106+75 ^m, which would translate to a 

powder size distribution of powders nominally less than 106 ^m but greater then 75 |im. 

Gas Atomization Experiments 

Atomizer configuration 

Aluminum and aluminum alloy powders were produced in a laboratory scale gas 

atomizer at the Ames Laboratory. The gas atomization system, shown in Figure 3.1, 

consisted of three components, the melt chamber, the spray chamber, and the collection 

system. The melt chamber housed an induction heating system using a graphite susceptor 

around the exterior of a bottom pouring crucible. The aluminum metal charge was placed in 

the crucible and the metal was heated through the melting temperature to the selected pouring 

temperature. The first GARS atomization, GARS-2, used a coarse grained, porous, soft-fired 

alumina crucible. Due to contamination of the melt fi*om the crucible [67], the subsequent 

GARS atomization runs used a fine grained, dense, hard-fired alumina crucible. The change 

to the latter type of crucible eliminated the problem of tramp element contamination of the 

metal. 
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Figure 3.1. Schematic of the gas atomization system used at the Ames Laboratory. 

After heating the aluminum charge to the pouring temperature, the stopper rod that 

plugged the hoie in the bottom of the crucible was lifted upwards. The molten aluminum 

poured down through the bottom of the crucible, passed through the pour tube and exiled into 

the spray chamber. The liquid metal stream entering the spray chamber was immediately 

disintegrated into molten droplets by high pressure gas flowing through a high pressure gas 

atomization (HPGA-I) nozzle [68]. The HPGA-I nozzle configuration has a ring of twenty 

discrete jets focused on the molten metal stream such that close-coupled atomization is 

achieved. As the molten droplets solidify, they fell down the length of the spray chamber 

and were carried into the collection box by the gas flow. After atomization, the aluminum 

powder was removed from the collection box and size classified for characterization. 
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Atomization parameters 

The atomization chamber was evacuated with a roughing pump to a nominal pressure 

of 50 |im Hg to minimize oxygen and water vapor partial pressures. For the GARS-2 to 

GARS-6 atomization runs (Table 3.1a) the atomization system was backfilled to atmospheric 

pressure with high-purity argon gas before heating the metal charge. For the GARS-7 to 

GARS-9 atomization runs (Table 3.1b) the atomization system was not backfilled until the 

metal charge was heated to 500°C. At that point in the heating cycle, the entire system was 

backfilled to atmospheric pressure with UHP (99.998%) nitrogen gas. This gas had a dew 

point of less than -67°C. The purpose of the vacuum bake-out was to thermally degas the 

melt chamber, with the intent of further reducing the level of any gaseous impurities, such as 

oxygen and water, that may have been present in the atmosphere prior to gas atomization. 

Table 3.1. Composition, charge mass and pouring temperature of aluminum melts. 

GARS-2 GARS-3 GARS-4 GARS-5 GARS-6 
Composition A1 A1 A1 A1 A1 
ChargeMass (g) 250 900 1510 1400 1600 
Pouring Temperature 1400°C 1400°C 950°C 1600°C 1200°C 

GARS-7 GARS-8 GARS-9 Al-Ti-Y 
Composition A1 A1 A1 Al-3Ti-8.2Y 
ChargeMass (g) 1533 1760 2100 2200 
Pouring Temperature 1400°C 950°C I200°C 1400°C 

The aluminum melts were atomized with UHP nitrogen gas at a pressure of 6.9 MPa. 

The pouring temperatures, listed in Tables 3.1a and 3.1b, ranged from 950 to 1600°C. Two 

compositions (Tables 3.1a and 3.1b) were gas atomized for this research, pure aluminum and 

an aluminum rich ternary alloy with titanium and yttrium additions. The latter alloy was 

produced in an attempt to enhance the potential of a nitridation reaction between nitrogen 

atomization gas and the powder particle. 

For the GARS-2 and GARS-3 atomization experiments, a high-purity (99.99%) 
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aluminum ingot from NASA was used as the melt stock. For the remaining GARS 

atomization experiment, the pure aluminum powder was made from a high-purity aluminum 

ingot (99.999%) from Alcoa. The melt charge mass for each atomization experiment ranged 

from 250 grams to 2200 grams (Table 3.1a and 3.1b). 

The Al-Ti-Y alloy, listed in Table 3.1b, was made by melting the Alcoa, high-purity 

aluminum with master alloy buttons of Al-37.2%Ti and A1-91%Y in the melt chamber of the 

atomizer. The master alloy buttons were made with the Alcoa, high-purity aluminum, 

99.80% yttrium from the Ames Laboratory, and 99.99% titanium from Timet. The metal 

elements were arc melted together to form buttons of the master alloys. The fabrication of 

the buttons was completed through the Materials Preparation Center at the Ames Laboratory. 

The purpose for the Al-Ti-Y alloy was an attempt to enhance nitride formation during the gas 

atomization process between the nitrogen gas and the aluminum alloy. The expectation was 

additional strong nitride forming elements in the melt would create a nitride phase, resulting 

with an in-situ metal matrix composite with a stable reinforcement phase. 

Metailographic Sample Preparation 

Standard metailographic techniques were used to directly observe the microstructures 

of the as-atomized powder particles and consolidated powder samples. The samples were 

mounted in ep>oxy using a vacuum infiltration technique. The samples were first ground by 

hand on grinding paper, i.e., 240 grit. 320 grit, 400 grit, and 600 grit, respectively. After 

each paper, the sample was rinsed with water and rotated 90° before grinding on the next 

paper. After the 600 grit paper, the polishing continued with the 6 |im diamond spray on a 

rotating wheel until all the scratches from the 600 grit paper were removed. The samples 

were then placed on an automated polisher using 6 [im and I |im diamond paste polishing 

compounds, respectively. The diamond pastes helped to remove embedded grinding 

constituents of previous steps from the soft, aluminum matrix. The final polishing step used 
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a colloidal silica polishing suspension on a Buehler Vibromet 2 with a 10% amplitude 

setting. The samples remained on the Vibromet for about 3-6 hours until a majority of the 

scratches had been removed from the previous polishing step. 

Powder Characterization of Powders Screened at -45 Diameter 

Powder shape and size distribution 

The shape of the as-atomized powder particles (GARS, CIGA, and CAA) was 

assessed with the aid of scanning electroa microscopy (SEM). To view the loose powders 

with the SEM, the powders were sprinkled onto conductive carbon tape. Representative 

micrographs were taken of the loose powders. 

A Microtrac II size analyzer provided the size distribution of -45 |im diameter 

powders. The apparatus uses laser light scattering to measure the size of particles suspended 

in a fluid medium. For the aluminum powders analyzed, the fluid medium was a mixture of 

one volume percent polyethylene glycol in deionized water. The polyethylene glycol, a 

surfactant, helped to dispersion agglomerated powder particles into discrete powder particles 

for more accurate powder size measurements. 

Pvcnometrv measurements 

The as-atomized aluminum powder densities were measured with pycnometry [69], a 

gas adsorption method used to measure the true density of a powder sample. Pycnometry 

accounts for any internal porosity that may be present inside the powder particles as a result 

of the gas atomization process. For this research, a Quantachrome MVP-1 Multipycnometer 

was used and operated according to the manufacturer's instructions listed in the operations 

manual. The adsorbate gas was ultra-high purity, zero grade (99.999%), helium gas with a 

dew point of less than -68°C. 
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Differential thermal analysis (DTA) 

Differential thermal analysis of the as-atomized powders had three intentions: to 

observe indirectly if the oxide surface film had been destroyed or remained in tact after 

heating above the melting point of aluminum; to measure the phase transformation 

temperatures in the Al-Ti-Y alloy and an Al-4.4%Cu-1.5%Mg alloy; to detect any melting 

point depression in the pure aluminum powders due to impurity elements. The analyses were 

done with a Perkin-Elmer DTA 7. Before measurements were recorded, the system was 

purged with argon. The samples were contained in alumina sample holders with heating and 

cooling rates of 10°C per minute. The pure aluminum, the Al-Cu-Mg alloy and the Al-Ti-Y 

alloy samples were heated to 700°C, 700''C, and 1200°C, respectively. The analyzed 

samples were saved for post-analysis examination. 

The Al-Cu-Mg alloy powder was manufactured by Valimet using a CIGA process 

with helium plus a maximum of two volume percent oxygen. The Al-Cu-Mg alloy powder 

was included in this research to observe the effect of magnesium on the vacuum hot 

degassing process in an aluminum alloy powder, as compared with pure aluminum powder. 

A DTA scan and quadrupole mass spectroscopic analyses were conducted and compared to 

draw some conclusions. 

Bulk powder chemistry 

The bulk chemical content was measured with inductively coupled plasma (ICP) 

using an Applied Research Laboratories ARL 3410 ICP. The metallic elements sought in the 

pure aluminum samples were silicon, iron, copper, magnesium. These metals are commonly 

the highest percentage metallic impurities in bulk aluminum. Any abnormally high contents 

could then be detected with a DTA scan as a freezing point depression. The analysis of the 

Al-Ti-Y alloy included the same list of elements as above, as well as yttrium and titanium. 

The oxygen and nitrogen contents of similar powders were measured with inert gas fusion 
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(IGF) using a LECO TC-436 oxygen and nitrogen analyzer. The carbon content was 

measured by a combustion technique using a Horiba EMIA-520 carbon and sulfur analyzer. 

The hydrogen contents of the powders were measured by a vacuum extraction technique [31 ], 

using instrumentation designed and built at the Ames Laboratory [30]. 

Aui>er electron spectroscopy (AES) 

A Perkin-Elmer PHI 660 scanning Auger microscope was used to measure the 

oxygen concentration profile inwards from the powder surface of the as-atomized powders. 

Argon ions were used to sputter the surfaces of the powders during depth profiling. For the 

pure aluminum powders, other depth profiles were made at the same time for the aluminum, 

nitrogen, and carbon concentrations. For the alloy powders, the respective major alloy 

additions were added to the profiles, copper and magnesium in the Al-4.4Cu-l.5Mg alloy and 

titanium and yttrium in the Al-Ti-Y alloy. 

For the analysis of GARS-2 powder, the powder was pressed into indium foil to hold 

the powder in place. During the analysis, the indium was sputtered and redeposited onto the 

powder particles, creating inaccurate depth profiles. To eliminate the need for indium foil, a 

decision was made to make a powder sample that in effect was its own substrate. The 

powder was cold isostatically pressed (CIP) into a rod shape, nominally 5 cm long, using 

6.35 mm diameter rubber bags and pressures of 103.5 MPa to 138 MPa. The first attempts 

failed to make straight rods. In these cases, the powder would CIP into several small pellets. 

Success was achieved by placing the bagged powder samples securely into stainless steel 

sheaths slightly larger in diameter than a CIP bag diameter and maintaining the samples in an 

upright position during CIP. The bags were secured in the sheaths by folding the ends of the 

bag over the edge of the sheath and firmly wrapping electrical tape over the bag end and 

around the sheath. A majority of the samples prepared this way were single straight rods. 

A section of a CIP rod greater than 16 mm was placed into the Auger and firactured 
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under vacuum to provide a "fresh" surface. Typical analyses consisted of six powder 

particles, two in the diameter range of 5 to 10 |im, two in the diameter range of 20 to 25 jam 

diameter, and two in the diameter range of 45 to 50 pm. Powder samples prepared in this 

fashion eliminated the need to handle loose powders and reduced redeposition problems. 

Ouadnipole mass spectroscopy (QMS) 

The QMS system used a lOOC Precision Mass Analyzer, manufactured by Uthe 

Technology International, to characterize the pure aluminum powders in this study. The gas 

species of interest were water and hydrogen. The need arose to design and to build a sample 

chamber capable of minimizing the introduction of atmospheric water and hydrogen into the 

sample chamber. Figure 3.2 shows the final design and set-up of the sample chamber was 

connected to the QMS chamber by means of a stainless steel o-ring sealed fitting, Ultra-Torr 

adapter, made by Cajon. The sample chamber consists of a quartz holding chamber and a 

quartz furnace crucible connected by the same type of union tee. A type K thermocouple was 

inserted in the leg of the union tee fitting to approximately measure the temperature of the 

sample during the analysis. 

The data generated from these experiments, i.e., the sample temperature (°C), the 

sampling time interval (minutes), system vacuum pressure (Torr) and the intensities of mass 

currents (amps) of the selected atomic mass units (amu), were collected at 0.25 minute 

intervals with the aid of a computer. The data acquisition program was written in BASIC by 

Jim Anderegg, an assistant scientist at the Ames Laboratory. The amu's selected were 2, 17 

and 18 that correspond to hydrogen gas (Ho), hydroxide (OH) and water (H2O), respectively. 

The GARS, CIGA-ATA, CIGA-VAL, and CAA aluminum powders were analyzed 

by QMS. All aluminum powders samples were densified by CIP at 138 MPa and retained in 

hermetically sealed CIP bags. The approximate green density of the CIP samples was 85-

90% of theoretical density, according to the compressibility curve in the ASM handbook 
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Figure 3.2. Schematic of the QMS sample chamber used for this research. 

[43]. Before each QMS experiment, a piece of a CIP sample was weighed and placed in the 

holding chamber. The sample weights were between 72 and 185 mg. Small samples were 

necessary to minimize saturation of the QMS instrumentation. 

The sample chamber was then evacuated with a roughing pump to 6x10'^ Torr. 

During this evacuation, the furnace crucible was heated with a hand held heat gun until the 

thermocouple registered 120°C. This heating assisted in the removal of any adsorbed water 

on the crucible walls. After the heated outgassing of the crucible, the furnace cmcible cooled 

to room temperature, and the rough pump valve was closed. The valve between the sample 

chamber and the QMS chamber was opened, exposing the sample chamber to an ultimate 

vacuum in the range of 2x10*8 Torr. The pumping speed of the turbo-pump was 200 liters 

per minute. The sample chamber was exposed to this vacuum level for about two hours. 

During this ambient temperature ultra-high vacuum (UHV) degassing, the sample chamber 

was monitored with the QMS to measure the relative hydrogen and water levels. 

After a two hour UHV degassing, the sample was moved, with a ferritic stainless steel 

pusher, from inside the holding chamber into the furnace crucible, a drop of about 18 cm. 
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The pusher was moved by the motion of a magnet held against the outside wall of the holding 

chamber without breaking vacuum. Before starting the furnace, the water and hydrogen 

levels were measured with the QMS for two minutes. The average of these measured 

intensities were recorded as the initial intensity (Iq). After the two minute hold, the fiimace 

was turned on and heated at a specified rate from room temperature to 635°C with an 

automated, proportioning, Eurotherm 808, controller. 

Three QMS experiments were done to accurately interpret and validate the results of 

this analytical technique. One experiment measured the gas evolution due only to the furnace 

crucible walls and the sheathed thermocouple inside the evacuated crucible, designated as 

"empty", i.e., no aluminum sample. Another experiment tested a pure hydrated alumina 

powder sample, A1203-3H20 (99.6%), grade C-33 from Alcoa, to record the relative 

positions of the water and hydrogen peaks. In this case, the powders were CIP consolidated 

at 449 MPa in 6.35 mm diameter rubber bags. A small sample, 0.75 mg, was tested to 

prevent water saturation of the QMS instrumentation. The heating rate for this experiment 

was 5°C per minute. The third experiment recorded the relative quantities of water and 

hydrogen evolving from a sample of the Alcoa 99.999% pure aluminum ingot used as the 

melt stock for the GARS pure aluminum powders. 

The results of the aluminum powders stimulated two more sets of experiments in an 

effort to better understand and characterize the QMS analysis technique. One test considered 

how changes in the heating rate, at constant sample density, would affect the water and 

hydrogen intensities. The specimen was the CAA aluminum powder CIP consolidated at a 

density of 92.3% of the pycnometry density, heated at three rates, 2.5°C f)er minute, 5°C per 

minute, and 10°C per minute. This powder was selected because of the definitive hydrogen 

peaks in the QMS spectra. 

The second examination maintained the heating rate constant, 10°C per minute, and 

varied the CIP pressure or green density of the CIGA-ATA CIP powders, again, to observe 
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any changes in the relative intensity of the water and hydrogen profiles. This powder was 

selected without any established criteria other than its availability and abundance. The 

densities of these samples, with respect to the pycnometry density, were 71.8%, 83.2%, 

86.7%, and 91.7% for CEP pressures of 5 ksi, 15 ksi, 20 ksi, and 30 ksi, respectively. 

X-ra\ diffraction fXRDi of Al-Ti-Ypowder 

Samples of the Al-Ti-Y alloy powder, at various conditions of heat treatment, were 

analyzed with a Philips Automatic Powder Diffraction, Model 1729, using copper Ka 

radiation and a scan rate of 0.057sec over the range of 15 to 120 degrees two-theta. The 

phases present in the as-atomized powder were not readily identifiable. To assist with the 

phase identification, samples of the as-atomized powders were heat treated, one sample at 

300°C for 1.25 hours and another at 500°C for 3 hours, to form equilibrium phases within the 

powder particles. The phases in the heat treated powders were identified using Joint 

Committee for Powder Diffraction Standards (JCPDS) cards (Table 3.2) and the 

characteristic peaks were labeled accordingly. The peaks on the XRD trace of the as-

atomized powder were then identified by overlaying the as-atomized powder scan onto the 

heat treated XRD trace. Before heat treating, the samples were encapsulated in quartz tubes 

with a cover gas of argon at a partial pressure of 254 Torr. The encapsulation tubes were 

then placed in an air furnace for the scheduled time and temperature. After heat treating, the 

hot samples were removed from the furnace and air cooled. 

