
Amazon Textract
Developer Guide

Amazon Textract Developer Guide

Amazon Textract: Developer Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon Textract Developer Guide

Table of Contents
What is Amazon Textract? ... 1

First-Time Amazon Textract Users ... 2
Working with AWS SDKs 2

How It Works 3
Detecting Text ... 3
Analyzing Documents 4
Analyzing Invoices and Receipts ... 5
Analyzing Identity Documents 8
Input Documents 8
Amazon Textract Response Objects ... 9

Text Detection and Document Analysis Response Objects ... 10
Invoice and Receipt Response Objects ... 28
Identity Documentation Response Objects ... 30

Item Location on a Document Page 31
Bounding Box 32
Polygon 33

Getting Started 35
Step 1: Set Up an Account 35

Sign Up for AWS 35
Create an IAM User 36
Next Step 36

Step 2: Set Up the AWS CLI and AWS SDKs 36
Next Step 38

Step 3: Get Started Using the AWS CLI and AWS SDK API ... 38
Formatting the AWS CLI Examples 38

Processing Documents with Synchronous Operations 39
Calling Amazon Textract Synchronous Operations 39

Request ... 39
Response 41

Detecting Document Text ... 89
Analyzing Document Text ... 97
Analyzing Invoice and Receipt Documents 105
Analyzing ID Documents 114

Processing Documents with Asynchronous Operations 118
Calling Asynchronous Operations 118

Starting Text Detection 119
Getting the Completion Status of an Amazon Textract Analysis Request ... 120
Getting Amazon Textract Text Detection Results ... 121

Configuring Asynchronous Operations 128
Giving Amazon Textract Access to Your Amazon SNS Topic ... 129

Detecting or Analyzing Text in a Multipage Document 130
Performing Asynchronous Operations 130

Amazon Textract Results Notification 147
Handling Throttled Calls and Dropped Connections 149
Best Practices for Amazon Textract ... 153

Provide an Optimal Input Document 153
Use Confidence Scores 153
Consider Using Human Review 153
Best Practices for Queries ... 154

General Best Practices for Queries ... 154
Extracting Cells from Tables 154
Extracting Tables using Queries ... 154
Long Answers 154
Passing Only Hints ... 154

iii

Amazon Textract Developer Guide

Genral Phrasing of Questions 155
Example Queries ... 155
Setting up Pages for Queries ... 159

Tutorials ... 161
Prerequisites ... 161
Extracting Key-Value Pairs from a Form Document 161
Exporting Tables into a CSV File ... 163
Creating an AWS Lambda Function 170

To call the DetectDocumentText operation from a Lambda function: ... 170
Additional Code Samples 172

Code examples 174
Actions 174

Analyze a document 175
Detect text in a document 176
Get data about a document analysis job 179
Start asynchronous analysis of a document 180
Start asynchronous text detection 182

Cross-service examples 183
Create an Amazon Textract explorer application 184
Detect entities in text extracted from an image 185

Amazon A2I and Amazon Textract ... 186
Core Concepts of Amazon A2I ... 186

Human Review Activation Conditions 186
Human review workflow (flow definition) ... 187
Human loops 188

Get Started Using Amazon A2I ... 188
Create a Human Review Workflow 189
Analyze the Document 192
Monitor Human Loop 193
View Output Data and Worker Metrics ... 194

Security ... 197
Data Protection 197

Encryption in Amazon Textract ... 198
Internetwork Traffic Privacy 198

Identity and Access Management 198
Audience 199
Authenticating With Identities ... 199
Managing Access Using Policies ... 201
How Amazon Textract Works with IAM 203
Identity-Based Policy Examples 205
Troubleshooting 207

Logging and Monitoring 209
Monitoring 209
CloudWatch Metrics for Amazon Textract ... 212

Logging Amazon Textract API Calls with AWS CloudTrail .. 213
Amazon Textract Information in CloudTrail .. 214
Understanding Amazon Textract Log File Entries ... 215

Compliance Validation 216
Resilience 217
Cross-service confused deputy prevention 217
Infrastructure Security ... 218
Configuration and Vulnerability Analysis ... 219
VPC endpoints (AWS PrivateLink) ... 219

Considerations for Amazon Textract VPC endpoints ... 219
Creating an interface VPC endpoint for Amazon Textract ... 219
Creating a VPC endpoint policy for Amazon Textract ... 219

API Reference 221

iv

Amazon Textract Developer Guide

Actions 221
AnalyzeDocument 222
AnalyzeExpense 227
AnalyzeID 232
DetectDocumentText 235
GetDocumentAnalysis ... 239
GetDocumentTextDetection 244
GetExpenseAnalysis ... 249
StartDocumentAnalysis ... 255
StartDocumentTextDetection 260
StartExpenseAnalysis ... 264

Data Types 268
AnalyzeIDDetections 269
Block 270
BoundingBox 274
Document 275
DocumentLocation 276
DocumentMetadata 277
ExpenseDetection 278
ExpenseDocument 279
ExpenseField 280
ExpenseType 281
Geometry 282
HumanLoopActivationOutput 283
HumanLoopConfig 284
HumanLoopDataAttributes 285
IdentityDocument 286
IdentityDocumentField 287
LineItemFields 288
LineItemGroup 289
NormalizedValue 290
NotificationChannel ... 291
OutputConfig 292
Point ... 293
QueriesConfig 294
Query 295
Relationship 297
S3Object ... 298
Warning 299

Limits ... 300
Amazon Textract ... 300

Document History 302
AWS glossary 303

v

Amazon Textract Developer Guide

What is Amazon Textract?
Amazon Textract makes it easy to add document text detection and analysis to your applications. Using
Amazon Textract customers can:

• Detect typed and handwritten text in a variety of documents, including financial reports, medical
records, and tax forms.

• Extract text, forms, and tables from documents with structured data, using the Amazon Textract
Document Analysis API.

• Specify and extract information from documents using the Queries feature within the Amazon Textract
Analyze Document API.

• Process invoices and receipts with the AnalyzeExpense API.

• Process ID documents such as drivers licenses and passports issued by U.S. government, using the
AnalyzeID API.

Amazon Textract is based on the same proven, highly scalable, deep-learning technology that was
developed by Amazon's computer vision scientists to analyze billions of images and videos daily. You
don't need any machine learning expertise to use it. Amazon Textract includes simple, easy-to-use
APIs that can analyze image files and PDF files. Amazon Textract is always learning from new data, and
Amazon is continually adding new features to the service.

The following are common use cases for using Amazon Textract:

• Creating an intelligent search index – Using Amazon Textract you can create libraries of text that is
detected in image and PDF files.

• Using intelligent text extraction for natural language processing (NLP) – Amazon Textract provides
you with control over how text is grouped as an input for NLP applications. It can extract text as words
and lines. It also groups text by table cells if Amazon Textract document table analysis is enabled.

• Accelerating the capture and normalization of data from different sources – Amazon Textract
enables text and tabular data extraction from a wide variety of documents, such as financial
documents, research reports, and medical notes. With Amazon Textract Analyze Document APIs, you
can easily and quickly extract unstructured and structured data from your documents.

• Automating data capture from forms – Amazon Textract enables structured data to be extracted
from forms. With Amazon Textract Analysis APIs, you can build extraction capabilities into existing
business workflows so that user data submitted through forms can be extracted into a usable format.

Some of the benefits of using Amazon Textract include:

• Integration of document text detection into your apps – Amazon Textract removes the complexity
of building text detection capabilities into your applications by making powerful and accurate analysis
available with a simple API. You don’t need computer vision or deep learning expertise to use Amazon
Textract to detect document text. With Amazon Textract Text APIs, you can easily build text detection
into any web, mobile, or connected device application.

• Scalable document analysis – Amazon Textract enables you to analyze and extract data quickly from
millions of documents, which can accelerate decision making.

• Low cost – With Amazon Textract, you only pay for the documents you analyze. There are no minimum
fees or upfront commitments. You can get started for free, and save more as you grow with our tiered
pricing model.

1

Amazon Textract Developer Guide
First-Time Amazon Textract Users

With synchronous processing, Amazon Textract can analyze single-page documents for applications
where latency is critical. Amazon Textract also provides asynchronous operations to extend support to
multipage documents.

First-Time Amazon Textract Users
If this is your first time using Amazon Textract, we recommend that you read the following sections in
order:

1. How Amazon Textract Works (p. 3) – This section introduces the Amazon Textract components
and how they work together for an end-to-end experience.

2. Getting Started with Amazon Textract (p. 35) – In this section, you set up your account and test
the Amazon Textract API.

Using Amazon Textract with an AWS SDK
AWS software development kits (SDKs) are available for many popular programming languages. Each
SDK provides an API, code examples, and documentation that make it easier for developers to build
applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

Example availability
Can't find what you need? Request a code example by using the Provide feedback link at the
bottom of this page.

2

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby

Amazon Textract Developer Guide
Detecting Text

How Amazon Textract Works
Amazon Textract enables you to detect and analyze text in single or multipage input documents (see
Input Documents (p. 8)).

Amazon Textract provides operations for the following actions.

• Detecting text only. For more information see Detecting Text (p. 3).
• Detecting and analyzing relationships between text. For more information see Analyzing

Documents (p. 4).
• Detecting and analyzing text in invoices and receipts. For more information see Analyzing Invoices and

Receipts (p. 5).
• Detecting and analyzing text in government identity documents. For more information see Analyzing

Identity Documents (p. 8).

Amazon Textract provides synchronous operations for processing small, single-page, documents and
with near real-time responses. For more information, see Processing Documents with Synchronous
Operations (p. 39). Amazon Textract also provides asynchronous operations that you can use to
process larger, multipage documents. Asynchronous responses aren't in real time. For more information,
see Processing Documents with Asynchronous Operations (p. 118).

When an Amazon Textract operation processes a document, the results are returned in an array of the
section called “Block” (p. 270) objects or an array of the section called “ExpenseDocument” (p. 279)
objects. Both objects contain information that's detected about items, including their location on
the document and their relationship to other items on the document. For more information, see
Amazon Textract Response Objects (p. 9). For examples that show how to use Block objects, see
Tutorials (p. 161).

Topics
• Detecting Text (p. 3)
• Analyzing Documents (p. 4)
• Analyzing Invoices and Receipts (p. 5)
• Analyzing Identity Documents (p. 8)
• Input Documents (p. 8)
• Amazon Textract Response Objects (p. 9)
• Item Location on a Document Page (p. 31)

Detecting Text
Amazon Textract provides synchronous and asynchronous operations that return only the text detected
in a document. For both sets of operations, the following information is returned in multiple the section
called “Block” (p. 270) objects.

• The lines and words of detected text
• The relationships between the lines and words of detected text
• The page that the detected text appears on
• The location of the lines and words of text on the document page

For more information, see the section called “Lines and Words of Text” (p. 13).

3

Amazon Textract Developer Guide
Analyzing Documents

To detect text synchronously, use the DetectDocumentText (p. 235) API operation, and pass a
document file as input. The entire set of results is returned by the operation. For more information and
an example, see Processing Documents with Synchronous Operations (p. 39).

Note
The Amazon Rekognition API operation DetectText is different from DetectDocumentText.
You use DetectText to detect text in live scenes, such as posters or road signs.

To detect text asynchronously, use StartDocumentTextDetection (p. 260) to start processing an input
document file. To get the results, call GetDocumentTextDetection (p. 244). The results are returned in
one or more responses from GetDocumentTextDetection. For more information and an example, see
Processing Documents with Asynchronous Operations (p. 118).

Analyzing Documents
Amazon Textract analyzes documents and forms for relationships among detected text. Amazon
Textract analysis operations return 4 categories of document extraction — text, forms, tables and
query responses. The analysis of invoices and receipts is handled through a different process, for more
information see Analyzing Invoices and Receipts (p. 5).

Text Extraction

The raw text extracted from a document. For more information, see Lines and words of text (p. 13).

Form Extraction

Form data is linked to text items extracted from a document. Amazon Textract represents form data as
key-value pairs. In the following example, one of the lines of text detected by Amazon Textract is Name:
Jane Doe. Amazon Textract also identifies a key (Name:) and a value (Jane Doe). For more information,
see Form data (Key-value pairs) (p. 15).

Name: Jane Doe

Address: 123 Any Street, Anytown, USA

Birth date: 12-26-1980

Key-value pairs are also used to represent check boxes or option buttons (radio buttons) that are
extracted from forms.

Male: ☑

For more information, see Selection elements (p. 22).

Table Extraction

Amazon Textract can extract tables, table cells, and the items within table cells and may be programmed
to return the results in a JSON, .csv, or a .txt file.

Name Address

Ana Carolina 123 Any Town

For more information, see Tables (p. 17). Selection elements can also be extracted from tables. For
more information, see Selection elements (p. 22).

Queries in Document Analysis

4

Amazon Textract Developer Guide
Analyzing Invoices and Receipts

When processing a document with Amazon Textract, you may add queries to your analysis to specify
what information you need. This involves passing a question, such as "What is the customer's
social security number?" to Amazon Textract. Amazon Textract will then find the information in
the document for that question and return it in a response structure separate from the rest of the
document's information. For more information about this response structure, see Query Response
Structures (p. 27). For more information on best practices for query use, see Best Practices for
Queries (p. 154). Queries can be processed alone, or in combination with any other FeatureType, such
as Tables or Forms.

Example Query: What is the customer’s SSN?

Example Answer: 111-xx-333

For analyzed items, Amazon Textract returns the following in multiple the section called
“Block” (p. 270) objects:

• The lines and words of detected text
• The content of detected items
• The relationship between detected items
• The page that the item was detected on
• The location of the item on the document page

You can use synchronous or asynchronous operations to analyze text in a document. To analyze
text synchronously, use the AnalyzeDocument (p. 222) operation, and pass a document as input.
AnalyzeDocument returns the entire set of results. For more information, see Analyzing Document Text
with Amazon Textract (p. 97).

To detect text asynchronously, use StartDocumentAnalysis (p. 255) to start processing. To get the
results, call GetDocumentAnalysis (p. 239). The results are returned in one or more responses from
GetDocumentAnalysis. For more information and an example, see Detecting or Analyzing Text in a
Multipage Document (p. 130).

To specify which type of analysis to perform, you can use the FeatureTypes list input parameter. Add
TABLES to the list to return information about the tables that are detected in the input document—for
example, table cells, cell text, and selection elements in cells. Add FORMS to return word relationships,
such as key-value pairs and selection elements. Add QUERIES specify information you want Amazon
Textract to look for in the document and get a response back in the form of a question-answer pair. To
perform all types of analysis, add TABLES, FORMS and QUERIES to FeatureTypes.

All lines and words that are detected in the document are included in the response (including text not
related to the value of FeatureTypes).

Analyzing Invoices and Receipts
Amazon Textract extracts relevant data such as contact information, items purchased, and vendor name,
from almost any invoice or receipt without the need for any templates or configuration. Invoices and
receipts often use various layouts, making it difficult and time-consuming to manually extract data at
scale. Amazon Textract uses ML to understand the context of invoices and receipts and automatically
extracts data such as invoice or receipt date, invoice or receipt number, item prices, total amount, and
payment terms to suit your business needs.

Amazon Textract also identifies vendor names that are critical for your workflows but may not be
explicitly labeled. For example, Amazon Textract can find the vendor name on a receipt even if it's
only indicated within a logo at the top of the page without an explicit key-value pair combination.
Amazon Textract also makes it easy for you to consolidate input from diverse receipts and invoices
that use different words for the same concept. For example, Amazon Textract maps relationships

5

Amazon Textract Developer Guide
Analyzing Invoices and Receipts

between field names in different documents such as customer no., customer number, and account ID,
outputting standard taxonomy as INVOICE_RECEIPT_ID. In this case, Amazon Textract represents data
consistently across different document types. Fields that do not align with the standard taxonomy are
categorized as OTHER.

The following is a list of the standard fields that AnalyzeExpense currently supports:

• Vendor Name: VENDOR_NAME
• Total: TOTAL
• Receiver Address: RECEIVER_ADDRESS
• Invoice/Receipt Date: INVOICE_RECEIPT_DATE
• Invoice/Receipt ID: INVOICE_RECEIPT_ID
• Payment Terms: PAYMENT_TERMS
• Subtotal: SUBTOTAL
• Due Date: DUE_DATE
• Tax: TAX
• Invoice Tax Payer ID (SSN/ITIN or EIN): TAX_PAYER_ID
• Item Name: ITEM_NAME
• Item Price: PRICE
• Item Quantity: QUANTITY

The AnalyzeExpense API returns the following elements for a given document page:

• The number of receipts or invoices within a page represented as ExpenseIndex
• The standardized name for individual fields represented as Type
• The actual name of the field as it appears on the document, represented as LabelDetection
• The value of the corresponding field represented as ValueDetection
• The number of pages within the submitted document represented as Pages
• The page number on which the field, value, or line items was detected, represented as PageNumber
• The geometry, which includes the bounding box and coordinates location of the individual field, value,

or line items on the page, represented as Geometry
• The confidence score associated with each piece of data detected on the document, represented as
Confidence

• The entire row of individual line items purchased, represented as EXPENSE_ROW

The following is a portion of the API output for a receipt processed by AnalyzeExpense that shows the
Total: $55.64 in the document extracted as standard field TOTAL, actual text on the document as “Total”,
Confidence Score of “97.1”, Page Number “1”, The total value as “$55.64” and the bounding box and
polygon coordinates:

{
 "Type": {
 "Text": "TOTAL",
 "Confidence": 99.94717407226562
 },
 "LabelDetection": {
 "Text": "Total:",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09809663146734238,
 "Height": 0.0234375,
 "Left": 0.36822840571403503,
 "Top": 0.8017578125

6

Amazon Textract Developer Guide
Analyzing Invoices and Receipts

 },
 "Polygon": [
 {
 "X": 0.36822840571403503,
 "Y": 0.8017578125
 },
 {
 "X": 0.466325044631958,
 "Y": 0.8017578125
 },
 {
 "X": 0.466325044631958,
 "Y": 0.8251953125
 },
 {
 "X": 0.36822840571403503,
 "Y": 0.8251953125
 }
]
 },
 "Confidence": 97.10792541503906
},
 "ValueDetection": {
 "Text": "$55.64",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10395314544439316,
 "Height": 0.0244140625,
 "Left": 0.66837477684021,
 "Top": 0.802734375
 },
 "Polygon": [
 {
 "X": 0.66837477684021,
 "Y": 0.802734375
 },
 {
 "X": 0.7723279595375061,
 "Y": 0.802734375
 },
 {
 "X": 0.7723279595375061,
 "Y": 0.8271484375
 },
 {
 "X": 0.66837477684021,
 "Y": 0.8271484375
 }
]
 },
 "Confidence": 99.85165405273438
},
"PageNumber": 1
}

You can use synchronous operations to analyze an invoice or receipt. To analyze these documents,
you use the AnalyzeExpense operation and pass a receipt or invoice to it. AnalyzeExpense returns
the entire set of results. For more information, see Analyzing Invoices and Receipts with Amazon
Textract (p. 105).

To analyze invoices and receipts asynchronously, use StartExpenseAnalysis (p. 264) to start processing
an input document file. To get the results, call GetExpenseAnalysis (p. 249). The results for a given call
to StartExpenseAnalysis (p. 264) are returned by GetExpenseAnalysis. For more information and an
example, see Processing Documents with Asynchronous Operations (p. 118).

7

Amazon Textract Developer Guide
Analyzing Identity Documents

Analyzing Identity Documents
Amazon Textract can extract relevant information from passports, driver licenses, and other identity
documentation issued by the US Government using the AnalyzeID API. With Analyze ID, businesses can
quickly, and accurately extract information from IDs such as U.S. driver licenses, state IDs, and passports
that have different template or format. AnalyzeID API returns two categories of data types:

• Key-value pairs available on ID such as Date of Birth, Date of Issue, ID #, Class, and Restrictions.
• Implied fields on the document that may not have explicit keys associated with them such as Name,

Address, and Issued By.

Key names are standardized within the response. For example, if your driver license says LIC# (license
number) and passport says Passport No, Analyze ID response will return the standardized key as
“Document ID” along with the raw key (e.g. LIC#). This standardization lets customers easily combine
information across many IDs that use different terms for the same concept.

Analyze ID returns information in the structures called IdentityDocumentFields. These are JSON
structures containing two pieces of information: the normalized Type and the Value associated with
the Type. These both also have a confidence score. For more information, see Identity Documentation
Response Objects (p. 30).

You can use synchronous operations to analyze a driver's license or passport. To analyze these
documents, you use the AnalyzeID operation and pass an identity document to it. AnalyzeID returns
the entire set of results. For more information, see Analyzing Identity Documentation with Amazon
Textract (p. 114).

Note
Some identity documents, such as driver's licenses, have two sides. You can pass the front and
back images of driver licenses as separate images within the same Analyze ID API request.

Input Documents
A suitable input for an Amazon Textract operation is a single or multipage document. Some examples are
a legal document, a form, an ID, or a letter. A form is a document with questions or prompts for a user to
provide answers. Some examples are a patient registration form, a tax form, or an insurance claim form.

A document can be in JPEG, PNG, PDF or TIFF format. With PDF and TIFF format files, you can process
multipage documents. For information about how Amazon Textract represents documents as Block
objects, see Text Detection and Document Analysis Response Objects (p. 10).

8

Amazon Textract Developer Guide
Amazon Textract Response Objects

The following is an acceptable input document example.

For information about document limits, see Hard Limits in Amazon Textract (p. 300).

For Amazon Textract synchronous operations, you can use input documents that are stored in an Amazon
S3 bucket, or you can pass base64-encoded image bytes. For more information, see Calling Amazon
Textract Synchronous Operations (p. 39). For asynchronous operations, you need to supply input
documents in an Amazon S3 bucket. For more information, see Calling Amazon Textract Asynchronous
Operations (p. 118).

Amazon Textract Response Objects
Amazon Textract operations return different types of objects depending on the operations run. For
detecting text, and analyzing a generic document, the operation returns a Block object. For analyzing
an invoice or receipt, the operation returns an ExpenseDocuments object. For analyzing identity
documentation, the operation returns an IdentityDocumentFields object. For more information about
these response objects, see the following sections:

Topics

• Text Detection and Document Analysis Response Objects (p. 10)

• Invoice and Receipt Response Objects (p. 28)

• Identity Documentation Response Objects (p. 30)

9

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

Text Detection and Document Analysis Response
Objects
When Amazon Textract processes a document, it creates a list of Block (p. 270) objects for the detected
or analyzed text. Each block contains information about a detected item, where it's located, and the
confidence that Amazon Textract has in the accuracy of the processing.

A document is made up from the following types of Block objects.

• Pages (p. 11)
• Lines and words of text (p. 13)
• Form Data (Key-value pairs) (p. 15)
• Tables and Cells (p. 17)
• Selection elements (p. 22)
• Queries (p. 27)

The contents of a block depend on the operation you call. If you call one of the text detection
operations, the pages, lines, and words of detected text are returned. For more information, see
Detecting Text (p. 3). If you call one of the document analysis operations, information about
detected pages, key-value pairs, tables, selection elements, and text is returned. For more information,
see Analyzing Documents (p. 4).

Some Block object fields are common to both types of processing. For example, each block has a unique
identifier.

For examples that show how to use Block objects, see Tutorials (p. 161).

Document Layout
Amazon Textract returns a representation of a document as a list of different types of Block objects that
are linked in a parent-to-child relationship or a key-value pair. Metadata that provides the number of
pages in a document is also returned. The following is the JSON for a typical Block object of type PAGE.

{
 "Blocks": [
 {
 "Geometry": {
 "BoundingBox": {
 "Width": 1.0,
 "Top": 0.0,
 "Left": 0.0,
 "Height": 1.0
 },
 "Polygon": [
 {
 "Y": 0.0,
 "X": 0.0
 },
 {
 "Y": 0.0,
 "X": 1.0
 },
 {
 "Y": 1.0,
 "X": 1.0
 },
 {
 "Y": 1.0,

10

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "X": 0.0
 }
]
 },
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "2602b0a6-20e3-4e6e-9e46-3be57fd0844b",
 "82aedd57-187f-43dd-9eb1-4f312ca30042",
 "52be1777-53f7-42f6-a7cf-6d09bdc15a30",
 "7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c"
]
 }
],
 "BlockType": "PAGE",
 "Id": "8136b2dc-37c1-4300-a9da-6ed8b276ea97"
 }.....

],
 "DocumentMetadata": {
 "Pages": 1
 }
}

A document is made from one or more PAGE blocks. Each page contains a list of child blocks for
the primary items detected on the page, such as lines of text and tables. For more information, see
Pages (p. 11).

You can determine the type of a Block object by inspecting the BlockType field.

A Block object contains a list of related Block objects in the Relationships field, which is an array
of Relationship (p. 297) objects. A Relationships array is either of type CHILD or of type VALUE. An
array of type CHILD is used to list the items that are children of the current block. For example, if the
current block is of type LINE, Relationships contains a list of IDs for the WORD blocks that make up
the line of text. An array of type VALUE is used to contain key-value pairs. You can determine the type of
the relationship by inspecting the Type field of the Relationship object.

Child blocks don't have information about their parent Block objects.

For examples that show Block information, see Processing Documents with Synchronous
Operations (p. 39).

Confidence
Amazon Textract operations return the percentage confidence that Amazon Textract has in the accuracy
of the detected item. To get the confidence, use the Confidence field of the Block object. A higher
value indicates a higher confidence. Depending on the scenario, detections with a low confidence might
need visual confirmation by a human.

Geometry
Amazon Textract operations, with the exception of identity analysis, return location information about
the location of detected items on a document page. To get the location, use the Geometry field of the
Block object. For more information, see Item Location on a Document Page (p. 31)

Pages
A document consists of one or more pages. A the section called “Block” (p. 270) object of type PAGE
exists for each page of the document. A PAGE block object contains a list of the child IDs for thelines of
text, key-value pairs, tables, Queries and Query Results that are detected on the document page.

11

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

12

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

The JSON for a PAGE block looks similar to the following.

{

 "Geometry":
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "2602b0a6-20e3-4e6e-9e46-3be57fd0844b", // Line - Hello, world.
 "82aedd57-187f-43dd-9eb1-4f312ca30042", // Line - How are you?
 "52be1777-53f7-42f6-a7cf-6d09bdc15a30",
 "7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c"
]
 }
],
 "BlockType": "PAGE",
 "Id": "8136b2dc-37c1-4300-a9da-6ed8b276ea97" // Page identifier
},

If you're using asynchronous operations with a multipage document that's in PDF format, you can
determine the page that a block is located on by inspecting the Page field of the Block object. A
scanned image (an image in JPEG, PNG, PDF, or TIFF format) is considered to be a single-page document,
even if there's more than one document page on the image. Asynchronous operations always return a
Page value of 1 for scanned images.

The total number of pages is returned in the Pages field of DocumentMetadata. DocumentMetadata
is returned with each list of Block objects returned by an Amazon Textract operation.

Lines and Words of Text
Detected text that's returned by Amazon Textract operations is returned in a list of the section called
“Block” (p. 270) objects. These objects represent lines of text or textual words that are detected on a
document page. The following text shows two lines of text that are made from multiple words.

This is text.

In two separate lines.

Detected text is returned in the Text field of a Block object. The BlockType field determines if the
text is a line of text (LINE) or a word (WORD). A WORD is one or more ISO basic Latin script characters
that aren't separated by spaces. A LINE is a string of tab-delimited and contiguous words.

Additionally, Amazon Textract will determine if a piece of text was handwritten or printed using the
TextTypes field. These return as HANDWRITING and PRINTED respectively.

The other Block properties are common to all block types, such as the ID, confidence, and geometry
information. For more information, see the section called “Text Detection and Document Analysis
Response Objects” (p. 10).

To detect only lines and words, you can use DetectDocumentText (p. 235) or
StartDocumentTextDetection (p. 260). For more information, see Detecting Text (p. 3). To get the
detected text (lines and words) and information about how it relates to other parts of the document,
such as tables, you can use AnalyzeDocument (p. 222) or StartDocumentAnalysis (p. 255). For more
information, see Analyzing Documents (p. 4).

PAGE, LINE, and WORD blocks are related to each other in a parent-to-child relationship. A PAGE block is
the parent for all LINE block objects on a document page. Because a LINE can have one or more words,
the Relationships array for a LINE block stores the IDs for child WORD blocks that make up the line of
text.

13

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

The following diagram shows how the line Hello, world. in the text Hello, world. How are you? is
represented by Block objects.

The following is the JSON output from DetectDocumentText when the sentence Hello, world. How are
you? is detected. The first example is the JSON for the document page. Note how the CHILD IDs enable
you to navigate through the document.

{
 "Geometry": {...},
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "d7fbd604-d609-4d69-857d-247a3f591238", // Line - Hello, world.
 "b6c19a93-6493-4d8e-958f-853c8f7ca055" // Line - How are you?
]
 }
],
 "BlockType": "PAGE",
 "Id": "56ec1d77-171f-4881-9852-2b5b7e761608"
},

The following is the JSON for the LINE blocks that make up the line "Hello, World":

{
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "7f97e2ca-063e-47a8-981c-8beee31afc01", // Word - Hello,
 "4b990aa0-af96-4369-b90f-dbe02538ed21" // Word - world.
]
 }
],
 "Confidence": 99.63229370117188,
 "Geometry": {...},
 "Text": "Hello, world.",
 "BlockType": "LINE",
 "Id": "d7fbd604-d609-4d69-857d-247a3f591238"
},

The following is the JSON for the WORD block for the word Hello,:

{
 "Geometry": {...},
 "Text": "Hello,",
 "TextType": "PRINTED",
 "BlockType": "WORD",
 "Confidence": 99.74746704101562,
 "Id": "7f97e2ca-063e-47a8-981c-8beee31afc01"
},

The final JSON is the WORD block for the word world.:

14

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

{
 "Geometry": {...},
 "Text": "world.",
 "TextType": "PRINTED",
 "BlockType": "WORD",
 "Confidence": 99.5171127319336,
 "Id": "4b990aa0-af96-4369-b90f-dbe02538ed21"
},

Form Data (Key-Value Pairs)
Amazon Textract can extract form data from documents as key-value pairs. For example, in the following
text, Amazon Textract can identify a key (Name:) and a value (Ana Carolina).

Name: Ana Carolina

Detected key-value pairs are returned as Block (p. 270) objects in the responses from
AnalyzeDocument (p. 222) and GetDocumentAnalysis (p. 239). You can use the FeatureTypes input
parameter to retrieve information about key-value pairs, tables, or both. For key-value pairs only, use
the value FORMS. For an example, see Extracting Key-Value Pairs from a Form Document (p. 161). For
general information about how a document is represented by Block objects, see Text Detection and
Document Analysis Response Objects (p. 10).

Block objects with the type KEY_VALUE_SET are the containers for KEY or VALUE Block objects that store
information about linked text items detected in a document. You can use the EntityType attribute to
determine if a block is a KEY or a VALUE.

• A KEY object contains information about the key for linked text. For example, Name:. A KEY block has
two relationship lists. A relationship of type VALUE is a list that contains the ID of the VALUE block
associated with the key. A relationship of type CHILD is a list of IDs for the WORD blocks that make up
the text of the key.

• A VALUE object contains information about the text associated with a key. In the preceding example,
Ana Carolina is the value for the key Name:. A VALUE block has a relationship with a list of CHILD
blocks that identify WORD blocks. Each WORD block contains one of the words that make up the
text of the value. A VALUE object can also contain information about selected elements. For more
information, see Selection Elements (p. 22).

Each instance of a KEY_VALUE_SET Block object is a child of the PAGE Block object that corresponds to
the current page.

The following diagram shows how the key-value pair Name: Ana Carolina is represented by Block
objects.

The following examples show how the key-value pair Name: Ana Carolina is represented by JSON.

The PAGE block has CHILD blocks of type KEY_VALUE_SET for each KEY and VALUE block detected in
the document.

{
 "Geometry":

15

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "2602b0a6-20e3-4e6e-9e46-3be57fd0844b",
 "82aedd57-187f-43dd-9eb1-4f312ca30042",
 "52be1777-53f7-42f6-a7cf-6d09bdc15a30", // Key - Name:
 "7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c" // Value - Ana Caroline
]
 }
],
 "BlockType": "PAGE",
 "Id": "8136b2dc-37c1-4300-a9da-6ed8b276ea97" // Page identifier
},

The following JSON shows that the KEY block (52be1777-53f7-42f6-a7cf-6d09bdc15a30) has a
relationship with the VALUE block (7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c). It also has a CHILD
block for the WORD block (c734fca6-c4c4-415c-b6c1-30f7510b72ee) that contains the text for the key
(Name:).

{
 "Relationships": [
 {
 "Type": "VALUE",
 "Ids": [
 "7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c" // Value identifier
]
 },
 {
 "Type": "CHILD",
 "Ids": [
 "c734fca6-c4c4-415c-b6c1-30f7510b72ee" // Name:
]
 }
],
 "Confidence": 51.55965805053711,
 "Geometry":,
 "BlockType": "KEY_VALUE_SET",
 "EntityTypes": [
 "KEY"
],
 "Id": "52be1777-53f7-42f6-a7cf-6d09bdc15a30" //Key identifier
},

The following JSON shows that VALUE block 7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c has a CHILD list
of IDs for the WORD blocks that make up the text of the value (Ana and Carolina).

{
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "db553509-64ef-4ecf-ad3c-bea62cc1cd8a", // Ana
 "e5d7646c-eaa2-413a-95ad-f4ae19f53ef3" // Carolina
]
 }
],
 "Confidence": 51.55965805053711,
 "Geometry":,
 "BlockType": "KEY_VALUE_SET",
 "EntityTypes": [
 "VALUE"
],

16

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "Id": "7ca7caa6-00ef-4cda-b1aa-5571dfed1a7c" // Value identifier
}

The following JSON shows the Block objects for the words Name:, Ana, and Carolina.

{
 "Geometry": {...},
 "Text": "Name:",
 "TextType": "PRINTED".
 "BlockType": "WORD",
 "Confidence": 99.56285858154297,
 "Id": "c734fca6-c4c4-415c-b6c1-30f7510b72ee"
},
 {
 "Geometry": {...},
 "Text": "Ana",
 "TextType": "PRINTED",
 "BlockType": "WORD",
 "Confidence": 99.52057647705078,
 "Id": "db553509-64ef-4ecf-ad3c-bea62cc1cd8a"
},
{
 "Geometry": {...},
 "Text": "Carolina",
 "TextType": "PRINTED",
 "BlockType": "WORD",
 "Confidence": 99.84207916259766,
 "Id": "e5d7646c-eaa2-413a-95ad-f4ae19f53ef3"
},

Tables
Amazon Textract can extract tables in a document, and extract cells, merged cells, and column headers
within a table. For example, when the following table is detected in a document, Amazon Textract
detects a table with thirty cells, 3 merged cells, and 5 cells that are column headers.

Detected tables are returned as Block (p. 270) objects in the responses from
AnalyzeDocument (p. 222) and GetDocumentAnalysis (p. 239). You can use the FeatureTypes input
parameter to retrieve information about key-value pairs, tables, or both. For tables only, use the value
TABLES. For an example, see Exporting Tables into a CSV File (p. 163). For general information about
how a document is represented by Block objects, see Text Detection and Document Analysis Response
Objects (p. 10).

The following diagram shows how a single cell in a table is represented by Block objects.

17

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

A cell contains WORD blocks for detected words, and SELECTION_ELEMENT blocks for selection elements
such as check boxes.

The following is partial JSON for the preceding table, which has 23 cells (counting each merged cell as
one cell). The PAGE Block object has a list of CHILD Block IDs for the TABLE block and each LINE of text
that's detected.

The PAGE Block object has a list of CHILD Block IDs for the TABLE block and each LINE of text that's
detected.

{
 {
 "BlockType": "PAGE",
 "Geometry": {
 "BoundingBox": {
 "Width": 1.0,
 "Height": 1.0,
 "Left": 0.0,
 "Top": 0.0
 },
 },
 "Id": "ddfcf314-11bb-4088-ae57-542843c4f7b1",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "7cf63193-d316-4cf5-8fa3-0210a19a8ef0",
 "06d7f631-2ce0-4f8e-8a02-b05a54b09900",
 "05830c30-a8b7-43f4-9744-d0a85db92ca7",
 "c9ca14ac-f8f1-4d90-8ef9-3a85493d348e",
 "da6052ad-b763-428b-8a5f-88818a34ed33",
 "c98ffa0d-19f3-44f9-a2a1-40596fe8a990",
 "af191f61-793d-47df-aa99-043c2d460873",
 "394a838c-82eb-4ca4-b1fb-d7c596051d51",
 "d575c7f2-580e-4e39-8012-09d406a52171",
 "cccb2ecf-618e-4928-ae7c-668f6508f26c",
 "566ee5ac-408f-4a1b-aa4d-c4f0e90b9ecc",
 "6290f376-3431-4c74-8547-edc740bae6e2",
 "6ece89b1-dcd1-4f0f-91be-523510f19ed1",
 "ea9677a3-6745-4013-ae85-e6f6d4fce468",
 "42ebe479-081f-4bdc-ad0d-747e15f6e838",
 "acfc52ea-46d1-4203-8a6d-c30a00ca9d07",
 "9c3953ce-1aa1-431a-b663-eb6d32e18ef4",
 "49160b50-c75a-46b0-a2b9-340e6edd8b40",
 "c15ade38-231c-422f-8b2a-122937d01277",
 "63e465d6-c927-4367-895d-4403ba666b2f",
 "82dd37f1-f17b-4fa1-864a-c2f2daf3bfb5"]
 }
]
 },
},

To learn more about the TABLE, access the TABLE Block object. The TABLE block includes two types
of relationships: “Child” and “Merged Cells”. For relationship type “CHILD”, each child ID represents a
single cell within the table. A merged cell will be broken down all the individual cells that are combined
to make one merged cell. The following JSON shows that the preceding table has 30 cells for 6 rows and
5 columns, which are listed in the Ids array. For relationship type “MERGED_CELL”, each merged cell ID
represents a single merged cell within the table. The following JSON shows that the table has 3 merged
cells, which are listed in the Ids array.

{
 "BlockType": "TABLE",
 "Confidence": 99.79180145263672,

18

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "Geometry": {},
 "Id": "82dd37f1-f17b-4fa1-864a-c2f2daf3bfb5",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "cda64a58-28d2-47d9-857e-bd7fd9f99d57",
 "3bc1c578-b733-4e69-af6b-a7ae44b4be5d",
 "c31985ad-959a-42b7-b150-91d1b446261a",
 "ec1de7f2-f402-48a2-a787-f92e1559dd3a",
 "28680139-13be-4a36-bb5d-a47d01d5f8bd",
 "e106eaff-8269-43c7-9217-22fa9af654d1",
 "12e26ecd-a58a-408b-a2a3-276752bb0fe4",
 "f5174a5d-6c69-4626-b96b-80bbfa7190c9",
 "59949cfc-a2bf-4106-9b04-ace67a95ed5f",
 "09ee8754-be3c-4c6e-bc03-afd54eb376de",
 "26e02458-559a-4baf-91f8-4c4cd23e19a6",
 "fb50ddd5-242e-4468-80d3-3802ed61279a",
 "44546a71-1f3e-4b96-8811-fd049f254bea",
 "d991cbe5-3f5c-4c97-887c-ae6c907bb33d",
 "4952bd89-096f-42f0-afe7-eb35a0378089",
 "00d2969f-79c3-40c3-b37d-bfd49a36c599",
 "4df5c57d-5677-4fa9-af7d-ca3ae3aa75aa",
 "4f502514-c231-4722-a3a2-ba10d3c681b4",
 "f8ea9a9e-afd3-472c-81d3-112b5dbdfa8c",
 "13d6cebf-e8ff-4195-b47e-28aabde23e46",
 "da50d1c0-6c3b-432b-a376-b0a55e2ea9d7",
 "3dbc11a3-c1ba-4b91-ae50-eb372ac60d2c",
 "35af88fc-fce7-4841-8794-a83aaa7bebde",
 "a95c0b14-2043-444c-9c02-a1b664735d90",
 "cf9e1225-31b3-4ddd-8150-63f88ad11d1f",
 "d0fa361f-b30c-4b75-a616-6971b3695dc0",
 "bf7eed90-df5e-4c6a-acb9-23c03b941e0e",
 "b711c551-432b-4e32-bf95-a5e7d2e28fec",
 "a69add2b-3afe-4dd0-88e8-f4c61bcf4486",
 "fa3ef61d-0408-4b89-9732-cff3872d004e"]
 },
},
 {
 "Type": "MERGED_CELL",
 "Ids": [
 "7063a4ff-4e60-4d8a-ba44-b79e5c0e22f4",
 "21f2ef7d-2fda-4d72-b771-4ce67cd505ec",
 "6b46b39c-9bbc-47f6-af09-3e8c71697dd8"]
 }

The Block type for each table cell is CELL. The CELL Block type will always have row span of 1 and
column span of 1. The Block object for each cell includes information about the cell location compared
to other cells in the table. It also includes geometry information for the location of the cell on the
document. If addition, an ENTITY TYPE of COLUMN HEADER identifies CELLs that are column headers
in the table. In the preceding example, dacc81f7-e304-43e2-b5ab-9fc45ec24d95 is the child ID for
the cell that contains the word ‘Date’ and this cell is a column header, see below.

{
 "BlockType": "CELL",
 "Confidence": 93.32925415039062,
 "RowIndex": 1,
 "ColumnIndex": 1,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {...},
 "Id": "cda64a58-28d2-47d9-857e-bd7fd9f99d57",

19

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "b49e883c-bd8b-43e2-aed6-0aa93a52b2b1"]
 }
],
 "EntityTypes": [
 "COLUMN_HEADER"]
 },

For the cell that contains word ‘Deposit’, the cell is not a column header as shown by the lack of field
"EntityTypes": "COLUMN_HEADER".

 {
 "BlockType": "CELL",
 "Confidence": 92.3740005493164,
 "RowIndex": 1,
 "ColumnIndex": 4,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {...},
 "Id": "ec1de7f2-f402-48a2-a787-f92e1559dd3a",
 "Relationships": [

All the merged cells are listed under "Type": "MERGED_CELL". In the example table, we have 3
merged cells.

 "Type": "MERGED_CELL",
 "Ids": [
 "7d0ed24e-ec5e-47ef-998f-8aed26218d76",
 "27ccf2ef-ff8f-45a1-ad1d-45d9c06697fc",
 "0a0d399a-9ae3-4f92-b9eb-c5c9038a585c"
]

To find specific details associated with each merged cell, go to "BlockType":
"MERGED_CELL". For the merged cell “Previous Balance”, the ID associated with it is "7d0ed24e-
ec5e-47ef-998f-8aed26218d76".

There are 4 cells that constitute this merged cell as seen by the "ColumnSpan" of 4. To find the text
within the merged cell, proceed further down to the Ids array to find details on "BlockType": "CELL"
followed by "BlockType": "WORD".

 "BlockType": "MERGED_CELL",
 "Confidence": 92.46913146972656,
 "RowIndex": 2,
 "ColumnIndex": 1,
 "RowSpan": 1,
 "ColumnSpan": 4,
 "Geometry": {...},
 "Id": "7063a4ff-4e60-4d8a-ba44-b79e5c0e22f4",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [

20

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "e106eaff-8269-43c7-9217-22fa9af654d1",
 "12e26ecd-a58a-408b-a2a3-276752bb0fe4",
 "f5174a5d-6c69-4626-b96b-80bbfa7190c9",
 "59949cfc-a2bf-4106-9b04-ace67a95ed5f"]
 }
]
 },

On the cell level, we have 4 cells for this merged cell “Previous Balance”.

{
 "BlockType": "CELL",
 "Confidence": 92.35404205322266,
 "RowIndex": 2,
 "ColumnIndex": 1,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {…},
 "Id": "2a5b5530-afc9-49ac-8c18-208c6f28ac51",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "c398d626-eff0-4cdd-af52-4f4961585778"]}]},
 {
 "BlockType": "CELL",
 "Confidence": 92.35404205322266,
 "RowIndex": 2,
 "ColumnIndex": 2,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {…},
 "Id": "6b70be2d-403b-4fd3-b409-a6dcbad0d5ff",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "22c9cb13-2016-45b4-a4ce-2a10dd4b3cc4"]}]},
 {
 "BlockType": "CELL",
 "Confidence": 92.35404205322266,
 "RowIndex": 2,
 "ColumnIndex": 3,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {…},
 "Id": "249baa50-17a6-45e2-abf5-c1546dc84798"},
 {
 "BlockType": "CELL",
 "Confidence": 92.35404205322266,
 "RowIndex": 2,
 "ColumnIndex": 4,
 "RowSpan": 1,
 "ColumnSpan": 1,
 "Geometry": {…},
 "Id": "947d71fb-b8af-47be-b1ab-695690a71552"
 }

On word level, there are two words, “Previous” and “Balance”. Since the last two cells on column 3 and 4
are blank, there are no words associated with them.

21

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

{
 "BlockType": "WORD",
 "Confidence": 99.517578125,
 "Text": "Previous",
 "TextType": "PRINTED",
 "Geometry": {…},
 "Id": "c398d626-eff0-4cdd-af52-4f4961585778"
}
{
 "BlockType": "WORD",
 "Confidence": 99.52200317382812,
 "Text": "Balance",
 "TextType": "PRINTED",
 "Geometry": {…},
 "Id": "22c9cb13-2016-45b4-a4ce-2a10dd4b3cc4"
}

Selection Elements
Amazon Textract can detect selection elements such as option buttons (radio buttons) and check boxes
on a document page. Selection elements can be detected in form data (p. 15) and in tables (p. 17).
For example, when the following table is detected on a form, Amazon Textract detects the check boxes
in the table cells.

Agree Neutral Disagree

Good Service ☑ ☐ ☐

Easy to Use ☐ ☑ ☐

Fair Price ☑ ☐ ☐

Detected selection elements are returned as Block (p. 270) objects in the responses from
AnalyzeDocument (p. 222) and GetDocumentAnalysis (p. 239).

Note
You can use the FeatureTypes input parameter to retrieve information about key-value
pairs, tables, or both. For example, if you filter on tables, the response includes the selection
elements that are detected in tables. Selection elements that are detected in key-value pairs
aren't included in the response.

Information about a selection element is contained in a Block object of type SELECTION_ELEMENT.
To determine the status of a selectable element, use the SelectionStatus field of the
SELECTION_ELEMENT block. The status can be either SELECTED or NOT_SELECTED. For example, the
value of SelectionStatus for the previous image is SELECTED.

A SELECTION_ELEMENT Block object is associated with either a key-value pair or a table cell. A
SELECTION_ELEMENT Block object contains bounding box information for a selection element in the
Geometry field. A SELECTION_ELEMENT Block object isn't a child of a PAGE Block object.

Form Data (Key-Value Pairs)

A key-value pair is used to represent a selection element that's detected on a form. The KEY block
contains the text for the selection element. The VALUE block contains the SELECTION_ELEMENT

22

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

block. The following diagram shows how selection elements are represented by the section called
“Block” (p. 270) objects.

For more information about key-value pairs, see Form Data (Key-Value Pairs) (p. 15).

The following JSON snippet shows the key for a key-value pair that contains a selection element (male
☑). The child ID (Id bd14cfd5-9005-498b-a7f3-45ceb171f0ff) is the ID of the WORD block that contains
the text for the selection element (male). The value ID (Id 24aaac7f-fcce-49c7-a4f0-3688b05586d4) is
the ID of the VALUE block that contains the SELECTION_ELEMENT block object.

{
 "Relationships": [
 {
 "Type": "VALUE",
 "Ids": [
 "24aaac7f-fcce-49c7-a4f0-3688b05586d4" // Value containing Selection
 Element
]
 },
 {
 "Type": "CHILD",
 "Ids": [
 "bd14cfd5-9005-498b-a7f3-45ceb171f0ff" // WORD - male
]
 }
],
 "Confidence": 94.15619659423828,
 "Geometry": {
 "BoundingBox": {
 "Width": 0.022914813831448555,
 "Top": 0.08072036504745483,
 "Left": 0.18966935575008392,
 "Height": 0.014860388822853565
 },
 "Polygon": [
 {
 "Y": 0.08072036504745483,
 "X": 0.18966935575008392
 },
 {
 "Y": 0.08072036504745483,
 "X": 0.21258416771888733
 },
 {
 "Y": 0.09558075666427612,
 "X": 0.21258416771888733
 },
 {
 "Y": 0.09558075666427612,
 "X": 0.18966935575008392
 }
]
 },
 "BlockType": "KEY_VALUE_SET",
 "EntityTypes": [
 "KEY"
],
 "Id": "a118dc43-d5f7-49a2-a20a-5f876d9ffd79"
}

The following JSON snippet is the WORD block for the word Male. The WORD block also has a parent
LINE block.

23

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

{
 "Geometry": {
 "BoundingBox": {
 "Width": 0.022464623674750328,
 "Top": 0.07842985540628433,
 "Left": 0.18863198161125183,
 "Height": 0.01617223583161831
 },
 "Polygon": [
 {
 "Y": 0.07842985540628433,
 "X": 0.18863198161125183
 },
 {
 "Y": 0.07842985540628433,
 "X": 0.2110965996980667
 },
 {
 "Y": 0.09460209310054779,
 "X": 0.2110965996980667
 },
 {
 "Y": 0.09460209310054779,
 "X": 0.18863198161125183
 }
]
 },
 "Text": "Male",
 "BlockType": "WORD",
 "Confidence": 54.06439208984375,
 "Id": "bd14cfd5-9005-498b-a7f3-45ceb171f0ff"
},

The VALUE block has a child (Id f2f5e8cd-e73a-4e99-a095-053acd3b6bfb) that is the
SELECTION_ELEMENT block.

{
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "f2f5e8cd-e73a-4e99-a095-053acd3b6bfb" // Selection element
]
 }
],
 "Confidence": 94.15619659423828,
 "Geometry": {
 "BoundingBox": {
 "Width": 0.017281491309404373,
 "Top": 0.07643391191959381,
 "Left": 0.2271782010793686,
 "Height": 0.026274094358086586
 },
 "Polygon": [
 {
 "Y": 0.07643391191959381,
 "X": 0.2271782010793686
 },
 {
 "Y": 0.07643391191959381,
 "X": 0.24445968866348267
 },
 {
 "Y": 0.10270800441503525,

24

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

 "X": 0.24445968866348267
 },
 {
 "Y": 0.10270800441503525,
 "X": 0.2271782010793686
 }
]
 },
 "BlockType": "KEY_VALUE_SET",
 "EntityTypes": [
 "VALUE"
],
 "Id": "24aaac7f-fcce-49c7-a4f0-3688b05586d4"
},
}

The following JSON is the SELECTION_ELEMENT block. The value of SelectionStatus indicates that
the check box is selected.

{
 "Geometry": {
 "BoundingBox": {
 "Width": 0.020316146314144135,
 "Top": 0.07575977593660355,
 "Left": 0.22590067982673645,
 "Height": 0.027631107717752457
 },
 "Polygon": [
 {
 "Y": 0.07575977593660355,
 "X": 0.22590067982673645
 },
 {
 "Y": 0.07575977593660355,
 "X": 0.2462168186903
 },
 {
 "Y": 0.1033908873796463,
 "X": 0.2462168186903
 },
 {
 "Y": 0.1033908873796463,
 "X": 0.22590067982673645
 }
]
 },
 "BlockType": "SELECTION_ELEMENT",
 "SelectionStatus": "SELECTED",
 "Confidence": 74.14942932128906,
 "Id": "f2f5e8cd-e73a-4e99-a095-053acd3b6bfb"
}

Table Cells

Amazon Textract can detect selection elements inside a table cell. For example, the cells in the following
table have check boxes.

Agree Neutral Disagree

Good Service ☑ ☐ ☐

Easy to Use ☐ ☑ ☐

25

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

Fair Price ☑ ☐ ☐

A CELL block can contain child SELECTION_ELEMENT objects for selection elements, as well as child
WORD blocks for detected text.

For more information about tables, see Tables (p. 17).

The TABLE Block object for the previous table looks similar to this.

{
 "Geometry": {.....},
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "652c09eb-8945-473d-b1be-fa03ac055928",
 "37efc5cc-946d-42cd-aa04-e68e5ed4741d",
 "4a44940a-435a-4c5c-8a6a-7fea341fa295",
 "2de20014-9a3b-4e26-b453-0de755144b1a",
 "8ed78aeb-5c9a-4980-b669-9e08b28671d2",
 "1f8e1c68-2c97-47b2-847c-a19619c02ca9",
 "9927e1d1-6018-4960-ac17-aadb0a94f4d9",
 "68f0ed8b-a887-42a5-b618-f68b494a6034",
 "fcba16e0-6bd7-4ea5-b86e-36e8330b68ea",
 "2250357c-ae34-4ed9-86da-45dac5a5e903",
 "c63ad40d-5a14-4646-a8df-2d4304213dbc", // Cell
 "2b8417dc-e65f-4fcd-aa0f-61a23f1e8cb0",
 "26c62932-72f0-4dc2-9893-1ae27829c060",
 "27f291cc-abf4-4c23-aa24-676abe99cb1e",
 "7e5ce028-1bcd-4d9f-ad42-15ac181c5b47",
 "bf32e3d2-efa2-4fc1-b09b-ab9cc52ff734"
]
 }
],
 "BlockType": "TABLE",
 "Confidence": 99.99993896484375,
 "Id": "f66eac36-2e74-406e-8032-14d1c14e0b86"
}

The CELL BLOCK object (Id c63ad40d-5a14-4646-a8df-2d4304213dbc) for the cell that contains
the check box Good Service looks like the following. It includes a child Block (Id = 26d122fd-
c5f4-4b53-92c4-0ae92730ee1e) that is the SELECTION_ELEMENT Block object for the check box.

{
 "Geometry": {.....},
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "26d122fd-c5f4-4b53-92c4-0ae92730ee1e" // Selection Element
]
 }
],
 "Confidence": 79.741689682006836,
 "RowSpan": 1,
 "RowIndex": 3,
 "ColumnIndex": 3,
 "ColumnSpan": 1,
 "BlockType": "CELL",
 "Id": "c63ad40d-5a14-4646-a8df-2d4304213dbc"

26

Amazon Textract Developer Guide
Text Detection and Document Analysis Response Objects

}

The SELECTION_ELEMENT Block object for the check box is as follows. The value of SelectionStatus
indicates that the check box is selected.

{
 "Geometry": {.......},
 "BlockType": "SELECTION_ELEMENT",
 "SelectionStatus": "SELECTED",
 "Confidence": 88.79517364501953,
 "Id": "26d122fd-c5f4-4b53-92c4-0ae92730ee1e"
}

Queries

When provided a query, Amazon Textract provides a specialized response object. This object repeats
the question back to the user along with the alias for the question. It then provides the confidence
Amazon Textract has with the answer and a location of the answer on the page, and the text answer to
the question posed. If no answer is found, this response element is left blank.

Detected queries are returned as Block objects in the responses from AnalyzeDocument and
GetDocumentAnalysis. You can use the FeatureTypes input parameter to retrieve information about key-
value pairs, tables, or Queries. For general information about how a document is represented by Block
objects, see Text Detection and Document Analysis Response Objects (p. 10).

The following shows a diagram of how a query response is represented in Block objects.

Below is an example for a query response as part of a full response of document analysis.

