
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Aurora MySQL
Database Administrator’s

Handbook
Connection Management

First Published January 2018

Updated October 20, 2021

https://docs.aws.amazon.com/whitepapers/latest/amazon-aurora-mysql-db-admin-handbook/amazon-aurora-mysql-db-admin-handbook.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Contents

Introduction .. 1

DNS endpoints... 2

Connection handling in Aurora MySQL and MySQL .. 2

Common misconceptions .. 4

Best practices .. 5

Using smart drivers .. 5

DNS caching... 7

Connection management and pooling ... 7

Connection scaling ... 9

Transaction management and autocommit ... 10

Connection handshakes .. 12

Load balancing with the reader endpoint .. 12

Designing for fault tolerance and quick recovery .. 13

Server configuration ... 14

Conclusion ... 16

Contributors ... 16

Further reading .. 16

Document revisions ... 17

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Abstract

This paper outlines the best practices for managing database connections, setting

server connection parameters, and configuring client programs, drivers, and connectors.

It’s a recommended read for Amazon Aurora MySQL Database Administrators (DBAs)

and application developers.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 1

Introduction

Amazon Aurora MySQL (Aurora MySQL) is a managed relational database engine,

wire-compatible with MySQL 5.6 and 5.7. Most of the drivers, connectors, and tools that

you currently use with MySQL can be used with Aurora MySQL with little or no change.

Aurora MySQL database (DB) clusters provide advanced features such as:

• One primary instance that supports read/write operations and up to 15 Aurora

Replicas that support read-only operations. Each of the Replicas can be

automatically promoted to the primary role if the current primary instance fails.

• A cluster endpoint that automatically follows the primary instance in case of

failover.

• A reader endpoint that includes all Aurora Replicas and is automatically updated

when Aurora Replicas are added or removed.

• Ability to create custom DNS endpoints containing a user-configured group of

database instances within a single cluster.

• Internal server connection pooling and thread multiplexing for improved

scalability.

• Near-instantaneous database restarts and crash recovery.

• Access to near-real-time cluster metadata that enables application developers to

build smart drivers, connecting directly to individual instances based on their

read/write or read-only role.

Client-side components (applications, drivers, connectors, and proxies) that use sub-

optimal configuration might not be able to react to recovery actions and DB cluster

topology changes, or the reaction might be delayed. This can contribute to unexpected

downtime and performance issues. To prevent that and make the most of Aurora

MySQL features, AWS encourages Database Administrators (DBAs) and application

developers to implement the best practices outlined in this whitepaper.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 2

DNS endpoints

An Aurora DB cluster consists of one or more instances and a cluster volume that

manages the data for those instances. There are two types of instances:

• Primary instance – Supports read and write statements. Currently, there can be

one primary instance per DB cluster.

• Aurora Replica – Supports read-only statements. A DB cluster can have up to

15 Aurora Replicas. The Aurora Replicas can be used for read scaling, and are

automatically used as failover targets in case of a primary instance failure.

Amazon Aurora supports the following types of Domain Name System (DNS) endpoints:

• Cluster endpoint – Connects you to the primary instance and automatically

follows the primary instance in case of failover, that is, when the current primary

instance is demoted and one of the Aurora Replicas is promoted in its place.

• Reader endpoint – Includes all Aurora Replicas in the DB cluster under a single

DNS CNAME. You can use the reader endpoint to implement DNS round robin

load balancing for read-only connections.

• Instance endpoint – Each instance in the DB cluster has its own individual

endpoint. You can use this endpoint to connect directly to a specific instance.

• Custom endpoints – User-defined DNS endpoints containing a selected group

of instances from a given cluster.

For more information, refer to the Overview of Amazon Aurora page.

Connection handling in Aurora MySQL and

MySQL

MySQL Community Edition manages connections in a one-thread-per-connection

fashion. This means that each individual user connection receives a dedicated

operating system thread in the mysqld process. Issues with this type of connection

handling include:

• Relatively high memory use when there is a large number of user connections,

even if the connections are completely idle

• Higher internal server contention and context switching overhead when working

with thousands of user connections

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 3

Aurora MySQL supports a thread pool approach that addresses these issues. You can

characterize the thread pool approach as follows:

• It uses thread multiplexing, where a number of worker threads can switch

between user sessions (connections). A worker thread is not fixed or dedicated

to a single user session. Whenever a connection is not active (for example, is

idle, waiting for user input, waiting for I/O, and so on), the worker thread can

switch to another connection and do useful work.

