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ABSTRACT: A new approach for performing Particle Mesh
Ewald in ab initio quantum mechanical/molecular mechanical
(QM/MM) simulations with extended atomic orbital basis sets
is presented. The new approach, the Ambient-Potential
Composite Ewald (CEw) method, does not perform the
QM/MM interaction with Mulliken charges nor electrostati-
cally fit charges. Instead the nuclei and electron density interact
directly with the MM environment, but in a manner that avoids
the use of dense Fourier transform grids. By performing the
electrostatics with the underlying QM density, the CEw
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method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of
mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-
31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable
with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce
artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF
profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models
incorrectly produce a concerted ethoxide mechanism, whereas PBEQ correctly produces a stepwise mechanism. The ab initio
reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-

Ewald is analyzed.

1. INTRODUCTION

The rigorous treatment of long-ranged electrostatics is essential
for a proper modeling of biological processes in solution.' >
One technique for including long-range electrostatics is Ewald’s
method,” which replicates a primary unit cell composed of
Gaussian charges to form an infinite periodic lattice. The
periodic Gaussian charge density is resolved in a plane-wave
basis, whence the electrostatic potential is readily calculated.
The plane-wave potential is then modified with short-ranged
corrections to account for the Gaussian charge penetration and
thus recover the electrostatic potential of the point charge
system. The computational performance of Ewald’s method
was greatly improved with the advent of the Particle Mesh
Ewald”™'* (PME) method, which has become the de facto
standard for molecular mechanical (MM) force field molecular
dynamics (MD) simulations. Although the PME method was
originally formulated for point charges, it has been extended
throughout the years to handle Cartesian''~'® and solid
harmonic'”'® multipoles for its application with the AMOEBA
polarizable force field'” and the modified divide-and-conquer
quantum mechanical force field**™** (QMFE). Before the
widespread adoption of PME, electrostatic force truncation,
switching, and shifting were frequently used.”>** Electrostatic
cutoff methods were later found to produce artifacts in the
properties of water”> >® and the structural stability of large
biomolecules.”” " Consequently it has been suggested that
new models not be parametrized using cutoff electrostatics.”®
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The treatment of electrostatics within quantum mechanical/
molecular mechanical (QM/MM) models®” has followed one
of two general prescriptions: electrostatic embedding and
mechanical embedding.’*** Mechanical embedding is a
“subtractive” paradigm, whereby the quantum mechanical
(QM) region is represented by a MM-analogue, the electro-
statics are computed entirely with MM charges, and the QM
region is introduced by removing the MM-analogue self-energy
and replacing it with the gas-phase QM energy. In this sense
mechanical embedding can be viewed as a type of ONIOM
method.”> ™ Although mechanical embedding is simple to
implement, it suffers from the major drawback that the QM
charge density does not directly polarize to the MM
environment; therefore, the electrostatic embedding method
is instead often used. Electrostatic embedding decomposes the
total energy into MM/MM, QM/QM, and QM/MM “additive”
components. The QM/MM interaction explicitly includes the
electrostatics between the QM charge density and the MM
point charges—among other interactions, including van der
Waals forces—thereby polarizing the QM electron density.

Combined QM/MM MD applications have been dominated
by the use of semiempirical Hamiltonians; for example, AM1/
d-PhoT,*® DFTB2,*** and related models,*'™* because the
high cost of ab initio wave function methods has often
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precluded their ability to obtain the amount of statistical
sampling necessary for making a meaningful comparison with
experiment.”* Nevertheless ab initio QM/MM methods* have
found apglications% through the calculation of single point
" NMR chemical shifts,** geometry optimizations,"’

energies,
adiabatic _?otential energy surfaces,*” nudge elastic band
pathways,” finite temperature string methods,” " multiple

time step simulations,” and to correct potential of mean force
(PMF) free energy surfaces obtained from semiempirical QM/
MM calculations.” >

Applications of semiempirical QM/MM methods routinely
employed electrostatic embedding with truncated QM/MM
electrostatic cutoffs®~%” until the development of the semi-
empirical QM/MM-Ewald method presented by Nam,** which
was independently reported by Riccardi;** both of which were
influenced by the method presented several years prior by
Gao.”® More recently these methods have been adapted for use
with PME® and semiempirical X-Pol models.”” The use of
explicit lattice summations can also be found in the literature.®®

Considering that Ewald methods have traditionally been
implemented for point-charge distributions, the semiempirical
QM/MM-Ewald methods have chosen to use a Mulliken
charge representation of the QM region to perform the long-
range interactions. When this approach was applied to ab initio
QM/MM, it was found that the use of Mulliken or Lowdin
charges caused self-consistent field (SCF) convergence
problems when non-minimal atomic orbital (AO) basis sets
were used.”’® This has motivated the use of ChEIPG’' or
other electrostatic potential charge fitting procedures to
produce stable ab initio QM/MM-Ewald trajectories.’””"”>~7¢
However, applications of ab initio QM/MM often still forego
the use Ewald summations, preferring instead to model the
long-range electrostatics with a reaction field method”””® or
perform real-space electrostatic truncation, shifting, or smooth-
ing.””~>*”"~% Recent work has advocated a 22 A real-space
switched electrostatic cutoff method using the minimum image
convention.” Regrettably we have noticed that many authors
have failed to report the size of the QM/MM nonbond cutoff
that they have used, and other details defining how the
electrostatics were performed.

Ab initio QM/MM methods will become frequently used in
the near future as Q_MFFsgo’gﬁ_88 and free energy correction
methods mature and as hardware technology continues to
improve. To this end, we question if the effort placed into the
evaluation of the underlying ab initio calculation is not
somewhat wasted by performing the QM/MM interaction
with QM atomic partial charges rather than the nuclei and ab
initio electron density. Choosing the partial charges to model
the QM electrostatic potential certainly helps to alleviate this
concern to the extent that those charges indeed reproduce the
potential, but the effort required to perform the fit could
instead have been spent on a method that avoids charge fitting
altogether. After all, the reason why the community is resorting
to partial charge fitting is because a tractable alternative for
evaluating the Ewald sum in ab initio QM/MM simulations has
yet to be realized. The principle complication encountered in a
direct adaptation of the Ewald or PME methods is borne from
the electron density’s rapid changes near the nuclei, which
requires an unacceptably large number of plane waves to
resolve. Even if one could perform Ewald’s method using no
more plane waves than what is found to be acceptable in a
purely MM application, the analytic evaluation of each AO
product’s Fourier coeflicients would still be very costly. The
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computational effort would be further amplified by having to
re-evaluate the Ewald potential at each step of the SCF
procedure. A wholly new approach is needed.***’

In this work, we present a new ab initio QM/MM-Ewald
method called the Ambient-Potential Composite Ewald
method, or Composite Ewald (CEw) method for short. The
new method does not require more plane waves than what is
typically used within pure-MM applications. The analytic
evaluation of AO-product Fourier coefficients are avoided by
numerically integrating the Ewald reciprocal-space potential on
the molecular quadrature grid normally used to compute the
density functional theory (DFT) exchange-correlation func-
tional. The long-range interactions between the QM region and
its periodic replicas are computed from a truncated Taylor
series that is expanded about a MM point-charge representation
of the QM region. This approximation does not affect the
interaction between the QM and MM regions; it only affects
the interaction of the QM region with its own periodic images.
As a consequence of this approximation, the Ewald
contribution to the QM Fock matrix does not change during
the SCF procedure, and the evaluation of the plane-wave Ewald
potential becomes analogous to a one-time evaluation of a local
density approximation (LDA) exchange-correlation functional.

