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ABSTRACT: A new approach for performing Particle Mesh
Ewald in ab initio quantum mechanical/molecular mechanical
(QM/MM) simulations with extended atomic orbital basis sets
is presented. The new approach, the Ambient-Potential
Composite Ewald (CEw) method, does not perform the
QM/MM interaction with Mulliken charges nor electrostati-
cally fit charges. Instead the nuclei and electron density interact
directly with the MM environment, but in a manner that avoids
the use of dense Fourier transform grids. By performing the
electrostatics with the underlying QM density, the CEw
method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of
mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-
31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable
with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce
artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF
profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models
incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio
reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-
Ewald is analyzed.

1. INTRODUCTION
The rigorous treatment of long-ranged electrostatics is essential
for a proper modeling of biological processes in solution.1−5

One technique for including long-range electrostatics is Ewald’s
method,6 which replicates a primary unit cell composed of
Gaussian charges to form an infinite periodic lattice. The
periodic Gaussian charge density is resolved in a plane-wave
basis, whence the electrostatic potential is readily calculated.
The plane-wave potential is then modified with short-ranged
corrections to account for the Gaussian charge penetration and
thus recover the electrostatic potential of the point charge
system. The computational performance of Ewald’s method
was greatly improved with the advent of the Particle Mesh
Ewald7−10 (PME) method, which has become the de facto
standard for molecular mechanical (MM) force field molecular
dynamics (MD) simulations. Although the PME method was
originally formulated for point charges, it has been extended
throughout the years to handle Cartesian11−16 and solid
harmonic17,18 multipoles for its application with the AMOEBA
polarizable force field19 and the modified divide-and-conquer
quantum mechanical force field20−22 (QMFF). Before the
widespread adoption of PME, electrostatic force truncation,
switching, and shifting were frequently used.23,24 Electrostatic
cutoff methods were later found to produce artifacts in the
properties of water25−28 and the structural stability of large
biomolecules.29−31 Consequently it has been suggested that
new models not be parametrized using cutoff electrostatics.26

The treatment of electrostatics within quantum mechanical/
molecular mechanical (QM/MM) models32 has followed one
of two general prescriptions: electrostatic embedding and
mechanical embedding.33,34 Mechanical embedding is a
“subtractive” paradigm, whereby the quantum mechanical
(QM) region is represented by a MM-analogue, the electro-
statics are computed entirely with MM charges, and the QM
region is introduced by removing the MM-analogue self-energy
and replacing it with the gas-phase QM energy. In this sense
mechanical embedding can be viewed as a type of ONIOM
method.35−37 Although mechanical embedding is simple to
implement, it suffers from the major drawback that the QM
charge density does not directly polarize to the MM
environment; therefore, the electrostatic embedding method
is instead often used. Electrostatic embedding decomposes the
total energy into MM/MM, QM/QM, and QM/MM “additive”
components. The QM/MM interaction explicitly includes the
electrostatics between the QM charge density and the MM
point chargesamong other interactions, including van der
Waals forcesthereby polarizing the QM electron density.
Combined QM/MM MD applications have been dominated

by the use of semiempirical Hamiltonians; for example, AM1/
d-PhoT,38 DFTB2,39,40 and related models,41−43 because the
high cost of ab initio wave function methods has often
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precluded their ability to obtain the amount of statistical
sampling necessary for making a meaningful comparison with
experiment.44 Nevertheless ab initio QM/MM methods45 have
found applications46 through the calculation of single point
energies,47 NMR chemical shifts,48 geometry optimizations,49

adiabatic potential energy surfaces,50 nudge elastic band
pathways,51 finite temperature string methods,52−54 multiple
time step simulations,55 and to correct potential of mean force
(PMF) free energy surfaces obtained from semiempirical QM/
MM calculations.56−59

Applications of semiempirical QM/MM methods routinely
employed electrostatic embedding with truncated QM/MM
electrostatic cutoffs60−62 until the development of the semi-
empirical QM/MM-Ewald method presented by Nam,63 which
was independently reported by Riccardi;64 both of which were
influenced by the method presented several years prior by
Gao.65 More recently these methods have been adapted for use
with PME66 and semiempirical X-Pol models.67 The use of
explicit lattice summations can also be found in the literature.68

Considering that Ewald methods have traditionally been
implemented for point-charge distributions, the semiempirical
QM/MM-Ewald methods have chosen to use a Mulliken
charge representation of the QM region to perform the long-
range interactions. When this approach was applied to ab initio
QM/MM, it was found that the use of Mulliken or Löwdin
charges caused self-consistent field (SCF) convergence
problems when non-minimal atomic orbital (AO) basis sets
were used.69,70 This has motivated the use of ChElPG71 or
other electrostatic potential charge fitting procedures to
produce stable ab initio QM/MM-Ewald trajectories.69,70,72−76

However, applications of ab initio QM/MM often still forego
the use Ewald summations, preferring instead to model the
long-range electrostatics with a reaction field method77,78 or
perform real-space electrostatic truncation, shifting, or smooth-
ing.52−54,79−84 Recent work has advocated a 22 Å real-space
switched electrostatic cutoff method using the minimum image
convention.85 Regrettably we have noticed that many authors
have failed to report the size of the QM/MM nonbond cutoff
that they have used, and other details defining how the
electrostatics were performed.
Ab initio QM/MM methods will become frequently used in

the near future as QMFFs80,86−88 and free energy correction
methods mature and as hardware technology continues to
improve. To this end, we question if the effort placed into the
evaluation of the underlying ab initio calculation is not
somewhat wasted by performing the QM/MM interaction
with QM atomic partial charges rather than the nuclei and ab
initio electron density. Choosing the partial charges to model
the QM electrostatic potential certainly helps to alleviate this
concern to the extent that those charges indeed reproduce the
potential, but the effort required to perform the fit could
instead have been spent on a method that avoids charge fitting
altogether. After all, the reason why the community is resorting
to partial charge fitting is because a tractable alternative for
evaluating the Ewald sum in ab initio QM/MM simulations has
yet to be realized. The principle complication encountered in a
direct adaptation of the Ewald or PME methods is borne from
the electron density’s rapid changes near the nuclei, which
requires an unacceptably large number of plane waves to
resolve. Even if one could perform Ewald’s method using no
more plane waves than what is found to be acceptable in a
purely MM application, the analytic evaluation of each AO
product’s Fourier coefficients would still be very costly. The

computational effort would be further amplified by having to
re-evaluate the Ewald potential at each step of the SCF
procedure. A wholly new approach is needed.84,89

In this work, we present a new ab initio QM/MM-Ewald
method called the Ambient-Potential Composite Ewald
method, or Composite Ewald (CEw) method for short. The
new method does not require more plane waves than what is
typically used within pure-MM applications. The analytic
evaluation of AO-product Fourier coefficients are avoided by
numerically integrating the Ewald reciprocal-space potential on
the molecular quadrature grid normally used to compute the
density functional theory (DFT) exchange-correlation func-
tional. The long-range interactions between the QM region and
its periodic replicas are computed from a truncated Taylor
series that is expanded about a MM point-charge representation
of the QM region. This approximation does not affect the
interaction between the QM and MM regions; it only affects
the interaction of the QM region with its own periodic images.
As a consequence of this approximation, the Ewald
contribution to the QM Fock matrix does not change during
the SCF procedure, and the evaluation of the plane-wave Ewald
potential becomes analogous to a one-time evaluation of a local
density approximation (LDA) exchange-correlation functional.
We compare the new Ewald method to several other

electrostatic protocols by performing umbrella window
simulations to compute the PMF profiles of the p-nitrophenyl
phosphate dissociation reaction. We show how various
electrostatic protocols affect the MM-water solvation around
charged QM regions. We extend and elaborate on the analysis
first discussed by Holden et al.69,70 to elucidate the failure of
Nam’s semiempirical QM/MM-Ewald method63 when it is
applied to non-minimal basis set ab initio methods. We
compare the computational cost of the new method to
electrostatic embedding as a function of the number of QM
atoms. Finally, we compute two-dimensional PMF profiles for
phosphoryl transesterification reactions involving ethoxide and
phenoxide leaving groups to compare the pathways produced
by AM1/d-PhoT,38 DFTB2,39,40 and the PBE0/6-311G**
hybrid functional DFT method.90,91

2. METHODS

2.1. The QM/MM Energy. In this work, we consider a
QM/MM system that contains a localized QM region; for
example, a small solute QM molecule in MM solvent, or a QM
active site within a large biomolecule. Furthermore, we suppose
that the calculation is performed under periodic boundary
conditions, whose real- and reciprocal-space lattice vectors are
a1, a2, a3 and a1*, a2*, a3*, respectively. The total potential energy
of the QM/MM system is

= + +

− + + +‐

E E E E

E E E E

R P R R R P

R R P R P R P

( , ) ( ) ( ) ( , )

( ) ( , ) ( , ) ( , )

bonded LJ elec

bonded elec kin xc ex
(1)

where R is the set of atomic coordinates and P is the single-
particle density matrix (see eq 11). The various components of
the energy are defined below.
The bonded energy, Ebonded, is the collection of MM terms

describing the bonds, angles, and torsions between covalently
linked MM atoms and those combinations of MM and QM
atoms which contain at least one MM atom:
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The k values are force constants, and Rab, θabc, and ϕabcd are
bond lengths, angles, and torsion angles, respectively. The
Lennard-Jones (LJ) energy, ELJ, is explicitly evaluated for all
pairs of nonbonded atoms within a cutoff Rcut, and a long-range
correction is applied to account for the dispersion beyond the
nonbond cutoff:
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where u,v index atom types and Nu is the number of atoms of
type u. The primed summation excludes pairs where a and b are
both QM, Rab is assumed to be the “minimum image” distance
between atoms a and b, and V = a1·a2×a3 is the unit cell
volume. The periodic electrostatic energy, Eelec, is
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=

=
′ +

| − ′|
′

E E q
q q

r r

R P
r r n

r r

( , ) [ ]

1
2

( ) ( )
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n
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3 3

(4)

where n = n1a1 + n2a2 + n3a3 is a lattice translation and q(r) is
the total charge density (see eq 5). The MM atom charge
density is a collection of static point charges (see eq 6), and the
QM charge density consists of the atomic nuclei and electrons
(see eq 7). The notation for the electrostatic energy shown in
eq 4 presumes the standard convention of excluding the infinite
Coulomb self-energy of the point charges whenever those
terms may appear.

