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Some deleterious X-linked mutations may result in a growth disadvantage for those cells in which the mutation,
when on the active X chromosome, affects cell proliferation or viability. To explore the relationship between skewed
X-chromosome inactivation and X-linked mental retardation (XLMR) disorders, we used the androgen receptor
X-inactivation assay to determine X-inactivation patterns in 155 female subjects from 24 families segregating 20
distinct XLMR disorders. Among XLMR carriers, ∼50% demonstrate markedly skewed X inactivation (i.e., patterns
�80:20), compared with only ∼10% of female control subjects ( ). Thus, skewed X inactivation is a relativelyP ! .001
common feature of XLMR disorders. Of the 20 distinct XLMR disorders, 4 demonstrate a strong association with
skewed X inactivation, since all carriers of these mutations demonstrate X-inactivation patterns �80:20. The
XLMR mutations are present on the preferentially inactive X chromosome in all 20 informative female subjects
from these families, indicating that skewing is due to selection against those cells in which the XLMR mutation is
on the active X chromosome.

As a result of X-chromosome inactivation (Lyon 1961),
heterozygous females are mosaic for X-linked gene ex-
pression, with one population of cells expressing genes
from the maternal X chromosome and the other pop-
ulation expressing genes from the paternal X chromo-
some (Nance 1964). The relative ratio of these two cell
populations in a given female is frequently referred to
as the “X-inactivation pattern.” For female carriers of
an X-linked mutation or structural abnormality, one cell
population may be at a selective growth disadvantage,
resulting in clonal outgrowth of cells with one or the
other parental X chromosome active (Belmont 1996;
Puck and Willard 1998; Willard 2000). Because the
choice of one or the other X chromosome early in the
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process of X inactivation is generally random (Lyon
1961), significant deviation or skewing from an expected
mean X-inactivation pattern (i.e., 50:50) in a specific
population of female carriers suggests that the X-linked
mutation alters in vivo cell viability or proliferation
(Lyon 1968; Nyhan et al. 1970).

Mental retardation is a phenotypic component com-
mon to several of the disorders associated with skewed
X inactivation (Willard 2000). Because of this anecdotal
association, we sought to explore the possibility that a
general defect in cell viability or proliferation, as measured
by skewed X inactivation in peripheral blood cells, is
commonly associated with X-linked mental retardation
(XLMR). XLMR represents a diverse class of genetic mu-
tations. There are ∼150 XLMR disorders, which fall into
three classes: X-linked recessive and partly dominant dis-
orders (including syndromes, neuromuscular disorders,
and metabolic disorders), X-linked dominant lethal dis-
orders, and nonspecific XLMR disorders (Cabezas et al.
1999; Stevenson et al. 1999; Hamel et al. 2000; Chelly
and Mandel 2001). Although 130 XLMR genes have been
cloned to date (Chelly and Mandel 2001), the common-
ality of defects leading to mental retardation is not un-
derstood at the cellular or molecular level. Our data dem-
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onstrate that skewed X inactivation is a consistent feature
of at least half of all families with XLMR, suggesting that
XLMR mutations represent a unique class of X-linked
mutations characterized by a general defect in cell viability
or proliferation. The data further suggest that, despite the
most prominent clinical feature being restricted to the
central nervous system, the responsible genes are likely to
be expressed in peripheral blood cells, where they will be
more accessible to experimental study.