We compare the new Ewald method to several other
electrostatic protocols by performing umbrella window
simulations to compute the PMF profiles of the p-nitrophenyl
phosphate dissociation reaction. We show how various
electrostatic protocols affect the MM-water solvation around
charged QM regions. We extend and elaborate on the analysis
first discussed by Holden et al.®>”° to elucidate the failure of
Nam’s semiempirical QM/MM-Ewald method®® when it is
applied to non-minimal basis set ab initio methods. We
compare the computational cost of the new method to
electrostatic embedding as a function of the number of QM
atoms. Finally, we compute two-dimensional PMF profiles for
phosphoryl transesterification reactions involving ethoxide and
phenoxide leaving groups to compare the pathways produced
by AMI1/d-PhoT,”® DFTB2,>**" and the PBE0/6-311G**
hybrid functional DFT method.””"*

2. METHODS

2.1. The QM/MM Energy. In this work, we consider a
QM/MM system that contains a localized QM region; for
example, a small solute QM molecule in MM solvent, or a QM
active site within a large biomolecule. Furthermore, we suppose
that the calculation is performed under periodic boundary
conditions, whose real- and reciprocal-space lattice vectors are
a), ay, a3 and af, af, a¥, respectively. The total potential energy
of the QM/MM system is

E(R! P) = Ebonded(R) + EL](R) +E

elec

(R, P)

- Ebonded—elec(R) + Ekin(R) P) + Exc(R) P) + Eex(RJ P)
(1)

where R is the set of atomic coordinates and P is the single-
particle density matrix (see eq 11). The various components of
the energy are defined below.

The bonded energy, Eyy4.4) is the collection of MM terms
describing the bonds, angles, and torsions between covalently
linked MM atoms and those combinations of MM and QM
atoms which contain at least one MM atom:
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Ebonded(R) = Ebond(R) + Eangle(R) + Etorswn( )

2
Z kah(Rab - Req,ab)
abEbonds
2
+ Z abc ahc - eeq,ah)
abcEangles

Z z e [1+ cos(nq%bcd - ¢

+ O,abcd) :|
abcd€Etorsions  n

@)

The k values are force constants, and R, 6, and ¢,y are
bond lengths, angles, and torsion angles, respectively. The
Lennard-Jones (LJ) energy, Eyj, is explicitly evaluated for all
pairs of nonbonded atoms within a cutoff R, and a long-range
correction is applied to account for the dispersion beyond the
nonbond cutoff:

E (R) _ Z/ ClZ,ub _ C6,ab
L = ’ 12 R
>
abgbonded 0 ab
ab <Ryt
Natmntypes
6141/ 2
- N dr

u,v

©)

where u,v index atom types and N, is the number of atoms of
type u. The primed summation excludes pairs where a and b are
both QM, R, is assumed to be the “minimum image” distance
between atoms a and b, and V = a;-a,Xa; is the unit cell
volume. The periodic electrostatic energy, E, is

(R P) elec[q]

q(r)q(r’ +
E// e — r'l (4)

where n = nja; + nya, + nya; is a lattice translation and q(r) is
the total charge density (see eq S). The MM atom charge
density is a collection of static point charges (see eq 6), and the
QM charge density consists of the atomic nuclei and electrons
(see eq 7). The notation for the electrostatic energy shown in
eq 4 presumes the standard convention of excluding the infinite
Coulomb self-energy of the point charges whenever those
terms may appear.

elec

d3 d3 ’

Total charge density:

q(r) = gy, (1) + g4y, (r) ()
MM charge density:
qMM(r) = Z quﬁ(l‘ - Ru)
a€EMM (6)

QM charge density:
= 2 28 -R,) - p(x)

‘]QM
aeQM
D 28 -R) = X Py xRy (r—R,)
aeQM 1124
(7)
Total electron (number) density:
p(r) = p,(r) + py(r) (8)
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Spin-resolved (number) density:
£ = X 0K )
i )
Spin-resolved molecular orbital:
p@) =Yy -R)
H (10)

Atomic orbital representation of the single-particle density
matrix:

Pﬂy=P;(4xu+Pfu (11)
Spin-resolved density matrix:
P;lyu = Z n; Cmcm
i (12)

where Z, is a nuclear charge, y(r) is an AO basis function, and
n’ and C° are the spin-resolved occupation numbers and MO
coeflicients, respectively. The densities and MOs defined by eqs
7—10 have been written as a function of r; however, we
empbhasize that these terms also depend on the atomic positions
through the use of atom-centered basis functions, and this
dependence must be considered when evaluating the atomic
forces.

The parameters within Ey 4.4 are chosen to implicitly
account for the electrostatic interactions between the bonded
atoms, but those interactions are explicitly included in eq 4 for
notational convenience. Therefore, Ep . eq.elec denotes a
correction that removes the explicit electrostatic interactions
between the pairs of MM atoms appearing within Ej 4.4,

E%

ab Ebonded ab
abe MM

Ebonded—elec (R) =
(13)

The remaining energy terms in eq 1 are the electron
interactions that do not directly couple to the MM environ-
ment.