 {
 "BlockType": "QUERY",
 "Id": "77cfbd28-168a-40fc-9c8a-863ba3066bd2",
 "Relationships": [
 {
 "Type": "ANSWER",
 "Ids": [
 "21396475-27ee-4da7-965b-f7631ef60fcc"
]
 }
],
 "Query": {
 "Text": "What is the patient first name?",
 "Alias": "PATIENT_FIRST_NAME"
 }
 },
 {
 "BlockType": "QUERY_RESULT",
 "Confidence": 1.0,
 "Text": "ALEJANDRO",
 "Id": "21396475-27ee-4da7-965b-f7631ef60fcc"
 }

27

Amazon Textract Developer Guide
Invoice and Receipt Response Objects

Invoice and Receipt Response Objects
When you submit an invoice or a receipt to the AnalyzeExpense API, it returns a series of
ExpenseDocuments objects. Each ExpenseDocument is further separated into LineItemGroups and
SummaryFields. Most invoices and receipts contain information such as the vendor name, receipt
number, receipt date, or total amount. AnalyzeExpense returns this information under SummaryFields.
Receipts and invoices also contain details about the items purchased. The AnalyzeExpense API returns
this information under LineItemGroups. The ExpenseIndex field uniquely identifies the expense, and
associates the appropriate SummaryFields and LineItemGroups detected in that expense.

The most granular level of data in the AnalyzeExpense response consists of Type, ValueDetection,
and LabelDetection (Optional). The individual entities are:

• Type (p. 28): Refers to what kind of information is detected on a high level.

• LabelDetection (p. 29): Refers to the label of an associated value within the text of the document.
LabelDetection is optional and only returned if the label is written.

• ValueDetection (p. 29): Refers to the value of the label or type returned.

The AnalyzeExpense API also detects ITEM, QUANTITY, and PRICE within line items as normalized fields.
If there is other text in a line item on the receipt image such as SKU or detailed description, it will be
included in the JSON as EXPENSE_ROW as shown in the below example:

 {
 "Type": {
 "Text": "EXPENSE_ROW",
 "Confidence": 99.95216369628906
 },
 "ValueDetection": {
 "Text": "Banana 5 $2.5",
 "Geometry": {
 …
 },
 "Confidence": 98.11214447021484
 }

The example above shows how the AnalyzeExpense API returns the entire row on a receipt that contains
line item information about 5 bananas sold for $2.5.

Type
Following is an example of the standard or normalized type of the key-value pair:

 {
 "PageNumber": 1,
 "Type": {
 "Text": "VENDOR_NAME",
 "Confidence": 70.0
 },
 "ValueDetection": {
 "Geometry": { ... },
 "Text": "AMAZON",
 "Confidence": 87.89806365966797
 }
 }

28

Amazon Textract Developer Guide
Invoice and Receipt Response Objects

The receipt did not have “Vendor Name” explicitly listed. However, the Analyze Expense API recognized
the document as a receipt and categorized the value “AMAZON” as Type VENDOR_NAME.

LabelDetection
Following is an example of text as it is shown on a customer document page:

 {
 "PageNumber": 1,
 "Type": {
 "Text": "OTHER",
 "Confidence": 70.0
 },
 "LabelDetection": {
 "Geometry": { ... },
 "Text": "CASHIER",
 "Confidence": 88.19171142578125
 },
 "ValueDetection": {
 "Geometry": { ... },
 "Text": "Mina",
 "Confidence": 87.89806365966797
 }
 }

The example document contained “CASHIER Mina”. The Analyze Expense API extracted the as-is value
and returns it under LabelDetection. For implied values such as “Vendor Name”, where the “key”
is not explicitly shown in the receipt, LabelDetection will not be included in the AnalyzeExpense
element. In such cases, the AnalyzeExpense API does not return LabelDetection.

ValueDetection
The following is an example shows the “value” of the key-value pair.

 {
 "PageNumber": 1,
 "Type": {
 "Text": "OTHER",
 "Confidence": 70.0
 },
 "LabelDetection": {
 "Geometry": { ... },
 "Text": "CASHIER",
 "Confidence": 88.19171142578125
 },
 "ValueDetection": {
 "Geometry": { ... },
 "Text": "Mina",
 "Confidence": 87.89806365966797
 }
 }

In the example, the document contained “CASHIER Mina”. The AnalyzeExpense API detected the Cashier
value as Mina and returned it under ValueDetection.

29

Amazon Textract Developer Guide
Identity Documentation Response Objects

Identity Documentation Response Objects
When you submit an identity document to the AnalyzeID API, it returns a series of
IdentityDocumentField objects. Each of these objects contains Type, and Value. Type records
the normalized field that Amazon Textract detects, and Value records the text associated with the
normalized field.

Below is an example of an IdentityDocumentField, shortened for brevity.

{
 "DocumentMetadata": {
 "Pages": 1
 },
 "IdentityDocumentFields": [
 {
 "Type": {
 "Text": "first name"
 },
 "ValueDetection": {
 "Text": "jennifer",
 "Confidence": 99.99908447265625
 }
 },
 {
 "Type": {
 "Text": "last name"
 },
 "ValueDetection": {
 "Text": "sample",
 "Confidence": 99.99758911132812
 }
 },

These are two examples of IdentityDocumentFields cut from a longer response. There is a seperation
between the type detected and the the value for that type. Here, it is the first and last name respectively.
This structure repeats with all contained information. If a type is not recognized as a normalized field, it
will be listed as "other".

Following is a list of normalized fields for Driver's Licenses:

• first name
• last name
• middle name
• suffix
• city in address
• zip code in address
• state in address
• county
• document number
• expiration date
• date of birth
• state name
• date of issue
• class

30

Amazon Textract Developer Guide
Item Location on a Document Page

• restrictions
• endorsements
• id type
• veteran
• address

Following is a list of normalized fields for U.S Passports:

• first name
• last name
• middle name
• document number
• expiration date
• date of birth
• place of birth
• date of issue
• id type

Item Location on a Document Page
Amazon Textract operations return the location and geometry of items found on a document page.
DetectDocumentText (p. 235) and GetDocumentTextDetection (p. 244) return the location and
geometry for lines and words, while AnalyzeDocument (p. 222) and GetDocumentAnalysis (p. 239)
return the location and geometry of key-value pairs, tables, cells, and selection elements.

To determine where an item is on a document page, use the bounding box (Geometry (p. 282))
information returned by the Amazon Textract operation in a Block (p. 270) object. The Geometry
object contains two types of location and geometric information for detected items:

• An axis-aligned BoundingBox (p. 274) object that contains the top-left coordinate and the width and
height of the item.

• A polygon object that describes the outline of the item, specified as an array of Point (p. 293) objects
that contain X (horizontal axis) and Y (vertical axis) document page coordinates of each point.

The JSON for a Block object looks similar to the following. Note the BoundingBox and Polygon fields.

{
 "Geometry": {
 "BoundingBox": {
 "Width": 0.053907789289951324,
 "Top": 0.08913730084896088,
 "Left": 0.11085548996925354,
 "Height": 0.013171200640499592
 },
 "Polygon": [
 {
 "Y": 0.08985357731580734,
 "X": 0.11085548996925354
 },
 {
 "Y": 0.08913730084896088,
 "X": 0.16447919607162476
 },

31

Amazon Textract Developer Guide
Bounding Box

 {
 "Y": 0.10159222036600113,
 "X": 0.16476328670978546
 },
 {
 "Y": 0.10230850428342819,
 "X": 0.11113958805799484
 }
]
 },
 "Text": "Name:",
 "TextType": "PRINTED",
 "BlockType": "WORD",
 "Confidence": 99.56285858154297,
 "Id": "c734fca6-c4c4-415c-b6c1-30f7510b72ee"
},

You can use geometry information to draw bounding boxes around detected items. For an example
that uses BoundingBox and Polygon information to draw boxes around lines and vertical lines at the
start and end of each word, see Detecting Document Text with Amazon Textract (p. 89). The example
output is similar to the following.

Bounding Box
A bounding box (BoundingBox) has the following properties:

• Height – The height of the bounding box as a ratio of the overall document page height.
• Left – The X coordinate of the top-left point of the bounding box as a ratio of the overall document

page width.
• Top – The Y coordinate of the top-left point of the bounding box as a ratio of the overall document

page height.
• Width – The width of the bounding box as a ratio of the overall document page width.

Each BoundingBox property has a value between 0 and 1. The value is a ratio of the overall image width
(applies to Left and Width) or height (applies to Height and Top). For example, if the input image is
700 x 200 pixels, and the top-left coordinate of the bounding box is (350,50) pixels, the API returns a
Left value of 0.5 (350/700) and a Top value of 0.25 (50/200).

The following diagram shows the range of a document page that each BoundingBox property covers.

To display the bounding box with the correct location and size, you have to multiply the BoundingBox
values by the document page width or height (depending on the value you want) to get the pixel values.
You use the pixel values to display the bounding box. An example is using a document page of 608 pixels
width x 588 pixels height, and the following bounding box values for analyzed text:

BoundingBox.Left: 0.3922065
BoundingBox.Top: 0.15567766
BoundingBox.Width: 0.284666
BoundingBox.Height: 0.2930403

The location of the text bounding box in pixels is calculated as follows:

Left coordinate = BoundingBox.Left (0.3922065) * document page width (608) =
238

Top coordinate = BoundingBox.Top (0.15567766) * document page height (588) = 91

32

Amazon Textract Developer Guide
Polygon

Bounding box width = BoundingBox.Width (0.284666) * document page width (608) =
173

Bounding box height = BoundingBox.Height (0.2930403) * document page height
(588) = 172

You use these values to display a bounding box around the analyzed text. The following Java and Python
examples demonstrate how to display a bounding box.

Java

 public void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box,
 Graphics2D g2d) {

 float left = imageWidth * box.getLeft();
 float top = imageHeight * box.getTop();

 // Display bounding box.
 g2d.setColor(new Color(0, 212, 0));
 g2d.drawRect(Math.round(left / scale), Math.round(top / scale),
 Math.round((imageWidth * box.getWidth()) / scale),
 Math.round((imageHeight * box.getHeight())) / scale);

 }

Python

This Python example takes in the response returned by the DetectDocumentText (p. 235) API
operation.

def process_text_detection(response):

 # Get the text blocks
 blocks = response['Blocks']
 width, height = image.size
 draw = ImageDraw.Draw(image)
 print('Detected Document Text')

 # Create image showing bounding box/polygon the detected lines/text
 for block in blocks:

 draw = ImageDraw.Draw(image)

 if block['BlockType'] == "LINE":
 box=block['Geometry']['BoundingBox']
 left = width * box['Left']
 top = height * box['Top']
 draw.rectangle([left,top, left + (width * box['Width']), top +(height *
 box['Height'])],outline='black')

 # Display the image
 image.show()

 return len(blocks)

Polygon
The polygon returned by AnalyzeDocument is an array of Point (p. 293) objects. Each Point has an
X and Y coordinate for a specific location on the document page. Like the BoundingBox coordinates, the
polygon coordinates are normalized to the document width and height, and are between 0 and 1.

33

Amazon Textract Developer Guide
Polygon

You can use points in the polygon array to display a finer-grain bounding box around a Block object.
You calculate the position of each polygon point on the document page by using the same technique
used for BoundingBoxes. Multiply the X coordinate by the document page width, and multiply the Y
coordinate by the document page height.

The following example shows how to display the vertical lines of a polygon.

 public void ShowPolygonVerticals(int imageHeight, int imageWidth, List <Point> points,
 Graphics2D g2d) {

 g2d.setColor(new Color(0, 212, 0));
 Object[] parry = points.toArray();
 g2d.setStroke(new BasicStroke(2));

 g2d.drawLine(Math.round(((Point) parry[0]).getX() * imageWidth),
 Math.round(((Point) parry[0]).getY() * imageHeight), Math.round(((Point)
 parry[3]).getX() * imageWidth),
 Math.round(((Point) parry[3]).getY() * imageHeight));

 g2d.setColor(new Color(255, 0, 0));
 g2d.drawLine(Math.round(((Point) parry[1]).getX() * imageWidth),
 Math.round(((Point) parry[1]).getY() * imageHeight), Math.round(((Point)
 parry[2]).getX() * imageWidth),
 Math.round(((Point) parry[2]).getY() * imageHeight));

 }

34

Amazon Textract Developer Guide
Step 1: Set Up an Account

Getting Started with Amazon
Textract

This section provides topics to get you started using Amazon Textract. If you're new to Amazon Textract,
we recommend that you first review the concepts and terminology in How Amazon Textract Works (p. 3).

You can try the API by using the demonstration in the Amazon Textract console. For more information,
see https://console.aws.amazon.com/textract/.

Topics

• Step 1: Set Up an AWS Account and Create an IAM User (p. 35)

• Step 2: Set Up the AWS CLI and AWS SDKs (p. 36)

• Step 3: Get Started Using the AWS CLI and AWS SDK API (p. 38)

Step 1: Set Up an AWS Account and Create an IAM
User

Before you use Amazon Textract for the first time, complete the following tasks:

1. Sign Up for AWS (p. 35).

2. Create an IAM User (p. 36).

Sign Up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
released services in AWS. You're charged only for the services that you use.

With Amazon Textract, you pay only for the resources you use. For more information about Amazon
Textract usage rates, see Amazon Textract pricing. If you're a new AWS customer, you can get started
with Amazon Textract for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, perform the
steps in the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Note your AWS account ID because you'll need it for the next task.

35

https://console.aws.amazon.com/textract/
https://aws.amazon.com/textract/pricing/
https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup

Amazon Textract Developer Guide
Create an IAM User

Create an IAM User
Services in AWS, such as Amazon Textract, require that you provide credentials when you access them.
This is so that the service can determine whether you have permissions to access the resources owned
by that service. The console requires your password. You can create access keys for your AWS account to
access the AWS CLI or API. However, we don't recommend that you access AWS by using the credentials
for your AWS account. Instead, we recommend that you:

• Use AWS Identity and Access Management (IAM) to create an IAM user.

• Add the user to an IAM group with administrative permissions.

You can then access AWS by using a special URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one by using
the IAM console. Follow the procedure to create an IAM user in your account.

To create an IAM user and sign in to the console

1. Create an IAM user with administrator permissions in your AWS account. For instructions, see
Creating Your First IAM User and Administrators Group in the IAM User Guide.

2. As the IAM user, sign in to the AWS Management Console by using a special URL. For more
information, see How Users Sign In to Your Account in the IAM User Guide.

Note
An IAM user with administrator permissions has unrestricted access to the AWS services
in your account. The code examples in this guide assume that you have a user with the
AmazonTextractFullAccess permissions. AmazonS3ReadOnlyAccess is required for
examples that access documents that are stored in an Amazon S3 bucket. Depending on your
security requirements, you might want to use an IAM group that's limited to these permissions.
For more information, see Creating IAM Groups.

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)

• Getting started

• IAM User Guide

Next Step
Step 2: Set Up the AWS CLI and AWS SDKs (p. 36)

Step 2: Set Up the AWS CLI and AWS SDKs
The following steps show you how to install the AWS Command Line Interface (AWS CLI) and AWS SDKs
that the examples in this documentation use.

There are a number of different ways to authenticate AWS SDK calls. The examples in this guide
assume that you're using a default credentials profile for calling AWS CLI commands and AWS SDK API
operations. Your default credentials will work across services, so if you have already configured your

36

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Textract Developer Guide
Step 2: Set Up the AWS CLI and AWS SDKs

credentials you don't need to do so again. However, if you would like to create another set of credentials
for this service, you can create a name profile. For more information about creating profiles, see Named
Profiles.

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

To set up the AWS CLI and the AWS SDKs

1. Download and install the AWS CLI and the AWS SDKs that you want to use. This guide provides
examples for the AWS CLI, Java, and Python. For information about other AWS SDKs, see Tools for
Amazon Web Services.

• AWS CLI

• AWS SDK for Java

• AWS SDK for Python (Boto3)

2. Create an access key for the user that you created in Create an IAM User (p. 36).

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Users.

c. Choose the name of the user that you created in Create an IAM User (p. 36).

d. Choose the Security credentials tab.

e. Choose Create access key. Then choose Download .csv file to save the access key ID and secret
access key to a CSV file on your computer. Store the file in a secure location. You will not have
access to the secret access key again after this dialog box closes. After you've downloaded the
CSV file, choose Close.

3. Set credentials in the AWS credentials profile file on your local system, located at:

• ~/.aws/credentials on Linux, macOS, or Unix.

• C:\Users\USERNAME\.aws\credentials on Windows.

The .aws folder does not exist prior to your first initial configuration of your AWS instance. The first
time you configure your credentials with the CLI, this folder will be created. For more information
regarding AWS credentials, see Configuration and Credential File Settings.

This file should contain lines in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Substitute your access key ID and secret access key for your_access_key_id and
your_secret_access_key.

4. Set the default AWS Region in the AWS config file on your local system, located at:

• ~/.aws/config on Linux, macOS, or Unix.

• C:\Users\USERNAME\.aws\config on Windows.

The .aws folder does not exist prior to your first initial configuration of your AWS instance. The first
time you configure your credentials with the CLI, this folder will be created. For more information
regarding AWS credentials, see Configuration and Credential File Settings.

This file should contain the following lines:

37

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Amazon Textract Developer Guide
Next Step

[default]
region = your_aws_region

Substitute the AWS Region you want (for example, "us-west-2") for your_aws_region.

Note
If you don't choose a Region, then us-east-1 is used by default.

Next Step
Step 3: Get Started Using the AWS CLI and AWS SDK API (p. 38)

Step 3: Get Started Using the AWS CLI and AWS
SDK API

After you've set up the AWS CLI and AWS SDKs that you want to use, you can build applications that use
Amazon Textract. The following topics show you how to get started with Amazon Textract.

• Analyzing Document Text with Amazon Textract (p. 97)

Formatting the AWS CLI Examples
The AWS CLI examples in this guide are formatted for the Linux operating system. To use the samples
with Microsoft Windows, you need to change the JSON formatting of the --document parameter, and
change the line breaks from backslashes (\) to carets (^). For more information about JSON formatting,
see Specifying Parameter Values for the AWS Command Line Interface.

38

https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html

Amazon Textract Developer Guide
Calling Amazon Textract Synchronous Operations

Processing Documents with
Synchronous Operations

Amazon Textract can detect and analyze text in single-page documents that are provided as images
in JPEG, PNG, PDF, and TIFF format. The operations are synchronous and return results in near real
time. For more information about documents, see Text Detection and Document Analysis Response
Objects (p. 10).

This section covers how you can use Amazon Textract to detect and analyze text in a single-page
document synchronously. To detect and analyze text in multipage documents, or to detect JPEG and
PNG documents asynchronously, see Processing Documents with Asynchronous Operations (p. 118).

You can use Amazon Textract synchronous operations for the following purposes:

• Text detection – You can detect lines and words on a single-page document image by using the
DetectDocumentText (p. 235) operation. For more information, see Detecting Text (p. 3).

• Text analysis – You can identify relationships between detected text on a single-page document
by using the AnalyzeDocument (p. 222) operation. For more information, see Analyzing
Documents (p. 4).

• Invoice and Receipt Analysis – You can identify financial relationships between detected text on
a single-page invoice or receipt using the AnalyzeExpense operation. For more information, see
Analyzing Invoices and Receipts (p. 5)

• Identity Document Analysis – You can analyze identity documents issued by the U.S. Government and
extract information along with common types of information found on identity documents. For more
information see Analyzing Identity Documents (p. 8).

Topics
• Calling Amazon Textract Synchronous Operations (p. 39)
• Detecting Document Text with Amazon Textract (p. 89)
• Analyzing Document Text with Amazon Textract (p. 97)
• Analyzing Invoices and Receipts with Amazon Textract (p. 105)
• Analyzing Identity Documentation with Amazon Textract (p. 114)

Calling Amazon Textract Synchronous Operations
Amazon Textract operations process document images that are stored on a local file system, or
document images stored in an Amazon S3 bucket. You specify where the input document is located by
using the Document (p. 275) input parameter. The document image can be in either PNG, JPEG, PDF,
or TIFF format. Results for synchronous operations are returned immediately and are not stored for
retrieval.

For a complete example, see Detecting Document Text with Amazon Textract (p. 89).

Request
The following describes how requests work in Amazon Textract.

39

Amazon Textract Developer Guide
Request

Documents Passed as Image Bytes
You can pass a document image to an Amazon Textract operation by passing the image as a base64-
encoded byte array. An example is a document image loaded from a local file system. Your code
might not need to encode document file bytes if you're using an AWS SDK to call Amazon Textract API
operations.

The image bytes are specified in the Bytes field of the Document input parameter. The following
example shows the input JSON for an Amazon Textract operation that passes the image bytes in the
Bytes input parameter.

{
 "Document": {
 "Bytes": "/9j/4AAQSk....."
 }
}

Note
If you're using the AWS CLI, you can't pass image bytes to Amazon Textract operations. Instead,
you must reference an image stored in an Amazon S3 bucket.

The following Java code shows how to load an image from a local file system and call an Amazon
Textract operation.

String document="input.png";

ByteBuffer imageBytes;
try (InputStream inputStream = new FileInputStream(new File(document))) {
 imageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
AmazonTextract client = AmazonTextractClientBuilder.defaultClient();

DetectDocumentTextRequest request = new DetectDocumentTextRequest()
 .withDocument(new Document()
 .withBytes(imageBytes));

DetectDocumentTextResult result = client.detectDocumentText(request);

Documents Stored in an Amazon S3 Bucket
Amazon Textract can analyze document images that are stored in an Amazon S3 bucket. You specify
the bucket and file name by using the S3Object (p. 298) field of the Document input parameter. The
following example shows the input JSON for an Amazon Textract operation that processes a document
stored in an Amazon S3 bucket.

{
 "Document": {
 "S3Object": {
 "Bucket": "bucket",
 "Name": "input.png"
 }
 }
}

The following example shows how to call an Amazon Textract operation using an image stored in an
Amazon S3 bucket.

String document="input.png";

40

Amazon Textract Developer Guide
Response

String bucket="bucket";

AmazonTextract client = AmazonTextractClientBuilder.defaultClient();

DetectDocumentTextRequest request = new DetectDocumentTextRequest()
 .withDocument(new Document()
 .withS3Object(new S3Object()
 .withName(document)
 .withBucket(bucket)));

DetectDocumentTextResult result = client.detectDocumentText(request);

Response
The following sample is the JSON response from a call to DetectDocumentText. For more information,
see Detecting Text (p. 3).

{
{
 "DocumentMetadata": {
 "Pages": 1
 },
 "Blocks": [
 {
 "BlockType": "PAGE",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.9995205998420715,
 "Height": 1.0,
 "Left": 0.0,
 "Top": 0.0
 },
 "Polygon": [
 {
 "X": 0.0,
 "Y": 0.0
 },
 {
 "X": 0.9995205998420715,
 "Y": 2.297314024515845E-16
 },
 {
 "X": 0.9995205998420715,
 "Y": 1.0
 },
 {
 "X": 0.0,
 "Y": 1.0
 }
]
 },
 "Id": "ca4b9171-7109-4adb-a811-e09bbe4834dd",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "26085884-d005-4144-b4c2-4d83dc50739b",
 "ee9d01bc-d91c-401d-8c0a-eec76f5f7862",
 "404bb3d3-d7ab-4008-a195-5dec87a08664",
 "8ae1b4ba-67c1-4486-bd20-54f461886ce9",
 "47aab5ab-be2c-4c73-97c7-d0a45454e843",
 "dd06bb49-6a56-4ea7-beec-a2aa09835c3c",
 "8837153d-81b8-4031-a49f-83a3d81803c2",

41

Amazon Textract Developer Guide
Response

 "5dae3b74-9e95-4b62-99b7-93b88fe70648",
 "4508da80-64d8-42a8-8846-cfafe6eab10c",
 "e87be7a9-5519-42e1-b18e-ae10e2d3ed13",
 "f04bb223-d075-41c3-b328-7354611c826b",
 "a234f0e8-67de-46f4-a7c7-0bbe8d5159ce",
 "61b20e27-ff8a-450a-a8b1-bc0259f82fd6",
 "445f4fdd-c77b-4a7b-a2fc-6ca07cfe9ed7",
 "359f3870-7183-43f5-b638-970f5cefe4d5",
 "b9deea0a-244c-4d54-b774-cf03fbaaa8b1",
 "e2a43881-f620-44f2-b067-500ce7dc8d4d",
 "41756974-64ef-432d-b4b2-34702505975a",
 "93d96d32-8b4a-4a98-9578-8b4df4f227a6",
 "bc907357-63d6-43c0-ab87-80d7e76d377e",
 "2d727ca7-3acb-4bb9-a564-5885c90e9325",
 "f32a5989-cbfb-41e6-b0fc-ce1c77c014bd",
 "e0ba06d0-dbb6-4962-8047-8cac3adfe45a",
 "b6ed204d-ae01-4b75-bb91-c85d4147a37e",
 "ac4b9ee0-c9b2-4239-a741-5753e5282033",
 "ebc18885-48d7-45b8-90e3-d172b4357802",
 "babf6360-789e-49c1-9c78-0784acc14a0c"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.93761444091797,
 "Text": "Employment Application",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.3391372561454773,
 "Height": 0.06906412541866302,
 "Left": 0.29548385739326477,
 "Top": 0.027493247762322426
 },
 "Polygon": [
 {
 "X": 0.29548385739326477,
 "Y": 0.027493247762322426
 },
 {
 "X": 0.6346210837364197,
 "Y": 0.027493247762322426
 },
 {
 "X": 0.6346210837364197,
 "Y": 0.0965573713183403
 },
 {
 "X": 0.29548385739326477,
 "Y": 0.0965573713183403
 }
]
 },
 "Id": "26085884-d005-4144-b4c2-4d83dc50739b",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "ed48dacc-d089-498f-8e93-1cee1e5f39f3",
 "ac7370f3-cbb7-4cd9-a8f9-bdcb2252caaf"
]
 }
]
 },
 {

42

Amazon Textract Developer Guide
Response

 "BlockType": "LINE",
 "Confidence": 99.91246795654297,
 "Text": "Application Information",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.19878505170345306,
 "Height": 0.03754019737243652,
 "Left": 0.03988289833068848,
 "Top": 0.14050349593162537
 },
 "Polygon": [
 {
 "X": 0.03988289833068848,
 "Y": 0.14050349593162537
 },
 {
 "X": 0.23866795003414154,
 "Y": 0.14050349593162537
 },
 {
 "X": 0.23866795003414154,
 "Y": 0.1780436933040619
 },
 {
 "X": 0.03988289833068848,
 "Y": 0.1780436933040619
 }
]
 },
 "Id": "ee9d01bc-d91c-401d-8c0a-eec76f5f7862",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "efe3fc6d-becb-4520-80ee-49a329386aee",
 "c2260852-6cfd-4a71-9fc6-62b2f9b02355"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.88693237304688,
 "Text": "Full Name: Jane Doe",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.16733919084072113,
 "Height": 0.031106337904930115,
 "Left": 0.03899926319718361,
 "Top": 0.21361036598682404
 },
 "Polygon": [
 {
 "X": 0.03899926319718361,
 "Y": 0.21361036598682404
 },
 {
 "X": 0.20633845031261444,
 "Y": 0.21361036598682404
 },
 {
 "X": 0.20633845031261444,
 "Y": 0.24471670389175415
 },
 {
 "X": 0.03899926319718361,

43

Amazon Textract Developer Guide
Response

 "Y": 0.24471670389175415
 }
]
 },
 "Id": "404bb3d3-d7ab-4008-a195-5dec87a08664",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "e94eb587-9545-4215-b0fc-8e8cb1172958",
 "090aeba5-8428-4b7a-a54b-7a95a774120e",
 "64ff0abb-736b-4a6b-aa8d-ad2c0086ae1d",
 "565ffc30-89d6-4295-b8c6-d22b4ed76584"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.9206314086914,
 "Text": "Phone Number: 555-0100",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.3115004599094391,
 "Height": 0.047169625759124756,
 "Left": 0.03604753687977791,
 "Top": 0.2812676727771759
 },
 "Polygon": [
 {
 "X": 0.03604753687977791,
 "Y": 0.2812676727771759
 },
 {
 "X": 0.3475480079650879,
 "Y": 0.2812676727771759
 },
 {
 "X": 0.3475480079650879,
 "Y": 0.32843729853630066
 },
 {
 "X": 0.03604753687977791,
 "Y": 0.32843729853630066
 }
]
 },
 "Id": "8ae1b4ba-67c1-4486-bd20-54f461886ce9",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "d782f847-225b-4a1b-b52d-f252f8221b1f",
 "fa69c5cd-c80d-4fac-81df-569edae8d259",
 "d4bbc0f1-ae02-41cf-a26f-8a1e899968cc"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.48902893066406,
 "Text": "Home Address: 123 Any Street, Any Town. USA",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.7431139945983887,

44

Amazon Textract Developer Guide
Response

 "Height": 0.09577702730894089,
 "Left": 0.03359385207295418,
 "Top": 0.3258342146873474
 },
 "Polygon": [
 {
 "X": 0.03359385207295418,
 "Y": 0.3258342146873474
 },
 {
 "X": 0.7767078280448914,
 "Y": 0.3258342146873474
 },
 {
 "X": 0.7767078280448914,
 "Y": 0.4216112196445465
 },
 {
 "X": 0.03359385207295418,
 "Y": 0.4216112196445465
 }
]
 },
 "Id": "47aab5ab-be2c-4c73-97c7-d0a45454e843",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "acfbed90-4a00-42c6-8a90-d0a0756eea36",
 "046c8a40-bb0e-4718-9c71-954d3630e1dd",
 "82b838bc-4591-4287-8dea-60c94a4925e4",
 "5cdcde7a-f5a6-4231-a941-b6396e42e7ba",
 "beafd497-185f-487e-b070-db4df5803e94",
 "ef1b77fb-8ba6-41fe-ba53-dce039af22ed",
 "7b555310-e7f8-4cd2-bb3d-dcec37f3d90e",
 "b479c24d-448d-40ef-9ed5-36a6ef08e5c7"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.89382934570312,
 "Text": "Mailing Address: same as above",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.26575741171836853,
 "Height": 0.039571404457092285,
 "Left": 0.03068041242659092,
 "Top": 0.43351811170578003
 },
 "Polygon": [
 {
 "X": 0.03068041242659092,
 "Y": 0.43351811170578003
 },
 {
 "X": 0.2964377999305725,
 "Y": 0.43351811170578003
 },
 {
 "X": 0.2964377999305725,
 "Y": 0.4730895161628723
 },
 {
 "X": 0.03068041242659092,

45

Amazon Textract Developer Guide
Response

 "Y": 0.4730895161628723
 }
]
 },
 "Id": "dd06bb49-6a56-4ea7-beec-a2aa09835c3c",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "d7261cdc-6ac5-4711-903c-4598fe94952d",
 "287f80c3-6db2-4dd7-90ec-5f017c80aa31",
 "ce31c3ad-b51e-4068-be64-5fc9794bc1bc",
 "e96eb92c-6774-4d6f-8f4a-68a7618d4c66",
 "88b85c05-427a-4d4f-8cc4-3667234e8364"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 94.67343139648438,
 "Text": "Previous Employment History",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.3309842050075531,
 "Height": 0.051920413970947266,
 "Left": 0.3194798231124878,
 "Top": 0.5172380208969116
 },
 "Polygon": [
 {
 "X": 0.3194798231124878,
 "Y": 0.5172380208969116
 },
 {
 "X": 0.6504639983177185,
 "Y": 0.5172380208969116
 },
 {
 "X": 0.6504639983177185,
 "Y": 0.5691584348678589
 },
 {
 "X": 0.3194798231124878,
 "Y": 0.5691584348678589
 }
]
 },
 "Id": "8837153d-81b8-4031-a49f-83a3d81803c2",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "8b324501-bf38-4ce9-9777-6514b7ade760",
 "b0cea99a-5045-464d-ac8a-a63ab0470995",
 "b92a6ee5-ca59-44dc-9c47-534c133b11e7"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.66949462890625,
 "Text": "Start Date",
 "Geometry": {
 "BoundingBox": {

46

Amazon Textract Developer Guide
Response

 "Width": 0.08310240507125854,
 "Height": 0.030944595113396645,
 "Left": 0.034429505467414856,
 "Top": 0.6123942136764526
 },
 "Polygon": [
 {
 "X": 0.034429505467414856,
 "Y": 0.6123942136764526
 },
 {
 "X": 0.1175319030880928,
 "Y": 0.6123942136764526
 },
 {
 "X": 0.1175319030880928,
 "Y": 0.6433387994766235
 },
 {
 "X": 0.034429505467414856,
 "Y": 0.6433387994766235
 }
]
 },
 "Id": "5dae3b74-9e95-4b62-99b7-93b88fe70648",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "ffe8b8e0-df59-4ac5-9aba-6b54b7c51b45",
 "91e582cd-9871-4e9c-93cc-848baa426338"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.86717224121094,
 "Text": "End Date",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07581500709056854,
 "Height": 0.03223184868693352,
 "Left": 0.14846202731132507,
 "Top": 0.6120467782020569
 },
 "Polygon": [
 {
 "X": 0.14846202731132507,
 "Y": 0.6120467782020569
 },
 {
 "X": 0.22427703440189362,
 "Y": 0.6120467782020569
 },
 {
 "X": 0.22427703440189362,
 "Y": 0.6442786455154419
 },
 {
 "X": 0.14846202731132507,
 "Y": 0.6442786455154419
 }
]
 },
 "Id": "4508da80-64d8-42a8-8846-cfafe6eab10c",

47

Amazon Textract Developer Guide
Response

 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "7c97b56b-699f-49b0-93f4-98e6d90b107c",
 "7af04e27-0c15-447e-a569-b30edb99a133"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.9539794921875,
 "Text": "Employer Name",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.1347292959690094,
 "Height": 0.0392492413520813,
 "Left": 0.2647075653076172,
 "Top": 0.6140711903572083
 },
 "Polygon": [
 {
 "X": 0.2647075653076172,
 "Y": 0.6140711903572083
 },
 {
 "X": 0.3994368314743042,
 "Y": 0.6140711903572083
 },
 {
 "X": 0.3994368314743042,
 "Y": 0.6533204317092896
 },
 {
 "X": 0.2647075653076172,
 "Y": 0.6533204317092896
 }
]
 },
 "Id": "e87be7a9-5519-42e1-b18e-ae10e2d3ed13",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "a9bfeb55-75cd-47cd-b953-728e602a3564",
 "9f0f9c06-d02c-4b07-bb39-7ade70be2c1b"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.35584259033203,
 "Text": "Position Held",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.11393272876739502,
 "Height": 0.03415105864405632,
 "Left": 0.49973347783088684,
 "Top": 0.614840030670166
 },
 "Polygon": [
 {
 "X": 0.49973347783088684,
 "Y": 0.614840030670166

48

Amazon Textract Developer Guide
Response

 },
 {
 "X": 0.6136661767959595,
 "Y": 0.614840030670166
 },
 {
 "X": 0.6136661767959595,
 "Y": 0.6489911079406738
 },
 {
 "X": 0.49973347783088684,
 "Y": 0.6489911079406738
 }
]
 },
 "Id": "f04bb223-d075-41c3-b328-7354611c826b",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "6d5edf02-845c-40e0-9514-e56d0d652ae0",
 "3297ab59-b237-45fb-ae60-a108f0c95ac2"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.9817886352539,
 "Text": "Reason for leaving",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.16511960327625275,
 "Height": 0.04062700271606445,
 "Left": 0.7430596351623535,
 "Top": 0.6116235852241516
 },
 "Polygon": [
 {
 "X": 0.7430596351623535,
 "Y": 0.6116235852241516
 },
 {
 "X": 0.9081792235374451,
 "Y": 0.6116235852241516
 },
 {
 "X": 0.9081792235374451,
 "Y": 0.6522505879402161
 },
 {
 "X": 0.7430596351623535,
 "Y": 0.6522505879402161
 }
]
 },
 "Id": "a234f0e8-67de-46f4-a7c7-0bbe8d5159ce",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "f4b8cf26-d2da-4a76-8345-69562de3cc11",
 "386d4a63-1194-4c0e-a18d-4d074a0b1f93",
 "a8622541-1896-4d54-8d10-7da2c800ec5c"
]
 }

49

Amazon Textract Developer Guide
Response

]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.77413177490234,
 "Text": "1/15/2009",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08799663186073303,
 "Height": 0.03832906484603882,
 "Left": 0.03175082430243492,
 "Top": 0.691371738910675
 },
 "Polygon": [
 {
 "X": 0.03175082430243492,
 "Y": 0.691371738910675
 },
 {
 "X": 0.11974745243787766,
 "Y": 0.691371738910675
 },
 {
 "X": 0.11974745243787766,
 "Y": 0.7297008037567139
 },
 {
 "X": 0.03175082430243492,
 "Y": 0.7297008037567139
 }
]
 },
 "Id": "61b20e27-ff8a-450a-a8b1-bc0259f82fd6",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "da7a6482-0964-49a4-bc7d-56942ff3b4e1"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.72286224365234,
 "Text": "6/30/2011",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08843101561069489,
 "Height": 0.03991425037384033,
 "Left": 0.14642837643623352,
 "Top": 0.6919752955436707
 },
 "Polygon": [
 {
 "X": 0.14642837643623352,
 "Y": 0.6919752955436707
 },
 {
 "X": 0.2348593920469284,
 "Y": 0.6919752955436707
 },
 {
 "X": 0.2348593920469284,
 "Y": 0.731889545917511
 },

50

Amazon Textract Developer Guide
Response

 {
 "X": 0.14642837643623352,
 "Y": 0.731889545917511
 }
]
 },
 "Id": "445f4fdd-c77b-4a7b-a2fc-6ca07cfe9ed7",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "5a8da66a-ecce-4ee9-a765-a46d6cdc6cde"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.86936950683594,
 "Text": "Any Company",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.11800950765609741,
 "Height": 0.03943679481744766,
 "Left": 0.2626699209213257,
 "Top": 0.6972727179527283
 },
 "Polygon": [
 {
 "X": 0.2626699209213257,
 "Y": 0.6972727179527283
 },
 {
 "X": 0.3806794285774231,
 "Y": 0.6972727179527283
 },
 {
 "X": 0.3806794285774231,
 "Y": 0.736709475517273
 },
 {
 "X": 0.2626699209213257,
 "Y": 0.736709475517273
 }
]
 },
 "Id": "359f3870-7183-43f5-b638-970f5cefe4d5",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "77749c2b-aa7f-450e-8dd2-62bcaf253ba2",
 "713bad19-158d-4e3e-b01f-f5707ddb04e5"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.582275390625,
 "Text": "Assistant baker",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.13280922174453735,
 "Height": 0.032666124403476715,
 "Left": 0.49814170598983765,

51

Amazon Textract Developer Guide
Response

 "Top": 0.699238657951355
 },
 "Polygon": [
 {
 "X": 0.49814170598983765,
 "Y": 0.699238657951355
 },
 {
 "X": 0.630950927734375,
 "Y": 0.699238657951355
 },
 {
 "X": 0.630950927734375,
 "Y": 0.7319048047065735
 },
 {
 "X": 0.49814170598983765,
 "Y": 0.7319048047065735
 }
]
 },
 "Id": "b9deea0a-244c-4d54-b774-cf03fbaaa8b1",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "989944f9-f684-4714-87d8-9ad9a321d65c",
 "ae82e2aa-1601-4e0c-8340-1db7ad0c9a31"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.96180725097656,
 "Text": "relocated",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08668994903564453,
 "Height": 0.033302485942840576,
 "Left": 0.7426905632019043,
 "Top": 0.6974037289619446
 },
 "Polygon": [
 {
 "X": 0.7426905632019043,
 "Y": 0.6974037289619446
 },
 {
 "X": 0.8293805122375488,
 "Y": 0.6974037289619446
 },
 {
 "X": 0.8293805122375488,
 "Y": 0.7307062149047852
 },
 {
 "X": 0.7426905632019043,
 "Y": 0.7307062149047852
 }
]
 },
 "Id": "e2a43881-f620-44f2-b067-500ce7dc8d4d",
 "Relationships": [
 {
 "Type": "CHILD",

52

Amazon Textract Developer Guide
Response

 "Ids": [
 "a9cf9a8c-fdaa-413e-9346-5a28a98aebdb"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.98190307617188,
 "Text": "7/1/2011",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09747002273797989,
 "Height": 0.07067441940307617,
 "Left": 0.028500309213995934,
 "Top": 0.7745237946510315
 },
 "Polygon": [
 {
 "X": 0.028500309213995934,
 "Y": 0.7745237946510315
 },
 {
 "X": 0.12597033381462097,
 "Y": 0.7745237946510315
 },
 {
 "X": 0.12597033381462097,
 "Y": 0.8451982140541077
 },
 {
 "X": 0.028500309213995934,
 "Y": 0.8451982140541077
 }
]
 },
 "Id": "41756974-64ef-432d-b4b2-34702505975a",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "0f711065-1872-442a-ba6d-8fababaa452a"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.98418426513672,
 "Text": "8/10/2013",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10664612054824829,
 "Height": 0.06439518928527832,
 "Left": 0.14159755408763885,
 "Top": 0.7791688442230225
 },
 "Polygon": [
 {
 "X": 0.14159755408763885,
 "Y": 0.7791688442230225
 },
 {
 "X": 0.24824367463588715,
 "Y": 0.7791688442230225
 },

53

Amazon Textract Developer Guide
Response

 {
 "X": 0.24824367463588715,
 "Y": 0.8435640335083008
 },
 {
 "X": 0.14159755408763885,
 "Y": 0.8435640335083008
 }
]
 },
 "Id": "93d96d32-8b4a-4a98-9578-8b4df4f227a6",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "a92d8eef-db28-45ba-801a-5da0f589d277"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.98075866699219,
 "Text": "Example Corp.",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.2114926278591156,
 "Height": 0.058415766805410385,
 "Left": 0.26764172315597534,
 "Top": 0.794414758682251
 },
 "Polygon": [
 {
 "X": 0.26764172315597534,
 "Y": 0.794414758682251
 },
 {
 "X": 0.47913435101509094,
 "Y": 0.794414758682251
 },
 {
 "X": 0.47913435101509094,
 "Y": 0.8528305292129517
 },
 {
 "X": 0.26764172315597534,
 "Y": 0.8528305292129517
 }
]
 },
 "Id": "bc907357-63d6-43c0-ab87-80d7e76d377e",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "d6962efb-34ab-4ffb-9f2f-5f263e813558",
 "1876c8ea-d3e8-4c39-870e-47512b3b5080"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.91166687011719,
 "Text": "Baker",
 "Geometry": {

54

Amazon Textract Developer Guide
Response

 "BoundingBox": {
 "Width": 0.09931200742721558,
 "Height": 0.06008726358413696,
 "Left": 0.5098910331726074,
 "Top": 0.787897527217865
 },
 "Polygon": [
 {
 "X": 0.5098910331726074,
 "Y": 0.787897527217865
 },
 {
 "X": 0.609203040599823,
 "Y": 0.787897527217865
 },
 {
 "X": 0.609203040599823,
 "Y": 0.847984790802002
 },
 {
 "X": 0.5098910331726074,
 "Y": 0.847984790802002
 }
]
 },
 "Id": "2d727ca7-3acb-4bb9-a564-5885c90e9325",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "00adeaef-ed57-44eb-b8a9-503575236d62"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.93852233886719,
 "Text": "better opp.",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.18919607996940613,
 "Height": 0.06994765996932983,
 "Left": 0.7428008317947388,
 "Top": 0.7928366661071777
 },
 "Polygon": [
 {
 "X": 0.7428008317947388,
 "Y": 0.7928366661071777
 },
 {
 "X": 0.9319968819618225,
 "Y": 0.7928366661071777
 },
 {
 "X": 0.9319968819618225,
 "Y": 0.8627843260765076
 },
 {
 "X": 0.7428008317947388,
 "Y": 0.8627843260765076
 }
]
 },
 "Id": "f32a5989-cbfb-41e6-b0fc-ce1c77c014bd",

55

Amazon Textract Developer Guide
Response

 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "c0fc9a58-7a4b-4f69-bafd-2cff32be2665",
 "bf6dc8ee-2fb3-4b6c-aee4-31e96912a2d8"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.92573547363281,
 "Text": "8/15/2013",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10257463902235031,
 "Height": 0.05412459373474121,
 "Left": 0.027909137308597565,
 "Top": 0.8608770370483398
 },
 "Polygon": [
 {
 "X": 0.027909137308597565,
 "Y": 0.8608770370483398
 },
 {
 "X": 0.13048377633094788,
 "Y": 0.8608770370483398
 },
 {
 "X": 0.13048377633094788,
 "Y": 0.915001630783081
 },
 {
 "X": 0.027909137308597565,
 "Y": 0.915001630783081
 }
]
 },
 "Id": "e0ba06d0-dbb6-4962-8047-8cac3adfe45a",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "5384f860-f857-4a94-9438-9dfa20eed1c6"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.99625396728516,
 "Text": "Present",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09982697665691376,
 "Height": 0.06888341903686523,
 "Left": 0.1420602649450302,
 "Top": 0.8511748909950256
 },
 "Polygon": [
 {
 "X": 0.1420602649450302,
 "Y": 0.8511748909950256
 },

56

Amazon Textract Developer Guide
Response

 {
 "X": 0.24188724160194397,
 "Y": 0.8511748909950256
 },
 {
 "X": 0.24188724160194397,
 "Y": 0.9200583100318909
 },
 {
 "X": 0.1420602649450302,
 "Y": 0.9200583100318909
 }
]
 },
 "Id": "b6ed204d-ae01-4b75-bb91-c85d4147a37e",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "0bb96ed6-b2e6-4da4-90b3-b85561bbd89d"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.9826431274414,
 "Text": "AnyCompany",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.18611276149749756,
 "Height": 0.08581399917602539,
 "Left": 0.2615866959095001,
 "Top": 0.869536280632019
 },
 "Polygon": [
 {
 "X": 0.2615866959095001,
 "Y": 0.869536280632019
 },
 {
 "X": 0.4476994574069977,
 "Y": 0.869536280632019
 },
 {
 "X": 0.4476994574069977,
 "Y": 0.9553502798080444
 },
 {
 "X": 0.2615866959095001,
 "Y": 0.9553502798080444
 }
]
 },
 "Id": "ac4b9ee0-c9b2-4239-a741-5753e5282033",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "25343360-d906-440a-88b7-92eb89e95949"
]
 }
]
 },
 {
 "BlockType": "LINE",

57

Amazon Textract Developer Guide
Response

 "Confidence": 99.99549102783203,
 "Text": "head baker",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.1937451809644699,
 "Height": 0.056156039237976074,
 "Left": 0.49359121918678284,
 "Top": 0.8702592849731445
 },
 "Polygon": [
 {
 "X": 0.49359121918678284,
 "Y": 0.8702592849731445
 },
 {
 "X": 0.6873363852500916,
 "Y": 0.8702592849731445
 },
 {
 "X": 0.6873363852500916,
 "Y": 0.9264153242111206
 },
 {
 "X": 0.49359121918678284,
 "Y": 0.9264153242111206
 }
]
 },
 "Id": "ebc18885-48d7-45b8-90e3-d172b4357802",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "0ef3c194-8322-4575-94f1-82819ee57e3a",
 "d296acd9-3e9a-4985-95f8-f863614f2c46"
]
 }
]
 },
 {
 "BlockType": "LINE",
 "Confidence": 99.98360443115234,
 "Text": "N/A, current",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.22544169425964355,
 "Height": 0.06588292121887207,
 "Left": 0.7411766648292542,
 "Top": 0.8722732067108154
 },
 "Polygon": [
 {
 "X": 0.7411766648292542,
 "Y": 0.8722732067108154
 },
 {
 "X": 0.9666183590888977,
 "Y": 0.8722732067108154
 },
 {
 "X": 0.9666183590888977,
 "Y": 0.9381561279296875
 },
 {
 "X": 0.7411766648292542,
 "Y": 0.9381561279296875

58

Amazon Textract Developer Guide
Response

 }
]
 },
 "Id": "babf6360-789e-49c1-9c78-0784acc14a0c",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "195cfb5b-ae06-4203-8520-4e4b0a73b5ce",
 "549ef3f9-3a13-4b77-bc25-fb2e0996839a"
]
 }
]
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.94815826416016,
 "Text": "Employment",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.17462396621704102,
 "Height": 0.06266549974679947,
 "Left": 0.29548385739326477,
 "Top": 0.03389188274741173
 },
 "Polygon": [
 {
 "X": 0.29548385739326477,
 "Y": 0.03389188274741173
 },
 {
 "X": 0.4701078236103058,
 "Y": 0.03389188274741173
 },
 {
 "X": 0.4701078236103058,
 "Y": 0.0965573862195015
 },
 {
 "X": 0.29548385739326477,
 "Y": 0.0965573862195015
 }
]
 },
 "Id": "ed48dacc-d089-498f-8e93-1cee1e5f39f3"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.92706298828125,
 "Text": "Application",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.15933875739574432,
 "Height": 0.062391020357608795,
 "Left": 0.47528234124183655,
 "Top": 0.027493247762322426
 },
 "Polygon": [
 {
 "X": 0.47528234124183655,
 "Y": 0.027493247762322426
 },
 {
 "X": 0.6346211433410645,

59

Amazon Textract Developer Guide
Response

 "Y": 0.027493247762322426
 },
 {
 "X": 0.6346211433410645,
 "Y": 0.08988427370786667
 },
 {
 "X": 0.47528234124183655,
 "Y": 0.08988427370786667
 }
]
 },
 "Id": "ac7370f3-cbb7-4cd9-a8f9-bdcb2252caaf"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9821548461914,
 "Text": "Application",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09610454738140106,
 "Height": 0.03656719997525215,
 "Left": 0.03988289833068848,
 "Top": 0.14147649705410004
 },
 "Polygon": [
 {
 "X": 0.03988289833068848,
 "Y": 0.14147649705410004
 },
 {
 "X": 0.13598744571208954,
 "Y": 0.14147649705410004
 },
 {
 "X": 0.13598744571208954,
 "Y": 0.1780436933040619
 },
 {
 "X": 0.03988289833068848,
 "Y": 0.1780436933040619
 }
]
 },
 "Id": "efe3fc6d-becb-4520-80ee-49a329386aee"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.84278106689453,
 "Text": "Information",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10029315203428268,
 "Height": 0.03209415823221207,
 "Left": 0.13837480545043945,
 "Top": 0.14050349593162537
 },
 "Polygon": [
 {
 "X": 0.13837480545043945,
 "Y": 0.14050349593162537
 },
 {
 "X": 0.23866795003414154,

60

Amazon Textract Developer Guide
Response

 "Y": 0.14050349593162537
 },
 {
 "X": 0.23866795003414154,
 "Y": 0.17259766161441803
 },
 {
 "X": 0.13837480545043945,
 "Y": 0.17259766161441803
 }
]
 },
 "Id": "c2260852-6cfd-4a71-9fc6-62b2f9b02355"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.83993530273438,
 "Text": "Full",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.03039788082242012,
 "Height": 0.031106330454349518,
 "Left": 0.03899926319718361,
 "Top": 0.21361036598682404
 },
 "Polygon": [
 {
 "X": 0.03899926319718361,
 "Y": 0.21361036598682404
 },
 {
 "X": 0.06939714401960373,
 "Y": 0.21361036598682404
 },
 {
 "X": 0.06939714401960373,
 "Y": 0.24471670389175415
 },
 {
 "X": 0.03899926319718361,
 "Y": 0.24471670389175415
 }
]
 },
 "Id": "e94eb587-9545-4215-b0fc-8e8cb1172958"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.93611907958984,
 "Text": "Name:",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.05555811896920204,
 "Height": 0.030184319242835045,
 "Left": 0.07123806327581406,
 "Top": 0.2137702852487564
 },
 "Polygon": [
 {
 "X": 0.07123806327581406,
 "Y": 0.2137702852487564
 },
 {
 "X": 0.1267961859703064,

61

Amazon Textract Developer Guide
Response

 "Y": 0.2137702852487564
 },
 {
 "X": 0.1267961859703064,
 "Y": 0.2439546138048172
 },
 {
 "X": 0.07123806327581406,
 "Y": 0.2439546138048172
 }
]
 },
 "Id": "090aeba5-8428-4b7a-a54b-7a95a774120e"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.91043853759766,
 "Text": "Jane",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.03905024006962776,
 "Height": 0.02941947989165783,
 "Left": 0.12933772802352905,
 "Top": 0.214289128780365
 },
 "Polygon": [
 {
 "X": 0.12933772802352905,
 "Y": 0.214289128780365
 },
 {
 "X": 0.16838796436786652,
 "Y": 0.214289128780365
 },
 {
 "X": 0.16838796436786652,
 "Y": 0.24370861053466797
 },
 {
 "X": 0.12933772802352905,
 "Y": 0.24370861053466797
 }
]
 },
 "Id": "64ff0abb-736b-4a6b-aa8d-ad2c0086ae1d"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.86123657226562,
 "Text": "Doe",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.035229459404945374,
 "Height": 0.030427640303969383,
 "Left": 0.17110899090766907,
 "Top": 0.21377210319042206
 },
 "Polygon": [
 {
 "X": 0.17110899090766907,
 "Y": 0.21377210319042206
 },
 {
 "X": 0.20633845031261444,

62

Amazon Textract Developer Guide
Response

 "Y": 0.21377210319042206
 },
 {
 "X": 0.20633845031261444,
 "Y": 0.244199737906456
 },
 {
 "X": 0.17110899090766907,
 "Y": 0.244199737906456
 }
]
 },
 "Id": "565ffc30-89d6-4295-b8c6-d22b4ed76584"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.92633056640625,
 "Text": "Phone",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.052783288061618805,
 "Height": 0.03104414977133274,
 "Left": 0.03604753687977791,
 "Top": 0.28701552748680115
 },
 "Polygon": [
 {
 "X": 0.03604753687977791,
 "Y": 0.28701552748680115
 },
 {
 "X": 0.08883082121610641,
 "Y": 0.28701552748680115
 },
 {
 "X": 0.08883082121610641,
 "Y": 0.31805968284606934
 },
 {
 "X": 0.03604753687977791,
 "Y": 0.31805968284606934
 }
]
 },
 "Id": "d782f847-225b-4a1b-b52d-f252f8221b1f"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.86275482177734,
 "Text": "Number:",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07424934208393097,
 "Height": 0.030300479382276535,
 "Left": 0.0915418416261673,
 "Top": 0.28639692068099976
 },
 "Polygon": [
 {
 "X": 0.0915418416261673,
 "Y": 0.28639692068099976
 },
 {
 "X": 0.16579118371009827,

63

Amazon Textract Developer Guide
Response

 "Y": 0.28639692068099976
 },
 {
 "X": 0.16579118371009827,
 "Y": 0.3166973888874054
 },
 {
 "X": 0.0915418416261673,
 "Y": 0.3166973888874054
 }
]
 },
 "Id": "fa69c5cd-c80d-4fac-81df-569edae8d259"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.97282409667969,
 "Text": "555-0100",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.17021971940994263,
 "Height": 0.047169629484415054,
 "Left": 0.17732827365398407,
 "Top": 0.2812676727771759
 },
 "Polygon": [
 {
 "X": 0.17732827365398407,
 "Y": 0.2812676727771759
 },
 {
 "X": 0.3475480079650879,
 "Y": 0.2812676727771759
 },
 {
 "X": 0.3475480079650879,
 "Y": 0.32843729853630066
 },
 {
 "X": 0.17732827365398407,
 "Y": 0.32843729853630066
 }
]
 },
 "Id": "d4bbc0f1-ae02-41cf-a26f-8a1e899968cc"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.66238403320312,
 "Text": "Home",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.049357783049345016,
 "Height": 0.03134990110993385,
 "Left": 0.03359385207295418,
 "Top": 0.36172014474868774
 },
 "Polygon": [
 {
 "X": 0.03359385207295418,
 "Y": 0.36172014474868774
 },
 {
 "X": 0.0829516351222992,