Table 3.2. JCPDS cards used for phase identification in Al-Ti-Y powder alloy. 
^ompoimd JCPDS card number 
~Ai 04-0787 
AlsTi 37-1449 
P-AI3Y 20-0067 
AI2Y 29-0103 
AIYO3 33-0041 
AI5Y3O12 33-0040 
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Transmission electron spectroscopy (TEM) 

TEM was used as a complementary tool to AES to validate the oxide thickness 

measurements as well as determine the structure of the native surface oxide film on pure 

aluminum powders. Several methods of TEM sample preparation were employed to make 

foils to show the structure and thickness of the oxide film on aluminum powders. In 

considering the type of sample needed to accomplish these objectives, a fully dense sample 

was deemed the best solution. The foil sample needed to have sufficient strength in very thin 

sections, <100 ^m. Also, the consolidation process and sample preparation had to minimize 

alteration of the oxide thickness and the native oxide structure, respectively. The powders 

examined were the GARS-8 and the CAA aluminum powders. 

The consolidation sequence began with cold isostatically pressing (CIP) the powders 

at 138 MPa in 2.54 cm diameter rubber CIP bags. The resulting green density was about 

90% of the pycncmetry density. The samples were then machined to fit inside a cylindrical 

stainless steel can with a degassing vent pipe welded to the cap of the can, as shown in Figure 

3.3. The samples were then degassed in an evacuated electron beam melting (EBM) 

chamber. The degassing was conducted at room temperature under a vacuum of better than 

IxIO-6 Torr for 24 hours . After degassing and while the sample can was in the EBM 

chamber, the vent pipe was welded close. The can was then hot isostatic pressed (HIP) at 

310 MPa and 300°C for 4 hours. The low HIP temperature was chosen to minimize any 

oxide phase transformation from an amorphous structure to a crystalline structure which van 

Beek and Mittemeijer [70] have observed to occur in the temperature range of 400°C to 

450°C. A disadvantage of this sample preparation route is the original oxide film thickness 

may distort due to the powder deformation. 

After the HIP cycle, the stainless steel can was removed and 0.8 mm thick disks were 

cut from the samples. The disks were mechanically ground parallel to a nominal thickness of 

0.1 mm on 600 grit grinding paper. Three millimeter diameter foils were mechanically 
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Figure 3.3. HIP can geometry used for consolidating CIP aluminum powders. 

punched from the 0.1 mm thick disks. The TEM foils were dimpled on both sides using a 

VCR 500 series dimpler. The dimpling procedure was interrupted prior to perforation of the 

foil. 

Foil perforation was achieved using a Fischione twin-jet electrochemical polisher. 

The dimpling of the foils prior to the electrochemical thinning minimized the time in the 

etchant solution. The electrolytic thinning conditions were adapted from the procedure 

described by Conserva and Fiorini [71]. A 3:1 solution of methanol and nitric acid was used 

as the electrochemical etchant. The solution was cooled to a nominal temperature of -40°C. 

The etching solution was cooled with liquid nitrogen that was siphoned from a cryogenic 

dewar and circulated through a cooling coil with the use of a roughing pump. The sample 

current was set at 60 mA and the corresponding voltage was 40 volts d.c. The time for 

perforation ranged from two minutes to 4.5 minutes. To minimize oxidation of the 

perforated samples, they were individually stored in small, capped vials filled with methanol. 

A Philips CM-30 STEM, set at an excitation voltage of 300kV, was used to measure at the 

oxide thickness as well as attempt to determine the structure of the surface oxide film. 
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Powder oxidation 

Powder samples of the GARS-7, GARS-8, and GARS-9 as-atomized aluminum 

powders were collected for a series of post-atomization oxidation experiments. The powders 

were sieved in either a glove bag or glove box under an inert atmosphere and placed in glass 

vials. The uncapped vials and aluminum powders were then exposed to air with varying 

amounts of humidity. The exposure times were 0.3 hours, 3 hours, 10 hours, 30 hours, 100 

hours. 300 hours, 1000 hours, and 3000 hours. The powder samples exposed for 0.3 hours 

are designated as the unexposed state. After the designated time of exposure, the sample 

vials were capped and electrical tape was wrapped around the edge of the cap and vial to 

ensure no further exposure. The capped vials were stored in a vacuum dessicator box until 

the bulk oxygen content was measured. 

The GARS-7 and GARS-8 powders were exposed to air between the months of June 

and September, in Ames, Iowa, where the indoor humidity ranged from 45% to 50% [72]. 

The GARS-9 powder collected was evenly divided for two air exposure experiments. One 

exposure condition was ambient air during the months of December and May with humidity 

levels between 15% and 25% [72]. The second set of samples was placed in a vacuum 

dessicator box during the same time period. During this exposure, the dessicator box was 

filled with a flowing gas of UHP dry air. This experiment was designed to maintain a clean 

and fresh atmosphere throughout the exposure. 

The Al-Ti-Y alloy powder was also exposed to ambient air for similar length of times, 

from the unexposed state to 1000 hours, at nominal temperatures of 25°C, 162°C, and 300°C. 

The powders exposed at elevated temperatures were placed in quartz tubes closed at one end. 

The lubes and powders were placed upright in a vertical tube furnace for the specified 

periods of time. The experiments were conducted indoors between the months of February 

and May in Ames. Iowa. The relative humidity levels during this time were in the range of 

15% to 25%. 
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Powder explosibilitv 

The MEC of the pure aluminum powders produced for this research were measured 

with a standard explosibility test chamber as described in references [35, 73] at facilities 

ofjerated by Alcoa in Pittsburgh, PA. The GARS-3, GARS-4, GARS-5, GARS-6 aluminum 

powders provided preliminary results of the explosibility hazard of samples sieved in air and 

stored under an inert atmosphere. The time from atomization to the explosibility testing was 

not accurately measured, nor was the oxide film growth controlled. 

A more thorough experiment was designed to test the dependence of surface area and 

oxide film thickness on the explosibility of pure aluminum powders. The as-atomized 

GARS-9 powder was sieved in a glove box filled with an argon atmosphere into two size 

ranges, -106+75 |im and -38 ^m. To grow the as-atomized oxide film, the powder samples 

were exposed to ambient air for 10, 100 and 1000 hours, at either room temperature, 

nominally 25°C, or 300°C (Table 3.3). The 300°C exposure was completed in a manner 

Table 3.3. Experimental matrix to evaluate the dependence of oxide film thickness 
and surface area on the MEC of pure aluminum powders. 

Sample Powder Size Exposure Time Exposure 
Indentification (^m) (Hours) Temperature (°C) 

-38/10/25 -38 10 25 
-38/10/300 -38 10 300 
-I06-H75/10/25 -106+75 10 25 
-106+75/10/300 -106+75 10 300 
-38/100/25 -38 100 25 
-38/100/300 -38 100 300 
-106+75/100/25 -106+75 100 25 
-106+75/100/300 -106+75 100 300 
-38/1000/25 -38 1000 25 
-38/1000/300 -38 1000 300 
-106+75/1000/25 -106+75 1000 25 
-106+75/1000/300 -106+75 1000 300 

similar to the thermal oxidation of the Al-Ti-Y powder. At the end of the defined exposure 

time, several powder characteristics were measured, namely, bulk oxygen content, AES 

oxide thickness, particle size distribution and MEC. The -38/1000/300 sample was the only 

1000 hour exposure sample tested for MEC due to limited financial resources. 
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Powder Consolidation 

Consolidation sequence 

Due to limited powder quantities, only small consolidated samples could be 

fabricated. The consolidation of the pure aluminum powders followed a modified 

consolidation route (Figure 3.4a) [67,74], typically used for aerospace aluminum powder 

components (Figure 3.4b) [1]. The consolidation experiments used the GARS-4 aluminum 

powders and CAA pure aluminum powder from Alcoa. Rubber CIP bags, 2.54 cm diameter, 

were filled with -45 |jm powder to a nominal height of 8 cm. Following the CIP at 138 MPa, 

the CIP samples were machined to fit into stainless steel cans (Figure 3.3) with dimensions of 

1.90 cm diameter, 5 cm tall and a wall thickness of 0.055 cm. Prior to welding the can 

closed, a vent pipe for the subsequent outgassing treatment was installed on the top of the 

can. 

Two degassing procedures, vacuum hot degassing (VHD) and vacuum cold degassing 

(VCD), were conducted prior to HIP of the aluminum powders. The VHD treatment 

consisted of heating the sample and HIP can to a temperature of 550°C under a vacuum of 

IxlO"^ to 1x10"^ Torr for four hours. After the VHD, the vacuum furnace was backfilled 

with UHP argon gas. The sample was removed from the furnace and placed in an argon 

filled zip-lock bag. The sample was immediately transported to an electron beam melting 

chamber and evacuated again at room temperature. After evacuating the sample overnight, 

about 16 hours, to a similar vacuum level as before, the vent pipe was welded shut. The 

VCD approach involved a room temperature evacuation of the powder sample and can in the 

electron beam melter over a period of about 16 hours at a vacuum level ranging from 1x10"^ 

to IxlO"^ Torr. The vent pipe was then welded shut. All the sealed evacuated cans were then 

HIP at 550°C and 310 MPa for four hours. Sections of these consolidated samples were 

prepared for metallographic examination. The remaining pieces were fabricated into 

mechanical propeny test specimens. Specimens of the GARS-4 and CAA, each consolidated 
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a. Modified consolidation sequence for aluminum powders used for this research. 
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Aluminum 

Hot 
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Can 

Final 
Shaping 

Vacuum 
Hot Press 

b. Conventional consolidation sequence for aluminum powders used in aerospace 
applications as described in [1]. 

Figure 3.4. Consolidation sequences of aluminum powder. 

by either the CIP-VHD-HIP or the CIP-VCD-HIP processing route, were evaluated with 

QMS. 

Tne consolidated sample densities were measured by hydrostatic immersion also 

referred to as Archimedes method. The density, p (g/cnrP). of the sample is determined 

according to equation 3.1, where M^ry (grams) is the weight of the sample in air and Mwet 

(grams) is the weight of the sample measured in a fluid of known specific gravity, SGfiuid 

(g/cm^). Because some samples were porous, all the surfaces of the samples were lightly 

sprayed with a polyurethane vamish to prevent water infiltration into the pore network of the 

consolidated powder product. 

_ ^dry ^ _ 
^ " Uf \ fluid 

\^dry ^wetj 
(3.1) 
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Post consolidation heat treatment 

To test the applicability of the VCD procedure to aluminum P/M components used at 

elevated temperatures, sections of the GARS-4, CIGA-ATA, and CAA CIP-VCD-HIP 

samples were heat treated at 3(X)°C for one hour. A similar experiment was conducted on 

another section of the CAA CIP-VCD-HIP sample heat treated at 550°C for one hour. The 

CIP-VCD-HIP samples were encapsulated in quartz tubes under an argon partial pressure of 

10 inches of Hg. The tubes were placed in a muffle air furnace at the appropriate temperature 

and held for one hour. Sections of the heat treated samples were prepared for mechanical 

property testing and for QMS evaluation. Both these examinations made direct comparisons 

between the non-heat treated and the heat treated samples. 

Mechanical Property Measurements 

Punch testine 

The small size of the consolidated samples and the need to maximize the statistical 

results of the mechanical properties required the use a small punch test. Punch testing [75] is 

a method for measuring a select group of mechanical properties from a load versus deflection 

curve. The raw data was initially recorded on x-y chart recorder paper. Later, a computer 

collected the data for faster and easier data analysis. The measurable properties from the raw 

data are coupon thickness, to (mm), yield load, Pyjeid (N), maximum load, Pmax (N). fracture 

energy in Ef (N mm). and fracture deflection, 5f (mm). With the aid of empirical equations 

3.2 and 3.3, yield stress, ayieid (MPa). and fracture strain, Ef (mm/mm) were calculated, 

respectively. 

Figure 3.5 is used for the following description to show how the punch test data was 

determined. The yield load was determined as the intersection of the two tangents shown on 

the punch test curve. The maximum load was defined at the point were the slope of the curve 

was zero. For direct relative comparisons, the deflection at maximum load was arbitrarily 
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chosen as the point of fracture deflection. The fracture energy value required a measurement 

of the area under the load-deflection curve, as shaded in Figure 3.5. 

The CIP-VHD-HIP, CIP-VCD-HIP and CIP-VCD-HIP-heat treated samples were cut 

transversely into 0.8 nun thick disks and then mechanically ground with 600 grit grinding 

paper to a nominal 0.6 nun thickness. Each disk yielded three, 6 mm diameter test coupons 

that were cut using a plunging electrodischarge machining (EDM) technique. The test 

coupons were ground to a nominal thickness (to) of 0.500±0.010 mm on 1500 grit grinding 

paper. The 6 mm diameter coupons were tested with a punch speed of 0.127 cm per minute. 

Deflection, 5 (mm) 

Figure 3.5. Example of the punch test raw data as recorded on a load-deflection curve. 

max 

Tangents to Curve 

Area Under Curve= 
Fracture Energy 
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CHAPTER 4. EXPERIMENTAL RESULTS 

Powder Characterization of -45 Diameter As-atomized Powders 

Shape and size distribution 

The shape of the aluminum powders is idiosyncratic with the gas atomization method 

used to manufacture the aluminum powders. To illustrate these idiosyncrasies of the CAA, 

CIGA-ATA and GARS atomization processes, SEM micrographs were taken of the as-

atomized powder particle shapes. The shape of the GARS aluminum powder is spherical 

(Figure 4.1) with some satellites, i.e., small powders attached to larger particles and 

agglomerations of small particles. The CIGA-ATA powders (Figure 4.2) range from 

spherical to irregular shapes. The CAA powders (Figure 4.3) have a ligmental or irregular 

shape. 

Table 4.1 shows a list of parameters describing the size distributions of the GARS, 

Figure 4.1. SEM photograph of GARS aluminum powder. 
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Figure 4.2. SEM micrograph of the as-atomized CIGA-ATA pure aluminum powder. 

Figure 4.3. SEM micrograph of the as-atomized CAA aluminum powder. 
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CIGA-ATA, and CAA pure aluminum powders. The same table shows the size distribution 

of the Al-Ti-Y alloy powders manufactured with the GARS technology. The columns are the 

percentile points, di6, dso, and d84, which indicates the measured volume percent of powder 

which is smaller than the indicated size. The CSA colunm is the calculated surface area as 

determined with the Micro Trac II software. Figure 4.4 shows pictorially the size distribution 

of the GARS-4, CIGA-ATA, CIGA-VAL, and CAA aluminum powders. The GARS-4 

aluminum powder, a representative of the other GARS powders, was selected for this figure, 

because this powder was used in the consolidation and QMS experiments for comparison 

with the CIGA-ATA and CAA powders. 

Table 4.1. Particle size distribution data from a Microtrac II particle size analyzer. 
Powder di6 dso d84 CSA 
Type (Hm) (pun) (|im) (m^/cm^) 

GARS-3 12.15 24.16 41.87 0.330 
GARS-4 10.66 23.45 44.94 0.356 
GARS-5 10.85 21.40 39.38 0.364 
GARS-6 12.01 25.43 46.58 0.325 
GARS-7 14.25 27.89 47.37 0.280 
GARS-8 12.28 26.50 46.50 0.328 
GARS-9 12.23 24.29 39.95 0.343 
Al-Ti-Y 10.20 20.43 35.14 0.402 

CIGA-VAL 10.11 21.79 41.40 0.351 
CAA 12.08 22.16 39.23 0.331 

CIGA-ATA 2.17 4.99 11.09 1.676 

The size distribution data for the CAA aluminum powder is erroneous due to the 

irregular shape of the powder as observed with the SEM micrograph in Figure 4.3. The 

algorithm used by the computer software of the Micro Trac II instrumentation uses the 

assumption that all powder particles passing through the laser light are spherical. The 

contribution of each irregular shaped particle to the overall light scattering pattern depends 

greatly on the orientation of the irregular shaped particle with respect to the laser beam [76]. 

Kaye and Trottier continue to explain that irregular shaped particles presented to the laser 

from the broadest side, in effect, distorts the coarse end of the size distribution, making the 
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size distribution appear more coarse. On the other hand, irregular shaped particles having a 

parallel orientation to the incident beam has the effect of overestimating the quantity of fines 

in the size distribution. For irregular shape powder particles, the Micro Trac II assigns an 

apparent spherical powder size based on the "diameter" of the projected area of the powder 

particle on the detector of the Micro Trac II instrumentation. 
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Figure 4.4. Cumulative size distributions of the GARS-4, CIGA-ATA, CIGA-VAL, 
and CAA aluminum powders. 

Density measurements and specific surface area 

The powder density and specific surface area measurements are two more 

characterization methods to describe the aluminum powders. The powder density, measured 

with pycnometry, was determined to assess the theoretical density of the aluminum powders 

listed in Table 4.2. The standard deviation of the density values for the all the aluminum 

powders is less than 0.5% of the measured value. The measured density values of the pure 

aluminum powders are slightly different than the theoretical density of aluminum, 2.70 grams 

per cubic centimeter. The difference is possibly due to trace element chemical variations 

within the powders. Another possible reason for the difference are errors in the pycnometry 
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calibration values which are used for the calculation of the pycnometry density. 

Table 4.2 also lists the specific surface areas of the powders. The specific surface 

areas were determined from either BET surface area measurements or calculated from the 

particle size distribution data and the pycnometry density. The calculated specific surface 

area, in this case, is the quotient of the CSA column in Table 4.1 divided by the respective 

pycnometry density value in Table 4.2. 