Total charge density:

= +q q qr r r( ) ( ) ( )MM QM (5)

MM charge density:

∑ δ= −
∈

q qr r R( ) ( )
a

a aMM
MM (6)

QM charge density:
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Total electron (number) density:

ρ ρ ρ= +α βr r r( ) ( ) ( ) (8)

Spin-resolved (number) density:

∑ρ ϕ ϕ=σ
σ σ σnr r r( ) ( ) ( )

i
i i i

(9)

Spin-resolved molecular orbital:

∑ϕ χ= −σ

μ
μ
σ

μ μCr r R( ) ( )i i
(10)

Atomic orbital representation of the single-particle density
matrix:

= +μν μν
α

μν
βP P P (11)

Spin-resolved density matrix:

∑=μν
σ σ

μ
σ

ν
σP n C C

i
i i i

(12)

where Za is a nuclear charge, χ(r) is an AO basis function, and
nσ and Cσ are the spin-resolved occupation numbers and MO
coefficients, respectively. The densities and MOs defined by eqs
7−10 have been written as a function of r; however, we
emphasize that these terms also depend on the atomic positions
through the use of atom-centered basis functions, and this
dependence must be considered when evaluating the atomic
forces.
The parameters within Ebonded are chosen to implicitly

account for the electrostatic interactions between the bonded
atoms, but those interactions are explicitly included in eq 4 for
notational convenience. Therefore, Ebonded‑elec denotes a
correction that removes the explicit electrostatic interactions
between the pairs of MM atoms appearing within Ebonded,

∑=‐
∈

∈

E
q q

R
R( )

ab
ab

a b

ab
bonded elec

bonded
MM (13)

The remaining energy terms in eq 1 are the electron
interactions that do not directly couple to the MM environ-
ment.

Non-interacting electron kinetic energy:

∑=
μν

μν μνE P TR P( , )kin
(14)
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Hartree−Fock exchange energy:
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Electron repulsion integral (ERI):
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Density functional theory exchange-correlation energy:

∫
∑
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where γσσ′ = ∇ρσ(r)·∇ρσ′(r), wi is a molecular quadrature
weight, and exc is a linear combination of exchange and
correlation functional integrands,

= +e c e c er r r( ) ( ) ( )xc DFT/x x DFT/c c (19)

where we have simplified the exc notation for brevity. The
results shown in the present work are evaluated with PBE0/6-
31G* or PBE0/6-311G**. PBE0 is the Perdew−Burke−
Ernzerhof hybrid functional,90,91 which uses the generalized
gradient approximation functional described in ref 92. The
PBE0 coefficients are cDFT/x= 0.75, cDFT/c= 1, and cHF/x = 0.25.
The summation appearing in eq 18 is a numerical integration

of the DFT functional performed on a molecular quadrature
grid. The molecular quadrature grid is a union of atomic
quadrature grids, and an atomic grid is a series of concentric
discretized spheres. That is, each atomic quadrature point i is an
element within a set of angular points {rΩ̂} that form a spherical
shell of radius Rrad which is tethered to atom a. The atomic grid
point locations and weights are ri∈a = Ra + Rrad,i rΩ̂,i and watomic,i
= wrad,i wΩ, i, respectively, where the notation i∈a denotes the
grid point i within the set of points tethered to atom a. Many
types of radial quadrature rules have been developed, including
those based on Gauss−Chebyshev, Gauss−Legendre, and
Euler−Maclauren schemes.93−96 In the present work, we use
Gauss−Laguerre and Lebedev97 rules for the radial and angular
quadratures to form atomic grids consisting of 5580 points per
heavy atom and 4296 points per hydrogen. In principle, each
atomic grid integrates all-space; however, each atomic grid only
samples the integrand adequately near their respective centers.
Therefore, the molecular quadrature weights wi ≡ w(ri∈a,R) =
Γa(ri,R)watomic,i, introduce a “spatial partition function” Γa, to
avoid an over-counting of the integrand when two or more
atomic grids sample the same spatial area. Specifically, we use
the “fuzzy Voronoi” partitioning scheme proposed by Becke,98

which is summarized by eqs 20−26. The relative size of the
Voronoi is biased according to the atom’s Bragg−Slater radius,
RBS,a.
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Formally, one would need to notationally account for
periodicity within eqs 15−18. If the electron density extends
no more than half the box length, then one can evaluate these
energy terms as written while assuming a minimum image
convention. This is typically implemented by translating the

QM region to the center of the simulation box, and then
wrapping the MM atoms around it.
For a given set of coordinates, one must nonlinearly

minimize the energy with respect to the MO coefficients in a
SCF procedure, under the constraint that the MOs remain
orthonormal to each other,

∫ ϕ ϕ δ=

· · =

σ σ
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rr r
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( ) ( ) di j ij
3
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where S is the AO overlap matrix,

∫ χ χ= − −μν μ μ ν νS rr R r R( ) ( ) d3
(28)

and Iij = δij is the identity matrix. Under these constraints, the
optimal set MO coefficients can be shown to obey the
Roothaan−Hall equation,

· = · ·σ σ σ σF C S C E (29)

where Eσ are the spin-resolved orbital eigenvalues and Fσ is the
AO representation of the spin-resolved Fock matrix,

= ∂
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E
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Equation 29 is a generalized eigenvalue problem, which can be
reduced to standard form by introducing a transformation
matrix,

= · −X U s 1/2 (31)

where U and s are the eigenvectors and eigenvalues of the
overlap matrix, respectively; S = U·s·UT. It follows that XT·S·X
= I, and

· = ·σ σ σ σF C C E,OAO ,OAO ,OAO (32)

where Fσ,OAO is the orthonormal atomic orbital (OAO) basis
representation of the Fock matrix,

= · ·σ σF X F X,OAO T (33)

and Cσ,OAO are the corresponding MO coefficients,

= ·σ σC X C ,OAO (34)

for the OAO basis defined by the transformation
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μ
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The AO Fock matrix elements are the partial derivatives
shown in eq 30, applied to eq 1:
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where σ′ denotes the spin that is antiparallel to σ.
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Upon reaching SCF convergence, the atomic gradients
∂/∂Xa, are readily obtained from elementary chain-rule
differentiation of the energy.

MM atom gradients (a∈MM):
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Gradient of the exchange-correlation energy:
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The ∂xi/∂Xa derivative has a value of 1 only if the quadrature
point i is tethered to atom a. Furthermore, the density is a
linear combination of AO products, whose gradients satisfy
∇rχ(r−R) = −∇Rχ(r−R); therefore, the last term on the first
line of eq 7 reduces to
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For brevity, we refer the reader to ref 99 for additional
simplifications of eq 39. The appendix of ref 99 also contains
explicit expressions for the quadrature weight derivative, ∂w/
∂Xa. Algorithms for computing the ERIs and ERI gradients are
found in refs 100 and 101, and the one-electron Gaussian
integrals can be found in the seminal work by Obara and
Saika.102

When the QM/MM boundary severs a covalent bond, we
use the link atom approach described in ref 66. In brief,
“dangling bonds” are capped with a hydrogen QM atom. The
link atom bond length is fixed, and its orientation is colinear
with the severed QM/MM bond. The atomic forces of the link
atom are propagated to the real QM and MM atoms via
elementary chain rule derivatives. For completeness, we note
that other treatments of the QM/MM boundary can be found
in the literature, including the Generalized Hybrid Orbital
method,103−106 Effective Fragment Potential method,107−109

and Local Self-Consistent Field method110−112 to name just a
few.113

2.2. Ambient-Potential Composite Ewald Method. It is
worthwhile to begin with some clarifying remarks regarding eq
4, which may cause confusion for some readers because the
lattice translation, n, occurs in one (but not both) of the charge
densities. In other words, one might have expected the
Coulomb self-energy of a periodic density, ∑n q(r+n), to be