64

Amazon Textract Developer Guide
Response

 "Y": 0.36172014474868774
 },
 {
 "X": 0.0829516351222992,
 "Y": 0.3930700421333313
 },
 {
 "X": 0.03359385207295418,
 "Y": 0.3930700421333313
 }
]
 },
 "Id": "acfbed90-4a00-42c6-8a90-d0a0756eea36"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.6871109008789,
 "Text": "Address:",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07411003112792969,
 "Height": 0.0314042791724205,
 "Left": 0.08516156673431396,
 "Top": 0.3600046932697296
 },
 "Polygon": [
 {
 "X": 0.08516156673431396,
 "Y": 0.3600046932697296
 },
 {
 "X": 0.15927159786224365,
 "Y": 0.3600046932697296
 },
 {
 "X": 0.15927159786224365,
 "Y": 0.3914089798927307
 },
 {
 "X": 0.08516156673431396,
 "Y": 0.3914089798927307
 }
]
 },
 "Id": "046c8a40-bb0e-4718-9c71-954d3630e1dd"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.93781280517578,
 "Text": "123",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.05761868134140968,
 "Height": 0.05008566007018089,
 "Left": 0.1750781387090683,
 "Top": 0.35484206676483154
 },
 "Polygon": [
 {
 "X": 0.1750781387090683,
 "Y": 0.35484206676483154
 },
 {
 "X": 0.23269681632518768,

65

Amazon Textract Developer Guide
Response

 "Y": 0.35484206676483154
 },
 {
 "X": 0.23269681632518768,
 "Y": 0.40492773056030273
 },
 {
 "X": 0.1750781387090683,
 "Y": 0.40492773056030273
 }
]
 },
 "Id": "82b838bc-4591-4287-8dea-60c94a4925e4"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.96530151367188,
 "Text": "Any",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.06814215332269669,
 "Height": 0.06354366987943649,
 "Left": 0.2550157308578491,
 "Top": 0.35471394658088684
 },
 "Polygon": [
 {
 "X": 0.2550157308578491,
 "Y": 0.35471394658088684
 },
 {
 "X": 0.3231579065322876,
 "Y": 0.35471394658088684
 },
 {
 "X": 0.3231579065322876,
 "Y": 0.41825762391090393
 },
 {
 "X": 0.2550157308578491,
 "Y": 0.41825762391090393
 }
]
 },
 "Id": "5cdcde7a-f5a6-4231-a941-b6396e42e7ba"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.87527465820312,
 "Text": "Street,",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.12156613171100616,
 "Height": 0.05449587106704712,
 "Left": 0.3357025980949402,
 "Top": 0.3550415635108948
 },
 "Polygon": [
 {
 "X": 0.3357025980949402,
 "Y": 0.3550415635108948
 },
 {
 "X": 0.45726871490478516,

66

Amazon Textract Developer Guide
Response

 "Y": 0.3550415635108948
 },
 {
 "X": 0.45726871490478516,
 "Y": 0.4095374345779419
 },
 {
 "X": 0.3357025980949402,
 "Y": 0.4095374345779419
 }
]
 },
 "Id": "beafd497-185f-487e-b070-db4df5803e94"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.99514770507812,
 "Text": "Any",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07748188823461533,
 "Height": 0.07339789718389511,
 "Left": 0.47723668813705444,
 "Top": 0.3482133150100708
 },
 "Polygon": [
 {
 "X": 0.47723668813705444,
 "Y": 0.3482133150100708
 },
 {
 "X": 0.554718554019928,
 "Y": 0.3482133150100708
 },
 {
 "X": 0.554718554019928,
 "Y": 0.4216112196445465
 },
 {
 "X": 0.47723668813705444,
 "Y": 0.4216112196445465
 }
]
 },
 "Id": "ef1b77fb-8ba6-41fe-ba53-dce039af22ed"
 },
 {
 "BlockType": "WORD",
 "Confidence": 96.80656433105469,
 "Text": "Town.",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.11213835328817368,
 "Height": 0.057233039289712906,
 "Left": 0.5563329458236694,
 "Top": 0.3331930637359619
 },
 "Polygon": [
 {
 "X": 0.5563329458236694,
 "Y": 0.3331930637359619
 },
 {
 "X": 0.6684713363647461,

67

Amazon Textract Developer Guide
Response

 "Y": 0.3331930637359619
 },
 {
 "X": 0.6684713363647461,
 "Y": 0.3904260993003845
 },
 {
 "X": 0.5563329458236694,
 "Y": 0.3904260993003845
 }
]
 },
 "Id": "7b555310-e7f8-4cd2-bb3d-dcec37f3d90e"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98260498046875,
 "Text": "USA",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08771833777427673,
 "Height": 0.05706935003399849,
 "Left": 0.6889894604682922,
 "Top": 0.3258342146873474
 },
 "Polygon": [
 {
 "X": 0.6889894604682922,
 "Y": 0.3258342146873474
 },
 {
 "X": 0.7767078280448914,
 "Y": 0.3258342146873474
 },
 {
 "X": 0.7767078280448914,
 "Y": 0.3829035460948944
 },
 {
 "X": 0.6889894604682922,
 "Y": 0.3829035460948944
 }
]
 },
 "Id": "b479c24d-448d-40ef-9ed5-36a6ef08e5c7"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9583969116211,
 "Text": "Mailing",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.06291338801383972,
 "Height": 0.03957144916057587,
 "Left": 0.03068041242659092,
 "Top": 0.43351811170578003
 },
 "Polygon": [
 {
 "X": 0.03068041242659092,
 "Y": 0.43351811170578003
 },
 {
 "X": 0.09359379857778549,

68

Amazon Textract Developer Guide
Response

 "Y": 0.43351811170578003
 },
 {
 "X": 0.09359379857778549,
 "Y": 0.4730895459651947
 },
 {
 "X": 0.03068041242659092,
 "Y": 0.4730895459651947
 }
]
 },
 "Id": "d7261cdc-6ac5-4711-903c-4598fe94952d"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.87476348876953,
 "Text": "Address:",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07364854216575623,
 "Height": 0.03147412836551666,
 "Left": 0.0954652726650238,
 "Top": 0.43450701236724854
 },
 "Polygon": [
 {
 "X": 0.0954652726650238,
 "Y": 0.43450701236724854
 },
 {
 "X": 0.16911381483078003,
 "Y": 0.43450701236724854
 },
 {
 "X": 0.16911381483078003,
 "Y": 0.465981125831604
 },
 {
 "X": 0.0954652726650238,
 "Y": 0.465981125831604
 }
]
 },
 "Id": "287f80c3-6db2-4dd7-90ec-5f017c80aa31"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.94071960449219,
 "Text": "same",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.04640670120716095,
 "Height": 0.026415130123496056,
 "Left": 0.17156922817230225,
 "Top": 0.44010937213897705
 },
 "Polygon": [
 {
 "X": 0.17156922817230225,
 "Y": 0.44010937213897705
 },
 {
 "X": 0.2179759293794632,

69

Amazon Textract Developer Guide
Response

 "Y": 0.44010937213897705
 },
 {
 "X": 0.2179759293794632,
 "Y": 0.46652451157569885
 },
 {
 "X": 0.17156922817230225,
 "Y": 0.46652451157569885
 }
]
 },
 "Id": "ce31c3ad-b51e-4068-be64-5fc9794bc1bc"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.76510620117188,
 "Text": "as",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.02041218988597393,
 "Height": 0.025104399770498276,
 "Left": 0.2207803726196289,
 "Top": 0.44124215841293335
 },
 "Polygon": [
 {
 "X": 0.2207803726196289,
 "Y": 0.44124215841293335
 },
 {
 "X": 0.24119256436824799,
 "Y": 0.44124215841293335
 },
 {
 "X": 0.24119256436824799,
 "Y": 0.4663465619087219
 },
 {
 "X": 0.2207803726196289,
 "Y": 0.4663465619087219
 }
]
 },
 "Id": "e96eb92c-6774-4d6f-8f4a-68a7618d4c66"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9301528930664,
 "Text": "above",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.05268359184265137,
 "Height": 0.03216424956917763,
 "Left": 0.24375422298908234,
 "Top": 0.4354657828807831
 },
 "Polygon": [
 {
 "X": 0.24375422298908234,
 "Y": 0.4354657828807831
 },
 {
 "X": 0.2964377999305725,

70

Amazon Textract Developer Guide
Response

 "Y": 0.4354657828807831
 },
 {
 "X": 0.2964377999305725,
 "Y": 0.4676300287246704
 },
 {
 "X": 0.24375422298908234,
 "Y": 0.4676300287246704
 }
]
 },
 "Id": "88b85c05-427a-4d4f-8cc4-3667234e8364"
 },
 {
 "BlockType": "WORD",
 "Confidence": 85.3905029296875,
 "Text": "Previous",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09860499948263168,
 "Height": 0.04000622034072876,
 "Left": 0.3194798231124878,
 "Top": 0.5194430351257324
 },
 "Polygon": [
 {
 "X": 0.3194798231124878,
 "Y": 0.5194430351257324
 },
 {
 "X": 0.4180848002433777,
 "Y": 0.5194430351257324
 },
 {
 "X": 0.4180848002433777,
 "Y": 0.5594492554664612
 },
 {
 "X": 0.3194798231124878,
 "Y": 0.5594492554664612
 }
]
 },
 "Id": "8b324501-bf38-4ce9-9777-6514b7ade760"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.14524841308594,
 "Text": "Employment",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.14039960503578186,
 "Height": 0.04645847901701927,
 "Left": 0.4214291274547577,
 "Top": 0.5219109654426575
 },
 "Polygon": [
 {
 "X": 0.4214291274547577,
 "Y": 0.5219109654426575
 },
 {
 "X": 0.5618287324905396,

71

Amazon Textract Developer Guide
Response

 "Y": 0.5219109654426575
 },
 {
 "X": 0.5618287324905396,
 "Y": 0.568369448184967
 },
 {
 "X": 0.4214291274547577,
 "Y": 0.568369448184967
 }
]
 },
 "Id": "b0cea99a-5045-464d-ac8a-a63ab0470995"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.48454284667969,
 "Text": "History",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08361124992370605,
 "Height": 0.05192042887210846,
 "Left": 0.5668527483940125,
 "Top": 0.5172380208969116
 },
 "Polygon": [
 {
 "X": 0.5668527483940125,
 "Y": 0.5172380208969116
 },
 {
 "X": 0.6504639983177185,
 "Y": 0.5172380208969116
 },
 {
 "X": 0.6504639983177185,
 "Y": 0.5691584348678589
 },
 {
 "X": 0.5668527483940125,
 "Y": 0.5691584348678589
 }
]
 },
 "Id": "b92a6ee5-ca59-44dc-9c47-534c133b11e7"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.78699493408203,
 "Text": "Start",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.041341401636600494,
 "Height": 0.030926469713449478,
 "Left": 0.034429505467414856,
 "Top": 0.6124123334884644
 },
 "Polygon": [
 {
 "X": 0.034429505467414856,
 "Y": 0.6124123334884644
 },
 {
 "X": 0.07577090710401535,

72

Amazon Textract Developer Guide
Response

 "Y": 0.6124123334884644
 },
 {
 "X": 0.07577090710401535,
 "Y": 0.6433387994766235
 },
 {
 "X": 0.034429505467414856,
 "Y": 0.6433387994766235
 }
]
 },
 "Id": "ffe8b8e0-df59-4ac5-9aba-6b54b7c51b45"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.55198669433594,
 "Text": "Date",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.03923053666949272,
 "Height": 0.03072454035282135,
 "Left": 0.07830137014389038,
 "Top": 0.6123942136764526
 },
 "Polygon": [
 {
 "X": 0.07830137014389038,
 "Y": 0.6123942136764526
 },
 {
 "X": 0.1175319105386734,
 "Y": 0.6123942136764526
 },
 {
 "X": 0.1175319105386734,
 "Y": 0.6431187391281128
 },
 {
 "X": 0.07830137014389038,
 "Y": 0.6431187391281128
 }
]
 },
 "Id": "91e582cd-9871-4e9c-93cc-848baa426338"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.8897705078125,
 "Text": "End",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.03212086856365204,
 "Height": 0.03193363919854164,
 "Left": 0.14846202731132507,
 "Top": 0.6120467782020569
 },
 "Polygon": [
 {
 "X": 0.14846202731132507,
 "Y": 0.6120467782020569
 },
 {
 "X": 0.1805828958749771,

73

Amazon Textract Developer Guide
Response

 "Y": 0.6120467782020569
 },
 {
 "X": 0.1805828958749771,
 "Y": 0.6439804434776306
 },
 {
 "X": 0.14846202731132507,
 "Y": 0.6439804434776306
 }
]
 },
 "Id": "7c97b56b-699f-49b0-93f4-98e6d90b107c"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.8445816040039,
 "Text": "Date",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.03987143933773041,
 "Height": 0.03142518177628517,
 "Left": 0.1844055950641632,
 "Top": 0.612853467464447
 },
 "Polygon": [
 {
 "X": 0.1844055950641632,
 "Y": 0.612853467464447
 },
 {
 "X": 0.22427703440189362,
 "Y": 0.612853467464447
 },
 {
 "X": 0.22427703440189362,
 "Y": 0.6442786455154419
 },
 {
 "X": 0.1844055950641632,
 "Y": 0.6442786455154419
 }
]
 },
 "Id": "7af04e27-0c15-447e-a569-b30edb99a133"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9652328491211,
 "Text": "Employer",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08150768280029297,
 "Height": 0.0392492301762104,
 "Left": 0.2647075653076172,
 "Top": 0.6140711903572083
 },
 "Polygon": [
 {
 "X": 0.2647075653076172,
 "Y": 0.6140711903572083
 },
 {
 "X": 0.34621524810791016,

74

Amazon Textract Developer Guide
Response

 "Y": 0.6140711903572083
 },
 {
 "X": 0.34621524810791016,
 "Y": 0.6533204317092896
 },
 {
 "X": 0.2647075653076172,
 "Y": 0.6533204317092896
 }
]
 },
 "Id": "a9bfeb55-75cd-47cd-b953-728e602a3564"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.94273376464844,
 "Text": "Name",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.05018233880400658,
 "Height": 0.03248906135559082,
 "Left": 0.34925445914268494,
 "Top": 0.6162016987800598
 },
 "Polygon": [
 {
 "X": 0.34925445914268494,
 "Y": 0.6162016987800598
 },
 {
 "X": 0.3994368016719818,
 "Y": 0.6162016987800598
 },
 {
 "X": 0.3994368016719818,
 "Y": 0.6486907601356506
 },
 {
 "X": 0.34925445914268494,
 "Y": 0.6486907601356506
 }
]
 },
 "Id": "9f0f9c06-d02c-4b07-bb39-7ade70be2c1b"
 },
 {
 "BlockType": "WORD",
 "Confidence": 98.85071563720703,
 "Text": "Position",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07007700204849243,
 "Height": 0.03255689889192581,
 "Left": 0.49973347783088684,
 "Top": 0.6164342164993286
 },
 "Polygon": [
 {
 "X": 0.49973347783088684,
 "Y": 0.6164342164993286
 },
 {
 "X": 0.5698104500770569,

75

Amazon Textract Developer Guide
Response

 "Y": 0.6164342164993286
 },
 {
 "X": 0.5698104500770569,
 "Y": 0.6489911079406738
 },
 {
 "X": 0.49973347783088684,
 "Y": 0.6489911079406738
 }
]
 },
 "Id": "6d5edf02-845c-40e0-9514-e56d0d652ae0"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.86096954345703,
 "Text": "Held",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.04017873853445053,
 "Height": 0.03292537108063698,
 "Left": 0.5734874606132507,
 "Top": 0.614840030670166
 },
 "Polygon": [
 {
 "X": 0.5734874606132507,
 "Y": 0.614840030670166
 },
 {
 "X": 0.6136662364006042,
 "Y": 0.614840030670166
 },
 {
 "X": 0.6136662364006042,
 "Y": 0.6477653980255127
 },
 {
 "X": 0.5734874606132507,
 "Y": 0.6477653980255127
 }
]
 },
 "Id": "3297ab59-b237-45fb-ae60-a108f0c95ac2"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.97740936279297,
 "Text": "Reason",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.06497219949960709,
 "Height": 0.03248770162463188,
 "Left": 0.7430596351623535,
 "Top": 0.6136704087257385
 },
 "Polygon": [
 {
 "X": 0.7430596351623535,
 "Y": 0.6136704087257385
 },
 {
 "X": 0.8080317974090576,

76

Amazon Textract Developer Guide
Response

 "Y": 0.6136704087257385
 },
 {
 "X": 0.8080317974090576,
 "Y": 0.6461580991744995
 },
 {
 "X": 0.7430596351623535,
 "Y": 0.6461580991744995
 }
]
 },
 "Id": "f4b8cf26-d2da-4a76-8345-69562de3cc11"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98371887207031,
 "Text": "for",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.029645200818777084,
 "Height": 0.03462234139442444,
 "Left": 0.8108851909637451,
 "Top": 0.6117717623710632
 },
 "Polygon": [
 {
 "X": 0.8108851909637451,
 "Y": 0.6117717623710632
 },
 {
 "X": 0.8405303955078125,
 "Y": 0.6117717623710632
 },
 {
 "X": 0.8405303955078125,
 "Y": 0.6463940739631653
 },
 {
 "X": 0.8108851909637451,
 "Y": 0.6463940739631653
 }
]
 },
 "Id": "386d4a63-1194-4c0e-a18d-4d074a0b1f93"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98424530029297,
 "Text": "leaving",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.06517849862575531,
 "Height": 0.040626998990774155,
 "Left": 0.8430007100105286,
 "Top": 0.6116235852241516
 },
 "Polygon": [
 {
 "X": 0.8430007100105286,
 "Y": 0.6116235852241516
 },
 {
 "X": 0.9081792235374451,

77

Amazon Textract Developer Guide
Response

 "Y": 0.6116235852241516
 },
 {
 "X": 0.9081792235374451,
 "Y": 0.6522505879402161
 },
 {
 "X": 0.8430007100105286,
 "Y": 0.6522505879402161
 }
]
 },
 "Id": "a8622541-1896-4d54-8d10-7da2c800ec5c"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.77413177490234,
 "Text": "1/15/2009",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08799663186073303,
 "Height": 0.03832906112074852,
 "Left": 0.03175082430243492,
 "Top": 0.691371738910675
 },
 "Polygon": [
 {
 "X": 0.03175082430243492,
 "Y": 0.691371738910675
 },
 {
 "X": 0.11974745243787766,
 "Y": 0.691371738910675
 },
 {
 "X": 0.11974745243787766,
 "Y": 0.7297008037567139
 },
 {
 "X": 0.03175082430243492,
 "Y": 0.7297008037567139
 }
]
 },
 "Id": "da7a6482-0964-49a4-bc7d-56942ff3b4e1"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.72286224365234,
 "Text": "6/30/2011",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08843102306127548,
 "Height": 0.03991425037384033,
 "Left": 0.14642837643623352,
 "Top": 0.6919752955436707
 },
 "Polygon": [
 {
 "X": 0.14642837643623352,
 "Y": 0.6919752955436707
 },
 {
 "X": 0.2348593920469284,

78

Amazon Textract Developer Guide
Response

 "Y": 0.6919752955436707
 },
 {
 "X": 0.2348593920469284,
 "Y": 0.731889545917511
 },
 {
 "X": 0.14642837643623352,
 "Y": 0.731889545917511
 }
]
 },
 "Id": "5a8da66a-ecce-4ee9-a765-a46d6cdc6cde"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.92295837402344,
 "Text": "Any",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.034067559987306595,
 "Height": 0.037968240678310394,
 "Left": 0.2626699209213257,
 "Top": 0.6972727179527283
 },
 "Polygon": [
 {
 "X": 0.2626699209213257,
 "Y": 0.6972727179527283
 },
 {
 "X": 0.2967374622821808,
 "Y": 0.6972727179527283
 },
 {
 "X": 0.2967374622821808,
 "Y": 0.7352409362792969
 },
 {
 "X": 0.2626699209213257,
 "Y": 0.7352409362792969
 }
]
 },
 "Id": "77749c2b-aa7f-450e-8dd2-62bcaf253ba2"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.81578063964844,
 "Text": "Company",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08160992711782455,
 "Height": 0.03890080004930496,
 "Left": 0.29906952381134033,
 "Top": 0.6978086829185486
 },
 "Polygon": [
 {
 "X": 0.29906952381134033,
 "Y": 0.6978086829185486
 },
 {
 "X": 0.3806794583797455,

79

Amazon Textract Developer Guide
Response

 "Y": 0.6978086829185486
 },
 {
 "X": 0.3806794583797455,
 "Y": 0.736709475517273
 },
 {
 "X": 0.29906952381134033,
 "Y": 0.736709475517273
 }
]
 },
 "Id": "713bad19-158d-4e3e-b01f-f5707ddb04e5"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.37964630126953,
 "Text": "Assistant",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.0789310410618782,
 "Height": 0.03139699995517731,
 "Left": 0.49814170598983765,
 "Top": 0.7005078196525574
 },
 "Polygon": [
 {
 "X": 0.49814170598983765,
 "Y": 0.7005078196525574
 },
 {
 "X": 0.5770727396011353,
 "Y": 0.7005078196525574
 },
 {
 "X": 0.5770727396011353,
 "Y": 0.7319048047065735
 },
 {
 "X": 0.49814170598983765,
 "Y": 0.7319048047065735
 }
]
 },
 "Id": "989944f9-f684-4714-87d8-9ad9a321d65c"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.784912109375,
 "Text": "baker",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.050264399498701096,
 "Height": 0.03237773850560188,
 "Left": 0.5806865096092224,
 "Top": 0.699238657951355
 },
 "Polygon": [
 {
 "X": 0.5806865096092224,
 "Y": 0.699238657951355
 },
 {
 "X": 0.630950927734375,

80

Amazon Textract Developer Guide
Response

 "Y": 0.699238657951355
 },
 {
 "X": 0.630950927734375,
 "Y": 0.7316163778305054
 },
 {
 "X": 0.5806865096092224,
 "Y": 0.7316163778305054
 }
]
 },
 "Id": "ae82e2aa-1601-4e0c-8340-1db7ad0c9a31"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.96180725097656,
 "Text": "relocated",
 "TextType": "PRINTED",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08668994158506393,
 "Height": 0.03330250084400177,
 "Left": 0.7426905632019043,
 "Top": 0.6974037289619446
 },
 "Polygon": [
 {
 "X": 0.7426905632019043,
 "Y": 0.6974037289619446
 },
 {
 "X": 0.8293805122375488,
 "Y": 0.6974037289619446
 },
 {
 "X": 0.8293805122375488,
 "Y": 0.7307062149047852
 },
 {
 "X": 0.7426905632019043,
 "Y": 0.7307062149047852
 }
]
 },
 "Id": "a9cf9a8c-fdaa-413e-9346-5a28a98aebdb"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98190307617188,
 "Text": "7/1/2011",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09747002273797989,
 "Height": 0.07067439705133438,
 "Left": 0.028500309213995934,
 "Top": 0.7745237946510315
 },
 "Polygon": [
 {
 "X": 0.028500309213995934,
 "Y": 0.7745237946510315
 },
 {
 "X": 0.12597033381462097,

81

Amazon Textract Developer Guide
Response

 "Y": 0.7745237946510315
 },
 {
 "X": 0.12597033381462097,
 "Y": 0.8451982140541077
 },
 {
 "X": 0.028500309213995934,
 "Y": 0.8451982140541077
 }
]
 },
 "Id": "0f711065-1872-442a-ba6d-8fababaa452a"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98418426513672,
 "Text": "8/10/2013",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10664612054824829,
 "Height": 0.06439515948295593,
 "Left": 0.14159755408763885,
 "Top": 0.7791688442230225
 },
 "Polygon": [
 {
 "X": 0.14159755408763885,
 "Y": 0.7791688442230225
 },
 {
 "X": 0.24824367463588715,
 "Y": 0.7791688442230225
 },
 {
 "X": 0.24824367463588715,
 "Y": 0.843563973903656
 },
 {
 "X": 0.14159755408763885,
 "Y": 0.843563973903656
 }
]
 },
 "Id": "a92d8eef-db28-45ba-801a-5da0f589d277"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.97722625732422,
 "Text": "Example",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.12127546221017838,
 "Height": 0.05682983994483948,
 "Left": 0.26764172315597534,
 "Top": 0.794414758682251
 },
 "Polygon": [
 {
 "X": 0.26764172315597534,
 "Y": 0.794414758682251
 },
 {
 "X": 0.3889172077178955,

82

Amazon Textract Developer Guide
Response

 "Y": 0.794414758682251
 },
 {
 "X": 0.3889172077178955,
 "Y": 0.8512446284294128
 },
 {
 "X": 0.26764172315597534,
 "Y": 0.8512446284294128
 }
]
 },
 "Id": "d6962efb-34ab-4ffb-9f2f-5f263e813558"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98429870605469,
 "Text": "Corp.",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07650306820869446,
 "Height": 0.05481306090950966,
 "Left": 0.4026312530040741,
 "Top": 0.7980174422264099
 },
 "Polygon": [
 {
 "X": 0.4026312530040741,
 "Y": 0.7980174422264099
 },
 {
 "X": 0.47913432121276855,
 "Y": 0.7980174422264099
 },
 {
 "X": 0.47913432121276855,
 "Y": 0.8528305292129517
 },
 {
 "X": 0.4026312530040741,
 "Y": 0.8528305292129517
 }
]
 },
 "Id": "1876c8ea-d3e8-4c39-870e-47512b3b5080"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.91166687011719,
 "Text": "Baker",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09931197017431259,
 "Height": 0.06008723005652428,
 "Left": 0.5098910331726074,
 "Top": 0.787897527217865
 },
 "Polygon": [
 {
 "X": 0.5098910331726074,
 "Y": 0.787897527217865
 },
 {
 "X": 0.609203040599823,

83

Amazon Textract Developer Guide
Response

 "Y": 0.787897527217865
 },
 {
 "X": 0.609203040599823,
 "Y": 0.8479847311973572
 },
 {
 "X": 0.5098910331726074,
 "Y": 0.8479847311973572
 }
]
 },
 "Id": "00adeaef-ed57-44eb-b8a9-503575236d62"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.98870849609375,
 "Text": "better",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10782185196876526,
 "Height": 0.06207133084535599,
 "Left": 0.7428008317947388,
 "Top": 0.7928366661071777
 },
 "Polygon": [
 {
 "X": 0.7428008317947388,
 "Y": 0.7928366661071777
 },
 {
 "X": 0.8506226539611816,
 "Y": 0.7928366661071777
 },
 {
 "X": 0.8506226539611816,
 "Y": 0.8549079895019531
 },
 {
 "X": 0.7428008317947388,
 "Y": 0.8549079895019531
 }
]
 },
 "Id": "c0fc9a58-7a4b-4f69-bafd-2cff32be2665"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.8883285522461,
 "Text": "opp.",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07421936094760895,
 "Height": 0.058906231075525284,
 "Left": 0.8577775359153748,
 "Top": 0.8038780689239502
 },
 "Polygon": [
 {
 "X": 0.8577775359153748,
 "Y": 0.8038780689239502
 },
 {
 "X": 0.9319969415664673,

84

Amazon Textract Developer Guide
Response

 "Y": 0.8038780689239502
 },
 {
 "X": 0.9319969415664673,
 "Y": 0.8627843260765076
 },
 {
 "X": 0.8577775359153748,
 "Y": 0.8627843260765076
 }
]
 },
 "Id": "bf6dc8ee-2fb3-4b6c-aee4-31e96912a2d8"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.92573547363281,
 "Text": "8/15/2013",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.10257463902235031,
 "Height": 0.05412459000945091,
 "Left": 0.027909137308597565,
 "Top": 0.8608770370483398
 },
 "Polygon": [
 {
 "X": 0.027909137308597565,
 "Y": 0.8608770370483398
 },
 {
 "X": 0.13048377633094788,
 "Y": 0.8608770370483398
 },
 {
 "X": 0.13048377633094788,
 "Y": 0.915001630783081
 },
 {
 "X": 0.027909137308597565,
 "Y": 0.915001630783081
 }
]
 },
 "Id": "5384f860-f857-4a94-9438-9dfa20eed1c6"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.99625396728516,
 "Text": "Present",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.09982697665691376,
 "Height": 0.06888339668512344,
 "Left": 0.1420602649450302,
 "Top": 0.8511748909950256
 },
 "Polygon": [
 {
 "X": 0.1420602649450302,
 "Y": 0.8511748909950256
 },
 {
 "X": 0.24188724160194397,

85

Amazon Textract Developer Guide
Response

 "Y": 0.8511748909950256
 },
 {
 "X": 0.24188724160194397,
 "Y": 0.9200583100318909
 },
 {
 "X": 0.1420602649450302,
 "Y": 0.9200583100318909
 }
]
 },
 "Id": "0bb96ed6-b2e6-4da4-90b3-b85561bbd89d"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9826431274414,
 "Text": "AnyCompany",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.18611273169517517,
 "Height": 0.08581399917602539,
 "Left": 0.2615866959095001,
 "Top": 0.869536280632019
 },
 "Polygon": [
 {
 "X": 0.2615866959095001,
 "Y": 0.869536280632019
 },
 {
 "X": 0.4476994276046753,
 "Y": 0.869536280632019
 },
 {
 "X": 0.4476994276046753,
 "Y": 0.9553502798080444
 },
 {
 "X": 0.2615866959095001,
 "Y": 0.9553502798080444
 }
]
 },
 "Id": "25343360-d906-440a-88b7-92eb89e95949"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.99523162841797,
 "Text": "head",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.07429949939250946,
 "Height": 0.05485520139336586,
 "Left": 0.49359121918678284,
 "Top": 0.8714361190795898
 },
 "Polygon": [
 {
 "X": 0.49359121918678284,
 "Y": 0.8714361190795898
 },
 {
 "X": 0.5678907036781311,

86

Amazon Textract Developer Guide
Response

 "Y": 0.8714361190795898
 },
 {
 "X": 0.5678907036781311,
 "Y": 0.926291286945343
 },
 {
 "X": 0.49359121918678284,
 "Y": 0.926291286945343
 }
]
 },
 "Id": "0ef3c194-8322-4575-94f1-82819ee57e3a"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.99574279785156,
 "Text": "baker",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.1019822508096695,
 "Height": 0.05615599825978279,
 "Left": 0.585354208946228,
 "Top": 0.8702592849731445
 },
 "Polygon": [
 {
 "X": 0.585354208946228,
 "Y": 0.8702592849731445
 },
 {
 "X": 0.6873364448547363,
 "Y": 0.8702592849731445
 },
 {
 "X": 0.6873364448547363,
 "Y": 0.9264153242111206
 },
 {
 "X": 0.585354208946228,
 "Y": 0.9264153242111206
 }
]
 },
 "Id": "d296acd9-3e9a-4985-95f8-f863614f2c46"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.9880599975586,
 "Text": "N/A,",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.08230073750019073,
 "Height": 0.06588289886713028,
 "Left": 0.7411766648292542,
 "Top": 0.8722732067108154
 },
 "Polygon": [
 {
 "X": 0.7411766648292542,
 "Y": 0.8722732067108154
 },
 {
 "X": 0.8234773874282837,

87

Amazon Textract Developer Guide
Response

 "Y": 0.8722732067108154
 },
 {
 "X": 0.8234773874282837,
 "Y": 0.9381561279296875
 },
 {
 "X": 0.7411766648292542,
 "Y": 0.9381561279296875
 }
]
 },
 "Id": "195cfb5b-ae06-4203-8520-4e4b0a73b5ce"
 },
 {
 "BlockType": "WORD",
 "Confidence": 99.97914123535156,
 "Text": "current",
 "TextType": "HANDWRITING",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.12791454792022705,
 "Height": 0.04768490046262741,
 "Left": 0.8387037515640259,
 "Top": 0.8843405842781067
 },
 "Polygon": [
 {
 "X": 0.8387037515640259,
 "Y": 0.8843405842781067
 },
 {
 "X": 0.9666182994842529,
 "Y": 0.8843405842781067
 },
 {
 "X": 0.9666182994842529,
 "Y": 0.9320254921913147
 },
 {
 "X": 0.8387037515640259,
 "Y": 0.9320254921913147
 }
]
 },
 "Id": "549ef3f9-3a13-4b77-bc25-fb2e0996839a"
 }
],
 "DetectDocumentTextModelVersion": "1.0",
 "ResponseMetadata": {
 "RequestId": "337129e6-3af7-4014-842b-f6484e82cbf6",
 "HTTPStatusCode": 200,
 "HTTPHeaders": {
 "x-amzn-requestid": "337129e6-3af7-4014-842b-f6484e82cbf6",
 "content-type": "application/x-amz-json-1.1",
 "content-length": "45675",
 "date": "Mon, 09 Nov 2020 23:54:38 GMT"
 },
 "RetryAttempts": 0
 }
}
}

88

Amazon Textract Developer Guide
Detecting Document Text

Detecting Document Text with Amazon Textract
To detect text in a document, you use the DetectDocumentText (p. 235) operation, and pass a
document file as input. DetectDocumentText returns a JSON structure that contains lines and words of
detected text, the location of the text in the document, and the relationships between detected text. For
more information, see Detecting Text (p. 3).

You can provide an input document as an image byte array (base64-encoded image bytes), or as an
Amazon S3 object. In this procedure, you upload an image file to your S3 bucket and specify the file
name.

To detect text in a document (API)

1. If you haven't already:

a. Create or update an IAM user with AmazonTextractFullAccess and
AmazonS3ReadOnlyAccess permissions. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 36).

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up
the AWS CLI and AWS SDKs (p. 36).

2. Upload a document to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

3. Use the following examples to call the DetectDocumentText operation.

Java

The following example code displays the document and boxes around lines of detected text.

In the function main, replace the values of bucket and document with the names of the
Amazon S3 bucket and document that you used in step 2.

//Calls DetectDocumentText.
//Loads document from S3 bucket. Displays the document and bounding boxes around
 detected lines/words of text.
package com.amazonaws.samples;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.List;
import javax.imageio.ImageIO;
import javax.swing.*;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3ObjectInputStream;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.services.textract.AmazonTextract;
import com.amazonaws.services.textract.AmazonTextractClientBuilder;
import com.amazonaws.services.textract.model.Block;
import com.amazonaws.services.textract.model.BoundingBox;
import com.amazonaws.services.textract.model.DetectDocumentTextRequest;
import com.amazonaws.services.textract.model.DetectDocumentTextResult;
import com.amazonaws.services.textract.model.Document;
import com.amazonaws.services.textract.model.S3Object;
import com.amazonaws.services.textract.model.Point;
import com.amazonaws.services.textract.model.Relationship;

public class DocumentText extends JPanel {

89

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Textract Developer Guide
Detecting Document Text

 private static final long serialVersionUID = 1L;

 BufferedImage image;
 DetectDocumentTextResult result;

 public DocumentText(DetectDocumentTextResult documentResult, BufferedImage
 bufImage) throws Exception {
 super();

 result = documentResult; // Results of text detection.
 image = bufImage; // The image containing the document.

 }

 // Draws the image and text bounding box.
 public void paintComponent(Graphics g) {

 int height = image.getHeight(this);
 int width = image.getWidth(this);

 Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

 // Draw the image.
 g2d.drawImage(image, 0, 0, image.getWidth(this) , image.getHeight(this),
 this);

 // Iterate through blocks and display polygons around lines of detected
 text.
 List<Block> blocks = result.getBlocks();
 for (Block block : blocks) {
 DisplayBlockInfo(block);
 if ((block.getBlockType()).equals("LINE")) {
 ShowPolygon(height, width, block.getGeometry().getPolygon(), g2d);
 /*
 ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d);
 */
 } else { // its a word, so just show vertical lines.
 ShowPolygonVerticals(height, width,
 block.getGeometry().getPolygon(), g2d);
 }
 }
 }

 // Show bounding box at supplied location.
 private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box,
 Graphics2D g2d) {

 float left = imageWidth * box.getLeft();
 float top = imageHeight * box.getTop();

 // Display bounding box.
 g2d.setColor(new Color(0, 212, 0));
 g2d.drawRect(Math.round(left), Math.round(top),
 Math.round(imageWidth * box.getWidth()), Math.round(imageHeight *
 box.getHeight()));

 }

 // Shows polygon at supplied location
 private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points,
 Graphics2D g2d) {

 g2d.setColor(new Color(0, 0, 0));
 Polygon polygon = new Polygon();

90

Amazon Textract Developer Guide
Detecting Document Text

 // Construct polygon and display
 for (Point point : points) {
 polygon.addPoint((Math.round(point.getX() * imageWidth)),
 Math.round(point.getY() * imageHeight));
 }
 g2d.drawPolygon(polygon);
 }

 // Draws only the vertical lines in the supplied polygon.
 private void ShowPolygonVerticals(int imageHeight, int imageWidth, List<Point>
 points, Graphics2D g2d) {

 g2d.setColor(new Color(0, 212, 0));
 Object[] parry = points.toArray();
 g2d.setStroke(new BasicStroke(2));

 g2d.drawLine(Math.round(((Point) parry[0]).getX() * imageWidth),
 Math.round(((Point) parry[0]).getY() * imageHeight),
 Math.round(((Point) parry[3]).getX() * imageWidth),
 Math.round(((Point) parry[3]).getY() * imageHeight));

 g2d.setColor(new Color(255, 0, 0));
 g2d.drawLine(Math.round(((Point) parry[1]).getX() * imageWidth),
 Math.round(((Point) parry[1]).getY() * imageHeight),
 Math.round(((Point) parry[2]).getX() * imageWidth),
 Math.round(((Point) parry[2]).getY() * imageHeight));

 }
 //Displays information from a block returned by text detection and text
 analysis
 private void DisplayBlockInfo(Block block) {
 System.out.println("Block Id : " + block.getId());
 if (block.getText()!=null)
 System.out.println(" Detected text: " + block.getText());
 System.out.println(" Type: " + block.getBlockType());

 if (block.getBlockType().equals("PAGE") !=true) {
 System.out.println(" Confidence: " +
 block.getConfidence().toString());
 }
 if(block.getBlockType().equals("CELL"))
 {
 System.out.println(" Cell information:");
 System.out.println(" Column: " + block.getColumnIndex());
 System.out.println(" Row: " + block.getRowIndex());
 System.out.println(" Column span: " + block.getColumnSpan());
 System.out.println(" Row span: " + block.getRowSpan());

 }

 System.out.println(" Relationships");
 List<Relationship> relationships=block.getRelationships();
 if(relationships!=null) {
 for (Relationship relationship : relationships) {
 System.out.println(" Type: " + relationship.getType());
 System.out.println(" IDs: " +
 relationship.getIds().toString());
 }
 } else {
 System.out.println(" No related Blocks");
 }

 System.out.println(" Geometry");
 System.out.println(" Bounding Box: " +
 block.getGeometry().getBoundingBox().toString());

91

Amazon Textract Developer Guide
Detecting Document Text

 System.out.println(" Polygon: " +
 block.getGeometry().getPolygon().toString());

 List<String> entityTypes = block.getEntityTypes();

 System.out.println(" Entity Types");
 if(entityTypes!=null) {
 for (String entityType : entityTypes) {
 System.out.println(" Entity Type: " + entityType);
 }
 } else {
 System.out.println(" No entity type");
 }
 if(block.getPage()!=null)
 System.out.println(" Page: " + block.getPage());
 System.out.println();
 }

 public static void main(String arg[]) throws Exception {

 // The S3 bucket and document
 String document = "";
 String bucket = "";

 AmazonS3 s3client = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(
 new EndpointConfiguration("https://s3.amazonaws.com","us-
east-1"))
 .build();

 // Get the document from S3
 com.amazonaws.services.s3.model.S3Object s3object =
 s3client.getObject(bucket, document);
 S3ObjectInputStream inputStream = s3object.getObjectContent();
 BufferedImage image = ImageIO.read(inputStream);

 // Call DetectDocumentText
 EndpointConfiguration endpoint = new EndpointConfiguration(
 "https://textract.us-east-1.amazonaws.com", "us-east-1");
 AmazonTextract client = AmazonTextractClientBuilder.standard()
 .withEndpointConfiguration(endpoint).build();

 DetectDocumentTextRequest request = new DetectDocumentTextRequest()
 .withDocument(new Document().withS3Object(new
 S3Object().withName(document).withBucket(bucket)));

 DetectDocumentTextResult result = client.detectDocumentText(request);

 // Create frame and panel.
 JFrame frame = new JFrame("RotateImage");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 DocumentText panel = new DocumentText(result, image);
 panel.setPreferredSize(new Dimension(image.getWidth() ,
 image.getHeight()));
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);

 }
}

92

Amazon Textract Developer Guide
Detecting Document Text

AWS CLI

This AWS CLI command displays the JSON output for the detect-document-text CLI
operation.

Replace the values of Bucket and Name with the names of the Amazon S3 bucket and
document that you used in step 2.

aws textract detect-document-text \
 --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Python

The following example code displays the document and boxes around detected lines of text.

In the function main, replace the values of bucket and document with the names of the
Amazon S3 bucket and document that you used in step 2.

#Detects text in a document stored in an S3 bucket. Display polygon box around text
 and angled text
import boto3
import io
from io import BytesIO
import sys

import psutil
import time

import math
from PIL import Image, ImageDraw, ImageFont

Displays information about a block returned by text detection and text analysis
def DisplayBlockInformation(block):
 print('Id: {}'.format(block['Id']))
 if 'Text' in block:
 print(' Detected: ' + block['Text'])
 print(' Type: ' + block['BlockType'])

 if 'Confidence' in block:
 print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%")

 if block['BlockType'] == 'CELL':
 print(" Cell information")
 print(" Column: " + str(block['ColumnIndex']))
 print(" Row: " + str(block['RowIndex']))
 print(" ColumnSpan: " + str(block['ColumnSpan']))
 print(" RowSpan: " + str(block['RowSpan']))

 if 'Relationships' in block:
 print(' Relationships: {}'.format(block['Relationships']))
 print(' Geometry: ')
 print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox']))
 print(' Polygon: {}'.format(block['Geometry']['Polygon']))

 if block['BlockType'] == "KEY_VALUE_SET":
 print (' Entity Type: ' + block['EntityTypes'][0])
 if 'Page' in block:
 print('Page: ' + block['Page'])
 print()

def process_text_detection(bucket, document):

93

Amazon Textract Developer Guide
Detecting Document Text

 #Get the document from S3
 s3_connection = boto3.resource('s3')

 s3_object = s3_connection.Object(bucket,document)
 s3_response = s3_object.get()

 stream = io.BytesIO(s3_response['Body'].read())
 image=Image.open(stream)

 # Detect text in the document

 client = boto3.client('textract')
 #process using image bytes
 #image_binary = stream.getvalue()
 #response = client.detect_document_text(Document={'Bytes': image_binary})

 #process using S3 object
 response = client.detect_document_text(
 Document={'S3Object': {'Bucket': bucket, 'Name': document}})

 #Get the text blocks
 blocks=response['Blocks']
 width, height =image.size
 draw = ImageDraw.Draw(image)
 print ('Detected Document Text')

 # Create image showing bounding box/polygon the detected lines/text
 for block in blocks:
 print('Type: ' + block['BlockType'])
 if block['BlockType'] != 'PAGE':
 print('Detected: ' + block['Text'])
 print('Confidence: ' + "{:.2f}".format(block['Confidence']) + "%")

 print('Id: {}'.format(block['Id']))
 if 'Relationships' in block:
 print('Relationships: {}'.format(block['Relationships']))
 print('Bounding Box: {}'.format(block['Geometry']['BoundingBox']))
 print('Polygon: {}'.format(block['Geometry']['Polygon']))
 print()
 draw=ImageDraw.Draw(image)
 # Draw WORD - Green - start of word, red - end of word
 if block['BlockType'] == "WORD":
 draw.line([(width * block['Geometry']['Polygon'][0]['X'],
 height * block['Geometry']['Polygon'][0]['Y']),
 (width * block['Geometry']['Polygon'][3]['X'],
 height * block['Geometry']['Polygon'][3]['Y'])],fill='green',
 width=2)

 draw.line([(width * block['Geometry']['Polygon'][1]['X'],
 height * block['Geometry']['Polygon'][1]['Y']),
 (width * block['Geometry']['Polygon'][2]['X'],
 height * block['Geometry']['Polygon'][2]['Y'])],
 fill='red',
 width=2)

 # Draw box around entire LINE
 if block['BlockType'] == "LINE":
 points=[]

 for polygon in block['Geometry']['Polygon']:
 points.append((width * polygon['X'], height * polygon['Y']))

94

Amazon Textract Developer Guide
Detecting Document Text

 draw.polygon((points), outline='black')

 # Uncomment to draw bounding box
 #box=block['Geometry']['BoundingBox']
 #left = width * box['Left']
 #top = height * box['Top']
 #draw.rectangle([left,top, left + (width * box['Width']), top
 +(height * box['Height'])],outline='black')

 # Display the image
 image.show()
 # display image for 10 seconds

 return len(blocks)

def main():

 bucket = ''
 document = ''
 block_count=process_text_detection(bucket,document)
 print("Blocks detected: " + str(block_count))

if __name__ == "__main__":
 main()

Node.js

The following Node.js example code displays the document and boxes around detected lines of
text, outputting an image of the results to the directory you run the code from. It makes use of
the image-size and images packages.

In the function main, replace the values of bucket and document with the names of the
Amazon S3 bucket and document that you used in step 2. Replace the value of regionConfig
with the name of the region your account is in.

async function main(){

// Import AWS
const AWS = require("aws-sdk")
// Use Image-Size to get
const sizeOf = require('image-size');
// Image tool to draw buffers
const images = require("images");

// Create a canvas and get the context
const { createCanvas } = require('canvas')
const canvas = createCanvas(200, 200)
const ctx = canvas.getContext('2d')

// Set variables
const bucket = 'bucket-name' // the s3 bucket name
const photo = 'image-name' // the name of file
const regionConfig = 'region'

// Set region if needed
AWS.config.update({region:regionConfig});

// Connect to Textract
const client = new AWS.Textract();
// Connect to S3 to display image
const s3 = new AWS.S3();

95

Amazon Textract Developer Guide
Detecting Document Text

// Define paramaters
const params = {
 Document: {
 S3Object: {
 Bucket: bucket,
 Name: photo
 },
 },
}

// Function to display image
async function getImage(){
 const imageData = s3.getObject(
 {
 Bucket: bucket,
 Key: photo
 }

).promise();
 return imageData;
}

// get image
var imageData = await getImage()

// Get the height, width of the image
const dimensions = sizeOf(imageData.Body)
const width = dimensions.width
const height = dimensions.height
console.log(imageData.Body)
console.log(width, height)

canvas.width = width;
canvas.height = height;

try{
 // Call API and log response
 const res = await client.detectDocumentText(params).promise();
 var image = images(imageData.Body).size(width, height)
 //console.log the type of block, text, text type, and confidence
 res.Blocks.forEach(block => {
 console.log(`Block Type: ${block.BlockType}`),
 console.log(`Text: ${block.Text}`)
 console.log(`TextType: ${block.TextType}`)
 console.log(`Confidence: ${block.Confidence}`)

 // Draw box around detected text using polygons
 ctx.strokeStyle = 'rgba(0,0,0,0.5)';
 ctx.beginPath();
 block.Geometry.Polygon.forEach(({X, Y}) =>
 ctx.lineTo(width * X - 10, height * Y - 10)
);
 ctx.closePath();
 ctx.stroke();
 console.log("-----")
 })

 // render image
 var buffer = canvas.toBuffer("image/png");
 image.draw(images(buffer), 10, 10)
 image.save("output-image.jpg");

} catch (err){
console.error(err);}

96

Amazon Textract Developer Guide
Analyzing Document Text

}

main()

4. Run the example. The Python and Java examples display the document image. A black box
surrounds each line of detected text. A green vertical line is the start of a detected word. A red
vertical line is the end of a detected word. The AWS CLI example displays only the JSON output for
the DetectDocumentText operation.

Analyzing Document Text with Amazon Textract
To analyze text in a document, you use the AnalyzeDocument (p. 222) operation, and pass a document
file as input. AnalyzeDocument returns a JSON structure that contains the analyzed text. For more
information, see Analyzing Documents (p. 4).

You can provide an input document as an image byte array (base64-encoded image bytes), or as an
Amazon S3 object. In this procedure, you upload an image file to your S3 bucket and specify the file
name.

To analyze text in a document (API)

1. If you haven't already:

a. Create or update an IAM user with AmazonTextractFullAccess and
AmazonS3ReadOnlyAccess permissions. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 36).

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up
the AWS CLI and AWS SDKs (p. 36).

2. Upload an image that contains a document to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

3. Use the following examples to call the AnalyzeDocument operation.

Java

The following example code displays the document and boxes around detected items.

In the function main, replace the values of bucket and document with the names of the
Amazon S3 bucket and document image that you used in step 2.

//Loads document from S3 bucket. Displays the document and polygon around detected
 lines of text.
package com.amazonaws.samples;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.List;
import javax.imageio.ImageIO;
import javax.swing.*;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3ObjectInputStream;
import com.amazonaws.services.textract.AmazonTextract;
import com.amazonaws.services.textract.AmazonTextractClientBuilder;
import com.amazonaws.services.textract.model.AnalyzeDocumentRequest;
import com.amazonaws.services.textract.model.AnalyzeDocumentResult;
import com.amazonaws.services.textract.model.Block;

97

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

Amazon Textract Developer Guide
Analyzing Document Text

import com.amazonaws.services.textract.model.BoundingBox;
import com.amazonaws.services.textract.model.Document;
import com.amazonaws.services.textract.model.S3Object;
import com.amazonaws.services.textract.model.Point;
import com.amazonaws.services.textract.model.Relationship;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

public class AnalyzeDocument extends JPanel {

 private static final long serialVersionUID = 1L;

 BufferedImage image;

 AnalyzeDocumentResult result;

 public AnalyzeDocument(AnalyzeDocumentResult documentResult, BufferedImage
 bufImage) throws Exception {
 super();

 result = documentResult; // Results of text detection.
 image = bufImage; // The image containing the document.

 }

 // Draws the image and text bounding box.
 public void paintComponent(Graphics g) {

 int height = image.getHeight(this);
 int width = image.getWidth(this);

 Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

 // Draw the image.
 g2d.drawImage(image, 0, 0, image.getWidth(this), image.getHeight(this),
 this);

 // Iterate through blocks and display bounding boxes around everything.

 List<Block> blocks = result.getBlocks();
 for (Block block : blocks) {
 DisplayBlockInfo(block);
 switch(block.getBlockType()) {

 case "KEY_VALUE_SET":
 if (block.getEntityTypes().contains("KEY")){
 ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(255,0,0));
 }
 else { //VALUE
 ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(0,255,0));
 }
 break;
 case "TABLE":
 ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255));
 break;
 case "CELL":
 ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(255,255,0));
 break;
 case "SELECTION_ELEMENT":
 if (block.getSelectionStatus().equals("SELECTED"))
 ShowSelectedElement(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255));
 break;

98

Amazon Textract Developer Guide
Analyzing Document Text

 default:
 //PAGE, LINE & WORD
 //ShowBoundingBox(height, width,
 block.getGeometry().getBoundingBox(), g2d, new Color(200,200,0));
 }
 }

 // uncomment to show polygon around all blocks
 //ShowPolygon(height,width,block.getGeometry().getPolygon(),g2d);

 }

 // Show bounding box at supplied location.
 private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box,
 Graphics2D g2d, Color color) {

 float left = imageWidth * box.getLeft();
 float top = imageHeight * box.getTop();

 // Display bounding box.
 g2d.setColor(color);
 g2d.drawRect(Math.round(left), Math.round(top),
 Math.round(imageWidth * box.getWidth()), Math.round(imageHeight *
 box.getHeight()));

 }
 private void ShowSelectedElement(int imageHeight, int imageWidth, BoundingBox
 box, Graphics2D g2d, Color color) {

 float left = imageWidth * box.getLeft();
 float top = imageHeight * box.getTop();

 // Display bounding box.
 g2d.setColor(color);
 g2d.fillRect(Math.round(left), Math.round(top),
 Math.round(imageWidth * box.getWidth()), Math.round(imageHeight *
 box.getHeight()));

 }

 // Shows polygon at supplied location
 private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points,
 Graphics2D g2d) {

 g2d.setColor(new Color(0, 0, 0));
 Polygon polygon = new Polygon();

 // Construct polygon and display
 for (Point point : points) {
 polygon.addPoint((Math.round(point.getX() * imageWidth)),
 Math.round(point.getY() * imageHeight));
 }
 g2d.drawPolygon(polygon);
 }
 //Displays information from a block returned by text detection and text
 analysis
 private void DisplayBlockInfo(Block block) {
 System.out.println("Block Id : " + block.getId());
 if (block.getText()!=null)
 System.out.println(" Detected text: " + block.getText());
 System.out.println(" Type: " + block.getBlockType());

 if (block.getBlockType().equals("PAGE") !=true) {
 System.out.println(" Confidence: " +
 block.getConfidence().toString());

99

Amazon Textract Developer Guide
Analyzing Document Text

 }
 if(block.getBlockType().equals("CELL"))
 {
 System.out.println(" Cell information:");
 System.out.println(" Column: " + block.getColumnIndex());
 System.out.println(" Row: " + block.getRowIndex());
 System.out.println(" Column span: " + block.getColumnSpan());
 System.out.println(" Row span: " + block.getRowSpan());

 }

 System.out.println(" Relationships");
 List<Relationship> relationships=block.getRelationships();
 if(relationships!=null) {
 for (Relationship relationship : relationships) {
 System.out.println(" Type: " + relationship.getType());
 System.out.println(" IDs: " +
 relationship.getIds().toString());
 }
 } else {
 System.out.println(" No related Blocks");
 }

 System.out.println(" Geometry");
 System.out.println(" Bounding Box: " +
 block.getGeometry().getBoundingBox().toString());
 System.out.println(" Polygon: " +
 block.getGeometry().getPolygon().toString());

 List<String> entityTypes = block.getEntityTypes();

 System.out.println(" Entity Types");
 if(entityTypes!=null) {
 for (String entityType : entityTypes) {
 System.out.println(" Entity Type: " + entityType);
 }
 } else {
 System.out.println(" No entity type");
 }

 if(block.getBlockType().equals("SELECTION_ELEMENT")) {
 System.out.print(" Selection element detected: ");
 if (block.getSelectionStatus().equals("SELECTED")){
 System.out.println("Selected");
 }else {
 System.out.println(" Not selected");
 }
 }

 if(block.getPage()!=null)
 System.out.println(" Page: " + block.getPage());
 System.out.println();
 }

 public static void main(String arg[]) throws Exception {

 // The S3 bucket and document
 String document = "";
 String bucket = "";

 AmazonS3 s3client = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(
 new EndpointConfiguration("https://s3.amazonaws.com","us-
east-1"))
 .build();

100

Amazon Textract Developer Guide
Analyzing Document Text

 // Get the document from S3
 com.amazonaws.services.s3.model.S3Object s3object =
 s3client.getObject(bucket, document);
 S3ObjectInputStream inputStream = s3object.getObjectContent();
 BufferedImage image = ImageIO.read(inputStream);

 // Call AnalyzeDocument
 EndpointConfiguration endpoint = new EndpointConfiguration(
 "https://textract.us-east-1.amazonaws.com", "us-east-1");
 AmazonTextract client = AmazonTextractClientBuilder.standard()
 .withEndpointConfiguration(endpoint).build();

 AnalyzeDocumentRequest request = new AnalyzeDocumentRequest()
 .withFeatureTypes("TABLES","FORMS")
 .withDocument(new Document().
 withS3Object(new
 S3Object().withName(document).withBucket(bucket)));

 AnalyzeDocumentResult result = client.analyzeDocument(request);

 // Create frame and panel.
 JFrame frame = new JFrame("RotateImage");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 AnalyzeDocument panel = new AnalyzeDocument(result, image);
 panel.setPreferredSize(new Dimension(image.getWidth(), image.getHeight()));
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);

 }
}

AWS CLI

This AWS CLI command displays the JSON output for the detect-document-text CLI
operation.