Table 4.2. Pycnometry density and specific surface areas of aluminum powders. 
Powder Pycnometry Density Surface Area Determination 

(g/cm3) (m2/g) of Surface Area 
GARS-3 2.652±0.007 0.122 Calculated 
GARS-4 2.64l±0.013 0.131 Calculated 
GARS-5 2.655±0.008 0.134 Calculated 
GARS-6 2.693±0.005 0.120 Calculated 
GARS-7 2.677±0.007 0.103 Calculated 
GARS-8 2.670±0.005 0.121 Calculated 
GARS-9 2.700±0.008 0.127 Calculated 
Al-Ti-Y 2.810±0.009 0.143 Calculated 

CIGA-VAL 2.659±0.006 0.132 Calculated 
CAA 2.699±0.004 0.680 BET 

CIGA-ATA 2.667±0.005 0.619 BET 

Pure aluminum powder analytical characterization 

Bulk chemistry 

Bulk chemistry measurements provide chemical information about the aluminum 

powders which is relevant to three areas of aluminum powder processing, i.e., atomization. 

consolidation, and mechanical property data interpretations. For this research, bulk chemical 

measurements were made of the GARS melt stock before atomization and the as-atomized 

GARS aluminum powders after atomization. These measurements help identify problems 

related to reactions between the molten aluminum and the refractory materials in contact with 

the liquid aluminum. Consolidation procedures should also be properly selected as the 

chemistry of the aluminum powders would affect elevated temperature processes. For 

example, elevated levels of trace elements may combine with the aluminum to form low 
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melting point eutectic phases which could distort a consolidated component, creating a scrap 

work piece and decreasing the component output yield. Another benefit of a bulk chemical 

analysis is to assist with a proper interpretation of a chemical dejjendent mechanical property 

data, such as yield stress. 

The melt stock bulk chemistries are summarized in Table 4.3. The NASA aluminum 

was measured at the Ames Laboratory with Laser Ion Mass Spectroscopy (LIMS) and the 

Alcoa ingot was measured at Alcoa using Gas Discharge Mass Spectroscopy (GDMS). Both 

methods of chemical analysis scan the entire period table of the elements and, hence, are 

semi-quantitative. In other words, the data is a first approximation of the actual chemistry. 

Note, the GARS-2 and GARS-3 powders were produced from the NASA aluminum ingot 

and the remaining GARS powders were manufactured with the Alcoa aluminum ingot. 

Table 4.3. Bulk chemical measurements of melt stock for GARS aluminum powders. The 
NASA aluminum was measure by LIMS and the Alcoa was measured by GDMS. 

Element A1 Si Fe Mg Cu C O N 
(ppmw) (ppmw) (ppmw) (ppmw) (ppmw) (ppmw) (ppmw) (ppmw) 

NASA Balance 3.6 7.0 0.3 20 3.0 35 <1 
Alcoa Balance 4.3 0.2 0.6 0.4 0.4 6 1.9 

Table 4.4 shows the bulk chemistries of the as-atomized GARS aluminum powders as 

measured with ICP-AES. ICP-AES is a quantitative measure of the aluminum powders, 

because the method only detects operator selected elements. The GARS-2 aluminum powder 

has a significantly different chemistry than the NASA melt stock. This is due to the molten 

aluminum reacting with the soft-fired mullite Norton crucible prior to gas atomization. The 

aluminum melt stock for the subsequent GARS atomization runs was melted in hard-fired 

high-purity aluminum crucibles. As a result, the elemental contamination of these powders 

were significantly less than for the GARS-2 powder and are in the neighborhood of the Alcoa 

ingot melt stock. 
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Table 4.4. ICP-AES and IGF measurements of as-atomized pure aluminum powders. 
Element A1 Si Fe Mg Cu C 0 N 

(wt. %) (wt. %) (wt. %) (wt. %) (ppmw) (ppmw) (ppmw) 
GARS-2 Balance 3.8 0.835 1150 1530 40 
GARS-3 Balance <0.008 0.032 <0.007 0.056 66 965 10 
GARS-4 Balance <0.002 <0.005 <0.002 <0.002 25 761 3 
GARS-5 Balance <0.020 0.020 <0.0002 <0.002 79 1060 6 
GARS-6 Balance 0.006 0.0106 0.0002 <0.03 58 595 2 
GARS-7 Balance <0.05 0.55 <0.02 <0.02 76 550 10 
GARS-8 Balance 0.013 0.011 0.0002 <0.02 37 598 1 
GARS-9 Balance 0.0046 0.0026 0.0002 <0.03 595 4 

CAA Balance 0.012 0.0065 0.0004 <0.02 141 3312 28 
CIGA- Balance 0.11 0.17 <0.004 <0.005 84 5446 52 
ATA 

Differential thermal analysis (DTA) 

The DTA results for this research show the melting point depression of the pure 

aluminum powder due to the presence of trace elements that may or may not be measurable 

with ICP-AES. Also, DTA is an analytical method to complement phase identification and 

reaction chemistries of the aluminum alloy powders. 

A DTA scan of the Alcoa pure aluminum ingot (Figure 4.5) shows the heating and 

cooling curves at 10°C per minute. The heating curve has a single on-set temperature of 

660.2°C which corresponds well with the published value of 660°C. From the calibration 

with a K2SO4 standard at 10°C per minute, the measured on-set value is reproducible to 

within 1.4°C. A representative DTA trace of the GARS aluminum powders (Figure 4.6) 

illustrates the reactions observed in the during heating and cooling cycles. The heating curve 

has two on-set temperatures characteristic of a eutectic phase transformation in addition to 

the expected melting endotherm of pure aluminum. The eutectic reaction temperature 

identified on the DTA traces is similar to the published aluminum-iron eutectic on the 

aluminum rich side of the aluminum-iron phase diagram [77] at 98.1 weight percent 

aluminum and 655°C. The GARS-3 and GARS-5 powders were the only samples to have 

only one measurable on-set temperature upon heating. All the cooling curves have only one 

on-set temperature with no more than 9°C of undercooling. Overall, these DTA scans 
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Figure 4.5. DTA trace of Alcoa pure aluminum ingot. 
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Figure 4.6. DTA scan of the GARS-6 pure aluminum powder in the as-atomized state. 
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indicate a slight melting point depression due to iron contamination in the aluminum 

powders. Table 4.5 lists the on-set temperatures for the reactions observed in pure aluminum 

powders. 

Post-analysis examination of the DTA samples revealed that the GARS powders had 

agglomerated during the analyses. A similar post-DTA examination of a CAA pure 

aluminum powder, conducted by Dr. James Foley [78], showed the samples to be loose 

powders. These results seem to indicate a difference in the oxide film thickness between a 

GARS pure aluminum powder and a CAA pure aluminum powder, i.e., the former has a 

thinner oxide film than the latter. These post-DTA examinations correlate with the 

observations made during AES analysis of the GARS and a CAA aluminum powder, refer to 

the AES oxide thickness section in this chapter. 

Table 4.5. DTA on-set temperatures of reactions during the heating and cooling of the Alcoa 
pure aluminum ingot and the GARS pure aluminum powders. 

Powder Heating Curve Cooling Curve 
Sample First On-set (°C) Second On-set (°C) First Qn-set (°C) 
GARS-3 650 None 6531^ 
GARS-4 656.4 658.3 652.4 
GARS-5 656.2 None 652.6 
GARS-6 654.4 657.8 651.6 
GARS-7 650.5 653.5 649.7 
GARS-8 656.4 659.9 652.2 

Alcoa ingot 660.5 None 654.7 

Ouadrupole mass spectroscopy (QMS) 

QMS was used to measure the water and hydrogen evolution from the GARS, CIGA-

ATA, CIGA-VAL, and CAA aluminum powders under a simulated vacuum hot degassing 

(VHD) procedure. To facilitate direct comparisons between the QMS spectra of different 

aluminum powder samples, the QMS plots show the normalized mass currents of the water 

and hydrogen profiles as a function of temperature. The purpose for the normalization is to 

eliminate any influence of sample mass and differences of the initial mass current for either 
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tiie water or the hydrogen profiles. For a given gas species, the normalized mass current is 

the measured mass current intensity, 1, divided by an averaged initial mass current intensity, 

Iq. Iq is the average of eight intensity measurements after the two hour UHV ambient 

temperature degassing procedure (Figure 4.7) and before starting the furnace for a QMS 

analysis under continuous heating conditions. 

Figure 4.8 and Figure 4.9 are the relative water and hydrogen profiles of the "empty" 

crucible and the Alcoa aluminum ingot, respectively. The "empty" crucible results show 

there were no contributions from system dependent water to the QMS results of all the 

samples tested. The same may be said about the hydrogen profile of the empty crucible, 

other than an insignificant quantity of hydrogen, relative to the powder samples tested, 

evolved at temperatures greater than 550°C. One possible source for this residual hydrogen 

is outgassing of the stainless steel sheathed thermocouple. 

The Alcoa aluminum ingot QMS results (Figure 4.9) indicate hydrogen evolution 
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QMS plot illustrating the signal decrease of the water and hydrogen during 
the two hour UHV ambient temperature degassing procedure. 
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Figure 4.9. QMS results of 99.999% Alcoa aluminum ingot heated at 5°C/min. 
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throughout the continuous heating of the sample. The spikes in the hydrogen profile are 

characteristic of hydrogen trapped inside the volume of the ingot. Similar "pulses" were 

observed by Outlaw et al. [79]. The temperature of the last broad peak, between 320°C and 

540°C, also seems to be characteristic of hydrogen evolving from the bulk volume. This last 

observation is important to keep in mind for the QMS characterization of the consolidated 

aluminum powders by CIP-VHD-HIP and CIP-VCD-HIP. 

The hydrated alumina sample, shown in Figures 4.10a and 4.10b, shows the relative 

water peak positions as a function of temperature. These water peaks are characteristic of the 

type of chemisorbed water present in the surface oxide films of aluminum powder particles. 

The following QMS spectra will be described with an inferred reference to the thermal 

decomposition sequence shown in equation 2.11 of Chapter 2. The first relative maximum of 

the water signal corresponds to the thermal decomposition of the trihydrate oxide to the 

monohydrate oxide. The signal begins to rise at about 100°C to a relative maximum at about 

235°C. The signal then decreases to a local minimum at about 400°C. A second local 

maximum (Figure 4.10b) observed to occur at 520°C, indicates the decomposition of the 

monohydrate oxide to an anhydrous oxide. The observed hydrogen signal is identified as part 

of the cracking spectra of water in a QMS system [80]. 

Figures 4.11,4.12.4.13, and 4.14 are QMS plots of the CAA, CIGA-ATA, CIGA-

VAL, and GARS pure aluminum powders, respectively. For the CAA powder, the water 

signal increases to a maximum at about 150°C. This intensity rise is due to physiosorbed 

water being removed for the powder surfaces. As the physiosorbed water content diminishes, 

the mass current ratio of the water signal returns to the base line level. In the same profile, a 

small bump occurs at about 205°C, which may indicate chemisorbed water being removed 

from within the oxide film. The hydrogen curve starts its climb to a local maximum at 

150°C. This peak corresponds to the QMS cracking spectra of water in the QMS system. As 

the temperature 
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a. Overall QMS water and hydrogen scan of the trihydrate alumina. 
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b. Expanded view of QMS scan to highlight the water peak at about 520°C. 

Figure 4.10. QMS water and hydrogen spectra of the trihydrate alumina, 
(A1203-3H20) heated at 5°C per minute. 
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increases, the signal decreases slightly, but then rises sharply to another local maximum in 

the range of 370°C to 440°C. This peak is characteristic of the trihydrate decomposing to the 

monohydrate and results from the reaction between the water in the oxide film and the 

aluminum diffusing through the oxide film. Above 440°C, the trihydrate has nearly 

completed its transformation to the monohydrate and, as a result, the hydrogen intensity 

decreases to a local minimum at 500°C. Continued heating of the sample begins the 

decomposition of the monohydrate to the anhydrous oxide, as indicated by the rise of the 

hydrogen intensity from 500°C to near 550°C. Again, the hydrogen being detected is a 

product of the reaction between the water and aluminum in the oxide film. The hydrogen 

profile decreases above 550°C due to the near completion of the transformation from the 

monohydrate oxide to the anhydrous oxide. 

A similar detailed analysis was made of the CIGA-ATA, CIGA-VAL, and GARS 

aluminum powders. In the case of the CIGA-ATA aluminum powders (Figure 4.12) the 

water signal intensity is nearly three times higher than the CAA aluminum powders. The 

large increase would seem to indicate the presence of a significant quantity of physiosorbed 

water on the CIGA-ATA aluminum powder surfaces. The hydrogen profile of the CIGA-

ATA aluminum powder is similar in shape and intensity as the CAA aluminum powder. The 

previous description of the CAA aluminum powder hydrogen profile could be restated for the 

hydrogen profile of the CIGA-ATA aluminum powder. The position of the last peak in the 

hydrogen profile is about 600°C. 

The CIGA-VAL aluminum powder has a water signal intensity that is similar to the 

CAA, although the peak of the water signal has shifted to about 100°C. Above 100°C, the 

water signal decreases in a similar manner as the water signals of the CAA and CIGA-ATA 

aluminum powders. The hydrogen profile of the CIGA-VAL powder sample is similar to the 

hydrogen profile of the CIGA-ATA powder sample. The last peak of the hydrogen profile is 

at about 580°C. 
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The GARS aluminum powder has a similar QMS water profile as the CAA and both 

CIGA aluminum powders, with a reduced intensity. The hydrogen profile is initially 

different from the conmiercial aluminum powders. There is no apparent or distinct local 

maximum around 150°C, related to the cracking spectra of the water, which was observed in 

the QMS results of the conmiercial aluminum powders. No explanation is available for the 

absence of this hydrogen peak. However, a close analysis of the hydrogen profile does show 

a significant change of slope at 125°C, which may indicate the onset of the thermal 

decomposition of the alumina trihydrate phase. The slope change also corresponds to the 

local minimum in the water profile at I25°C. Continued heating above 125''C of the GARS 

powder sample shows the hydrogen profile to have similar features as the commercial 

aluminum powders with about half the intensity. 

Direct comparisons of the water spectra for the CAA, CIGA-ATA, CIGA-VAL, and 

GARS powders (Figure 4.15) shows the water signal intensities vary due to the level of 

physiosorbed water on the powder surfaces. A composite plot of the hydrogen profiles for 

the pure aluminum powder investigated (Figure 4.16) shows the distinguishable differences. 
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Figure 4.11. Representative QMS plot of the CAA aluminum powder heated at 5°C/min. 
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Figure 4.12. Representative QMS plot of CIGA-ATA aluminum powder heated at 5°C/min. 
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Figure 4.13. Representative QMS plot of CIGA-VAL aluminum powder heated at 5°C/min. 
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Figure 4.14. Representative QMS plot of GARS-4 aluminum powder heated at 5°C/min. 
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Figure 4.15. Comparison of the water evolution from the GARS, CIGA-VAL, CIGA-ATA 
and CAA pure aluminum powders during the QMS experiments. 
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Figure 4.16. Comparison of the hydrogen evolution from the GARS, CIGA-VAL, CIGA-
ATA, and CAA pure aluminum powders during the QMS experiments. 

previously noted, of the hydrogen signals. The area under a hydrogen curve, at constant 

heating rate and compact density, is a relative measure of the quantity of hydrogen evolving 

from the aluminum powder surfaces, and in turn, could be directly related to the amount of 

chemisorbed water in the oxide film. The perimeter of the area under a hydrogen profile is 

defined by the start and stop temperatures of the experiment, the hydrogen curve, and a 

normalized mass current value of one. An examination of the areas under the curves for the 

various aluminum powders (Table 4.6) shows the GARS-4 aluminum powder to have the 

least amount of evolved hydrogen and the CAA aluminum powder to have the most evolved 

hydrogen. Both CIGA aluminum powders are intermediate of the GARS-4 and CAA 

aluminum powders. Again, the hydrogen measured is a product of the water chemisorbed 

into the oxide film during gas atomization. 

Changes in heating rate of powder samples with the same green density (Figure 4.17) 

may affect the QMS results significantly. One observation is a change of the on-set 
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Table 4.6. Relative areas under the water and hydrogen profiles for the powder samples. 
Sample and Area Under Area Under 

Figure Number Water Profile Hydrogen Profile 
Empty Crucible / Figure 4.8 ^28 63 
Alcoa A1 Ingot / Figure 4.9 -30 170 
GARS-4 Powder / Figure 4.11 1335 2399 
CIGA-ATA Powder / Figure 4.12 5429 3920 
CIG A-V AL Powder / Figure 4.13 1977 4055 
CAA Powder / Figure 4.14 1836 4835 

temperature of the last peak in each signal profile, which increases with increasing heating 

rate, and is probably associated with an activation energy of some kinetic process. Increasing 

the heating rate also increases both the signal intensity and the relative area under the 

hydrogen curves. The signal increases are due to a state of equilibrium between the rate of 

hydrogen evolution from the sample and the pumping speed of the turbo-pump. In other 

words, higher heating rates stimulate faster hydrogen evolution form the sample, and because 

the turbo-pump does not change speed, more hydrogen is detected by the QMS 

instrumentation. Another contribution to the increased hydrogen is due to the fact that 

hydrogen gas is difficult to remove from a vacuum chamber. Changes in the QMS data may 

also occur for samples with different densities at the same heating rate (Figure 4.18). 

Samples with higher densities and similar masses tend to show higher signal intensities and 

larger relative areas under the hydrogen profiles, particularly with respect to the first peak of 

each hydrogen profile at about 425°C. 

AES Oxide thickness 

The AES data was collected to determine the relative oxide thickness of the CAA, 

CIGA-ATA, and GARS aluminum powders and attempt to relate the thickness measurements 

to the respective atomization process. Table 4.7 shows the AES oxide thicknesses of all the 

GARS pure aluminum powders, the CAA pure aluminum powder and the both CIGA pure 

aluminum powders. Representative AES concentration depth profiles for the GARS and 

CAA aluminum powders are shown in Figure 4.19 and Figure 4.20, respectively. The 
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Figure 4.17. The effect of different heating rates during a QMS examination of CAA 
aluminum powder at a constant sample density of 92.3%. 
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Figure 4.18. The effect of sample density variations during QMS analyses of CIGA 
powder at constant heating rate of 10°C per minute. 
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thickness measurements recorded in Table 4.7 were made according to the method defined by 

Norell et al. [81] and is schematically shown in Figure 4.21. The oxide thickness is measured 

at the fifty percent level of the maximum oxygen content at the surface of the powder and the 

apparent minimum or baseline oxygen content inside the powder. The AES values for the 

GARS-7, GARS-8 and GARS-9 aluminum powders are representative of the unexposed 

oxide film thickness. The GARS aluminum powders generally have a thinner oxide film than 

the CAA aluminum powders. The oxide thickness of the CIGA-ATA aluminum powder is 

Table 4.7. AES oxide thickness measurements of as-atomized 
aluminum powder particles. 