You can think of worker threads as CPU cores in a multi-core system. Even

though you only have a few cores, you can easily run hundreds of programs

simultaneously because they're not all active at the same time. This highly

efficient approach means that Aurora MySQL can handle thousands of

concurrent clients with just a handful of worker threads.

• The thread pool automatically scales itself. The Aurora MySQL database process

continuously monitors its thread pool state and launches new workers or

destroys existing ones as needed. This is transparent to the user and doesn’t

need any manual configuration.

Server thread pooling reduces the server-side cost of maintaining connections.

However, it doesn’t eliminate the cost of setting up these connections in the first place.

Opening and closing connections isn't as simple as sending a single TCP packet. For

busy workloads with short-lived connections (for example, key-value or online

transaction processing (OLTP)), consider using an application-side connection pool.

The following is a network packet trace for a MySQL connection handshake taking

place between a client and a MySQL-compatible server located in the same Availability

Zone:

04:23:29.547316 IP client.32918 > server.mysql: tcp 0

04:23:29.547478 IP server.mysql > client.32918: tcp 0

04:23:29.547496 IP client.32918 > server.mysql: tcp 0

04:23:29.547823 IP server.mysql > client.32918: tcp 78

04:23:29.547839 IP client.32918 > server.mysql: tcp 0

04:23:29.547865 IP client.32918 > server.mysql: tcp 191

04:23:29.547993 IP server.mysql > client.32918: tcp 0

04:23:29.548047 IP server.mysql > client.32918: tcp 11

04:23:29.548091 IP client.32918 > server.mysql: tcp 37

04:23:29.548361 IP server.mysql > client.32918: tcp 99

04:23:29.587272 IP client.32918 > server.mysql: tcp 0

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 4

This is a packet trace for closing the connection:

04:23:37.117523 IP client.32918 > server.mysql: tcp 13

04:23:37.117818 IP server.mysql > client.32918: tcp 56

04:23:37.117842 IP client.32918 > server.mysql: tcp 0

As you can see, even the simple act of opening and closing a single connection

involves an exchange of several network packets. The connection overhead becomes

more pronounced when you consider SQL statements issued by drivers as part of

connection setup (for example, SET variable_name = value commands used to set

session-level configuration). Server-side thread pooling doesn’t eliminate this type of

overhead.

Common misconceptions

The following are common misconceptions for database connection management.

• If the server uses connection pooling, you don’t need a pool on the

application side. As explained previously, this isn’t true for workloads where

connections are opened and torn down very frequently, and clients run relatively

few statements per connection.

You might not need a connection pool if your connections are long lived. This

means that connection activity time is much longer than the time required to open

and close the connection. You can run a packet trace with tcpdump and see how

many packets you need to open or close connections versus how many packets

you need to run your queries within those connections. Even if the connections

are long lived, you can still benefit from using a connection pool to protect the

database against connection surges, that is, large bursts of new connection

attempts.

• Idle connections don’t use memory. This isn’t true because the operating

system and the database process both allocate an in-memory descriptor for each

user connection. What is typically true is that Aurora MySQL uses less memory

than MySQL Community Edition to maintain the same number of connections.

However, memory usage for idle connections is still not zero, even with Aurora

MySQL.

The general best practice is to avoid opening significantly more connections than

you need.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 5

• Downtime depends entirely on database stability and database features.
This isn’t true because the application design and configuration play an important
role in determining how fast user traffic can recover following a database event.
For more details, refer to the Best practices section of this whitepaper.

Best practices

The following are best practices for managing database connections and configuring

connection drivers and pools.

Using smart drivers

The cluster and reader endpoints abstract the role changes (primary instance promotion

and demotion) and topology changes (addition and removal of instances) occurring in

the DB cluster. However, DNS updates are not instantaneous. In addition, they can

sometimes contribute to a slightly longer delay between the time a database event

occurs and the time it’s noticed and handled by the application.