Replace the values of Bucket and Name with the names of the Amazon S3 bucket and
document that you used in step 2.

aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \
 --feature-types '["TABLES","FORMS"]'

Python

The following example code displays the document and boxes around detected items.

In the function main, replace the values of bucket and document with the names of the
Amazon S3 bucket and document that you used in step 2.

#Analyzes text in a document stored in an S3 bucket. Display polygon box around
 text and angled text
import boto3
import io
from io import BytesIO
import sys

101

Amazon Textract Developer Guide
Analyzing Document Text

import math
from PIL import Image, ImageDraw, ImageFont

def ShowBoundingBox(draw,box,width,height,boxColor):

 left = width * box['Left']
 top = height * box['Top']
 draw.rectangle([left,top, left + (width * box['Width']), top +(height *
 box['Height'])],outline=boxColor)

def ShowSelectedElement(draw,box,width,height,boxColor):

 left = width * box['Left']
 top = height * box['Top']
 draw.rectangle([left,top, left + (width * box['Width']), top +(height *
 box['Height'])],fill=boxColor)

Displays information about a block returned by text detection and text analysis
def DisplayBlockInformation(block):
 print('Id: {}'.format(block['Id']))
 if 'Text' in block:
 print(' Detected: ' + block['Text'])
 print(' Type: ' + block['BlockType'])

 if 'Confidence' in block:
 print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%")

 if block['BlockType'] == 'CELL':
 print(" Cell information")
 print(" Column:" + str(block['ColumnIndex']))
 print(" Row:" + str(block['RowIndex']))
 print(" Column Span:" + str(block['ColumnSpan']))
 print(" RowSpan:" + str(block['ColumnSpan']))

 if 'Relationships' in block:
 print(' Relationships: {}'.format(block['Relationships']))
 print(' Geometry: ')
 print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox']))
 print(' Polygon: {}'.format(block['Geometry']['Polygon']))

 if block['BlockType'] == "KEY_VALUE_SET":
 print (' Entity Type: ' + block['EntityTypes'][0])

 if block['BlockType'] == 'SELECTION_ELEMENT':
 print(' Selection element detected: ', end='')

 if block['SelectionStatus'] =='SELECTED':
 print('Selected')
 else:
 print('Not selected')

 if 'Page' in block:
 print('Page: ' + block['Page'])
 print()

def process_text_analysis(bucket, document):

 #Get the document from S3
 s3_connection = boto3.resource('s3')

 s3_object = s3_connection.Object(bucket,document)
 s3_response = s3_object.get()

 stream = io.BytesIO(s3_response['Body'].read())
 image=Image.open(stream)

102

Amazon Textract Developer Guide
Analyzing Document Text

 # Analyze the document
 client = boto3.client('textract')

 image_binary = stream.getvalue()
 response = client.analyze_document(Document={'Bytes': image_binary},
 FeatureTypes=["TABLES", "FORMS"])

 ### Alternatively, process using S3 object ###
 #response = client.analyze_document(
 # Document={'S3Object': {'Bucket': bucket, 'Name': document}},
 # FeatureTypes=["TABLES", "FORMS"])

 ### To use a local file ###
 # with open("pathToFile", 'rb') as img_file:
 ### To display image using PIL ###
 # image = Image.open()
 ### Read bytes ###
 # img_bytes = img_file.read()
 # response = client.analyze_document(Document={'Bytes': img_bytes},
 FeatureTypes=["TABLES", "FORMS"])

 #Get the text blocks
 blocks=response['Blocks']
 width, height =image.size
 draw = ImageDraw.Draw(image)
 print ('Detected Document Text')

 # Create image showing bounding box/polygon the detected lines/text
 for block in blocks:

 DisplayBlockInformation(block)

 draw=ImageDraw.Draw(image)
 if block['BlockType'] == "KEY_VALUE_SET":
 if block['EntityTypes'][0] == "KEY":
 ShowBoundingBox(draw, block['Geometry']
['BoundingBox'],width,height,'red')
 else:
 ShowBoundingBox(draw, block['Geometry']
['BoundingBox'],width,height,'green')

 if block['BlockType'] == 'TABLE':
 ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,
 'blue')

 if block['BlockType'] == 'CELL':
 ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,
 'yellow')
 if block['BlockType'] == 'SELECTION_ELEMENT':
 if block['SelectionStatus'] =='SELECTED':
 ShowSelectedElement(draw, block['Geometry']
['BoundingBox'],width,height, 'blue')

 #uncomment to draw polygon for all Blocks
 #points=[]
 #for polygon in block['Geometry']['Polygon']:
 # points.append((width * polygon['X'], height * polygon['Y']))
 #draw.polygon((points), outline='blue')

 # Display the image
 image.show()
 return len(blocks)

def main():

103

Amazon Textract Developer Guide
Analyzing Document Text

 bucket = ''
 document = ''
 block_count=process_text_analysis(bucket,document)
 print("Blocks detected: " + str(block_count))

if __name__ == "__main__":
 main()

Node.js

The following example code displays the document and boxes around detected items.

In the code below, replace the values of bucket and photo with the names of the Amazon S3
bucket and document that you used in step 2. Replace the value of region with the region
associated with your account.

// Import required AWS SDK clients and commands for Node.js
import { AnalyzeDocumentCommand } from "@aws-sdk/client-textract";
import { TextractClient } from "@aws-sdk/client-textract";

// Set the AWS Region.
const REGION = "region"; //e.g. "us-east-1"
// Create SNS service object.
const textractClient = new TextractClient({ region: REGION });

const bucket = 'buckets'
const photo = 'photo'

// Set params
const params = {
 Document: {
 S3Object: {
 Bucket: bucket,
 Name: photo
 },
 },
 FeatureTypes: ['TABLES', 'FORMS'],
 }

const displayBlockInfo = async (response) => {
 try {
 response.Blocks.forEach(block => {
 console.log(`ID: ${block.Id}`)
 console.log(`Block Type: ${block.BlockType}`)
 if ("Text" in block && block.Text !== undefined){
 console.log(`Text: ${block.Text}`)
 }
 else{}
 if ("Confidence" in block && block.Confidence !== undefined){
 console.log(`Confidence: ${block.Confidence}`)
 }
 else{}
 if (block.BlockType == 'CELL'){
 console.log("Cell info:")
 console.log(` Column Index - ${block.ColumnIndex}`)
 console.log(` Row - ${block.RowIndex}`)
 console.log(` Column Span - ${block.ColumnSpan}`)
 console.log(` Row Span - ${block.RowSpan}`)
 }
 if ("Relationships" in block && block.Relationships !== undefined){
 console.log(block.Relationships)
 console.log("Geometry:")

104

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 console.log(` Bounding Box -
 ${JSON.stringify(block.Geometry.BoundingBox)}`)
 console.log(` Polygon -
 ${JSON.stringify(block.Geometry.Polygon)}`)
 }
 console.log("-----")
 });
 } catch (err) {
 console.log("Error", err);
 }
}

const analyze_document_text = async () => {
 try {
 const analyzeDoc = new AnalyzeDocumentCommand(params);
 const response = await textractClient.send(analyzeDoc);
 //console.log(response)
 displayBlockInfo(response)
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
}

analyze_document_text()

4. Run the example. The Python and Java examples display the document image with the following
colored bounding boxes:

• Red – KEY Block objects

• Green – VALUE Block objects

• Blue – TABLE Block objects

• Yellow – CELL Block objects

Selection elements that are selected are filled with blue.

The AWS CLI example displays only the JSON output for the AnalyzeDocument operation.

Analyzing Invoices and Receipts with Amazon
Textract

To analyze invoice and receipt documents, you use the AnalyzeExpense API, and pass a document file
as input. AnalyzeExpense is a synchronous operation that returns a JSON structure that contains the
analyzed text. For more information, see Analyzing Invoices and Receipts (p. 5).

To analyze invoice and receipts asynchronously, use StartExpenseAnalysis to start processing an
input document file and use GetExpenseAnalysis to get the results.

You can provide an input document as an image byte array (base64-encoded image bytes), or as an
Amazon S3 object. In this procedure, you upload an image file to your S3 bucket and specify the file
name.

To analyze an invoice or receipt (API)

1. If you haven't already:

105

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

a. Create or update an IAM user with AmazonTextractFullAccess and
AmazonS3ReadOnlyAccess permissions. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 36).

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up
the AWS CLI and AWS SDKs (p. 36).

2. Upload an image that contains a document to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

3. Use the following examples to call the AnalyzeExpense operation.

CLI

 aws textract analyze-expense --document '{"S3Object": {"Bucket": "bucket
 name","Name":
"object name"}}'

Python

import boto3
import io
from PIL import Image, ImageDraw

def draw_bounding_box(key, val, width, height, draw):
 # If a key is Geometry, draw the bounding box info in it
 if "Geometry" in key:
 # Draw bounding box information
 box = val["BoundingBox"]
 left = width * box['Left']
 top = height * box['Top']
 draw.rectangle([left, top, left + (width * box['Width']), top + (height *
 box['Height'])],
 outline='black')

Takes a field as an argument and prints out the detected labels and values
def print_labels_and_values(field):
 # Only if labels are detected and returned
 if "LabelDetection" in field:
 print("Summary Label Detection - Confidence: {}".format(
 str(field.get("LabelDetection")["Confidence"])) + ", "
 + "Summary Values: {}".format(str(field.get("LabelDetection")
["Text"])))
 print(field.get("LabelDetection")["Geometry"])
 else:
 print("Label Detection - No labels returned.")
 if "ValueDetection" in field:
 print("Summary Value Detection - Confidence: {}".format(
 str(field.get("ValueDetection")["Confidence"])) + ", "
 + "Summary Values: {}".format(str(field.get("ValueDetection")
["Text"])))
 print(field.get("ValueDetection")["Geometry"])
 else:
 print("Value Detection - No values returned")

def process_text_detection(bucket, document):
 # Get the document from S3
 s3_connection = boto3.resource('s3')
 s3_object = s3_connection.Object(bucket, document)
 s3_response = s3_object.get()

106

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 # opening binary stream using an in-memory bytes buffer
 stream = io.BytesIO(s3_response['Body'].read())

 # loading stream into image
 image = Image.open(stream)

 # Detect text in the document
 client = boto3.client('textract', region_name="us-east-1")

 # process using S3 object
 response = client.analyze_expense(
 Document={'S3Object': {'Bucket': bucket, 'Name': document}})

 # Set width and height to display image and draw bounding boxes
 # Create drawing object
 width, height = image.size
 draw = ImageDraw.Draw(image)

 for expense_doc in response["ExpenseDocuments"]:
 for line_item_group in expense_doc["LineItemGroups"]:
 for line_items in line_item_group["LineItems"]:
 for expense_fields in line_items["LineItemExpenseFields"]:
 print_labels_and_values(expense_fields)
 print()

 print("Summary:")
 for summary_field in expense_doc["SummaryFields"]:
 print_labels_and_values(summary_field)
 print()

 #For draw bounding boxes
 for line_item_group in expense_doc["LineItemGroups"]:
 for line_items in line_item_group["LineItems"]:
 for expense_fields in line_items["LineItemExpenseFields"]:
 for key, val in expense_fields["ValueDetection"].items():
 if "Geometry" in key:
 draw_bounding_box(key, val, width, height, draw)

 for label in expense_doc["SummaryFields"]:
 if "LabelDetection" in label:
 for key, val in label["LabelDetection"].items():
 draw_bounding_box(key, val, width, height, draw)

 # Display the image
 image.show()

def main():
 bucket = 'Bucket-Name'
 document = 'Document-Name'
 process_text_detection(bucket, document)

if __name__ == "__main__":
 main()

Java

package com.amazonaws.samples;

import java.awt.*;
import java.awt.image.BufferedImage;

107

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import javax.imageio.ImageIO;
import javax.swing.*;
import software.amazon.awssdk.auth.credentials.AwsBasicCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.core.ResponseBytes;
import software.amazon.awssdk.core.async.AsyncResponseTransformer;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.s3.*;
import software.amazon.awssdk.services.s3.model.GetObjectRequest;
import software.amazon.awssdk.services.s3.model.GetObjectResponse;
import software.amazon.awssdk.services.textract.TextractClient;
import software.amazon.awssdk.services.textract.model.AnalyzeExpenseRequest;
import software.amazon.awssdk.services.textract.model.AnalyzeExpenseResponse;
import software.amazon.awssdk.services.textract.model.BoundingBox;
import software.amazon.awssdk.services.textract.model.Document;
import software.amazon.awssdk.services.textract.model.ExpenseDocument;
import software.amazon.awssdk.services.textract.model.ExpenseField;
import software.amazon.awssdk.services.textract.model.LineItemFields;
import software.amazon.awssdk.services.textract.model.LineItemGroup;
import software.amazon.awssdk.services.textract.model.S3Object;
import software.amazon.awssdk.services.textract.model.Point;

/**
 *
 * Demo code to parse Textract AnalyzeExpense API
 *
 */
public class TextractAnalyzeExpenseSample extends JPanel {

 private static final long serialVersionUID = 1L;

 BufferedImage image;
 static AnalyzeExpenseResponse result;

 public TextractAnalyzeExpenseSample(AnalyzeExpenseResponse documentResult,
 BufferedImage bufImage) throws Exception {
 super();

 result = documentResult; // Results of analyzeexpense summaryfields and
 lineitemgroups detection.
 image = bufImage; // The image containing the document.

 }

 // Draws the image and text bounding box.
 public void paintComponent(Graphics g) {

 Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

 // Draw the image.
 g2d.drawImage(image, 0, 0, image.getWidth(this), image.getHeight(this), this);

 // Iterate through summaryfields and lineitemgroups and display boundedboxes
 around lines of detected label and value.
 List<ExpenseDocument> expenseDocuments = result.expenseDocuments();
 for (ExpenseDocument expenseDocument : expenseDocuments) {

 if (expenseDocument.hasSummaryFields()) {
 DisplayAnalyzeExpenseSummaryInfo(expenseDocument);
 List<ExpenseField> summaryfields = expenseDocument.summaryFields();
 for (ExpenseField summaryfield : summaryfields) {

108

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 if (summaryfield.valueDetection() != null) {
 ShowBoundingBox(image.getHeight(this), image.getWidth(this),
 summaryfield.valueDetection().geometry().boundingBox(), g2d, new Color(0,
 0, 0));
 }

 if (summaryfield.labelDetection() != null) {

 ShowBoundingBox(image.getHeight(this), image.getWidth(this),
 summaryfield.labelDetection().geometry().boundingBox(), g2d, new Color(0,
 0, 0));

 }

 }

 }

 if (expenseDocument.hasLineItemGroups()) {
 DisplayAnalyzeExpenseLineItemGroupsInfo(expenseDocument);

 List<LineItemGroup> lineitemgroups = expenseDocument.lineItemGroups();

 for (LineItemGroup lineitemgroup : lineitemgroups) {

 if (lineitemgroup.hasLineItems()) {

 List<LineItemFields> lineItems = lineitemgroup.lineItems();
 for (LineItemFields lineitemfield : lineItems) {

 if (lineitemfield.hasLineItemExpenseFields()) {

 List<ExpenseField> expensefields = lineitemfield.lineItemExpenseFields();
 for (ExpenseField expensefield : expensefields) {

 if (expensefield.valueDetection() != null) {
 ShowBoundingBox(image.getHeight(this), image.getWidth(this),
 expensefield.valueDetection().geometry().boundingBox(), g2d,
 new Color(0, 0, 0));
 }

 if (expensefield.labelDetection() != null) {
 ShowBoundingBox(image.getHeight(this), image.getWidth(this),
 expensefield.labelDetection().geometry().boundingBox(), g2d,
 new Color(0, 0, 0));
 }

 }
 }

 }

 }

 }

 }
 }

 }

 // Show bounding box at supplied location.
 private void ShowBoundingBox(float imageHeight, float imageWidth, BoundingBox box,
 Graphics2D g2d, Color color) {

 float left = imageWidth * box.left();

109

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 float top = imageHeight * box.top();

 // Display bounding box.
 g2d.setColor(color);
 g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth *
 box.width()),
 Math.round(imageHeight * box.height()));

 }

 private void ShowSelectedElement(float imageHeight, float imageWidth, BoundingBox
 box, Graphics2D g2d,
 Color color) {

 float left = (float) imageWidth * (float) box.left();
 float top = (float) imageHeight * (float) box.top();
 System.out.println(left);
 System.out.println(top);

 // Display bounding box.
 g2d.setColor(color);
 g2d.fillRect(Math.round(left), Math.round(top), Math.round(imageWidth *
 box.width()),
 Math.round(imageHeight * box.height()));

 }

 // Shows polygon at supplied location
 private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points,
 Graphics2D g2d) {

 g2d.setColor(new Color(0, 0, 0));
 Polygon polygon = new Polygon();

 // Construct polygon and display
 for (Point point : points) {
 polygon.addPoint((Math.round(point.x() * imageWidth)), Math.round(point.y() *
 imageHeight));
 }
 g2d.drawPolygon(polygon);
 }

 private void DisplayAnalyzeExpenseSummaryInfo(ExpenseDocument expensedocument) {
 System.out.println(" ExpenseId : " + expensedocument.expenseIndex());
 System.out.println(" Expense Summary information:");
 if (expensedocument.hasSummaryFields()) {

 List<ExpenseField> summaryfields = expensedocument.summaryFields();

 for (ExpenseField summaryfield : summaryfields) {

 System.out.println(" Page: " + summaryfield.pageNumber());
 if (summaryfield.type() != null) {

 System.out.println(" Expense Summary Field Type:" +
 summaryfield.type().text());

 }
 if (summaryfield.labelDetection() != null) {

 System.out.println(" Expense Summary Field Label:" +
 summaryfield.labelDetection().text());
 System.out.println(" Geometry");
 System.out.println(" Bounding Box: "
 + summaryfield.labelDetection().geometry().boundingBox().toString());
 System.out.println(

110

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 " Polygon: " +
 summaryfield.labelDetection().geometry().polygon().toString());

 }
 if (summaryfield.valueDetection() != null) {
 System.out.println(" Expense Summary Field Value:" +
 summaryfield.valueDetection().text());
 System.out.println(" Geometry");
 System.out.println(" Bounding Box: "
 + summaryfield.valueDetection().geometry().boundingBox().toString());
 System.out.println(
 " Polygon: " +
 summaryfield.valueDetection().geometry().polygon().toString());

 }

 }

 }

 }

 private void DisplayAnalyzeExpenseLineItemGroupsInfo(ExpenseDocument
 expensedocument) {

 System.out.println(" ExpenseId : " + expensedocument.expenseIndex());
 System.out.println(" Expense LineItemGroups information:");

 if (expensedocument.hasLineItemGroups()) {

 List<LineItemGroup> lineitemgroups = expensedocument.lineItemGroups();

 for (LineItemGroup lineitemgroup : lineitemgroups) {

 System.out.println(" Expense LineItemGroupsIndexID :" +
 lineitemgroup.lineItemGroupIndex());

 if (lineitemgroup.hasLineItems()) {

 List<LineItemFields> lineItems = lineitemgroup.lineItems();

 for (LineItemFields lineitemfield : lineItems) {

 if (lineitemfield.hasLineItemExpenseFields()) {

 List<ExpenseField> expensefields = lineitemfield.lineItemExpenseFields();
 for (ExpenseField expensefield : expensefields) {

 if (expensefield.type() != null) {
 System.out.println(" Expense LineItem Field Type:" +
 expensefield.type().text());

 }

 if (expensefield.valueDetection() != null) {
 System.out.println(
 " Expense Summary Field Value:" +
 expensefield.valueDetection().text());
 System.out.println(" Geometry");
 System.out.println(" Bounding Box: "
 + expensefield.valueDetection().geometry().boundingBox().toString());
 System.out.println(" Polygon: "
 + expensefield.valueDetection().geometry().polygon().toString());

 }

111

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 if (expensefield.labelDetection() != null) {
 System.out.println(
 " Expense LineItem Field Label:" +
 expensefield.labelDetection().text());
 System.out.println(" Geometry");
 System.out.println(" Bounding Box: "
 + expensefield.labelDetection().geometry().boundingBox().toString());
 System.out.println(" Polygon: "
 + expensefield.labelDetection().geometry().polygon().toString());
 }

 }
 }

 }

 }
 }
 }

 }

 public static void main(String arg[]) throws Exception {

 // Creates a default async client with credentials and AWS Region loaded from
 // the
 // environment

 S3AsyncClient client = S3AsyncClient.builder().region(Region.US_EAST_1).build();

 System.out.println("Creating the S3 Client");

 // Start the call to Amazon S3, not blocking to wait for the result
 CompletableFuture<ResponseBytes<GetObjectResponse>> responseFuture =
 client.getObject(
 GetObjectRequest.builder().bucket("textractanalyzeexpense").key("input/sample-
receipt.jpg").build(),
 AsyncResponseTransformer.toBytes());

 System.out.println("Successfully read the object");

 // When future is complete (either successfully or in error), handle the
 // response
 CompletableFuture<ResponseBytes<GetObjectResponse>> operationCompleteFuture =
 responseFuture
 .whenComplete((getObjectResponse, exception) -> {
 if (getObjectResponse != null) {
 // At this point, the file my-file.out has been created with the data
 // from S3; let's just print the object version
 // Convert this into Async call and remove the below block from here and put
 it
 // outside

 TextractClient textractclient =
 TextractClient.builder().region(Region.US_EAST_1).build();

 AnalyzeExpenseRequest request = AnalyzeExpenseRequest.builder()
 .document(
 Document.builder().s3Object(S3Object.builder().name("YOURObjectName")
 .bucket("YOURBucket").build()).build())
 .build();

 AnalyzeExpenseResponse result = textractclient.analyzeExpense(request);

112

Amazon Textract Developer Guide
Analyzing Invoice and Receipt Documents

 System.out.print(result.toString());

 ByteArrayInputStream bais = new
 ByteArrayInputStream(getObjectResponse.asByteArray());
 try {
 BufferedImage image = ImageIO.read(bais);
 System.out.println("Successfully read the image");
 JFrame frame = new JFrame("Expense Image");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 TextractAnalyzeExpense panel = new TextractAnalyzeExpense(result, image);
 panel.setPreferredSize(new Dimension(image.getWidth(), image.getHeight()));
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);
 } catch (IOException e) {
 throw new RuntimeException(e);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 } else {
 // Handle the error
 exception.printStackTrace();
 }
 });

 // We could do other work while waiting for the AWS call to complete in
 // the background, but we'll just wait for "whenComplete" to finish instead
 operationCompleteFuture.join();

 }
}

Node.Js

 // Import required AWS SDK clients and commands for Node.js
import { AnalyzeExpenseCommand } from "@aws-sdk/client-textract";
import { TextractClient } from "@aws-sdk/client-textract";

// Set the AWS Region.
const REGION = "region"; //e.g. "us-east-1"
// Create SNS service object.
const textractClient = new TextractClient({ region: REGION });

const bucket = 'bucket'
const photo = 'photo'

// Set params
const params = {
 Document: {
 S3Object: {
 Bucket: bucket,
 Name: photo
 },
 },
 }

const process_text_detection = async () => {
 try {
 const aExpense = new AnalyzeExpenseCommand(params);
 const response = await textractClient.send(aExpense);

113

Amazon Textract Developer Guide
Analyzing ID Documents

 //console.log(response)
 response.ExpenseDocuments.forEach(doc => {
 doc.LineItemGroups.forEach(items => {
 items.LineItems.forEach(fields => {
 fields.LineItemExpenseFields.forEach(expenseFields =>{
 console.log(expenseFields)
 })
 }
)}
)
 }
)
 return response; // For unit tests.
 } catch (err) {
 console.log("Error", err);
 }
}

process_text_detection()

4. This will provide you with the JSON output for the AnalyzeExpense operation.

Analyzing Identity Documentation with Amazon
Textract

To analyze identity documents, you use the AnalyzeID API, and pass a document file as input.
AnalyzeID returns a JSON structure that contains the analyzed text. For more information, see
Analyzing Identity Documents (p. 8).

You can provide an input document as an image byte array (base64-encoded image bytes), or as an
Amazon S3 object. In this procedure, you upload an image file to your S3 bucket and specify the file
name.

To analyze an identity document (API)

1. If you haven't already:

a. Create or update an IAM user with AmazonTextractFullAccess and
AmazonS3ReadOnlyAccess permissions. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 36).

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up
the AWS CLI and AWS SDKs (p. 36).

2. Upload an image that contains a document to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

3. Use the following examples to call the AnalyzeID operation.

CLI

The following example takes in an input file from an S3 bucket and runs the AnalyzeID
operation on it. In the code below, replace the value of bucket with the name of your S3
bucket, the value of file with the name of the file in your bucket, and the value of region
with the name of the region associated with your account.

114

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Textract Developer Guide
Analyzing ID Documents

aws textract analyze-id --document-pages '[{"S3Object":
{"Bucket":"bucket","Name":"name"}}]' --region region

You can also call the API with the front and back of a driver's license by adding another S3
object to the input.

aws textract analyze-id --document-pages '[{"S3Object":
{"Bucket":"bucket","Name":"name front"}}, {"S3Object":
{"Bucket":"bucket","Name":"name back"}}]' --region us-east-1

If you are accessing the CLI on a Windows device, use double quotes instead of single quotes
and escape the inner double quotes by backslash (i.e. \) to address any parser errors you may
encounter. For an example, see below:

aws textract analyze-id --document-pages "[{\"S3Object\":{\"Bucket\":\"bucket\",
\"Name\":\"name\"}}]" --region region

Python

The following example takes in an input file from an S3 bucket and runs the AnalyzeID
operation on it, returning the detected key-value pairs. In the code below, replace the value of
bucket_name with the name of your S3 bucket, the value of file_name with the name of the
file in your bucket, and the value of region with the name of the region associated with your
account.

import boto3

bucket_name = "bucket-name"
file_name = "file-name"
region = "region-name"

def analyze_id(region, bucket_name, file_name):

 textract_client = boto3.client('textract', region_name=region)
 response = textract_client.analyze_id(DocumentPages=[{"S3Object":
{"Bucket":bucket_name,"Name":file_name}}])

 for doc_fields in response['IdentityDocuments']:
 for id_field in doc_fields['IdentityDocumentFields']:
 for key, val in id_field.items():
 if "Type" in str(key):
 print("Type: " + str(val['Text']))
 for key, val in id_field.items():
 if "ValueDetection" in str(key):
 print("Value Detection: " + str(val['Text']))
 print()

analyze_id(region, bucket_name, file_name)

Java

The following example takes in an input file from an S3 bucket and runs the AnalyzeID
operation on it, returning the detected data. In the function main, replace the values of
s3bucket and sourceDoc with the names of the Amazon S3 bucket and document image that
you used in step 2.

115

Amazon Textract Developer Guide
Analyzing ID Documents

/*
 Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 SPDX-License-Identifier: Apache-2.0
*/

package com.amazonaws.samples;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.textract.AmazonTextractClient;
import com.amazonaws.services.textract.AmazonTextractClientBuilder;
import com.amazonaws.services.textract.model.*;
import java.util.ArrayList;
import java.util.List;

public class AnalyzeIdentityDocument {

 public static void main(String[] args) {

 final String USAGE = "\n" +
 "Usage:\n" +
 " <s3bucket><sourceDoc> \n\n" +
 "Where:\n" +
 " s3bucket - the Amazon S3 bucket where the document is located.
 \n" +
 " sourceDoc - the name of the document. \n";

 if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
 }

 String s3bucket = "bucket-name"; //args[0];
 String sourceDoc = "sourcedoc-name"; //args[1];
 AmazonTextractClient textractClient = (AmazonTextractClient)
 AmazonTextractClientBuilder.standard()
 .withRegion(Regions.US_EAST_1)
 .build();

 getDocDetails(textractClient, s3bucket, sourceDoc);
 }

 public static void getDocDetails(AmazonTextractClient textractClient, String
 s3bucket, String sourceDoc) {

 try {

 S3Object s3 = new S3Object();
 s3.setBucket(s3bucket);
 s3.setName(sourceDoc);

 com.amazonaws.services.textract.model.Document myDoc = new
 com.amazonaws.services.textract.model.Document();
 myDoc.setS3Object(s3);

 List<Document> list1 = new ArrayList();
 list1.add(myDoc);

 AnalyzeIDRequest idRequest = new AnalyzeIDRequest();
 idRequest.setDocumentPages(list1);

 AnalyzeIDResult result = textractClient.analyzeID(idRequest);
 List<IdentityDocument> docs = result.getIdentityDocuments();
 for (IdentityDocument doc: docs) {

116

Amazon Textract Developer Guide
Analyzing ID Documents

 List<IdentityDocumentField>idFields =
 doc.getIdentityDocumentFields();
 for (IdentityDocumentField field: idFields) {
 System.out.println("Field type is "+
 field.getType().getText());
 System.out.println("Field value is "+
 field.getValueDetection().getText());
 }
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

4. This will provide you with the JSON output for the AnalyzeID operation.

117

Amazon Textract Developer Guide
Calling Asynchronous Operations

Processing Documents with
Asynchronous Operations

Amazon Textract can detect and analyze text in multipage documents that are in PDF or TIFF format.
This includes invoices and receipts. Multipage document processing is an asynchronous operation.
Asynchronous processing of documents is useful for processing large, multipage documents.
For example, a PDF file with over 1,000 pages takes a while to process. Processing the PDF file
asynchronously allows your application to complete other tasks while it waits for the process to
complete.

This section covers how you can use Amazon Textract to asynchronously detect and analyze text on a
multipage or single-page document. Multipage documents must be in PDF or TIFF format. Single-page
documents processed with asynchronous operations can be in JPEG, PNG, TIFF or PDF format.

You can use Amazon Textract asynchronous operations for the following purposes:

• Text detection – You can detect lines and words on a multipage document. The asynchronous
operations are StartDocumentTextDetection (p. 260) and GetDocumentTextDetection (p. 244). For
more information, see Detecting Text (p. 3).

• Text analysis – You can identify relationships between detected text on a multipage document. The
asynchronous operations are StartDocumentAnalysis (p. 255) and GetDocumentAnalysis (p. 239).
For more information, see Analyzing Documents (p. 4).

• Expense analysis – You can identify data relationships on multipage invoices and receipts. Amazon
Textract treats each invoice or a receipt page of a multi-page document as an individual receipt or
an invoice. It does not retain the context from one page to another of a multi-page document. The
asynchronous operations are StartExpenseAnalysis (p. 264) and GetExpenseAnalysis (p. 249). For
more information, see Analyzing Invoices and Receipts (p. 5).

Topics
• Calling Amazon Textract Asynchronous Operations (p. 118)
• Configuring Amazon Textract for Asynchronous Operations (p. 128)
• Detecting or Analyzing Text in a Multipage Document (p. 130)
• Amazon Textract Results Notification (p. 147)

Calling Amazon Textract Asynchronous Operations
Amazon Textract provides an asynchronous API that you can use to process multipage documents in PDF
or TIFF format. You can also use asynchronous operations to process single-page documents that are in
JPEG, PNG, TIFF, or PDF format.

The information in this topic uses text detection operations to show how to use Amazon Textract
asynchronous operations. The same approach works with the text analysis operations of the section
called “StartDocumentAnalysis” (p. 255) and the section called “GetDocumentAnalysis” (p. 239). It
also works the same with the section called “StartExpenseAnalysis” (p. 264) and the section called
“GetExpenseAnalysis” (p. 249).

For an example, see Detecting or Analyzing Text in a Multipage Document (p. 130).

118

Amazon Textract Developer Guide
Starting Text Detection

Amazon Textract asynchronously processes a document stored in an Amazon S3 bucket. You start
processing by calling a Start operation, such as StartDocumentTextDetection (p. 260). The completion
status of the request is published to an Amazon Simple Notification Service (Amazon SNS) topic. To
get the completion status from the Amazon SNS topic, you can use an Amazon Simple Queue Service
(Amazon SQS) queue or an AWS Lambda function. After you have the completion status, you call a Get
operation, such as GetDocumentTextDetection (p. 244), to get the results of the request.

Results of asynchronous calls are encrypted and stored for 7 days in a Amazon Textract owned bucket by
default, unless you specify an Amazon S3 bucket using an operation's OutputConfig argument.

The following table shows the corresponding Start and Get operations for the different types of
asynchronous processing supported by Amazon Textract:

Start/Get API Operations for Amazon Textract Asynchronous Operations

Processing Type Start API Get API

Text Detection StartDocumentTextDetection GetDocumentTextDetection

Text Analysis StartDocumentAnalysis GetDocumentAnalysis

Expense Analysis StartExpenseAnalysis GetExpenseAnalysis

For an example that uses AWS Lambda functions, see Large scale document processing with Amazon
Textract.

The following diagram shows the process for detecting document text in a document image stored in an
Amazon S3 bucket. In the diagram, an Amazon SQS queue gets the completion status from the Amazon
SNS topic.

The process displayed by the preceeding diagram is the same for analyzing text and invoices/receipts.
You start analyzing text by calling the section called “StartDocumentAnalysis” (p. 255) and start
analyzing invoices/receipts by calling the section called “StartExpenseAnalysis” (p. 264) You get
the results by calling the section called “GetDocumentAnalysis” (p. 239) or the section called
“GetExpenseAnalysis” (p. 249) respectively.

Starting Text Detection
You start an Amazon Textract text detection request by calling StartDocumentTextDetection (p. 260).
The following is an example of a JSON request that's passed by StartDocumentTextDetection.

{
 "DocumentLocation": {
 "S3Object": {
 "Bucket": "bucket",
 "Name": "image.pdf"
 }
 },
 "ClientRequestToken": "DocumentDetectionToken",
 "NotificationChannel": {
 "SNSTopicArn": "arn:aws:sns:us-east-1:nnnnnnnnnn:topic",
 "RoleArn": "arn:aws:iam::nnnnnnnnnn:role/roleTopic"
 },
 "JobTag": "Receipt"
}

The input parameter DocumentLocation provides the document file name and the Amazon S3
bucket to retrieve it from. NotificationChannel contains the Amazon Resource Name (ARN) of

119

https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing
https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing

Amazon Textract Developer Guide
Getting the Completion Status of an
Amazon Textract Analysis Request

the Amazon SNS topic that Amazon Textract notifies when the text detection request finishes. The
Amazon SNS topic must be in the same AWS Region as the Amazon Textract endpoint that you're calling.
NotificationChannel also contains the ARN for a role that allows Amazon Textract to publish to
the Amazon SNS topic. You give Amazon Textract publishing permissions to your Amazon SNS topics by
creating an IAM service role. For more information, see Configuring Amazon Textract for Asynchronous
Operations (p. 128).

You can also specify an optional input parameter, JobTag, that enables you to identify the job, or groups
of jobs, in the completion status that's published to the Amazon SNS topic. For example, you can use
JobTag to identify the type of document being processed, such as a tax form or receipt.

To prevent accidental duplication of analysis jobs, you can optionally provide an idempotent
token, ClientRequestToken. If you supply a value for ClientRequestToken, the Start
operation returns the same JobId for multiple identical calls to the Start operation, such as
StartDocumentTextDetection. A ClientRequestToken token has a lifetime of 7 days. After 7 days,
you can reuse it. If you reuse the token during the token lifetime, the following happens:

• If you reuse the token with same Start operation and the same input parameters, the same JobId is
returned. The job isn't performed again and Amazon Textract doesn't send a completion status to the
registered Amazon SNS topic.

• If you reuse the token with the same Start operation and a minor input parameter change, you get
an idempotentparametermismatchexception (HTTP status code: 400) exception raised.

• If you reuse the token with a different Start operation, the operation succeeds.

Another optional parameter available is OutputConfig, which lets you adjust where your output will
be placed. By default, Amazon Textract will store the results internally, and can only be accessed by the
Get API operations. With OutputConfig enabled, you can set the name of the bucket the output will be
sent to, and the file prefix of the results, where you can download your results. Additionally, you can set
the KMSKeyID parameter to a customer managed key to encrypt your output. Without this parameter
set Amazon Textract will encrypt server-side using the AWS managed key for Amazon S3

Note
Before using this parameter, ensure you have the PutObject permission for the output bucket.
Additionally, ensure you have the Decrypt, ReEncrypt, GenerateDataKey, and DescribeKey
permissions for the AWS KMS key if you decide to use it.

The response to the StartDocumentTextDetection operation is a job identifier (JobId). Use JobId
to track requests and get the analysis results after Amazon Textract has published the completion status
to the Amazon SNS topic. The following is an example:

{"JobId":"270c1cc5e1d0ea2fbc59d97cb69a72a5495da75851976b14a1784ca90fc180e3"}

If you start too many jobs concurrently, calls to StartDocumentTextDetection raise a
LimitExceededException exception (HTTP status code: 400) until the number of concurrently
running jobs is below the Amazon Textract service limit.

If you find that LimitExceededException exceptions are raised with bursts of activity, consider using an
Amazon SQS queue to manage incoming requests. Contact AWS Support if you find that your average
number of concurrent requests can't be managed by an Amazon SQS queue and you're still receiving
LimitExceededException exceptions.

Getting the Completion Status of an Amazon
Textract Analysis Request
Amazon Textract sends an analysis completion notification to the registered Amazon SNS topic. The
notification includes the job identifier and the completion status of the operation in a JSON string. A

120

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

successful text detection request has a SUCCEEDED status. For example, the following result shows the
successful processing of a text detection job.

{
 "JobId": "642492aea78a86a40665555dc375ee97bc963f342b29cd05030f19bd8fd1bc5f",
 "Status": "SUCCEEDED",
 "API": "StartDocumentTextDetection",
 "JobTag": "Receipt",
 "Timestamp": 1543599965969,
 "DocumentLocation": {
 "S3ObjectName": "document",
 "S3Bucket": "bucket"
 }
}

For more information, see Amazon Textract Results Notification (p. 147).

To get the status information published to the Amazon SNS topic by Amazon Textract, use one of the
following options:

• AWS Lambda – You can subscribe an AWS Lambda function that you write to an Amazon SNS topic.
The function is called when Amazon Textract notifies the Amazon SNS topic that the request has
completed. Use a Lambda function if you want server-side code to process the results of a text
detection request. For example, you might want to use server-side code to annotate the image or
create a report on the detected text before returning the information to a client application.

• Amazon SQS – You can subscribe an Amazon SQS queue to an Amazon SNS topic. You then poll the
Amazon SQS queue to retrieve the completion status published by Amazon Textract when a text
detection request completes. For more information, see Detecting or Analyzing Text in a Multipage
Document (p. 130). Use an Amazon SQS queue if you want to call Amazon Textract operations only
from a client application.

Important
We don't recommend getting the request completion status by repeatedly calling the Amazon
Textract Get operation. This is because Amazon Textract throttles the Get operation if too many
requests are made. If you're processing multiple documents at the same time, it's simpler and
more efficient to monitor one SQS queue for the completion notification than to poll Amazon
Textract for the status of each job individually.

If you have configured your account to receive a results notification from an Amazon Simple Notification
Service (Amazon SNS) topic or through anAmazon SQS queue, you should ensure that your account is
secure by limiting the scope of Amazon Textract's access to just the resources you are using. This can be
done by attaching a trust policy to your IAM service role. For information on how to do this, see Cross-
service confused deputy prevention.

Getting Amazon Textract Text Detection Results
To get the results of a text detection request, first ensure that the completion status that's retrieved
from the Amazon SNS topic is SUCCEEDED. Then call GetDocumentTextDetection, which passes the
JobId value that's returned from StartDocumentTextDetection. The request JSON is similar to the
following example:

{
 "JobId": "270c1cc5e1d0ea2fbc59d97cb69a72a5495da75851976b14a1784ca90fc180e3",
 "MaxResults": 10,
 "SortBy": "TIMESTAMP"
}

121

https://docs.aws.amazon.com/textract/latest/dg/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/textract/latest/dg/cross-service-confused-deputy-prevention.html

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

JobId is the identifier for the text detection operation. Because text detection can generate large
amounts of data, use MaxResults to specify the maximum number of results to return in a single
Getoperation. The default value for MaxResults is 1,000. If you specify a value greater than 1,000, only
1,000 results are returned. If the operation doesn't return all of the results, a pagination token for the
next page is returned. To get the next page of results, specify the token in the NextToken parameter.

Note
Amazon Textract retains the results of asynchronous operations for 7 days. You can't retrieve the
results after this time.

The GetDocumentTextDetection operation response JSON is similar to the following. The total
number of pages that are detected is returned in DocumentMetadata. The detected text is returned
in the Blocks array. For information about Block objects, see Text Detection and Document Analysis
Response Objects (p. 10).

{
 "DocumentMetadata": {
 "Pages": 1
 },
 "JobStatus": "SUCCEEDED",
 "Blocks": [
 {
 "BlockType": "PAGE",
 "Geometry": {
 "BoundingBox": {
 "Width": 1.0,
 "Height": 1.0,
 "Left": 0.0,
 "Top": 0.0
 },
 "Polygon": [
 {
 "X": 0.0,
 "Y": 0.0
 },
 {
 "X": 1.0,
 "Y": 0.0
 },
 {
 "X": 1.0,
 "Y": 1.0
 },
 {
 "X": 0.0,
 "Y": 1.0
 }
]
 },
 "Id": "64533157-c47e-401a-930e-7ca1bb3ac3fa",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "4297834d-dcb1-413b-8908-3b96866ebbb5",
 "1d85ba24-2877-4d09-b8b2-393833d769e9",
 "193e9c47-fd87-475a-ba09-3fda210d8784",
 "bd8aeb62-961b-4b47-b78a-e4ed9eeecd0f"
]
 }
],
 "Page": 1
 },
 {

122

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

 "BlockType": "LINE",
 "Confidence": 53.301639556884766,
 "Text": "ellooworio",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.9999999403953552,
 "Height": 0.5365243554115295,
 "Left": 0.0,
 "Top": 0.46347561478614807
 },
 "Polygon": [
 {
 "X": 0.0,
 "Y": 0.46347561478614807
 },
 {
 "X": 0.9999999403953552,
 "Y": 0.46347561478614807
 },
 {
 "X": 0.9999999403953552,
 "Y": 1.0
 },
 {
 "X": 0.0,
 "Y": 1.0
 }
]
 },
 "Id": "4297834d-dcb1-413b-8908-3b96866ebbb5",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "170c3eb9-5155-4bec-8c44-173bba537e70"
]
 }
],
 "Page": 1
 },
 {
 "BlockType": "LINE",
 "Confidence": 89.15632629394531,
 "Text": "He llo,",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.33642634749412537,
 "Height": 0.49159330129623413,
 "Left": 0.13885067403316498,
 "Top": 0.17169663310050964
 },
 "Polygon": [
 {
 "X": 0.13885067403316498,
 "Y": 0.17169663310050964
 },
 {
 "X": 0.47527703642845154,
 "Y": 0.17169663310050964
 },
 {
 "X": 0.47527703642845154,
 "Y": 0.6632899641990662
 },
 {
 "X": 0.13885067403316498,

123

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

 "Y": 0.6632899641990662
 }
]
 },
 "Id": "1d85ba24-2877-4d09-b8b2-393833d769e9",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "516ae823-3bab-4f9a-9d74-ad7150d128ab",
 "6bcf4ea8-bbe8-4686-91be-b98dd63bc6a6"
]
 }
],
 "Page": 1
 },
 {
 "BlockType": "LINE",
 "Confidence": 82.44834899902344,
 "Text": "worlo",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.33182239532470703,
 "Height": 0.3766750991344452,
 "Left": 0.5091826915740967,
 "Top": 0.23131252825260162
 },
 "Polygon": [
 {
 "X": 0.5091826915740967,
 "Y": 0.23131252825260162
 },
 {
 "X": 0.8410050868988037,
 "Y": 0.23131252825260162
 },
 {
 "X": 0.8410050868988037,
 "Y": 0.607987642288208
 },
 {
 "X": 0.5091826915740967,
 "Y": 0.607987642288208
 }
]
 },
 "Id": "193e9c47-fd87-475a-ba09-3fda210d8784",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "ed135c3b-35dd-4085-8f00-26aedab0125f"
]
 }
],
 "Page": 1
 },
 {
 "BlockType": "LINE",
 "Confidence": 88.50325775146484,
 "Text": "world",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.35004907846450806,
 "Height": 0.19635874032974243,
 "Left": 0.527581512928009,

124

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

 "Top": 0.30100569128990173
 },
 "Polygon": [
 {
 "X": 0.527581512928009,
 "Y": 0.30100569128990173
 },
 {
 "X": 0.8776305913925171,
 "Y": 0.30100569128990173
 },
 {
 "X": 0.8776305913925171,
 "Y": 0.49736443161964417
 },
 {
 "X": 0.527581512928009,
 "Y": 0.49736443161964417
 }
]
 },
 "Id": "bd8aeb62-961b-4b47-b78a-e4ed9eeecd0f",
 "Relationships": [
 {
 "Type": "CHILD",
 "Ids": [
 "9e28834d-798e-4a62-8862-a837dfd895a6"
]
 }
],
 "Page": 1
 },
 {
 "BlockType": "WORD",
 "Confidence": 53.301639556884766,
 "Text": "ellooworio",
 "Geometry": {
 "BoundingBox": {
 "Width": 1.0,
 "Height": 0.5365243554115295,
 "Left": 0.0,
 "Top": 0.46347561478614807
 },
 "Polygon": [
 {
 "X": 0.0,
 "Y": 0.46347561478614807
 },
 {
 "X": 1.0,
 "Y": 0.46347561478614807
 },
 {
 "X": 1.0,
 "Y": 1.0
 },
 {
 "X": 0.0,
 "Y": 1.0
 }
]
 },
 "Id": "170c3eb9-5155-4bec-8c44-173bba537e70",
 "Page": 1
 },
 {

125

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

 "BlockType": "WORD",
 "Confidence": 88.46246337890625,
 "Text": "He",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.15350718796253204,
 "Height": 0.29955607652664185,
 "Left": 0.13885067403316498,
 "Top": 0.21856294572353363
 },
 "Polygon": [
 {
 "X": 0.13885067403316498,
 "Y": 0.21856294572353363
 },
 {
 "X": 0.292357861995697,
 "Y": 0.21856294572353363
 },
 {
 "X": 0.292357861995697,
 "Y": 0.5181190371513367
 },
 {
 "X": 0.13885067403316498,
 "Y": 0.5181190371513367
 }
]
 },
 "Id": "516ae823-3bab-4f9a-9d74-ad7150d128ab",
 "Page": 1
 },
 {
 "BlockType": "WORD",
 "Confidence": 89.8501968383789,
 "Text": "llo,",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.17724157869815826,
 "Height": 0.49159327149391174,
 "Left": 0.2980354428291321,
 "Top": 0.17169663310050964
 },
 "Polygon": [
 {
 "X": 0.2980354428291321,
 "Y": 0.17169663310050964
 },
 {
 "X": 0.47527703642845154,
 "Y": 0.17169663310050964
 },
 {
 "X": 0.47527703642845154,
 "Y": 0.6632899045944214
 },
 {
 "X": 0.2980354428291321,
 "Y": 0.6632899045944214
 }
]
 },
 "Id": "6bcf4ea8-bbe8-4686-91be-b98dd63bc6a6",
 "Page": 1
 },
 {

126

Amazon Textract Developer Guide
Getting Amazon Textract Text Detection Results

 "BlockType": "WORD",
 "Confidence": 82.44834899902344,
 "Text": "worlo",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.33182239532470703,
 "Height": 0.3766750991344452,
 "Left": 0.5091826915740967,
 "Top": 0.23131252825260162
 },
 "Polygon": [
 {
 "X": 0.5091826915740967,
 "Y": 0.23131252825260162
 },
 {
 "X": 0.8410050868988037,
 "Y": 0.23131252825260162
 },
 {
 "X": 0.8410050868988037,
 "Y": 0.607987642288208
 },
 {
 "X": 0.5091826915740967,
 "Y": 0.607987642288208
 }
]
 },
 "Id": "ed135c3b-35dd-4085-8f00-26aedab0125f",
 "Page": 1
 },
 {
 "BlockType": "WORD",
 "Confidence": 88.50325775146484,
 "Text": "world",
 "Geometry": {
 "BoundingBox": {
 "Width": 0.35004907846450806,
 "Height": 0.19635874032974243,
 "Left": 0.527581512928009,
 "Top": 0.30100569128990173
 },
 "Polygon": [
 {
 "X": 0.527581512928009,
 "Y": 0.30100569128990173
 },
 {
 "X": 0.8776305913925171,
 "Y": 0.30100569128990173
 },
 {
 "X": 0.8776305913925171,
 "Y": 0.49736443161964417
 },
 {
 "X": 0.527581512928009,
 "Y": 0.49736443161964417
 }
]
 },
 "Id": "9e28834d-798e-4a62-8862-a837dfd895a6",
 "Page": 1
 }
]

127

Amazon Textract Developer Guide
Configuring Asynchronous Operations

}

Configuring Amazon Textract for Asynchronous
Operations

The following procedures show you how to configure Amazon Textract to use with an Amazon Simple
Notification Service (Amazon SNS) topic and an Amazon Simple Queue Service (Amazon SQS) queue.

Note
If you're using these instructions to set up the Detecting or Analyzing Text in a Multipage
Document (p. 130) example, you don't need to do steps 3 – 6. The example includes code to
create and configure the Amazon SNS topic and Amazon SQS queue.

To configure Amazon Textract

1. Set up an AWS account to access Amazon Textract. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 35).

Ensure that the user has at least the following permissions:

• AmazonTextractFullAccess

• AmazonS3ReadOnlyAccess

• AmazonSNSFullAccess

• AmazonSQSFullAccess

2. Install and configure the required AWS SDK. For more information, see Step 2: Set Up the AWS CLI
and AWS SDKs (p. 36).

3. Create an Amazon SNS topic. Prepend the topic name with AmazonTextract. Note the topic Amazon
Resource Name (ARN). Ensure that the topic is in the same Region as the AWS endpoint that you're
using with your AWS account.

4. Create an Amazon SQS standard queue by using the Amazon SQS console. Note the queue ARN.

5. Subscribe the queue to the topic you created in step 3.

6. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue.

7. Create an IAM service role to give Amazon Textract access to your Amazon SNS topics. Note the
Amazon Resource Name (ARN) of the service role. For more information, see Giving Amazon Textract
Access to Your Amazon SNS Topic (p. 129).

8. Add the following inline policy to the IAM user that you created in step 1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MySid",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "Service role ARN from step 7"
 }
]
}

Give the inline policy a name.

128

https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-subscribe-queue-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

Amazon Textract Developer Guide
Giving Amazon Textract Access to Your Amazon SNS Topic

9. You can now run the examples in Detecting or Analyzing Text in a Multipage Document (p. 130).

Giving Amazon Textract Access to Your Amazon SNS
Topic
Amazon Textract needs permission to send a message to your Amazon SNS topic when an asynchronous
operation is complete. You use an IAM service role to give Amazon Textract access to the Amazon SNS
topic.

When you create the Amazon SNS topic, you must prepend the topic name with AmazonTextract—for
example, AmazonTextractMyTopicName.

1. Sign in to the IAM console (https://console.aws.amazon.com/iam).

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. For Select type of trusted entity, choose AWS service.

5. For Choose the service that will use this role, choose Textract.

6. Choose Next: Permissions.

7. Verify that the AmazonTextractServiceRole policy has been included in the list of attached policies.
To display the policy in the list, enter part of the policy name in the Filter policies.

8. Choose Next: Tags.

9. You don't need to add tags, so choose Next: Review.

10. In the Review section, for Role name, enter a name for the role (for example, TextractRole). In
Role description, update the description for the role, and then choose Create role.

11. Choose the new role to open the role's details page.

12. In the Summary, copy the Role ARN value and save it.

13. Choose Trust relationships.

14. Choose Edit trust relationship, and edit the trust policy. Ensure that your trust policy includes
conditions that limit the scope of permissions to just the required resources, as this will help prevent
the confused deputy problem. For more details about this potential security issue, seeCross-service
confused deputy prevention (p. 217)) . In the example below, replace the red text with your
account ID.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "textract.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":"arn:aws:textract:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }

15. Choose Update Trust Policy.

129

https://console.aws.amazon.com/iam

Amazon Textract Developer Guide
Detecting or Analyzing Text in a Multipage Document

Detecting or Analyzing Text in a Multipage
Document

This procedure shows you how to detect or analyze text in a multipage document by using Amazon
Textract detection operations, a document stored in an Amazon S3 bucket, an Amazon SNS topic,
and an Amazon SQS queue. Multipage document processing is an asynchronous operation. For more
information, see Calling Amazon Textract Asynchronous Operations (p. 118).

You can choose the type of processing that you want the code to do: text detection, text analysis, or
expense analysis.

The processing results are returned in an array of the section called “Block” (p. 270) objects, which
differ depending on the type of processing you use.

To detect text in or analyze multipage documents, you do the following:

1. Create the Amazon SNS topic and the Amazon SQS queue.

2. Subscribe the queue the topic.

3. Give the topic permission to send messages to the queue.

4. Start processing the document. Use the appropriate operation for your chosen type of analysis:

• StartDocumentTextDetection (p. 260) for text detection tasks.

• StartDocumentAnalysis (p. 255) for text analysis tasks.

• StartExpenseAnalysis (p. 264) for expense analysis tasks.

5. Get the completion status from the Amazon SQS queue. The example code tracks the job identifier
(JobId) that's returned by the Start operation. It only gets the results for matching job identifiers
that are read from the completion status. This is important if other applications are using the same
queue and topic. For simplicity, the example deletes jobs that don't match. Consider adding the
deleted jobs to an Amazon SQS dead-letter queue for further investigation.

6. Get and display the processing results by calling the appropriate operation for your chosen type of
analysis:

• GetDocumentTextDetection (p. 244) for text detection tasks.

• GetDocumentAnalysis (p. 239) for text analysis tasks.

• GetExpenseAnalysis (p. 249) for expense analysis tasks.

7. Delete the Amazon SNS topic and the Amazon SQS queue.

Performing Asynchronous Operations
The example code for this procedure is provided in Java, Python, and the AWS CLI. Before you begin,
install the appropriate AWS SDK. For more information, see Step 2: Set Up the AWS CLI and AWS
SDKs (p. 36).

To detect or analyze text in a multipage document

1. Configure user access to Amazon Textract, and configure Amazon Textract access to Amazon SNS.
For more information, see Configuring Amazon Textract for Asynchronous Operations (p. 128).
To complete this procedure, you need a multipage document file in PDF format. Skip steps 3 – 6
because the example code creates and configures the Amazon SNS topic and Amazon SQS queue. If
completing the CLI example, you don't need to set up an SQS queue.

2. Upload a multipage document file in PDF or TIFF format to your Amazon S3 bucket. (Single-page
documents in JPEG, PNG, TIFF, or PDF format can also be processed).

130

Amazon Textract Developer Guide
Performing Asynchronous Operations

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

3. Use the following AWS SDK for Java, SDK for Python (Boto3), or AWS CLI code to either detect text
or analyze text in a multipage document. In the main function:

• Replace the value of roleArn with the IAM role ARN that you saved in Giving Amazon Textract
Access to Your Amazon SNS Topic (p. 129).

• Replace the values of bucket and document with the bucket and document file name that you
specified in step 2.

• Replace the value of the type input parameter of the ProcessDocument function with the
type of processing that you want to do. Use ProcessType.DETECTION to detect text. Use
ProcessType.ANALYSIS to analyze text.

• For the Python example, replace the value of region_name with the region your client is
operating in.