∫ ∫∑ ∑+
′ + ′

| − ′|
′

′

q
q

r rr n
r n
r r

1
2

( )
( )

d d
n n

3 3

(41)

because the Coulomb self-energy of an aperiodic density, q(r),
is

∫ ∫ ′
| − ′|

′q
q

r rr
r

r r
1
2

( )
( )

d d3 3
(42)

However, eq 41 is formally infinite if q(r) is anywhere
nonzero,114 because each cell then contains some amount of
self-energy and there are an infinite number of cells in the
lattice. When performing an inner product of two functions that
are each periodic (the density and the electrostatic potential are
both periodic in eq 41), the desired quantity is actually the
inner product’s average per unit cell. All cells in the lattice are
identical, so the calculation of the average energy per unit cell
merely requires one to change the range of integration in eq 41
from “all space” to “the volume of one cell”:

∫ ∫∑ ∑= +
′ + ′

| − ′|
′

′

E q q
q

r rr n
r n
r r

[ ]
1
2

( )
( )

d d
Vn n

elec
3 3

(43)

Equation 4 is recovered from eq 43 by exploiting the periodicity
of the electrostatic potential. Although the aperiodic density is
not necessarily confined within a unit cell, the combined
effluence of density produced from the construction of ∑n q(r
+n) causes each cell within the lattice to contain one instance
of q(r) that appears to have been “wrapped” to the cell
boundary. Equation 4 differs from eq 43 only by “unwrapping”
the density and making a corresponding adjustment to the
integration limits.
Another possible source of confusion may arise from the

prevalence of expressions in the literature that place lattice
translations in the denominator rather than the numerator; that
is,

∫ ∫∑=
′

| − ′ + |
′E q q

q
r rr

r
r r n

[ ]
1
2

( )
( )

d d
n

elec
3 3

(44)

Equations 4 and 44 are equivalent. Equation 4 is recovered
from eq 44 by performing a u-substitution that replaces r′ → u
+ n and d3r′→ d3u within eq 44 and then changing the dummy
integration variable from u to r′. One could also write eq 44
with a denominator of |r − r′ − n|−1, because the lattice
summation considers all unique cell translations.
Our description of the CEw method makes frequent use of

Dirac notation, which is now summarized. A function is written
as a “ket”, f(r) = ⟨r|f⟩. A complex conjugate is a “bra”, f*(r) =
⟨f |r⟩. An inner product is a “braket”, ∫ f*(r) g(r) d3r = ⟨f |g⟩. If
both functions are periodic, then the inner-product’s integration
is performed over the unit cell volume, ∫ V d3r. From these
definitions, one can immediately write the aperiodic (or
“primary”) charge density,

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00198
J. Chem. Theory Comput. 2016, 12, 2611−2632

2615

http://dx.doi.org/10.1021/acs.jctc.6b00198


= ⟨ | ⟩ = ⟨ | ⟩ + ⟨ | ⟩q q q qr r r r( ) QM MM (45)

and the periodic charge density,

∑ ∑+ = ⟨ + | ⟩q qr n r n( )
n n (46)

One can further define an “ambient charge density”,

∑ ∑ ∑+ = ⟨ + | ⟩ = ⟨ + | ⟩ − ⟨ | ⟩
≠ ≠

q q q qr n r n r n r( )
n n n0 0

(47)

which consists of all translated copies of the density enclosing
the primary image.
The act of producing the various forms of the density

described above is aided through the use of specialized
electrostatic operators. Let us define the “primary electrostatic
operator”,

⟨ | ̂| ′⟩ = | − ′|−jr r r r 1
(48)

the “periodic electrostatic operator”,

∑⟨ | | ′⟩ = | − ′ + |̂ −jr r r r nn
n

1

(49)

and the “ambient electrostatic operator”,

∑⟨ | | ′⟩ = | − ′ + |̂
Δ

≠

−jr r r r n
n 0

1

(50)

These operators act upon an aperiodic charge density to
produce the “primary electrostatic potential” (the electrostatic
potential of the aperiodic density),

∫⟨ | ̂| ⟩ =
′

| − ′|
′j q

q
rr

r
r r

( )
d3

(51)

the “periodic electrostatic potential” (the electrostatic potential
of the periodic density),

∫∑⟨ | | ⟩ =
′ +

| − ′|
′̂j q

q
rr

r n
r r

( )
dn

n

3

(52)

and the “ambient electrostatic potential”,

∫∑⟨ | | ⟩ =
′ +

| − ′|
′ = ⟨ | | ⟩ − ⟨ | ̂| ⟩̂̂

Δ
≠

j q
q

r j q j qr
r n
r r

r r
( )

d
n

n
0

3

(53)

The ambient electrostatic potential is produced solely from the
periodic surroundings. That is, it is how the electrostatic
potential is altered upon introducing periodicity to the system.
The electrostatic energy of the periodic system (eq 4) can be

decomposed into QM/QM, MM/MM, and QM/MM
interactions as follows:

= ⟨ | | ⟩

= ⟨ | | ⟩ + ⟨ | | ⟩ + ⟨ | | ⟩

= ⟨ | | ⟩ + ⟨ | | ⟩ + ⟨ | ̂| ⟩
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n n n

n n

elec

MM MM QM MM QM QM

MM MM QM MM QM QM

QM QM (54)

The last term in eq 54 is the “QM ambient energy”. It is the
Coulomb interaction between the primary image’s QM region

with the QM regions located in the periodic surrounding. The
QM ambient energy is inconvenient to evaluate because the
character of the QM ambient potential changes at each SCF
step. We shall introduce an approximation that avoids this
inconvenience. To begin, note that the QM region’s ambient
energy can be expressed as a Taylor series expansion about a
reference charge density, qQM

ref (r):

QM charge density evaluated about the reference:

= + −q q q qr r r r( ) ( ) ( ( ) ( ))QM QM
ref

QM QM
ref

(55)

QM ambient energy evaluated about the reference:

⟨ | | ⟩ = ⟨ | | ⟩ + ⟨ − | | ⟩

+ ⟨ − | | − ⟩

̂ ̂ ̂

̂

Δ Δ Δ

Δ

q j q q j q q q j q

q q j q q

1
2

1
2

1
2

QM QM QM
ref

QM
ref

QM QM
ref

QM
ref

QM QM
ref

QM QM
ref

(56)

where ⟨r|qQM − qQM
ref ⟩ ≡ ⟨r|qQM⟩ − ⟨r|qQM

ref ⟩.
Obviously, if qQM(r) ≈ qQM

ref (r), then the last term in eq 56 is
small. More importantly, the ambient electrostatic operator
only interacts the QM region with those located in dif ferent
periodic cells. If the unit cell was larger than the sphere which
circumscribes the QM charge density, then this energy could, in
principle, be performed via multipole moment expansions of
qQM(r). In other words, the last term in eq 56 is also negligible
when the multipole moments of qQM

ref (r) reasonably approx-
imate those of qQM(r). Therefore, an appropriate choice of
qQM
ref (r) is one which satisfies

∫ ∫≈μ μq C r q C rr r r r( ) ( ) d ( ) ( ) dl lQM
ref 3

QM
3

(57)

where Clμ(r) is a regular solid harmonic.115 There are many
potential choices which could satisfy this condition; however,
considering that force fields have already developed their partial
charges to reasonably model the electrostatics, the most
convenient choice would be to reuse the underlying MM
atomic charges for qQM

ref (r). Complicating the form of qQM
ref (r) by

using, for example, atomic multipoles or diffuse auxiliary basis
functions, would only increase the accuracy of the method
insofar as those complications could improve the overall
description of the QM region’s multipole moments. Alter-
natively, one could improve the multipole moments by simply
adjusting the underlying MM partial charges if it was found to
be necessary, thus rendering additional complications moot.
Following this logic, the approach taken in the present work is
to use a set of static point charges to approximate the ambient
QM charge density,

∑ δ= −
∈

q qr r R( ) ( )
a

a aQM
ref

QM (58)

and then truncate the Taylor series to first-order,

⟨ − | | − ⟩ ≈̂
Δq q j q q

1
2

0QM QM
ref

QM QM
ref

(59)

⟨ | | ⟩ ≈ ⟨ | | ⟩ − ⟨ | | ⟩̂ ̂ ̂
Δ Δ Δq j q q j q q j q

1
2

1
2QM QM QM QM

ref
QM
ref

QM
ref

(60)

such that the ambient QM energy becomes a composite
interaction between qQM(r) with qQM

ref (r), and qQM
ref (r) with itself.