Powder Type Oxide Thickness (A) 
GARS-2a 80.7 11.2 
GARS-3 68.7 ± 37.6 
GARS-4 30.2 ± 7.8 
GARS-5 82.2 ± 58.1 
GARS-6 46.2 18.7 
GARS-7 30.0 ± 4.8 
GARS-8 16.6 ± 4.7 
GARS-9 26.9 4.4 
CIGA-ATA 41.1 ± 23.0 
CIGA-VAL 159.0 ± 28.7 
CAA 124.5 ± 9.3 

^ AES data collected with GARS-2 aluminum powder pressed into indium foil. 
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Figure 4.19. Representative AES concentration depth profile for GARS aluminum powders. 
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comparable to the GARS aluminum powders while the CIGA-VAL aluminum powder has 

the thickest oxide film. In general, inert gas atomized aluminum powders have thinner oxide 

films seemly due to less oxygen exposure during the inert gas atomization process than 

during the CAA process. 
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Figure 4.20. Representative AES concentration depth profile for CAA aluminum powders. 
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Figure 4.21 Example AES oxygen depth profile for the measurement method used 
to determine the oxide thickness of aluminum powders. 
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The variance of the AES oxide film thickness data has two possible sources of error. 

In some cases, a high carbon content was noted by the AES operator during sputtering of the 

powder surfaces. The carbon has the potential to mask the oxygen signal from the detector, 

reducing the measured oxygen content of the initial layers. The outcome is a measured oxide 

thickness that is thinner than the actual thickness. Another possible reason for the oxide 

thickness variances is due to a non-uniform oxide thickness on aluminum powders of the 

same size. The non-uniform thickness argument was presented by Norell et al., however, the 

AES results used in this research show no apparent dependence of oxide thickness on similar 

powder particle sizes. 

One process variable that may influence the AES oxide thickness is the pouring 

temperature of the molten aluminum. Figure 4.22 is a plot of the GARS oxide thickness data, 

presented in Table 4.7. as a function of the pouring temperature of the aluminum melt. The 

GARS-2 AES data is not included in this figure, because of different atomization conditions 

and a different AES analysis than that used for the later GARS powders. For reference, the 

AES oxide thicknesses of the CAA, CIGA-ATA, and CIGA-VAL aluminum powders are 

also plotted in Figure 4.22, as well as the range of the expected atomization pouring 

temperature. 

The outcome of the GARS aluminum powders is an expanding range of the measured 

oxide thickness with increasing pouring temperature. The AES samples of the GARS 

powders, labeled with the closed symbols, were not collected under an inert atmosphere 

during post-atomization handling of the powder. The exposure of these powders to the 

ambient air allowed the oxide to grow to varying degrees before AES samples were prepared, 

and hence, the wide variances of the oxide thickness measurements. On the other hand, the 

GARS powders collected under an inert atmosphere during post-atomization handling, 

labeled with the open symbols, show significantly less scatter of the oxide thickness 

measurements, indicating the pouring temj)erature of the molten aluminum is not a strong 
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Figure 4.22. AES oxide film thickness as a function of pouring temperature. 

variable in determining the oxide thickness. Also, the small variances seem to be a good 

measure of the initial oxide thickness which develops during a GARS atomization process. 

Transmission electron microscopy (TEM) 

TEM of the CAA and GARS-8 aluminum powders, shown in Figure 4.23 and Figure 

4.24, respectively, was conducted to directly measure the oxide film thickness of aluminum 

powders, measure the oxide film chemistry with EDS, and determine if the oxide film 

structure is amorphous or crystalline. The thickness of the oxide films were measured with 

an image analysis software package. The average oxide film thickness of the GARS-8 

sample was 107±37 A and the average oxide film thickness of the CAA aluminum powders 

was 116±33 A (Figure 4.25). The measurements were made on other brightfield micrographs 

of the same sample in the areas similar to those indicated by arrow markers on Figure 4.23 

and Figure 4.24. 
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Figure 4.23. TEM micrograph and SAD pattern of the oxide film on CAA aluminum 
powder. The arrows indicate the oxide thickness measurements. 
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Figure 4.24. TEM micrograph and SAD pattern of the oxide film on GARS aluminum 
powder. The arrows indicate oxide thickness measurements. 
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GARS CAA 

Powder Sample 

Figure 4.25. TEM measurements of the oxide film thickness on the GARS-8 
and CAA pure aluminum powders 

The measured points were selected at the thinnest, darkest, linear features of the oxide 

film in the microstructure. The GARS-8 oxide thickness measurements were made on the 

powder particles. The CAA sample did not have individual powder particle features that 

were observed on the GARS-8 aluminum powders. In the case of the CAA microstructure, 

the oxide thickness measurements were made at the boundaries between two adjacent prior 

powder particles. The boundary measurements were then divided by two for the oxide film 

thickness measurements, assuming the oxide film thickness of each powder panicle 

contributed equally to the boundary thickness. 

The TEM oxide thickness results agree reasonably well with the AES data of the 

CAA aluminum powders and the GARS-8 aluminum powders after being exposed to ambient 

air for 300 hours. The TEM oxide thickness measurements are physical measurements, made 

with some degree of subjectivity, which indicate the thickest oxide film to exist on aluminum 

powders. The AES oxide thickness measurements are made at the fifty percent level of the 
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oxygen concentration depth profile (Figure 4.21) and could be considered the thinnest oxide 

film thickness to be present on an aluminum powder particle. 

The EDS oxide film chemistry of the CAA aluminum powder, (Figure 4.26) was less 

pure than the EDS oxide film chemistry of the GARS-8 aluminum powder (Figure 4.27) most 

likely due to the bulk chemistry measurements in Table 4.4. A closer look at the physical 

appearance of the TEM oxide microstrucmres shows a similar trend. The CAA aluminum 

powder oxide film (Figure 4.23) appears "dirtier" than the GARS-8 aluminum powder oxide 

film (Figure 4.24). SEM images of the same TEM samples, shown in Figure 4.28 and Figure 

4.29, shows more residual oxide present on the CAA sample than on the GARS sample, 

possibly due to the larger surface area of the CAA aluminum powders compared to the 

GARS aluminum powders. 

The structure of the oxide film on aluminum powders is amorphous, as indicated by 

the diffuse diffraction rings on the SAD patterns inset on Figure 4.23 and Figure 4.24. The 

amorphous structure was also indicated by the lack of contrast changes in the microstructure 

of the CAA aluminum powder during a tilt of the foil in a dual tilting sample holder. The 

amorphous structure appears to be independent of the atomization method. 

Aluminum alloy powder characteriTation 

Al-Ti-Yaluminum allov powder 

The Al-Ti-Y powder was initially produced to observe if the addition of other 

elements with strong nitride formation thermodynamics would stimulate a GARS type 

reaction between the UHP nitrogen atomization gas and the molten aluminum alloy droplets. 

The bulk chemistry of the Al-Ti-Y alloy aluminum powder (Tables 4.8) shows a low bulk 

nitrogen content, which seemingly indicates no nitride formation during the nitrogen gas 

atomization experiment. Similarly, an XRD scan ( Figure 4.30) reveals no apparent nitride 

phase. The XRD data does not conclusively rule out the possibility of a nitride phase being 
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Figure 4.26. EDS spectra of the oxide film on CAA aluminum powder. 
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Figure 4.27. EDS spectra of the oxide film on GARS-8 aluminum powder. 
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Figure 4.28. SEM micrograph of CAA aluminum powder TEM sample in Figure 4.23 

Figure 4.29. SEM micrograph of GARS-8 aluminum powder TEM sample in Figure 4.24. 
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present, because the volume fraction of the nitride phase could be below the detectability 

limit of XRD instrumentation. The DTA scan (Figure 4.31) also provides no evidence of a 

nitride phase reaction. The detectable transformations are associated with the aluminum-

yttrium and aluminum-titanium phase diagrams shownn in Figure 4.32 and Figure 4.33. 

Table 4.8. ICP-AES and IGF measurements of as-atomized 
Al-Ti-Y aluminum alloy powder. 

Element Chemical Content Units 
Aluminum Balance 
Titanium 3.49 
Yttrium 6.93 
Oxygen 2 
Nitrogen 634 
Carbon 40 

The XRD scan shows the phases present in the as-atomized powder, namely, Al, P-

AI3Y. AhY, Al3Ti, AIO3Y, and AI5O12Y3. The Al3Ti identification is weak, because its 

calculated volume fraction, 5.6 volume percent, is near the detectability limits of XRD. The 

other phases, though, have several identifiable peaks indicating their presence in the powder. 

The calculated volume fraction of the 3-A13Y is 8.7 volume percent. 

Looking closely at the heating curve in Figure 4.31 the exotherm marked as point 1 

has an on-set temperature of 640°C which corresponds to the aluminum-yttrium eutectic at 

nine weight percent yttrium. According to the phase diagram the eutectic could be the 

equilibrium reaction between aluminum and P-AI3Y or the metastable reaction between 

aluminum and AhY. The second exotherm, point 2 on the heating curve, has an on-set 

temperature of 866.4°C believed to correspond with the liquidus line rising from the 

aluminum-yttrium eutectic at nine weight percent yttrium. There is no apparent exotherm for 

the A^Ti phase transformation at higher temperatures. 

The cooling curve, though, does indicate a reaction at point 3 with an on-set 

temperature of 1053.8°C. The intersection of this temperature and the concentration of 

titanium listed in Table 4.8 above, corresponds well the liquidus line on the aluminum rich 

wt. % 
wt. % 
wt. % 
ppmw 
ppmw 
ppmw 
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Figure 4.30. XRD scan of Al-Ti-Y powder in the as-atomized state. 
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Figure 4.31. DTA of Al-Ti-Y alloy powder in the as-atomized condition. 



82 

1600 

Atomic Percent  Yttr ium 
10 ZO 30 40 50 OO 70 80 90IM 

V a. 

V 

1200-

1000 

BOO 

600 

400 

1485'C 

1130*C • IIOO'C 

960*C 

660.452*C fi45*C 

weight Percent  Yttr ium 

U78"C 
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side of the aluminum-titanium phase diagram in Figure 4.33, indicating the formation of 

AlsTi. Another possible reaction is the formation of the AbY phase, but there is no reaction 

indicated at about 980°C that would be associated with the formation of AI2Y or the 

subsequent formation of P-AI3Y. The next transformations do not occur until points 4 and 5 

on the cooling curve, far below the 980°C formation temperature for P-AI3 Y. These last two 

reactions on the cooling curve relate to the transformations previously described as point 2 

and point 1. respectively, on the heating curve. 

Al-Cu-Mg alloy powder 

The Al-Cu-Mg aluminum alloy powder, a CIGA-VAL type powder produced by 

Valimet Inc., was selected for evaluation in the QMS experiments to compare the differences 

that might occur between VHD of a pure aluminum powder and an aluminum alloy powder 

with magnesium, produced at the Valimet atomization facility using the SSA gas atomization 

method. The alloy QMS results are compared with other published data on similar 

aluminum-magnesium alloys. The Al-Mg-Cu alloy powder chemistry is listed in Table 4.9 

and the QMS results for the Al-Mg-Cu powder alloy are shown in Figure 4.34. 

Figure 4.34 shows the water signal intensity rising to a maximum intensity at 110°C, 

which is indicative of physiosorbed water being removed from the powder surfaces. As the 

signal decreases, a local maximum occurs at 170°C characteristic of the start of the 

decomposition of the alumina trihydrate to the monohydrate oxide. The water intensity 

continues its decline slowly at first, but at about 420°C the signal drops rapidly. Meanwhile, 

Table 4.9. ICP-AES and IGF measurements of as-atomized Al-Cu-Mg 
CIGA-VAL type aluminum alloy powder. 

Element Chemical Content Units 
Aluminum Balance wt. % 
Copper 4.0 wt. % 
Magnesium 1.28 wt. % 
Oxygen 1377 ppmw 
Nitrogen 4 ppmw 
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Figure 4.34. QMS water and hydrogen spectra of Al-Cu-Mg aluminum 
alloy powder at 5°C per minute. 

the hydrogen signal intensity, which had been increasing slowly, spikes at the same time 

reaching a maximum at 432.3°C in short order. The hydrogen intensity decreases to a nearly 

constant level. 

A comparison the CIGA-VAL SSA pure aluminum powder with the CIGA-VAL SSA 

Al-Cu-Mg alloy powder does show slight differences in the water evolution, but significant 

differences in the hydrogen evolution (Figures 4.35 and 4.36). The hydrogen QMS data of 

the pure aluminum powder indicates peak related to the decomposition of the trihydrate and 

monohydrate. As mentioned previously, hydrogen QMS results of the Al-Cu-Mg alloy 

powder has only one prominent hydrogen peak. There is no indication of decomposition 

reactions from the trihydrate to the monohydrate and the monohydrate to the anhydrous 

alumina. The QMS experiments of aluminum-magnesium alloys conducted by other 

researchers [25] have shown a reaction to occur above 400°C. Davis et al. have attributed the 

observed reaction to be the formation of MgO, a product of the reaction between the water in 
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Figure 4.35. Comparison of the QMS water spectra of a SSA pure aluminum powder and a 
SSA Al-Cu-Mg aluminum alloy powder heated at 5°C per minute. 
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Figure 4.36. QMS hydrogen spectra of SSA pure aluminum powder and a Al-Cu-Mg 
aluminum alloy powder heated at 5°C per minute. 
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Figure 4.37. DTA trace of Al-Cu-Mg aluminum alloy powder at 5°C per minute. 
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the oxide film and the magnesium in the alloy powder. 

A DTA scan of the Al-Cu-Mg alloy (Figure 4.37a) powder shows a deviation from 

the baseline at 432.5°C, indicating a chemical reaction (Figure 4.37b). The measurable DTA 

reaction temperature corresponds well with the temperature of the hydrogen peak in QMS 

data (Figure 4.34). The observable deviation immediately precedes an endothermic reaction 

at 453.2°C which correlates to the aluminum-magnesium solidus of the alloy. 

Powder oxidation behavior 

Aluminum powders continue to oxide after gas atomization and during post-

atomization powder handling [29]. Figure 4.38 illustrates the oxidation that occurs during 

post-atomization oxidation of the GARS pure aluminum powders in atmospheres with 

varying levels of humidity. As the figure shows, decreasing the relative humidity appears to 

decreases the rate of oxidation, indicating the humidity level is a variable in the oxidation of 

aluminum powders in air [84]. For a given humidity level, the oxidation rate begins to slow 

after about 300 hours or 12.5 days. To complement the oxidation curves, QMS and AES 

were conducted on the GARS-9 unexposed and GARS-9 3000 hours exposure samples, 

exposed at the 15% to 25% humidity levels. For reference purposes in the QMS analysis, the 

GARS-4 QMS hydrogen was plotted along with the results of the GARS-9 specimens. The 

unexposed powder has a smaller area under its hydrogen profile than the area under the 

hydrogen profile of the exposed powder indicating the unexposed powder has less of a 

hydrated oxide than the exposed powder. 

An exposure experiment showing extreme oxidation results is shown in Figure 4.40. 

Note the significant scale difference between Figure 4.38 and Figure 4.40. The experiment 

exposed a sample of the GARS-9 pure aluminum powder in a controlled air atmosphere with 

85% relative humidity at 29.4°C. The bulk oxygen content of the powder, as measured by 

IGF, after one day of exposure increases slighUy from the unexposed state. After the first 
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Figure 4.38. Oxidation behavior of GARS pure aluminum powders exposed 
to air atmosphere with various levels of humidity. 
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Figure 4.40. Controlled air exposure of aluminum powder in 85% relative humidity at 
29.4°C. The line is drawn only to guide the eye. 

day of exposure, the bulk oxygen content of the aluminum powder increases at a decreasing 

rate. The primary source of oxygen from this exposure experiment is from water that is 

hydrating the oxide film on the aluminum powder particle surfaces. 

Since no nitrides were apparently formed in the Al-Ti-Y alloy powder, exposure 

experiments of the Al-Ti-Y alloy powder were designed to demonstrate the influence of 

alloying elements on the oxidation behavior of aluminum alloy powders. The exposure 

experiments were conducted in ambient air at various temperatures over the course of 1000 

hours or 41.7 days. Figure 4.41 shows the experimental results of the Al-Ti-Y alloy powder 

oxidation behavior during various thermal oxidation conditions. The powder samples 

exposed at 25°C and 162°C have similar oxidation characteristics, i.e., even though the 

temperature was increased, the oxidation curves are nearly indistinguishable. The oxidation 

rate of these samples is similar to the GARS-7 and GARS-8 pure aluminum powders exposed 

to air with 45% to 50% relative humidity. The powders exposed at 300°C start with a greater 
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Figure 4.41. Oxidation behavior of Al-Ti-Y alloy powder as exposed to 
ambient air and different thermal conditions. 

oxidation rate than the samples exposed at lower temperatures, which becomes significantly 

faster at exposure times greater than 142 hours. The rate change is shown as a bend or 

"knee" in the oxidation curve, indicating a breakaway oxidation mechanism [85]. 

Figure 4.42 depicts changes of the AES oxide thickness measurements, as a function 

of exposure time, for the GARS-8 pure aluminum powder and two different thermal 

oxidation conditions of the Al-Ti-Y alloy powder. As previously mentioned, the GARS-8 

and the Al-Ti-Y alloy powder exposed at 25°C have similar oxidation rates. In Figure 4.42, 

both powder types have similar oxide thicknesses. The oxide film thickness of the Al-Ti-Y 

alloy powder exposured at 300°C is four to tens times thicker than the same powder exposed 

at 25°C. 
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Figure 4.42. AES oxide thickness measurements for aluminum based powders exposed to 
ambient air at room temperature, nominally 25°C, and 300°C. 