For the AWS CLI example, do the following:

• When calling StartDocumentTextDetection (p. 260), replace the value of bucket-name with the
name of your S3 bucket, and replace file-name with the name of the file you specified in step 2.
Specify the region of your bucket by replacing region-name with the name of your region. Take
note that the CLI example does not make use of SQS.

• When calling GetDocumentTextDetection (p. 244) replace job-id-number with the job-
id returned by StartDocumentTextDetection (p. 260). Specify the region of your bucket by
replacing region-name with the name of your region.

Java

package com.amazonaws.samples;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import com.amazonaws.auth.policy.Condition;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;
import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.Statement.Effect;
import com.amazonaws.auth.policy.actions.SQSActions;
import com.amazonaws.services.sns.AmazonSNS;
import com.amazonaws.services.sns.AmazonSNSClientBuilder;
import com.amazonaws.services.sns.model.CreateTopicRequest;
import com.amazonaws.services.sns.model.CreateTopicResult;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.CreateQueueRequest;
import com.amazonaws.services.sqs.model.Message;
import com.amazonaws.services.sqs.model.QueueAttributeName;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;
import com.amazonaws.services.textract.AmazonTextract;
import com.amazonaws.services.textract.AmazonTextractClientBuilder;
import com.amazonaws.services.textract.model.Block;
import com.amazonaws.services.textract.model.DocumentLocation;
import com.amazonaws.services.textract.model.DocumentMetadata;
import com.amazonaws.services.textract.model.GetDocumentAnalysisRequest;
import com.amazonaws.services.textract.model.GetDocumentAnalysisResult;

131

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Textract Developer Guide
Performing Asynchronous Operations

import com.amazonaws.services.textract.model.GetDocumentTextDetectionRequest;
import com.amazonaws.services.textract.model.GetDocumentTextDetectionResult;
import com.amazonaws.services.textract.model.NotificationChannel;
import com.amazonaws.services.textract.model.Relationship;
import com.amazonaws.services.textract.model.S3Object;
import com.amazonaws.services.textract.model.StartDocumentAnalysisRequest;
import com.amazonaws.services.textract.model.StartDocumentAnalysisResult;
import com.amazonaws.services.textract.model.StartDocumentTextDetectionRequest;
import com.amazonaws.services.textract.model.StartDocumentTextDetectionResult;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;;
public class DocumentProcessor {

 private static String sqsQueueName=null;
 private static String snsTopicName=null;
 private static String snsTopicArn = null;
 private static String roleArn= null;
 private static String sqsQueueUrl = null;
 private static String sqsQueueArn = null;
 private static String startJobId = null;
 private static String bucket = null;
 private static String document = null;
 private static AmazonSQS sqs=null;
 private static AmazonSNS sns=null;
 private static AmazonTextract textract = null;

 public enum ProcessType {
 DETECTION,ANALYSIS
 }

 public static void main(String[] args) throws Exception {

 String document = "document";
 String bucket = "bucket";
 String roleArn="role";

 sns = AmazonSNSClientBuilder.defaultClient();
 sqs= AmazonSQSClientBuilder.defaultClient();
 textract=AmazonTextractClientBuilder.defaultClient();

 CreateTopicandQueue();
 ProcessDocument(bucket,document,roleArn,ProcessType.DETECTION);
 DeleteTopicandQueue();
 System.out.println("Done!");

 }
 // Creates an SNS topic and SQS queue. The queue is subscribed to the topic.
 static void CreateTopicandQueue()
 {
 //create a new SNS topic
 snsTopicName="AmazonTextractTopic" +
 Long.toString(System.currentTimeMillis());
 CreateTopicRequest createTopicRequest = new
 CreateTopicRequest(snsTopicName);
 CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest);
 snsTopicArn=createTopicResult.getTopicArn();

 //Create a new SQS Queue
 sqsQueueName="AmazonTextractQueue" +
 Long.toString(System.currentTimeMillis());
 final CreateQueueRequest createQueueRequest = new
 CreateQueueRequest(sqsQueueName);
 sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl();
 sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl,
 Arrays.asList("QueueArn")).getAttributes().get("QueueArn");

132

Amazon Textract Developer Guide
Performing Asynchronous Operations

 //Subscribe SQS queue to SNS topic
 String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs",
 sqsQueueArn).getSubscriptionArn();

 // Authorize queue
 Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withResources(new Resource(sqsQueueArn))
 .withConditions(new
 Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn))
);

 Map queueAttributes = new HashMap();
 queueAttributes.put(QueueAttributeName.Policy.toString(),
 policy.toJson());
 sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl,
 queueAttributes));

 System.out.println("Topic arn: " + snsTopicArn);
 System.out.println("Queue arn: " + sqsQueueArn);
 System.out.println("Queue url: " + sqsQueueUrl);
 System.out.println("Queue sub arn: " + sqsSubscriptionArn);
 }
 static void DeleteTopicandQueue()
 {
 if (sqs !=null) {
 sqs.deleteQueue(sqsQueueUrl);
 System.out.println("SQS queue deleted");
 }

 if (sns!=null) {
 sns.deleteTopic(snsTopicArn);
 System.out.println("SNS topic deleted");
 }
 }

 //Starts the processing of the input document.
 static void ProcessDocument(String inBucket, String inDocument, String
 inRoleArn, ProcessType type) throws Exception
 {
 bucket=inBucket;
 document=inDocument;
 roleArn=inRoleArn;

 switch(type)
 {
 case DETECTION:
 StartDocumentTextDetection(bucket, document);
 System.out.println("Processing type: Detection");
 break;
 case ANALYSIS:
 StartDocumentAnalysis(bucket,document);
 System.out.println("Processing type: Analysis");
 break;
 default:
 System.out.println("Invalid processing type. Choose Detection or
 Analysis");
 throw new Exception("Invalid processing type");

 }

133

Amazon Textract Developer Guide
Performing Asynchronous Operations

 System.out.println("Waiting for job: " + startJobId);
 //Poll queue for messages
 List<Message> messages=null;
 int dotLine=0;
 boolean jobFound=false;

 //loop until the job status is published. Ignore other messages in queue.
 do{
 messages = sqs.receiveMessage(sqsQueueUrl).getMessages();
 if (dotLine++<40){
 System.out.print(".");
 }else{
 System.out.println();
 dotLine=0;
 }

 if (!messages.isEmpty()) {
 //Loop through messages received.
 for (Message message: messages) {
 String notification = message.getBody();

 // Get status and job id from notification.
 ObjectMapper mapper = new ObjectMapper();
 JsonNode jsonMessageTree = mapper.readTree(notification);
 JsonNode messageBodyText = jsonMessageTree.get("Message");
 ObjectMapper operationResultMapper = new ObjectMapper();
 JsonNode jsonResultTree =
 operationResultMapper.readTree(messageBodyText.textValue());
 JsonNode operationJobId = jsonResultTree.get("JobId");
 JsonNode operationStatus = jsonResultTree.get("Status");
 System.out.println("Job found was " + operationJobId);
 // Found job. Get the results and display.
 if(operationJobId.asText().equals(startJobId)){
 jobFound=true;
 System.out.println("Job id: " + operationJobId);
 System.out.println("Status : " +
 operationStatus.toString());
 if (operationStatus.asText().equals("SUCCEEDED")){
 switch(type)
 {
 case DETECTION:
 GetDocumentTextDetectionResults();
 break;
 case ANALYSIS:
 GetDocumentAnalysisResults();
 break;
 default:
 System.out.println("Invalid processing type.
 Choose Detection or Analysis");
 throw new Exception("Invalid processing type");

 }
 }
 else{
 System.out.println("Document analysis failed");
 }

 sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle());
 }

 else{
 System.out.println("Job received was not job " +
 startJobId);
 //Delete unknown message. Consider moving message to dead
 letter queue
 sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle());

134

Amazon Textract Developer Guide
Performing Asynchronous Operations

 }
 }
 }
 else {
 Thread.sleep(5000);
 }
 } while (!jobFound);

 System.out.println("Finished processing document");
 }

 private static void StartDocumentTextDetection(String bucket, String document)
 throws Exception{

 //Create notification channel
 NotificationChannel channel= new NotificationChannel()
 .withSNSTopicArn(snsTopicArn)
 .withRoleArn(roleArn);

 StartDocumentTextDetectionRequest req = new
 StartDocumentTextDetectionRequest()
 .withDocumentLocation(new DocumentLocation()
 .withS3Object(new S3Object()
 .withBucket(bucket)
 .withName(document)))
 .withJobTag("DetectingText")
 .withNotificationChannel(channel);

 StartDocumentTextDetectionResult startDocumentTextDetectionResult =
 textract.startDocumentTextDetection(req);
 startJobId=startDocumentTextDetectionResult.getJobId();
 }

 //Gets the results of processing started by StartDocumentTextDetection
 private static void GetDocumentTextDetectionResults() throws Exception{
 int maxResults=1000;
 String paginationToken=null;
 GetDocumentTextDetectionResult response=null;
 Boolean finished=false;

 while (finished==false)
 {
 GetDocumentTextDetectionRequest documentTextDetectionRequest= new
 GetDocumentTextDetectionRequest()
 .withJobId(startJobId)
 .withMaxResults(maxResults)
 .withNextToken(paginationToken);
 response =
 textract.getDocumentTextDetection(documentTextDetectionRequest);
 DocumentMetadata documentMetaData=response.getDocumentMetadata();

 System.out.println("Pages: " + documentMetaData.getPages().toString());

 //Show blocks information
 List<Block> blocks= response.getBlocks();
 for (Block block : blocks) {
 DisplayBlockInfo(block);
 }
 paginationToken=response.getNextToken();
 if (paginationToken==null)
 finished=true;

 }

 }

135

Amazon Textract Developer Guide
Performing Asynchronous Operations

 private static void StartDocumentAnalysis(String bucket, String document)
 throws Exception{
 //Create notification channel
 NotificationChannel channel= new NotificationChannel()
 .withSNSTopicArn(snsTopicArn)
 .withRoleArn(roleArn);

 StartDocumentAnalysisRequest req = new StartDocumentAnalysisRequest()
 .withFeatureTypes("TABLES","FORMS")
 .withDocumentLocation(new DocumentLocation()
 .withS3Object(new S3Object()
 .withBucket(bucket)
 .withName(document)))
 .withJobTag("AnalyzingText")
 .withNotificationChannel(channel);

 StartDocumentAnalysisResult startDocumentAnalysisResult =
 textract.startDocumentAnalysis(req);
 startJobId=startDocumentAnalysisResult.getJobId();
 }
 //Gets the results of processing started by StartDocumentAnalysis
 private static void GetDocumentAnalysisResults() throws Exception{

 int maxResults=1000;
 String paginationToken=null;
 GetDocumentAnalysisResult response=null;
 Boolean finished=false;

 //loops until pagination token is null
 while (finished==false)
 {
 GetDocumentAnalysisRequest documentAnalysisRequest= new
 GetDocumentAnalysisRequest()
 .withJobId(startJobId)
 .withMaxResults(maxResults)
 .withNextToken(paginationToken);

 response = textract.getDocumentAnalysis(documentAnalysisRequest);

 DocumentMetadata documentMetaData=response.getDocumentMetadata();

 System.out.println("Pages: " + documentMetaData.getPages().toString());

 //Show blocks, confidence and detection times
 List<Block> blocks= response.getBlocks();

 for (Block block : blocks) {
 DisplayBlockInfo(block);
 }
 paginationToken=response.getNextToken();
 if (paginationToken==null)
 finished=true;
 }

 }
 //Displays Block information for text detection and text analysis
 private static void DisplayBlockInfo(Block block) {
 System.out.println("Block Id : " + block.getId());
 if (block.getText()!=null)
 System.out.println("\tDetected text: " + block.getText());
 System.out.println("\tType: " + block.getBlockType());

 if (block.getBlockType().equals("PAGE") !=true) {
 System.out.println("\tConfidence: " +
 block.getConfidence().toString());
 }

136

Amazon Textract Developer Guide
Performing Asynchronous Operations

 if(block.getBlockType().equals("CELL"))
 {
 System.out.println("\tCell information:");
 System.out.println("\t\tColumn: " + block.getColumnIndex());
 System.out.println("\t\tRow: " + block.getRowIndex());
 System.out.println("\t\tColumn span: " + block.getColumnSpan());
 System.out.println("\t\tRow span: " + block.getRowSpan());

 }

 System.out.println("\tRelationships");
 List<Relationship> relationships=block.getRelationships();
 if(relationships!=null) {
 for (Relationship relationship : relationships) {
 System.out.println("\t\tType: " + relationship.getType());
 System.out.println("\t\tIDs: " + relationship.getIds().toString());
 }
 } else {
 System.out.println("\t\tNo related Blocks");
 }

 System.out.println("\tGeometry");
 System.out.println("\t\tBounding Box: " +
 block.getGeometry().getBoundingBox().toString());
 System.out.println("\t\tPolygon: " +
 block.getGeometry().getPolygon().toString());

 List<String> entityTypes = block.getEntityTypes();

 System.out.println("\tEntity Types");
 if(entityTypes!=null) {
 for (String entityType : entityTypes) {
 System.out.println("\t\tEntity Type: " + entityType);
 }
 } else {
 System.out.println("\t\tNo entity type");
 }

 if(block.getBlockType().equals("SELECTION_ELEMENT")) {
 System.out.print(" Selection element detected: ");
 if (block.getSelectionStatus().equals("SELECTED")){
 System.out.println("Selected");
 }else {
 System.out.println(" Not selected");
 }
 }
 if(block.getPage()!=null)
 System.out.println("\tPage: " + block.getPage());
 System.out.println();
 }
}

AWS CLI

This AWS CLI command starts the asynchronous detection of text in a specified document. It
returns a job-id that can be used to retreive the results of the detection.

aws textract start-document-text-detection --document-location
"{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"file-name\"}}" --
region region-name

This AWS CLI command returns the results for an Amazon Textract asynchronous operation
when provided with a job-id.

137

Amazon Textract Developer Guide
Performing Asynchronous Operations

aws textract get-document-text-detection --region region-name --job-id job-id-
number

If you are accessing the CLI on a Windows device, use double quotes instead of single quotes
and escape the inner double quotes by backslash (i.e. \) to address any parser errors you may
encounter. For an example, see below

aws textract start-document-text-detection --document-location "{\"S3Object\":
{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" --region region-name

Python

import boto3
import json
import sys
import time

class ProcessType:
 DETECTION = 1
 ANALYSIS = 2

class DocumentProcessor:
 jobId = ''
 region_name = ''

 roleArn = ''
 bucket = ''
 document = ''

 sqsQueueUrl = ''
 snsTopicArn = ''
 processType = ''

 def __init__(self, role, bucket, document, region):
 self.roleArn = role
 self.bucket = bucket
 self.document = document
 self.region_name = region

 self.textract = boto3.client('textract', region_name=self.region_name)
 self.sqs = boto3.client('sqs')
 self.sns = boto3.client('sns')

 def ProcessDocument(self, type):
 jobFound = False

 self.processType = type
 validType = False

 # Determine which type of processing to perform
 if self.processType == ProcessType.DETECTION:
 response = self.textract.start_document_text_detection(
 DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name':
 self.document}},
 NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn':
 self.snsTopicArn})
 print('Processing type: Detection')
 validType = True

138

Amazon Textract Developer Guide
Performing Asynchronous Operations

 if self.processType == ProcessType.ANALYSIS:
 response = self.textract.start_document_analysis(
 DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name':
 self.document}},
 FeatureTypes=["TABLES", "FORMS"],
 NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn':
 self.snsTopicArn})
 print('Processing type: Analysis')
 validType = True

 if validType == False:
 print("Invalid processing type. Choose Detection or Analysis.")
 return

 print('Start Job Id: ' + response['JobId'])
 dotLine = 0
 while jobFound == False:
 sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl,
 MessageAttributeNames=['ALL'],
 MaxNumberOfMessages=10)

 if sqsResponse:

 if 'Messages' not in sqsResponse:
 if dotLine < 40:
 print('.', end='')
 dotLine = dotLine + 1
 else:
 print()
 dotLine = 0
 sys.stdout.flush()
 time.sleep(5)
 continue

 for message in sqsResponse['Messages']:
 notification = json.loads(message['Body'])
 textMessage = json.loads(notification['Message'])
 print(textMessage['JobId'])
 print(textMessage['Status'])
 if str(textMessage['JobId']) == response['JobId']:
 print('Matching Job Found:' + textMessage['JobId'])
 jobFound = True
 self.GetResults(textMessage['JobId'])
 self.sqs.delete_message(QueueUrl=self.sqsQueueUrl,

 ReceiptHandle=message['ReceiptHandle'])
 else:
 print("Job didn't match:" +
 str(textMessage['JobId']) + ' : ' +
 str(response['JobId']))
 # Delete the unknown message. Consider sending to dead letter
 queue
 self.sqs.delete_message(QueueUrl=self.sqsQueueUrl,
 ReceiptHandle=message['ReceiptHandle'])

 print('Done!')

 def CreateTopicandQueue(self):

 millis = str(int(round(time.time() * 1000)))

 # Create SNS topic
 snsTopicName = "AmazonTextractTopic" + millis

 topicResponse = self.sns.create_topic(Name=snsTopicName)
 self.snsTopicArn = topicResponse['TopicArn']

139

Amazon Textract Developer Guide
Performing Asynchronous Operations

 # create SQS queue
 sqsQueueName = "AmazonTextractQueue" + millis
 self.sqs.create_queue(QueueName=sqsQueueName)
 self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)
['QueueUrl']

 attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl,
 AttributeNames=['QueueArn'])
['Attributes']

 sqsQueueArn = attribs['QueueArn']

 # Subscribe SQS queue to SNS topic
 self.sns.subscribe(
 TopicArn=self.snsTopicArn,
 Protocol='sqs',
 Endpoint=sqsQueueArn)

 # Authorize SNS to write SQS queue
 policy = """{{
 "Version":"2012-10-17",
 "Statement":[
 {{
 "Sid":"MyPolicy",
 "Effect":"Allow",
 "Principal" : {{"AWS" : "*"}},
 "Action":"SQS:SendMessage",
 "Resource": "{}",
 "Condition":{{
 "ArnEquals":{{
 "aws:SourceArn": "{}"
 }}
 }}
 }}
]
}}""".format(sqsQueueArn, self.snsTopicArn)

 response = self.sqs.set_queue_attributes(
 QueueUrl=self.sqsQueueUrl,
 Attributes={
 'Policy': policy
 })

 def DeleteTopicandQueue(self):
 self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl)
 self.sns.delete_topic(TopicArn=self.snsTopicArn)

 # Display information about a block
 def DisplayBlockInfo(self, block):

 print("Block Id: " + block['Id'])
 print("Type: " + block['BlockType'])
 if 'EntityTypes' in block:
 print('EntityTypes: {}'.format(block['EntityTypes']))

 if 'Text' in block:
 print("Text: " + block['Text'])

 if block['BlockType'] != 'PAGE':
 print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%")

 print('Page: {}'.format(block['Page']))

 if block['BlockType'] == 'CELL':
 print('Cell Information')

140

Amazon Textract Developer Guide
Performing Asynchronous Operations

 print('\tColumn: {} '.format(block['ColumnIndex']))
 print('\tRow: {}'.format(block['RowIndex']))
 print('\tColumn span: {} '.format(block['ColumnSpan']))
 print('\tRow span: {}'.format(block['RowSpan']))

 if 'Relationships' in block:
 print('\tRelationships: {}'.format(block['Relationships']))

 print('Geometry')
 print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox']))
 print('\tPolygon: {}'.format(block['Geometry']['Polygon']))

 if block['BlockType'] == 'SELECTION_ELEMENT':
 print(' Selection element detected: ', end='')
 if block['SelectionStatus'] == 'SELECTED':
 print('Selected')
 else:
 print('Not selected')

 def GetResults(self, jobId):
 maxResults = 1000
 paginationToken = None
 finished = False

 while finished == False:

 response = None

 if self.processType == ProcessType.ANALYSIS:
 if paginationToken == None:
 response = self.textract.get_document_analysis(JobId=jobId,

 MaxResults=maxResults)
 else:
 response = self.textract.get_document_analysis(JobId=jobId,

 MaxResults=maxResults,

 NextToken=paginationToken)

 if self.processType == ProcessType.DETECTION:
 if paginationToken == None:
 response =
 self.textract.get_document_text_detection(JobId=jobId,

 MaxResults=maxResults)
 else:
 response =
 self.textract.get_document_text_detection(JobId=jobId,

 MaxResults=maxResults,

 NextToken=paginationToken)

 blocks = response['Blocks']
 print('Detected Document Text')
 print('Pages: {}'.format(response['DocumentMetadata']['Pages']))

 # Display block information
 for block in blocks:
 self.DisplayBlockInfo(block)
 print()
 print()

 if 'NextToken' in response:
 paginationToken = response['NextToken']

141

Amazon Textract Developer Guide
Performing Asynchronous Operations

 else:
 finished = True

 def GetResultsDocumentAnalysis(self, jobId):
 maxResults = 1000
 paginationToken = None
 finished = False

 while finished == False:

 response = None
 if paginationToken == None:
 response = self.textract.get_document_analysis(JobId=jobId,

 MaxResults=maxResults)
 else:
 response = self.textract.get_document_analysis(JobId=jobId,

 MaxResults=maxResults,

 NextToken=paginationToken)

 # Get the text blocks
 blocks = response['Blocks']
 print('Analyzed Document Text')
 print('Pages: {}'.format(response['DocumentMetadata']['Pages']))
 # Display block information
 for block in blocks:
 self.DisplayBlockInfo(block)
 print()
 print()

 if 'NextToken' in response:
 paginationToken = response['NextToken']
 else:
 finished = True

def main():
 roleArn = ''
 bucket = ''
 document = ''
 region_name = ''

 analyzer = DocumentProcessor(roleArn, bucket, document, region_name)
 analyzer.CreateTopicandQueue()
 analyzer.ProcessDocument(ProcessType.DETECTION)
 analyzer.DeleteTopicandQueue()

if __name__ == "__main__":
 main()

Node.JS

In this example, replace the value of roleArn with the IAM role ARN that you saved in Giving
Amazon Textract Access to Your Amazon SNS Topic (p. 129). Replace the values of bucket
and document with the bucket and document file name you specified in step 2 above. Replace
the value of processType with the type of processing you'd like to use on the input document.
Finally, replace the value of REGION with the region your client is operating in.

 // snippet-start:[sqs.JavaScript.queues.createQueueV3]
// Import required AWS SDK clients and commands for Node.js
import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand,

142

Amazon Textract Developer Guide
Performing Asynchronous Operations

 SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand,
 DeleteMessageCommand } from "@aws-sdk/client-sqs";
 import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-
sdk/client-sns";
 import { SQSClient } from "@aws-sdk/client-sqs";
 import { SNSClient } from "@aws-sdk/client-sns";
 import { TextractClient, StartDocumentTextDetectionCommand,
 StartDocumentAnalysisCommand, GetDocumentAnalysisCommand,
 GetDocumentTextDetectionCommand, DocumentMetadata } from "@aws-sdk/client-
textract";
 import { stdout } from "process";

 // Set the AWS Region.
 const REGION = "us-east-1"; //e.g. "us-east-1"
 // Create SNS service object.
 const sqsClient = new SQSClient({ region: REGION });
 const snsClient = new SNSClient({ region: REGION });
 const textractClient = new TextractClient({ region: REGION });

 // Set bucket and video variables
 const bucket = "bucket-name";

 const documentName = "document-name";
 const roleArn = "role-arn"
 const processType = "DETECTION"
 var startJobId = ""

 var ts = Date.now();
 const snsTopicName = "AmazonTextractExample" + ts;
 const snsTopicParams = {Name: snsTopicName}
 const sqsQueueName = "AmazonTextractQueue-" + ts;

 // Set the parameters
 const sqsParams = {
 QueueName: sqsQueueName, //SQS_QUEUE_URL
 Attributes: {
 DelaySeconds: "60", // Number of seconds delay.
 MessageRetentionPeriod: "86400", // Number of seconds delay.
 },
 };

 // Process a document based on operation type
 const processDocumment = async (type, bucket, videoName, roleArn, sqsQueueUrl,
 snsTopicArn) =>
 {
 try
 {
 // Set job found and success status to false initially
 var jobFound = false
 var succeeded = false
 var dotLine = 0
 var processType = type
 var validType = false

 if (processType == "DETECTION"){
 var response = await textractClient.send(new
 StartDocumentTextDetectionCommand({DocumentLocation:{S3Object:{Bucket:bucket,
 Name:videoName}},
 NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}}))
 console.log("Processing type: Detection")
 validType = true
 }

 if (processType == "ANALYSIS"){

143

Amazon Textract Developer Guide
Performing Asynchronous Operations

 var response = await textractClient.send(new
 StartDocumentAnalysisCommand({DocumentLocation:{S3Object:{Bucket:bucket,
 Name:videoName}},
 NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}}))
 console.log("Processing type: Analysis")
 validType = true
 }

 if (validType == false){
 console.log("Invalid processing type. Choose Detection or Analysis.")
 return
 }
 // while not found, continue to poll for response
 console.log(`Start Job ID: ${response.JobId}`)
 while (jobFound == false){
 var sqsReceivedResponse = await sqsClient.send(new
 ReceiveMessageCommand({QueueUrl:sqsQueueUrl,
 MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10}));
 if (sqsReceivedResponse){
 var responseString = JSON.stringify(sqsReceivedResponse)
 if (!responseString.includes('Body')){
 if (dotLine < 40) {
 console.log('.')
 dotLine = dotLine + 1
 }else {
 console.log('')
 dotLine = 0
 };
 stdout.write('', () => {
 console.log('');
 });
 await new Promise(resolve => setTimeout(resolve, 5000));
 continue
 }
 }

 // Once job found, log Job ID and return true if status is succeeded
 for (var message of sqsReceivedResponse.Messages){
 console.log("Retrieved messages:")
 var notification = JSON.parse(message.Body)
 var rekMessage = JSON.parse(notification.Message)
 var messageJobId = rekMessage.JobId
 if (String(rekMessage.JobId).includes(String(startJobId))){
 console.log('Matching job found:')
 console.log(rekMessage.JobId)
 jobFound = true
 // GET RESUlTS FUNCTION HERE
 var operationResults = await GetResults(processType,
 rekMessage.JobId)
 //GET RESULTS FUMCTION HERE
 console.log(rekMessage.Status)
 if (String(rekMessage.Status).includes(String("SUCCEEDED"))){
 succeeded = true
 console.log("Job processing succeeded.")
 var sqsDeleteMessage = await
 sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl,
 ReceiptHandle:message.ReceiptHandle}));
 }
 }else{
 console.log("Provided Job ID did not match returned ID.")
 var sqsDeleteMessage = await sqsClient.send(new
 DeleteMessageCommand({QueueUrl:sqsQueueUrl,
 ReceiptHandle:message.ReceiptHandle}));
 }
 }

144

Amazon Textract Developer Guide
Performing Asynchronous Operations

 console.log("Done!")
 }
 }catch (err) {
 console.log("Error", err);
 }
 }

 // Create the SNS topic and SQS Queue
 const createTopicandQueue = async () => {
 try {
 // Create SNS topic
 const topicResponse = await snsClient.send(new
 CreateTopicCommand(snsTopicParams));
 const topicArn = topicResponse.TopicArn
 console.log("Success", topicResponse);
 // Create SQS Queue
 const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams));
 console.log("Success", sqsResponse);
 const sqsQueueCommand = await sqsClient.send(new
 GetQueueUrlCommand({QueueName: sqsQueueName}))
 const sqsQueueUrl = sqsQueueCommand.QueueUrl
 const attribsResponse = await sqsClient.send(new
 GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']}))
 const attribs = attribsResponse.Attributes
 console.log(attribs)
 const queueArn = attribs.QueueArn
 // subscribe SQS queue to SNS topic
 const subscribed = await snsClient.send(new SubscribeCommand({TopicArn:
 topicArn, Protocol:'sqs', Endpoint: queueArn}))
 const policy = {
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "MyPolicy",
 Effect: "Allow",
 Principal: {AWS: "*"},
 Action: "SQS:SendMessage",
 Resource: queueArn,
 Condition: {
 ArnEquals: {
 'aws:SourceArn': topicArn
 }
 }
 }
]
 };

 const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl:
 sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}}))
 console.log(response)
 console.log(sqsQueueUrl, topicArn)
 return [sqsQueueUrl, topicArn]

 } catch (err) {
 console.log("Error", err);

 }
 }

 const deleteTopicAndQueue = async (sqsQueueUrlArg, snsTopicArnArg) => {
 const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl:
 sqsQueueUrlArg}));
 const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn:
 snsTopicArnArg}));
 console.log("Successfully deleted.")
 }

145

Amazon Textract Developer Guide
Performing Asynchronous Operations

 const displayBlockInfo = async (block) => {
 console.log(`Block ID: ${block.Id}`)
 console.log(`Block Type: ${block.BlockType}`)
 if (String(block).includes(String("EntityTypes"))){
 console.log(`EntityTypes: ${block.EntityTypes}`)
 }
 if (String(block).includes(String("Text"))){
 console.log(`EntityTypes: ${block.Text}`)
 }
 if (!String(block.BlockType).includes('PAGE')){
 console.log(`Confidence: ${block.Confidence}`)
 }
 console.log(`Page: ${block.Page}`)
 if (String(block.BlockType).includes("CELL")){
 console.log("Cell Information")
 console.log(`Column: ${block.ColumnIndex}`)
 console.log(`Row: ${block.RowIndex}`)
 console.log(`Column Span: ${block.ColumnSpan}`)
 console.log(`Row Span: ${block.RowSpan}`)
 if (String(block).includes("Relationships")){
 console.log(`Relationships: ${block.Relationships}`)
 }
 }

 console.log("Geometry")
 console.log(`Bounding Box: ${JSON.stringify(block.Geometry.BoundingBox)}`)
 console.log(`Polygon: ${JSON.stringify(block.Geometry.Polygon)}`)

 if (String(block.BlockType).includes('SELECTION_ELEMENT')){
 console.log('Selection Element detected:')
 if (String(block.SelectionStatus).includes('SELECTED')){
 console.log('Selected')
 } else {
 console.log('Not Selected')
 }

 }
 }

 const GetResults = async (processType, JobID) => {

 var maxResults = 1000
 var paginationToken = null
 var finished = false

 while (finished == false){
 var response = null
 if (processType == 'ANALYSIS'){
 if (paginationToken == null){
 response = textractClient.send(new
 GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults}))

 }else{
 response = textractClient.send(new
 GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults,
 NextToken:paginationToken}))
 }
 }

 if(processType == 'DETECTION'){
 if (paginationToken == null){
 response = textractClient.send(new
 GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults}))

 }else{

146

Amazon Textract Developer Guide
Amazon Textract Results Notification

 response = textractClient.send(new
 GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults,
 NextToken:paginationToken}))
 }
 }

 await new Promise(resolve => setTimeout(resolve, 5000));
 console.log("Detected Documented Text")
 console.log(response)
 //console.log(Object.keys(response))
 console.log(typeof(response))
 var blocks = (await response).Blocks
 console.log(blocks)
 console.log(typeof(blocks))
 var docMetadata = (await response).DocumentMetadata
 var blockString = JSON.stringify(blocks)
 var parsed = JSON.parse(JSON.stringify(blocks))
 console.log(Object.keys(blocks))
 console.log(`Pages: ${docMetadata.Pages}`)
 blocks.forEach((block)=> {
 displayBlockInfo(block)
 console.log()
 console.log()
 })

 //console.log(blocks[0].BlockType)
 //console.log(blocks[1].BlockType)

 if(String(response).includes("NextToken")){
 paginationToken = response.NextToken
 }else{
 finished = true
 }
 }

 }

 // DELETE TOPIC AND QUEUE
 const main = async () => {
 var sqsAndTopic = await createTopicandQueue();
 var process = await processDocumment(processType, bucket, documentName,
 roleArn, sqsAndTopic[0], sqsAndTopic[1])
 var deleteResults = await deleteTopicAndQueue(sqsAndTopic[0], sqsAndTopic[1])
 }

main()

4. Run the code. The operation might take a while to finish. After it's finished, a list of blocks for
detected or analyzed text is displayed.

Amazon Textract Results Notification
Amazon Textract publishes the results of an Amazon Textract analysis request, including completion
status, to an Amazon Simple Notification Service (Amazon SNS) topic. To get the notification from an
Amazon SNS topic, use an Amazon SQS queue or an AWS Lambda function. For more information, see
Calling Amazon Textract Asynchronous Operations (p. 118). For an example, see Detecting or Analyzing
Text in a Multipage Document (p. 130).

The results have the following JSON format:

147

Amazon Textract Developer Guide
Amazon Textract Results Notification

{
 "JobId": "String",
 "Status": "String",
 "API": "String",
 "JobTag": "String",
 "Timestamp": Number,
 "DocumentLocation": {
 "S3ObjectName": "String",
 "S3Bucket": "String"
 }
}

This table describes the different parameters within an Amazon Textract response.

Parameter Description

JobId The unique identifier that Amazon Textract
assigns to the job. It matches a job identifier
that's returned from a Start operation, such as
StartDocumentTextDetection (p. 260).

Status The status of the job. Valid values are Succeeded,
Failed, or Error.

API The Amazon Textract operation used
to analyze the input document, such as
StartDocumentTextDetection (p. 260) or
StartDocumentAnalysis (p. 255).

JobTag The user-specified identifier for the job. You
specify JobTag in a call to the Start operation,
such as StartDocumentTextDetection (p. 260).

Timestamp The Unix timestamp that indicates when the job
finished, returned in milliseconds.

DocumentLocation Details about the document that was processed.
Includes the file name and the Amazon S3 bucket
that the file is stored in.

148

Amazon Textract Developer Guide

Handling Throttled Calls and
Dropped Connections

An Amazon Textract operation can fail if you exceed the maximum number of transactions per second
(TPS), causing the service to throttle your application, or when your connection drops. For example,
if you make too many calls to Amazon Textract operations in a short period of time, it throttles your
calls and sends a ProvisionedThroughputExceededException error in the operation response. For
information about Amazon Textract TPS quotas, see Amazon Textract Quotas.

You can manage throttling and dropped connections by automatically retrying the operation. You can
specify the number of retries by including the Config parameter when you create the Amazon Textract
client. We recommend a retry count of 5. The AWS SDK retries an operation the specified number of
times before failing and throwing an exception. For more information, see Error Retries and Exponential
Backoff in AWS.

Note
Automatic retries work for both synchronous and asynchronous operations. Before specifying
automatic retries, make sure you have the most recent version of the AWS SDK. For more
information, see Step 2: Set Up the AWS CLI and AWS SDKs (p. 36).

The following example shows how to automatically retry Amazon Textract operations when you're
processing multiple documents.

Prerequisites

• If you haven't already:

a. Create or update an IAM user with AmazonTextractFullAccess and
AmazonS3ReadOnlyAccess permissions. For more information, see Step 1: Set Up an AWS
Account and Create an IAM User (p. 36).

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up
the AWS CLI and AWS SDKs (p. 36).

To automatically retry operations

1. Upload multiple document images to your S3 bucket to run the Synchronous example. Upload a
multi-page document to your S3 bucket and run StartDocumentTextDetection on it to run the
Asynchronous example.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User
Guide.

2. The following examples demonstrate how to use the Config parameter to automatically retry
an operation. The Synchronous example calls the DetectDocumentText operation, while the
Asynchronous example calls the GetDocumentTextDetection operation.

Sync Example

Use the following examples to call the DetectDocumentText operation on the documents in
your Amazon S3 bucket. In main, change the value of bucket to your S3 bucket. Change the
value of documents to the names of the document images that you uploaded in step 2.

import boto3
from botocore.client import Config
Documents

149

https://docs.aws.amazon.com/general/latest/gr/textract.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Textract Developer Guide

def process_multiple_documents(bucket, documents):

 config = Config(retries = dict(max_attempts = 5))

 # Amazon Textract client
 textract = boto3.client('textract', config=config)

 for documentName in documents:

 print("\nProcessing:
 {}\n==".format(documentName))

 # Call Amazon Textract
 response = textract.detect_document_text(
 Document={
 'S3Object': {
 'Bucket': bucket,
 'Name': documentName
 }
 })

 # Print detected text
 for item in response["Blocks"]:
 if item["BlockType"] == "LINE":
 print ('\033[94m' + item["Text"] + '\033[0m')

def main():
 bucket = ""
 documents = ["document-image-1.png",
 "document-image-2.png", "document-image-3.png",
 "document-image-4.png", "document-image-5.png"]
 process_multiple_documents(bucket, documents)

if __name__ == "__main__":
 main()

Async Example

Use the following examples to call the GetDocumentTextDetection operation. It assumes
you have already called StartDocumentTextDetection on the documents in your Amazon
S3 bucket and obtained a JobId. In main, change the value of bucket to your S3 bucket and
the value of roleArn to the Arn assigned to your Textract role. You'll also need to change
the value of document to the name of your multi-page document in your Amazon S3 bucket.
Finally, replace the value of region_name with the name of your region and provide the
GetResults function with the name of your jobId.

import boto3
from botocore.client import Config

class DocumentProcessor:
 jobId = ''
 region_name = ''

 roleArn = ''
 bucket = ''
 document = ''

 sqsQueueUrl = ''
 snsTopicArn = ''

150

Amazon Textract Developer Guide

 processType = ''

 def __init__(self, role, bucket, document, region):
 self.roleArn = role
 self.bucket = bucket
 self.document = document
 self.region_name = region
 self.config = Config(retries = dict(max_attempts = 5))

 self.textract = boto3.client('textract', region_name=self.region_name,
 config=self.config)
 self.sqs = boto3.client('sqs')
 self.sns = boto3.client('sns')

Display information about a block
 def DisplayBlockInfo(self, block):

 print("Block Id: " + block['Id'])
 print("Type: " + block['BlockType'])
 if 'EntityTypes' in block:
 print('EntityTypes: {}'.format(block['EntityTypes']))

 if 'Text' in block:
 print("Text: " + block['Text'])

 if block['BlockType'] != 'PAGE':
 print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%")

 print('Page: {}'.format(block['Page']))

 if block['BlockType'] == 'CELL':
 print('Cell Information')
 print('\tColumn: {} '.format(block['ColumnIndex']))
 print('\tRow: {}'.format(block['RowIndex']))
 print('\tColumn span: {} '.format(block['ColumnSpan']))
 print('\tRow span: {}'.format(block['RowSpan']))

 if 'Relationships' in block:
 print('\tRelationships: {}'.format(block['Relationships']))

 print('Geometry')
 print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox']))
 print('\tPolygon: {}'.format(block['Geometry']['Polygon']))

 if block['BlockType'] == 'SELECTION_ELEMENT':
 print(' Selection element detected: ', end='')
 if block['SelectionStatus'] == 'SELECTED':
 print('Selected')
 else:
 print('Not selected')

 def GetResults(self, jobId):
 maxResults = 1000
 paginationToken = None
 finished = False

 while finished == False:

 response = None

 if paginationToken == None:
 response = self.textract.get_document_text_detection(JobId=jobId,

 MaxResults=maxResults)
 else:
 response = self.textract.get_document_text_detection(JobId=jobId,

151

Amazon Textract Developer Guide

 MaxResults=maxResults,

 NextToken=paginationToken)

 blocks = response['Blocks']
 print('Detected Document Text')
 print('Pages: {}'.format(response['DocumentMetadata']['Pages']))

 # Display block information
 for block in blocks:
 self.DisplayBlockInfo(block)
 print()
 print()

 if 'NextToken' in response:
 paginationToken = response['NextToken']
 else:
 finished = True

def main():
 roleArn = 'role-arn'
 bucket = 'bucket-name'
 document = 'document-name'
 region_name = 'region-name'
 analyzer = DocumentProcessor(roleArn, bucket, document, region_name)
 analyzer.GetResults("job-id")

if __name__ == "__main__":
 main()

152

Amazon Textract Developer Guide
Provide an Optimal Input Document

Best Practices for Amazon Textract
Amazon Textract uses machine learning to read documents as a person would. It extracts text,
tables, and forms from documents. Use the following best practices to get the best results from your
documents.

Provide an Optimal Input Document
The following is a list of a few ways that you can optimize your input documents for better results.

• Ensure that your document text is in a language that Amazon Textract supports. Currently, Amazon
Textract supports English, Spanish, German, Italian, French, and Portuguese.

• Provide a high quality image, ideally at least 150 DPI.
• If your document is already in one of the file formats that Amazon Textract supports (PDF, TIFF, JPEG,

and PNG), don't convert or downsample the document before uploading it to Amazon Textract.

For the best results when extracting text from tables in documents, ensure that:

• Tables in your document are visually separated from surrounding elements on the page. For example,
the table isn't overlaid onto an image or complex pattern.

• Text within the table is upright. For example, the text isn't rotated relative to other text on the page.

When extracting text from tables, you might see inconsistent results when:

• Merged table cells that span multiple columns.
• Tables with cells, rows, or columns that are different from other parts of the same table.

We recommend using text detection (p. 3) as a workaround.

Use Confidence Scores
You should take into account the confidence scores returned by Amazon Textract API operations and
the sensitivity of their use case. A confidence score is a number between 0 and 100 that indicates the
probability that a given prediction is correct. It helps you make informed decisions about how you use
the results.

In applications that are sensitive to detection errors (false positives), enforce a minimum confidence
score threshold. The application should discard results below that threshold or flag situations as
requiring a higher level of human scrutiny.

The optimal threshold depends on the application. For archival purposes, such as documenting
handwritten notes, it might be as low as 50%. Business processes involving financial decisions might
require thresholds of 90% or higher.

Consider Using Human Review
Also consider incorporating human review into your workflows. This is especially important for sensitive
applications, such as business processes that involve financial decisions.

153

Amazon Textract Developer Guide
Best Practices for Queries

Best Practices for Queries
General Best Practices for Queries

Extracting Cells from Tables
Construct a query that contains words from both row header and column header.

Examples, for the image below

Query 1: What date was the 2nd dose administered?

Answer 1: 2/8/2021

Query 2: Who is the manufacturer of the 1st dose?

Answer 2: Pfizer

Extracting Tables using Queries
Extraction of entire tables or whole rows or columns of information using queries is not supported.

Long Answers
Long answers increase response latency and can lead to timeouts. Try to ask questions that respond with
answers to less than 100 words.

Passing Only Hints
Passing only the the key name as the question will work when trying to extract standard key-value pairs
from a form. We recommend framing full questions for all other extraction use cases.

Examples, for the image below

Query 1: Borrower's Name.

Answer 1: Carlos Salazar

Query 2: Social Security Number.

Answer 2: 999-99-9999

154

Amazon Textract Developer Guide
Genral Phrasing of Questions

Genral Phrasing of Questions
Where possible, use words from the document to construct the query.

• While Queries tries to do acronym / synonym matching for some common industry terms (SSN vs Tax
ID vs Social Security Number), using language directly from the document will in general improve
results.

• Example: If the document says “job progress”, try to avoid calling it using other variations like “ project
progress” or “program progress” or “job status”

In general, ask a natural language question that starts with "What is / Where is / Who is..". The exception
to this rule is when trying to extract standard key-value pairs in which case you can pass the key name as
a a query.

Avoid ill-formed or grammatically incorrect questions since these could result in unexpected answers.

• Example of ill-formed Query: When?
• Example of well formed Query: When was the first vaccine dose administered?

Be as specific as possible. Some examples follow.

• When the document contains multiple sections (e. g. “Borrower” and “Co-Borrower”) and both sections
have a field called SSN, ask: “What is the SSN for Borrower?” and “What is the SSN for Co-Borrower?”

• When the document has multiple date related fields, be specific in the query language and ask “what
is the date the document was signed on? or ”what is the the date of birth of the application“. Avoid
asking ambiguous questions like ”What is the date?“

If you know the layout of the document beforehand, giving location hints improve accuracy of results.
For example “What is the date at the top?” or ask “What is the date on the left?”, “What is the date at the
bottom?

Example Queries
If you are having trouble with forming questions, this section has examples for different common
document types.

Paystubs
• What is the Pay Period Start Date?
• What is the Pay Period End Date?
• What is the Pay Date?
• What is the Employee Name?
• What is the company Name?
• What is the Current Gross Pay?
• What is the YTD Gross Pay?
• What is the regular hourly rate?
• What is the holiday rate?

Bank Statements
• What is the Customer/Account Name?

155

Amazon Textract Developer Guide
Example Queries

• What is the Bank Name?

• What is the Account Number?

• What is the Account Type?

• What is the Beginning Balance?

• What is the Total Deposits?

• What is the Total Withdrawal?

• What is the Ending balance?

• What is the Average balance?

Checks
• What is the check number?

• What is the date?

• What is the check amount?

• What is the dollar amount?

• Who is the payee of this check?

• What is the bank routing number?

Credit Card Statements
• What is the customer name?

• What is the credit card company name?

• What is the account number?

• What is the payment due date?

• What is the new balance?

• What is the minimum payment due?

• What is the past due amount?

• What is the previous balance?

W2 Form
• What is the form year?

• What is the form type?

• What is the Employee SSN?

• What is the Employer Name?

• What is wages, tips, other compensation amount?

• What is the Federal Income Tax withheld amount?

• What is the social security wages amount?

• What is the social security Taxes withheld amount?

• What is the value type in Box 12a?

• What is the value amount in Box 12a?

• What is the value type in Box 12b?

• What is the value amount in Box 12b?

• What is the value type in Box 12c?

156

Amazon Textract Developer Guide
Example Queries

• Is Box 13 Statutory employee selected?
• s Box 13 Retirement plan selected?
• Is Box 13 Third-party sick pay selected?

1099DIV Form
• What is the form year?
• What is the form type?
• Is the document corrected?
• Is the document void?
• What is payer name?
• What is payer address?
• What is the payer TIN?
• What is the account number?
• What is the amount in box 1a?
• How much is the total ordinary divdends?
• What is the amount in box 1b?
• How much is state tax withheld?

1099INT Form
• What is the form year?
• What is the form type?
• Is the document corrected?
• Is Payer's RTN?
• What is the amount in box 1?
• How much is interest income?
• What is the amount in box 2?
• How much is early withdrawal penalty?
• What is the amount in box 17?
• How much is state tax withheld?

1099MISC Form
• What is the Form year?
• What is the Form type?
• Is the document corrected?
• Is Payer's TIN?
• What is the account number?
• What is the amount in box 1?
• How much is rents?
• What is the amount in box 2?
• How much is royalties??
• What is the amount in box 17?
• How much is state income?

157

Amazon Textract Developer Guide
Example Queries

1099R Form
• What is the form year?
• What is the form type?
• Is the document corrected?
• Is the FATCA filling requirement checked?
• Is box 12 checked?
• What is the account number?
• What is the amount in box 1?
• How much is the gross distribution?
• What is the amount in 2a?
• How much is the taxable amount
• What is the amount in box 19?
• How much is local distribution

Vaccination Cards
• What is the date for the 1st dose?
• Which clinic site or health care professional was the 2nd dose administrated?
• What is the lot number for 1st dose ?
• Who is the manufacturer for the 2nd dose?
• What is the first name?
• What is the lot number for the 3rd dose?

Fannie Mae 1003 Form
• Borrower's name
• Co-borrower's name
• What is the Co-Borrower DOB?
• What is the Borrower's DOB?
• What is borrower present address?
• What is co-borrower present address?
• What is borrower mailing address?
• What is co-borrower mailing address?

Fannie Mae 1005 Form
• What is the form type?
• What is the name of the current employer?
• What is the address of the current employer?
• What is the name of the lender?
• What is the YTD Base Pay amount?
• What is the YTD Overtime amount?
• What is the YTD Commissions amount?
• What is the YTD Bonus amount?

158

Amazon Textract Developer Guide
Setting up Pages for Queries

• What is authorized signature date?

Health Insurance Cards
• What is medical insurance provider
• What is the plan type?
• What is the member/subscriber ID?
• What is the group number?
• What is the memeber name?
• What is the plan number
• What is the RxBIN?
• What is the RxPCN?
• What is the RxGRP?
• What is the coninsurance amount?
• What is the out of pocket maximum?

Perscription Labels
• What is the pharmacy name?
• What is the pharmacy address?
• What is the doctor/physician name?
• What is the prescription number?
• What is the patient name?
• What is the patient address?
• What is the number of refills allowed?
• What is the drug expiration date?

College IDs
• What is the institution name?
• What is the student/employee name?
• What is the student/employee ID?
• What is the expiry date?
• What is the issue date?

Setting up Pages for Queries
When working with queries for multipage documents, you can use the Page parameter to specify which
pages to look for the query answer on. What follows is a list of best practices for setting up Pages

• If a page is not specified, it is set to ["1"] by default.
• The following characters are allowed in the parameter's string: 0 1 2 3 4 5 6 7 8 9 - *. No

whitespace is allowed.
• When using * to indicate all pages, it must be the only element in the list.
• You can use page intervals, such as [“1-3”, “1-1”, “4-*”]. Where * indicates last page of

document.

159

Amazon Textract Developer Guide
Setting up Pages for Queries

• Specified pages must be greater than 0 and less than or equal to the number of pages in the
document.

160

Amazon Textract Developer Guide
Prerequisites

Tutorials
the section called “Block” (p. 270) objects that are returned from Amazon Textract operations
contain the results of text detection and text analysis operations, such as the section called
“AnalyzeDocument” (p. 222). The following Python tutorials show some of the different ways that you
can use Block objects. For example, you can export table information to a comma-separated values (CSV)
file.

The tutorials use synchronous Amazon Textract operations that return all results. If you want to use
asynchronous operations such as the section called “StartDocumentAnalysis” (p. 255), you need
to change the example code to accommodate multiple batches of returned Block objects. To make
use of the asynchronous operations example, ensure that you have followed the instructions given at
Configuring Amazon Textract for Asynchronous Operations (p. 128).

For examples that show you other ways to use Amazon Textract, see Additional Code Samples (p. 172).

Topics

• Prerequisites (p. 161)

• Extracting Key-Value Pairs from a Form Document (p. 161)

• Exporting Tables into a CSV File (p. 163)

• Creating an AWS Lambda Function (p. 170)

• Additional Code Samples (p. 172)

Prerequisites
Before you can run the examples in this section, you have to configure your environment.

To configure your environment

1. Create or update an IAM user with AmazonTextractFullAccess permissions. For more
information, see Step 1: Set Up an AWS Account and Create an IAM User (p. 36).

2. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 2: Set Up the
AWS CLI and AWS SDKs (p. 36).

Extracting Key-Value Pairs from a Form Document
The following Python example shows how to extract key-value pairs in form documents from the
section called “Block” (p. 270) objects that are stored in a map. Block objects are returned from a call
to the section called “AnalyzeDocument” (p. 222). For more information, see Form Data (Key-Value
Pairs) (p. 15).

You use the following functions:

• get_kv_map – Calls AnalyzeDocument (p. 222), and stores the KEY and VALUE BLOCK objects in a
map.

161

Amazon Textract Developer Guide
Extracting Key-Value Pairs from a Form Document

• get_kv_relationship and find_value_block – Constructs the key-value relationships from the
map.

To extract key-value pairs from a form document

1. Configure your environment. For more information, see Prerequisites (p. 161).

2. Save the following example code to a file named textract_python_kv_parser.py.

import boto3
import sys
import re
import json

def get_kv_map(file_name):

 with open(file_name, 'rb') as file:
 img_test = file.read()
 bytes_test = bytearray(img_test)
 print('Image loaded', file_name)

 # process using image bytes
 client = boto3.client('textract')
 response = client.analyze_document(Document={'Bytes': bytes_test},
 FeatureTypes=['FORMS'])

 # Get the text blocks
 blocks=response['Blocks']

 # get key and value maps
 key_map = {}
 value_map = {}
 block_map = {}
 for block in blocks:
 block_id = block['Id']
 block_map[block_id] = block
 if block['BlockType'] == "KEY_VALUE_SET":
 if 'KEY' in block['EntityTypes']:
 key_map[block_id] = block
 else:
 value_map[block_id] = block

 return key_map, value_map, block_map

def get_kv_relationship(key_map, value_map, block_map):
 kvs = {}
 for block_id, key_block in key_map.items():
 value_block = find_value_block(key_block, value_map)
 key = get_text(key_block, block_map)
 val = get_text(value_block, block_map)
 kvs[key] = val
 return kvs

def find_value_block(key_block, value_map):
 for relationship in key_block['Relationships']:
 if relationship['Type'] == 'VALUE':
 for value_id in relationship['Ids']:
 value_block = value_map[value_id]
 return value_block

162

Amazon Textract Developer Guide
Exporting Tables into a CSV File

def get_text(result, blocks_map):
 text = ''
 if 'Relationships' in result:
 for relationship in result['Relationships']:
 if relationship['Type'] == 'CHILD':
 for child_id in relationship['Ids']:
 word = blocks_map[child_id]
 if word['BlockType'] == 'WORD':
 text += word['Text'] + ' '
 if word['BlockType'] == 'SELECTION_ELEMENT':
 if word['SelectionStatus'] == 'SELECTED':
 text += 'X '

 return text

def print_kvs(kvs):
 for key, value in kvs.items():
 print(key, ":", value)

def search_value(kvs, search_key):
 for key, value in kvs.items():
 if re.search(search_key, key, re.IGNORECASE):
 return value

def main(file_name):

 key_map, value_map, block_map = get_kv_map(file_name)

 # Get Key Value relationship
 kvs = get_kv_relationship(key_map, value_map, block_map)
 print("\n\n== FOUND KEY : VALUE pairs ===\n")
 print_kvs(kvs)

 # Start searching a key value
 while input('\n Do you want to search a value for a key? (enter "n" for exit) ') !=
 'n':
 search_key = input('\n Enter a search key:')
 print('The value is:', search_value(kvs, search_key))

if __name__ == "__main__":
 file_name = sys.argv[1]
 main(file_name)

3. At the command prompt, enter the following command. Replace file with the document image file
that you want to analyze.

textract_python_kv_parser.py file

4. When you're prompted, enter a key that's in the input document. If the code detects the key, it
displays the key's value.

Exporting Tables into a CSV File
These Python examples show how to export tables from an image of a document into a comma-
separated values (CSV) file.

The example for synchronous document analysis collects table information from a call to the section
called “AnalyzeDocument” (p. 222). The example for asynchronous document analysis makes a call

163

Amazon Textract Developer Guide
Exporting Tables into a CSV File

to the section called “StartDocumentAnalysis” (p. 255) and then retrives the results from the section
called “GetDocumentAnalysis” (p. 239) as Block objects.

Table information is returned as the section called “Block” (p. 270) objects from a call to the section
called “AnalyzeDocument” (p. 222). For more information, see Tables (p. 17). The Block objects are
stored in a map structure that's used to export the table data into a CSV file.

Synchronous

In this example, you will use the functions:

• get_table_csv_results – Calls AnalyzeDocument (p. 222), and builds a map of tables that
are detected in the document. Creates a CSV representation of all detected tables.

• generate_table_csv – Generates the CSV file for an individual table.
• get_rows_columns_map – Gets the rows and columns from the map.
• get_text – Gets the text from a cell.