Aurora MySQL exposes near-real-time metadata about DB instances in the

INFORMATION_SCHEMA.REPLICA_HOST_STATUS table.

Here is an example of a query against the metadata table:

mysql> select server_id, if(session_id = 'MASTER_SESSION_ID',

'writer', 'reader') as role, replica_lag_in_milliseconds from

information_schema.replica_host_status;

+-------------------+--------+-----------------------------+

| server_id | role | replica_lag_in_milliseconds |

+-------------------+--------+-----------------------------+

| aurora-node-usw2a | writer | 0 |

| aurora-node-usw2b | reader | 19.253999710083008 |

+-------------------+--------+-----------------------------+

2 rows in set (0.00 sec)

Notice that the table contains cluster-wide metadata. You can query the table on any

instance in the DB cluster.

For the purpose of this whitepaper, a smart driver is a database driver or connector with

the ability to read DB cluster topology from the metadata table. It can route new

connections to individual instance endpoints without relying on high-level cluster

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 6

endpoints. A smart driver is also typically capable of load balancing read-only

connections across the available Aurora Replicas in a round robin fashion.

The MariaDB Connector/J is an example of a third-party Java Database Connectivity

(JDBC) smart driver with native support for Aurora MySQL DB clusters. Application

developers can draw inspiration from the MariaDB driver to build drivers and connectors

for languages other than Java.

Refer to the MariaDB Connector/J page for details.

The AWS JDBC Driver for MySQL (preview) is a client driver designed for the high

availability of Aurora MySQL. The AWS JDBC Driver for MySQL is drop-in compatible

with the MySQL Connector/J driver.

The AWS JDBC Driver for MySQL takes full advantage of the failover capabilities of

Aurora MySQL. The AWS JDBC Driver for MySQL fully maintains a cache of the DB

cluster topology and each DB instance's role, either primary DB instance or Aurora

Replica. It uses this topology to bypass the delays caused by DNS resolution so that a

connection to the new primary DB instance is established as fast as possible.

Refer to the AWS JDBC Driver for MySQL GitHub repository for details.

If you’re using a smart driver, the recommendations listed in the following sections still

apply. A smart driver can automate and abstract certain layers of database connectivity.

However, it doesn’t automatically configure itself with optimal settings, or automatically

make the application resilient to failures. For example, when using a smart driver, you

still need to ensure that the connection validation and recycling functions are configured

correctly, there’s no excessive DNS caching in the underlying system and network

layers, transactions are managed correctly, and so on.

It’s a good idea to evaluate the use of smart drivers in your setup. Note that if a third-

party driver contains Aurora MySQL–specific functionality, it doesn’t mean that it has

been officially tested, validated, or certified by AWS. Also note that due to the advanced

built-in features and higher overall complexity, smart drivers are likely to receive

updates and bug fixes more frequently than traditional (bare bones) drivers. You should

regularly review the driver’s release notes and use the latest available version whenever

possible.

https://mariadb.com/kb/en/the-mariadb-library/failover-and-high-availability-with-mariadb-connector-j/#specifics-for-amazon-aurora
https://mariadb.com/kb/en/the-mariadb-library/failover-and-high-availability-with-mariadb-connector-j/#specifics-for-amazon-aurora
https://awslabs.github.io/aws-mysql-jdbc/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 7

DNS caching

Unless you use a smart database driver, you depend on DNS record updates and DNS

propagation for failovers, instance scaling, and load balancing across Aurora Replicas.

Currently, Aurora DNS zones use a short Time-To-Live (TTL) of five seconds. Ensure

that your network and client configurations don’t further increase the DNS cache TTL.

Remember that DNS caching can occur anywhere from your network layer, through the

operating system, to the application container. For example, Java virtual machines

(JVMs) are notorious for caching DNS indefinitely unless configured otherwise. Here are

some examples of issues that can occur if you don’t follow DNS caching best practices:

• After a new primary instance is promoted during a failover, applications continue

to send write traffic to the old instance. Data-modifying statements will fail

because that instance is no longer the primary instance.

• After a DB instance is scaled up or down, applications are unable to connect to it.