Powder explosibilitx 

An evaluation of aluminum powder explosibility indicates the powders susceptibility 

to an explosion under certain conditions. Figure 4.43 describes the minimum explosibility 

concentration (MEC) for the GARS, CIGA-ATA, CIGA-VAL, and CAA aluminum powders. 

All the MEC results shown are to be referenced as "preliminary results" as mentioned on the 

explosibility report sheets prepared by the Alcoa Specialty Metals Division. The other 

explosibility tests mentioned in the Chapter 2 are necessary to fully index the explosibility of 

aluminum powders. The GARS aluminum powders have MEC values greater than 0.06 

ounces per cubic foot, but less that 0.120 ounces per cubic foot, which means the powders are 

in the strong category for explosibility [34]. The commercial powders have MEC values less 

than 0.06 ounces per cubic foot, implying these powders are in the severe category for 

explosibility [34]. 

Figure 4.44 and Table 4.10 shows the MEC results for two different size 
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Figure 4.43. MEC data of pure aluminum powders. 

classifications of the GARS-9 aluminum powder oxidized in ambient air at 25°C and 300°C. 

For a given size classification, the powders have similar size distribution percentile points. 

The experimental designations are explained in Chapter 3. For a given particle size 

distribution and exposure time, no significant difference of the MEC values was observed 

between a sample exposed at 25°C and 300°C. The normalized bulk oxygen content as a 

function of exposure time (Figure 4.45) shows that the rate of oxidation for a specific powder 

size increases as the exposure temperature rises. 

The increasing oxygen content with time would indicate the oxide film thickness also 

increases with exposure time and temperature. As may be noted in Table 4.11, the oxide 

thickness measured by AES does increase. After ten hours of air exposure at 25°C, the 

-38/10/25 powder sample had an average AES oxide thickness of 50.4±11.1 A. With 

increasing exposure time and temperature, the average AES oxide thickness for the 

-38/100/300 powder sample increased to 81.4±8.4 A. After 1000 hours of air exposure at 
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300°C, the average AES oxide film thickness for the -38/1000/300 powder sample increased 

significantly to 225.4±21.0 A. All oxide thicknesses resulted in an unchanged MEC. 

The attempt to show how oxide thickness differences may influence the explosibility 

of a GARS powder were inconclusive. The MEC test may not be sensitive to changes in the 

oxide film thickness. However, the tests did confirm that a reduced surface area decreased 

the explosibility of GARS aluminum powder. In fact, the MEC values of the coarse GARS 

powder were in non-explosive category [34]. 

Table 4.10. Powder size characteristics of GARS-9 aluminum powder used for MEC testing. 
MEC Specific Surface Size Distribution Percentile Points 

Powder Area of Powder 
Sample (m2/g) di6 (^im) dso (tim) d84 (Jim) 

-38/10/25 0.136 11.33 22.12 37.00 
-38/10/300 0.133 11.32 22.42 37.45 

-106-J-75/10/25 0.046 32.86 70.63 110.69 
-106-1-75/10/300 0.051 29.37 64.57 112.17 

-38/100/25 0.133 11.33 22.22 37.60 
-38/100/300 0.122 12.44 24.05 39.67 

-106-^75/100/25 0.045 32.52 68.84 111.50 
-106+75/100/300 0.043 35.46 71.41 111.71 

-38/1000/25 0.129 11.82 22.81 37.66 
-38/1000/300 0.137 11.05 21.62 36.81 

-106-t-75/1000/300 0.047 32.07 67.89 111.15 
-106-1-75/1000/300 0.043 35.01 71.77 114.82 

Table 4.11. MEC, specific surface area , and average AES oxide film thickness 
vdues for powders shown in Figure 4.44. 

MEC Specific Surface Average AES Oxide MEC value 
Powder Area of Powder Film Thickness 
Sample (m2/g) (A) (oz./ft3) 

-38/10/25 0.136 50.4±ll.l 0.105 
-38/10/300 0.133 Indeterminate 0.090 

-106-1-75/10/25 0.046 Not Measured 0.813 
-I06-K75/10/300 0.051 Not Measured 0.813 

-38/100/25 0.133 Not Measured 0.105 
-38/100/300 0.122 81.4±8.4 0.105 

-106-1-75/100/25 0.045 Not Measured 0.813 
-I06-)-75/100/300 0.043 Not Measured 0.813 

-38/1000/25 0.129 Not Measured Not Measured 
-38/1000/300 0.137 225.4±21.0 0.107 

-106-1-75/1000/300 0.047 Not Measured Not Measured 
-l06-h75/1000/300 0.043 Not Measured Not Measured 
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Figure 4.44. MEC data of GARS-9 aluminum powder. 
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Powder Consolidation 

Air sintering of aluminum powders 

Samples of the GARS-9 and CAA aluminum powders were sintered in air to 

demonstrate the dependence of oxide film thickness on sintering behavior of aluminum 

powders. This experiment was conceived after observing indications of solid state sintering 

with the heat treated, GARS-9, aluminum powder samples tested for MEC. After air 

sintering for twenty-four hours at 3(X)°C, the GARS-9 aluminum powder qualitatively had 

better green strength than the CAA aluminum powder. The green strength of the CAA 

aluminum powder is wholly due to mechanical interlocking of the irregular shaped powder 

particles. Macroscopic photographs show the as-sintered cakes (Figure 4.46 and Figure 

4.47). The reason for the improved green strength of the GARS-9 aluminum powder, over 

the CAA aluminum powder, is due to sintered neck formations between the GARS-9 

aluminum powder particles, as shown in Figure 4.49. The CAA powder had no observable 

sintered neck formations between the powder particles (Figure 4.48). 

CIP-VHD-HIP and CIP-VCD-HIP consolidation 

The GARS-4 and CAA aluminum powders were consolidated by the CIP-VHD-HIP 

and CIP-VCD-HIP consolidation paths to observe the microstructural developments of each 

powder type during the different consolidation routes. The progression of densification from 

the CIP consolidation through the HIP consolidation of the GARS-4 and CAA aluminum 

powders is apparent by the bulk densities listed in Table 4.12. The CIP green densities of the 

GARS-4 and the CAA aluminum powders, at the same CIP pressure, are 93.34% and 

89.66%, respectively, of the pycnometry density of each aluminum powder. Figure 4.50 

Table 4.12. Bulk densities of GARS-4 and CAA aluminum powders during 
different stages of powder consolidation. 

Powder Sample CIP (%) CIP-VHD-HIP (%) CIP-VCD-HIP (%) 
GARS-4 93.34 96.89 99.19 

CAA 89.66 97.56 99.07 
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Figure 4.47. Photograph of GARS aluminum powder air sintered at 300°C for 24 hours. 
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Figure 4.48. SEM micrograph of the CAA aluminum powder 
air sintered at 300°C for 24 hours. 

Figure 4.49. SEM micrograph of the GARS aluminum powder 
air sintered at 300°C for 24 hours. 
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and Figure 4.51 show the CIP microstructures of the CAA and GARS-4 aluminum powders 

in the as-polished, unetched condition . The density differences are apparently due to 

compressibility differences of the aluminum powders, which may occur because of oxide 

film thickness differences [46]. Recall, the AES oxide film thickness of the CAA aluminum 

powder is about four to five times greater than the GARS-4 AES oxide film thickness, refer 

to Figure 4.22. 

Figures 4.52 and 4.54 record the CIP-VCD-HIP microstructure of the GARS-4 and 

CAA aluminum powders, respectively. Figures 4.53 and 4.55 document the microstructures 

of the same powders processed by the CIP-VHD-HIP consolidation sequence. The CIP-

VHD-HIP microstructures qualitatively have more apparent porosity than the CIP-VCD-HIP 

microstructures, note the arrows pointing to the points of porosity on the CIP-VHD-HIP 

microphotographs. A similar trend is observed with the measured bulk densities of the 

consolidated samples after the HIP cycle. The CIP-VCD-HIP samples are more dense than 

the CIP-VHD-HIP samples. 

Pieces of the consolidated samples were analyzed with QMS at 5°C per minute. 

Table 4.13 lists the relative areas under the hydrogen profiles for each sample tested. For 

these experiments, the area under the hydrogen curve is proportional to the relative amount of 

hydrated oxide remaining after each consolidation procedure. For a given consolidated 

powder sample, the relative quantity of hydrogen evolution from as-atomized powder is 

greater than the VCD sample, which is greater than the amount of hydrogen evolving from 

the VHD sample (Figure 4.56 and Figure 4.57). 

Table 4.13. Relative areas under the hydrogen profiles of the CAA and GARS-4 powder 
samples in Figure 4.56 and Figure 4.57, respectively. 

QMS Sample Relative Area 
GARS-4 (Powder) 2399 

GARS-4 (VCD-HIP) 2246 
GARS-4 (VHD-HIP) 995 

CAA (Powder) 4835 
CAA (VCD-HIP) 3055 
CAA (VHD-HIP 838 
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Figure 4.50. Optical micrograph of the as-polished, unetched, CIP microstructure 
of CAA aluminum powder. 

Figure 4.51. Optical micrograph of the as-polished, unetched, CIP microstructure 
of the GARS aluminum powder. 
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Figure 4.52. SEM micrograph showing the CIP-VCD-HIP microstructure of the CAA 
aluminum powder. The white arrows indicate the residual 

porosity in the sample. 

Figure 4.53. SEM micrograph showing the CIP-VHD-HIP microstructure of the CAA 
aluminum powder. The white arrows indicate the residual 

porosity in the sample. 
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Figure 4.54. SEM micrograph showing the CIP-VCD-HIP microstructure 
of the GARS aluminum powder. No residual 

porosity is observed in the sample. 

Figure 4.55. SEM micrograph showing the CIP-VHD-HIP microstructure 
of GARS aluminum powder. The white arrows 

indicate the residual porosity in the sample. 



102 

CAA (Powder) 
CAA (VCD-HIP) 

CAA (VHD-HIP) 

V u u 
3 
u 
V) 
ea 

•a u 

73 
S 
o 
Z 

20 

15 

10 

5 h 

0 
0 100 200 300 400 500 

Temperature (°C) 
600 700 

Figure 4.56. QMS results of the CAA powder samples comparing the as-atomized powder to 
the CIP-VHD-HIP and CIP-VCD-HIP consolidated samples. 

To complement the QMS evaluations of the GARS-4 and CAA powders and 

consolidated samples, the hydrogen content of the samples (Table 4.14) was measured using 

a vacuum extraction technique developed by Peterson et al. [33]. Two reference points are 

given for comparison with the measured hydrogen results of the powder and consolidation 

samples, the equilibrium solubility of hydrogen gas in molten aluminum at 950°C. 2.45 

ppmw [86]. and the measured hydrogen content of the Alcoa pure aluminum ingot. For each 

powder type, the same trend observed in the QMS data, with respect to the areas under the 

hydrogen profiles, is confirmed by the hydrogen chemistry. The hydrogen content of the as-

atomized powder slate is greater than the CIP-VCD-HIP sample, which is greater than the 

CIP-VHD-HIP sample. The change in the hydrogen content from the Alcoa ingot to the 

GARS-4 powder is due to melting of the ingot in the atomization melt chamber, i.e., the 

diffusion of hydrogen out of the melt to achieve an equilibrium hydrogen content in the 

aluminum melt. 
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Figure 4.57. QMS results of the GARS-4 powder samples comparing the as-atomized 
powder to the CIP-VHD-HIP and CIP-VCD-HIP consolidated samples. 

The hydrogen values, though, may be artificially high, particularly for the as-

atomized powder samples, because water vapor may have been extracted from the samples, 

in addition to hydrogen, during the hydrogen vacuum extraction analyses. A review of the 

water signals from the QMS analyses of the as-atomized powders and the consolidated 

samples (Figure 4.58 and Figure 4.59) does show water vapor evolving from the samples 

under vacuum conditions. In view of the QMS results, water vapor does contribute to the gas 

volume collected in the collection volume during the vacuum extraction analysis. Depending 

on the sample, i.e., degassed powder versus non-degassed powders, the contribution of the 

Table 4.14. Hydrogen content of pure aluminum samples as measured by vacuum extraction. 
Sample 99.999% GARS-4 GARS-4 GARS-4 CAA CAA CAA 

A1 Ingot Powder VCD-HIP VHD-HIP Powder VCD-HIP VHD-HIP 
H 303 20J nj9 9l 90 VTZ 103 

(ppmw) 
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Figure 4.58. QMS results of water evolution from GARS-4 powder samples in 
the as-atomized powder state and consolidated states. 

water vapor partial pressure to the total pressure measured would probably decrease for 

powder samples degassed prior to the hydrogen vacuum extraction analysis. After degassing 

the powder, the measured hydrogen values would better reflect the amount of hydrogen in the 

consolidated sample. 

Heat treatment ofCAA consolidated samples 

The porosity differences between the non-heat treated and heat-treated CAA CIP-

VCD-HIP samples was not readily apparent from microstructure, i.e., there was no means to 

physically distinguish between any pores created before and after heat treating at 300°C and 

550°C. With the aid of QMS, though, a distinction between the different heat treatments did 

occur. Table 4.15 lists the relative areas under the hydrogen profiles shown in Figure 4.60. 

The as-atomized CAA powder sample is given for reference purposes. 
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Figure 4.59. QMS results of water evolution from CAA powder samples in the 
as-atomized powder state and consolidated states. 
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Figure 4.60. Effect of heat treating temperature on CIP-VCD-HIP CAA powder samples. 
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Table 4.15. Relative areas under the hydrogen profiles for the 
samples shown in Figure 4.60. 

QMS Sample Relative Area 
CAA Powder 4835 

CAA VCD-HIP 3055 
CAA VCD-HIP-300°C 4317 
CAA VCD-HIP-550°C 4888 

Punch Test 

The punch test provides structure-property relationships for the CIP-VHD-HIP and 

CIP-VCD-HIP consolidated samples. Before mechanically loading a punch test coupon, it 

has the shape of a flat disk. After punch testing a ductile material, such as the aluminum 

specimens tested for this research, the geometry of the coupon has a "hat" shape (Figure 

4.62). The observed cracks are due to an overloading condition of the sample, i.e., the region 

of negative slope on the load-deflection curve in Figure 4.61, corresponding to a decrease of 

the applied load on the punch test curve at deflection values greater than 5f. The fracture 

surface of the cracks shows microstructural tearing or shear mode of failure (Figure 4.63). 
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Figure 4.61. An example punch test plot of a consolidated CAA aluminum powder, 
illustrating the nearly ideal behavior of the consolidated 

powders samples during the punch test. 
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A summary of the measurable mechanical properties of the CIP-VCD-HIP and CIP-

VCD-HIP samples is in Figures 4.64,4.65, and 4.66. The results shown in these figures only 

provide a comparative analysis of the CIP-VCD-HIP and CIP-VCD-HIP consolidation 

sequences for a given powder type. In each figure, the corresponding punch test value of the 

Alcoa pure aluminum ingot is provided for a p)oinl of reference. The punch test results would 

be expected to depend on the prior particle size, pore structure, pore volume, and bulk 

chemistry of the coupon tested. 

For a given powder type, the yield stress results statistically show little or no 

difference between the CIP-VHD-HIP and CIP-VCD-HIP consolidation methods . However, 

the yield stress variances between the GARS, CIGA-ATA and CAA aluminum powders are 

due to differences in the powder particle size and bulk chemistry of each aluminum powder. 

In general, the yield stress of a metal is directly dependent on the reciprocal square root of the 

grain size and directly proportional to increases in the alloy chemistry of the metal [87]. For 

the consolidated microstructures evaluated in this portion of the research, the grain size of 

each consolidated powder sample is assumed to equal the d84 powder size for each powder 

type. 

The GARS consolidated samples have the lowest yield stress of all three powder 

types, because of a larger d84 powder size (Table 4.1) and a more pure bulk chemistry (Table 

4.4) than the CIGA-ATA and CAA aluminum powders. The yield stress of the CAA powder 

is slightly greater than the GARS aluminum powder, because of the slightly smaller d84 

powder size (Table 4.1) and less pure bulk chemistry (Table 4.4). The CIGA-ATA 

consolidated samples have the largest yield stress values of all three powder types, because 

these samples have the smallest d84 powder size (Table 4.1) and relatively impure chemistry 

(Table 4.4). The fracture strain values of all the aluminum powder samples are nearly the 

same, irregardless of powder type and processing conditions. However, the fracture energy 

values closely follow the rises and falls of the yield stress data, implying that the fracture 
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Figure 4.62. SEM micrograph of a punch test coupon after testing. The white 
arrow indicates the area shown in Figure 4.62, below. 

10 (im 

Figure 4.63. SEM micrograph showing the typical fracture surface formed during punch 
testing of the aluminum powder punch test coupons. 
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Figure 4.64. Yield stress results from punch testing the GARS-4, CAA, and CIGA-ATA 
aluminum powders consolidated by CIP-VCD-HIP and CIP-VHD-HIP routes. 
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Figure 4.65. Fracture energy results from punch testing the GARS-4, CAA, and CIGA-ATA 
aluminum powders consolidated by CIP-VCD-HIP and CIP-VHD-HIP routes. 
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Figure 4.66. Fracture strain results from punch testing the GARS-4, CAA, and CIGA-ATA 
aluminum powders consolidated by CIP-VCD-HIP and CIP-VHD-HIP routes. 
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Figure 4.67. The effect of heat treatment on the yield stress properties of the GARS-4 and 
CAA aluminum powders consolidated by the CIP-VCD-HIP route. 
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Figure 4.68. The effect of heat treatment on the fracture energy properties of the GARS-4 
and CAA aluminum powders consolidated by the CBP-VCD-HIP route. 
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Figure 4.69. The effect of heat treatment on the fracture strain properties of the GARS-4 and 
CAA aluminum powders consolidated by the CIP-VCD-HIP route. 
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energy is related to the yield properties of the consolidated aluminum powder sample tested. 