To investigate a possible association between skewed
X inactivation and XLMR, we studied 24 families seg-
regating 20 distinct XLMR disorders (table 1). These
families were selected solely on the basis of the clinical
presentation in affected males and therefore represent
an apparently unbiased collection of carrier female sub-
jects. Using the androgen receptor (AR) X-inactivation
assay (Allen et al. 1992), we determined the X-inacti-
vation patterns of all available female subjects, both car-
riers and noncarriers, from the families with XLMR
( female subjects).n p 155

Illustrative examples of AR X-inactivation tracings are
shown in figure 1a. The distribution of X-inactivation
patterns for XLMR carriers ( ) and noncarriersn p 94
( ) is shown in figure 1b. Approximately 9% ofn p 61
female control subjects ( ) demonstrate skewedn p 205
X-inactivation patterns �80:20, which is generally con-
sistent with previous estimates (Nance 1964; Gale et al.
1994; Naumova et al. 1996; Plenge et al. 1997, 1999).
In contrast, ∼50% of the XLMR carriers demonstrate
X-inactivation patterns that are �80:20 (tables 1 and
2; ). Analysis of the XLMR carrier distributionP ! .001
at other thresholds of skewed X inactivation are also
statistically highly significant (table 2). The effect is most
dramatic at patterns of X inactivation �90:10; nearly
a third of XLMR carriers show such skewing, compared
with only a few percent of female control subjects. Thus,
these data establish that, in peripheral blood cells,
skewed X inactivation is a common feature of XLMR
carriers.

To address whether the increased incidence of skewed
inactivation was due to an association with skewing in
only a subset of families, we examined separately each
family with XLMR in which there were at least three
female carriers (fig. 2 and table 1). Of the 20 distinct
XLMR disorders examined in this way, 4 show a strong
association with skewed X inactivation, in that all female
carriers within each family demonstrate an X-inactivation
pattern �80:20. This is particularly striking for families
K8435, K8300, and K8135, in which either all seven or
all five carriers show such extreme skewing (P K .0001
for each family) (table 1). An additional seven families
show an incomplete association, with at least two—but
not all—carriers demonstrating highly skewed patterns of
inactivation. Given the rarity of highly skewed patterns
in the general female population, however, each of these

patterns is statistically significant ( ). Of the re-P ! .01
maining families, only two (K8450 and K8295) had a
large number of carriers with no apparent association
between carrier status and skewing.

For certain X-linked conditions, secondary cell selec-
tion is believed to occur after an initially random X-
inactivation pattern has been established (Belmont 1996;
Puck and Willard 1998; Willard 2000). For X-linked
disorders associated with skewing, cell selection most
likely occurs against those cells in which the mutation
is on the active X chromosome; the mutation is therefore
predicted to be associated with the preferentially inactive
X chromosome. To determine whether the XLMR mu-
tations in our families reside on the preferentially active
or inactive X chromosome, we followed the cosegre-
gation of the XLMR mutation and the differentially
methylated AR allele (i.e., the allele associated with the
inactive X chromosome). Of the XLMR carriers with
X-inactivation patterns �80:20, the XLMR mutation
was on the preferentially inactive X chromosome in all
20 informative carriers (table 1). These data provide
strong evidence that the differential growth advantage
does, in fact, occur in favor of cells in which the XLMR
mutation is on the active X chromosome.

The possibility of cell selection against certain X-
linked mutations has been appreciated by geneticists for
some time (Lyon 1968; Nyhan et al. 1970). However,
previous studies have focused on either a specific X-
linked disorder or a specific family, with emphasis on
the clinical presentation of carrier females, and thus
demonstrate a potentially significant ascertainment bias.
In the present study, we have ascertained families with
XLMR through a male index patient, without regard to
the phenotype of female carriers.

The most important question raised by our study is
whether skewed X inactivation is specific to particu-
lar classes of X-linked mutation (such as XLMR and
the immune-deficiency syndromes [Belmont 1995]) or
whether this phenomenon applies more generally to
mutations in all X-linked genes. Although limited, avail-
able studies favor the hypothesis that skewing is re-
stricted to certain classes of X-linked disorders (Belmont
1996; Willard 2000). If skewing were common to X-
linked mutations generally, one would predict a diversity
of phenotypes in disorders associated with skewed inac-
tivation. However, of approximately a dozen X-linked
disorders demonstrating either a complete or partial as-
sociation with skewing (Willard 2000), only one—focal
dermal hypoplasia (Gorski 1991)—does not have a men-
tal-retardation or immune-deficiency phenotype.