Due to DNS caching, applications continue to use the old IP address of that

instance, which is no longer valid.

• Aurora Replicas can experience unequal utilization, for example, one DB

instance receiving significantly more traffic than the others.

Connection management and pooling

Always close database connections explicitly instead of relying on the development

framework or language destructors to do it. There are situations, especially in container

based or code-as-a-service scenarios, when the underlying code container isn’t

immediately destroyed after the code completes. In such cases, you might experience

database connection leaks where connections are left open and continue to hold

resources (for example, memory and locks).

If you can’t rely on client applications (or interactive clients) to close idle connections,

use the server’s wait_timeout and interactive_timeout parameters to configure

idle connection timeout. The default timeout value is fairly high at 28,800 seconds (8

hours). You should tune it down to a value that’s acceptable in your environment. Refer

to the MySQL Reference Manual for details.

Consider using connection pooling to protect the database against connection surges.

Also, consider connection pooling if the application opens large numbers of connections

(for example, thousands or more per second) and the connections are short lived, that

is, the time required for connection setup and teardown is significant compared to the

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_wait_timeout

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 8

total connection lifetime. If your development framework or language doesn’t support

connection pooling, you can use a connection proxy instead.

Amazon RDS Proxy is a fully managed, highly available database proxy for Amazon

Relational Database Service (Amazon RDS) that makes applications more scalable,

more resilient to database failures, and more secure. ProxySQL, MaxScale, and

ScaleArc are examples of third-party proxies compatible with the MySQL protocol.

Refer to the Connection scaling section of this document for more notes on connection

pools versus proxies.

By using Amazon RDS Proxy, you can allow your applications to pool and share

database connections to improve their ability to scale. Amazon RDS Proxy makes

applications more resilient to database failures by automatically connecting to a standby

DB instance while preserving application connections.

AWS recommends the following for configuring connection pools and proxies:

• Check and validate connection health when the connection is borrowed from the

pool. The validation query can be as simple as SELECT 1. However, in Amazon

Aurora you can also use connection checks that return a different value

depending on whether the instance is a primary instance (read/write) or an

Aurora Replica (read-only). For example, you can use the @@innodb_read_only

variable to determine the instance role. If the variable value is TRUE, you're on

an Aurora Replica.

• Check and validate connections periodically even when they're not borrowed. It

helps detect and clean up broken or unhealthy connections before an application

thread attempts to use them.

• Don't let connections remain in the pool indefinitely. Recycle connections by

closing and reopening them periodically (for example, every 15 minutes), which

frees the resources associated with these connections. It also helps prevent

dangerous situations such as runaway queries or zombie connections that clients

have abandoned. This recommendation applies to all connections, not just idle

ones.

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 9

Connection scaling

The most common technique for scaling web service capacity is to add or remove

application servers (instances) in response to changes in user traffic. Each application

server can use a database connection pool.

This approach causes the total number of database connections to grow proportionally

with the number of application instances. For example, 20 application servers

configured with 200 database connections each would require a total of 4,000 database

connections. If the application pool scales up to 200 instances (for example, during

peak hours), the total connection count will reach 40,000. Under a typical web

application workload, most of these connections are likely idle. In extreme cases, this

can limit database scalability: idle connections do take server resources, and you’re

opening significantly more of them than you need. Also, the total number of connections

is not easy to control because it’s not something you configure directly, but rather

depends on the number of application servers.

You have two options in this situation:

• Tune the connection pools on application instances. Reduce the number of

connections in the pool to the acceptable minimum. This can be a stop-gap

solution, but it might not be a long-term solution as your application server fleet

continues to grow.

• Introduce a connection proxy between the database and the application. On one

side, the proxy connects to the database with a fixed number of connections. On

the other side, the proxy accepts application connections and can provide

additional features such as query caching, connection buffering, query

rewriting/routing, and load balancing.

Connection proxies

• Amazon RDS Proxy is a fully managed, highly available database proxy for

Amazon RDS that makes applications more scalable, more resilient to database

failures, and more secure. Amazon RDS Proxy reduces the memory and CPU

overhead for connection management on the database.