To export tables into a CSV file

1. Configure your environment. For more information, see Prerequisites (p. 161).
2. Save the following example code to a file named textract_python_table_parser.py.

import webbrowser, os
import json
import boto3
import io
from io import BytesIO
import sys
from pprint import pprint

def get_rows_columns_map(table_result, blocks_map):
 rows = {}
 for relationship in table_result['Relationships']:
 if relationship['Type'] == 'CHILD':
 for child_id in relationship['Ids']:
 cell = blocks_map[child_id]
 if cell['BlockType'] == 'CELL':
 row_index = cell['RowIndex']
 col_index = cell['ColumnIndex']
 if row_index not in rows:
 # create new row
 rows[row_index] = {}

 # get the text value
 rows[row_index][col_index] = get_text(cell, blocks_map)
 return rows

def get_text(result, blocks_map):
 text = ''
 if 'Relationships' in result:
 for relationship in result['Relationships']:
 if relationship['Type'] == 'CHILD':
 for child_id in relationship['Ids']:
 word = blocks_map[child_id]
 if word['BlockType'] == 'WORD':
 text += word['Text'] + ' '
 if word['BlockType'] == 'SELECTION_ELEMENT':
 if word['SelectionStatus'] =='SELECTED':
 text += 'X '

164

Amazon Textract Developer Guide
Exporting Tables into a CSV File

 return text

def get_table_csv_results(file_name):

 with open(file_name, 'rb') as file:
 img_test = file.read()
 bytes_test = bytearray(img_test)
 print('Image loaded', file_name)

 # process using image bytes
 # get the results
 client = boto3.client('textract')

 response = client.analyze_document(Document={'Bytes': bytes_test},
 FeatureTypes=['TABLES'])

 # Get the text blocks
 blocks=response['Blocks']
 pprint(blocks)

 blocks_map = {}
 table_blocks = []
 for block in blocks:
 blocks_map[block['Id']] = block
 if block['BlockType'] == "TABLE":
 table_blocks.append(block)

 if len(table_blocks) <= 0:
 return " NO Table FOUND "

 csv = ''
 for index, table in enumerate(table_blocks):
 csv += generate_table_csv(table, blocks_map, index +1)
 csv += '\n\n'

 return csv

def generate_table_csv(table_result, blocks_map, table_index):
 rows = get_rows_columns_map(table_result, blocks_map)

 table_id = 'Table_' + str(table_index)

 # get cells.
 csv = 'Table: {0}\n\n'.format(table_id)

 for row_index, cols in rows.items():

 for col_index, text in cols.items():
 csv += '{}'.format(text) + ","
 csv += '\n'

 csv += '\n\n\n'
 return csv

def main(file_name):
 table_csv = get_table_csv_results(file_name)

 output_file = 'output.csv'

 # replace content
 with open(output_file, "wt") as fout:
 fout.write(table_csv)

 # show the results
 print('CSV OUTPUT FILE: ', output_file)

165

Amazon Textract Developer Guide
Exporting Tables into a CSV File

if __name__ == "__main__":
 file_name = sys.argv[1]
 main(file_name)

3. At the command prompt, enter the following command. Replace file with the name of the
document image file that you want to analyze.

python textract_python_table_parser.py file

When you run the example, the CSV output is saved in a file named output.csv.
Asynchronous

In this example, you will use make use of two different scripts. The first script starts the process
of asynchronoulsy analyzing documents with StartDocumentAnalysis and gets the Block
information returned by GetDocumentAnalysis. The second script takes the returned Block
information for each page, formats the data as a table, and saves the tables to a CSV file.

To export tables into a CSV file

1. Configure your environment. For more information, see Prerequisites (p. 161).
2. Ensure that you have followed the instructions given at see Configuring Amazon Textract for

Asynchronous Operations (p. 128). The process documented on that page enables you to send
and receive messages about the completion status of asynchronous jobs.

3. In the following code example, replace the value of roleArn with the Arn assigned to the
role that you created in Step 2. Replace the value of bucket with the name of the S3 bucket
containing your document. Replace the value of document with the name of the document in
your S3 bucket. Replace the value of region_name with the name of your bucket's region.

Save the following example code to a file named start_doc_analysis_for_table_extraction.py..

import boto3
import time

class DocumentProcessor:

 jobId = ''
 region_name = ''

 roleArn = ''
 bucket = ''
 document = ''

 sqsQueueUrl = ''
 snsTopicArn = ''
 processType = ''

 def __init__(self, role, bucket, document, region):
 self.roleArn = role
 self.bucket = bucket
 self.document = document
 self.region_name = region

 self.textract = boto3.client('textract', region_name=self.region_name)
 self.sqs = boto3.client('sqs')
 self.sns = boto3.client('sns')

 def ProcessDocument(self):

166

Amazon Textract Developer Guide
Exporting Tables into a CSV File

 jobFound = False

 response =
 self.textract.start_document_analysis(DocumentLocation={'S3Object': {'Bucket':
 self.bucket, 'Name': self.document}},
 FeatureTypes=["TABLES", "FORMS"], NotificationChannel={'RoleArn':
 self.roleArn, 'SNSTopicArn': self.snsTopicArn})
 print('Processing type: Analysis')

 print('Start Job Id: ' + response['JobId'])

 print('Done!')

 def CreateTopicandQueue(self):

 millis = str(int(round(time.time() * 1000)))

 # Create SNS topic
 snsTopicName = "AmazonTextractTopic" + millis

 topicResponse = self.sns.create_topic(Name=snsTopicName)
 self.snsTopicArn = topicResponse['TopicArn']

 # create SQS queue
 sqsQueueName = "AmazonTextractQueue" + millis
 self.sqs.create_queue(QueueName=sqsQueueName)
 self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)
['QueueUrl']

 attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl,
 AttributeNames=['QueueArn'])
['Attributes']

 sqsQueueArn = attribs['QueueArn']

 # Subscribe SQS queue to SNS topic
 self.sns.subscribe(TopicArn=self.snsTopicArn, Protocol='sqs',
 Endpoint=sqsQueueArn)

 # Authorize SNS to write SQS queue
 policy = """{{
 "Version":"2012-10-17",
 "Statement":[
 {{
 "Sid":"MyPolicy",
 "Effect":"Allow",
 "Principal" : {{"AWS" : "*"}},
 "Action":"SQS:SendMessage",
 "Resource": "{}",
 "Condition":{{
 "ArnEquals":{{
 "aws:SourceArn": "{}"
 }}
 }}
 }}
]
 }}""".format(sqsQueueArn, self.snsTopicArn)

 response = self.sqs.set_queue_attributes(
 QueueUrl=self.sqsQueueUrl,
 Attributes={
 'Policy': policy
 })

def main():
 roleArn = 'role-arn'

167

Amazon Textract Developer Guide
Exporting Tables into a CSV File

 bucket = 'bucket-name'
 document = 'document-name'
 region_name = 'region-name'

 analyzer = DocumentProcessor(roleArn, bucket, document, region_name)
 analyzer.CreateTopicandQueue()
 analyzer.ProcessDocument()

if __name__ == "__main__":
 main()

4. Run the code. The code will print a JobId. Copy this JobId down.

5. Wait for your job to finish processing, and after it has finished, copy the following code to a file
named get_doc_analysis_for_table_extraction.py. Replace the value of jobId with the Job ID you
copied down earlier. Replace the value of region_name with the name of the region associated
with your Textract role. Replace the value of file_name with the name you want to give the
output CSV.

import boto3
from pprint import pprint

jobId = 'job-id'
region_name = 'region-name'
file_name = "output-file-name.csv"

textract = boto3.client('textract', region_name=region_name)

Display information about a block
def DisplayBlockInfo(block):
 print("Block Id: " + block['Id'])
 print("Type: " + block['BlockType'])
 if 'EntityTypes' in block:
 print('EntityTypes: {}'.format(block['EntityTypes']))

 if 'Text' in block:
 print("Text: " + block['Text'])

 if block['BlockType'] != 'PAGE':
 print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%")

def GetResults(jobId, file_name):
 maxResults = 1000
 paginationToken = None
 finished = False

 while finished == False:

 response = None

 if paginationToken == None:
 response = textract.get_document_analysis(JobId=jobId,
 MaxResults=maxResults)
 else:
 response = textract.get_document_analysis(JobId=jobId,
 MaxResults=maxResults,

 NextToken=paginationToken)

 blocks = response['Blocks']
 table_csv = get_table_csv_results(blocks)
 output_file = file_name
 # replace content
 with open(output_file, "at") as fout:
 fout.write(table_csv)

168

Amazon Textract Developer Guide
Exporting Tables into a CSV File

 # show the results
 print('Detected Document Text')
 print('Pages: {}'.format(response['DocumentMetadata']['Pages']))
 print('OUTPUT TO CSV FILE: ', output_file)

 # Display block information
 for block in blocks:
 DisplayBlockInfo(block)
 print()
 print()

 if 'NextToken' in response:
 paginationToken = response['NextToken']
 else:
 finished = True

def get_rows_columns_map(table_result, blocks_map):
 rows = {}
 for relationship in table_result['Relationships']:
 if relationship['Type'] == 'CHILD':
 for child_id in relationship['Ids']:
 try:
 cell = blocks_map[child_id]
 if cell['BlockType'] == 'CELL':
 row_index = cell['RowIndex']
 col_index = cell['ColumnIndex']
 if row_index not in rows:
 # create new row
 rows[row_index] = {}

 # get the text value
 rows[row_index][col_index] = get_text(cell, blocks_map)
 except KeyError:
 print("Error extracting Table data - {}:".format(KeyError))
 pass
 return rows

def get_text(result, blocks_map):
 text = ''
 if 'Relationships' in result:
 for relationship in result['Relationships']:
 if relationship['Type'] == 'CHILD':
 for child_id in relationship['Ids']:
 try:
 word = blocks_map[child_id]
 if word['BlockType'] == 'WORD':
 text += word['Text'] + ' '
 if word['BlockType'] == 'SELECTION_ELEMENT':
 if word['SelectionStatus'] == 'SELECTED':
 text += 'X '
 except KeyError:
 print("Error extracting Table data -
 {}:".format(KeyError))

 return text

def get_table_csv_results(blocks):

 pprint(blocks)

 blocks_map = {}
 table_blocks = []
 for block in blocks:

169

Amazon Textract Developer Guide
Creating an AWS Lambda Function

 blocks_map[block['Id']] = block
 if block['BlockType'] == "TABLE":
 table_blocks.append(block)

 if len(table_blocks) <= 0:
 return " NO Table FOUND "

 csv = ''
 for index, table in enumerate(table_blocks):
 csv += generate_table_csv(table, blocks_map, index + 1)
 csv += '\n\n'

 return csv

def generate_table_csv(table_result, blocks_map, table_index):
 rows = get_rows_columns_map(table_result, blocks_map)

 table_id = 'Table_' + str(table_index)

 # get cells.
 csv = 'Table: {0}\n\n'.format(table_id)

 for row_index, cols in rows.items():

 for col_index, text in cols.items():
 csv += '{}'.format(text) + ","
 csv += '\n'

 csv += '\n\n\n'
 return csv

response_blocks = GetResults(jobId, file_name)

6. Run the code.

After you have obtained you results, be sure to delete the associated SNS and SQS resources, or
else you may accrue charges for them.

Creating an AWS Lambda Function
You can call Amazon Textract API operations from within an AWS Lambda function. The following
instructions show how to create a Lambda function in Python that calls the section called
“DetectDocumentText” (p. 235). It returns a list of the section called “Block” (p. 270) objects. To run
this example, you need an Amazon S3 bucket that contains a document in PNG or JPEG format. To create
the function, you use the console.

For an example that uses Lambda functions to process documents at a large scale, see Large scale
document processing with Amazon Textract.

To call the DetectDocumentText operation from a
Lambda function:
Step 1: Create a Lambda deployment package

1. Open a command window.
2. Enter the following commands to create a deployment package with the most recent version of the

AWS SDK.

170

https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing
https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing

Amazon Textract Developer Guide
To call the DetectDocumentText

operation from a Lambda function:

pip install boto3 --target python/.
zip boto3-layer.zip -r python/

Step 2: Create a Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.
3. Specify the following.

• Choose Author from scratch.
• For Function name, enter a name.
• For Runtime, choose Python 3.7 or Python 3.6.
• For Choose or create an execution role, choose Create a new role with basic Lambda

permissions.
4. Choose Create function to create the Lambda function.
5. Open the IAM console at https://console.aws.amazon.com/iam/.
6. In the navigation pane choose Roles.
7. From the resources list, choose the IAM role that Lambda created for you. The role name starts with

the name of your Lambda function.
8. Choose the Permissions tab, then choose Attach policies.
9. Select the AmazonTextractFullAccess and AmazonS3ReadOnlyAccess Policies.
10. Select Attach Policy.

For more information, see Create a Lambda Function with the Console

Step 3: Create and add a layer

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
2. In the navigation pane, choose Layers.
3. Choose Create layer.
4. For Name, enter a name.
5. For Description, enter a description.
6. For Code entry type, choose Upload .zip file and select Upload.
7. In the dialog box, select the zip file (boto3-layer.zip), the zip you created in Step 1: Create a Lambda

deployment package (p. 170).
8. For Compatible runtimes, choose the version of the runtime that you chose in Step 2: Create a

Lambda function (p. 171).
9. Choose Create to create the layer.
10. Choose the navigation pane menu icon.
11. In the navigation pane, choose Functions.
12. In the resources list, select the function you created in Step 2: Create a Lambda function (p. 171).
13. Choose Configuration and in the Designer section, choose Layers(under your Lambda function

name).
14. In the Layers section, choose Add a layer.
15. Choose Select from list of runtime compatible layers.
16. In Compatible layers, select the Name and Version of the layer you created in step 3.

171

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://console.aws.amazon.com/lambda/

Amazon Textract Developer Guide
Additional Code Samples

17. Choose Add.

Step 4: Add python code to the Function

1. In Designer, choose your function.

2. In the function code editor, add the the following to the file lambda_function.py. Change the values
of bucket and document to your bucket and document.

import json
import boto3

def lambda_handler(event, context):

 bucket="bucket"
 document="document"
 client = boto3.client('textract')

 #process using S3 object
 response = client.detect_document_text(
 Document={'S3Object': {'Bucket': bucket, 'Name': document}})

 #Get the text blocks
 blocks=response['Blocks']

 return {
 'statusCode': 200,
 'body': json.dumps(blocks)
 }

3. Choose Save to save your Lambda function.

Step 5: Test your Lambda

1. Select Test.

2. Enter a value for Event name.

3. Choose Create.

4. The output, a list of the section called “Block” (p. 270) objects, appears in the Execution results
pane.

If the AWS Lambda function returns a timeout error, an Amazon Textract API operation call might be the
cause. For information about extending the timout period for a AWS Lambda function, see AWS Lambda
Function Configuration.

For information about invoking a Lambda function from your code, see Invoking AWS Lambda Functions.

Additional Code Samples
The following table provides links to more Amazon Textract code examples.

172

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html

Amazon Textract Developer Guide
Additional Code Samples

Example Description

Amazon Textract Code Samples Show various ways in which you can use Amazon
Textract.

Large scale document processing with Amazon
Textract

Shows a serverless reference architecture that
processes documents at a large scale.

Amazon Textract Parser Shows how to parse the the section called
“Block” (p. 270) objects returned by Amazon
Textract operations.

Amazon Textract Documentation Code Examples Code examples used in this guide.

Textractor Shows how to convert Amazon Textract output
into multiple formats.

Generate Searchable PDF documents with
Amazon Textract

Shows how to create a searchable PDF document
from different types of input documents such
as JPG/PNG format images and scanned PDF
documents.

173

https://github.com/aws-samples/amazon-textract-code-samples
https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing
https://github.com/aws-samples/amazon-textract-serverless-large-scale-document-processing
https://github.com/aws-samples/amazon-textract-response-parser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/python/example_code/textract
https://github.com/aws-samples/amazon-textract-textractor
https://github.com/aws-samples/amazon-textract-searchable-pdf
https://github.com/aws-samples/amazon-textract-searchable-pdf

Amazon Textract Developer Guide
Actions

Code examples for Amazon Textract
using AWS SDKs

The following code examples show how to use Amazon Textract with an AWS software development kit
(SDK).

The examples are divided into the following categories:

Actions

Code excerpts that show you how to call individual service functions.
Cross-service examples

Sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Code examples
• Actions for Amazon Textract using AWS SDKs (p. 174)

• Analyze a document using Amazon Textract and an AWS SDK (p. 175)
• Detect text in a document using Amazon Textract and an AWS SDK (p. 176)
• Get data about an Amazon Textract document analysis job using an AWS SDK (p. 179)
• Start asynchronous analysis of a document using Amazon Textract and an AWS

SDK (p. 180)
• Start asynchronous text detection using Amazon Textract and an AWS SDK (p. 182)

• Cross-service examples for Amazon Textract using AWS SDKs (p. 183)
• Create an Amazon Textract explorer application (p. 184)
• Detect entities in text extracted from an image using an AWS SDK (p. 185)

Actions for Amazon Textract using AWS SDKs
The following code examples demonstrate how to perform individual Amazon Textract actions with
AWS SDKs. These excerpts call the Amazon Textract API and are not intended to be run in isolation. Each
example includes a link to GitHub, where you can find instructions on how to set up and run the code in
context.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Textract API Reference.

Examples
• Analyze a document using Amazon Textract and an AWS SDK (p. 175)
• Detect text in a document using Amazon Textract and an AWS SDK (p. 176)
• Get data about an Amazon Textract document analysis job using an AWS SDK (p. 179)
• Start asynchronous analysis of a document using Amazon Textract and an AWS SDK (p. 180)
• Start asynchronous text detection using Amazon Textract and an AWS SDK (p. 182)

174

Amazon Textract Developer Guide
Analyze a document

Analyze a document using Amazon Textract and an
AWS SDK
The following code examples show how to analyze a document using Amazon Textract.

Java

SDK for Java 2.x

 public static void analyzeDoc(TextractClient textractClient, String sourceDoc)
 {

 try {
 InputStream sourceStream = new FileInputStream(new File(sourceDoc));
 SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);

 // Get the input Document object as bytes
 Document myDoc = Document.builder()
 .bytes(sourceBytes)
 .build();

 List<FeatureType> featureTypes = new ArrayList<FeatureType>();
 featureTypes.add(FeatureType.FORMS);
 featureTypes.add(FeatureType.TABLES);

 AnalyzeDocumentRequest analyzeDocumentRequest =
 AnalyzeDocumentRequest.builder()
 .featureTypes(featureTypes)
 .document(myDoc)
 .build();

 AnalyzeDocumentResponse analyzeDocument =
 textractClient.analyzeDocument(analyzeDocumentRequest);
 List<Block> docInfo = analyzeDocument.blocks();
 Iterator<Block> blockIterator = docInfo.iterator();

 while(blockIterator.hasNext()) {
 Block block = blockIterator.next();
 System.out.println("The block type is "
 +block.blockType().toString());
 }

 } catch (TextractException | FileNotFoundException e) {

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• Find instructions and more code on GitHub.
• For API details, see AnalyzeDocument in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

class TextractWrapper:

175

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/textract#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/AnalyzeDocument

Amazon Textract Developer Guide
Detect text in a document

 """Encapsulates Textract functions."""
 def __init__(self, textract_client, s3_resource, sqs_resource):
 """
 :param textract_client: A Boto3 Textract client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 :param sqs_resource: A Boto3 Amazon SQS resource.
 """
 self.textract_client = textract_client
 self.s3_resource = s3_resource
 self.sqs_resource = sqs_resource

 def analyze_file(
 self, feature_types, *, document_file_name=None, document_bytes=None):
 """
 Detects text and additional elements, such as forms or tables, in a local
 image
 file or from in-memory byte data.
 The image must be in PNG or JPG format.

 :param feature_types: The types of additional document features to detect.
 :param document_file_name: The name of a document image file.
 :param document_bytes: In-memory byte data of a document image.
 :return: The response from Amazon Textract, including a list of blocks
 that describe elements detected in the image.
 """
 if document_file_name is not None:
 with open(document_file_name, 'rb') as document_file:
 document_bytes = document_file.read()
 try:
 response = self.textract_client.analyze_document(
 Document={'Bytes': document_bytes}, FeatureTypes=feature_types)
 logger.info(
 "Detected %s blocks.", len(response['Blocks']))
 except ClientError:
 logger.exception("Couldn't detect text.")
 raise
 else:
 return response

• Find instructions and more code on GitHub.
• For API details, see AnalyzeDocument in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Detect text in a document using Amazon Textract
and an AWS SDK
The following code examples show how to detect text in a document using Amazon Textract.

Java

SDK for Java 2.x

Detect text from an input document.

 public static void detectDocText(TextractClient textractClient,String
 sourceDoc) {

176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/textract#code-examples
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/AnalyzeDocument

Amazon Textract Developer Guide
Detect text in a document

 try {

 InputStream sourceStream = new FileInputStream(new File(sourceDoc));
 SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);

 // Get the input Document object as bytes
 Document myDoc = Document.builder()
 .bytes(sourceBytes)
 .build();

 DetectDocumentTextRequest detectDocumentTextRequest =
 DetectDocumentTextRequest.builder()
 .document(myDoc)
 .build();

 // Invoke the Detect operation
 DetectDocumentTextResponse textResponse =
 textractClient.detectDocumentText(detectDocumentTextRequest);

 List<Block> docInfo = textResponse.blocks();

 Iterator<Block> blockIterator = docInfo.iterator();

 while(blockIterator.hasNext()) {
 Block block = blockIterator.next();
 System.out.println("The block type is "
 +block.blockType().toString());
 }

 DocumentMetadata documentMetadata = textResponse.documentMetadata();
 System.out.println("The number of pages in the document is "
 +documentMetadata.pages());

 } catch (TextractException | FileNotFoundException e) {

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Detect text from a document located in an Amazon S3 bucket.

 public static void detectDocTextS3 (TextractClient textractClient, String
 bucketName, String docName) {

 try {
 S3Object s3Object = S3Object.builder()
 .bucket(bucketName)
 .name(docName)
 .build();

 // Create a Document object and reference the s3Object instance
 Document myDoc = Document.builder()
 .s3Object(s3Object)
 .build();

 // Create a DetectDocumentTextRequest object
 DetectDocumentTextRequest detectDocumentTextRequest =
 DetectDocumentTextRequest.builder()
 .document(myDoc)
 .build();

 // Invoke the detectDocumentText method

177

Amazon Textract Developer Guide
Detect text in a document

 DetectDocumentTextResponse textResponse =
 textractClient.detectDocumentText(detectDocumentTextRequest);

 List<Block> docInfo = textResponse.blocks();

 Iterator<Block> blockIterator = docInfo.iterator();

 while(blockIterator.hasNext()) {
 Block block = blockIterator.next();
 System.out.println("The block type is "
 +block.blockType().toString());
 }

 DocumentMetadata documentMetadata = textResponse.documentMetadata();
 System.out.println("The number of pages in the document is "
 +documentMetadata.pages());

 } catch (TextractException e) {

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• Find instructions and more code on GitHub.

• For API details, see DetectDocumentText in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

class TextractWrapper:
 """Encapsulates Textract functions."""
 def __init__(self, textract_client, s3_resource, sqs_resource):
 """
 :param textract_client: A Boto3 Textract client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 :param sqs_resource: A Boto3 Amazon SQS resource.
 """
 self.textract_client = textract_client
 self.s3_resource = s3_resource
 self.sqs_resource = sqs_resource

 def detect_file_text(self, *, document_file_name=None, document_bytes=None):
 """
 Detects text elements in a local image file or from in-memory byte data.
 The image must be in PNG or JPG format.

 :param document_file_name: The name of a document image file.
 :param document_bytes: In-memory byte data of a document image.
 :return: The response from Amazon Textract, including a list of blocks
 that describe elements detected in the image.
 """
 if document_file_name is not None:
 with open(document_file_name, 'rb') as document_file:
 document_bytes = document_file.read()
 try:
 response = self.textract_client.detect_document_text(
 Document={'Bytes': document_bytes})
 logger.info(
 "Detected %s blocks.", len(response['Blocks']))

178

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/textract#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/DetectDocumentText

Amazon Textract Developer Guide
Get data about a document analysis job

 except ClientError:
 logger.exception("Couldn't detect text.")
 raise
 else:
 return response

• Find instructions and more code on GitHub.
• For API details, see DetectDocumentText in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Get data about an Amazon Textract document
analysis job using an AWS SDK
The following code example shows how to get data about an Amazon Textract document analysis job.

Python

SDK for Python (Boto3)

class TextractWrapper:
 """Encapsulates Textract functions."""
 def __init__(self, textract_client, s3_resource, sqs_resource):
 """
 :param textract_client: A Boto3 Textract client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 :param sqs_resource: A Boto3 Amazon SQS resource.
 """
 self.textract_client = textract_client
 self.s3_resource = s3_resource
 self.sqs_resource = sqs_resource

 def get_analysis_job(self, job_id):
 """
 Gets data for a previously started detection job that includes additional
 elements.

 :param job_id: The ID of the job to retrieve.
 :return: The job data, including a list of blocks that describe elements
 detected in the image.
 """
 try:
 response = self.textract_client.get_document_analysis(
 JobId=job_id)
 job_status = response['JobStatus']
 logger.info("Job %s status is %s.", job_id, job_status)
 except ClientError:
 logger.exception("Couldn't get data for job %s.", job_id)
 raise
 else:
 return response

• Find instructions and more code on GitHub.
• For API details, see GetDocumentAnalysis in AWS SDK for Python (Boto3) API Reference.

179

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/textract#code-examples
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/DetectDocumentText
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/textract#code-examples
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/GetDocumentAnalysis

Amazon Textract Developer Guide
Start asynchronous analysis of a document

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Start asynchronous analysis of a document using
Amazon Textract and an AWS SDK
The following code examples show how to start asynchronous analysis of a document using Amazon
Textract.

Java

SDK for Java 2.x

 public static String startDocAnalysisS3 (TextractClient textractClient, String
 bucketName, String docName) {

 try {

 List<FeatureType> myList = new ArrayList<FeatureType>();
 myList.add(FeatureType.TABLES);
 myList.add(FeatureType.FORMS);

 S3Object s3Object = S3Object.builder()
 .bucket(bucketName)
 .name(docName)
 .build();

 DocumentLocation location = DocumentLocation.builder()
 .s3Object(s3Object)
 .build();

 StartDocumentAnalysisRequest documentAnalysisRequest =
 StartDocumentAnalysisRequest.builder()
 .documentLocation(location)
 .featureTypes(myList)
 .build();

 StartDocumentAnalysisResponse response =
 textractClient.startDocumentAnalysis(documentAnalysisRequest);

 // Get the job ID
 String jobId = response.jobId();
 return jobId;

 } catch (TextractException e) {

 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "" ;
 }

 private static String getJobResults(TextractClient textractClient, String
 jobId) {

 boolean finished = false;
 int index = 0 ;
 String status = "" ;

 try {

180

Amazon Textract Developer Guide
Start asynchronous analysis of a document

 while (!finished) {
 GetDocumentAnalysisRequest analysisRequest =
 GetDocumentAnalysisRequest.builder()
 .jobId(jobId)
 .maxResults(1000)
 .build();

 GetDocumentAnalysisResponse response =
 textractClient.getDocumentAnalysis(analysisRequest);
 status = response.jobStatus().toString();

 if (status.compareTo("SUCCEEDED") == 0)
 finished = true;
 else {
 System.out.println(index + " status is: " + status);
 Thread.sleep(1000);
 }
 index++ ;
 }
 return status;

 } catch(InterruptedException e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

• Find instructions and more code on GitHub.

• For API details, see StartDocumentAnalysis in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Start an asynchronous job to analyze a document.

class TextractWrapper:
 """Encapsulates Textract functions."""
 def __init__(self, textract_client, s3_resource, sqs_resource):
 """
 :param textract_client: A Boto3 Textract client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 :param sqs_resource: A Boto3 Amazon SQS resource.
 """
 self.textract_client = textract_client
 self.s3_resource = s3_resource
 self.sqs_resource = sqs_resource

 def start_analysis_job(
 self, bucket_name, document_file_name, feature_types, sns_topic_arn,
 sns_role_arn):
 """
 Starts an asynchronous job to detect text and additional elements, such as
 forms or tables, in an image stored in an Amazon S3 bucket. Textract
 publishes
 a notification to the specified Amazon SNS topic when the job completes.
 The image must be in PNG, JPG, or PDF format.

 :param bucket_name: The name of the Amazon S3 bucket that contains the
 image.

181

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/textract#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/StartDocumentAnalysis

Amazon Textract Developer Guide
Start asynchronous text detection

 :param document_file_name: The name of the document image stored in Amazon
 S3.
 :param feature_types: The types of additional document features to detect.
 :param sns_topic_arn: The Amazon Resource Name (ARN) of an Amazon SNS topic
 where job completion notification is published.
 :param sns_role_arn: The ARN of an AWS Identity and Access Management (IAM)
 role that can be assumed by Textract and grants
 permission
 to publish to the Amazon SNS topic.
 :return: The ID of the job.
 """
 try:
 response = self.textract_client.start_document_analysis(
 DocumentLocation={
 'S3Object': {'Bucket': bucket_name, 'Name':
 document_file_name}},
 NotificationChannel={
 'SNSTopicArn': sns_topic_arn, 'RoleArn': sns_role_arn},
 FeatureTypes=feature_types)
 job_id = response['JobId']
 logger.info(
 "Started text analysis job %s on %s.", job_id, document_file_name)
 except ClientError:
 logger.exception("Couldn't analyze text in %s.", document_file_name)
 raise
 else:
 return job_id

• Find instructions and more code on GitHub.

• For API details, see StartDocumentAnalysis in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Start asynchronous text detection using Amazon
Textract and an AWS SDK
The following code example shows how to start asynchronous text detection in a document using
Amazon Textract.

Python

SDK for Python (Boto3)

Start an asynchronous job to detect text in a document.

class TextractWrapper:
 """Encapsulates Textract functions."""
 def __init__(self, textract_client, s3_resource, sqs_resource):
 """
 :param textract_client: A Boto3 Textract client.
 :param s3_resource: A Boto3 Amazon S3 resource.
 :param sqs_resource: A Boto3 Amazon SQS resource.
 """
 self.textract_client = textract_client
 self.s3_resource = s3_resource
 self.sqs_resource = sqs_resource

182

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/textract#code-examples
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/StartDocumentAnalysis

Amazon Textract Developer Guide
Cross-service examples

 def start_detection_job(
 self, bucket_name, document_file_name, sns_topic_arn, sns_role_arn):
 """
 Starts an asynchronous job to detect text elements in an image stored in an
 Amazon S3 bucket. Textract publishes a notification to the specified Amazon
 SNS
 topic when the job completes.
 The image must be in PNG, JPG, or PDF format.

 :param bucket_name: The name of the Amazon S3 bucket that contains the
 image.
 :param document_file_name: The name of the document image stored in Amazon
 S3.
 :param sns_topic_arn: The Amazon Resource Name (ARN) of an Amazon SNS topic
 where the job completion notification is published.
 :param sns_role_arn: The ARN of an AWS Identity and Access Management (IAM)
 role that can be assumed by Textract and grants
 permission
 to publish to the Amazon SNS topic.
 :return: The ID of the job.
 """
 try:
 response = self.textract_client.start_document_text_detection(
 DocumentLocation={
 'S3Object': {'Bucket': bucket_name, 'Name':
 document_file_name}},
 NotificationChannel={
 'SNSTopicArn': sns_topic_arn, 'RoleArn': sns_role_arn})
 job_id = response['JobId']
 logger.info(
 "Started text detection job %s on %s.", job_id, document_file_name)
 except ClientError:
 logger.exception("Couldn't detect text in %s.", document_file_name)
 raise
 else:
 return job_id

• Find instructions and more code on GitHub.

• For API details, see StartDocumentTextDetection in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for Amazon Textract using
AWS SDKs

The following sample applications use AWS SDKs to combine Amazon Textract with other AWS services.
Each example includes a link to GitHub, where you can find instructions on how to set up and run the
application.

Examples

• Create an Amazon Textract explorer application (p. 184)

• Detect entities in text extracted from an image using an AWS SDK (p. 185)

183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/textract#code-examples
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/StartDocumentTextDetection

Amazon Textract Developer Guide
Create an Amazon Textract explorer application

Create an Amazon Textract explorer application
The following code examples show how to explore Amazon Textract output through an interactive
application.

JavaScript

SDK for JavaScript V3

Shows how to use the AWS SDK for JavaScript to build a React application that uses Amazon
Textract to extract data from a document image and display it in an interactive web page.
This example runs in a web browser and requires an authenticated Amazon Cognito identity
for credentials. It uses Amazon Simple Storage Service (Amazon S3) for storage, and for
notifications it polls an Amazon Simple Queue Service (Amazon SQS) queue that is subscribed to
an Amazon Simple Notification Service (Amazon SNS) topic.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity
• Amazon S3
• Amazon SNS
• Amazon SQS
• Amazon Textract

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with Amazon Textract to detect text, form,
and table elements in a document image. The input image and Amazon Textract output are
shown in a Tkinter application that lets you explore the detected elements.
• Submit a document image to Amazon Textract and explore the output of detected elements.
• Submit images directly to Amazon Textract or through an Amazon Simple Storage Service

(Amazon S3) bucket.
• Use asynchronous APIs to start a job that publishes a notification to an Amazon Simple

Notification Service (Amazon SNS) topic when the job completes.
• Poll an Amazon Simple Queue Service (Amazon SQS) queue for a job completion message and

display the results.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon S3
• Amazon SNS
• Amazon SQS
• Amazon Textract

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

184

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_explorer

Amazon Textract Developer Guide
Detect entities in text extracted from an image

Detect entities in text extracted from an image using
an AWS SDK
The following code example shows how to use Amazon Comprehend to detect entities in text extracted
by Amazon Textract from an image that is stored in Amazon S3.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) in a Jupyter notebook to detect entities in
text that is extracted from an image. This example uses Amazon Textract to extract text from
an image stored in Amazon Simple Storage Service (Amazon S3) and Amazon Comprehend to
detect entities in the extracted text.

This example is a Jupyter notebook and must be run in an environment that can host
notebooks. For instructions on how to run the example using Amazon SageMaker, see the
directions in TextractAndComprehendNotebook.ipynb.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend
• Amazon S3
• Amazon Textract

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Textract with
an AWS SDK (p. 2). This topic also includes information about getting started and details about previous
SDK versions.

185

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_comprehend_notebook/TextractAndComprehendNotebook.ipynb
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_comprehend_notebook#readme

Amazon Textract Developer Guide
Core Concepts of Amazon A2I

Using Amazon Augmented AI to Add
Human Review to Amazon Textract
Output

Amazon Augmented AI (Amazon A2I) is a machine learning (ML) service that makes it easy to build
workflows for human review of ML analyses.

Amazon Textract is integrated with Amazon A2I. You can use it to route document analysis results that
have a low confidence score to human reviewers.

You can use Amazon Textract AnalyzeDocument API to extract data from forms and the Amazon A2I
console. You can specify the conditions under which Amazon A2I routes predictions to reviewers. You
set conditions based on the confidence threshold of important form keys. For example, you can send a
document to a human reviewer if the key Name or its associated value Jane Doe was detected with low
confidence.

Topics
• Core Concepts of Amazon A2I (p. 186)
• Get Started Using Amazon A2I (p. 188)

Core Concepts of Amazon A2I
Review the following terms to familiarize yourself with the core concepts of Amazon A2I.

Human Review Activation Conditions
You can use Amazon A2I activation conditions to specify when a document is sent to humans for review
and the form-content that workers are asked to review.

For example, you can set an activation condition to have Amazon Textract route forms to Amazon A2I
when an important key is detected with low confidence, like Phone Number. In this example, human
reviewers are asked to review the Phone Number field and value associated detected by Amazon Textract.

You can use the following activation conditions to specify when forms gets sent to humans for review:

• Trigger a human review for specific form keys based on the form key confidence score. Human
reviewers are asked to review these form keys and associated values.

• Trigger a human review when specific form keys are missing. Human reviewers are asked to identify
these form keys and associated values.

• Trigger human review for all form keys identified by Amazon Textract with confidence scores in a
specified range.

• Randomly send a sample of forms to humans for review. Human reviewers are asked to review all form
keys and values detected by Amazon Textract.

When your activation condition depends on form key confidence scores, you can use two types of
prediction-confidence thresholds to trigger human review:

186

Amazon Textract Developer Guide
Human review workflow (flow definition)

• Identification confidence – The confidence score for key-value pairs detected within a form.
• Qualification confidence – The confidence score for text contained within a key-value pair in a form.

If you specify a confidence threshold, Amazon A2I routes only those predictions that fall within the
threshold to human reviewers. You can adjust these thresholds at any time to achieve the right balance
between accuracy and cost-effectiveness. This can help you implement audits to regularly monitor
prediction accuracy.

Note
You can further customize the conditions under which documents are sent to humans for
review using the Amazon A2I custom task type. With this task type, you specify conditions for a
human review directly in your application. For information , see Use Amazon Augmented AI with
Custom Task Types in the Amazon SageMaker Developer Guide.

Human review workflow (flow definition)
You use a human review workflow, also referred to as a flow definition, to specify resources used to create
your human review workflow, and to specify your activation conditions.

The resources that you specify are:

• An IAM role with permission to call Amazon A2I API operations
• An Amazon S3 bucket where you want to store the output of the human review
• Your human work team
• A worker task template which includes instructions and examples to help workers complete review task

You also use the human review workflow to specify activation conditions. For more information, see
Human Review Activation Conditions (p. 186).

You can use a single human review workflow to create multiple Human loops (p. 188).

You can create a human review workflow in the SageMaker console or with the SageMaker API. For
information, see Create a Human Review Workflow (p. 189).

Worker task template

You use a worker task template to create a worker UI that is used for your human review tasks.

The worker UI displays your documents and worker instructions. It also provides tools that workers use to
complete your tasks.

You can use the SageMaker console to configure your worker task template when you create a human
review workflow. For information, see Create a Human Review Workflow (p. 189).

Work team

A work team is a group of human workers that you send your human review tasks to.

When you create a human review workflow, you specify a single work team.

With Amazon A2I, you can use a pool of reviewers within your own organization. You can also access the
workforce comprised of over 500,000 independent contractors who are already performing machine
learning tasks through Amazon Mechanical Turk. Another option is to use workforce vendors that are
prescreened by AWS for quality and adherence to security procedures.

Amazon A2I also provides reviewers with a web interface that consists of all the instructions and tools
that they need to complete their review tasks.

187

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-custom.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-custom.html

Amazon Textract Developer Guide
Human loops

For each type of workforce (private, vendor, and Mechanical Turk), you can create multiple work teams.
You can use each work team in multiple human review workflows. To learn to create a workforce and
work teams, see Create and Manage Workforces in the Amazon SageMaker Developer Guide.

Important
Click here to see the compliance programs that cover Amazon Augmented AI at this time. If you
use Amazon Augmented AI in conjunction with other AWS services (such as Amazon Rekognition
and Amazon Textract), please note that Amazon Augmented AI may not be in scope for the
same compliance programs as those other services. You are responsible for how you use Amazon
Augmented AI, including understanding how the service will process or store customer data,
and any impact on the compliance of your data environment. You should discuss your workload
objectives and goals with your AWS account team; they can help you evaluate whether the
service is a good fit for your proposed use case and architecture.
Currently, Amazon Augmented AI is PCI compliant except for public and vendor workforce cases.
For information regarding Amazon Augmented AI HIPAA compliance, click here.

Human loops
You use a human loop to create a human review task.

You assign a human review task to a worker on your human worker team. The worker is asked to
review key-value pairs detected by Amazon Textract in your input document that you specified in your
activation conditions.

For example, say a picture falls between fifty and sixty percent confidence that it contains an apple. This
falls within your confidence threshold for human review and is sent to a worker. The worker checks the
document for an apple, marking it as containing or not containing an apple. Then, Amazon A2I sends the
document back into the workflow.

When you call Amazon Textract AnalyzeDocument and specify a human review workflow (flow
definition) and human loop name, a human review task is created when the activation conditions
specified in your human review workflow are met. These tasks are created using the resources you
specify in your human review workflow.

Get Started Using Amazon A2I
The following steps help you integrate Amazon A2I into an Amazon Textract single-page document
analysis task. You do the following:

1. Create a human review workflow using the Amazon A2I console (recommended for new users) or
Amazon A2I API.

2. To analyze a form and include human review when necessary, use the AnalyzeDocument operation
and specify the Amazon Resource Name (ARN) of the human review workflow. The response tells you
if human review is required.

3. Monitor your human loop using the Amazon A2I console and API.
4. Review the results of human review in an Amazon S3 bucket where the results are sent.

To set up an SageMaker notebook instance and use an example notebook see End-to-end Demo Using
Amazon Textract and Augmented AI in the Amazon SageMaker Developer Guide

Note
This section explains how to create a human review workflow for the Amazon A2I, Amazon
Textract task type. To further customize Amazon A2I and Amazon Textract integration, you
can use the Amazon A2I custom task type. With this option, you provide a custom worker task
template and specify the conditions under which a document is sent for human review directly

188

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/blogs/machine-learning/amazon-augmented-ai-is-now-a-hipaa-eligible-service/
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-textract-task-type.html#a2i-task-types-textract-notebook-demo
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-textract-task-type.html#a2i-task-types-textract-notebook-demo

Amazon Textract Developer Guide
Create a Human Review Workflow

in your application. For information, see Use Amazon Augmented AI with Custom Task Types in
the Amazon SageMaker Developer Guide.

Topics
• Create a Human Review Workflow (p. 189)
• Analyze the Document (p. 192)
• Monitor Human Loop (p. 193)
• View Output Data and Worker Metrics (p. 194)

Create a Human Review Workflow
You can create a human review workflow using Amazon A2I console (recommended for new users) or the
Amazon A2I CreateFlowDefinition operation.

Topics
• Create a Human Review Workflow (Console) (p. 189)
• Create a Human Review Workflow (API) (p. 191)

Create a Human Review Workflow (Console)
You can either complete this example using your own document in Amazon S3, or you can download this
sample document and place it in your Amazon S3 bucket.

Make sure your S3 bucket is in the same AWS Region that you are using Amazon Textract. To create a
bucket, seeCreate a Bucket in the Amazon Simple Storage Service Console User Guide.

Note
The Amazon A2I console is embedded in the SageMaker console. To use the console, you need
permissions to access the SageMaker console, and to create a work team. To get started, you can
use the AmazonSageMakerFullAccess IAM managed policy which includes all of the necessary
permissions to perform most actions in SageMaker. For more information, see Identity and
Access Management for Amazon SageMaker in the Amazon SageMaker Developer Guide.

Topics
• Step 1: Create a Work Team (Console) (p. 189)
• Step 2: Create a Human Review Workflow (Console) (p. 189)

Step 1: Create a Work Team (Console)

First, create a work team in the Amazon A2I console and add yourself as a worker so that you can
preview the human review task in the worker portal, work team members can look at different tasks and
documents assigned to them.

To create a private workforce using worker emails (Console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. In the navigation pane, under Ground Truth, choose Labeling workforces.
3. Choose Private, then choose Create private team.
4. Choose Invite new workers by email.
5. For this example, enter your email address and the email address of any others who you want to be

able to preview the worker portal. You can paste or type a list of up to 50 email addresses, separated
by commas, into the Email Addresses box.

189

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-custom.html
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2020/04/17/sample-document-final.png
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2020/04/17/sample-document-final.png
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://console.aws.amazon.com/sagemaker/

Amazon Textract Developer Guide
Create a Human Review Workflow

6. Enter oneorganization name and contact email.
7. Choose Create private team.

If you add yourself to a private work team, you receive an email from no-
reply@verificationemail.com with login information. Use the link in this email to reset your
password and log in to the worker portal. This is where your human review tasks will appear after you
call AnalyzeDocument.

Step 2: Create a Human Review Workflow (Console)

In this step, you create an Amazon Textract human review workflow.

To create a human review workflow (console)

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i to access the Human review
workflows page.

2. Choose Create human review workflow.
3. For Name, enter a workflow name.
4. For S3 bucket, choose the bucket where you want Amazon A2I to store the results of your human

review tasks. If you don't choose a bucket, change that to enter the name of the bucket.
5. Under IAM role, select Create a new role. A window appears with the title Create an IAM role. Use

this window to specify the Amazon S3 buckets to which you want this role to have access. If you do
not select Any S3 bucket, specify the output bucket that you specified in step 4, and the bucket that
contains your input document.

6. For Task type, choose Textract - Key-value pair extraction.
7. In Amazon Textract form extraction - Conditions for invoking human review, specify activation

conditions. We recommend that you set a high confidence score threshold for at least one key in
your document to trigger a human review so that you can preview a worker task in the worker
portal.

If you used the sample document provided in this walkthrough, specify activation conditions as
follows:

a. Choose Trigger a human review for specific form keys based on the form key confidence
score or when specific form keys are missing.

b. For Key name, enter Mail Address.
c. Set the identification confidence threshold between 0 and 99.
d. Set the qualification confidence threshold between 0 and 99.
e. Choose Trigger a human review for all form keys identified by Amazon Textract with

confidence scores in a specific range.
f. For identification confidence, choose any number between 0 and 90.
g. For qualification confidence, choose any number between 0 and 90.

This triggers a human review if Amazon Textract returns a confidence score that is less than 99
for Mail Address and its value, or if it returns a confidence score less than 90 for any key-value pair
detected in the document.

8. Under Worker task template creation, select Create from a default template.
9. For Template name, enter a descriptive name..
10. For Task description, add something similar to the following:

Read the instructions and review the document.

11. For Workers choose Private.

190

https://console.aws.amazon.com/a2i/

Amazon Textract Developer Guide
Create a Human Review Workflow

12. From the menu choose the private team that you created.
13. Select Create.

After your human review workflow is created, it appears in the table on the Human review workflows
page. When the Status is Active, copy and save the workflow ARN.

Create a Human Review Workflow (API)
You can create a human review workflow, or a flow definition, using the Amazon A2I,
CreateFlowDefinition operation.

For this example, you can either use your own document in Amazon S3, or you can download this sample
document and store it in your S3 bucket.

Make sure your Amazon S3 bucket is in the same AWS Region that you plan to use to call
AnalyzeDocument. To create a bucket, follow the instructions in Create a Bucket in the Amazon Simple
Storage Service Console User Guide.

Prerequisites

To use the Amazon A2I API to create a human review workflow, you must complete the following
prerequisites:

• Configure an IAM role with permission to call both Amazon A2I and Amazon Textract API
operations. To get started, you can attach the AWS policies, AmazonAugmentedAIFullAccess, and
AmazonTextractFullAccess to an IAM role. Record the IAM role Amazon Resources Name (ARN) because
you will need it later.

For more granular permissions when using Amazon Textract, see Amazon Textract Identity-Based
Policy Examples (p. 205). For Amazon A2I, see Permissions and Security in Amazon Augmented AI in
the Amazon SageMaker Developer Guide.

• Create a private work team and record the workteam ARN. If you are a new user of Amazon A2I, follow
the instructions in Step 1: Create a Work Team (Console) (p. 189).

• Create a worker task template. Follow the instructions in Create a Worker Task Template to
create a template using the Amazon A2I console. When you are creating the template, choose
Textract-Form Extraction for Template type. In the template, replace s3_arn with the Amazon
S3 ARN of your document. Add additional worker instructions in <full-instructions
header="Instructions"></full-instructions>.

If you want to preview your template, make sure your IAM role has the permissions described in Enable
Worker Task Template Previews.

After you've created your template, record the worker task template ARN.

You use the resources you created in Prerequisites to configure your CreateFlowDefinition request.
In this request, you also specify activation conditions in JSON format. To learn how to configure your
activation conditions, see Use Human Loop Activation Conditions JSON Schema with Amazon Textract.

Creating a Human Review Workflow (AWS SDK for Python (Boto3))

To use this example, replace the red text with your specifications and resources.

First, encode your activation conditions into a JSON object using the following code. This triggers a
human review if Amazon Textract returns a confidence score that is less than 99 for Mail Address and its
value, or if it returns a confidence score less than 90 for any key-value pair detected in the document. If
you are using the sample document provided in this example, these activation conditions create a human
review task.

191

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2020/04/17/sample-document-final.png
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2020/04/17/sample-document-final.png
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-permissions-security.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html#a2i-create-worker-template-console
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-permissions-security.html#permissions-for-worker-task-templates-augmented-ai
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-permissions-security.html#permissions-for-worker-task-templates-augmented-ai
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-json-humantaskactivationconditions-textract-example.html

Amazon Textract Developer Guide
Analyze the Document

import json

humanLoopActivationConditions = json.dumps("{
 "Conditions": [
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Mail Address",
 "KeyValueBlockConfidenceLessThan": 99,
 "WordBlockConfidenceLessThan": 99
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "*",
 "KeyValueBlockConfidenceLessThan": 90,
 "WordBlockConfidenceLessThan": 90
 }
 }
]
 }"
)

Use humanLoopActivationConditions to configure the create_flow_definition request. The
following example uses the SDK for Python (Boto3) to call create_flow_definition in us-west-2
AWS Region. It specifies using a private work team.

response = client.create_flow_definition(
 FlowDefinitionName='string',
 HumanLoopRequestSource={
 'AwsManagedHumanLoopRequestSource': "AWS/Textract/AnalyzeDocument/Forms/V1"
 },
 HumanLoopActivationConfig={
 'HumanLoopActivationConditionsConfig': {
 'HumanLoopActivationConditions': humanLoopActivationConditions
 }
 },
 HumanLoopConfig={
 'WorkteamArn': "arn:aws:sagemaker:us-west-2:111122223333:workteam/private-
crowd/work-team-name",
 'HumanTaskUiArn': "arn:aws:sagemaker:us-west-2:111122223333:human-task-ui/worker-
task-template-name",
 'TaskTitle': "Add a task title",
 'TaskDescription': "Describe your task",
 'TaskCount': 1,
 'TaskAvailabilityLifetimeInSeconds': 3600,
 'TaskTimeLimitInSeconds': 86400,
 'TaskKeywords': ["Document Review", "Content Review"]
 }
 },
 OutputConfig={
 'S3OutputPath': "s3://DOC-EXAMPLE-BUCKET/prefix/",
 },
 RoleArn="arn:aws:iam::111122223333:role/role-name"
)

Analyze the Document
To incorporate Amazon A2I into an Amazon Textract document analysis workflow, you configure
HumanLoopConfig in the AnalyzeDocument operation.

192

https://docs.aws.amazon.com/goto/boto3/sagemaker-2017-07-24/CreateFlowDefinition
https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html

Amazon Textract Developer Guide
Monitor Human Loop

In HumanLoopConfig, you specify your human review workflow (flow definition) ARN in
FlowDefinitionArn, and give your human loop a name in HumanLoopName.

Analyze the Document (AWS SDK for Python (Boto3))

The following example uses the SDK for Python (Boto3) to call analyze_document in us-
west-2. Replace the red, italicized text with your resources. For more information, see
analyze_document in the AWS SDK for Python (Boto) API Reference.

client.analyze_document(Document={'S3Object': {"Bucket": "DOC-EXAMPLE-BUCKET", "Name":
 "document-name.png"}},
 HumanLoopConfig={"FlowDefinitionArn":"arn:aws:sagemaker:us-
west-2:111122223333:flow-definition/flow-definition-name",
 "HumanLoopName":"human-loop-name",
 "DataAttributes":{"ContentClassifiers":
["FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent",]}},
 FeatureTypes=["FORMS"])

Analyze the Document (AWS CLI)

The following example uses the AWS CLI to call analyze_document. These examples are
compatible with AWS CLI version 2. The first is shorthand syntax, the second in JSON syntax. For
more information, see analyze-document in the AWS CLI Command Reference.

aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"bucket_name","Name":"file_name"}}' \
 --human-loop-config HumanLoopName="test",FlowDefinitionArn="arn:aws:sagemaker:eu-
west-1:xyz:flow-definition/
hl_name",DataAttributes='{ContentClassifiers=["FreeOfPersonallyIdentifiableInformation","FreeOfAdultContent"]}'\
 --feature-types '["FORMS"]'

aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"bucket_name","Name":"file_name"}}' \
 --human-loop-config \
 '{"HumanLoopName":"test","FlowDefinitionArn":"arn:aws:sagemaker:eu-
west-1:xyz:flow-definition/hl_name","DataAttributes": {"ContentClassifiers":
["FreeOfPersonallyIdentifiableInformation","FreeOfAdultContent"]}}' \
 --feature-types '["FORMS"]'

Note
Avoid whites spaces in your --human-loop-config parameter, as this can cause processing issues
for your code.

The response to this request contains HumanLoopActivationOutput, which indicates whether a
human loop was created, and if it was, why. If a human loop was created, this object also contains the
HumanLoopArn.

For more information about and examples using the AnalyzeDocument operation, see Analyzing
Document Text with Amazon Textract (p. 97).

Monitor Human Loop
You can view details about your human loop and stop an active human loop in case of an error using the
Amazon A2I console and API.

193

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html#Textract.Client.analyze_document
https://docs.aws.amazon.com/cli/latest/reference/textract/analyze-document.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/textract/latest/dg/API_HumanLoopActivationOutput.html

Amazon Textract Developer Guide
View Output Data and Worker Metrics

View Human Loop Details
You can view your human loop status in the Amazon A2I console and by using the Amazon A2I Runtime
API.

To find details about your human loop (console)

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i to access the Human review
workflows page.

2. Choose the human review workflow that you used also to configure HumanLoopConfig in
AnalyzeDocument.

3. In the Human loops section, choose the human loop whose details you want to view.

To find details about your human loop (API):

Use the Amazon A2I DescribeHumanLoop operation. Specify the human loop name you used to call
AnalyzeDocument.

The followingSDK for Python (Boto3) example calls describe_human_loop.

response = client.describe_human_loop(HumanLoopName="human-loop-name")

Stop a Human Loop
After a human loop has started, you can stop it using the Amazon A2I console and API.

To stop your human loop (console)

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i to access the Human review
workflows page.

2. Choose the human review workflow that you used to configure HumanLoopConfig in the
AnalyzeDocument operation.

3. In the Human loops section, choose the human loop that you want to stop.

4. Choose Stop.

To stop your human loop (API)

Use the Amazon A2I StopHumanLoop operation. Specify the name of the human loop you used to call
AnalyzeDocument.

The following SDK for Python (Boto3) example calls stop_human_loop.

response = client.stop_human_loop(HumanLoopName="human-loop-name")

View Output Data and Worker Metrics
When a human review task is completed by a worker, Amazon A2I stores your output data in the Amazon
S3 bucket that you specified in your human review workflow.

If you use a private workforce, your output data contains worker metadata that you can use to track
individual worker activity.

194

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://console.aws.amazon.com/a2i/
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DescribeHumanLoop.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.describe_human_loop
https://console.aws.amazon.com/a2i/
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StopHumanLoop.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.stop_human_loop

Amazon Textract Developer Guide
View Output Data and Worker Metrics

Find Output Data in Amazon S3
Amazon A2I uses your human review workflow name as prefix to the name of the file that stores the
output data of human loops created using that human review workflow.

The path to a human loop output uses the following pattern in which YYYY/MM/DD/hh/mm/ss
represents the human loop creation date with year (YYYY), month (MM), and day (DD) and the creation
time with hour (hh), minute (mm), and second (ss).

s3://output-bucket-specified-in-flow-definition/flow-definition-
name/YYYY/MM/DD/hh/mm/ss/human-loop-name/output.json

To see the output for a human loop, use the Amazon A2I console.

To see human loop output

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i to access the Human review
workflows page.

2. Choose the human review workflow that you use to configure HumanLoopConfig in
AnalyzeDocument.

3. In the Human loops section, choose the human loop whose output you want to review.
4. Under Output location, choose the link to the output data.

Track Private Worker Activity
When you use a private workforce for human review tasks, the output data includes following
information about the worker who completed the review:

• The workerId.
• In workerMetadata:

• identityProviderType – The service used to manage the private workforce.
• issuer – The Amazon Cognito user pool or OIDC Identity Provider (IdP) issuer associated with the

work team assigned to this human review task.
• sub – A unique identifier that refers to the worker. If you created a workforce using Amazon Cognito,

you can retrieve details about this worker (such as the name or username) using this ID using
Amazon Cognito. To learn how, see Managing and Searching for User Accounts in Amazon Cognito
Developer Guide.

The following is an example of the output you might see if you used Amazon Cognito to create a private
workforce.