If X-linked mutations were commonly associated with
variable or incompletely penetrant skewed inactivation,
as was observed for ∼50% of the families with XLMR
in the present study, one would predict the detection of
skewing for carriers of many (and perhaps all) X-linked



Table 1

Families with XLMR: Association with Skewed X Inactivation

FAMILYa XLMR DISORDER

REGION OF

LINKAGE

NO. OF CARRIERSb

DESCRIPTIONcTotal
With Inactivation
Pattern �80:20 Xi

d

Strong association ( ):n p 4
K8135 XLMR, short stature, tremor q22-q24 5 5 1/1 Short stature, tremor, behavioral abnormalities
K8210 Williams q28 4 4 3/3 Muscle hypoplasia, hypotonia, frontal bossing, death at early age
K8300 Pai q28 7 7 3/3 Profound mental retardation, death at early age, nonambulatory
K8435 Mulvenna-Trotter-Fisher q27 7 7 4/4 Seizures, IgE deficiency, large head, moderate mental retardation

Incomplete association ( ):n p 14
K8005 Allan-Herndon Dudley q13-q21 3 1 Severe mental retardation, severe hypotonia, ataxia, abnormal facies
K8090 Allan-Herndon Dudley q13-q21 2 0 Severe mental retardation, severe hypotonia, ataxia, abnormal facies
K8225 Allan-Herndon Dudley q13-q21 2 1 Severe mental retardation, severe hypotonia, ataxia, abnormal facies
K8020 Aarskog-Scott q11.21 3 0 Short stature, facial, skeletal, and urogenital anomalies
K8250 Aarskog-Scott q11.21 2 2 2/2 Short stature, facial, skeletal, and urogenital anomalies
K8285 Aarskog-Scott q11.21 3 0 Short stature, facial, skeletal, and urogenital anomalies
K8765 Agenesis corpus collosum q28 7 2 1/1 Neuromuscular spasticity, unsteady gait
K8065 MRX7 p11-p14 6 3 2/2 Nonspecific XLMR
K8355 XLMR, seizures, ataxia p21-p11.2 6 2 Seizures, ataxia, aphasia, autism
K8070 Miles-Carpenter MRSX4 q13-q22 5 3 3/3 Arched fingertips, microcephaly
K8240 XLMR with cleft lip/palate q12-q21 5 3 1/1 Sloped forehead, short stature, small testicular volume
K8615 XLMR, spastic paraplegia p12-q12 3 2 Spastic paraplegia, club feet, dystonia
K8075 Wieacker-Wolff Proximal X q arm 2 1 Neuromuscular, muscle atrophy
K8610 FG syndrome q13-q21 2 1 Macrocephaly, imperforate anus, and congenital hypotonia

No apparent association ( ):n p 6
K8035 XLMR, arched fingerprints q13-q21 3 0 Arched fingerprints, hypotonia, areflexia
K8045 Arena q22-q25 2 0 Severe spastic paraplegia, ataxia
K8100 Armfield q28 3 0 Short stature, cleft palate, seizures, glaucoma, severe mental retardation
K8295 Lujan None 4 0 Marfanoid, triangular facies, narrow palate, hypernasal voice
K8395 XLMR, spastic paraplegia Proximal X q arm 2 0 Spastic paraplegia, nystagmus; carriers have gait abnormalities
K8450 MRX32 p21-p22.2 6 0 Nonspecific and variable mental retardation