• Using Amazon RDS Proxy, you can handle unpredictable surges in database

traffic that otherwise might cause issues due to oversubscribing connections or

creating new connections at a fast rate. To protect the database against

oversubscription, you can control the number of database connections that are

created.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 10

• Each RDS proxy performs connection pooling for the writer instance of its

associated Amazon RDS or Aurora database. Connection pooling is an

optimization that reduces the overhead associated with opening and closing

connections and with keeping many connections open simultaneously. This

overhead includes memory needed to handle each new connection. It also

involves CPU overhead to close each connection and open a new one, such as

Transport Layer Security/Secure Sockets Layer (TLS/SSL) handshaking,

authentication, negotiating capabilities, and so on. Connection pooling simplifies

your application logic. You don't need to write application code to minimize the

number of simultaneous open connections. Connection pooling also cuts down

on the amount of time a user must wait to establish a connection to the database.

• To perform load balancing for read-intensive workloads, you can create a read-

only endpoint for RDS proxy. That endpoint passes connections to the reader

endpoint of the cluster. That way, your proxy connections can take advantage of

Aurora read scalability.

• ProxySQL, MaxScale, and ScaleArc are examples of third-party proxies

compatible with the MySQL protocol. For even greater scalability and availability,

you can use multiple proxy instances behind a single DNS endpoint.

Transaction management and autocommit

With autocommit enabled, each SQL statement runs within its own transaction. When

the statement ends, the transaction ends as well. Between statements, the client

connection is not in transaction. If you need a transaction to remain open for more than

one statement, you explicitly begin the transaction, run the statements, and then commit

or roll back the transaction.

With autocommit disabled, the connection is always in transaction. You can commit or

roll back the current transaction, at which point the server immediately opens a new

one.

Refer to the MySQL Reference Manual for details.

Running with autocommit disabled is not recommended because it encourages long-

running transactions where they’re not needed. Open transactions block a server’s

internal garbage collection mechanisms, which are essential to maintaining optimal

performance. In extreme cases, garbage collection backlog leads to excessive storage

consumption, elevated CPU utilization, and query slowness.

https://dev.mysql.com/doc/refman/5.7/en/innodb-autocommit-commit-rollback.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-autocommit-commit-rollback.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 11

Recommendations:

• Always run with autocommit mode enabled. Set the autocommit parameter to 1

on the database side (which is the default) and on the application side (which

might not be the default).

• Always double-check the autocommit settings on the application side. For

example, Python drivers such as MySQLdb and PyMySQL disable autocommit

by default.

• Manage transactions explicitly by using BEGIN/START TRANSACTION and

COMMIT/ROLLBACK statements. You should start transactions when you need

them and commit as soon as the transactional work is done.

Note that these recommendations are not specific to Aurora MySQL. They apply to

MySQL and other databases that use the InnoDB storage engine.

Long transactions and garbage collection backlog are easy to monitor:

• You can obtain the metadata of currently running transactions from the

INFORMATION_SCHEMA.INNODB_TRX table. The TRX_STARTED column contains

the transaction start time, and you can use it to calculate transaction age. A

transaction is worth investigating if it has been running for several minutes or

more. Refer to the MySQL Reference Manual for details about the table.

• You can read the size of the garbage collection backlog from the InnoDB’s

trx_rseg_history_len counter in the

INFORMATION_SCHEMA.INNODB_METRICS table. Refer to the MySQL Reference

Manual for details about the table. The larger the counter value is, the more

severe the impact might be in terms of query performance, CPU usage, and

storage consumption. Values in the range of tens of thousands indicate that the

garbage collection is somewhat delayed. Values in the range of millions or tens

of millions might be dangerous and should be investigated.

Note – In Amazon Aurora, all DB instances use the same storage volume,
which means that the garbage collection is cluster-wide and not specific to
each instance. Consequently, a runaway transaction on one instance can
impact all instances. Therefore, you should monitor long transactions on
all DB instances.

https://dev.mysql.com/doc/refman/5.7/en/information-schema-innodb-trx-table.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-trx-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-innodb-metrics-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-innodb-metrics-table.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 12

Connection handshakes

A lot of work can happen behind the scenes when an application connector or a

graphical user interface (GUI) tool opens a new database session. Drivers and client

tools commonly run series of statements to set up session configuration (for example,

SET SESSION variable = value). This increases the cost of creating new

connections and delays when your application can start issuing queries.