Non-interacting electron kinetic energy:

Ekm(R P) - Z Hv m/

(14)
== [1e - RV~ R,) &
2J7# W v (1)
Hartree—Fock exchange energy:
CHF/x Nyt
E (R, P) = - > D PP, (')
cea,p ”"/ZL’/, (16)
Electron repulsion integral (ERI):
(ulp'v') = //dSr &Erie — r'I™t x
X, =Ry (r =Ry (r =R,y (' =R,) (17
Density functional theory exchange-correlation energy:
Exc(RJ P) = xc(rf pﬁl }/aa’ }/a ) yﬂﬂ) d r
> wesi o, P> Ve Vs Vyp)
M (18)
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where 7,y = Vp,(r)-Vp,(x), w; is a molecular quadrature
weight, and e, is a linear combination of exchange and
correlation functional integrands,

exc(r) = CDFT/xex(r) + CDFT/cec(r)

(19)

where we have simplified the e, notation for brevity. The
results shown in the present work are evaluated with PBE0/6-
31G* or PBE0/6-311G**. PBEO is the Perdew—Burke—
Ernzerhof hybrid functional,”””" which uses the generalized
gradient approximation functional described in ref 92. The
PBEO coeflicients are cppr/= 0.75, ¢ppr/c= 1, and cyg/, = 0.25.

The summation appearing in eq 18 is a numerical integration
of the DFT functional performed on a molecular quadrature
grid. The molecular quadrature grid is a union of atomic
quadrature grids, and an atomic grid is a series of concentric
discretized spheres. That is, each atomic quadrature point i is an
element within a set of angular points {fo} that form a spherical
shell of radius R4 which is tethered to atom a. The atomic grid
point locations and weights are r,c, = R, + R4, To,; and wyomic;
= Wy, Wg, » Tespectively, where the notation i€a denotes the
grid point i within the set of points tethered to atom a. Many
types of radial quadrature rules have been developed, including
those based on Gauss—Chebzshev, Gauss—Legendre, and
Euler—Maclauren schemes.”>™° In the present work, we use
Gauss—Laguerre and Lebedev”” rules for the radial and angular
quadratures to form atomic grids consisting of 5580 points per
heavy atom and 4296 points per hydrogen. In principle, each
atomic grid integrates all-space; however, each atomic grid only
samples the integrand adequately near their respective centers.
Therefore, the molecular quadrature weights w; = w(r;c,R) =
[ (r;R)W,tomic» introduce a “spatial partition function” I',, to
avoid an over-counting of the integrand when two or more
atomic grids sample the same spatial area. Specifically, we use
the “fuzzy Voronoi” partitioning scheme proposed by Becke,”
which is summarized by eqs 20—26. The relative size of the
Voronoi is biased according to the atom’s Bragg—Slater radius,
RBS,a'

P(r, R)
Mlney ®) = <t R
c 2, B, R) (20)
1
P(x, R) =[] =1 - p(p(p(u)))]
bka 2 (1)
_3 _ 13
pl) = g =¥ (22)
V(s R) = py + ay(1 = i) (23)
Uy
a; =
- (24)
w. = (RBS,u/RBS,b) -1
“ (Rgs,o/Rpsp) + 1 D)
R —R,
oy R) = o= R
“w " (26)

Formally, one would need to notationally account for
periodicity within eqs 15—18. If the electron density extends
no more than half the box length, then one can evaluate these
energy terms as written while assuming a minimum image
convention. This is typically implemented by translating the
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QM region to the center of the simulation box, and then
wrapping the MM atoms around it.

For a given set of coordinates, one must nonlinearly
minimize the energy with respect to the MO coefficients in a
SCF procedure, under the constraint that the MOs remain
orthonormal to each other,

[or @@ @ =,

c7lsC’ =1 (27)
where S is the AO overlap matrix,
S = /l;(ﬂ (r =Ry (r—R) & (28)

and [;; = §; is the identity matrix. Under these constraints, the
optimal set MO coeflicients can be shown to obey the

Roothaan—Hall equation,
F°-C° = §-C°-E° (29)

where E? are the spin-resolved orbital eigenvalues and F’ is the
AO representation of the spin-resolved Fock matrix,

OE

opPy,

o —_—
F, =

(30)

Equation 29 is a generalized eigenvalue problem, which can be
reduced to standard form by introducing a transformation
matrix,

R

(1)

where U and s are the eigenvectors and eigenvalues of the
overlap matrix, respectively; S = U-s-U". It follows that X*-S-X
=1, and

FU,OAO'CO',OAO _ Cﬂ’OAO'Eg

X=Us"?

(32)

where F*49 s the orthonormal atomic orbital (OAQO) basis
representation of the Fock matrix,

F7O% = X" F° X (33)
and C7949 are the corresponding MO coefficients,
C° = X.C70A0 (34)
for the OAO basis defined by the transformation
IAROEDIP HACES B
P 3s)

The AO Fock matrix elements are the partial derivatives
shown in eq 30, applied to eq I:

elec

g, =T~ X PO, (/') +
% Hy

R
Oe
+ wy (= Ry (r, — R,)—>
a%M " i dpﬁ(l‘l)
+ 2 w5 - Ry (5~ R,))
alee(%M

X 12

anC V ( ) + anC V ( )
rpo- L S /N rpc;’ r;
ay, () ay,,(r,)

where ¢’ denotes the spin that is antiparallel to o.

(36)
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Upon reaching SCF convergence, the atomic gradients
0/0X,, are readily obtained from elementary chain-rule
differentiation of the energy.

MM atom gradients (a€EMM):

a_E _ aEbonded + aELJ elec aEbonded-elec
0X 0X 0X 0X 0X

a a a a a

OE
+

(37)
QM atom gradients (a €QM):

+Z OE
u

> opP,,

o
0X

a

OE

oP,,
oox, |

0X
R

a

OE;,
ox,

O0E
bonded +
ox,
JaT,
Z ) Hv XC

" ax X

nv a a |p

_ Gy

2 occa,p

122 %
)24

a aea

OE elec
+
oX,

P
OE

+

d
o [en ’ ’
PWP”,D,a—Xa (uv'lu'v)

n; E CWCM

(38)

Gradient of the exchange-correlation energy:

=D w

io ‘512(5)
0
+ exc(ri)a—w’

The 0x;/0X, derivative has a value of 1 only if the quadrature
point i is tethered to atom a. Furthermore, the density is a
linear combination of AO products, whose gradients satisfy
V. x(r—R) = —Vyy(r—R); therefore, the last term on the first
line of eq 7 reduces to

%,
Ox;

1

X
R

a

XC

ox, |

(39)

P,
7) . - Z ifica
| O _ Zh: 0x,
Ox; R 0X, i
0 otherwise (40)

For brevity, we refer the reader to ref 99 for additional
simplifications of eq 39. The appendix of ref 99 also contains
explicit expressions for the quadrature weight derivative, dw/
0X,,. Algorithms for computing the ERIs and ERI gradients are
found in refs 100 and 101, and the one-electron Gaussian
integrals can be found in the seminal work by Obara and
Saika.'%”

When the QM/MM boundary severs a covalent bond, we
use the link atom approach described in ref 66. In brief,
“dangling bonds” are capped with a hydrogen QM atom. The
link atom bond length is fixed, and its orientation is colinear
with the severed QM/MM bond. The atomic forces of the link
atom are propagated to the real QM and MM atoms via
elementary chain rule derivatives. For completeness, we note
that other treatments of the QM/MM boundary can be found
in the literature, including the Generalized Hybrid Orbital
method,'**™'% Effective Fragment Potential method,'"’"%
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and Local Self-Consistent Field method''*™'!2

few.'"?