After simplification, the energy becomes ECEw[q] ≈ Eelec[q],
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= ⟨ | | ⟩ + ⟨ | ̂| ⟩
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− ⟨ | | ⟩ + ⟨ | ̂| ⟩
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ref
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(61)

In this manner, the periodic potentials only involve static point
charge distributions, which can be computed once before the
SCF procedure begins.
Equation 61 is an approximation, but our formulation was

designed to reduce the error’s magnitude for typical QM/MM
applications. It should be pointed out that the truncated Taylor
series expansion only effects the interaction of the QM region
with its images; it does not approximate the interaction
between the QM and MM regions nor the MM region with
itself. Nevertheless, if the interaction between the QM region
with its periodic images was such that the Taylor series could
not reasonably be truncated, then one could directly evaluate
the QM ambient energy in eq 54 by evaluating the multipole
moments of qQM(r) at each SCF step and then use the point-
multipole PME method described in ref 17; however, the small
size ofand, therefore, intercellular distance betweenQM
regions should make this added layer of complexity unnecessary
in most applications.
The periodic electrostatic potential of the point charge

distributions appearing in eq 61 can be computed with either
the Ewald or PME methods. A detailed theoretical develop-
ment of these methods can be found in ref 17, whose notation
we adopt henceforth. Specifically, we reserve

π= * + * + *k k kk a a a2 ( )1 1 2 2 3 3 (62)

to index the angular wave numbers of a plane wave basis:

⟨ | ⟩ = ·r k eik rT

(63)

Furthermore, we shall refer to B-spline weights,

∏θ − = − · * +
=

⎜ ⎟
⎛
⎝

⎞
⎠M N

n
r R r R a( ) ( )

2a
d

n d a d
1

3
T

(64)

that are constructed from order-n Cardinal B-spline functions,

∑=
− !

− −
=

−⎜ ⎟⎛
⎝

⎞
⎠M u

n

n
k

u k( )
1

( 1)
( 1) [max( , 0)]n

k

n
k n

0

1

(65)

and whose discrete Fourier transform coefficients,

∑θ θ= ⟨ | ⟩⟨ | ⟩k R Rk
t

t t
(66)

are evaluated from a uniformly spaced grid. The grid consists of
N = N1N2N3 points that are indexed by t = (t1,t2,t3) and
positioned at Rt:

∑=
−

=

t
N

R a
1

d

d

d
dt

1

3

(67)

We will continue by summarizing the necessary equations for
PME, written below for a generic point charge distribution,
qpt(r):

∑ δ= −
∈

q qr r R( ) ( )
a

a apt
pt (68)

In brief, the PME method computes the periodic potential of a
model Gaussian density,

∑ β
π

β

∈

− | − |
⎛
⎝⎜

⎞
⎠⎟q e

a
a

r R

pt

2 3/2

a
2 2

(69)

and then corrects for the short-range difference between the
point and Gaussian potentials. The electrostatic potential of the
periodic Gaussian density is performed analytically upon fitting
it to a plane wave basis. Therefore, the PME potential (see eq
70) decomposes into a plane-wave potential (see eq 75), a
short-range correction that removes the Gaussian potential (see
eq 73), a corresponding short-range “near-field” potential that
reintroduces the point-charges (see eq 71), and, for charged
systems, a uniform background potential (see eq 76). Several of
these potentials can be grouped together, when convenient,
into “far-field” (see eq 72), “real-space” (see eq 74), and
“reciprocal-space” (see eq 77) potentials. The difference
between the Gaussian and point-charge electrostatic potentials
is negligible at large distances, so one need only evaluate the
near-field and Gaussian potentials within a real-space Ewald
cutoff Rcut around r while assuming a minimum image
convention. When applied to eq 61, one must evaluate the
potential at all r values where qQM(r) is non-negligible. In other
words, the near-field and Gaussian potentials must be evaluated
for all imaged point charges within Rcut of qQM(r).

PME potential:

⟨ | | ⟩ = ⟨ | | ⟩ − ⟨ | | ⟩ + ⟨ | | ⟩ + ⟨ | | ⟩
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j q j q j q

j q j q
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pt pt % pt

pt pt

pt % pt (70)

Near-field potential; that is, the potential caused by everything
within the real-space Ewald cutoff Rcut around r:

∑
⟨ | | ⟩ = | − |
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̂
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⎧
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j q
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a
a

pt pt
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(71)

Far-field potential; that is, the potential caused by everything
outside Rcut:

⟨ | | ⟩ = ⟨ | | ⟩ − ⟨ | | ⟩ + ⟨ | | ⟩
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Gaussian potential:

∑ β
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(73)
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Real-space potential:
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Plane-wave potential (interpolated from a regular grid):

∑ θ ϕ⟨ | | ⟩ = ⟨ | − ⟩⟨ | ⟩̂
≈j qr r R R

t
t tpt pt

(75)

Uniform background potential:

∑π
β

⟨ | | ⟩ = ∀̂
−

∈

j q
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qr r,
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apt 2
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Reciprocal-space potential:

⟨ | | ⟩ = ⟨ | | ⟩ + ⟨ | | ⟩̂̂̂
≈ −j q j q j qr r r% pt pt pt (77)

PME potential interpolation control points:
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PME structure factor; that is, the forward discrete Fourier
transform coefficients of the B-spline interpolated point
charges:

∑ ∑ θ= ⟨ | ⟩ −
∈

S qk R R R( )
a

a ak
t

t t
pt

pt (79)

Having now introduced the near- and far-field potentials, we
show how they are used to simplify the second line in eq 61,
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through the cancellation of terms,
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≤q j q q j q 0QM QM

ref
QM QM

ref

which are equivalent because qQM
ref (r) is necessarily within Rcut of

qQM(r). For the same reason, the last line of eq 61 merely
removes the QM reference density’s near-field energy,
assuming that the QM region’s size is less than half the box
length:
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The energy expression for the Ambient-Potential Composite
Ewald method (see eq 83) is obtained upon replacing the
second and third lines of eq 61 with the last line of eq 80 and
eq 81, respectively,
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and then expanding the far-field potentials using the second line
of eq 72:
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Explicit expressions for the energy terms appearing in eq 83 are
summarized by eqs 84−96:
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Equation 88 is performed numerically using a molecular
quadrature grid consisting of quadrature points ri and
partitioned quadrature weights wi. In other words, one

integrates ⟨ | | + ⟩̂j q qr % MM QM
ref in a manner analogous to a

LDA exchange-correlation potential. Specifically, the reciprocal-
space potential is computed at the FFT grid points, and the B-
splines are used to interpolate the potential onto the molecular
quadrature grid. If β (see eq 69) was large, then the numerical
integration of the reciprocal-space potential shown in eq 88
would be inaccurate unless additional atomic quadrature grids
were also placed around the near-field MM atoms; that is, the
reciprocal-space potential has “lumps” at the atomic positions,
and those lumps look increasingly like q/r as β → ∞. In
practice, the β values used in typical QM/MM simulations are
sufficiently small that the use of “MM quadrature centers” is
unnecessary. For the sake of argument, even if this were an
issue, one would eliminate the lumps by numerically integrating
eq 90 along with the reciprocal-space potential, rather than
introducing additional quadrature centers.
The contribution of ECEw to the QM spin-resolved Fock

matrix is the derivative with respect to the density matrix:

∑ μν μ ν
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Similarly, the electrostatic energy contribution to the atomic
gradients is the derivative ∂E/∂Xa|P. Most of the gradient terms
reduce to expressions involving standard nuclear−nuclear,
electron−nuclear, and electron−repulsion integrals; for brevity,
eqs 98−101 summarize only those expressions which involve
the plane wave basis and/or numerical quadrature grid.
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Equation 101 requires the evaluation of the QM electron
density on the molecular quadrature grid. Each quadrature grid
point density is then B-spline interpolated onto the FFT grid.
The FFT-grid representation of the QM charge density then
undergoes a forward FFT to produce a set of structure factors.
Equation 101 does not introduce a new approximation; it
naturally arises from standard chain-rule differentiation of the
energy. The numerical integration of the reciprocal-space
potential avoids the explicit evaluation of the AO-product
Fourier coefficients.

2.3. Other QM/MM Electrostatic Protocols. The
Ambient-Potential Composite Ewald method (denoted by
“CEw”, see eq 83) will be compared to three other electrostatic
models:

1. Electrostatic embedding with truncated electrostatics for
both the MM/MM and QM/MM interactions (denoted
by “cut”, see eq 102).

2. The QM/MM Mulliken charge Ewald method intro-
duced by Nam63 (denoted by “Ewq”, see eq 104).

3. A model-MM Ewald energy with a smooth, short-range
QM/MM correction (denoted by “MMEw”, see eq 108).
The MMEw model is a mixture of mechanical and
electrostatic embedding. We define a nonbond cutoff
radius around the QM region, outside of which the QM/
MM interactions occur with mechanical embedding
(including the long-range Ewald interaction), and inside
of which the interactions are performed with electrostatic
embedding. This approach is generalized in the MMEw
method by introducing a switch that smoothly transitions
between the two limits to yield a continuous potential
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energy. In the limit that the switching width becomes
zero, the transition occurs discontinuously.