"workerId": "a12b3cdefg4h5i67",
 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.aws-region.amazonaws.com/aws-
region_123456789",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"

The following is an example of the output you might see if you used your own OIDC IdP to create a
private workforce:

"workerId": "a12b3cdefg4h5i67",

195

https://console.aws.amazon.com/a2i/
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html#manage-user-accounts-searching-user-attributes
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/

Amazon Textract Developer Guide
View Output Data and Worker Metrics

 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Oidc",
 "issuer": "https://example-oidc-ipd.com/adfs",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"

To learn more about using private workforces, see Use a Private Workforce in the Amazon SageMaker
Developer Guide.

196

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html

Amazon Textract Developer Guide
Data Protection

Security in Amazon Textract
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Use the following topics to learn how to secure your Amazon Textract resources.

Topics
• Data Protection in Amazon Textract (p. 197)
• Identity and Access Management for Amazon Textract (p. 198)
• Logging and Monitoring (p. 209)
• Logging Amazon Textract API Calls with AWS CloudTrail (p. 213)
• Compliance Validation for Amazon Textract (p. 216)
• Resilience in Amazon Textract (p. 217)
• Cross-service confused deputy prevention (p. 217)
• Infrastructure Security in Amazon Textract (p. 218)
• Configuration and Vulnerability Analysis in Amazon Textract (p. 219)
• Amazon Textract and interface VPC endpoints (AWS PrivateLink) (p. 219)

Data Protection in Amazon Textract
Amazon Textract conforms to the AWS shared responsibility model, which includes regulations and
guidelines for data protection. AWS is responsible for protecting the global infrastructure that runs all
the AWS services. AWS maintains control over data hosted on this infrastructure, including the security
configuration controls for handling customer content and personal data. AWS customers and APN
partners, acting either as data controllers or data processors, are responsible for any personal data that
they put in the AWS Cloud.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). This ensures that each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure your
data in the following ways:

• Use multi-factor authentication (MFA) with each account.
• Use SSL/TLS to communicate with AWS resources.
• Set up API and user activity logging with AWS CloudTrail.
• Use AWS encryption solutions, along with all default security controls within AWS services.
• Use advanced managed security services such as Amazon Macie, which assists in discovering and

securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your customers'
account numbers, into free-form fields such as a Name field. This includes when you work with Amazon
Textract or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter
into Amazon Textract or other services might get picked up for inclusion in diagnostic logs. When you
provide a URL to an external server, don't include credentials information in the URL to validate your
request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

197

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Textract Developer Guide
Encryption in Amazon Textract

Encryption in Amazon Textract
Data encryption refers to protecting data while in transit and at rest. You can protect your data by using
Amazon S3-Managed Keys or AWS KMS key at rest, alongside standard Transport Layer Security while in
transit.

Encryption at Rest
The primary method of encrypting data in Amazon Textract is server-side encryption. Input documents
passed from Amazon S3 buckets are encrypted by Amazon S3 and decrypted when you access them. As
long as you authenticate your request and you have access permissions, there is no difference in the way
you access encrypted or unencrypted objects. For example, if you share your objects using a presigned
URL, that URL works the same way for both encrypted and unencrypted objects. Additionally, when
you list objects in your bucket, the List API returns a list of all objects, regardless of whether they are
encrypted.

Amazon Textract uses two mutually exclusive methods of server-side encryption.

Server-Side Encryption with Amazon S3-Managed Keys (SSE-S3)

When you use server-side encryption with Amazon S3-Managed Keys (SSE-S3), each object is encrypted
with a unique key. As an additional safeguard, this method encrypts the key itself with a master key that
it regularly rotates. Amazon S3 server-side encryption uses one of the strongest block ciphers available,
256-bit Advanced Encryption Standard (AES-256), to encrypt your data. For more information, see
Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys (SSE-S3).

Server-Side Encryption with KMS keys Stored in AWS Key Management Service (SSE-KMS)

Server-side encryption with KMS keys stored in AWS Key Management Service (SSE-KMS) is similar
to SSE-S3, but with some additional benefits and charges for using this service. There are separate
permissions for the use of a KMS key that provides added protection against unauthorized access of your
objects in Amazon S3. SSE-KMS also provides you with an audit trail that shows when your KMS key
was used and by whom. Additionally, you can create and manage KMS keys or use AWS managed keys
that are unique to you, your service, and your Region. For more information, see Protecting Data Using
Server-Side Encryption with KMS keys Stored in AWS Key Management Service (SSE-KMS).

Encryption in Transit
For data in transit, Amazon Textract uses Transport Layer Security (TLS) to encrypt data sent between
the service and the agent. Additionally, Amazon Textract uses VPC endpoints to send data between the
various microservices used when Amazon Textract processes a document.

Internetwork Traffic Privacy
Amazon Textract communicates exclusively through HTTPS endpoints, which are supported in all
Regions supported by Amazon Textract

Identity and Access Management for Amazon
Textract

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and

198

Amazon Textract Developer Guide
Audience

authorized (have permissions) to use Amazon Textract resources. IAM is an AWS service that you can use
with no additional charge.

Topics
• Audience (p. 199)
• Authenticating With Identities (p. 199)
• Managing Access Using Policies (p. 201)
• How Amazon Textract Works with IAM (p. 203)
• Amazon Textract Identity-Based Policy Examples (p. 205)
• Troubleshooting Amazon Textract Identity and Access (p. 207)

Audience
How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in
Amazon Textract.

Service user – If you use the Amazon Textract service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon Textract features to do
your work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Amazon Textract,
see Troubleshooting Amazon Textract Identity and Access (p. 207).

Service administrator – If you're in charge of Amazon Textract resources at your company, you probably
have full access to Amazon Textract. It's your job to determine which Amazon Textract features and
resources your employees should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand the
basic concepts of IAM. To learn more about how your company can use IAM with Amazon Textract, see
How Amazon Textract Works with IAM (p. 203).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to Amazon Textract. To view example Amazon Textract identity-based
policies that you can use in IAM, see Amazon Textract Identity-Based Policy Examples (p. 205).

Authenticating With Identities
Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see Signing in to the AWS Management Console as an
IAM user or root user in the IAM User Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

To sign in directly to the AWS Management Console, use your password with your root user email
address or your IAM user name. You can access AWS programmatically using your root user or IAM
users access keys. AWS provides SDK and command line tools to cryptographically sign your request
using your credentials. If you don't use AWS tools, you must sign the request yourself. Do this using
Signature Version 4, a protocol for authenticating inbound API requests. For more information about
authenticating requests, see Signature Version 4 signing process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using multi-factor authentication (MFA) in AWS
in the IAM User Guide.

199

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Textract Developer Guide
Authenticating With Identities

AWS account root user
When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM Users and Groups
An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An IAM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing access keys for IAM users in the IAM
User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key
pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in
the IAM User Guide.

IAM Roles
An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary IAM user permissions – An IAM user can assume an IAM role to temporarily take on
different permissions for a specific task.

• Federated user access – Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated users and roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when you
make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects
in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or
using a service-linked role.

200

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Textract Developer Guide
Managing Access Using Policies

• Principal permissions – When you use an IAM user or role to perform actions in AWS, you are
considered a principal. Policies grant permissions to a principal. When you use some services, you
might perform an action that then triggers another action in a different service. In this case, you
must have permissions to perform both actions. To see whether an action requires additional
dependent actions in a policy, see Actions, Resources, and Condition Keys for Amazon Textract in the
Service Authorization Reference.

• Service role – A service role is an IAM role that a service assumes to perform actions on your behalf.
An IAM administrator can create, modify, and delete a service role from within IAM. For more
information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS service.
The service can assume the role to perform an action on your behalf. Service-linked roles appear
in your IAM account and are owned by the service. An IAM administrator can view, but not edit the
permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant
permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the
IAM User Guide.

Managing Access Using Policies
You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
You can sign in as the root user or an IAM user, or you can assume an IAM role. When you then make
a request, AWS evaluates the related identity-based or resource-based policies. Permissions in the
policies determine whether the request is allowed or denied. Most policies are stored in AWS as JSON
documents. For more information about the structure and contents of JSON policy documents, see
Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

Every IAM entity (user or role) starts with no permissions. In other words, by default, users can
do nothing, not even change their own password. To give a user permission to do something, an
administrator must attach a permissions policy to a user. Or the administrator can add the user to a
group that has the intended permissions. When an administrator gives permissions to a group, all users
in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-Based Policies
Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, group of users, or role. These policies control what actions users and roles can perform,
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that

201

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazontextract.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Textract Developer Guide
Managing Access Using Policies

you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Resource-Based Policies
Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the
resource where the policy is attached, the policy defines what actions a specified principal can perform
on that resource and under what conditions. You must specify a principal in a resource-based policy.
Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed
policies from IAM in a resource-based policy.

Access Control Lists (ACLs)
Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy
document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about
ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other Policy Types
AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs work in the AWS
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types
When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy evaluation logic in the IAM User Guide.

202

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Textract Developer Guide
How Amazon Textract Works with IAM

How Amazon Textract Works with IAM
Before you use IAM to manage access to Amazon Textract, you should understand what IAM features are
available to use with Amazon Textract. To get a high-level view of how Amazon Textract and other AWS
services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• Amazon Textract Identity-Based Policies (p. 203)

• Amazon Textract Resource-Based Policies (p. 204)

• Authorization Based on Amazon Textract Tags (p. 204)

• Amazon Textract IAM Roles (p. 205)

Amazon Textract Identity-Based Policies
With IAM identity-based policies, you can specify allowed or denied actions and resources and the
conditions under which actions are allowed or denied. Amazon Textract supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM
JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a
policy. Policy actions usually have the same name as the associated AWS API operation. There are some
exceptions, such as permission-only actions that don't have a matching API operation. There are also
some operations that require multiple actions in a policy. These additional actions are called dependent
actions.

Include actions in a policy to grant permissions to perform the associated operation.

Asynchronous actions in Amazon Textract require two action permissions to be given, one for Start
actions and one for Get actions. Additionally, if you are using an Amazon S3 bucket to pass documents,
you will need to grant your account read access.

In Amazon Textract, all policy actions start with: textract:. For example, to grant someone permission
to run an Amazon Textract operation with the Amazon Textract AnalyzeDocument operation, you
include the textract:AnalyzeDocument action in their policy. Policy statements must include either
an Action or NotAction element. Amazon Textract defines its own set of actions that describe tasks
that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows.

"Action": [
 "textract:action1",
 "textract:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action.

"Action": "textract:Describe*"

203

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Textract Developer Guide
How Amazon Textract Works with IAM

For a list of Amazon Textract actions, see Actions Defined by Amazon Textract in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice, specify
a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific
resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to
indicate that the statement applies to all resources.

"Resource": "*"

Amazon Textract does not support specifying resource ARNs in a policy.

Condition Keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can create conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition
keys, see AWS global condition context keys in the IAM User Guide.

Amazon Textract does not provide any service-specific condition keys, but it does support using some
global condition keys. For a list of all AWS global condition keys, see AWS Global Condition Context Keys
in the IAM User Guide.

Examples

To view examples of Amazon Textract identity-based policies, see Amazon Textract Identity-Based Policy
Examples (p. 205).

Amazon Textract Resource-Based Policies
Amazon Textract does not support resource-based policies.

Authorization Based on Amazon Textract Tags
Amazon Textract does not support tagging resources or controlling access based on tags.

204

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazontextract.html#amazontextract-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Textract Developer Guide
Identity-Based Policy Examples

Amazon Textract IAM Roles
An IAM role is an entity within your AWS account that has specific permissions.

Using Temporary Credentials with Amazon Textract

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS STS API operations such as
AssumeRole or GetFederationToken.

Amazon Textract supports using temporary credentials.

Service-Linked Roles

Service-linked roles allow AWS services to access resources in other services to complete an action on
your behalf. Service-linked roles appear in your IAM account and are owned by the service. An IAM
administrator can view but not edit the permissions for service-linked roles.

Amazon Textract does not support service-linked roles.

Note
As Amazon Textract does not support service-linked roles, it does not support AWS service
principals. For more information on service principals, see AWS service principals in the IAM User
Guide

Service Roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

Amazon Textract supports service roles.

If you are using a service role, you should ensure that your account is secure by limiting the scope of
Amazon Textract's access to just the resources you are using. This can be done by attaching a trust
policy to your IAM service role. For information on how to do this, see Cross-service confused deputy
prevention.

Amazon Textract Identity-Based Policy Examples
By default, IAM users and roles don't have permission to create or modify Amazon Textract resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies to
the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy Best Practices (p. 206)

• Allow Users to View Their Own Permissions (p. 206)

• Giving Access to Synchronous Operations in Amazon Textract (p. 207)

• Giving Access to Asynchronous Operations in Amazon Textract (p. 207)

205

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/textract/latest/dg/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/textract/latest/dg/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon Textract Developer Guide
Identity-Based Policy Examples

Policy Best Practices
Identity-based policies are very powerful. They determine whether someone can create, access, or delete
Amazon Textract resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started using AWS managed policies – To start using Amazon Textract quickly, use AWS managed
policies to give your employees the permissions they need. These policies are already available in
your account and are maintained and updated by AWS. For more information, see Get started using
permissions with AWS managed policies in the IAM User Guide.

• Grant least privilege – When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant least privilege in the IAM User Guide.

• Enable MFA for sensitive operations – For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or API operations. For more information, see Using
multi-factor authentication (MFA) in AWS in the IAM User Guide.

• Use policy conditions for extra security – To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to
specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

Allow Users to View Their Own Permissions
This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"

206

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Textract Developer Guide
Troubleshooting

 }
]
}

Giving Access to Synchronous Operations in Amazon Textract

This example policy grants access to the synchronous actions in Amazon Textract to an IAM user on your
AWS account.

"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "textract:DetectDocumentText",
 "textract:AnalyzeDocument"
],
 "Resource": "*"
 }
]

Giving Access to Asynchronous Operations in Amazon Textract

The following example policy gives an IAM user on your AWS account access to all asynchronous
operations used in Amazon Textract.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "textract:StartDocumentTextDetection",
 "textract:StartDocumentAnalysis",
 "textract:GetDocumentTextDetection",
 "textract:GetDocumentAnalysis"
],
 "Resource": "*"
 }
]
}

Troubleshooting Amazon Textract Identity and Access
Use the following information to help you diagnose and fix common issues that you might encounter
when working with Amazon Textract and IAM.

Topics

• I Am Not Authorized to Perform an Action in Amazon Textract (p. 208)

• I Am Not Authorized to Perform iam:PassRole (p. 208)

• I Want to View My Access Keys (p. 208)

• I'm an Administrator and Want to Allow Others to Access Amazon Textract (p. 209)

• I Want to Allow People Outside of My AWS Account to Access My Amazon Textract
Resources (p. 209)

207

Amazon Textract Developer Guide
Troubleshooting

I Am Not Authorized to Perform an Action in Amazon Textract

If the AWS Management Console tells you that you're not authorized to perform an action, then you
must contact your administrator for assistance. Your administrator is the person that provided you with
your user name and password.

The following example error occurs when the mateojackson IAM user tries to run
DetectDocumentText on a test image but does not have textract:DetectDocumentText
permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 textract:DetectDocumentText on resource: textimage.png

In this case, Mateo asks his administrator to update his policies to allow him to access the
textimage.png resource using the textract:DetectDocumentText action.

I Am Not Authorized to Perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you must
contact your administrator for assistance. Your administrator is the person that provided you with your
user name and password. Ask that person to update your policies to allow you to pass a role to Amazon
Textract.

Some AWS services allow you to pass an existing role to that service, instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in Amazon Textract. However, the action requires the service to have permissions
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

I Want to View My Access Keys

After you create your IAM user access keys, you can view your access key ID at any time. However, you
can't view your secret access key again. If you lose your secret key, you must create a new access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

When you create an access key pair, you are prompted to save the access key ID and secret access key in
a secure location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must add new access keys to your IAM user. You can have a maximum of two access keys.
If you already have two, you must delete one key pair before creating a new one. To view instructions,
see Managing access keys in the IAM User Guide.

208

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey

Amazon Textract Developer Guide
Logging and Monitoring

I'm an Administrator and Want to Allow Others to Access
Amazon Textract
To allow others to access Amazon Textract, you must create an IAM entity (user or role) for the person or
application that needs access. They will use the credentials for that entity to access AWS. You must then
attach a policy to the entity that grants them the correct permissions in Amazon Textract.

To get started right away, see Creating your first IAM delegated user and group in the IAM User Guide.

I Want to Allow People Outside of My AWS Account to Access
My Amazon Textract Resources
You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

• To learn whether Amazon Textract supports these features, see How Amazon Textract Works with
IAM (p. 203).

• To learn how to provide access to your resources across AWS accounts that you own, see Providing
access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing access to
AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and Monitoring
To monitor Amazon Textract, use Amazon CloudWatch. This section provides information on how to set
up monitoring for Amazon Textract. It also provides reference content for Amazon Textract metrics.

Topics
• Monitoring Amazon Textract (p. 209)
• CloudWatch Metrics for Amazon Textract (p. 212)

Monitoring Amazon Textract
With CloudWatch, you can get metrics for individual Amazon Textract operations or global Amazon
Textract metrics for your account. You can use metrics to track the health of your Amazon Textract–
based solution, and set up alarms to notify you when one or more metrics fall outside a defined
threshold. For example, you can see metrics for the number of server errors that have occurred. You can
also see metrics for the number of times a specific Amazon Textract operation has succeeded. To see
metrics, you can use Amazon CloudWatch, the AWS CLI, or the CloudWatch API.

Using CloudWatch Metrics for Amazon Textract
To use metrics, you must specify the following information:

209

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Textract Developer Guide
Monitoring

• The metric dimension or no dimension. A dimension is a name-value pair that helps you to uniquely
identify a metric. Amazon Textract has one dimension, named Operation. It provides metrics for
a specific operation. If you don't specify a dimension, the metric is scoped to all Amazon Textract
operations within your account.

• The metric name, such as UserErrorCount.

You can get monitoring data for Amazon Textract by using the AWS Management Console, the AWS CLI,
or the CloudWatch API. You can also use the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The console displays a series of graphs based on
the raw data from the CloudWatch API. Depending on your needs, you might prefer to use either the
graphs displayed in the console or retrieved from the API.

The following list shows some common uses for the metrics. These are suggestions to get you started,
not a comprehensive list.

How Do I? Relevant Metrics

How do I know if my application has reached the
maximum number of requests per second?

Monitor the Sum statistic of the ThrottledCount
metric.

How can I monitor the request errors? Use the Sum statistic of the UserErrorCount
metric.

How can I find the total number of requests? Use the SampleCount statistic of the
ResponseTime metric. This includes any
request that results in an error. If you want
to see only successful operation calls, use the
SuccessfulRequestCount metric.

How can I monitor the latency of Amazon Textract
operation calls?

Use the ResponseTime metric.

You must have the appropriate CloudWatch permissions to monitor Amazon Textract with CloudWatch.
For more information, see Authentication and Access Control for Amazon CloudWatch.

Access Amazon Textract Metrics
The following examples show how to access Amazon Textract metrics using the CloudWatch console, the
AWS CLI, and the CloudWatch API.

To view metrics (console)

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose Metrics, choose the All Metrics tab, and then choose Amazon Textract.
3. Choose By operation, and then choose a metric.

For example, choose the StartDocumentAnalysis metric to measure how many times asynchronous
document analysis has been started.

4. Choose a value for the date range. The metric count displayed in the graph.

To view metrics for successful StartDocumentAnalysis operation calls that have been
made over a period of time (CLI)

• Open the AWS CLI and enter the following command:

210

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/cloudwatch

Amazon Textract Developer Guide
Monitoring

aws cloudwatch get-metric-statistics \
 --metric-name SuccessfulRequestCount \
 --start-time 2019-02-01T00:00:00Z \
 --period 3600 \
 --end-time 2019-03-01T00:00:00Z \
 --namespace AWS/Textract \
 --dimensions Name=Operation,Value=StartDocumentAnalysis \
 --statistics Sum

This example shows the successful StartDocumentAnalysis operation calls made over a period of
time. For more information, see get-metric-statistics.

To access metrics (CloudWatch API)

• Call GetMetricStatistics. For more information, see the Amazon CloudWatch API Reference.

Create an Alarm

You can create a CloudWatch alarm that sends an Amazon Simple Notification Service (Amazon SNS)
message when the alarm changes state. An alarm watches a single metric over a time period that you
specify. It performs one or more actions based on the value of the metric relative to a given threshold
over a number of time periods. The action is a notification sent to an Amazon SNS topic or an Auto
Scaling policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions simply
because they are in a particular state. The state must have changed and have been maintained for a
specified number of time periods.

To set an alarm (console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms, and choose Create Alarm. This opens the Create Alarm
Wizard.

3. Choose Select metric.

4. In the All metrics tab, choose Textract.

5. Choose By Operation, and then choose a metric.

For example, choose StartDocumentAnalysis to set an alarm for a maximum number of
asynchronous document analysis operations.

6. Choose the Graphed metrics tab.

7. For Statistic, choose Sum.

8. Choose Select metric.

9. Fill in the Name and Description. For Whenever, choose >=, and enter a maximum value of your
choice.

10. If you want CloudWatch to send you email when the alarm state is reached, for Whenever this
alarm:, choose State is ALARM. To send alarms to an existing Amazon SNS topic, for Send
notification to:, choose an existing SNS topic. To set the name and email addresses for a new email
subscription list, choose New list. CloudWatch saves the list and displays it in the field so you can
use it to set future alarms.

211

https://docs.aws.amazon.com/cli/latest/reference/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Textract Developer Guide
CloudWatch Metrics for Amazon Textract

Note
If you use New list to create a new Amazon SNS topic, the email addresses must be verified
before the intended recipients receive notifications. Amazon SNS sends email only when the
alarm enters an alarm state. If this alarm state change happens before the email addresses
are verified, intended recipients don't receive a notification.

11. Choose Create Alarm.

To set an alarm (AWS CLI)

• Open the AWS CLI and enter the following command. Change the value of the alarm-actions
parameter to reference an Amazon SNS topic that you previously created.

aws cloudwatch put-metric-alarm \
 --alarm-name StartDocumentAnalysisUserErrors \
 --alarm-description "Alarm when more than 10 StartDocumentAnalysys user errors
 occur within 5 minutes" \
 --metric-name UserErrorCount \
 --namespace AWS/Textract \
 --statistic Sum \
 --period 300 \
 --threshold 10 \
 --comparison-operator GreaterThanThreshold \
 --evaluation-periods 1 \
 --unit Count \
 --dimensions Name=Operation,Value=StartDocumentAnalysis \
 --alarm-actions arn:aws:sns:us-east-1:111111111111:alarmtopic

This example shows how to create an alarm for when more than 10 user errors occur within 5
minutes for calls to StartDocumentAnalysis. For more information, see put-metric-alarm.

To set an alarm (CloudWatch API)

• Call PutMetricAlarm. For more information, see Amazon CloudWatch API Reference.

CloudWatch Metrics for Amazon Textract
This section contains information about the Amazon CloudWatch metrics and the Operation dimension
that are available for Amazon Textract.

You can also see an aggregate view of Amazon Textract metrics from the Amazon Textract console.

CloudWatch Metrics for Amazon Textract

The following table summarizes the Amazon Textract metrics.

Metric Description

SuccessfulRequestCount The number of successful requests. The response code range for a successful
request is 200 to 299.

Unit: Count

Valid statistics: Sum,Average

212

https://docs.aws.amazon.com/cli/latest/reference/put-metric-alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Textract Developer Guide
Logging Amazon Textract API Calls with AWS CloudTrail

Metric Description

ThrottledCount The number of throttled requests. Amazon Textract throttles a request when
it receives more requests than the limit of transactions per second set for
your account. If the limit set for your account is frequently exceeded, you can
request a limit increase. To request an increase, see AWS Service Limits.

Unit: Count

Valid statistics: Sum,Average

ResponseTime The time in milliseconds for Amazon Textract to compute the response.

Units:

1. Count for Data Samples statistics
2. Milliseconds for Average statistics

Valid statistics: Data Samples,Average

Note
The ResponseTime metric isn't included in the Amazon Textract
metric pane.

ServerErrorCount The number of server errors. The response code range for a server error is
500 to 599.

Unit: Count

Valid statistics: Sum,Average

UserErrorCount The number of user errors (invalid parameters, invalid image, no permission,
and so on). The response code range for a user error is 400 to 499.

Unit: Count

Valid statistics: Sum,Average

CloudWatch Dimension for Amazon Textract
To retrieve operation-specific metrics, use the AWS/Textract namespace and provide an operation
dimension. For more information about dimensions, see Dimensions in the Amazon CloudWatch User
Guide.

Logging Amazon Textract API Calls with AWS
CloudTrail

Amazon Textract is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Amazon Textract. CloudTrail captures all API calls for Amazon Textract as
events. The calls captured include calls from the Amazon Textract console and code calls to the Amazon
Textract API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Amazon Textract. If you don't configure a trail, you can still view the most recent

213

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon Textract Developer Guide
Amazon Textract Information in CloudTrail

events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon Textract, the IP address that the request was made
from, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon Textract Information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Amazon
Textract, that activity is recorded in a CloudTrail event along with other AWS service events in Event
history. You can view, search, and download recent events in your AWS account. For more information,
see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Textract, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you
can configure other AWS services to further analyze and act upon the event data that's collected in
CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail
• CloudTrail Supported Services and Integrations
• Configuring Amazon SNS Notifications for CloudTrail
• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts

All Amazon Textract operations are logged by CloudTrail and are documented in the API Reference. For
example, calls to the DetectDocumentText, AnalyzeDocument, and GetDocumentText actions
generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Request Parameters and Response Fields That Aren't Logged
For privacy purposes, certain request parameters and response fields aren't logged—for example,
request image bytes or response bounding box information. Amazon S3 bucket names and file names
supplied in request parameters are provided in CloudTrail log entries. No information about image bytes
passed in a request is provided in a CloudTrail log. The following table shows the input parameters and
response parameters that aren't logged for each Amazon Textract operation.

Operation Request Parameters Response Fields

AnalyzeDocument Bytes All

DetectDocumentText Bytes All

StartDocumentAnalysis None None

214

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/textract/latest/dg/API_Operations.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Textract Developer Guide
Understanding Amazon Textract Log File Entries

Operation Request Parameters Response Fields

GetDocumentAnalysis None All

StartDocumentTextDetection None None

GetDocumentTextDetection None All

Understanding Amazon Textract Log File Entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested operation, the date and time of the operation,
request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so
they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AnalyzeDocument
operation. The image bytes for the input document and the analysis results (responseElements) aren't
logged.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111111111111:user/janedoe",
 "accountId": "111111111111",
 "accessKeyId": "AIDACKCEVSQ6C2EXAMPLE",
 "userName": "janedoe"
 },
 "eventTime": "2019-04-03T23:56:31Z",
 "eventSource": "textract.amazonaws.com",
 "eventName": "AnalyzeDocument",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "",
 "requestParameters": {
 "document": {},
 "featureTypes": [
 "TABLES"
]
 },
 "responseElements": null,
 "requestID": "e387676b-d1f0-4ea7-85d6-f5a344052dce",
 "eventID": "c5db79ce-e4ea-4401-8517-784481d559f7",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111111111111"
}

The following example shows a CloudTrail log entry for the StartDocumentAnalysis operation. The
log entry includes the Amazon S3 bucket name and image file name in documentLocation. The log
also includes the operation response.

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",

215

Amazon Textract Developer Guide
Compliance Validation

 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111111111111:user/janedoe",
 "accountId": "11111111111",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "janedoe"
 },
 "eventTime": "2019-04-04T01:42:24Z",
 "eventSource": "textract.amazonaws.com",
 "eventName": "StartDocumentAnalysis",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "",
 "requestParameters": {
 "documentLocation": {
 "s3Object": {
 "bucket": "bucket",
 "name": "document.png"
 }
 },
 "featureTypes": [
 "TABLES"
]
 },
 "responseElements": {
 "jobId": "f3c718b444fa603d5d625ab967008f4b620d4650c9db8ca1cae01ef7efe51373"
 },
 "requestID": "9ae352e8-9de1-41ad-b77b-85aa348c2e82",
 "eventID": "f741bca0-c3cb-4805-82ea-baf76439deef",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111111111111"
 }

]
}

Compliance Validation for Amazon Textract
Third-party auditors assess the security and compliance of Amazon Textract as part of multiple AWS
compliance programs. These include HIPAA, SOC, ISO, and PCI.

Note
If you are processing data through Textract service that is subject to PCI DSS compliance then
you must opt out your account by contacting AWS Support and following the process provided
to you.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using Amazon Textract is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

216

http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf

Amazon Textract Developer Guide
Resilience

• AWS Compliance Resources – This collection of workbooks and guides might apply to your industry
and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within AWS.
The security hub helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Textract
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between zones without interruption. Availability
Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data
center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Note
Cross region transfer of data is not permitted due to the General Data Protection Regulation
(GDPR).

Cross-service confused deputy prevention
In AWS, cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to act on another customer's resources even
though it shouldn't have the proper permissions, resulting in the confused deputy problem.

To prevent this, AWS provides tools that help you protect your data for all services with service principals
that have been given access to resources in your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context keys in
resource policies to limit the permissions that Amazon Textract gives another service to the resource.

If the value of aws:SourceArn does not contain the account ID, such as an Amazon S3 bucket ARN, you
must use both keys to limit permissions. If you use both keys and the aws:SourceArn value contains
the account ID, the aws:SourceAccount value and the account in the aws:SourceArn value must use
the same account ID when used in the same policy statement.

Use aws:SourceArn if you want only one resource to be associated with the cross-service access. Use
aws:SourceAccount if you want to allow any resource in that account to be associated with the cross-
service use.

The value of aws:SourceArn must be the ARN of the resource used by Textract, which is specified with
the following format: arn:aws:rekognition:region:account:resource.

The recommended approach to the confused deputy problem is to use the aws:SourceArn global
condition context key with the full resource ARN.

If you don't know the full ARN of the resource or if you are specifying multiple resources, use the
aws:SourceArn key with wildcard characters (*) for the unknown portions of the ARN. For example,
arn:aws:textract:*:111122223333:*.

In order to protect against the confused deputy problem, carry out the following steps:

217

http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
http://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Textract Developer Guide
Infrastructure Security

1. In the navigation pane of the IAM console choose the Roles option. The console will display the roles
for your current account.

2. Choose the name of the role that you want to modify. The role you modify should have the
AmazonTextractServiceRole permissions policy. Select the Trust relationships tab.

3. Choose Edit trust policy.

4. On the Edit trust policy page, replace the default JSON policy with a policy that utilizes one or both
of the aws:SourceArn and aws:SourceAccount global condition context keys. See the following
example policies.

5. Choose Update policy.

The following examples are trust policies that show how you can use the aws:SourceArn and
aws:SourceAccount global condition context keys in Amazon Textract to prevent the confused deputy
problem.

You can specify multiple accounts in both the SourceAccount and SourceArn condition. Be sure to
specify the ID of any trusted account in both conditions.

If you are working with Amazon Textract's asynchronous operations, you could use a policy like the
following in your IAM role. In the example below, replace the red replaceable text with the IDs of the
accounts calling the API operations (your account ID and the IDs of any other trusted accounts):

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "textract.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
["arn:aws:textract:*:123456789012:*","arn:aws:textract:*:111122223333:*"]
 },
 "StringEquals": {
 "aws:SourceAccount": ["123456789012", "111122223333"]
 }
 }
 }
}

Infrastructure Security in Amazon Textract
As a managed service, Amazon Textract is protected by the AWS global network security procedures that
are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access Amazon Textract through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

218

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Textract Developer Guide
Configuration and Vulnerability Analysis

Configuration and Vulnerability Analysis in
Amazon Textract

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For more
information, see the AWS shared responsibility model.

Amazon Textract and interface VPC endpoints
(AWS PrivateLink)

You can establish a private connection between your VPC and Amazon Textract by creating an interface
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that enables you to
privately access Amazon Textract APIs without an internet gateway, NAT device, VPN connection, or AWS
Direct Connect connection. Instances in your VPC don't need public IP addresses to communicate with
Amazon Textract APIs. Traffic between your VPC and Amazon Textract does not leave the AWS network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

Considerations for Amazon Textract VPC endpoints
Before you set up an interface VPC endpoint for Amazon Textract, ensure that you review Interface
endpoint properties and limitations in the Amazon VPC User Guide.

Amazon Textract supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for Amazon
Textract
You can create a VPC endpoint for the Amazon Textract service using either the Amazon VPC console or
the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in
the Amazon VPC User Guide.

Create a VPC endpoint for Amazon Textract using the following service name:

• com.amazonaws.region.textract - For creating an endpoint for most Amazon Textract operations.
• com.amazonaws.region.textract-fips - For creating an endpoint for Amazon Textract that complies

with the Federal Information Processing Standard (FIPS) Publication 140-2 US government standard.

If you enable private DNS for the endpoint, you can make API requests to Amazon Textract using its
default DNS name for the Region, for example, textract.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC User
Guide.

Creating a VPC endpoint policy for Amazon Textract
You can attach an endpoint policy to your VPC endpoint that controls access to Amazon Textract. The
policy specifies the following information:

219

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

Amazon Textract Developer Guide
Creating a VPC endpoint policy for Amazon Textract

• The principal that can perform actions.
• The actions that can be performed.
• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC User
Guide.

Example: VPC endpoint policy for Amazon Textract actions

The following is an example of an endpoint policy for Amazon Textract. When attached to an endpoint,
this policy grants access to the listed Amazon Textract actions for all principals on all resources.

This example policy allows access to only the operations DetectDocumentText and
AnalyzeDocument. Users can still call Amazon Textract operations from outside the VPC Endpoint.

 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "textract:DetectDocumentText",
 "textract:AnalyzeDocument",
],
 "Resource":"*"
 }
]
}

220

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Textract Developer Guide
Actions

API Reference
This section provides documentation for the Amazon Textract API operations.

Topics
• Actions (p. 221)
• Data Types (p. 268)

Actions
The following actions are supported:

• AnalyzeDocument (p. 222)
• AnalyzeExpense (p. 227)
• AnalyzeID (p. 232)
• DetectDocumentText (p. 235)
• GetDocumentAnalysis (p. 239)
• GetDocumentTextDetection (p. 244)
• GetExpenseAnalysis (p. 249)
• StartDocumentAnalysis (p. 255)
• StartDocumentTextDetection (p. 260)
• StartExpenseAnalysis (p. 264)

221

Amazon Textract Developer Guide
AnalyzeDocument

AnalyzeDocument
Analyzes an input document for relationships between detected items.

The types of information returned are as follows:

• Form data (key-value pairs). The related information is returned in two Block (p. 270) objects, each of
type KEY_VALUE_SET: a KEY Block object and a VALUE Block object. For example, Name: Ana Silva
Carolina contains a key and value. Name: is the key. Ana Silva Carolina is the value.

• Table and table cell data. A TABLE Block object contains information about a detected table. A CELL
Block object is returned for each cell in a table.

• Lines and words of text. A LINE Block object contains one or more WORD Block objects. All lines and
words that are detected in the document are returned (including text that doesn't have a relationship
with the value of FeatureTypes).

• Query. A QUERY Block object contains the query text, alias and link to the associated Query results
block object.

• Query Result.A QUERIES_RESULT Block object contains the answer to the query, the alias associated
and an ID that connect it to the query asked. This Block also contains a location and attached
confidence score.

Selection elements such as check boxes and option buttons (radio buttons) can be detected in form data
and in tables. A SELECTION_ELEMENT Block object contains information about a selection element,
including the selection status.

You can choose which type of analysis to perform by specifying the FeatureTypes list.

The output is returned in a list of Block objects.

AnalyzeDocument is a synchronous operation. To analyze documents asynchronously, use
StartDocumentAnalysis (p. 255).

For more information, see Document Text Analysis.

Request Syntax

{
 "Document": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "FeatureTypes": ["string"],
 "HumanLoopConfig": {
 "DataAttributes": {
 "ContentClassifiers": ["string"]
 },
 "FlowDefinitionArn": "string",
 "HumanLoopName": "string"
 },
 "QueriesConfig": {
 "Queries": [
 {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"

222

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-analyzing.html

Amazon Textract Developer Guide
AnalyzeDocument

 }
]
 }
}

Request Parameters
The request accepts the following data in JSON format.

Document (p. 222)

The input document as base64-encoded bytes or an Amazon S3 object. If you use the AWS CLI to
call Amazon Textract operations, you can't pass image bytes. The document must be an image in
JPEG, PNG, PDF, or TIFF format.

If you're using an AWS SDK to call Amazon Textract, you might not need to base64-encode image
bytes that are passed using the Bytes field.

Type: Document (p. 275) object

Required: Yes
FeatureTypes (p. 222)

A list of the types of analysis to perform. Add TABLES to the list to return information about the
tables that are detected in the input document. Add FORMS to return detected form data. To
perform both types of analysis, add TABLES and FORMS to FeatureTypes. All lines and words
detected in the document are included in the response (including text that isn't related to the value
of FeatureTypes).

Type: Array of strings

Valid Values: TABLES | FORMS | QUERIES

Required: Yes
HumanLoopConfig (p. 222)

Sets the configuration for the human in the loop workflow for analyzing documents.

Type: HumanLoopConfig (p. 284) object

Required: No
QueriesConfig (p. 222)

Contains Queries and the alias for those Queries, as determined by the input.

Type: QueriesConfig (p. 294) object

Required: No

Response Syntax

{
 "AnalyzeDocumentModelVersion": "string",
 "Blocks": [
 {
 "BlockType": "string",
 "ColumnIndex": number,

223

Amazon Textract Developer Guide
AnalyzeDocument

 "ColumnSpan": number,
 "Confidence": number,
 "EntityTypes": ["string"],
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Id": "string",
 "Page": number,
 "Query": {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"
 },
 "Relationships": [
 {
 "Ids": ["string"],
 "Type": "string"
 }
],
 "RowIndex": number,
 "RowSpan": number,
 "SelectionStatus": "string",
 "Text": "string",
 "TextType": "string"
 }
],
 "DocumentMetadata": {
 "Pages": number
 },
 "HumanLoopActivationOutput": {
 "HumanLoopActivationConditionsEvaluationResults": "string",
 "HumanLoopActivationReasons": ["string"],
 "HumanLoopArn": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AnalyzeDocumentModelVersion (p. 223)

The version of the model used to analyze the document.

Type: String
Blocks (p. 223)

The items that are detected and analyzed by AnalyzeDocument.

Type: Array of Block (p. 270) objects

224

Amazon Textract Developer Guide
AnalyzeDocument

DocumentMetadata (p. 223)

Metadata about the analyzed document. An example is the number of pages.

Type: DocumentMetadata (p. 277) object
HumanLoopActivationOutput (p. 223)

Shows the results of the human in the loop evaluation.

Type: HumanLoopActivationOutput (p. 283) object

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
HumanLoopQuotaExceededException

Indicates you have exceeded the maximum number of active human in the loop workflows available

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400

225

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html

Amazon Textract Developer Guide
AnalyzeDocument

ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

226

https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/AnalyzeDocument
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/AnalyzeDocument

Amazon Textract Developer Guide
AnalyzeExpense

AnalyzeExpense
AnalyzeExpense synchronously analyzes an input document for financially related relationships
between text.

Information is returned as ExpenseDocuments and seperated as follows.

• LineItemGroups- A data set containing LineItems which store information about the lines of text,
such as an item purchased and its price on a receipt.

• SummaryFields- Contains all other information a receipt, such as header information or the vendors
name.

Request Syntax

{
 "Document": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
}

Request Parameters

The request accepts the following data in JSON format.

Document (p. 227)

The input document, either as bytes or as an S3 object.

You pass image bytes to an Amazon Textract API operation by using the Bytes property. For
example, you would use the Bytes property to pass a document loaded from a local file system.
Image bytes passed by using the Bytes property must be base64 encoded. Your code might
not need to encode document file bytes if you're using an AWS SDK to call Amazon Textract API
operations.

You pass images stored in an S3 bucket to an Amazon Textract API operation by using the S3Object
property. Documents stored in an S3 bucket don't need to be base64 encoded.

The AWS Region for the S3 bucket that contains the S3 object must match the AWS Region that you
use for Amazon Textract operations.

If you use the AWS CLI to call Amazon Textract operations, passing image bytes using the Bytes
property isn't supported. You must first upload the document to an Amazon S3 bucket, and then call
the operation using the S3Object property.

For Amazon Textract to process an S3 object, the user must have permission to access the S3 object.

Type: Document (p. 275) object

Required: Yes

227

Amazon Textract Developer Guide
AnalyzeExpense

Response Syntax

{
 "DocumentMetadata": {
 "Pages": number
 },
 "ExpenseDocuments": [
 {
 "ExpenseIndex": number,
 "LineItemGroups": [
 {
 "LineItemGroupIndex": number,
 "LineItems": [
 {
 "LineItemExpenseFields": [
 {
 "LabelDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 },
 "PageNumber": number,
 "Type": {
 "Confidence": number,
 "Text": "string"
 },
 "ValueDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 }
 }
]
 }
]
 }
],
 "SummaryFields": [

228

Amazon Textract Developer Guide
AnalyzeExpense

 {
 "LabelDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 },
 "PageNumber": number,
 "Type": {
 "Confidence": number,
 "Text": "string"
 },
 "ValueDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 }
 }
]
 }
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

DocumentMetadata (p. 228)

Information about the input document.

Type: DocumentMetadata (p. 277) object
ExpenseDocuments (p. 228)

The expenses detected by Amazon Textract.

Type: Array of ExpenseDocument (p. 279) objects

229

Amazon Textract Developer Guide
AnalyzeExpense

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

230

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html

Amazon Textract Developer Guide
AnalyzeExpense

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

231

https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/AnalyzeExpense
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/AnalyzeExpense

Amazon Textract Developer Guide
AnalyzeID

AnalyzeID
Analyzes identity documents for relevant information. This information is extracted and returned
as IdentityDocumentFields, which records both the normalized field and value of the extracted
text.Unlike other Amazon Textract operations, AnalyzeID doesn't return any Geometry data.

Request Syntax

{
 "DocumentPages": [
 {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
]
}

Request Parameters
The request accepts the following data in JSON format.

DocumentPages (p. 232)

The document being passed to AnalyzeID.

Type: Array of Document (p. 275) objects

Array Members: Minimum number of 1 item. Maximum number of 2 items.

Required: Yes

Response Syntax

{
 "AnalyzeIDModelVersion": "string",
 "DocumentMetadata": {
 "Pages": number
 },
 "IdentityDocuments": [
 {
 "DocumentIndex": number,
 "IdentityDocumentFields": [
 {
 "Type": {
 "Confidence": number,
 "NormalizedValue": {
 "Value": "string",
 "ValueType": "string"
 },
 "Text": "string"
 },
 "ValueDetection": {
 "Confidence": number,
 "NormalizedValue": {
 "Value": "string",

232

Amazon Textract Developer Guide
AnalyzeID

 "ValueType": "string"
 },
 "Text": "string"
 }
 }
]
 }
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AnalyzeIDModelVersion (p. 232)

The version of the AnalyzeIdentity API being used to process documents.

Type: String
DocumentMetadata (p. 232)

Information about the input document.

Type: DocumentMetadata (p. 277) object
IdentityDocuments (p. 232)

The list of documents processed by AnalyzeID. Includes a number denoting their place in the list and
the response structure for the document.

Type: Array of IdentityDocument (p. 286) objects

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

233

Amazon Textract Developer Guide
AnalyzeID

HTTP Status Code: 500
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

234

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/AnalyzeID
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/AnalyzeID

Amazon Textract Developer Guide
DetectDocumentText

DetectDocumentText
Detects text in the input document. Amazon Textract can detect lines of text and the words that
make up a line of text. The input document must be an image in JPEG, PNG, PDF, or TIFF format.
DetectDocumentText returns the detected text in an array of Block (p. 270) objects.

Each document page has as an associated Block of type PAGE. Each PAGE Block object is the parent of
LINE Block objects that represent the lines of detected text on a page. A LINE Block object is a parent
for each word that makes up the line. Words are represented by Block objects of type WORD.

DetectDocumentText is a synchronous operation. To analyze documents asynchronously, use
StartDocumentTextDetection (p. 260).

For more information, see Document Text Detection.

Request Syntax

{
 "Document": {
 "Bytes": blob,
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 }
}

Request Parameters

The request accepts the following data in JSON format.

Document (p. 235)

The input document as base64-encoded bytes or an Amazon S3 object. If you use the AWS CLI to
call Amazon Textract operations, you can't pass image bytes. The document must be an image in
JPEG or PNG format.

If you're using an AWS SDK to call Amazon Textract, you might not need to base64-encode image
bytes that are passed using the Bytes field.

Type: Document (p. 275) object

Required: Yes

Response Syntax

{
 "Blocks": [
 {
 "BlockType": "string",
 "ColumnIndex": number,
 "ColumnSpan": number,
 "Confidence": number,
 "EntityTypes": ["string"],

235

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-detecting.html

Amazon Textract Developer Guide
DetectDocumentText

 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Id": "string",
 "Page": number,
 "Query": {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"
 },
 "Relationships": [
 {
 "Ids": ["string"],
 "Type": "string"
 }
],
 "RowIndex": number,
 "RowSpan": number,
 "SelectionStatus": "string",
 "Text": "string",
 "TextType": "string"
 }
],
 "DetectDocumentTextModelVersion": "string",
 "DocumentMetadata": {
 "Pages": number
 }
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Blocks (p. 235)

An array of Block objects that contain the text that's detected in the document.

Type: Array of Block (p. 270) objects

DetectDocumentTextModelVersion (p. 235)

Type: String

DocumentMetadata (p. 235)

Metadata about the document. It contains the number of pages that are detected in the document.

Type: DocumentMetadata (p. 277) object

236

Amazon Textract Developer Guide
DetectDocumentText

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

237

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html

Amazon Textract Developer Guide
DetectDocumentText

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

238

https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/DetectDocumentText
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/DetectDocumentText

Amazon Textract Developer Guide
GetDocumentAnalysis

GetDocumentAnalysis
Gets the results for an Amazon Textract asynchronous operation that analyzes text in a document.

You start asynchronous text analysis by calling StartDocumentAnalysis (p. 255), which returns a job
identifier (JobId). When the text analysis operation finishes, Amazon Textract publishes a completion
status to the Amazon Simple Notification Service (Amazon SNS) topic that's registered in the initial call
to StartDocumentAnalysis. To get the results of the text-detection operation, first check that the
status value published to the Amazon SNS topic is SUCCEEDED. If so, call GetDocumentAnalysis, and
pass the job identifier (JobId) from the initial call to StartDocumentAnalysis.

GetDocumentAnalysis returns an array of Block (p. 270) objects. The following types of information
are returned:

• Form data (key-value pairs). The related information is returned in two Block (p. 270) objects, each of
type KEY_VALUE_SET: a KEY Block object and a VALUE Block object. For example, Name: Ana Silva
Carolina contains a key and value. Name: is the key. Ana Silva Carolina is the value.

• Table and table cell data. A TABLE Block object contains information about a detected table. A CELL
Block object is returned for each cell in a table.

• Lines and words of text. A LINE Block object contains one or more WORD Block objects. All lines and
words that are detected in the document are returned (including text that doesn't have a relationship
with the value of the StartDocumentAnalysis FeatureTypes input parameter).

• Query. A QUERY Block object contains the query text, alias and link to the associated Query results
block object.

• Query Results. A QUERIES_RESULT Block object contains the answer to the query, the alias associated
and an ID that connect it to the query asked. This Block also contains a location and attached
confidence score

Note
While processing a document with queries, look out for INVALID_REQUEST_PARAMETERS
output. This indicates that either the per page query limit has been exceeded or that the
operation is trying to query a page in the document which doesn’t exist.

Selection elements such as check boxes and option buttons (radio buttons) can be detected in form data
and in tables. A SELECTION_ELEMENT Block object contains information about a selection element,
including the selection status.

Use the MaxResults parameter to limit the number of blocks that are returned. If there are more results
than specified in MaxResults, the value of NextToken in the operation response contains a pagination
token for getting the next set of results. To get the next page of results, call GetDocumentAnalysis,
and populate the NextToken request parameter with the token value that's returned from the previous
call to GetDocumentAnalysis.

For more information, see Document Text Analysis.

Request Syntax

{
 "JobId": "string",
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters
The request accepts the following data in JSON format.

239

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-analyzing.html

Amazon Textract Developer Guide
GetDocumentAnalysis

JobId (p. 239)

A unique identifier for the text-detection job. The JobId is returned from
StartDocumentAnalysis. A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Required: Yes

MaxResults (p. 239)

The maximum number of results to return per paginated call. The largest value that you can specify
is 1,000. If you specify a value greater than 1,000, a maximum of 1,000 results is returned. The
default value is 1,000.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

NextToken (p. 239)

If the previous response was incomplete (because there are more blocks to retrieve), Amazon
Textract returns a pagination token in the response. You can use this pagination token to retrieve the
next set of blocks.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*

Required: No

Response Syntax

{
 "AnalyzeDocumentModelVersion": "string",
 "Blocks": [
 {
 "BlockType": "string",
 "ColumnIndex": number,
 "ColumnSpan": number,
 "Confidence": number,
 "EntityTypes": ["string"],
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number

240

Amazon Textract Developer Guide
GetDocumentAnalysis

 }
]
 },
 "Id": "string",
 "Page": number,
 "Query": {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"
 },
 "Relationships": [
 {
 "Ids": ["string"],
 "Type": "string"
 }
],
 "RowIndex": number,
 "RowSpan": number,
 "SelectionStatus": "string",
 "Text": "string",
 "TextType": "string"
 }
],
 "DocumentMetadata": {
 "Pages": number
 },
 "JobStatus": "string",
 "NextToken": "string",
 "StatusMessage": "string",
 "Warnings": [
 {
 "ErrorCode": "string",
 "Pages": [number]
 }
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AnalyzeDocumentModelVersion (p. 240)

Type: String

Blocks (p. 240)

The results of the text-analysis operation.

Type: Array of Block (p. 270) objects

DocumentMetadata (p. 240)

Information about a document that Amazon Textract processed. DocumentMetadata is returned in
every page of paginated responses from an Amazon Textract video operation.

Type: DocumentMetadata (p. 277) object

JobStatus (p. 240)

The current status of the text detection job.

241

Amazon Textract Developer Guide
GetDocumentAnalysis

Type: String

Valid Values: IN_PROGRESS | SUCCEEDED | FAILED | PARTIAL_SUCCESS
NextToken (p. 240)

If the response is truncated, Amazon Textract returns this token. You can use this token in the
subsequent request to retrieve the next set of text detection results.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*
StatusMessage (p. 240)

Returns if the detection job could not be completed. Contains explanation for what error occured.

Type: String
Warnings (p. 240)

A list of warnings that occurred during the document-analysis operation.

Type: Array of Warning (p. 299) objects

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidJobIdException

An invalid job identifier was passed to GetDocumentAnalysis (p. 239) or to
GetDocumentAnalysis (p. 239).

HTTP Status Code: 400
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400

242

Amazon Textract Developer Guide
GetDocumentAnalysis

InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

243

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/GetDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/GetDocumentAnalysis

Amazon Textract Developer Guide
GetDocumentTextDetection

GetDocumentTextDetection
Gets the results for an Amazon Textract asynchronous operation that detects text in a document.
Amazon Textract can detect lines of text and the words that make up a line of text.

You start asynchronous text detection by calling StartDocumentTextDetection (p. 260), which returns
a job identifier (JobId). When the text detection operation finishes, Amazon Textract publishes a
completion status to the Amazon Simple Notification Service (Amazon SNS) topic that's registered
in the initial call to StartDocumentTextDetection. To get the results of the text-detection
operation, first check that the status value published to the Amazon SNS topic is SUCCEEDED. If
so, call GetDocumentTextDetection, and pass the job identifier (JobId) from the initial call to
StartDocumentTextDetection.

GetDocumentTextDetection returns an array of Block (p. 270) objects.

Each document page has as an associated Block of type PAGE. Each PAGE Block object is the parent of
LINE Block objects that represent the lines of detected text on a page. A LINE Block object is a parent
for each word that makes up the line. Words are represented by Block objects of type WORD.

Use the MaxResults parameter to limit the number of blocks that are returned. If there are
more results than specified in MaxResults, the value of NextToken in the operation response
contains a pagination token for getting the next set of results. To get the next page of results, call
GetDocumentTextDetection, and populate the NextToken request parameter with the token value
that's returned from the previous call to GetDocumentTextDetection.

For more information, see Document Text Detection.

Request Syntax

{
 "JobId": "string",
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters
The request accepts the following data in JSON format.

JobId (p. 244)

A unique identifier for the text detection job. The JobId is returned from
StartDocumentTextDetection. A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Required: Yes
MaxResults (p. 244)

The maximum number of results to return per paginated call. The largest value you can specify is
1,000. If you specify a value greater than 1,000, a maximum of 1,000 results is returned. The default
value is 1,000.

Type: Integer

244

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-detecting.html

Amazon Textract Developer Guide
GetDocumentTextDetection

Valid Range: Minimum value of 1.

Required: No
NextToken (p. 244)

If the previous response was incomplete (because there are more blocks to retrieve), Amazon
Textract returns a pagination token in the response. You can use this pagination token to retrieve the
next set of blocks.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*

Required: No

Response Syntax

{
 "Blocks": [
 {
 "BlockType": "string",
 "ColumnIndex": number,
 "ColumnSpan": number,
 "Confidence": number,
 "EntityTypes": ["string"],
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Id": "string",
 "Page": number,
 "Query": {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"
 },
 "Relationships": [
 {
 "Ids": ["string"],
 "Type": "string"
 }
],
 "RowIndex": number,
 "RowSpan": number,
 "SelectionStatus": "string",
 "Text": "string",
 "TextType": "string"
 }
],
 "DetectDocumentTextModelVersion": "string",

245

Amazon Textract Developer Guide
GetDocumentTextDetection

 "DocumentMetadata": {
 "Pages": number
 },
 "JobStatus": "string",
 "NextToken": "string",
 "StatusMessage": "string",
 "Warnings": [
 {
 "ErrorCode": "string",
 "Pages": [number]
 }
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Blocks (p. 245)

The results of the text-detection operation.

Type: Array of Block (p. 270) objects
DetectDocumentTextModelVersion (p. 245)

Type: String
DocumentMetadata (p. 245)

Information about a document that Amazon Textract processed. DocumentMetadata is returned in
every page of paginated responses from an Amazon Textract video operation.

Type: DocumentMetadata (p. 277) object
JobStatus (p. 245)

The current status of the text detection job.

Type: String

Valid Values: IN_PROGRESS | SUCCEEDED | FAILED | PARTIAL_SUCCESS
NextToken (p. 245)

If the response is truncated, Amazon Textract returns this token. You can use this token in the
subsequent request to retrieve the next set of text-detection results.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*
StatusMessage (p. 245)

Returns if the detection job could not be completed. Contains explanation for what error occured.

Type: String
Warnings (p. 245)

A list of warnings that occurred during the text-detection operation for the document.

246

Amazon Textract Developer Guide
GetDocumentTextDetection

Type: Array of Warning (p. 299) objects

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidJobIdException

An invalid job identifier was passed to GetDocumentAnalysis (p. 239) or to
GetDocumentAnalysis (p. 239).

HTTP Status Code: 400
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

247

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html

Amazon Textract Developer Guide
GetDocumentTextDetection

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

248

https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/GetDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/GetDocumentTextDetection

Amazon Textract Developer Guide
GetExpenseAnalysis

GetExpenseAnalysis
Gets the results for an Amazon Textract asynchronous operation that analyzes invoices and receipts.
Amazon Textract finds contact information, items purchased, and vendor name, from input invoices and
receipts.