Total 20 distinct disorders 94 44 20/20

a Most of the families have been described elsewhere (Lubs et al. 1996).
b Carrier or noncarrier status was determined by linkage analysis, by pedigree analysis (in the case of obligate carriers) and, where possible, by direct mutation screening.
c Specific clinical features are provided in the Miami XLMR database (Cabezas et al. 1999).
d Xi p inactive X chromosome; data are number of informative carriers in whom the mutation was present on the preferentially inactive X chromosome/total number of informative

carriers.
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Figure 1 X-inactivation patterns in XLMR disorders. a, AR X-
inactivation–pattern tracings. The top tracings represent the undigested
DNA (�HpaII) from three female control subjects and from a male
control subject; the bottom tracings represent DNA digested with HpaII
prior to PCR (�HpaII). The relative intensity of the two alleles after
digestion represents the AR X-inactivation pattern for each individual
(expressed as a ratio and normalized to the undigested samples). The
tracing in males disappears, representing complete digestion of the un-
methylated allele on the active X chromosome. Details of the AR X-
inactivation assay have been described elsewhere, including methods for
correcting for unequal peak heights owing to preferential allele ampli-
fication (Allen et al. 1992; Naumova et al. 1996; Plenge et al. 1997,
1999). b, Distribution of AR X-inactivation patterns in families with
XLMR and control subjects. The AR X-inactivation patterns are shown
for two control populations (unblackened circles) and for the XLMR
carrier population (blackened circles).

Table 2

Skewed X-Inactivation Patterns in XLMR Carriers

X-INACTIVATION

PATTERN

FREQUENCY OF SKEWED X INACTIVATIONa

(%)

Female
Control
Subjects

XLMR
Noncarriersb

XLMR
Carriersc

�90:10 3 2 30
�80:20 9 15 48
�70:30 30 41 63

a To assess statistically the distribution of X-inactivation patterns,
a x2 test was used to compare the number of female carriers above
and below a particular threshold value (�90:10, �80:20, and �70:
30) to that of the control population, as described by Plenge et al.
(1999). To control for multiple hypothesis testing, a Bonferroni cor-
rection was applied, and the significance value was set at .P ! .01

b Results were not statistically significant.
c All results were significant ( ).P ! .001

disorders. In contrast to this prediction, however, several
studies have demonstrated apparently random X inac-
tivation in many female carriers, through use of a variety
of assays (Willard 2000). As part of the present study,
we examined X-inactivation patterns in our collection
of carriers of Duchenne muscular dystrophy; these pat-
terns did not differ significantly from those of female
control individuals (data not shown). Notwithstanding
the detection of occasional (usually symptomatic) car-
riers with demonstrated skewed X inactivation (Puck
and Willard 1998), it is clear that skewing is not fre-
quently observed in a high proportion of carriers of most
X-linked conditions. Thus, these results also favor the
hypothesis that skewing is specific to certain classes of
X-linked mutations.

It may appear surprising that a group of disorders
affecting the central nervous system would have a neg-

ative effect on cell proliferation in an apparently unre-
lated tissue (peripheral blood cells). One possible expla-
nation is that peripheral blood cells serve as a phenotypic
surrogate for cells in the central nervous system. Ac-
cordingly, XLMR genes, as a class, might affect in vivo
cell viability or proliferation in many tissue types, and
a number of examples are consistent with this sugges-
tion. For example, genes responsible for syndromic
XLMR are widely expressed and have demonstrated
general roles in transcriptional regulation, cell prolifer-
ation, and/or development (Chelly and Mandel 2001).
Some nonspecific XLMR genes also appear to be in-
volved in cell proliferation and/or global transcriptional
regulation (Allen et al. 1998; D’Adamo et al. 1998; Kut-
sche et al. 2000; Couvert et al. 2001). Thus, the apparent
functions of at least some XLMR genes provide support
for the hypothesis that these genes affect cell viability
or proliferation generally. This finding also has practical
significance, since it suggests that, for a substantial sub-
set of XLMR disorders, the relevant loci are likely ex-
pressed in peripheral blood and thus are potentially ac-
cessible for experimentation (i.e., expression arrays).