Cutoff-based electrostatics (Ecut[q] ≈ Eelec[q]):
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Ecut contribution to the Fock matrix:

∫

∑

∑

μν μ ν

χ χ

∂
∂

= + | ′ ′

−
− −

| − |
*

μν
σ μν

μ ν
μ ν

μ μ ν ν

′ ′
′ ′

∈<

E
P

V P

q r
r R r R

r R

( )

( ) ( )
d

Z

b
R R

b
b

R

cut

MM

3

b cut (103)

Mulliken charge QM/MM Ewald method (EEwq[q] ≈ Eelec[q]):
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Mulliken charge:
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EEwq contribution to the Fock matrix:
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Model-MM Ewald energy with a short-range QM/MM
correction (EMMEw[q] ≈ Eelec[q]):
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The smooth, short-range incorporation of the QM/MM
interactions:
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The switched, short-range model-MM interactions:
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The “switch off” function:
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The distance between MM atom b and the nearest QM atom:

* = ···R R Rmin{ , , }b b N b1 QM (112)

EMMEw contribution to the Fock matrix:
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The expression for the Lennard-Jones energy (eq 3) and the
ECEw (eq 83), Ecut (eq 102), EEwq (eq 104), and EMMEw (eq 108)
electrostatic methods all employ the symbol “Rcut”. In all cases,
this distance is the “nonbond cutoff” radius used by the MM
program to generate neighbor lists. We proceed by
summarizing how the nonbond cutoff is used within different
methods. In doing so, we use the phrases “real-space Ewald
cutoff”, “electrostatic cutoff”, and “switched cutoff” to aid the
reader’s ability to recall how the various methods behave at the
nonbond cutoff. If an atom is inside the nonbond cutoff, then
the pairwise Lennard-Jones energy is computed; whereas, if it is
outside the nonbond cutoff, then its interaction is modeled
through a long-range tail correction. The electrostatic methods
use a single neighbor list for the QM region, as a whole, which
is constructed from the union of the individual QM atom
neighbor lists. Therefore, an MM atom is within the nonbond
cutoff if its distance to any QM atom is less than Rcut. The Rcut
appearing in the ECEw and EEwq methods are “real-space Ewald
cutoffs”, which merely denotes the distance where the point
charge and PME Gaussian potentials are sufficiently similar that
additional real-space corrections would have a negligible effect.
The Rcut appearing in the Ecut method is an “electrostatic cutoff”
that marks the distance outside of which the electrostatic
interactions are strictly (and discontinuously) ignored. The Rcut
appearing in the EMMEw method is the outer edge of a “switched
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cutoff” that extends from Rcut − wsw to Rcut. Inside the switching
region (R ≤ Rcut − wsw), the QM/MM electrostatic interaction
explicitly involve the atomic nuclei and AO products. Outside
of the switched cutoff (R ≥ Rcut), the QM/MM electrostatic
interaction (including the long-range Ewald-component of the
energy) is performed using a static, MM point charge
representation of the QM atoms. The EMMEw switching region
(Rcut − wsw > R > Rcut) smoothly transitions between these two
limits. Therefore, the EMMEw QM atom forces are influenced by
the Ewald potential, but the QM electron density explicitly
polarizes only to the nearby MM atoms within the switched
cutoff.
It has previously been noted69,70 that the use of Mulliken

charges within EEwq can result in SCF convergence instability
when applied to standard, all-electron AO basis sets. In order to
improve the SCF stability, our implementation of EEwq holds
the Mulliken charges within the current MD step fixed to the
SCF converged Mulliken charges from the previous MD step.
In other words, the ∂EEwq/∂qa

Mul charge derivatives appearing in
eq 107 are computed once at the beginning of the SCF
procedure.
2.4. Computational Details. The ab initio code and all

electrostatic methods described in the previous sections were
implemented from scratch within a development version of
AmberTools 15 and interfaced to the Sander MD program,
which was used to perform all simulations described below.116

The notation Ecut R, EMMEw RwD, ECEw R, EEwq R is used to
distinguish the electrostatic protocols described in the previous
sections and their associated nonbond cutoffs. For example,
Ecut 14 denotes the use of eq 102 with Rcut = 14 Å, and
EMMEw 14w4 is eq 108 with Rcut = 14 Å and wsw = 4 Å. Similarly,
ECEw 14 and EEwq 14 refer to eq 83 and eq 104, respectively, with
Rcut = 14 Å.
All Ewald reciprocal-space calculations are performed using a

1 Å−3 grid density, and the Ewald coefficient was chosen from
the value of Rcut to reproduce a direct sum tolerance of 10−6 au.
Figures 1−6 display simulation results for a system

composed of a p-nitrophenyl phosphate (pNPP) QM region
in a truncated octahedron filled with 4563 TIP4P/Ew water
molecules. Salt ions were not added to the system. The total
charge of the system is 2−. The Ewald methods use a
neutralizing uniform background potential (eq 76) to account
for the net charge. The pNPP Lennard-Jones and qref

parameters were obtained from the Antechamber program
included in AmberTools 15, which chose the LJ parameters and
charges from the GAFF force field and AM1-BCC protocol,
respectively.116−119 The system volume was equilibrated using
the DFTB2 semiempirical Hamiltonian and the QM/MM
Ewald method described in ref 63 in the isothermal−isobaric
ensemble (NPT) for 100 ps (1 fs/step) at 298 K and 1 atm.
The Berendsen barostat was used to control the pressure with a
relaxation time of 2 ps, and the Langevin thermostat controlled
the temperature with a collision frequency of 5 ps−1. The
simulation cell’s equilibrated real-space lattice vectors are 56.42
Å. The equilibrated volume and coordinates were then used for
the microcanonical (NVE) and canonical (NVT) ensemble
simulations described below.
Figure 1 shows the PBE0/6-31G* QM/MM simulation total

energy, relative to the first step, for a series of NVE simulations
that differ only by their choice of electrostatic protocol. Each
simulation was run for 30 ps (30 000 steps), and they started
from the same initial conditions.

Figure 2 displays PBE0/6-31G* QM/MM potential of mean
force profiles of the pNPP dissociation reaction: [NO2C6H6O-
PO3]

2− →NO2C6H6O
− + PO3

−, where the reaction coordinate
is the P−O distance. Each PMF was generated from 96
umbrella window NVT simulations that spanned from RPO =
1.4 Å to 6.1 Å in steps of 0.1 Å. The umbrella harmonic
potentials used a force constant of 50 kcal mol−1 Å−2. The
PMFs were generated from the distribution of RPO values using
the variational free energy profile (vFEP) method.120 Each
NVT simulation was performed at 298 K for 12 ps (Figure 2a),
24 ps (Figure 2b and Figure 2c), or 36 ps (Figure 2d). The
total amount of sampling for each curve was chosen to achieve
aesthetically pleasing figures; that is, the PMFs shown in Figure
2d are all sufficiently similar to one another that additional
sampling was added to remove small numerical noise in the
region where the PMF is relatively “flat”, so that the curves
could be more easily distinguished. Alternatively, the PMFs
appearing in Figure 2a are identifiably different such that
sampling beyond 12 ps was not considered to be a prudent use
of resources. We note that the EMMEw 14w1 PMF appearing in
Figure 2b is terminated at RPO ≈4 Å because many of the
EMMEw 14w1 simulation windows beyond RPO > 4 fail to
complete due to large velocity warnings. This is expected
because the switching width in this case is so small that any
waters within the switching layer experience a large force,
because the potential energy approaches a discontinuity as the
width nears zero. The dashed, horizontal lines in Figure 2 mark
the experimental barrier in solution121 (29.6 kcal/mol).
Figure 3 compares radial distribution functions (RDFs)

between the phosphorus and water oxygens observed within
PBE0/6-31G* QM/MM pNPP simulations performed using
several electrostatic protocols. Figure 3a,b shows RDFs
obtained from simulations whose umbrella potential is centered
about RPO = 1.7 Å (the approximate minimum of the PMF),
and Figure 3c,d shows RDFs obtained using an umbrella
window centered about RPO = 4.0 Å (the approximate
transition state of the PMF). Figure 3b,d show zoomed-in
areas of panels a and c, respectively, as marked by the black
boxes. The RDFs were generated from 500 ps of NVT

Figure 1. NVE simulation energy conservation as a function of time
step (0.001 ps/step) using various electrostatic protocols. The system
is a pNPP solute computed with PBE0/6-31G* in a truncated
octahedron of TIP4P/Ew waters. See the text in Computational
Details for a description of the notation used to distinguish the various
electrostatic protocols.
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simulations at 298 K, whose trajectory was written every 50
steps.
Figure 4 shows the potential, kinetic, and total energies from

PBE0/6-31G* QM/MM NVE simulations of pNPP performed
using the EEwq 14 (Figure 4a) and ECEw 14 (Figure 4b)

electrostatic protocols as a function of time step (1 fs/step).
Both trajectories start from the same coordinates and initial
velocities, and an umbrella potential at RPO = 1.7 Å is applied.
The EEwq 14 trajectory fails to SCF converge after step 108.
Therefore, the EEwq 14 trajectory is restarted at step 108 from

Figure 2. Effect of various electrostatic protocols on the potential of mean force profiles of the pNPP dissociative reaction.