2.2. Ambient-Potential Composite Ewald Method. 1t is
worthwhile to begin with some clarifying remarks regarding eq
4, which may cause confusion for some readers because the
lattice translation, n, occurs in one (but not both) of the charge
densities. In other words, one might have expected the
Coulomb self-energy of a periodic density, Y., q(r+n), to be

1 A +n) 5,
2?/q(r+n)§‘/ — & &r o)

because the Coulomb self-energy of an aperiodic density, q(r),

is
l /q(r) / q(r) d3r/ d3r
2 Ir — 'l

However, & 41 is formally infinite if q(r) is anywhere
nonzero,''* because each cell then contains some amount of
self-energy and there are an infinite number of cells in the
lattice. When performing an inner product of two functions that
are each periodic (the density and the electrostatic potential are
both periodic in eq 41), the desired quantity is actually the
inner product’s average per unit cell. All cells in the lattice are
identical, so the calculation of the average energy per unit cell
merely requires one to change the range of integration in eq 41
from “all space” to “the volume of one cell”:

Z/q(r n)Z/q(r +n)d3r’d3r

(43)

to name just a

(42)

elec

Equation 4 is recovered from eq 43 by exploiting the periodicity
of the electrostatic potential. Although the aperiodic density is
not necessarily confined within a unit cell, the combined
effluence of density produced from the construction of Y., q(r
+n) causes each cell within the lattice to contain one instance
of g(r) that appears to have been “wrapped” to the cell
boundary. Equation 4 differs from eq 43 only by “unwrapping”
the density and making a corresponding adjustment to the
integration limits.

Another possible source of confusion may arise from the
prevalence of expressions in the literature that place lattice
translations in the denominator rather than the numerator; that

/()Z/Ir q5r+n| & &

Equations 4 and 44 are equivalent. Equation 4 is recovered
from eq 44 by performing a u-substitution that replaces r’ — u
+nand d*’ — d’u within eq 44 and then changing the dummy
integration variable from u to r’. One could also write eq 44
with a denominator of Ir — r' — nl™}, because the lattice
summation considers all unique cell translations.

Our description of the CEw method makes frequent use of
Dirac notation, which is now summarized. A function is written
as a “ket”, f(r) = (rlf). A complex conjugate is a “bra”, f*(r) =
(flr). An inner product is a “braket”, [f*(r) g(r) d*r = (flg). If
both functions are periodic, then the inner-product’s integration
is performed over the unit cell volume, [, d. From these
definitions, one can immediately write the aperiodic (or

“primary”) charge density,

elec

(44)
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q(r) = (rlg) =

and the periodic charge density,
2 a(e+n) = 3 e + nlg)
n n (46)

One can further define an “ambient charge density”,

Y glr+n)=Y (r+nlg) =Y (r+nlg) -

n#0 n#0

(rlg)

(47)

which consists of all translated copies of the density enclosing
the primary image.

The act of producing the various forms of the density
described above is aided through the use of specialized
electrostatic operators. Let us define the “primary electrostatic
operator”,

(rlflr’) =l — ¢! (48)
the “periodic electrostatic operator”,
; /N — R -1
(rﬁ;h‘ > = Z Ir — ¢ + nl
n (49)
and the “ambient electrostatic operator”,
|A|1‘>— er—r + nl™!
n#0 (50)

These operators act upon an aperiodic charge density to
produce the “primary electrostatic potential” (the electrostatic
potential of the aperiodic density),

. q(r’)
(tljla) = f e —rl (s1)

the “periodic electrostatic potential” (the electrostatic potential
of the periodic density),

q(r" + n) )

fj lg) =
(rf]la) Z — o)
and the “ambient electrostatic potential”,
q(r’ + / . >
Rl = X [T 8 = 6flg) - ()
n#0
(83)

The ambient electrostatic potential is produced solely from the
periodic surroundings. That is, it is how the electrostatic
potential is altered upon introducing periodicity to the system.

The electrostatic energy of the periodic system (eq 4) can be
decomposed into QM/QM, MM/MM, and QM/MM
interactions as follows:

Egelq] = %(tﬁ,,'@

1 i . 1 -
5<qMMVn|qMM> + (Gopa ) + 5<qQMVn|qQM>
1, - : 1, .
~ D) + (Gpla g + gl gy,

1 -

The last term in eq 54 is the “QM ambient energy”. It is the
Coulomb interaction between the primary image’s QM region

2616

with the QM regions located in the periodic surrounding. The
QM ambient energy is inconvenient to evaluate because the
character of the QM ambient potential changes at each SCF
step. We shall introduce an approximation that avoids this
inconvenience. To begin, note that the QM region’s ambient
energy can be expressed as a Taylor series expansion about a
reference charge density, gisp(r):

QM charge density evaluated about the reference:

ref ref
Qope(t) = a5 (1) + (4 (1) = g, (r)) (s5)
QM ambient energy evaluated about the reference:
1 > 1 ref ref ref ref
ref 2 ref
where (rlgqy — ‘Ef aw) = (rlgom) — (rlqref ).

Obviously, if qQM(r) ~ qrég,[(r), then the last term in eq 56 is
small. More importantly, the ambient electrostatic operator
only interacts the QM region with those located in different
periodic cells. If the unit cell was larger than the sphere which
circumscribes the QM charge density, then this energy could, in
principle, be performed via multipole moment expansions of
qQM(r) In other words, the last term in eq 56 is also negligible
when the multipole moments of qref (r) reasonably approx-
imate those of gqu(r). Therefore, an appropriate choice of

qr&fw(r) is one which satisfies

ref

OIHOR / G (1) Cp(r) & (s7)

where Clﬂ(r) is a regular solid harmonic.""® There are many
potential choices which could satisfy this condition; however,
considering that force fields have already developed their partial
charges to reasonably model the electrostatics, the most
convenient choice would be to reuse the underlying MM
atomic charges for q‘ef (r). Complicating the form of qref (r) by
using, for example, atomic multipoles or diffuse auxiliary basis
functions, would only increase the accuracy of the method
insofar as those complications could improve the overall
description of the QM region’s multipole moments. Alter-
natively, one could improve the multipole moments by simply
adjusting the underlying MM partial charges if it was found to
be necessary, thus rendering additional complications moot.
Following this logic, the approach taken in the present work is
to use a set of static point charges to approximate the ambient
QM charge density,

ref

Aop(T) = Y q8(r—R)
a€QM (58)
and then truncate the Taylor series to first-order,
ref (> ref
E(qQM - qQMlequM - qQM> 0 (59)
ref ref ref

such that the ambient QM energy becomes a composite
interaction between gqy(r) with g t(r), and qref (r) with itself.
After simplification, the energy becomes ECEW[q] ~ Eu.lql,
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ECEw[q] <qMM] lqMM> + <qQM|]AIqQ'M>
; ref ref

ref ref ref ref
(q qu W + (q /10, (61)
In this manner, the periodic potentials only involve static point
charge distributions, which can be computed once before the
SCF procedure begins.