In addition to providing potential insight into XLMR
pathogenesis, the finding of skewed X inactivation may
assist in the mapping of XLMR genes. Other studies
have used the phenotype of skewed X inactivation to
both establish X linkage (Zoghbi et al. 1990; Krepischi
et al. 1998; Amir et al. 1999) and narrow the critical
region for mutant genes (Gibbons et al. 1992; Sirianni
et al. 1998). In XLMR, this approach would be espe-
cially useful in small families in which there are few
affected males and in which carrier status is critical to
achieving a meaningful LOD score (Lubs et al. 1999).

Assignment of carrier status may also be important for
establishing a diagnosis and for genetic counseling in
XLMR conditions. In pedigrees with nonspecific mental
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Figure 2 Pedigrees of illustrative families with XLMR. AR X-
inactivation patterns are shown near each informative female subject.
Blackened symbols denote affected individuals, unblackened symbols
denote unaffected individuals, and symbols with a black dot denote
carriers.

retardation that are so small that it is not possible to
distinguish between X-linked and autosomal patterns of
inheritance, the detection of multiple females with highly
skewed X inactivation (i.e., patterns �90:10)—a decid-
edly unlikely occurrence for autosomal or non-XLMR
mutations—would greatly raise the suspicion that the dis-
order in question is XLMR.

Acknowledgments

We thank Amy Cottle, for assistance with the AR X-inac-
tivation assay, and Jim Amos-Landgraf and Laura Carrel, for
helpful discussions. This work was supported by National In-
stitutes of Health research grants GM45441 (to H.F.W.) and
HD26202 (to H.L., C.S., and H.F.W.).

References

Allen KM, Gleeson JG, Bagrodia S, Partington MW, Mac-
Millan JC, Cerione RA, Mulley JC, Walsh CA (1998) PAK3
mutation in nonsyndromic X-linked mental retardation. Nat
Genet 20:25–30

Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont
JW (1992) Methylation of HpaII and HhaI sites near the
polymorphic CAG repeat in the human androgen-receptor
gene correlates with X chromosome inactivation. Am J Hum
Genet 51:1229–1239

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U,
Zoghbi HY (1999) Rett syndrome is caused by mutations
in X-linked MECP2, encoding methyl-CpG-binding protein
2. Nat Genet 23:185–188

Belmont JW (1995) Insights into lymphocyte development
from X-linked immune deficiencies. Trends Genet 11:112–
116

——— (1996) Genetic control of X inactivation and processes
leading to X-inactivation skewing. Am J Hum Genet 58:
1101–1108

Cabezas DA, Arena JF, Stevenson RE, Schwartz C, Goldberg
S, Morales A, Lubs HA (1999) XLMR database. Am J Med
Genet 85:202–205

Chelly J, Mandel JL (2001) Monogenic causes of X-linked
mental retardation. Nat Rev Genet 2:669–680

Couvert P, Bienvenu T, Aquaviva C, Poirier K, Moraine C,
Gendrot C, Verloes A, Andres C, Le Fevre AC, Souville I,
Steffann J, des Portes V, Ropers HH, Yntema HG, Fryns JP,
Briault S, Chelly J, Cherif B (2001) MECP2 is highly mutated
in X-linked mental retardation. Hum Mol Genet 10:941–
946

D’Adamo P, Menegon A, Lo Nigro C, Grasso M, Gulisano
M, Tamanini F, Bienvenu T, Gedeon AK, Oostra B, Wu SK,
Tandon A, Valtorta F, Balch WE, Chelly J, Toniolo D (1998)
Mutations in GDI1 are responsible for X-linked non-specific
mental retardation. Nat Genet 19:134–139

Gale RE, Wheadon H, Boulos P, Linch D (1994) Tissue spec-
ificity of X chromosome inactivation patterns. Blood 83:
2899–2905

Gibbons RJ, Suthers GK, Wilkie OM, Buckle VJ, Higgs DR
(1992) X-linked alpha-thalessemia/mental retardation (ATR-
X) syndrome: localization to Xq12-q21.31 by X inactivation
and linkage analysis. Am J Hum Genet 51:1136–1149