Figure 3. Pairwise radial distribution function between phosphorus and the water oxygens. The metaphosphate RPO separation in panes (a) and (c)
are 1.70 and 4.00 Å, respectively. Panels (b) and (d) are zoomed-in areas of (a) and (c), as indicated by the dashed boxes.
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the coordinates and velocities produced by the ECEw 14
trajectory at step 108. The EEwq 14 trajectory again fails to
SCF converge after step 197. The EEwq 14 SCF failures are
marked in Figure 4a by “Implosion #1” and “Implosion #2”.
Several snapshots of the pNPP solute from the EEwq 14 and
ECEw 14 trajectories are shown immediately below their
respective energy profiles.
Figures 5 and 6 re-analyze the PBE0/6-31G* Mulliken

charges and Wiberg bond orders of the first 108 steps from
each trajectory shown in Figure 4. Specifically, Figure 5a−d
shows the SCF converged Mulliken charges produced by the
EEwq 14 method using the atomic coordinates from the first 108
steps of Figure 4a. Figure 5e−h shows the SCF-converged
Mulliken charges produced by the ECEw 14 method using the
atomic coordinates from the first 108 steps of Figure 4a.
Similarly, Figure 5i−l and m−p are the EEwq 14 and ECEw 14
Mulliken charges, respectively, evaluated from the first 108
steps of Figure 4b. The format of Figure 6 is analogous; it
differs from Figure 5 only by displaying the Wiberg bond orders
rather than Mulliken charges. For clarity, the Mulliken charges
and Wiberg bond orders are evaluated using the coordinates of
the entire QM/MM system.
Table 1 compares the QM/MM simulation rates achieved

using ECEw 14 and EMMEw 14w4 when applied to the solvated 72-
atom alanine chain shown in Figure 7. The alanine chain is
enclosed within a truncated octahedron containing 5083

TIP4P/Ew waters. The timings are listed as the average
simulation rate (ps/day) reported by Sander after 1 ps (1000
steps) of PBE0/6-31G* NVT simulation at 298 K. The
simulation rates are reported as a function of central processing
unit (CPU) core count and QM system size, including link
atoms. The QM region consists of all atoms to the left of the
cuts shown in Figure 7 and the hydrogen link-atoms crossing
the boundaries. The timings were performed on the stampede
supercomputing cluster at the Texas Advanced Computing
Center. Each node contains two Intel Xeon E5-2680 processors
(8 cores/processor), and the nodes are interconnected with
Mellanox FDR InfiniBand technology. Although Intel Phi
coprocessors and/or Nvidia graphics cards were available on
the compute nodes, our code currently only runs on the CPU.
Figure 8 is a schematic of the transesterification of

hydroxyalkyl phosphate esters. Of particular interest in this
work are the reactions involving ethoxide (EtO) or phenoxide
(PhO), which are representative of “poor” and “enhanced”
leaving groups, respectively. The “R1” and “R2” bond labels
appearing in Figure 8 are reaction coordinates used to perform
the two-dimensional (2D) umbrella window simulations shown
in Figure 9. Figure 9a−c shows 2D PMFs of the EtO
phosphoryl transesterification, and Figure 9d−f shows 2D
PMFs of the PhO phosphoryl transesterification. Figure 9a,d
were performed with AM1/d-PhoT (abbreviated as AM1/d);
Figure 9b,e were performed with DFTB2; and Figure 9b,e were

Figure 4. QM/MM NVE simulations of the pNPP molecule (near the minimum of the PMF; that is, the RPO = 1.7 Å window) using the EEwq 14
(left) and ECEw 14 (right) methods. The plots (top) decompose the total simulation energy into kinetic (red) and potential (green) energy
contributions, relative to the initial condition. Both simulations start from the same initial condition. The molecules beneath each plot are snapshots
of the QM solute along their respective trajectory. Each time step is 0.001 ps.
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performed with PBE0/6-311G**. The EtO simulations
consisted of 134 windows that form a grid from (R1,R2) =
(1.4 Å, 1.4 Å) to (5.6 Å, 2.2 Å) and from (1.4 Å, 2.1 Å) to (2.4
Å, 3.0 Å) using a 0.2 Å spacing in either direction. The PhO
simulations consisted of 109 windows from (R1,R2) = (1.4 Å,
1.4 Å) to (5.6 Å, 2.2 Å). The umbrella windows had a force
constant of 85 kcal mol−1 Å−2, and the QM solute was enclosed
within a truncated octahedron containing 4204 (EtO) or 5183
(PhO) TIP4P/Ew waters. The density of the system was
equilibrated with DFTB2 in a NPT simulation in a manner
analogous to the pNPP equilibration protocol described above,
and production was performed in the NVT ensemble at 298 K.
The AM1/d-PhoT and DFTB2 semiempirial models were
sampled and analyzed for 100 ps/window, whereas the PBE0/
6-311G** simulations were run for 30 ps/window. Analysis of
the first 20 ps changes the PBE0/6-311G** barriers by less
than 0.2 kcal/mol; therefore, sampling was suspended at 30 ps.
The vFEP method was used to generate the 2D PMFs from the
distributions of R1 and R2 values observed in the simulations.120

The circle and X marks appearing in Figure 9 are minima and
transition states of the 2D surfaces, and the colored lines
connecting the stationary points are a nudge elastic band
minimum free energy path.122,123 The 1D PMFs appearing in

Figure 9 are the free energy profiles along the minimum free
energy path.
Our QM/MM simulations assume that the 2′-O has already

been deprotonated. That is, we explicitly model the reaction
barrier from R* to TS (see Figure 8), whereas the experimental
barrier corresponds to the reaction from R to TS. Therefore,
our calculated free energies are corrected to account for the free
energy difference between R and R*. The rate of the reaction
shown in Figure 8 was experimentally determined to be k =
1.57 × 107 and 7.40 × 1010 L mol−1s−1 for the EtO and PhO
leaving groups, respectively, at 80 C in a pH 8 buffer
solution.124 The transition state free energies at standard
state concentration are computed from the Eyring equation,
ΔG⧧ = −RT ln(kh/kBT), where h and kB are Planck’s constant
and Boltmann’s constant, respectively. Thus, the experimental
barriers for EtO and PhO are 28.55 and 22.62 kcal/mol,
respectively. To correct our free energies, we must consider the
pKa of 2′-OH at pH 8. Experimental measurements of the 2′-
OH pKa in small-molecule models of RNA have ranged
between 12.35 and 13.9, depending on the structure and
experimental technique.125−128 Of the available experimental
pKa data, the model most closely resembling those shown in
Figure 8 is the adenosine 3′-ethyl phosphate used in ref 127,

Figure 5. Mulliken charge analysis of the EEwq 14 and ECEw 14 SCF converged electron densities as a function of time step. Panels a−h and i−p are
evaluated using the atomic coordinates of the EEwq 14 and ECEw 14 trajectories shown in Figure 4, respectively.
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whose 2′-OH pKa was found to be 12.68 ± 0.06. Assuming a
pKa of 12.68, the free energy of the deprotonated 2′-O at pH 8
and 298 K is estimated to be ΔGR→R* = −2.303RT(pH − pKa)
= 6.38 kcal/mol. Therefore, 6.38 kcal/mol has been added to all
computed free energies shown in Figure 9.

3. RESULTS

3.1. Comparison of Electrostatic Protocols. Energy
Conservation. The drift in total energy observed within NVE
simulations of pNPP are shown in Figure 1. The Ecut 14 and
EMMEw 14w0 methods produce strong energy drifts because their
potential energy surfaces contain discontinuities. The Ecut 14

energy drift is larger than EMMEw 14w0 because the Ecut 14 method
excludes the long-range interactions entirely. The EMMEw 14w4

and ECEw 14 methods conserve the total energy. Both models
have continuous potential energies and model the long-range
interactions, albeit in different manners. The EEwq electrostatic
method first developed by Nam et al.63 is not shown in Figure 1
because the QM solute “implodes” after 100 steps. The
instability of EEwq trajectories will be discussed in detail below.
In brief, the EEwq simulations do conserve the total energy for
the length of time that they can be run.
The conservation of total energy is important for maintaining

a stable simulation temperature.129 Although the temperature
can be corrected through velocity rescaling, the lack of total

Figure 6. Wiberg bond order indices of the EEwq 14 and ECEw 14 SCF converged electron densities as a function of time step. Panels a−h and i−p are
evaluated using the atomic coordinates of the EEwq 14 and ECEw 14 trajectories shown in Figure 4, respectively.