The cost of connection handshakes becomes even more important if your applications

are very sensitive to latency. OLTP or key-value workloads that expect single-digit

millisecond latency can be visibly impacted if each connection is expensive to open. For

example, if the driver runs six statements to set up a connection and each statement

takes just one millisecond to run, your application will be delayed by six milliseconds

before it issues its first query.

Recommendations:

• Use the Aurora MySQL Advanced Audit, the General Query Log, or network-level

packet traces (for example, with tcpdump) to obtain a record of statements run

during a connection handshake. Whether or not you’re experiencing connection

or latency issues, you should be familiar with the internal operations of your

database driver.

• For each handshake statement, you should be able to explain its purpose and

describe its impact on queries you'll subsequently run on that connection.

• Each handshake statement requires at least one network roundtrip and will

contribute to higher overall session latency. If the number of handshake

statements appears to be significant relative to the number of statements doing

actual work, determine if you can disable any of the handshake statements.

Consider using connection pooling to reduce the number of connection

handshakes.

Load balancing with the reader endpoint

Because the reader endpoint contains all Aurora Replicas, it can provide DNS-based,

round robin load balancing for new connections. Every time you resolve the reader

endpoint, you'll get an instance IP that you can connect to, chosen in round robin

fashion.

DNS load balancing works at the connection level (not the individual query level). You

must keep resolving the endpoint without caching DNS to get a different instance IP on

each resolution. If you only resolve the endpoint once and then keep the connection in

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 13

your pool, every query on that connection goes to the same instance. If you cache DNS,

you receive the same instance IP each time you resolve the endpoint.

You can use Amazon RDS Proxy to create additional read-only endpoints for an Aurora

cluster. These endpoints perform the same kind of load-balancing as the Aurora reader

endpoint. Applications can reconnect more quickly to the proxy endpoints than the

Aurora reader endpoint if reader instances become unavailable.

If you don’t follow best practices, these are examples of issues that can occur:

• Unequal use of Aurora Replicas, for example, one of the Aurora Replicas is

receiving most or all of the traffic while the other Aurora Replicas sit idle.

• After you add or scale an Aurora Replica, it doesn’t receive traffic or it begins to

receive traffic after an unexpectedly long delay.

• After you remove an Aurora Replica, applications continue to send traffic to that

instance.

For more information, refer to the DNS endpoints and DNS caching sections of this

document.

Designing for fault tolerance and quick recovery

In large-scale database operations, you’re statistically more likely to experience issues

such as connection interruptions or hardware failures. You must also take operational

actions more frequently, such as scaling, adding, or removing DB instances and

performing software upgrades.

The only scalable way of addressing this challenge is to assume that issues and

changes will occur and design your applications accordingly.

Examples:

• If Aurora MySQL detects that the primary instance has failed, it can promote a

new primary instance and fail over to it, which typically happens within 30

seconds. Your application should be designed to recognize the change quickly

and without manual intervention.

• If you create additional Aurora Replicas in an Aurora DB cluster, your application

should automatically recognize the new Aurora Replicas and send traffic to them.

• If you remove instances from a DB cluster, your application should not try to

connect to them.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 14

Test your applications extensively and prepare a list of assumptions about how the

application should react to database events. Then, experimentally validate the

assumptions.

If you don’t follow best practices, database events (for example, failovers, scaling, and

software upgrades) might result in longer than expected downtime. For example, you

might notice that a failover took 30 seconds (per the DB cluster’s event notifications) but

the application remained down for much longer.

Server configuration

There are two major server configuration variables worth mentioning in the context of

this whitepaper: max_connections and max_connect_errors.

Configuration variable max_connections

The configuration variable max_connections limits the number of database

connections per Aurora DB instance. The best practice is to set it slightly higher than

the maximum number of connections you expect to open on each instance.

If you also enabled performance_schema, be extra careful with the setting. The

Performance Schema memory structures are sized automatically based on server

configuration variables, including max_connections. The higher you set the variable,

the more memory Performance Schema uses. In extreme cases, this can lead to out-of-

memory issues on smaller instance types.