Equation 61 is an approximation, but our formulation was
designed to reduce the error’s magnitude for typical QM/MM
applications. It should be pointed out that the truncated Taylor
series expansion only effects the interaction of the QM region
with its images; it does not approximate the interaction
between the QM and MM regions nor the MM region with
itself. Nevertheless, if the interaction between the QM region
with its periodic images was such that the Taylor series could
not reasonably be truncated, then one could directly evaluate
the QM ambient energy in eq 54 by evaluating the multipole
moments of gqy(r) at each SCF step and then use the point-
multipole PME method described in ref 17; however, the small
size of—and, therefore, intercellular distance between—QM
regions should make this added layer of complexity unnecessary
in most applications.

The periodic electrostatic potential of the point charge
distributions appearing in eq 61 can be computed with either
the Ewald or PME methods. A detailed theoretical develop-
ment of these methods can be found in ref 17, whose notation
we adopt henceforth. Specifically, we reserve

k = 2x(k,a; + k,a + kja) (62)
to index the angular wave numbers of a plane wave basis:
(rlk) = e*'r (63)
Furthermore, we shall refer to B-spline weights,
o - ®) = [ M, (N = Rl + 2
d=1 (64)

that are constructed from order-n Cardinal B-spline functions,

n—1
M, () = 1), 2 (0} Jimaxta = &, 0
(65)
and whose discrete Fourier transform coefficients,
O = ). (KR)(R0)
t (66)

are evaluated from a uniformly spaced grid. The grid consists of
N = N,N,Nj; points that are indexed by t = (t,t,t;) and
positioned at Rg:

3
I o

We will continue by summarizing the necessary equations for
PME, written below for a generic point charge distribution,

qpt(r):
q,,(r) =

(67)

Z qaé(r -R)

aEpt

(68)
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In brief, the PME method computes the periodic potential of a
model Gaussian density,

2\3/2
Z qa(ﬂ_) o PR

a€pt z (69)

and then corrects for the short-range difference between the
point and Gaussian potentials. The electrostatic potential of the
periodic Gaussian density is performed analytically upon fitting
it to a plane wave basis. Therefore, the PME potential (see eq
70) decomposes into a plane-wave potential (see eq 75), a
short-range correction that removes the Gaussian potential (see
eq 73), a corresponding short-range “near-field” potential that
reintroduces the point-charges (see eq 71), and, for charged
systems, a uniform background potential (see eq 76). Several of
these potentials can be grouped together, when convenient,
into “far-field” (see eq 72), “real-space” (see eq 74), and
“reciprocal-space” (see eq 77) potentials. The difference
between the Gaussian and point-charge electrostatic potentials
is negligible at large distances, so one need only evaluate the
near-field and Gaussian potentials within a real-space Ewald
cutoff R, around r while assuming a minimum image
convention. When applied to eq 61, one must evaluate the
potential at all r values where gq(r) is non-negligible. In other
words, the near-field and Gaussian potentials must be evaluated
for all imaged point charges within R, of gqum(r).

PME potential:
(tfla,) = (efLlg,) — (fTg ) + (Tl ) + (17 lg )
(rllq,.) + (xlf\q )

= (rljlq,) + (r[lq )

= (rljlq,) —

= (rl]lq ) + (eTjylq ) (70)

Near-field potential; that is, the potential caused by everything
within the real-space Ewald cutoff R, around r:

9
lr — R

0<Ilr—RJ <R,
aEpt

(i lq,) =

0 otherwise

(71)

Far-field potential; that is, the potential caused by everything
outside R_:

(Tl ) = (ela,) — (g, + (i lq )

= (g, — (<fla,)

(72)
Gaussian potential:
f(flr — R |
Z qaw | Rul < Rcut
<1'|/J;|qpt> = acpt e — Ral
0 otherwise
(73)
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Real-space potential:

(e la,) = (i lq,) — (rfjlg ) =

erfc(flr — R |
 exfe(fie — R)) 0<lr—RJ <R,
lr — R
X 3 2
Et % ¥ k—RJ=0
P JT
0 l[r — R >R,

(74)

Plane-wave potential (interpolated from a regular grid):

(rli.lq ) = Z<elr— R)(RJ4,)

(75)
Uniform background potential:
(rrj:lqpt) = — z q, Vr
aEpt (76)
Reciprocal-space potential:
(ef7Ja,) = (eiTlg, ) + (T lg ) o
PME potential interpolation control points:
—K2/4p°
(Rig) = Re Y (RI)ZS_—— St

PME structure factor; that is, the forward discrete Fourier
transform coefficients of the B-spline interpolated point

charges:
= 2 (KR 2 4 0(R, -

aEpt (79)

Having now introduced the near- and far-field potentials, we
show how they are used to simplify the second line in eq 61,

? ref ref >
(@ yne + G — (Gopdl 190 = Aol yppe)
+ (GoplTe e + (op By + Gigag) — Gpali i)
= <qQMrj;|qMM> + <qQM|j>|qMM + qQM> (80)

through the cancellation of terms,

(Al = (Gepl o) = O
which are equivalent because qref (r) is necessarily within R, of
qQM(r) For the same reason, the last line of eq 61 merely
removes the QM reference density’s near-field energy,
assuming that the QM region’s size is less than half the box
length:

__<qref|"|qref> + _(qrefl |qref> _ __(qrefr\l ref>

(81)

The energy expression for the Ambient-Potential Composite
Ewald method (see eq 83) is obtained upon replacing the
second and third lines of eq 61 with the last line of eq 80 and
eq 81, respectively,
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ECEw[q] <qMM] lqMM> + <qQ'M|]A|qQ'M>

. > ref
+ <qQMJr|qMM> + (dopls Gy T T

ref ref
-7 (q r\ l > (82)

and then expanding the far-field potentials using the second line
of eq 72:

+ (qQMJrlqMM> + (qQM ]%|‘1MM + g
ref ref ref
<qQM IqMM + ‘IQM> - E(qQMr;, qQM>

ref (™ _ref
+3 <qQMr]:\|qQM> (83)
Explicit expressions for the energy terms appearing in eq 83 are
summarized by eqs 84—96:

1
z<qMM|Z1IqMM> = Z qa<Rﬂr;|qMM>

aEMM (84)
ref ref ref ref
_<‘1QM % qQM> - 5 Z ‘1 < % )
aeQM (85)
1 ref ref ref ref
Slaaulhlag = 3 2 AR T lag)
aeQM (86)
> ref
<qQMr];,|qMM + qQM> -
ref
Z Z (R Jj, os Do + qQM> + Z B /w
a€EQM (87)
Nywad
EDITACES WIACES BICIEIMI N NA)
i=1
(88)
ref
> ref n
Z Za<Rar;|qQM + qQM> + Z P,MUV;w
aeQM (89)
ref
== Z q, V;Tvu - Z an/TL/,a
2€QM a€MM (90)
2 3/2
n _ -1 —/3 I’ Rl
VM_( ] f I — 'l
%, (r—=R)y (r-R) & & (91)
<qQMr];|qMM Z Z <Rﬂr];|qMM> + Z PMvV;v
a€EMM (92)
4, —R)y(r-R)
= - z qa/ d’r
aEnM e - R (93)
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1 A

y77%

Z ﬂl/Pﬂ,l//(ﬂylll/y/)

aeQM ab
b>a
(94)
x2,(r =Ry (r—R,)
v;:_zza/” — &
a€QM r a (95)
(ulp'v') = / Ir — r/I_l)(H(r -R)y (r—R)) X
;(ﬂ,(r’ -R,)y, (r —R,) & & (96)

Equation 88 is performed numerically using a molecular
quadrature grid consisting of quadrature points r; and
partitioned quadrature weights w,. In other words, one
integrates (rljo%

Bhune +
LDA exchange-correlation potential. Specifically, the reciprocal-
space potential is computed at the FFT grid points, and the B-
splines are used to interpolate the potential onto the molecular
quadrature grid. If § (see eq 69) was large, then the numerical
integration of the reciprocal-space potential shown in eq 88
would be inaccurate unless additional atomic quadrature grids
were also placed around the near-field MM atoms; that is, the
reciprocal-space potential has “lumps” at the atomic positions,
and those lumps look increasingly like g/r as f — oo0. In
practice, the f values used in typical QM/MM simulations are
sufficiently small that the use of “MM quadrature centers” is
unnecessary. For the sake of argument, even if this were an
issue, one would eliminate the lumps by numerically integrating
eq 90 along with the reciprocal-space potential, rather than
introducing additional quadrature centers.

The contribution of Ecg, to the QM spin-resolved Fock
matrix is the derivative with respect to the density matrix:

aECE Z
Pepn | _yz 4§
oPy, Heoo o

R

) in a manner analogous to a

P, (up'v') + V,i + V;f’y - V;y

(97)

Similarly, the electrostatic energy contribution to the atomic
gradients is the derivative dE/0X,lp. Most of the gradient terms
reduce to expressions involving standard nuclear—nuclear,
electron—nuclear, and electron—repulsion integrals; for brevity,
eqs 98—101 summarize only those expressions which involve
the plane wave basis and/or numerical quadrature grid.

(R, - R,)
dX 2<qMM] qMM> = ; T(Rt|¢MM>
B 9.9, Xa[ 28 e Ri erfc(BR,,)
hE%M 2 Rub N Ra Razb
Rpp <Ry (98)

__<qref ref> — Z ref 06(R )<R |¢ref

0X, 2 QM% - ox,

(99)

0 > ref \ __
a_)(u<qQMr];:|qMM + qQM> =

0O(R, — R,)
ref a t
Z Z <Rt J%|‘1MM >T
Nquad
ow,
ref
= L 20l =~ ROR g + qQM>( aX)
N,

fquad

- Z Z Wg(l' t)<Rt|’j:A)|qMM + qcrlel\f/[>

i=1

y p(r,) ap(r) | o
X, ox, | X,
R
Nyuad
00(x; — R,) Ox;
= 2 2 wp)R g, + q“f>('7—'
= 4 / MM QM axi aXa
aH(R 41 e —k*/4p*
+ g ) Re 3 (RS o QM
t a k#0 k
(100)
where
S = Z &RY| D ZO(R, - R,)
aeQM
'quad
— > wp(r)0( — R)
i=1 (101)

Equation 101 requires the evaluation of the QM electron
density on the molecular quadrature grid. Each quadrature grid
point density is then B-spline interpolated onto the FFT grid.
The FFT-grid representation of the QM charge density then
undergoes a forward FFT to produce a set of structure factors.
Equation 101 does not introduce a new approximation; it
naturally arises from standard chain-rule differentiation of the
energy. The numerical integration of the reciprocal-space
potential avoids the explicit evaluation of the AO-product
Fourier coefficients.

2.3. Other QM/MM Electrostatic Protocols. The
Ambient-Potential Composite Ewald method (denoted by
“CEw”, see eq 83) will be compared to three other electrostatic
models:

1. Electrostatic embedding with truncated electrostatics for
both the MM/MM and QM/MM interactions (denoted
by “cut”, see eq 102).

2. The QM/MM Mulliken charge Ewald method intro-
duced by Nam®® (denoted by “Ewq’”, see eq 104).

3. A model-MM Ewald energy with a smooth, short-range
QM/MM correction (denoted by “MMEw”, see eq 108).
The MMEw model is a mixture of mechanical and
electrostatic embedding. We define a nonbond cutoff
radius around the QM region, outside of which the QM/
MM interactions occur with mechanical embedding
(including the long-range Ewald interaction), and inside
of which the interactions are performed with electrostatic
embedding. This approach is generalized in the MMEw
method by introducing a switch that smoothly transitions
between the two limits to yield a continuous potential
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energy. In the limit that the switching width becomes

zero, the transition occurs discontinuously.