Gorski JL (1991) Father-to-daughter transmission of focal der-
mal hypoplasia associated with nonrandom X-inactivation:
support for X-linked inheritance and paternal X chromo-
some mosaicism. Am J Med Genet 40:332–337

Hamel BC, Chiurazzi P, Lubs HA (2000) Syndromic XLMR
genes (MRXS): update 2000. Am J Med Genet 94:361–
363

Krepischi AC, Kok F, Otto PG (1998) X chromosome inac-
tivation patterns in patients with Rett syndrome. Hum Genet
102:319–321

Kutsche K, Yntema H, Brandt A, Jantke I, Nothwang HG,
Orth U, Boavida MG, David D, Chelly J, Fryns JP, Moraine
C, Ropers HH, Hamel BC, van Bokhoven H, Gal A (2000)
Mutations in ARHGEF6, encoding a guanine nucleotide
exchange factor for Rho GTPases, in patients with X-linked
mental retardation. Nat Genet 26:247–250

Lubs H, Chiurazzi P, Arena J, Schwartz C, Tranebjaerg L, Neri
G (1999) XLMR genes: update 1998. Am J Med Genet 83:
237–247

Lubs HA, Schwartz CE, Stevenson RE, Arena JF (1996) Study
of X-linked mental retardation (XLMR): summary of 61
families in the Miami/Greenwood Study. Am J Med Genet
64:169–175

Lyon MF (1961) Gene action in the X-chromosome of the
mouse (Mus musculus L.). Nature 190:372–373

——— (1968) Chromosomal and subchromosomal inactiva-
tion. Ann Rev Genet 2:31–52

Nance WE (1964) Genetic tests with a sex-linked marker: glu-
cose-6-phosphate dehydrogenase. Cold Spring Harbor Symp
Quant Biol 29:415–424

Naumova AK, Plenge RM, Bird LM, Leppert M, Morgan K,



Reports 173

Willard HF, Sapienza C (1996) Heritability of X chromo-
some inactivation phenotype in a large family. Am J Hum
Genet 58:1111–1119

Nyhan WL, Bakay B, Connor JD, Marks JF, Keele DK (1970)
Hemizygous expression of glucose-6-phosphate dehydroge-
nase in erythrocytes of heterozygotes for the Lesch-Nyhan
syndrome. Proc Natl Acad Sci USA 65:214–218

Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova
A, Sapienza C, Winter RM, et al (1997) A promoter mu-
tation in the XIST gene in two unrelated families with
skewed X-chromosome inactivation. Nat Genet 17:353–
356

Plenge RM, Tranebjaerg L, Jensen PK, Schwartz C, Willard
HF (1999) Evidence that mutations in the X-linked DDP
gene cause incompletely penetrant and variable skewed X
inactivation. Am J Hum Genet 64:759–767

Puck JM, Willard HF (1998) X inactivation in females with
X-linked disease. New Engl J Med 338:325–328

Sirianni N, Naidu S, Pereira J, Pillotto RF, Hoffman EP (1998)
Rett syndrome: confirmation of X-linked dominant inheri-
tance and localization of the gene to Xq28. Am J Hum Genet
63:1552–1558

Stevenson RE, Schwartz CE, Schroer RJ (1999) X-linked men-
tal retardation. Oxford University Press, New York.

Willard HF (2000) The sex chromosomes and X chromosome
inactivation. In: Scriver CR, Beaudet AL, Sly WS, Valle D,
Childs B, Vogelstein B (eds) The metabolic and molecular
bases of inherited Disease, 8th ed. McGraw-Hill, New York,
pp 1191–1221

Zoghbi HY, Percy AK, Schultz RJ, Fill C (1990) Patterns of
X chromosome inactivation in the Rett syndrome. Brain Dev
12:131–135


	Skewed X-Chromosome Inactivation Is a Common Feature of X-Linked Mental Retardation Disorders
	Acknowledgments
	References