Sections of the heat treated GARS-4 and CAA CIP-VCD-HIP consolidated samples 

were punch tested. The punch test results, for the various states of heat treatment, are in 

Figures 4.67,4.68, and 4.69. For a given powder type, the measured mechanical properties 

show no statistical difference between the non-heat treated and each of the heat treated 

conditions. 
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CHAPTERS. DISCUSSION 

The fabrication of aluminum P/M parts for aerospace applications by conventional 

aluminum powder processing [1] is expensive, perhaps ten to 1000 times the cost, compared 

to the press and sinter operations used for ferrous base P/M automotive components. The 

substitution of aluminum based P/M components for ferrous base P/M parts, for instance, in 

automotive drive train components, necessitates reducing the costs of processing aluminum 

powder. Lower manufacturing costs, though, need to be balanced against the requirement for 

good to superior mechanical properties of the aluminum P/M components necessary for 

automotive drive train applications. 

Cost reduction of aluminum P/M components begins with an aluminum powder 

production method, such as inert gas atomization, that produces an aluminum powder that is 

safe to handle and has excellent consolidation properties. The costs for inert gas atomized 

aluminum powders are higher than for air atomized aluminum powders. However, the better 

characteristics of the inert gas atomized aluminum powder, compared to air atomized 

aluminum powder have the potential to reduce the high consolidation processing costs 

resulting from less advantageous powder characteristics of the air atomized aluminum 

powder. Consequently, for aluminum P/M components, the use of inert gas atomized 

aluminum powder may result in manufacturing costs that are equal to or less than the current 

manufacturing costs associated with air atomized aluminum powders. 

Gas Atomization 

During any gas atomization of aluminum powder, the aluminum droplets oxide in­

flight as they solidify and pass through the spray chamber. The surface oxidation continues 

in the powder collection bins and during post-atomization handling. Commercial aluminum 

powder producers purposely oxidize the aluminum powders during gas atomization to 
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passivate the nascent aluminum powder surfaces to inhibit a powder explosion during post-

atomization handling of aluminum powders. 

The partial pressure of oxygen, or other gaseous oxidizing agent, in the atomization 

gas and in the spray chamber may influence the final shape of the aluminum powder 

particles. As the oxygen partial pressure increases, the aluminum powder particles become 

less spherical and more irregular, as noted by Ozbilen et al. [13]. In the case of CAA, the 

pure aluminum powders shown in Figure 4.3 have a ligmental or irregular shape, due to the 

large volume percent of oxygen in the air atmosphere, about twenty-one volume percent 

causing immediate formation of an oxide film on the molten droplets' surfaces and preventing 

droplet spheroidization. In the case of the GARS aluminum powders, the atomization system 

and operation have been designed to minimize the oxygen content in the atomization gas and 

spray chamber. The resulting GARS pure aluminum powders (Figure 4.1) have a spherical 

shape. The CIGA-ATA pure aluminum powders have an irregular shape due to the presence 

of oxidizing agents in the atomization gas, i.e., carbon dioxide, a combustion product from 

the reaction of methane in air. An Ellingham diagram for oxides [65] shows carbon dioxide 

will readily oxide aluminum. 

The times for oxidation, spheroidization, and solidification of aluminum droplets can 

be quantitatively compared and correlated to the qualitative observations made about the 

GARS and CAA pure aluminum powders. The interactive, quantitative model can also be 

used as a predictive tool to determine how much oxygen is permissible during gas 

atomization of aluminum powders to maintain spherical and near spherical powder 

geometries. In general, the results are plotted showing the atomization time scale 

dependency as a function of powder particle diameter. 

The oxidation time for a metal droplet during gas atomization (equation 2.2a) has 

been shown by Nylund and Olefjord [11] to be inversely proportional to the partial pressure 

of oxygen in the atomization gas for an assumed oxide film thickness on the molten metal 
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droplet. The time for droplet spheroidization, equation 2.3, has been determined by 

Nichiporenko and Naida [12] to be inversely proportional to the liquid surface tension of the 

molten metal and directly dependent on the liquid metal viscosity. 

The time for solidification of a gas atomized metal droplet is shown in equation 5.1 

[12, 88]. The equation describes the time, tsoi (seconds) required for a liquid metal droplet of 

diameter, dm (m) to cool to the melting point of the metal or solidus of the alloy, and lose its 

latent hear of fusion. Because equation 5.1 assumes no undercooling, the calculated time for 

solidification of a given droplet diameter is the shortest time for the droplet to solidify. The 

d  * p  
f m r^m 
So/ ~ 6A. 

{<^4 I" 
( J \ 

I g 

T -T •" g J 

/ 

+ 
A//. 

, T  - T  .  \ m g J 
(5.1) 

other terms are the convective heat transfer coefficient of the gas, he, the metal density, Pm 

(kg/m^), the heat capacity of the liquid metal, Cp. m (J/kg-K), the initial particle temperature, 

Tj (K), the gas temperature, Tg (K), the melting temperature of the metal, Tm (K), and the 

latent heat of fusion of the metal, AHm (J/kg). 

The research results of Ozbilen et al. [13], shown in Figures 5.1 through 5.4. are used 

to assess the applicability of the atomization time scale equations to aluminum powder 

production. The aluminum powders were produced by a gas atomization method using gas 

mixtures of oxygen in nitrogen gas, ranging from zero to twenty-one volume percent oxygen. 

The atomization system was purged with a gas having the same oxygen content as the 

atomization gas. The pouring temperature of the commercial pure aluminum was 875°C. 

The atomization time scales are first compared with the limiting gas atomization 

conditions used by Ozbilen et al., twenty-one volume percent oxygen and zero volume 

percent oxygen in the nitrogen atomization gas in Figure 5.1 and Figure 5.2, respectively. 

The material parameters used for each comparison are listed in Table 5.1 and Table 5.2, 

respectively. Table 5.2 lists only changes of the initial droplet temperature and oxygen 
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Figure 5.1. SEM micrograph of aluminum powder produced by gas atomization with a 
mixture of 21.0 volume percent oxygen in nitrogen gas [13]. 

Figure 5.2. SEM micrograph of aluminum powder produced by gas atomization with a 
mixture of 0.0 volume percent oxygen in nitrogen gas [13]. 
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Figure 5.3. SEM micrograph of aluminum powder produced by gas atomization with a 
mixture of 3.0 volume percent oxygen in nitrogen gas [13]. 

E 
k.1 

32J,:} .6%C-y 

Figure 5.4. SEM micrograph of aluminum powder produced by gas atomization with a 
mixture of 5.6 volume percent oxygen in nitrogen gas [13]. 
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partial pressure of the atomization gas. Figure 5.5 and Figure 5.6 demonstrate the oxidation 

time necessary to form a 5 A, 10 A, and 15 A thick oxide films on liquid aluminum droplets. 

The purpose for three different oxidation time scales is to illustrate the oxide film thickness 

sensitivity on the oxidation time. Another reason for three different oxidation time scales is 

to correlate any intersection of the oxidation time and the spheroidization time, at a specific 

droplet diameter, with the observed powder morphology. In other words, if an intersection of 

the atomization time scale lines occurs, the lowest portion of any time scale line is assumed 

to be the fastest occurring reaction. 

For the case of atomizing with an oxygen partial pressure of 2.12x10'^ Pa (21 volume 

percent oxygen) in nitrogen gas, or the equivalent gas composition of air (Figure 5.5) the 

calculated oxidation time for growing a 5 A thick oxide film is less than the spheroidization 

time for all droplet diameters. The implication of this result is that no spherical powder 

particles will be produced during this gas atomization process. As the assumed oxide 

thickness increases to 10 A and 15 A, the oxidation time lines intersect the spheroidization 

time line at about 3.5 pim and 9.0 |im, respectively. The interpretation of these results is that 

spherical powders smaller the 3.5 |imand 9.0 |im. respectively, will be produced during this 

gas atomization process. Reviewing Figure 5.1 and noting the qualitative comments of 

Ozbilen et al., there are no spherical powder particles produced during gas atomization of 

aluminum using the atomizing gas equivalent of air, cf. Figure 4.3. Therefore, one would 

assume that a 5 A thick oxide film, or nearly one monolayer of oxide, on a molten aluminum 

droplet is sufficient to inhibit droplet spheroidization. 

The other extreme is using a nitrogen atomization gas with a partial pressure of 

oxygen less than 4.04x10"' Pa, essentially zero volume percent oxygen. In this case, the 

oxidation times for growing 5 A, 10 A, and 15 A thick oxide films, for all droplet diameters, 

are about five orders of magnitude longer than the spheroidization time, indicating that all the 

powder particles should be spherical. A look at Figure 5.2 does show all the powder particles 
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Figure 5.5. Atomization time scale comparison for molten aluminum gas atomized with a 
gas mixture of 21.0 volume percent oxygen in nitrogen gas. 

Table 5.1. Material parameters used in equations 2.2a, 2.3, and 5.1 for the 
comparison of atomization time scales in Figure 5.5. 

Parameters Variables Values Units References 
Initial Temperature Ti 1.148x103 K 
Oxide Thickness tox 5.0x10-10 m 
Oxygen Partial Pressure p(02) 2.120x104 Pa 
Molar Mass of Oxygen M(0) 1.6x10-2 kg/mol 
Diffusivity of Oxygen in Nitrogen D(02)N; 1.78x10-4 m2/s [89] 
Density of Oxide 

Pox 3.4x10^ kg/m3 
Oxygen Weight Fraction in Oxide Xo.ox 4.7x10-' 
Gas Constant R 8.314x101 J/molK 
Nitrogen Gas Temperature Tg 2.07x102 K [90] 
Density of Liquid Aluminum 

PlAl(l) 2.34x103 kg/m3 [91] 
Relative Gas Velocity Vg lxl03 m/s [901 
Viscosity of Liquid A1 i^Aid) 1.446x10-3 Pas [92] 
Heat capacity of Nitrogen Gas Cp.g 1.039x103 J/kg-K [93] 
Viscosity of Nitrogen Gas ^^g 1.47x10-5 Pas [94] 
Thermal Conductivity of Nitrogen Gas A,g 

t^Ald) 

1.9x10-2 W/m-K [94] 
Surface Tension of Liquid A1 

A,g 

t^Ald) 8.5x10-1 N/m [95] 
Heat capacity of Liquid A1 Cp.Al(l) 1.177x103 J/kg-K [93] 
Density of Nitrogen Gas 

Pp 1.46x101 kg/m3 [94] 
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Figure 5.6. Atomization time scale comparison for molten aluminum gas atomized with a 
gas mixture of 0.0 volume percent oxygen in nitrogen gas. 

Table 5.2. Material parameter changes of Figure 5.5 for the comparison 
of atomization time scales in Figure 5.6. 

Parameters Variables Values Units 
Initial Temperature 
Oxygen Partial Pressure 

Ti 
p(02) 

1.223x103 
4.04X10-1 

K 
Pa 

to be spherical. Similar powder morphologies occur during the GARS method of atomizing 

liquid aluminum (Figure 4.1). Some powder particles are deformed or have satellite powders 

due to dynamic droplet-droplet collisions during gas atomization. 

With respect to the minimum solidification time indicated in Figure 5.5. the droplet 

spheroidization time of liquid aluminum droplets is three to four orders of magnitude faster. 

A prediction is also made that droplets smaller than 20 |im will solidify before they form a 5 

A thick oxide film. For the same assumed oxide thickness, spherical droplets larger than 20 

(im are predicted to oxidize before solidification. Because the indicated solidification lime is 

a minimum time scale, i.e., no droplet undercooling, there is uncertainty as to whether the 

spherical droplets solidify before oxidation or vice versa. 
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A comparison of the atomization time scales also appears to be valid for aluminum 

powder produced by gas atomization processes with intermediate oxygen levels in the 

atomization gas. With reference to the results of Ozbilen et al. [13], they have shown 

intermediate partial pressures of oxygen in the atomization gas, 3.03x10^ Pa (3 volume 

percent oxygen) and 5.66x1 (P Pa (5.6 volume percent oxygen) produce a mix of different 

shaped aluminum powder particles as shown in Figure 5.3 and Figure 5.4, respectively. For a 

given powder size, their experimental results show that as the oxygen partial pressure in the 

atomization gas increases above 3.03x10^ Pa, the shape of the aluminum powder particles 

changes from globular to elongated to irregular. The transition from spherical powders to 

irregular powders, for a given powder size, would indicate that the oxidation time is 

becoming increasingly faster than the spheroidization with increasing oxygen content of the 

atomization gas. 

The intersection of the oxidation and spheroidization time line for oxygen partial 

pressures of 3.03x10^ Pa in the nitrogen atomization gas (Figure 5.7) indicates a transition 

from spherical to non-spherical droplets at diameters of about 60 ̂ m for a 5 A thick oxide 

film and greater than 100 ^m for 10 A and 15 A thick oxide films. Figure 5.3 shows the 

aluminum particles gas atomized under the same conditions to be mostly spherical for all 

powder sizes. The larger powder particles, greater than about 35 ^un, tend to be more 

globular than spherical. As the oxygen partial pressure in the atomization gas increases to 

5.66x10^ Pa, Figure 5.8 shows the transition from spherical to non-spherical powders to be 

about 16 |im for 5 A thick oxide films, 70 jim for 10 A thick oxide films, and greater than 
o 

100 |im for 15 A thick oxide films. Figure 5.4 shows the aluminum powder particles are 

nearly all irregular shaped, except for a portion of particles smaller than about 10 ^m, which 

are about spherical in shape. In both these cases, the intersection of the oxidation time line 

and spheroidization time line shows reasonable agreement for an assumed oxide film 

thickness of 5 A on aluminum droplets, more so than with assumed oxide film thicknesses of 
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Figure 5.7. Comparison of atomization time scales for aluminum powder nitrogen gas 
atomized with 3.0 volume percent oxygen in the atomization gas. 
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Figure 5.8. Comparison of atomization time scales for aluminum powder nitrogen gas 
atomized with 5.6 volume percent oxygen in the atomization gas. 
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10 A and 15 A. 

If the atomization time scales accurately predict some of the kinetics of aluminum gas 

atomization, the design of a gas atomization process is possible. Consider two atomization 

gases, 2.0 volume percent oxygen in helium gas and 3.0 volume percent oxygen in nitrogen 

gas, and apply the atomization time scale equations to both conditions (Figure 5.9 and Figure 

5.10). A comparison of the results shows the spheroidization time of aluminum droplets to 

be faster in the nitrogen-based atomization gas than in the helium-based atomization gas by 

about 0.5 nanoseconds. However, the oxidation times for the same assumed oxide film 

thickness are faster in the helium-based gas by about one to two nanoseconds, because of the 

higher diffusivity of oxygen in the helium-base gas than in the nitrogen-based gas. The 

intersection of the spheroidization time line and oxidation time line for a 5 A thick oxide film 

for helium-based gas atomization conditions is near a droplet diameter of 60 |am. For 

nitrogen-based gas atomization, the intersection of the oxidation time line and solidification 

time line occurs at droplet diameters greater than 100 jim. The significance of these result. 

0.01 g 
= 2.0 volume percent oxygen in nitrogen gas 

0.001 — Pouring temperature: 875°C 

0.0001 

—= Oxidatuin Time (? Ai 
—e Oxidation Time (10 A) 
—^ Oxidation Time (15 A) 
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— Si>lidiric.itii>ii Time 

S 
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Figure 5.9. Comparison of atomization time scales for aluminum powder nitrogen gas 
atonuzed with 2.0 volume percent oxygen in the atomization gas. 
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Figure 5.10. Comparison of atomization time scales for aluminum powder helium gas 
atomized with 2.0 volume percent oxygen in the atomization gas. 

assuming a 5 A thick oxide film on the molten droplets, is that the nitrogen-based 

gasatomization process may be operated at lower cost than the helium gas atomization 

process, while producing a wider size distribution of spherical aluminum powder particles. 

Powder Characterization 

Bulk oxygen measurements 

Bulk oxygen measurements techniques, such as the IGF method, do not provide any 

information about the location of oxygen in the aluminum powder particle or the chemical 

compound(s) from which the oxygen originated. Complementary analyses are necessary to 

establish the location and chemical origin of the oxygen as measured by IGF. One such 

analysis is AES depth profiling analysis of the GARS (Figure 4.19), CIGA, and CAA (Figure 

4.19) aluminum powders, which shows oxygen to be a part of a finite alumina layer on the 

powder particle surfaces. The presence of the alumina oxide film is further confirmed with 
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EDS conducted during the TEM analysis of the CAA and GARS-8 aluminum powders 

(Figure 4.25 and Figure 4.27) respectively. The presence of physiosorbed and chemisorbed 

water associated with the surface oxide film is established with the QMS experiments of the 

as-atomized aluminum powders (Figure 4.11, Figure 4.12, Figure 4.13, and Figure 4.14). All 

these complementary analyses show the oxygen to be located in an oxide surface film on the 

aluminum powder particles surfaces, combined with aluminum and hydrogen to form 

alumina oxide, hydrated alumina oxide, and water. 

The oxygen content of aluminum powder particles is directly proportional to the 

powder surface area, oxide film thickness, and the oxide water content. According to Wefers 

[96], a reasonable correlation between oxide mass and thickness exists only for uniform, 

parallel films grown on non-alloyed metal at low temperatures. The oxygen dependence on 

the surface area and oxide film thickness is demonstrated with a simple geometrical 

argument. Assume the as-atomized aluminum powder particles are spheres with diameter, d 

(m). have a uniform oxide thickness, tox (m), and the oxygen is only combined with 

aluminum in the form of alumina (Figure 5.11). The hypothesis is that the oxide film 

thickness on aluminum powder particles can be predicted for a distribution of aluminum 

powder sizes from a bulk oxygen measurement of the powder and the powder size 

distribution data. The results of the model are compared with the AES oxide film thickness 

Metal Oxide Film 
Thickness (t) 

Particle Diameter (d) 

Figure 5.11. Schematic of powder particle used for predicting the oxide film 
thickness on aluminum powder particles. 
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measurements. 