Cutoff-based electrostatics (E.[q] & Eueclq)):
- 9. 244,
EGMM ab agl%l\l\//i ab
sz cat Rb*b<Rcut
Sy s x,(r =Ry (r—R) &
who r - R, ’
Hy r b
KM,
(102)
E_. contribution to the Fock matrix:
aEC‘.I ro
ap”t ‘o4 Z B, (uu'v')
)24 R %
4, —R)y(r-R) |
Z q, / d’r
RhEMM Ir — Ryl
<Ry (103)
Mulliken charge QM/MM Ewald method (Eg,q[q] ® Ea.q]):
ul ul
Erqla] = (dyn + Gt Un e Gy — (Gt [t
+ (dopl o) (104)
) = Y g6 - R)
a€QM (108)
Mulliken charge:
1
Z Sy 2 Z BuSu
V& L (106)
Eg,, contribution to the Fock matrix:
OFg,q OFg,q » OEpq | 0™
o = o Mul o
oP,, oP,, R 4EQM 0 R 0P, R
= ny + Z P, (uu'v')
u'v'
B % OEg,q OEg,q
2 0 Mul Mul
qaay R qbab R (107)

Model-MM Ewald energy with a short-range QM/MM
correction (EMMEW[q] & Eelec[q]):

ref
+ don)

ENLNIEW[ ] <qMM + qref |,\lqMM

+ (qQMJrlqMM) — (g ) + 5<qQle|qQM)

ref |2 _ref
<q 19000 (108)
The smooth, short-range incorporation of the QM/MM

interactions:
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Z4,
<qQM |qm> Z Sl(R*b; Rcutl )
aeQM ab
beMM
- 2 SJ,(R*b; Rcut) wsw)P/wqb
be%[M

LR (e-R,)
X f ir — R, ar (109)

The switched, short-range model-MM interactions:
ref

T X SRt R )

SR “ (110)

(@il ) =

The “switch off” function:
0,
1,

R Z Rcut

SL(R’ Rcut’ wsw) = R< Rcut Wew

10x° — 15x* + 6x°, otherwise

bw (111)

The distance between MM atom b and the nearest QM atom:

R,, = min{R,,, -

’ RNQMb} (112)
Eyimew contribution to the Fock matrix:
aEMMEW Z /i
—pr | = Ve 2 P (')
MR %
Z SL(R*b; Rcut’ Wsw)qb
beMM
y /x,, (r =Ry (r—R)
Ir — R, (113)

The expression for the Lennard-Jones energy (eq 3) and the
ECEW (eq 83)) Ecut (eq 102)! EEWq (eq 104)) and EMMEW (eq 108)
electrostatic methods all employ the symbol “R.,,”. In all cases,
this distance is the “nonbond cutoff” radius used by the MM
program to generate neighbor lists. We proceed by
summarizing how the nonbond cutoff is used within different
methods. In doing so, we use the phrases “real-space Ewald
cutoff’, “electrostatic cutoff’, and “switched cutoff” to aid the
reader’s ability to recall how the various methods behave at the
nonbond cutoff. If an atom is inside the nonbond cutoff, then
the pairwise Lennard-Jones energy is computed; whereas, if it is
outside the nonbond cutoff, then its interaction is modeled
through a long-range tail correction. The electrostatic methods
use a single neighbor list for the QM region, as a whole, which
is constructed from the union of the individual QM atom
neighbor lists. Therefore, an MM atom is within the nonbond
cutoft if its distance to any QM atom is less than R, The R,
appearing in the Ecg, and Eg,, methods are “real-space Ewald
cutofts”, which merely denotes the distance where the point
charge and PME Gaussian potentials are sufficiently similar that
additional real-space corrections would have a negligible effect.
The R, appearing in the E_, method is an “electrostatic cutoft”
that marks the distance outside of which the electrostatic
interactions are strictly (and discontinuously) ignored. The R,
appearing in the Eppyg,, method is the outer edge of a “switched
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cutoff” that extends from R, — wy, to R, Inside the switching
region (R < R, — w,), the QM/MM electrostatic interaction
explicitly involve the atomic nuclei and AO products. Outside
of the switched cutoff (R > R_,), the QM/MM electrostatic
interaction (including the long-range Ewald-component of the
energy) is performed using a staticc MM point charge
representation of the QM atoms. The Eyg, switching region
(Reyt — e > R > R.,) smoothly transitions between these two
limits. Therefore, the Eyp g, QM atom forces are influenced by
the Ewald potential, but the QM electron density explicitly
polarizes only to the nearby MM atoms within the switched
cutofl.

It has previously been noted®””° that the use of Mulliken
charges within Eg,, can result in SCF convergence instability
when applied to standard, all-electron AO basis sets. In order to
improve the SCF stability, our implementation of Eg,y holds
the Mulliken charges within the current MD step fixed to the
SCF converged Mulliken charges from the previous MD step.
In other words, the 0Eg,,,/ 0™ charge derivatives appearing in
eq 107 are computed once at the beginning of the SCF
procedure.

2.4. Computational Details. The ab initio code and all
electrostatic methods described in the previous sections were
implemented from scratch within a development version of
AmberTools 15 and interfaced to the Sander MD program,
which was used to perform all simulations described below.''®

The notation Eyp, Enivew rwpr Ecewmr Epwqr is used to
distinguish the electrostatic protocols described in the previous
sections and their associated nonbond cutoffs. For example,
E.14 denotes the use of eq 102 with Ry, = 14 A, and
Eniview 14w4 1S €q 108 with R, = 14 A and wy,, = 4 A. Similarly,
Ecpw 14 anc} Eg,q 14 Tefer to eq 83 and eq 104, respectively, with
R, =14 A.

All Ewald reciprocal-space calculations are performed using a
1 A7 grid density, and the Ewald coefficient was chosen from
the value of R, to reproduce a direct sum tolerance of 10~ au.

Figures 1—6 display simulation results for a system
composed of a p-nitrophenyl phosphate (pNPP) QM region
in a truncated octahedron filled with 4563 TIP4P/Ew water
molecules. Salt ions were not added to the system. The total
charge of the system is 2—. The Ewald methods use a
neutralizing uniform background potential (eq 76) to account
for the net charge. The pNPP Lennard-Jones and g"f
parameters were obtained from the Antechamber program
included in AmberTools 15, which chose the L] parameters and
charges from the GAFF force field and AM1-BCC protocol,
respectively.''°™""* The system volume was equilibrated using
the DFTB2 semiempirical Hamiltonian and the QM/MM
Ewald method described in ref 63 in the isothermal—isobaric
ensemble (NPT) for 100 ps (1 fs/step) at 298 K and 1 atm.
The Berendsen barostat was used to control the pressure with a
relaxation time of 2 ps, and the Langevin thermostat controlled
the temperature with a collision frequency of S ps™'. The
simulation cell’s equilibrated real-space lattice vectors are 56.42
A. The equilibrated volume and coordinates were then used for
the microcanonical (NVE) and canonical (NVT) ensemble
simulations described below.