Figure 7. QM/MM simulation rates are performed using a 72-atom
alanine chain solvated by 5083 TIP4P/Ew waters in a truncated
octahedron simulation cell. The timings were performed with different
QM regions, which correspond to the various cuts in the covalent
bonds shown in the figure. The severed bonds are capped with
hydrogen link atoms, which are included in the count for the number
of QM atoms.
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energy conservation can, over time, manifest itself by
dampening high-frequency motion and transforming it to
low-frequency motions.130 Furthermore, the treatment of long-
range forces has also been shown to dramatically affect the
structural stability of proteins30 even when switching functions
are introduced.131 The simulations performed in the remainder
of this manuscript are not performed on a time scale that is
long enough to directly observe these previously observed
artifacts.
pNPP Free Energy Profiles. Simulations of reactions

involving charged species are ubiquitous in biology. Among
the most important are phosphoryl transfer reactions, which are
vital for many cellular processes, for example, gene regulation,
cell signaling, and energy conversion.132−134 Phosphoryl
transfer reactions have been studied extensively by computa-
tional methods,135 and mechanistic insights have been gained
by studying model systems that provide an interpretation of
linear free-energy relations136 and kinetic isotope effects.137 In
this section, we examine how various electrostatic protocols
affect the phosphoryl transfer reaction barrier of pNPP (see
Figure 2).
In the vicinity of ROP ≈1.7 Å, the metaphosphate is

covalently bound to nitrophenyl such that it is a single
molecule with a −2 charge. At a separation of ROP ≳4 Å, the
solute is better described as two polyatomic monoanions. One
can gain insight into the role of solvation in these two situations
by referring to a Born ion model which, for water,
approximately translates to ΔGsolv ≈ −Q2/R, where R is the
radius of the ion. In other words, there is a greater degree of
solvent stabilization near the PMF minimum than there is near
the transition state. Although various electrostatic methods

appear to increase the barrier, the differences are related to the
solvent stabilization near the PMF minimum, which has been
chosen to define the zero of free energy in all cases. Had the
system consisted of a pair of counterions, such as the NH4

+···
Cl− or NH4

+···PO3
− systems examined in ref 63, then the

solvent stability of the QM region would be enhanced as the
ions were separated, because the separation of ions produces an
increasing dipole moment.
The series of Ecut profiles shown in Figure 2a differ strikingly

from the other electrostatic protocols. The PMFs continually
increase as the metaphosphate dissociates. The truncated
electrostatic forces cause the waters to become structured at
the QM/MM electrostatic cutoff (see Figure 3), which acts to
create an artificial solvation shell. As one decreases the
electrostatic cutoff from 18 to 10 Å, the artificial solvation
shell forms closer to the solute and thus increases the stability
of the PMF minimum. The profiles do not contain a transition
state below ROP < 6 Å for two reasons:

1. The length of the electrostatic cutoff prevents the
solvation shells of each fragement from dissociating
from each other in this range.

2. The water around phosphorus continues to display an
artifically structured RDF even when the metaphosphate
is separated (see Figure 3c,d), so the radius of the
“effective Born ion” increases as the metaphosphate
dissociates.

The EMMEw method’s treatment of the long-range QM/MM
electrostatics is fundamentally different from Ecut, and this
difference causes the EMMEw PMFs to exhibit transition states
(see Figure 2b). As the width of the switching region is
reduced, the dissociation barrier increases. This observation

Table 1. Simulation Rates (ps/day; 1 fs/step) Using ECEw 14 and EMMEw 14w4 as a Function of CPU Core-Count (Ncore) and QM
Region Size (NQM, the Number of QM Atoms) for the Solvated Alanine Chain Shown in Figure 7

NQM, ECEw 14 NQM, EMMEw 14w4

Ncore 12 22 32 42 52 62 72 12 22 32 42 52 62 72

1 7.4 1.6 0.66 0.36 0.23 0.16 0.12 8.3 1.7 0.71 0.38 0.24 0.17 0.12
2 14.4 3.0 1.3 0.71 0.45 0.30 0.22 16.5 3.3 1.4 0.76 0.48 0.31 0.23
4 27.3 5.7 2.4 1.3 0.84 0.56 0.41 31.1 6.2 2.6 1.4 0.88 0.60 0.42
8 51.2 10.6 4.3 2.4 1.5 0.99 0.72 59.6 11.6 4.6 2.5 1.6 1.0 0.75
16 92.4 19.8 8.1 4.5 2.8 1.9 1.3 110.3 21.8 8.6 4.7 3.0 2.0 1.4
32 157.3 35.3 14.6 7.8 4.9 3.3 2.4 187.9 38.0 15.3 8.2 5.1 3.5 2.5
64 237.4 59.4 24.4 13.3 8.3 5.5 3.9 289.0 64.0 25.4 13.8 8.6 5.7 4.1
128 337.5 90.4 37.3 19.9 12.6 8.3 5.8 418.5 97.7 39.1 20.8 13.0 8.6 6.0
256 428.4 122.7 51.9 28.1 17.0 11.0 7.9 536.4 135.1 54.5 28.5 17.4 11.4 8.1
512 493.0 152.4 62.2 34.5 20.8 13.4 9.4 622.5 167.1 66.0 34.7 21.1 13.7 9.6

Figure 8. Schematic of the phosphoryl transfer (model RNA transesterification) reactions with ethoxide and phenoxide leaving groups.
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appears to be related to how the switching width affects the
solvent structure in the vicinity of the switching region. Figure
3, panels a,b and c,d illustrate the solvent structures of
EMMEw 14w2, EMMEw 14w3, and EMMEw 14w4 at ROP = 1.70 Å and ROP
= 4.00 Å, respectively. As the switching width becomes smaller,
the transition between the QM/MM and MM-analogue/MM
interactions occurs more abruptly, and the waters experience a
greater force in the switching region. The degree of water
structure at the switching region is greater at ROP = 1.70 Å
because the solute more closely resembles a dianion. Unlike the
Ecut method, the artificial solvation shell dissipates as the
metaphosphate dissociates. The series of EMMEw profiles shown
in Figure 2c use a switching width of zero. Thus, the width is
too small for the waters to experience a force associated with
the transition, and the difference between MM-analogue/MM

and QM/MM interactions is too subtle to cause a dramatic
difference in the transition state barrier. Increasing the real-
space Ewald cutoff from 10 to 18 Å lowers the barrier from 32.4
(EMMEw 10w0) to 30.2 (EMMEw 18w0) kcal/mol. Relative to Figure
2a,b, the EMMEw Rw0 profiles shown in Figure 2c are relatively
stable and agree with experiment much more closely; however,
the reader should take note that the electrostatic protocols
shown in Figure 2c do not conserve the total energy in NVE
simulations.
The series of ECEw profiles shown in Figure 2d exhibit the

greatest degree of similarity as a function of nonbond cutoff.
The barriers are 32.2 kcal/mol (ECEw 10), 31.8 kcal/mol
(ECEw 14), 31.2 kcal/mol (ECEw 18). Unlike the other electro-
static protocols appearing in Figure 2a−c, the ECEw method
allows the QM Hamiltonian to explicitly polarize to both the

Figure 9. Free energy profiles of the transesterification reactions shown in Figure 8. (a−c) Ethoxide leaving group. (d−f) Phenoxide leaving group.
Inset: one-dimensional plots of the free energies along the nudge elastic band path connecting the minimum to the rate-limiting transition state. The
horizontal line in the inset plots mark the experimental barrier.
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short- and long-range electrostatics. As a consequence, ECEw 14

does not induce an artificially structured solvation shell, as can
be seen in Figure 3.
Electronic Polarization. Figures 4−6 are used to discuss the

symptoms which arise when attempting to use the semi-
empirical-style QM/MM-Ewald method63 with an ab initio
Hamiltonian. To analyze the behavior of EEwq 14 and ECEw 14, we
construct NVE trajectories of each (Figure 4a and 4b,
respectively), starting from the same initial conditions. The
EEwq 14 total energy is conserved until step 106, at which point
the atom velocities are too large to adequately propagate with a
1 fs time step. Furthermore, we are unable to SCF converge the
EEwq 14 QM region after step 108. The solute exhibits unusual
changes in the hydrogen covalent angles after the first 75 steps,
a dramatic deformation of the phenyl ring after the first 90
steps, and wildly nonphysical bond lengths in the last few
stepsat which point the solute can only be described as
having undergone an “implosion”. The ECEw 14 trajectory
(Figure 4b) does not encounter any of these symptoms. To
demonstrate that the EEwq 14 implosion is not a fluke, we
restarted the EEwq 14 simulation from the coordinates taken
from step 108 of the ECEw 14 trajectory. The EEwq 14 trajectory
again implodes after an additional 80 steps.
The instability of EEwq trajectories has previously been

described by Holden et al.,69,70 which motivated them to
concoct a point-charge representation of the QM charge
density using a ChElPG charge-fitting procedure.71 The ECEw
method described in the present work interacts the QM region
with its surroundings without resorting to an auxiliary
representation. Nevertheless, we agree with Holden et al. that
the underlying reason for the instability of EEwq trajectories
arises from the manner in which the Mulliken potentials
contribute to the Fock matrix. In other words, the EEwq 14
trajectory in Figure 4a becomes nonphysical because the
electrostatic protocol spuriously polarizes the density matrix to
the environment.
Figures 5 and 6 compare how the EEwq 14 and ECEw 14

protocols affect the polarization of the QM electron density
by monitoring the Mulliken charges and Wiberg bond orders at
each step of the trajectories. Figure 5a shows the EEwq 14 carbon
Mulliken charges evaluated using the first 108 steps of the
EEwq 14 trajectory. The carbon charges diverge as the trajectory
reaches the first implosion. At first glance, a reader might be
tempted to flippantly dismiss Figure 5a because Mulliken
charges are known to exhibit a sensitivity to basis set.138,139

However, the ECEw 14 carbon Mulliken charges shown in Figure
5e are evaluated at the same coordinates as those used in Figure
5a, and yet the ECEw 14 charges are remarkably stableeven as
the solute implodes. The carbon charges are recomputed along
the ECEw 14 trajectory in Figure 5m,i. Again, the EEwq 14 charges
(Figure 5i) are more sensitive, but they do not diverge because
the ECEw 14 trajectory does not implode. The EEwq 14 Mulliken
charges of the other atoms (O,N,P,H) are relatively stable in
comparison to carbon. We conclude the following from Figure
5:

1. The EEwq 14 Mulliken charges of carbon are particularly
sensitive to geometry, and

2. the EEwq 14 electrostatics must be polarizing the under-
lying density matrix in a suspicious manner, because the
ECEw 14 Mulliken charges are stable when evaluated with
the same coordinates.