Before predicting the oxide thickness on a distribution of powder sizes, first consider 

a discrete powder particle as shown in Figure 5.11. The volume of the oxide shell, Voxide 

(m^), on the aluminum powder particle surface is determined from equation 5.2 and is 

rewritten in terms of the particle diameter and assumed oxide thickness in equation 5.3. The 

calculated oxide volume of the shell is used in equation 5.4 to calculate the mass of oxygen, 

moxygen (grams), in the film, where PAhOs is the density of alumina (g/cm^), M^^Oxygen's 

the molecular weight of oxygen (grams/mole), and MWai^Os is the molecular weight of 

alumina (grams/mole). The calculated mass of oxygen in the oxide shell is divided by the 

mass of the powder particle to give the weight percent of oxygen on the surface of the 

aluminum powder particle. 

A plot of the weight percent of oxygen as a function of particle diameter and oxide 

film thickness is shown in Figure 5.12. For a given oxide film thickness, the oxygen content 

of discrete aluminum powder sizes increases with decreasing powder diameters or increasing 

V  = V  - V  ( 5  2 )  
Oxide Particle Metal 

(5.3) * Oxide ^ 

"^Oxyxen - ̂ Oxid^ (5-4) 
A/,0,  

surface area. Similarly, for a particular aluminum particle diameter or powder surface area, 

the oxygen content increases as the oxide film thickness on the aluminum powder particle 

increases. 

To apply this model to a distribution of powder sizes, some modifications are 

necessary. Using the particle size distribution results and an assumed oxide film thickness, 

the oxygen content, in weight percent (wt%oxygen)» is determined for each particle size 
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Figure 5.12. Plot of oxygen content of the oxide film on aluminum powder particle as 
a fiinction of particle diameter and oxide film thickness. 

channel (n) of the size distribution. The oxygen content of each particle size channel is 

multiplied by the volume fraction of particles in that particle size channel (Vn, fraction)- The 

sum of all these products, equation 5.5, is a calculated bulk oxygen content for the aluminum 

powder size distribution. The sequence of these calculations required several iterations with 

different assumed oxide film thickness to match the calculated bulk oxygen content with the 

measured bulk oxygen content. Figure 5.13 shows a comparison of the AES oxide film 

wt% 
« —I f 

Oxvfirn t.fracnon 
m 'i,Oxyg«n 

V Particle J 
(5.5) 

thickness measurements and the oxide film thickness used in the calculations for the GARS, 

CIGA and CAA aluminum powders. The model shows reasonably good agreement with the 

AES oxide film thickness measurements for the GARS and CIGA aluminum powders due to 

the spherical nature of the powder particles. 



128 

V3 
V a 

IE 
H 
V •o 

O 
•o V b 
3 cn 
(S V 

200 

150 

• GARS-3 T GARS-6 o GARS-9 
• GARS-4 • GARS-7 y CAA 

GARS-5 O GARS-8 A QGA-ATA 

2 100 

50 

0 

I 

• 

Calculated 

I 
X 

Powder Sample 

T 
Y 

200 

0 

n 
SL 
e 

-I 150 52. 

H 100 
J 
J 

H 50 

n 
a. 
O 
& 
rt 

n 
X-
3 
n K vs 

Figure 5.13. Comparison of oxide film thicknesses predicted from the model 
presented in the text and as measured by AES. 

The overestimation of the oxide thickness for the CAA aluminum powder may be due 

to a combination of variables, such as the irregular particle shape of the CAA aluminum 

powder and the elevated water content of the CAA aluminum powder as measured by QMS. 

The model does not accommodate irregular shape particles. The backbone of the model rests 

solely on the particle size distribution. The irregular particle shape creates an erroneous 

particle size distribution, because the data was obtained under the assumption that the powder 

particles are spherical. The model, though, would appear to calculate an upper limit for the 

oxide film thickness on the CAA aluminum powders, given the current data. 

The other variable is the elevated water content of the CAA powder particles. Recall, 

the iterative model assumes a specific oxide film thickness composed of only an anhydrous 

aluminum oxide and the calculated oxygen content is directly proportional to the assumed 

oxide film thickness. QMS results of the CAA aluminum powder indicates a hydrated oxide 

film. A bulk oxygen measurement would account for both the aluminum oxide and water in 
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the oxide film. If the water content of the oxide was not included in the bulk oxygen 

measurement, the result would be a lower measured oxygen content. The lower measured 

oxygen content could be matched with a calculated oxygen content using a smaller assumed 

oxide film thickness, which would show better agreement with the CAA aluminum powder 

AES measurement of the oxide film thickness. 

GARS Aluminum powder oxidation 

Pure aluminum powder 

The oxidation of aluminum powders begins within the first milliseconds of the gas 

atomization process, see atomization time scale figures above. Oxidation continues in the 

atomization system during the flight of the liquid aluminum droplets, during solidification of 

the droplets, and during collection of the solid powder particles. The in-flight oxidation 

reaction products are aluminum oxide and varying concentrations of hydrated aluminum 

oxide incorporated into an amorphous oxide surface film (Figure 4.22 and Figure 4.23). The 

oxidation reaction reactants are the result of residual oxidizing agents in the atomization gas, 

in the spray chamber, and in the powder collection vessel of the atomization system. During 

post-atomization handling of the aluminum powder, oxidation will continue depending on the 

oxygen content and the relative humidity of the post-atomization handling atmosphere. In 

the case of the CAA process, for example, the CAA aluminum powder is removed from the 

atomization system and handled either under an inert gas [2] or in dry air [3]. 

An observation of the post-atomization oxidation was made by exposing GARS 

aluminum powder to air containing various levels of humidity, ranging from 0% relative 

humidity to 85% relative humidity, held at room temperature for up to 125 days (Figure 4.38 

and Figure 4.40). The GARS-9 aluminum powder was exposed to ambient air at 300°C for 

up to 41.7 days (Figure 4.45). The oxidation of the GARS aluminum powders is due to 

oxygen and water in the air. The moisture content of the air appears to have a strong 
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influence on the oxidation behavior of aluminum powders. Note in Figure 4.38, as the 

relative humidity level in the ambient air increases, the initial rate of oxidation and hydration 

of the aluminum powders surfaces increases and tapers off towards a limiting value. 

An hydration reaction is evident from the QMS results of the unexposed and exposed 

states of the GARS-9 aluminum powder (Figure 4.39). The exposed GARS-9 aluminum 

powder sample tested in the QMS system was subjected to the 15% to 25% relative humidity 

level, shown in Figure 4.38, for 125 days at room temperature. The unexposed GARS-9 

aluminum powder was collected from atomization powder collection can in a glove box with 

an argon atmosphere. The hydration observed in Figure 4.39 is shown as an increase of the 

QMS hydrogen spectra signal in the range of 200°C to 500°C. The hydrogen spectra 

originates from the reaction of water in and on the oxide film with aluminum cations 

diffusing from the metal core, through the oxide film, to the surface of the powder particle. 

Hydration is also observed from the significant increase of measured bulk oxygen in Figure 

4.40. The GARS-9 powder was exposed to an air environment at 29.4°C with 85% relative " 

humidity for 41.7 days. Note the significant change in the ordinate scales of Figure 4.40 

compared with Figure 4.38. The results of these air exposure experiments point to the fact 

that the water content of the atmospheric air is a significant source of the oxidation and 

hydration on aluminum powder surfaces. 

In Figure 4.38, the first 12.5 days of air exposure shows rapid increase of the 

measured bulk oxygen content. After 12.5 days, the rate of oxidation and hydration slowly 

decreases towards a constant oxygen level. The measured oxidation and hydration translates 

to an increase of the oxide film thickness. Figure 4.42 shows the GARS-8 aluminum powder 

to increase its oxide thickness from about 20 A in the unexposed state to nearly a constant 

level of 80 A after 12.5 days of air exposure. The latter AES oxide film thickness is similar 

to the TEM oxide film thickness shown in Figure 4.24. In reference to Figure 4.38, the 

GARS-8 aluminum powder was exposed at room temperature in the 45% to 50% relative 
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humidity range. 

A similar trend was observed with -38 ^im, GARS-9, aluminum powders exposed to 

ambient air at 25°C and 300°C for the MEC testing. Figure 4.45 shows the measured bulk 

oxygen content as a function of time. The oxidation rate of the -38 jim aluminum powder at 

3(X)°C is much faster than the oxidation rate at 25°C. Table 4.11 shows the measured AES 

oxide film thickness for some exposure conditions of the -38 jam aluminum powder. After 

ten hours of exposure at 25°C, the AES oxide film thickness is about 50.5±11.1 A compared 

with the unexposed, GARS-9, oxide film thickness of 26.9±4.4 A (Table 4.7). Increasing the 

exposure time and temperature to 100 hours and 300°C, respectively, increases the oxide to 

81.4±8.4 A. At the same temperature, but after 1000 hours of exposure, the oxide film 

thickness increases to 225.4±21.0 A. 

The growth, or thickening, of aluminum oxide films residing on flat aluminum or 

aluminum alloy substrates has been described mathematically for oxidation at low 

temperatures. In dry oxygen, the oxide growth has been described by an inverse logarithmic 

type function of time at temperatures below 400°C, equation 5.6 [97]. K and K' are 

constants, t is the oxidation time, and 5 is the oxide thickness. A constant to is necessary, 

because the oxide forming during the oxidation experiments grows on top of a previously 

formed oxide film, to is the time to thicken an oxide film of the same thickness as the 

original oxide film. In principle, the inverse logarithmic function represents the migration of 

^ = -^:iog,o(r + ro) +A" (5.6) 
o 

aluminum cations through the oxide film initially due to strong electrical potentials across the 

oxide film. At room temperature, the electric field is created by electrons from the aluminum 

atoms that have "tunneled" through the oxide film and ionized the adsorbed oxygen 

molecules on the aluminum surface. Before the aluminum ions can migrate from the metal-

oxide boundary to the oxide-gas boundary, the aluminum ions must overcome an activation 
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energy barrier at the metal-oxide boundary. The presence of the potential field reduces the 

energy required to surmount the energy barrier. As the oxide film grows thicker, the 

electrical potential decreases exponentially, increasing the energy required for an aluminum 

ion to pass the metal-oxide boundary, reducing the rate of oxidation of the substrate surface. 

The logarithmic formulation leads to a limiting oxide thickness of 20 A to 30 A. 

Hart [97] states that the "practical limit" is superseded by the presence of moisture in 

the oxygen environment. The initial growth is dependent on a direct logarithmic function of 

time, equation 5.7, during the first ten hours of exposure, after which the growth 

5 = -K\og^„(t + tJ + K' (5.7) 

is best matched by the inverse logarithmic function of time. The direct logarithmic growth 

law describes the migration of aluminum cations as being faster than the electron motion and 

is applicable until both the electron and aluminum cation motion are equal. Once the 

electron motion surpasses the aluminum cation diffusion, the inverse logarithmic function 

describes the thickening of the oxide film. The diffusion of the aluminum cations through 

the amorphous oxide film is likely due to the specific volume of the amorphous film. The 

larger the specific volume, the more open the structure of the amorphous film, leading to 

higher cation diffusivities [98]. 

The application of the inverse logarithmic oxide growth function has been extended 

to aluminum alloy powders, as present by Carney et al. [99], to describe the oxidation of 

aluminum alloy powders in the atomization system. For this research, a review of the results 

from the powder oxidation experiments shows the best type of curve fit to the bulk oxygen 

measurements in Figure 4.38 and Figure 4.40 is a logarithmic function of time. The 

oxidation is initially fast, but approaches a limiting value at exposure times greater than 12.5 

days. The "practical limits" of the oxide film thickness on GARS-8 and CAA aluminum 

powder appears to be nearly 80A (Figure 4.41) and 125A (Figure 4.21), respectively. One 



133 

could say with reasonable assurance that the oxidation occurring on the surfaces of the GARS 

pure aluminum powders is probably controlled primarily by cation migration through the 

oxide film. 

GARS Al-Ti-Yaluminum allovpowder 

The addition of alloy elements to produce a prealloyed aluminum powder can lead to 

different oxidation behavior than observed with the oxidation of pure aluminum powders, 

particularly at elevated temperatures. The oxidation rate of the GARS Al-Ti-Y powder 

exposed at 25°C and 162°C (Figure 4.41) is similar to the oxidation rate of the GARS-7 and 

GARS-8 pure aluminum powders exposed at 25°C in an air atmosphere of 45% to 50% 

relative humidity (Figure 4.38). Increasing the oxidation temperature to 300°C, increases the 

oxidation rate of the Al-Ti-Y alloy powder within the first 142 hours or 5.9 days. After this 

time, the oxidation rate increases further as indicated by the "knee" in the oxidation curve. 

The rate change is referred to as a "break away" oxidation mechanism, attesting to some 

change in the transport mechanism of either aluminum cations or oxygen anions through the 

oxide film. 

The oxidation behavior of the Al-Ti-Y alloy may be explained in terms of how 

"active" alloy elements, such as yttrium and titanium, can influence the oxidation behavior of 

alumina forming scales. The information about these and other active elements is from 

literature discussing alumina scales on high temperature alloys containing aluminum. The 

same information will be assumed to apply to low temperature oxidation of the Al-Ti-Y alloy 

powder, especially to explain the observed "knee" in the oxidation curve at 300°C. 

The role of titanium has been shown to have adverse effects as well as no effect on 

the oxidation behavior of high temperature alloys [100], The influence of titanium appears to 

be dependent on its concentration in the alloy. For example, Huntz states that 0.2% titanium 

by weight in an FeNiCrAl alloy does not alter the oxidation kinetics. However, increasing 
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the titanium content to 0.54% by weight increases the oxidation weight gain rate at 1200°C. 

The combination of titanium with yttrium in the same FeNiCrAl alloy shows no effect on the 

alloy oxidation behavior. Huntz continues to state that there is general agreement that rare 

earth elemental additions, such as yttrium, have beneficial effects on the high temperature 

oxidation resistance of alumina-forming alloys. The observed benefits depends on the 

concentration and the presence of other active elements. Jedlinski [101] states that yttrium 

additions improve the adherence of the oxide scale to the substrate. 

The literature shows much debate over the effect of yttrium on the transport 

properties of alumina on alumina forming alloys. Yttrium has been shown to increase 

aluminum cation division and decrease oxygen anion diffusion as well as decrease 

aluminum cation diffusion and increase oxygen anion di^sion [100]. One summary 

statement of this controversy is that yttrium alters the transport processes in the alumina 

surface oxide. Prescott and Graham [102] comment in their review of active elements that 

yttrium additions suppress aluminum cation diffusion outward and promote oxygen anion 

diffusion inward. 

One way yttrium can affect the oxidation behavior is by the formation of a yttrium-

aluminum-oxide phase, such as Y3AI5O12 or Y2O3. These two phases appeared in the XRD 

pattern of the Al-Ti-Y alloy (Figure 4.30). Because the oxygen resides on the surface of the 

powder particles, the yttrium-aluminum-oxide phases most likely reside on the surfaces of 

the powder particle, and are of a sufficient volume fraction to be detected with XRD. Huntz 

cites Choquet [103] as showing that the oxygen diffusion through the Y3AI5O12 and Y2O3 

phases is greater than alumina at 1100°C. In the same XRD pattern (Figure 4.30) the 

presence of titanium phases, other than a slight indication of the Al3Ti phase, is below the 

detectability limit of XRD. The heating curve of the DTA trace of the Al-Ti-Y powder also 

indicates no prevalent titanium phases. As a result, titanium is assumed to be benign during 

the oxidation of the Al-Ti-Y alloy powder at 300°C, a role deemed plausible given the 
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information about the effect of titanium combined with yttrium during the oxidation of 

alumina on alumina forming alloys. 

To described the oxidation behavior observed in Figure 4.41, oxygen anion diffusion 

is assumed to be the predominate transport species through the oxide film. The justification 

of this assumption comes from the presence of the Y3AI5O12 and Y2O3 phases and the 

experimental evidence of others, as cited by Prescott and Graham [102], which shows a 

relative reduction in the aluminum cation diffiision through the oxide. Evans [104] and 

Schiitze [105] comment that anion diffusion inward through the oxide film will create new 

oxide at the oxide-metal boundary. Evans [104] pictorially describes the failure mechanism 

of oxide layers on convex surfaces by anion diffusion. One failure mechanism is decohesion 

and subsequent delamination of the oxide layer. This failure mechanism does not seem 

plausible with the experimental evidence available, cited by Prescott and Graham [102], that 

yttrium additions improve the adherence of oxide films to the substrate. The other failure 

mechanism is tensile cracking of the oxide film due to the oxide formed at the oxide-metal 

boundary pushing the original oxide to larger circumferences. This latter failure mechanism 

would create fissures or microcracks in the oxide film, creating a short circuit diffusion path 

for oxygen anions, as well as aluminum cations. An increase in the exposure temperature 

would most likely raise the diffusivity of the oxygen through the oxide film resulting in a 

measurable increase of the bulk oxygen content of the Al-Ti-Y aluminum alloy powder, as 

seen in Figure 4.41. 

In light of the previous discussion, an interpretation of the 300°C oxidation 

experiment is given. From the unexposed state to about 142 hours of exposure, oxygen 

anions diffuse through the oxide film due to the presence of the yttrium additions. During 

this exposure time, the new oxide growing at the oxide-metal boundary is pushing the old 

oxide film to the point of forming tensile cracks which lead to fissures and/or microcracks in 

the oxide film. As the exposure time increases above 142 hours, the tensile cracks have 
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created short circuit diffusion paths for both the aluminum cations and oxygen anions. 