Note for T2 and T3 instance families

Using Performance Schema on T2 and T3 Aurora DB instances with less than 8 GB of

memory isn’t recommended. To reduce the risk of out-of-memory issues on T2 and T3

instances:

• Don’t enable Performance Schema.

• If you must use Performance Schema, leave max_connections at the default

value.

• Disable Performance Schema if you plan to increase max_connections to a

value significantly greater than the default value.

Refer to the MySQL Reference Manual for details about the max_connections

variable.

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connections

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 15

Configuration variable max_connect_errors

The configuration variable max_connect_errors determines how many successive

interrupted connection requests are permitted from a given client host. If the client host

exceeds the number of successive failed connection attempts, the server blocks it.

Further connection attempts from that client yield an error:

Host 'host_name' is blocked because of many connection errors.

Unblock with 'mysqladmin flush-hosts'

A common (but incorrect) practice is to set the parameter to a very high value to avoid

client connectivity issues. This practice isn’t recommended because it:

• Allows application owners to tolerate connection problems rather than identify

and resolve the underlying cause. Connection issues can impact your application

health, so they should be resolved rather than ignored.

• Can hide real threats, for example, someone actively trying to break into the

server.

If you experience “host is blocked” errors, increasing the value of the

max_connect_errors variable isn’t the correct response. Instead, investigate the

server’s diagnostic counters in the aborted_connects status variable and the

host_cache table. Then use the information to identify and fix clients that run into

connection issues. Also note that this parameter has no effect if skip_name_resolve is

set to 1 (default).

Refer to the MySQL Reference Manual for details on the following:

• Max_connect_errors variable

• “Host is blocked” error

• Aborted_connects status variable

• Host_cache table

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.6/en/blocked-host.html
https://dev.mysql.com/doc/refman/5.7/en/host-cache.html#blocked-host
https://dev.mysql.com/doc/refman/5.6/en/blocked-host.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Aborted_connects
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Aborted_connects
https://dev.mysql.com/doc/refman/5.7/en/host-cache.html
https://dev.mysql.com/doc/refman/5.6/en/host-cache-table.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 16

Conclusion

Understanding and implementing connection management best practices is critical to

achieve scalability, reduce downtime, and ensure smooth integration between the

application and database layers. You can apply most of the recommendations provided

in this whitepaper with little to no engineering effort.

The guidance provided in this whitepaper should help you introduce improvements in

your current and future application deployments using Aurora MySQL DB clusters.

Contributors

Contributors to this document include:

• Szymon Komendera, Database Engineer, Amazon Aurora

• Samuel Selvan, Database Specialist Solutions Architect, Amazon Web Services

Further reading

For additional information, refer to:

• Aurora on Amazon RDS User Guide

• Communication Errors and Aborted Connections in MySQL Reference Manual

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html
https://dev.mysql.com/doc/refman/5.7/en/communication-errors.html
https://dev.mysql.com/doc/refman/5.6/en/communication-errors.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
amazon-aurora-mysql-db-admin-handbook/

amazon-aurora-mysql-db-admin-handbook.html

Amazon Web Services Amazon Aurora MySQL Database Administrator’s Handbook

 Page 17

Document revisions

Date Description

October 20,

2021

Minor content updates to follow new style guide and hyperlinks.

July 2021 Minor content updates to the following topics: Smart Drivers,

Connection Management and Pooling, and Connection Scaling.

March 2019 Minor content updates to the following topics: Introduction,

DNS Endpoints, and Server Configuration.

January 2018 First publication.

	Introduction
	DNS endpoints
	Connection handling in Aurora MySQL and MySQL
	Common misconceptions
	Best practices
	Using smart drivers
	DNS caching
	Connection management and pooling
	Connection scaling
	Transaction management and autocommit
	Connection handshakes
	Load balancing with the reader endpoint
	Designing for fault tolerance and quick recovery
	Server configuration
	Configuration variable max_connections
	Note for T2 and T3 instance families

	Configuration variable max_connect_errors

	Conclusion
	Contributors
	Further reading
	Document revisions