You start asynchronous invoice/receipt analysis by calling StartExpenseAnalysis (p. 264), which returns
a job identifier (JobId). Upon completion of the invoice/receipt analysis, Amazon Textract publishes
the completion status to the Amazon Simple Notification Service (Amazon SNS) topic. This topic
must be registered in the initial call to StartExpenseAnalysis. To get the results of the invoice/
receipt analysis operation, first ensure that the status value published to the Amazon SNS topic is
SUCCEEDED. If so, call GetExpenseAnalysis, and pass the job identifier (JobId) from the initial call to
StartExpenseAnalysis.

Use the MaxResults parameter to limit the number of blocks that are returned. If there are more results
than specified in MaxResults, the value of NextToken in the operation response contains a pagination
token for getting the next set of results. To get the next page of results, call GetExpenseAnalysis, and
populate the NextToken request parameter with the token value that's returned from the previous call
to GetExpenseAnalysis.

For more information, see Analyzing Invoices and Receipts.

Request Syntax

{
 "JobId": "string",
 "MaxResults": number,
 "NextToken": "string"
}

Request Parameters
The request accepts the following data in JSON format.

JobId (p. 249)

A unique identifier for the text detection job. The JobId is returned from StartExpenseAnalysis.
A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Required: Yes

MaxResults (p. 249)

The maximum number of results to return per paginated call. The largest value you can specify is 20.
If you specify a value greater than 20, a maximum of 20 results is returned. The default value is 20.

Type: Integer

Valid Range: Minimum value of 1.

Required: No

249

https://docs.aws.amazon.com/textract/latest/dg/invoices-receipts.html

Amazon Textract Developer Guide
GetExpenseAnalysis

NextToken (p. 249)

If the previous response was incomplete (because there are more blocks to retrieve), Amazon
Textract returns a pagination token in the response. You can use this pagination token to retrieve the
next set of blocks.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*

Required: No

Response Syntax

{
 "AnalyzeExpenseModelVersion": "string",
 "DocumentMetadata": {
 "Pages": number
 },
 "ExpenseDocuments": [
 {
 "ExpenseIndex": number,
 "LineItemGroups": [
 {
 "LineItemGroupIndex": number,
 "LineItems": [
 {
 "LineItemExpenseFields": [
 {
 "LabelDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 },
 "PageNumber": number,
 "Type": {
 "Confidence": number,
 "Text": "string"
 },
 "ValueDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number

250

Amazon Textract Developer Guide
GetExpenseAnalysis

 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 }
 }
]
 }
]
 }
],
 "SummaryFields": [
 {
 "LabelDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 },
 "PageNumber": number,
 "Type": {
 "Confidence": number,
 "Text": "string"
 },
 "ValueDetection": {
 "Confidence": number,
 "Geometry": {
 "BoundingBox": {
 "Height": number,
 "Left": number,
 "Top": number,
 "Width": number
 },
 "Polygon": [
 {
 "X": number,
 "Y": number
 }
]
 },
 "Text": "string"
 }
 }
]
 }
],
 "JobStatus": "string",
 "NextToken": "string",
 "StatusMessage": "string",

251

Amazon Textract Developer Guide
GetExpenseAnalysis

 "Warnings": [
 {
 "ErrorCode": "string",
 "Pages": [number]
 }
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AnalyzeExpenseModelVersion (p. 250)

The current model version of AnalyzeExpense.

Type: String

DocumentMetadata (p. 250)

Information about a document that Amazon Textract processed. DocumentMetadata is returned in
every page of paginated responses from an Amazon Textract operation.

Type: DocumentMetadata (p. 277) object

ExpenseDocuments (p. 250)

The expenses detected by Amazon Textract.

Type: Array of ExpenseDocument (p. 279) objects

JobStatus (p. 250)

The current status of the text detection job.

Type: String

Valid Values: IN_PROGRESS | SUCCEEDED | FAILED | PARTIAL_SUCCESS

NextToken (p. 250)

If the response is truncated, Amazon Textract returns this token. You can use this token in the
subsequent request to retrieve the next set of text-detection results.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: .*\S.*

StatusMessage (p. 250)

Returns if the detection job could not be completed. Contains explanation for what error occured.

Type: String

Warnings (p. 250)

A list of warnings that occurred during the text-detection operation for the document.

Type: Array of Warning (p. 299) objects

252

Amazon Textract Developer Guide
GetExpenseAnalysis

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidJobIdException

An invalid job identifier was passed to GetDocumentAnalysis (p. 239) or to
GetDocumentAnalysis (p. 239).

HTTP Status Code: 400
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface

253

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/GetExpenseAnalysis

Amazon Textract Developer Guide
GetExpenseAnalysis

• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

254

https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/GetExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/GetExpenseAnalysis

Amazon Textract Developer Guide
StartDocumentAnalysis

StartDocumentAnalysis
Starts the asynchronous analysis of an input document for relationships between detected items such as
key-value pairs, tables, and selection elements.

StartDocumentAnalysis can analyze text in documents that are in JPEG, PNG, TIFF, and PDF format.
The documents are stored in an Amazon S3 bucket. Use DocumentLocation (p. 276) to specify the
bucket name and file name of the document.

StartDocumentAnalysis returns a job identifier (JobId) that you use to get the results of the
operation. When text analysis is finished, Amazon Textract publishes a completion status to the Amazon
Simple Notification Service (Amazon SNS) topic that you specify in NotificationChannel. To get the
results of the text analysis operation, first check that the status value published to the Amazon SNS topic
is SUCCEEDED. If so, call GetDocumentAnalysis (p. 239), and pass the job identifier (JobId) from the
initial call to StartDocumentAnalysis.

For more information, see Document Text Analysis.

Request Syntax

{
 "ClientRequestToken": "string",
 "DocumentLocation": {
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "FeatureTypes": ["string"],
 "JobTag": "string",
 "KMSKeyId": "string",
 "NotificationChannel": {
 "RoleArn": "string",
 "SNSTopicArn": "string"
 },
 "OutputConfig": {
 "S3Bucket": "string",
 "S3Prefix": "string"
 },
 "QueriesConfig": {
 "Queries": [
 {
 "Alias": "string",
 "Pages": ["string"],
 "Text": "string"
 }
]
 }
}

Request Parameters
The request accepts the following data in JSON format.

ClientRequestToken (p. 255)

The idempotent token that you use to identify the start request. If you use the same token
with multiple StartDocumentAnalysis requests, the same JobId is returned. Use

255

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-analyzing.html

Amazon Textract Developer Guide
StartDocumentAnalysis

ClientRequestToken to prevent the same job from being accidentally started more than once. For
more information, see Calling Amazon Textract Asynchronous Operations.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Required: No
DocumentLocation (p. 255)

The location of the document to be processed.

Type: DocumentLocation (p. 276) object

Required: Yes
FeatureTypes (p. 255)

A list of the types of analysis to perform. Add TABLES to the list to return information about the
tables that are detected in the input document. Add FORMS to return detected form data. To
perform both types of analysis, add TABLES and FORMS to FeatureTypes. All lines and words
detected in the document are included in the response (including text that isn't related to the value
of FeatureTypes).

Type: Array of strings

Valid Values: TABLES | FORMS | QUERIES

Required: Yes
JobTag (p. 255)

An identifier that you specify that's included in the completion notification published to the Amazon
SNS topic. For example, you can use JobTag to identify the type of document that the completion
notification corresponds to (such as a tax form or a receipt).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.\-:]+

Required: No
KMSKeyId (p. 255)

The KMS key used to encrypt the inference results. This can be in either Key ID or Key Alias format.
When a KMS key is provided, the KMS key will be used for server-side encryption of the objects
in the customer bucket. When this parameter is not enabled, the result will be encrypted server
side,using SSE-S3.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: ^[A-Za-z0-9][A-Za-z0-9:_/+=,@.-]{0,2048}$

Required: No
NotificationChannel (p. 255)

The Amazon SNS topic ARN that you want Amazon Textract to publish the completion status of the
operation to.

256

https://docs.aws.amazon.com/textract/latest/dg/api-async.html

Amazon Textract Developer Guide
StartDocumentAnalysis

Type: NotificationChannel (p. 291) object

Required: No
OutputConfig (p. 255)

Sets if the output will go to a customer defined bucket. By default, Amazon Textract will save the
results internally to be accessed by the GetDocumentAnalysis operation.

Type: OutputConfig (p. 292) object

Required: No
QueriesConfig (p. 255)

Type: QueriesConfig (p. 294) object

Required: No

Response Syntax

{
 "JobId": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

JobId (p. 257)

The identifier for the document text detection job. Use JobId to identify the job in a subsequent
call to GetDocumentAnalysis. A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400

257

Amazon Textract Developer Guide
StartDocumentAnalysis

DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
IdempotentParameterMismatchException

A ClientRequestToken input parameter was reused with an operation, but at least one of the
other input parameters is different from the previous call to the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
LimitExceededException

An Amazon Textract service limit was exceeded. For example, if you start too many asynchronous
jobs concurrently, calls to start operations (StartDocumentTextDetection, for example) raise a
LimitExceededException exception (HTTP status code: 400) until the number of concurrently running
jobs is below the Amazon Textract service limit.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

258

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html

Amazon Textract Developer Guide
StartDocumentAnalysis

UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

259

https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/StartDocumentAnalysis
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/StartDocumentAnalysis

Amazon Textract Developer Guide
StartDocumentTextDetection

StartDocumentTextDetection
Starts the asynchronous detection of text in a document. Amazon Textract can detect lines of text and
the words that make up a line of text.

StartDocumentTextDetection can analyze text in documents that are in JPEG, PNG, TIFF, and PDF
format. The documents are stored in an Amazon S3 bucket. Use DocumentLocation (p. 276) to specify
the bucket name and file name of the document.

StartTextDetection returns a job identifier (JobId) that you use to get the results of the operation.
When text detection is finished, Amazon Textract publishes a completion status to the Amazon Simple
Notification Service (Amazon SNS) topic that you specify in NotificationChannel. To get the results
of the text detection operation, first check that the status value published to the Amazon SNS topic is
SUCCEEDED. If so, call GetDocumentTextDetection (p. 244), and pass the job identifier (JobId) from the
initial call to StartDocumentTextDetection.

For more information, see Document Text Detection.

Request Syntax

{
 "ClientRequestToken": "string",
 "DocumentLocation": {
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "JobTag": "string",
 "KMSKeyId": "string",
 "NotificationChannel": {
 "RoleArn": "string",
 "SNSTopicArn": "string"
 },
 "OutputConfig": {
 "S3Bucket": "string",
 "S3Prefix": "string"
 }
}

Request Parameters
The request accepts the following data in JSON format.

ClientRequestToken (p. 260)

The idempotent token that's used to identify the start request. If you use the same token
with multiple StartDocumentTextDetection requests, the same JobId is returned. Use
ClientRequestToken to prevent the same job from being accidentally started more than once. For
more information, see Calling Amazon Textract Asynchronous Operations.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Required: No

260

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-detecting.html
https://docs.aws.amazon.com/textract/latest/dg/api-async.html

Amazon Textract Developer Guide
StartDocumentTextDetection

DocumentLocation (p. 260)

The location of the document to be processed.

Type: DocumentLocation (p. 276) object

Required: Yes

JobTag (p. 260)

An identifier that you specify that's included in the completion notification published to the Amazon
SNS topic. For example, you can use JobTag to identify the type of document that the completion
notification corresponds to (such as a tax form or a receipt).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.\-:]+

Required: No

KMSKeyId (p. 260)

The KMS key used to encrypt the inference results. This can be in either Key ID or Key Alias format.
When a KMS key is provided, the KMS key will be used for server-side encryption of the objects
in the customer bucket. When this parameter is not enabled, the result will be encrypted server
side,using SSE-S3.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: ^[A-Za-z0-9][A-Za-z0-9:_/+=,@.-]{0,2048}$

Required: No

NotificationChannel (p. 260)

The Amazon SNS topic ARN that you want Amazon Textract to publish the completion status of the
operation to.

Type: NotificationChannel (p. 291) object

Required: No

OutputConfig (p. 260)

Sets if the output will go to a customer defined bucket. By default Amazon Textract will save the
results internally to be accessed with the GetDocumentTextDetection operation.

Type: OutputConfig (p. 292) object

Required: No

Response Syntax

{
 "JobId": "string"
}

261

Amazon Textract Developer Guide
StartDocumentTextDetection

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

JobId (p. 261)

The identifier of the text detection job for the document. Use JobId to identify the job in a
subsequent call to GetDocumentTextDetection. A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
IdempotentParameterMismatchException

A ClientRequestToken input parameter was reused with an operation, but at least one of the
other input parameters is different from the previous call to the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400
InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values

262

Amazon Textract Developer Guide
StartDocumentTextDetection

are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
LimitExceededException

An Amazon Textract service limit was exceeded. For example, if you start too many asynchronous
jobs concurrently, calls to start operations (StartDocumentTextDetection, for example) raise a
LimitExceededException exception (HTTP status code: 400) until the number of concurrently running
jobs is below the Amazon Textract service limit.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

263

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/StartDocumentTextDetection
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/StartDocumentTextDetection

Amazon Textract Developer Guide
StartExpenseAnalysis

StartExpenseAnalysis
Starts the asynchronous analysis of invoices or receipts for data like contact information, items
purchased, and vendor names.

StartExpenseAnalysis can analyze text in documents that are in JPEG, PNG, and PDF format. The
documents must be stored in an Amazon S3 bucket. Use the DocumentLocation (p. 276) parameter to
specify the name of your S3 bucket and the name of the document in that bucket.

StartExpenseAnalysis returns a job identifier (JobId) that you will provide to
GetExpenseAnalysis to retrieve the results of the operation. When the analysis of the input invoices/
receipts is finished, Amazon Textract publishes a completion status to the Amazon Simple Notification
Service (Amazon SNS) topic that you provide to the NotificationChannel. To obtain the results of
the invoice and receipt analysis operation, ensure that the status value published to the Amazon SNS
topic is SUCCEEDED. If so, call GetExpenseAnalysis (p. 249), and pass the job identifier (JobId) that was
returned by your call to StartExpenseAnalysis.

For more information, see Analyzing Invoices and Receipts.

Request Syntax

{
 "ClientRequestToken": "string",
 "DocumentLocation": {
 "S3Object": {
 "Bucket": "string",
 "Name": "string",
 "Version": "string"
 }
 },
 "JobTag": "string",
 "KMSKeyId": "string",
 "NotificationChannel": {
 "RoleArn": "string",
 "SNSTopicArn": "string"
 },
 "OutputConfig": {
 "S3Bucket": "string",
 "S3Prefix": "string"
 }
}

Request Parameters
The request accepts the following data in JSON format.

ClientRequestToken (p. 264)

The idempotent token that's used to identify the start request. If you use the same token
with multiple StartDocumentTextDetection requests, the same JobId is returned. Use
ClientRequestToken to prevent the same job from being accidentally started more than once. For
more information, see Calling Amazon Textract Asynchronous Operations

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

264

https://docs.aws.amazon.com/textract/latest/dg/invoice-receipts.html
https://docs.aws.amazon.com/textract/latest/dg/api-async.html

Amazon Textract Developer Guide
StartExpenseAnalysis

Required: No

DocumentLocation (p. 264)

The location of the document to be processed.

Type: DocumentLocation (p. 276) object

Required: Yes

JobTag (p. 264)

An identifier you specify that's included in the completion notification published to the Amazon
SNS topic. For example, you can use JobTag to identify the type of document that the completion
notification corresponds to (such as a tax form or a receipt).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.\-:]+

Required: No

KMSKeyId (p. 264)

The KMS key used to encrypt the inference results. This can be in either Key ID or Key Alias format.
When a KMS key is provided, the KMS key will be used for server-side encryption of the objects
in the customer bucket. When this parameter is not enabled, the result will be encrypted server
side,using SSE-S3.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: ^[A-Za-z0-9][A-Za-z0-9:_/+=,@.-]{0,2048}$

Required: No

NotificationChannel (p. 264)

The Amazon SNS topic ARN that you want Amazon Textract to publish the completion status of the
operation to.

Type: NotificationChannel (p. 291) object

Required: No

OutputConfig (p. 264)

Sets if the output will go to a customer defined bucket. By default, Amazon Textract will save the
results internally to be accessed by the GetExpenseAnalysis operation.

Type: OutputConfig (p. 292) object

Required: No

Response Syntax

{
 "JobId": "string"

265

Amazon Textract Developer Guide
StartExpenseAnalysis

}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

JobId (p. 265)

A unique identifier for the text detection job. The JobId is returned from StartExpenseAnalysis.
A JobId value is only valid for 7 days.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: ^[a-zA-Z0-9-_]+$

Errors
AccessDeniedException

You aren't authorized to perform the action. Use the Amazon Resource Name (ARN) of an authorized
user or IAM role to perform the operation.

HTTP Status Code: 400
BadDocumentException

Amazon Textract isn't able to read the document. For more information on the document limits in
Amazon Textract, see Hard Limits in Amazon Textract (p. 300).

HTTP Status Code: 400
DocumentTooLargeException

The document can't be processed because it's too large. The maximum document size for
synchronous operations 10 MB. The maximum document size for asynchronous operations is 500 MB
for PDF files.

HTTP Status Code: 400
IdempotentParameterMismatchException

A ClientRequestToken input parameter was reused with an operation, but at least one of the
other input parameters is different from the previous call to the operation.

HTTP Status Code: 400
InternalServerError

Amazon Textract experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidKMSKeyException

Indicates you do not have decrypt permissions with the KMS key entered, or the KMS key was
entered incorrectly.

HTTP Status Code: 400

266

Amazon Textract Developer Guide
StartExpenseAnalysis

InvalidParameterException

An input parameter violated a constraint. For example, in synchronous operations, an
InvalidParameterException exception occurs when neither of the S3Object or Bytes values
are supplied in the Document request parameter. Validate your parameter before calling the API
operation again.

HTTP Status Code: 400
InvalidS3ObjectException

Amazon Textract is unable to access the S3 object that's specified in the request. for more
information, Configure Access to Amazon S3 For troubleshooting information, see Troubleshooting
Amazon S3

HTTP Status Code: 400
LimitExceededException

An Amazon Textract service limit was exceeded. For example, if you start too many asynchronous
jobs concurrently, calls to start operations (StartDocumentTextDetection, for example) raise a
LimitExceededException exception (HTTP status code: 400) until the number of concurrently running
jobs is below the Amazon Textract service limit.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Textract.

HTTP Status Code: 400
ThrottlingException

Amazon Textract is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500
UnsupportedDocumentException

The format of the input document isn't supported. Documents for operations can be in PNG, JPEG,
PDF, or TIFF format.

HTTP Status Code: 400

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3

267

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/goto/aws-cli/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/DotNetSDKV3/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForPHPV3/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/boto3/textract-2018-06-27/StartExpenseAnalysis
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/StartExpenseAnalysis

Amazon Textract Developer Guide
Data Types

Data Types
The following data types are supported:

• AnalyzeIDDetections (p. 269)
• Block (p. 270)
• BoundingBox (p. 274)
• Document (p. 275)
• DocumentLocation (p. 276)
• DocumentMetadata (p. 277)
• ExpenseDetection (p. 278)
• ExpenseDocument (p. 279)
• ExpenseField (p. 280)
• ExpenseType (p. 281)
• Geometry (p. 282)
• HumanLoopActivationOutput (p. 283)
• HumanLoopConfig (p. 284)
• HumanLoopDataAttributes (p. 285)
• IdentityDocument (p. 286)
• IdentityDocumentField (p. 287)
• LineItemFields (p. 288)
• LineItemGroup (p. 289)
• NormalizedValue (p. 290)
• NotificationChannel (p. 291)
• OutputConfig (p. 292)
• Point (p. 293)
• QueriesConfig (p. 294)
• Query (p. 295)
• Relationship (p. 297)
• S3Object (p. 298)
• Warning (p. 299)

268

Amazon Textract Developer Guide
AnalyzeIDDetections

AnalyzeIDDetections
Used to contain the information detected by an AnalyzeID operation.

Contents
Confidence

The confidence score of the detected text.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
NormalizedValue

Only returned for dates, returns the type of value detected and the date written in a more machine
readable way.

Type: NormalizedValue (p. 290) object

Required: No
Text

Text of either the normalized field or value associated with it.

Type: String

Required: Yes

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

269

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/AnalyzeIDDetections
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/AnalyzeIDDetections
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/AnalyzeIDDetections
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/AnalyzeIDDetections

Amazon Textract Developer Guide
Block

Block
A Block represents items that are recognized in a document within a group of pixels close to each other.
The information returned in a Block object depends on the type of operation. In text detection for
documents (for example DetectDocumentText (p. 235)), you get information about the detected words
and lines of text. In text analysis (for example AnalyzeDocument (p. 222)), you can also get information
about the fields, tables, and selection elements that are detected in the document.

An array of Block objects is returned by both synchronous and asynchronous operations. In synchronous
operations, such as DetectDocumentText (p. 235), the array of Block objects is the entire set of results.
In asynchronous operations, such as GetDocumentAnalysis (p. 239), the array is returned over one or
more responses.

For more information, see How Amazon Textract Works.

Contents
BlockType

The type of text item that's recognized. In operations for text detection, the following types are
returned:

• PAGE - Contains a list of the LINE Block objects that are detected on a document page.

• WORD - A word detected on a document page. A word is one or more ISO basic Latin script
characters that aren't separated by spaces.

• LINE - A string of tab-delimited, contiguous words that are detected on a document page.

In text analysis operations, the following types are returned:

• PAGE - Contains a list of child Block objects that are detected on a document page.

• KEY_VALUE_SET - Stores the KEY and VALUE Block objects for linked text that's detected on a
document page. Use the EntityType field to determine if a KEY_VALUE_SET object is a KEY
Block object or a VALUE Block object.

• WORD - A word that's detected on a document page. A word is one or more ISO basic Latin script
characters that aren't separated by spaces.

• LINE - A string of tab-delimited, contiguous words that are detected on a document page.

• TABLE - A table that's detected on a document page. A table is grid-based information with two or
more rows or columns, with a cell span of one row and one column each.

• CELL - A cell within a detected table. The cell is the parent of the block that contains the text in
the cell.

• SELECTION_ELEMENT - A selection element such as an option button (radio button) or a check box
that's detected on a document page. Use the value of SelectionStatus to determine the status
of the selection element.

• QUERY - A question asked during the call of AnalyzeDocument. Contains an alias and an ID that
attaches it to its answer.

• QUERY_RESULT - A response to a question asked during the call of analyze document. Comes with
an alias and ID for ease of locating in a response. Also contains location and confidence score.

Type: String

Valid Values: KEY_VALUE_SET | PAGE | LINE | WORD | TABLE | CELL |
SELECTION_ELEMENT | MERGED_CELL | TITLE | QUERY | QUERY_RESULT

Required: No

270

https://docs.aws.amazon.com/textract/latest/dg/how-it-works.html

Amazon Textract Developer Guide
Block

ColumnIndex

The column in which a table cell appears. The first column position is 1. ColumnIndex isn't returned
by DetectDocumentText and GetDocumentTextDetection.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
ColumnSpan

The number of columns that a table cell spans. Currently this value is always 1, even if the number
of columns spanned is greater than 1. ColumnSpan isn't returned by DetectDocumentText and
GetDocumentTextDetection.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Confidence

The confidence score that Amazon Textract has in the accuracy of the recognized text and the
accuracy of the geometry points around the recognized text.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
EntityTypes

The type of entity. The following can be returned:
• KEY - An identifier for a field on the document.
• VALUE - The field text.

EntityTypes isn't returned by DetectDocumentText and GetDocumentTextDetection.

Type: Array of strings

Valid Values: KEY | VALUE | COLUMN_HEADER

Required: No
Geometry

The location of the recognized text on the image. It includes an axis-aligned, coarse bounding box
that surrounds the text, and a finer-grain polygon for more accurate spatial information.

Type: Geometry (p. 282) object

Required: No
Id

The identifier for the recognized text. The identifier is only unique for a single operation.

Type: String

Pattern: .*\S.*

271

Amazon Textract Developer Guide
Block

Required: No
Page

The page on which a block was detected. Page is returned by asynchronous operations. Page values
greater than 1 are only returned for multipage documents that are in PDF or TIFF format. A scanned
image (JPEG/PNG), even if it contains multiple document pages, is considered to be a single-page
document. The value of Page is always 1. Synchronous operations don't return Page because every
input document is considered to be a single-page document.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Query

Type: Query (p. 295) object

Required: No
Relationships

A list of child blocks of the current block. For example, a LINE object has child blocks for each WORD
block that's part of the line of text. There aren't Relationship objects in the list for relationships that
don't exist, such as when the current block has no child blocks. The list size can be the following:
• 0 - The block has no child blocks.
• 1 - The block has child blocks.

Type: Array of Relationship (p. 297) objects

Required: No
RowIndex

The row in which a table cell is located. The first row position is 1. RowIndex isn't returned by
DetectDocumentText and GetDocumentTextDetection.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
RowSpan

The number of rows that a table cell spans. Currently this value is always 1, even if the number
of rows spanned is greater than 1. RowSpan isn't returned by DetectDocumentText and
GetDocumentTextDetection.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
SelectionStatus

The selection status of a selection element, such as an option button or check box.

Type: String

Valid Values: SELECTED | NOT_SELECTED

272

Amazon Textract Developer Guide
Block

Required: No
Text

The word or line of text that's recognized by Amazon Textract.

Type: String

Required: No
TextType

The kind of text that Amazon Textract has detected. Can check for handwritten text and printed
text.

Type: String

Valid Values: HANDWRITING | PRINTED

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

273

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Block
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Block
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Block
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Block

Amazon Textract Developer Guide
BoundingBox

BoundingBox
The bounding box around the detected page, text, key-value pair, table, table cell, or selection element
on a document page. The left (x-coordinate) and top (y-coordinate) are coordinates that represent the
top and left sides of the bounding box. Note that the upper-left corner of the image is the origin (0,0).

The top and left values returned are ratios of the overall document page size. For example, if the input
image is 700 x 200 pixels, and the top-left coordinate of the bounding box is 350 x 50 pixels, the API
returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the overall
document page dimension. For example, if the document page size is 700 x 200 pixels, and the bounding
box width is 70 pixels, the width returned is 0.1.

Contents
Height

The height of the bounding box as a ratio of the overall document page height.

Type: Float

Required: No
Left

The left coordinate of the bounding box as a ratio of overall document page width.

Type: Float

Required: No
Top

The top coordinate of the bounding box as a ratio of overall document page height.

Type: Float

Required: No
Width

The width of the bounding box as a ratio of the overall document page width.

Type: Float

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

274

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/BoundingBox
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/BoundingBox
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/BoundingBox
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/BoundingBox

Amazon Textract Developer Guide
Document

Document
The input document, either as bytes or as an S3 object.

You pass image bytes to an Amazon Textract API operation by using the Bytes property. For example,
you would use the Bytes property to pass a document loaded from a local file system. Image bytes
passed by using the Bytes property must be base64 encoded. Your code might not need to encode
document file bytes if you're using an AWS SDK to call Amazon Textract API operations.

You pass images stored in an S3 bucket to an Amazon Textract API operation by using the S3Object
property. Documents stored in an S3 bucket don't need to be base64 encoded.

The AWS Region for the S3 bucket that contains the S3 object must match the AWS Region that you use
for Amazon Textract operations.

If you use the AWS CLI to call Amazon Textract operations, passing image bytes using the Bytes property
isn't supported. You must first upload the document to an Amazon S3 bucket, and then call the
operation using the S3Object property.

For Amazon Textract to process an S3 object, the user must have permission to access the S3 object.

Contents
Bytes

A blob of base64-encoded document bytes. The maximum size of a document that's provided in a
blob of bytes is 5 MB. The document bytes must be in PNG or JPEG format.

If you're using an AWS SDK to call Amazon Textract, you might not need to base64-encode image
bytes passed using the Bytes field.

Type: Base64-encoded binary data object

Length Constraints: Minimum length of 1. Maximum length of 10485760.

Required: No
S3Object

Identifies an S3 object as the document source. The maximum size of a document that's stored in an
S3 bucket is 5 MB.

Type: S3Object (p. 298) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

275

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Document
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Document
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Document
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Document

Amazon Textract Developer Guide
DocumentLocation

DocumentLocation
The Amazon S3 bucket that contains the document to be processed. It's used by asynchronous
operations such as StartDocumentTextDetection (p. 260).

The input document can be an image file in JPEG or PNG format. It can also be a file in PDF format.

Contents
S3Object

The Amazon S3 bucket that contains the input document.

Type: S3Object (p. 298) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

276

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/DocumentLocation
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/DocumentLocation
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/DocumentLocation
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/DocumentLocation

Amazon Textract Developer Guide
DocumentMetadata

DocumentMetadata
Information about the input document.

Contents
Pages

The number of pages that are detected in the document.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

277

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/DocumentMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/DocumentMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/DocumentMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/DocumentMetadata

Amazon Textract Developer Guide
ExpenseDetection

ExpenseDetection
An object used to store information about the Value or Label detected by Amazon Textract.

Contents
Confidence

The confidence in detection, as a percentage

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Geometry

Information about where the following items are located on a document page: detected page, text,
key-value pairs, tables, table cells, and selection elements.

Type: Geometry (p. 282) object

Required: No
Text

The word or line of text recognized by Amazon Textract

Type: String

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

278

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/ExpenseDetection
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/ExpenseDetection
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/ExpenseDetection
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/ExpenseDetection

Amazon Textract Developer Guide
ExpenseDocument

ExpenseDocument
The structure holding all the information returned by AnalyzeExpense

Contents
ExpenseIndex

Denotes which invoice or receipt in the document the information is coming from. First document
will be 1, the second 2, and so on.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
LineItemGroups

Information detected on each table of a document, seperated into LineItems.

Type: Array of LineItemGroup (p. 289) objects

Required: No
SummaryFields

Any information found outside of a table by Amazon Textract.

Type: Array of ExpenseField (p. 280) objects

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

279

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/ExpenseDocument
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/ExpenseDocument
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/ExpenseDocument
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/ExpenseDocument

Amazon Textract Developer Guide
ExpenseField

ExpenseField
Breakdown of detected information, seperated into the catagories Type, LabelDetection, and
ValueDetection

Contents
LabelDetection

The explicitly stated label of a detected element.

Type: ExpenseDetection (p. 278) object

Required: No
PageNumber

The page number the value was detected on.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
Type

The implied label of a detected element. Present alongside LabelDetection for explicit elements.

Type: ExpenseType (p. 281) object

Required: No
ValueDetection

The value of a detected element. Present in explicit and implicit elements.

Type: ExpenseDetection (p. 278) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

280

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/ExpenseField
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/ExpenseField
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/ExpenseField
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/ExpenseField

Amazon Textract Developer Guide
ExpenseType

ExpenseType
An object used to store information about the Type detected by Amazon Textract.

Contents
Confidence

The confidence of accuracy, as a percentage.

Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Text

The word or line of text detected by Amazon Textract.

Type: String

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

281

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/ExpenseType
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/ExpenseType
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/ExpenseType
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/ExpenseType

Amazon Textract Developer Guide
Geometry

Geometry
Information about where the following items are located on a document page: detected page, text, key-
value pairs, tables, table cells, and selection elements.

Contents
BoundingBox

An axis-aligned coarse representation of the location of the recognized item on the document page.

Type: BoundingBox (p. 274) object

Required: No
Polygon

Within the bounding box, a fine-grained polygon around the recognized item.

Type: Array of Point (p. 293) objects

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

282

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Geometry
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Geometry
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Geometry
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Geometry

Amazon Textract Developer Guide
HumanLoopActivationOutput

HumanLoopActivationOutput
Shows the results of the human in the loop evaluation. If there is no HumanLoopArn, the input did not
trigger human review.

Contents
HumanLoopActivationConditionsEvaluationResults

Shows the result of condition evaluations, including those conditions which activated a human
review.

Type: String

Length Constraints: Maximum length of 10240.

Required: No
HumanLoopActivationReasons

Shows if and why human review was needed.

Type: Array of strings

Array Members: Minimum number of 1 item.

Required: No
HumanLoopArn

The Amazon Resource Name (ARN) of the HumanLoop created.

Type: String

Length Constraints: Maximum length of 256.

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

283

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/HumanLoopActivationOutput
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/HumanLoopActivationOutput
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/HumanLoopActivationOutput
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/HumanLoopActivationOutput

Amazon Textract Developer Guide
HumanLoopConfig

HumanLoopConfig
Sets up the human review workflow the document will be sent to if one of the conditions is met. You can
also set certain attributes of the image before review.

Contents
DataAttributes

Sets attributes of the input data.

Type: HumanLoopDataAttributes (p. 285) object

Required: No
FlowDefinitionArn

The Amazon Resource Name (ARN) of the flow definition.

Type: String

Length Constraints: Maximum length of 256.

Required: Yes
HumanLoopName

The name of the human workflow used for this image. This should be kept unique within a region.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 63.

Pattern: ^[a-z0-9](-*[a-z0-9])*

Required: Yes

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

284

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/HumanLoopConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/HumanLoopConfig
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/HumanLoopConfig
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/HumanLoopConfig

Amazon Textract Developer Guide
HumanLoopDataAttributes

HumanLoopDataAttributes
Allows you to set attributes of the image. Currently, you can declare an image as free of personally
identifiable information and adult content.

Contents
ContentClassifiers

Sets whether the input image is free of personally identifiable information or adult content.

Type: Array of strings

Array Members: Maximum number of 256 items.

Valid Values: FreeOfPersonallyIdentifiableInformation | FreeOfAdultContent

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

285

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/HumanLoopDataAttributes
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/HumanLoopDataAttributes
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/HumanLoopDataAttributes
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/HumanLoopDataAttributes

Amazon Textract Developer Guide
IdentityDocument

IdentityDocument
The structure that lists each document processed in an AnalyzeID operation.

Contents
DocumentIndex

Denotes the placement of a document in the IdentityDocument list. The first document is marked 1,
the second 2 and so on.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
IdentityDocumentFields

The structure used to record information extracted from identity documents. Contains both
normalized field and value of the extracted text.

Type: Array of IdentityDocumentField (p. 287) objects

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

286

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/IdentityDocument
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/IdentityDocument
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/IdentityDocument
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/IdentityDocument

Amazon Textract Developer Guide
IdentityDocumentField

IdentityDocumentField
Structure containing both the normalized type of the extracted information and the text associated with
it. These are extracted as Type and Value respectively.

Contents
Type

Used to contain the information detected by an AnalyzeID operation.

Type: AnalyzeIDDetections (p. 269) object

Required: No
ValueDetection

Used to contain the information detected by an AnalyzeID operation.

Type: AnalyzeIDDetections (p. 269) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

287

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/IdentityDocumentField
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/IdentityDocumentField
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/IdentityDocumentField
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/IdentityDocumentField

Amazon Textract Developer Guide
LineItemFields

LineItemFields
A structure that holds information about the different lines found in a document's tables.

Contents
LineItemExpenseFields

ExpenseFields used to show information from detected lines on a table.

Type: Array of ExpenseField (p. 280) objects

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

288

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/LineItemFields
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/LineItemFields
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/LineItemFields
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/LineItemFields

Amazon Textract Developer Guide
LineItemGroup

LineItemGroup
A grouping of tables which contain LineItems, with each table identified by the table's
LineItemGroupIndex.

Contents
LineItemGroupIndex

The number used to identify a specific table in a document. The first table encountered will have a
LineItemGroupIndex of 1, the second 2, etc.

Type: Integer

Valid Range: Minimum value of 0.

Required: No
LineItems

The breakdown of information on a particular line of a table.

Type: Array of LineItemFields (p. 288) objects

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

289

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/LineItemGroup
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/LineItemGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/LineItemGroup
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/LineItemGroup

Amazon Textract Developer Guide
NormalizedValue

NormalizedValue
Contains information relating to dates in a document, including the type of value, and the value.

Contents
Value

The value of the date, written as Year-Month-DayTHour:Minute:Second.

Type: String

Required: No
ValueType

The normalized type of the value detected. In this case, DATE.

Type: String

Valid Values: DATE

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

290

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/NormalizedValue
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/NormalizedValue
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/NormalizedValue
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/NormalizedValue

Amazon Textract Developer Guide
NotificationChannel

NotificationChannel
The Amazon Simple Notification Service (Amazon SNS) topic to which Amazon Textract
publishes the completion status of an asynchronous document operation, such as
StartDocumentTextDetection (p. 260).

Contents
RoleArn

The Amazon Resource Name (ARN) of an IAM role that gives Amazon Textract publishing permissions
to the Amazon SNS topic.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:([a-z\d-]+):iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: Yes
SNSTopicArn

The Amazon SNS topic that Amazon Textract posts the completion status to.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 1024.

Pattern: (^arn:([a-z\d-]+):sns:[a-zA-Z\d-]{1,20}:\w{12}:.+$)

Required: Yes

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

291

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/NotificationChannel
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/NotificationChannel
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/NotificationChannel
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/NotificationChannel

Amazon Textract Developer Guide
OutputConfig

OutputConfig
Sets whether or not your output will go to a user created bucket. Used to set the name of the bucket,
and the prefix on the output file.

OutputConfig is an optional parameter which lets you adjust where your output will be placed. By
default, Amazon Textract will store the results internally and can only be accessed by the Get API
operations. With OutputConfig enabled, you can set the name of the bucket the output will be sent
to and the file prefix of the results where you can download your results. Additionally, you can set the
KMSKeyID parameter to a customer master key (CMK) to encrypt your output. Without this parameter
set Amazon Textract will encrypt server-side using the AWS managed CMK for Amazon S3.

Decryption of Customer Content is necessary for processing of the documents by Amazon Textract. If
your account is opted out under an AI services opt out policy then all unencrypted Customer Content is
immediately and permanently deleted after the Customer Content has been processed by the service.
No copy of of the output is retained by Amazon Textract. For information about how to opt out, see
Managing AI services opt-out policy.

For more information on data privacy, see the Data Privacy FAQ.

Contents
S3Bucket

The name of the bucket your output will go to.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 255.

Pattern: [0-9A-Za-z\.\-_]*

Required: Yes
S3Prefix

The prefix of the object key that the output will be saved to. When not enabled, the prefix will be
“textract_output".

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: .*\S.*

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

292

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_ai-opt-out.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_ai-opt-out.html
https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/OutputConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/OutputConfig
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/OutputConfig
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/OutputConfig

Amazon Textract Developer Guide
Point

Point
The X and Y coordinates of a point on a document page. The X and Y values that are returned are ratios
of the overall document page size. For example, if the input document is 700 x 200 and the operation
returns X=0.5 and Y=0.25, then the point is at the (350,50) pixel coordinate on the document page.

An array of Point objects, Polygon, is returned as part of the Geometry (p. 282) object that's returned
in a Block (p. 270) object. A Polygon object represents a fine-grained polygon around detected text, a
key-value pair, a table, a table cell, or a selection element.

Contents
X

The value of the X coordinate for a point on a Polygon.

Type: Float

Required: No
Y

The value of the Y coordinate for a point on a Polygon.

Type: Float

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

293

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Point
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Point
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Point
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Point

Amazon Textract Developer Guide
QueriesConfig

QueriesConfig

Contents
Queries

Type: Array of Query (p. 295) objects

Array Members: Minimum number of 1 item.

Required: Yes

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

294

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/QueriesConfig
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/QueriesConfig
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/QueriesConfig
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/QueriesConfig

Amazon Textract Developer Guide
Query

Query
Each query contains the question you want to ask in the Text and the alias you want to associate.

Contents
Alias

Alias attached to the query, for ease of location.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: ^[a-zA-Z0-9\s!"\#\$%'&\(\)*\+\,\-\./:;=\?@\[\\\]\^_`\{\|\}~><]+$

Required: No
Pages

Pages is a parameter that the user inputs to specify which pages to apply a query to. The following is
a list of rules for using this parameter.
• If a page is not specified, it is set to ["1"] by default.
• The following characters are allowed in the parameter's string: 0 1 2 3 4 5 6 7 8 9 - *. No

whitespace is allowed.
• When using * to indicate all pages, it must be the only element in the list.
• You can use page intervals, such as [“1-3”, “1-1”, “4-*”]. Where * indicates last page of

document.
• Specified pages must be greater than 0 and less than or equal to the number of pages in the

document.

Type: Array of strings

Array Members: Minimum number of 1 item.

Length Constraints: Minimum length of 1. Maximum length of 9.

Pattern: ^[0-9*\-]+$

Required: No
Text

Question that Amazon Textract will apply to the document. An example would be "What is the
customer's SSN?"

Type: String

Length Constraints: Minimum length of 1. Maximum length of 200.

Pattern: ^[a-zA-Z0-9\s!"\#\$%'&\(\)*\+\,\-\./:;=\?@\[\\\]\^_`\{\|\}~><]+$

Required: Yes

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++

295

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Query

Amazon Textract Developer Guide
Query

• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

296

https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Query
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Query
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Query

Amazon Textract Developer Guide
Relationship

Relationship
Information about how blocks are related to each other. A Block object contains 0 or more Relation
objects in a list, Relationships. For more information, see Block (p. 270).

The Type element provides the type of the relationship for all blocks in the IDs array.

Contents
Ids

An array of IDs for related blocks. You can get the type of the relationship from the Type element.

Type: Array of strings

Pattern: .*\S.*

Required: No
Type

The type of relationship that the blocks in the IDs array have with the current block. The relationship
can be VALUE or CHILD. A relationship of type VALUE is a list that contains the ID of the VALUE
block that's associated with the KEY of a key-value pair. A relationship of type CHILD is a list of IDs
that identify WORD blocks in the case of lines Cell blocks in the case of Tables, and WORD blocks in
the case of Selection Elements.

Type: String

Valid Values: VALUE | CHILD | COMPLEX_FEATURES | MERGED_CELL | TITLE | ANSWER

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

297

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Relationship
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Relationship
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Relationship
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Relationship

Amazon Textract Developer Guide
S3Object

S3Object
The S3 bucket name and file name that identifies the document.

The AWS Region for the S3 bucket that contains the document must match the Region that you use for
Amazon Textract operations.

For Amazon Textract to process a file in an S3 bucket, the user must have permission to access the S3
bucket and file.

Contents
Bucket

The name of the S3 bucket. Note that the # character is not valid in the file name.

Type: String

Length Constraints: Minimum length of 3. Maximum length of 255.

Pattern: [0-9A-Za-z\.\-_]*

Required: No
Name

The file name of the input document. Synchronous operations can use image files that are in JPEG or
PNG format. Asynchronous operations also support PDF and TIFF format files.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: .*\S.*

Required: No
Version

If the bucket has versioning enabled, you can specify the object version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: .*\S.*

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

298

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/S3Object
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/S3Object
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/S3Object
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/S3Object

Amazon Textract Developer Guide
Warning

Warning
A warning about an issue that occurred during asynchronous text analysis
(StartDocumentAnalysis (p. 255)) or asynchronous document text detection
(StartDocumentTextDetection (p. 260)).

Contents
ErrorCode

The error code for the warning.

Type: String

Required: No
Pages

A list of the pages that the warning applies to.

Type: Array of integers

Valid Range: Minimum value of 0.

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3

299

https://docs.aws.amazon.com/goto/SdkForCpp/textract-2018-06-27/Warning
https://docs.aws.amazon.com/goto/SdkForGoV1/textract-2018-06-27/Warning
https://docs.aws.amazon.com/goto/SdkForJavaV2/textract-2018-06-27/Warning
https://docs.aws.amazon.com/goto/SdkForRubyV3/textract-2018-06-27/Warning

Amazon Textract Developer Guide
Amazon Textract

Hard Limits in Amazon Textract
The following is a list of hard limits in Amazon Textract, which cannot be changed. For information
about limitations in location and limits you can change see Amazon Textract Endpoints and Quotas. For
information about limits you can change, see AWS Service Limits. To change a limit, see Create Case.

Amazon Textract

Limit Description

Accepted File Formats Operations support JPEG, PNG, PDF, and TIFF files. (JPEG 2000-
encoded images within PDFs are supported)..

File Size and Page Count Limits For synchronous operations, JPEG, PNG, PDF, and TIFF files have
a 10MB size limit. PDF and TIFF files also have a limit of 1 page.
For asynchronous operations, JPEG and PNG files have a 10MB size
limit. PDF and TIFF files have a 500MB limit. PDF and TIFF files have
a limit of 3,000 pages.

PDF Specific Limits The maximum height and width is 40 inches and 2880 points.
PDFs cannot be password protected. PDFs can contain JPEG 2000
formatted images.

Document Rotation and Image
Size

Amazon Textract supports all in-plane document rotations, for
example 45 degree in-plane rotation.

Amazon Textract supports images with a resolution less than or
equal to 10000 pixels on all sides.

Query Specific Limits Amazon Textract supports up to 15 queries per page for
synchronous operations and up to 30 queries per page for
asynchronous operations.

Text Alignment Text can be text aligned horizontally within the document. Amazon
Textract does not support vertical text alignment within the
document.

Languages Amazon Textract supports English, French, German, Italian,
Portuguese and Spanish text detection. Amazon Textract will not
return the language detected in its output. Query detection is only
available in English document detection.

Character Size The minimum height for text to be detected is 15 pixels. At 150
DPI, this would be the same as 8 point font.

Character Type Amazon Textract supports both handwritten and printed character
recognition.

Characters Amazon Textract detects the following characters:

• a-z
• A-Z
• 0-9

300

https://docs.aws.amazon.com/general/latest/gr/textract.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_textract
https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase

Amazon Textract Developer Guide
Amazon Textract

Limit Description

• ä Ä ö Ö ü Ü ç Ç é É â Â ê Ê î Î ô Ô û Û à À è È ù Ù ë Ë ï Ï ü Ü á Á é É í
Í ó Ó ú Ú ü Ü ñ Ñ ì Ì ò Ò ã Ã õ Õ

• ! " # $ % ' & () * + , - . / : ; = ? @ [\] ^ _ ` { | } ~ > < ° € £ ¥ ₹ ß ẞ
¿ ¡ € £ ¥ ₹ ø Ø œ Œ © ® ™ § ¹ ² ³ '

AnalyzeID Specific Limits AnalyzeID only supports U.S. Passports, and U.S. Driver's Licenses.

301

Amazon Textract Developer Guide

Document History for Amazon
Textract

The following table describes important changes in each release of the Amazon Textract Developer Guide.
For notification about updates to this documentation, you can subscribe to an RSS feed.

• Latest documentation update: May 29th, 2019

update-history-change update-history-description update-history-date

Integrating code examples from
AWS Docs SDK Code Examples
GitHub repo (p. 302)

Amazon Textract guide now
contains additional code
examples. Renamed previous
examples section to Tutorials.

January 30, 2022

AnalyzeExpense Added (p. 302) Amazon Textract now supports
the analysis of invoice and
receipt documents using the
AnalyzeExpense API. This
feature is only available in
our Asia Pacific(Mumbai),
Asia Pacific(Seoul), Asia
Pacific(Singapore), Asia
Pacific(Sydney), Canada(Central),
Europe(Frankfurt),
Europe(Ireland),
Europe(London), U.S.
East(N.Virginia), U.S. East(Ohio)
U.S. West(N.California), and U.S
West(Oregon) regions.

July 26, 2021

Augmented AI Support (p. 302) Amazon Textract now supports
Amazon Augmented AI for
implementing human review.

December 3, 2019

New service and guide (p. 302) Amazon Textract is now
available for general use.

May 29, 2019

Support for selection elements
 (p. 302)

Amazon Textract can now
detect selection elements (radio
buttons and check boxes).

April 24, 2019

Release of Amazon
Textract (p. 302)

This is the first release of the
documentation for Amazon
Textract.

November 28, 2018

302

Amazon Textract Developer Guide

AWS glossary
For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

303

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Textract
	Table of Contents
	What is Amazon Textract?
	First-Time Amazon Textract Users
	Using Amazon Textract with an AWS SDK

	How Amazon Textract Works
	Detecting Text
	Analyzing Documents
	Analyzing Invoices and Receipts
	Analyzing Identity Documents
	Input Documents
	Amazon Textract Response Objects
	Text Detection and Document Analysis Response Objects
	Document Layout
	Confidence
	Geometry
	Pages
	Lines and Words of Text
	Form Data (Key-Value Pairs)
	Tables
	Selection Elements
	Form Data (Key-Value Pairs)
	Table Cells

	Queries

	Invoice and Receipt Response Objects
	Type
	LabelDetection
	ValueDetection

	Identity Documentation Response Objects

	Item Location on a Document Page
	Bounding Box
	Polygon

	Getting Started with Amazon Textract
	Step 1: Set Up an AWS Account and Create an IAM User
	Sign Up for AWS
	Create an IAM User
	Next Step

	Step 2: Set Up the AWS CLI and AWS SDKs
	Next Step

	Step 3: Get Started Using the AWS CLI and AWS SDK API
	Formatting the AWS CLI Examples

	Processing Documents with Synchronous Operations
	Calling Amazon Textract Synchronous Operations
	Request
	Documents Passed as Image Bytes
	Documents Stored in an Amazon S3 Bucket

	Response

	Detecting Document Text with Amazon Textract
	Analyzing Document Text with Amazon Textract
	Analyzing Invoices and Receipts with Amazon Textract
	Analyzing Identity Documentation with Amazon Textract

	Processing Documents with Asynchronous Operations
	Calling Amazon Textract Asynchronous Operations
	Starting Text Detection
	Getting the Completion Status of an Amazon Textract Analysis Request
	Getting Amazon Textract Text Detection Results

	Configuring Amazon Textract for Asynchronous Operations
	Giving Amazon Textract Access to Your Amazon SNS Topic

	Detecting or Analyzing Text in a Multipage Document
	Performing Asynchronous Operations

	Amazon Textract Results Notification

	Handling Throttled Calls and Dropped Connections
	Best Practices for Amazon Textract
	Provide an Optimal Input Document
	Use Confidence Scores
	Consider Using Human Review
	Best Practices for Queries
	General Best Practices for Queries
	Extracting Cells from Tables
	Extracting Tables using Queries
	Long Answers
	Passing Only Hints
	Genral Phrasing of Questions
	Example Queries
	Paystubs
	Bank Statements
	Checks
	Credit Card Statements
	W2 Form
	1099DIV Form
	1099INT Form
	1099MISC Form
	1099R Form
	Vaccination Cards
	Fannie Mae 1003 Form
	Fannie Mae 1005 Form
	Health Insurance Cards
	Perscription Labels
	College IDs
	Setting up Pages for Queries

	Tutorials
	Prerequisites
	Extracting Key-Value Pairs from a Form Document
	Exporting Tables into a CSV File
	Creating an AWS Lambda Function
	To call the DetectDocumentText operation from a Lambda function:

	Additional Code Samples

	Code examples for Amazon Textract using AWS SDKs
	Actions for Amazon Textract using AWS SDKs
	Analyze a document using Amazon Textract and an AWS SDK
	Detect text in a document using Amazon Textract and an AWS SDK
	Get data about an Amazon Textract document analysis job using an AWS SDK
	Start asynchronous analysis of a document using Amazon Textract and an AWS SDK
	Start asynchronous text detection using Amazon Textract and an AWS SDK

	Cross-service examples for Amazon Textract using AWS SDKs
	Create an Amazon Textract explorer application
	Detect entities in text extracted from an image using an AWS SDK

	Using Amazon Augmented AI to Add Human Review to Amazon Textract Output
	Core Concepts of Amazon A2I
	Human Review Activation Conditions
	Human review workflow (flow definition)
	Human loops

	Get Started Using Amazon A2I
	Create a Human Review Workflow
	Create a Human Review Workflow (Console)
	Step 1: Create a Work Team (Console)
	Step 2: Create a Human Review Workflow (Console)

	Create a Human Review Workflow (API)
	Creating a Human Review Workflow (AWS SDK for Python (Boto3))

	Analyze the Document
	Monitor Human Loop
	View Human Loop Details
	Stop a Human Loop

	View Output Data and Worker Metrics
	Find Output Data in Amazon S3
	Track Private Worker Activity

	Security in Amazon Textract
	Data Protection in Amazon Textract
	Encryption in Amazon Textract
	Encryption at Rest
	Encryption in Transit

	Internetwork Traffic Privacy

	Identity and Access Management for Amazon Textract
	Audience
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	How Amazon Textract Works with IAM
	Amazon Textract Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	Amazon Textract Resource-Based Policies
	Authorization Based on Amazon Textract Tags
	Amazon Textract IAM Roles
	Using Temporary Credentials with Amazon Textract
	Service-Linked Roles
	Service Roles

	Amazon Textract Identity-Based Policy Examples
	Policy Best Practices
	Allow Users to View Their Own Permissions
	Giving Access to Synchronous Operations in Amazon Textract
	Giving Access to Asynchronous Operations in Amazon Textract

	Troubleshooting Amazon Textract Identity and Access
	I Am Not Authorized to Perform an Action in Amazon Textract
	I Am Not Authorized to Perform iam:PassRole
	I Want to View My Access Keys
	I'm an Administrator and Want to Allow Others to Access Amazon Textract
	I Want to Allow People Outside of My AWS Account to Access My Amazon Textract Resources

	Logging and Monitoring
	Monitoring Amazon Textract
	Using CloudWatch Metrics for Amazon Textract
	

	Access Amazon Textract Metrics
	Create an Alarm

	CloudWatch Metrics for Amazon Textract
	CloudWatch Metrics for Amazon Textract
	CloudWatch Dimension for Amazon Textract

	Logging Amazon Textract API Calls with AWS CloudTrail
	Amazon Textract Information in CloudTrail
	Request Parameters and Response Fields That Aren't Logged

	Understanding Amazon Textract Log File Entries

	Compliance Validation for Amazon Textract
	Resilience in Amazon Textract
	Cross-service confused deputy prevention
	Infrastructure Security in Amazon Textract
	Configuration and Vulnerability Analysis in Amazon Textract
	Amazon Textract and interface VPC endpoints (AWS PrivateLink)
	Considerations for Amazon Textract VPC endpoints
	Creating an interface VPC endpoint for Amazon Textract
	Creating a VPC endpoint policy for Amazon Textract

	API Reference
	Actions
	AnalyzeDocument
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	AnalyzeExpense
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	AnalyzeID
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	DetectDocumentText
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	GetDocumentAnalysis
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	GetDocumentTextDetection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	GetExpenseAnalysis
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	StartDocumentAnalysis
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	StartDocumentTextDetection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	StartExpenseAnalysis
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	See Also

	Data Types
	AnalyzeIDDetections
	Contents
	See Also

	Block
	Contents
	See Also

	BoundingBox
	Contents
	See Also

	Document
	Contents
	See Also

	DocumentLocation
	Contents
	See Also

	DocumentMetadata
	Contents
	See Also

	ExpenseDetection
	Contents
	See Also

	ExpenseDocument
	Contents
	See Also

	ExpenseField
	Contents
	See Also

	ExpenseType
	Contents
	See Also

	Geometry
	Contents
	See Also

	HumanLoopActivationOutput
	Contents
	See Also

	HumanLoopConfig
	Contents
	See Also

	HumanLoopDataAttributes
	Contents
	See Also

	IdentityDocument
	Contents
	See Also

	IdentityDocumentField
	Contents
	See Also

	LineItemFields
	Contents
	See Also

	LineItemGroup
	Contents
	See Also

	NormalizedValue
	Contents
	See Also

	NotificationChannel
	Contents
	See Also

	OutputConfig
	Contents
	See Also

	Point
	Contents
	See Also

	QueriesConfig
	Contents
	See Also

	Query
	Contents
	See Also

	Relationship
	Contents
	See Also

	S3Object
	Contents
	See Also

	Warning
	Contents
	See Also

	Hard Limits in Amazon Textract
	Amazon Textract

	Document History for Amazon Textract
	AWS glossary