During this time frame the oxide is healing and cracking itself, creating more oxide, which 

corresponds with the increasing bulk oxide content of the Al-Ti-Y powder as a function of 

time. 

Aluminum powder explosibilitv 

The degree of explosibility of aluminum powder has been documented in the 

literature only as a function of surface area, similar to the data shown in Figure 4.44. The 

MEC data in this figure shows fine particle sizes, or larger surface areas, of pure aluminum 

powder are more explosive than the coarse particle sizes, or smaller surface areas. In general, 

the MEC data in Figure 4.43 indicates the GARS aluminum powders are rated in the "strong" 

category for the probability of a dust cloud type of explosion hazard. The same figure shows 

the CIGA-AT, CIGA-VAL, and CAA pure aluminum powders to be rated in the "severe" 

category for the probability of a dust cloud type of explosion hazard. The CIGA-AT and 

CAA have larger surface areas compared to the GARS aluminum powders, which would 

indicated surface area is a strong variable for explosibility. 

The MEC value of the CIGA-VAL aluminum powder is 0.030 ounces per cubic foot, 

placing the CIGA-VAL aluminum powder in the "severe" category for the probability of a 

dust cloud type of explosion hazard. However, the particle size distribution, or specific 

surface area, of the CIGA-VAL (Table 4.1 and Table 4.2) is similar to the -38 nm GARS-9 

aluminum powder (Table 4.10 and Table 4.11) yet the GARS-9 aluminum powder has better 

explosibility properties as measured by a MEC test. One may infer from these results that 

surface area may be only one variable contributing to the MEC of pure aluminum powders. 

Other explosibility variables related to the powders to consider are the oxide film thickness 

on the aluminum powder surfaces and the gas atomization method used to produce the 

aluminum powders. The latter variable determines the oxidizing atmosphere in which the 
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oxide film was initially formed on the nascent aluminum droplet. 

The CIGA-VAL aluminum powder has an oxide film thickness of 159±29 A, which is 

mid-range between the thermally grown oxide films on the -38/100/300 and -38/1000/300 

GARS-9 aluminum powders, 81.4±8.4 A and 225.4±21.0 A, respectively. One would expect, 

if the oxide film thickness contributed to the MEC of the aluminum powders, then the MEC 

value of the CIGA-VAL aluminum powder should be between the -38/100/300 and 

-38/1000/300 GARS-9 aluminum powder samples. As was mentioned above, the CIGA-

VAL powder has a lower MEC value than the -38 ^im GARS-9 powders, i.e., the former has 

more of an explosive tendency than the latter. From these MEC results, oxide thickness may 

still be a variable, but the MEC test may not be sensitive to these levels of oxide film 

thickness. 

The other dependent variable of explosibility to consider is the atomization method 

used to produce the aluminum powders and the post-atomization oxidation conditions. The 

CIGA-VAL process purges the atomization system with a process gas and uses an 

atomization gas mixture of helium gas and a maximum of two volume percent oxygen gas. 

Recall, the gas purging may not remove residual oxidizing agents, such as oxygen and water, 

from the atomization system. The initial oxide to form on the CIGA-VAL aluminum droplet 

surface must form in a relatively high temperature oxidation process. The oxide forms near 

the temperature of the melt as is exits the pour tube, before solidification of the molten 

droplets (Figure 5.10) due to the close proximity of oxygen to the freshly, atomized 

aluminum droplets. Similar oxidation behavior is shown to occur with a CAA process 

(Figure 5.5). The CIGA-VAL oxide film thickens during the flight of the particle in the 

spray chamber and powder collection vessel, incorporating oxygen and water into the oxide 

film. As shown by the QMS results (Figure 4.13) the hydrogen profile of the CIGA-VAL 

aluminum powder indicates a notable content of hydrated alumina, which is much more than 

the GARS-4 aluminum powder (Figure 4.14). If the oxide thickness of the CIGA-VAL 
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powder has not reached its "limiting value" during gas atomization, the oxide film will 

continue to grow until the limiting value is reached during post-atomization handling, 

probably near 159 A for this powder. 

The GARS process, on the other hand, utilizes evacuation of the atomization system 

prior to gas atomization, minimizing any residual oxygen or water contaminants from the 

atomization system. Also, the UHP nitrogen gas has a negligible oxygen content, further 

reducing the oxidation potential of the gas. The initial oxide film to form on the GARS 

aluminum droplets probably forms at a relatively low oxidation temperature, near the droplet 

solidiHcation time, as interpreted from the atomization time scale model previously discussed 

(Figure 5.6). Even for the highest atomization pouring temperature used in this research, 

1600°C for the GARS-5 aluminum powder, the oxidation is predicted not to begin until near 

the minimum time of solidification. The evacuation of the atomization system before gas 

atomization reduces the content of the hydrated alumina constituent of the oxide film, which 

is significantly lower than the CIGA-VAL powder (Figure 4.16). With respect to the -38 jim, 

GARS-9, aluminum powders tested for MEC, the post-atomization oxide film was thermally 
0 

grown to a maximum of about 225 A. In summary , the conditions under which the oxide 

film initially forms and continues to grow on aluminum powder surfaces apparently does 

affect the powder explosibility characteristics. In other words, an atomization process, like 

GARS, that suppresses high temperature oxidation and minimizes moisture exposure, has 

been demonstrated to provide aluminum powder with significantly reduced explosive 

properties. 

Aluminum Powder Consolidation 

Tap densifv and air sinter 

The ability to solid state sinter aluminum powders, especially in air, requires the 

oxide film on the aluminum powder surfaces to be thinner than the "practical limit" of the 
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oxide film as defined by Hart [97]. Otherwise, if the oxide film on the aluminum powders 

reaches its limiting thickness, the aluminum cation diffusion through the surface oxide film 

diminishes, and solid state sintering in negligible. The solid state sintering observed in 

Figure 4.49 was completed in air at 300°C, because the aluminum oxide film on the GARS-9 

aluminum powder had not reached its "practical limit." This thin oxide film, about 27 A 

thick, permitted the diffusing aluminum cations of neighboring powder particles to form 

necks at the contact points between the powder particles. In the case of the CAA aluminum 

powder, no solid state sintering was observed because the oxide film was apparently too 

thick, i.e., the oxide film thickness was near its "practical limit." 

The opportune time for solid state sintering aluminum powders is immediately after 

gas atomization. If the powder needs to be stored or shipped for some time, the powder can 

be packaged either under inert gas as discussed by Williams [2] or under dry air as is done at 

the Alcoa CAA facility in Rockdale, TX, [3]. The dry air storage atmosphere would be less 

expensive than the inert gas atmosphere, and as shown in Figure 4.38, dry air does not appear 

to oxidize the aluminum powder surfaces after 100 days of exposure. 

CIP-VHP-HIP and CIP-VCD-HIP cnnsolidation 

The gas atomization method selected for producing aluminum powders directly 

affects the consolidation of the aluminum powders. High hydrated alumina contents, such as 

those detected in the CAA, CIGA-ATA, and CIGA-VAL aluminum powders by QMS, 

should be reduced before the aluminum powders are consolidated into components at or near 

full density. The QMS experiments, conducted for this research, demonstrate that 

chemisorbed water in the oxide film can react with aluminum cations diffusing through the 

oxide film to form oxide and hydrogen gas. Inadequate degassing of these aluminum 

powders can lead to material defects later in the consolidation process or during in-service 

operation related to the presence of hydrogen trapped along the prior particle boundaries. 



140 

The conventional degassing procedure has been a VHD procedure of a CIP aluminum 

powder billet, such that the porosity of the billet is interconnected to maximize the degassing 

process. An alternative to the VHD method is to substitute the VHD process with a VCD 

operation. Such a substitution would help reduce the costs of consolidating aluminum 

powders by eliminating an elevated temperature process and potentially retain some of the 

rapid solidified microstructure after the consolidation process. 

Figure 4.58 and Figure 4.59 show that the VCD operation is as effective as the VHD 

process in reducing the physiosorbed water content of the as-atomized powders prior to a HIP 

consolidation. One may infer that the VCD of as-atomized aluminum powders would also be 

applicable for other full densification operations, such as direct powder forging and die 

pressing. However, the VCD does not remove the chemisorbed water in the surface oxide 

film on aluminum powders as well as the VHD procedure (Figure 4.56 and Figure 4.57). In 

these figures, the amount of hydrogen evolving from the CIP-VHD-HIP samples is less than 

from the CIP-VCD-HIP samples. The results of theses QMS analyses are supported by the 

measured amount of hydrogen in each consolidated sample (Table 4.14). 

Other indirect evidence for the VCD procedure not completely removing the 

chemisorbed water is shown in Figure 4.60. As the heat treatment temperature of the CIP-

VCD-HIP route increased to 550°C, more trapped hydrogen evolves from the consolidated 

samples. Recall from Figure 4.9, the position and singular peak of the hydrogen signal is 

characteristic of trapped hydrogen evolving from the bulk volume. During the subsequent 

300°C and 550°C heat treatments of the HIP sample, the chemisorbed water remaining in the 

oxide, primarily the monohydroxide, was further reduced as indicated by the increase of the 

respective area under the hydrogen profiles (Table 4.15). 

The hydrogen reduction was not complete though until the heat treating temperature 

was 550°C. Notice that the area listed for the 550°C heat treated sample is similar to the area 

listed for the as-atomized powder. Reviewing the hydrogen signal of the as-atomized 
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powder, the monohydrate transforms to the anhydrous oxide near 550°C. Since the 550°C 

sample was at temperature for 3 hours, this would seem like plenty of time to convert any 

remaining hydrated alumina phases to an anhydrous alumina state. 

The microstructures of the GARS-4 and CAA powders consolidated by CIP-VCD-

HIP and CIP-VHD-HIP are different. In general, the CIP-VCD-HIP microstructures are 

more dense than the CIP-VHD-HIP microstructures. Two probable explanations can 

describe the observable differences. The first possibility is that during the VHD process the 

hydrogen gas produced may have been trapped in isolated pores within the CIP sample. 

Recall, the CIP density of these samples was above the ideal degassing density mentioned by 

Kim et al. [42]. During the HIP cycle of the consolidation procedure, the isolated pores with 

the trapped hydrogen were unable to collapse due to the gas pressure within the voids. 

Another reason for the presence of pores in the CIP-VHD-HIP microstructures is 

inadequate degassing of the CIP-VHD samples prior to welding the vent pipe on the HIP can 

closed. Recall, after the VHD cycle, the sample was backfilled at room temperature with 

UHP argon gas and the sample was transferred to an electron beam melter (EBM) chamber 

for welding the HIP can shut. The evacuation time may not have been long enough to 

remove the UHP argon gas from CIP-VHD samples in the EBM chamber. If argon gas 

remained in the porosity of the CIP-VHD sample after welding the HIP can close, then 

during the HIP cycle, the gas pressure in the void would have been sufficient to inhibit the 

collapse of the void. To confirm this possibility of the observed porosity, the argon gas could 

be monitored during a QMS analysis of the CIP-VHD-HIP sample. 

Aluminum allov powder consolidation 

The consolidation of aluminum alloy powders, especially elemental blends or 

prealloyed powders with a few weight percent magnesium, requires knowledge of phase 

transformations or powder reactions that may occur during elevated temperature processing 
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of the alloy powders. Magnesium is a uselftil and reactive alloy element in aluminum P/M 

processing. In the case of LPS of elemental blends, the magnesium reacts with the aluminum 

to form a low melting point eutectic phase at 451°C. This reaction is apparent from the DTA 

heating curve of the Al-Cu-Mg alloy powder shown in Figure 4.34a. In the case where the 

aluminum alloy powders were to be sintered in the solid state, the sintering temperature 

should be below 451°C to avoid any liquid formation. 

A closer look at the DTA heating curve in Figure 4.34b shows a deviation from 

baseline at 432.5°C prior to the aluminum-magnesium liquid formation at 453.7°C. The 

deviation may be attributed to the reaction of magnesium with the chemisorbed water in the 

oxide film to form magnesium oxide and hydrogen gas. Confirmation of this possible 

reaction is observed in a QMS analysis of the same powder (Figure 4.33) which shows a 

hydrogen spike at 432.3°C. The importance of knowing a reaction temperature as indicated 

by DTA and QMS is during a VHD procedure of the aluminum powder. At the risk of 

forming a small volume fraction of liquid, a complete degassing of an aluminum-magnesium 

based alloy powder could possible be completely degassed slightly above the aluminum-

magnesium eutectic temperature. Evidence for this procedure is in Figure 4.35, where a 

comparison of the water content with a pure aluminum powder produced at the same gas 

atomization facility as the Al-Cu-Mg alloy powders shows the water content of the Al-Cu-

Mg alloy to be more than one order of magnitude lower than the pure aluminum powder. 

Punch testing 

All the consolidated samples punch tested for this research have nearly ideal load-

displacements curve similar to the one described by Kameda [75]. The significance of these 

nearly ideal punch test curves is that the empirical mechanical property equations described 

in Chapter 4 are directly applicable for the consolidated samples of aluminum powders. The 

relatively high ductile nature of the consolidated aluminum powders is illustrated in Figure 
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4.62 and Figure 4.63. The punch test coupons after testing have "hat" shaped geometries due 

to the rounded indenter used for punch testing. A magnified view of the fracture surface 

(Figure 4.63) shows the fracture mode to be pure shear as noted by the ductile tearing of the 

microstructure. 

The intent of punch testing was to statistically evaluate the mechanical properties the 

CIP-VHD-HIP and CIP-VCD-HIP consolidated samples. Because the different aluminum 

powders are of varying size, shape, and chemistry, only direct comparisons are valid for a 

given powder type. The measured mechanical properties for each consolidation sequence, 

shown in Figures 4.64,4.65, and 4.66, are statistically insignificant. A similar comment may 

be made about the measured mechanical properties of the consolidated and heat treated 

samples plotted in Figures 4.67,4.68, and 4.69. The punch test evaluation appears to be 

insensitive to the observable differences of the microstructure and residual hydrogen 

chemistry of the CIP-VHD-HIP and CIP-VCD-HIP samples. Other mechanical test, such as 

fatigue testing, are probably more sensitive to microstructural and hydrogen chemistry 

differences as demonstrated by Kim [61]. The development of a statistically significant 

fatigue study would require more aluminum powder than was available for this research. 
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CHAPTER 6. CONCLUSIONS 

Throughout this research, the commercial aluminum powders have been benchmarks 

for making direct comparisons with the GARS aluminum powder. The intent of these 

comparisons was to illustrate the strong linkage between the gas atomization process 

conditions, the resulting powder characteristics, and the required powder consolidation 

sequence. The principles demonstrated for the pure aluminum powders would be applicable 

to aluminum alloy powders. 

The surface oxidation during aluminum particle flight and collection in the 

atomization system is directly dependent on the residual partial pressures of oxygen and 

water vapor in the atomization gas and the atomization chamber. The atomization time scale 

model shows that the oxygen partial pressure affects the final shape of the aluminum powder 

particles. The model successfully predicts the observed aluminum powder morphologies 

with the assumption that an initial oxide film thickness of 5 A on the molten droplet can 

inhibit spheroidization. The residual water in the atomization gas and spray chamber is 

chemisorbed into the oxide film and physiosorbed onto the surface of the oxide film. During 

post-atomization powder handling, if the oxide thickness has not reached its "practical limit" 

in the atomization system, oxidation continues until the oxide thickness has grown to a 

maximum value. The rate of post-atomization oxidation of the aluminum particle surfaces is 

directly proportional to the relative humidity of the handling and storage atmospheres. Alloy 

elements and exposure temperatures also contribute to the continued growth of the oxide film 

after gas atomization. 

The explosibility hazard of aluminum powders is more severe with aluminum powder 

particles having high surface areas. The explosibility of aluminum powder is reduced by 

suppressing high temperature oxidation of the aluminum droplets. The MEC results of the 

GARS aluminum powders show that oxide film thickness is not a variable affecting powder 
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explosibility. However, the MEC test may not be sensitive enough to significant changes of 

oxide thickness. A comparison of the predicted and measured post-atomization surface oxide 

film thickness on aluminum powder particles shows reasonable agreement for a spherical 

powder morphology, based on bulk oxygen measurements. The oxide film thickness 

calculated for CAA aluminum powder is higher than the measured value, primarily due to the 

irregular shape of the aluminum powder particles. 

The CIP-VCD-HIP and CIP-VHD-HIP consolidation experiments demonstrate the 

possibility of substituting a low temperature vacuum degassing operation for the 

conventional high temperature vacuum degassing process. A CIP-VCD-HIP consolidated 

microstructure has less porosity than a CIP-VHD-HIP consolidated microstructure, consistent 

with a reduction of trapped residual gas. The mechanical properties measured with the small 

punch test were insensitive to the level of porosity and hydrogen content of the consolidated 

aluminum samples. Fatigue property measurements are more sensitive to porosity and 

residual hydrogen in a consolidated aluminum powder microstructure and would probably 

give a more thorough evaluation of whether or not a VCD process is feasible for 

consolidation of aluminum powder components. 

In summary, the GARS processing methodology offers a number of benefits to the 

production of aluminum and aluminum alloy powders by gas atomization. The aluminum 

powder is "clean" with respect to a thinner oxide film and a reduced hydrated alumina 

content. The GARS aluminum powder has good handling characteristics related to post-

atomization oxidation and reduced explosibility hazards. The thin oxide film enhances 

interparticle bonding during compaction and significantly increases the for solid state 

sintering rate of aluminum powders. The spherical shape of the aluminum powders would 

provide good powder flowability and die filling characteristics for pressing and sintering 

operations. The GARS process should be adaptable to existing conmiercial gas atomization 

facilities and applicable to other oxygen sensitive metals. 
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