The C−C, C−O, C−N, and C−H Wiberg bond indices
shown in Figure 6 are a second means for analyzing the
electron polarization. The C−C bond orders in Figure 6a,e,i,m
should be about 1.5 because of the conjugation within the
phenyl ring. However, some of the C−C bonds in Figure 6a
show strong antibonding behavior. The spurious EEwq 14 C−C
bonding pattern significantly alters carbon’s bonding to the
other atoms as one approaches the implosion.
The EEwq method’s polarization is sensitive because

1. there is a large amount of C−C AO overlap, and
2. the Mulliken potentials produce multiple, inconsistent

views of the external environment’s electronic chemical
potential.

There is a large amount of C−C AO overlap because the “C3s”
functionthat is, the primitive s-function in 6-31G*has a
small Gaussian exponent (0.1687144 a0

−2) and there are 6
carbons in close proximity to each other. To be more precise,
there is a large amount of C3s−C3s AO overlap. The strong
C3s AO overlap produces a near-linear dependence and a
correspondingly small AO overlap matrix eigenvalue. Con-
sequently, the first column (assuming the eigenvalues are
sorted) of X (eq 31) is a series of numbers that are large in
magnitude, oscillate in sign, and are dominated by C3s
character. Alternatively stated, the C3s AOs are transformed
in the OAO basis (eq 35) to become oscillatory and delocalized
across the phenyl ring. The near-linear dependence that we
have just described is expected and routine. Most applications
of ab initio methods with small molecules encounter far smaller
AO overlap eigenvalues than what is found here. The degree of
near-linear dependence in the present example only becomes a
problem once the chemical potential is inconsistently viewed.
The electronic chemical potential produced by the external
environment (the MM atoms and long-range electrostatics) is

μ
δ
δρ

=
E

r
r

( )
( )ext
ext

(114)

and it polarizes the electron density through its contribution to
the Fock matrix,

∫ μ χ χΔ =μν
σ

μ νF rr r r( ) ( ) ( ) dext
3

(115)

By performing the interaction through Mulliken charges, the
EEwq method produces different chemical potentials for each
AO product:
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(116)

Each of these chemical potentials is a constant throughout
space, but every AO pair experiences a different constant. When
eq 115 is transformed into the OAO basis, the spatial
inconsistencies of μEwq,μν(r) and the multicenter delocalization
of eq 35 malform the chemical potential relative to the other
OAO basis functions to produce irregularities in the electron
polarization. The ECEw method presented in this work does not
produce errant polarizations because it uses a single, consistent
view of the external environment’s chemical potential.

Computational Efficiency. The ECEw method is more
expensive than EMMEw because ECEw polarizes the QM region
to both the short- and long-range interactions. Specifically, ECEw
integrates the Ewald Gaussian potential via molecular
quadrature, and the ECEw gradients (eq 100) require a forward
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Fourier transform of the QM charge density from the molecular
quadrature grid. As shown in Table 1, this additional layer of
computation slows the ECEw simulations by only a small
amount because the dominant effort continues to involve the
calculation of standard Gaussian integrals required by the
underlying ab initio Hamiltonian. For a 52-atom QM region,
the difference in timings between ECEw and EMMEw is 1−4%,
depending on how many CPU cores are used.
The choice of real-space Ewald cutoff affects the relative cost

between the real- and reciprocal-space evaluations, and it thus
could be tuned to optimize the overall cost. Specifically,
reducing the size of the real-space Ewald cutoff necessitates the
use of larger Ewald coefficients which in turn requires a larger
number of plane waves to resolve. The optimal choice is
obtained from empirical observation. The strategy used in
Amber, which we have adopted in this work, is to use a 1 point/
Å3 FFT grid density, and then choose the Ewald coefficient
such that erf(βRcut) = εRcut, where ε is a “direct sum tolerance”.
One could argue that larger values of Rcut may be necessary
when using ab initio methods because the electron density
extends several angstroms beyond the nucleus. By employing a
14 Å real-space Ewald cutoff, we are attempting to pre-
emptively diffuse that argument. Having said that, we have not
yet encountered a scenerio where a 10 Å real-space Ewald
cutoff produces a questionable result. In practice, the pNPP
simulations employing a 14 Å real-space Ewald cutoff slowed
the calculation by 7−8% relative to the 10 Å real-space Ewald
cutoff.
3.2. Comparison between ab Initio and Semiempirical

Free Energy Profiles. Semiempirical theory has seen
widespread use for generating PMF free energy profiles from
QM/MM simulations. Considering that semiempirical models
are approximately 100 times faster than many ab initio methods,
one may verily question whether the accuracy of ab initio
approaches is worth their added effort. Figure 9 compares the
AM1/d-PhoT and DFTB2 semiempirical model PMFs with
those produced by PBE0/6-311G** for the transesterification
reaction shown in Figure 8. The most striking difference occurs
with the EtO leaving group (Figure 9a−c). The semiempirical
models predict a single, late transition state, whereas PBE0
produces two transition states (the late transition state is rate
controlling) and an intermediate. In other words, the AM1/d-
PhoT and DFTB2 semiempirical models predict a “concerted”
mechanism, and PBE0 predicts a “stepwise” mechanism. The
experimental rates of this reaction do not provide insight into
whether or not an intermediate exists; however, we have used
the Gaussian program140 to perform geometry optimizations
and transition state searches using PBE0/6-31G*, PBE0/6-
311G**, B3LYP/6-31G*, and B3LYP/6-311G** with polar-
ized continuum model (PCM) implicit solvent.141 All of the
PCM calculations that we performed predict the existence of an
intermediate and two transition states, in agreement with our
PBE0 explicit solvent QM/MM PMF. Previous studies of
transesterification reactions with various leaving groups have
found that poor (EtO) and enhanced (PhO) leaving groups
generally follow a stepwise and concerted mechanisms,
respectively.136 Indeed, the transesterification reaction PMFs
involving the PhO leaving group (Figure 9d−f) are predicted to
undergo a concerted mechanism for all 3 methods.
The PBE0/6-311G** reaction barriers agree more closely to

experiment than either AM1/d-PhoT or DFTB2. The semi-
empirical methods predict EtO barriers that are 10 kcal/mol
larger than experiment, whereas PBE0 is only 3.6 kcal/mol

larger. Similarly, the semiempirical models produce PhO
barriers that are 8 kcal/mol larger than experiment, and
PBE0 differs from experiment by only 0.8 kcal/mol.

4. CONCLUSION
In this work, we presented a new, composite Ewald method
(CEw) for QM/MM simulations. Unlike the semiempirical-
QM/MM Ewald method introduced by Nam,63 the new
method produces stable MD trajectories when evaluated with
non-minimal Gaussian AO basis sets. The CEw method differs
from the recently described QM/MM-LREC approach85 by
polarizing the QM region to the long-range electrostatics using
an Ewald summation. It further differs from the approach
described by Holden et al.69,70 by interacting the QM region
with the external environment directly through the QM charge
density, as opposed to resorting to a point-charge auxiliary
representation.
We compared how various electrostatic protocols affect the

PMF of the p-nitrophenyl phosphate dissociation reaction. It
was shown that the CEw PMFs are less sensitive to the division
of short- and long-range interactions than the other methods
that we compared. For example, the difference in free energy
barriers between using a real-space Ewald cutoff of 10 and 18 Å
was found to be 1 kcal/mol when using the CEw method. We
compared CEw to a subtractive Ewald scheme (MMEw) and
found that CEw avoided the structural artifacts associated with
switching the QM/MM interaction between electrostatic and
mechanical embedding.
We examined the computational cost of the new method and

found that the incorporation of Ewald sums into the QM
calculation only slowed the simulation rate by 1−4% for a 52-
atom QM region.
We confirmed Holden’s explanation69,70 for the instability

encountered with Mulliken charge-based QM/MM Ewald
methods.63 The use of Mulliken charges produces inconsistent
representations of the electronic chemical potential which, in
the orthogonalized atomic orbital representation of the Fock
matrix, become deformed and thus errantly polarizes the QM
electron density. The new CEw method polarizes the QM
density to a globally consistent representation of the chemical
potential.
We performed two-dimensional PMFs of phosphoryl

transesterification reactions with ethoxide and phenoxide
leaving groups to compare PBE0/6-311G** with the AM1/d-
PhoT and DFTB2 semiempirical models. We found that the
semiempirical models produced concerted reaction mecha-
nisms for the ethoxide leaving group, whereas PBE0
simulations produced a stepwise mechanism, in agreement
with implicit solvation calculations and previous work.136,137

Furthermore, the PBE0/6-311G** reaction barriers were found
to more closely match experiment than the semiempirical
methods by 6−7 kcal/mol for both leaving groups.
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