Figure 1 shows the PBE0/6-31G* QM/MM simulation total
energy, relative to the first step, for a series of NVE simulations
that differ only by their choice of electrostatic protocol. Each
simulation was run for 30 ps (30 000 steps), and they started
from the same initial conditions.
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NVE energy conservation
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Figure 1. NVE simulation energy conservation as a function of time
step (0.001 ps/step) using various electrostatic protocols. The system
is a pNPP solute computed with PBE0/6-31G* in a truncated
octahedron of TIP4P/Ew waters. See the text in Computational
Details for a description of the notation used to distinguish the various
electrostatic protocols.

Figure 2 displays PBE0/6-31G* QM/MM potential of mean
force profiles of the pNPP dissociation reaction: [NO,C¢H,O-
PO;])*” -»NO,CH4O™ + PO3, where the reaction coordinate
is the P—O distance. Each PMF was generated from 96
umbrella window NVT simulations that spanned from Rpg =
14 A to 6.1 A in steps of 0.1 A. The umbrella harmonic
potentials used a force constant of 50 kcal mol™ A~ The
PMFs were generated from the distribution of Rpq values using
the variational free energy profile (vFEP) method.'”’ Each
NVT simulation was performed at 298 K for 12 ps (Figure 2a),
24 ps (Figure 2b and Figure 2c), or 36 ps (Figure 2d). The
total amount of sampling for each curve was chosen to achieve
aesthetically pleasing figures; that is, the PMFs shown in Figure
2d are all sufficiently similar to one another that additional
sampling was added to remove small numerical noise in the
region where the PMF is relatively “flat”, so that the curves
could be more easily distinguished. Alternatively, the PMFs
appearing in Figure 2a are identifiably different such that
sampling beyond 12 ps was not considered to be a prudent use
of resources. We note that the Eyyg, 14,1 PMF appearing in
Figure 2b is terminated at Rpo ~4 A because many of the
EvMEw 1491 Simulation windows beyond Rpo > 4 fail to
complete due to large velocity warnings. This is expected
because the switching width in this case is so small that any
waters within the switching layer experience a large force,
because the potential energy approaches a discontinuity as the
width nears zero. The dashed, horizontal lines in Figure 2 mark
the experimental barrier in solution'*" (29.6 kcal/mol).

Figure 3 compares radial distribution functions (RDFs)
between the phosphorus and water oxygens observed within
PBE0/6-31G* QM/MM pNPP simulations performed using
several electrostatic protocols. Figure 3a,b shows RDFs
obtained from simulations whose umbrella potential is centered
about Rpq = 1.7 A (the approximate minimum of the PMF),
and Figure 3c,d shows RDFs obtained using an umbrella
window centered about Rpo = 4.0 A (the approximate
transition state of the PMF). Figure 3b,d show zoomed-in
areas of panels a and ¢, respectively, as marked by the black
boxes. The RDFs were generated from 500 ps of NVT

DOI: 10.1021/acs.jctc.6b00198
J. Chem. Theory Comput. 2016, 12, 2611-2632


http://dx.doi.org/10.1021/acs.jctc.6b00198

Journal of Chemical Theory and Computation

Electrostatic Cutoff
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Figure 2. Effect of various electrostatic protocols on the potential of mean force profiles of the pNPP dissociative reaction.
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Figure 3. Pairwise radial distribution function between phosphorus and the water oxygens. The metaphosphate Ry separation in panes (a) and (c)
are 1.70 and 4.00 A, respectively. Panels (b) and (d) are zoomed-in areas of (a) and (c), as indicated by the dashed boxes.

simulations at 298 K, whose trajectory was written every 50

steps.

Figure 4 shows the potential, kinetic, and total energies from
PBE0/6-31G* QM/MM NVE simulations of pNPP performed
using the Eg,q 14 (Figure 4a) and Ecg, ;4 (Figure 4b)
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electrostatic protocols as a function of time step (1 fs/step).
Both trajectories start from the same coordinates and initial
velocities, and an umbrella potential at Ry = 1.7 A is applied.
The Eg,q 4 trajectory fails to SCF converge after step 108.
Therefore, the Eg,q 14 trajectory is restarted at step 108 from
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the coordinates and velocities produced by the Ecg, 14
trajectory at step 108. The Eg,, 4 trajectory again fails to
SCF converge after step 197. The Eg,, 14 SCF failures are
marked in Figure 4a by “Implosion #1” and “Implosion #2”.
Several snapshots of the pNPP solute from the Eg, 4 and
Ecgw 14 trajectories are shown immediately below their
respective energy profiles.

Figures S5 and 6 re-analyze the PBE0/6-31G* Mulliken
charges and Wiberg bond orders of the first 108 steps from
each trajectory shown in Figure 4. Specifically, Figure Sa—d
shows the SCF converged Mulliken charges produced by the
Eg,q 14 method using the atomic coordinates from the first 108
steps of Figure 4a. Figure Se—h shows the SCF-converged
Mulliken charges produced by the Ecg,, 1, method using the
atomic coordinates from the first 108 steps of Figure 4a.
Similarly, Figure Si—l and m—p are the Eg, 14 and Ecg, 14
Mulliken charges, respectively, evaluated from the first 108
steps of Figure 4b. The format of Figure 6 is analogous; it
differs from Figure S only by displaying the Wiberg bond orders
rather than Mulliken charges. For clarity, the Mulliken charges
and Wiberg bond orders are evaluated using the coordinates of
the entire QM/MM system.

Table 1 compares the QM/MM simulation rates achieved
using Ecg,, 14 and Eypyey 1404 When applied to the solvated 72-
atom alanine chain shown in Figure 7. The alanine chain is
enclosed within a truncated octahedron containing 5083
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TIP4P/Ew waters. The timings are listed as the average
simulation rate (ps/day) reported by Sander after 1 ps (1000
steps) of PBE0/6-31G* NVT simulation at 298 K. The
simulation rates are reported as a function of central processing
unit (CPU) core count and QM system size, including link
atoms. The QM region consists of all atoms to the left of the
cuts shown in Figure 7 and the hydrogen link-atoms crossing
the boundaries. The timings were performed on the stampede
supercomputing cluster at the Texas Advanced Computing
Center. Each node contains two Intel Xeon E5-2680 processors
(8 cores/processor), and the nodes are interconnected with
Mellanox FDR InfiniBand technology. Although Intel Phi
coprocessors and/or Nvidia graphics cards were available on
the compute nodes, our code currently only runs on the CPU.

Figure 8 is a schematic of the transesterification of
hydroxyalkyl phosphate esters. Of particular interest in this
work are the reactions involving ethoxide (EtO) or phenoxide
(PhO), which are representative of “poor” and “enhanced”
leaving groups, respectively. The “R;” and “R,” bond labels
appearing in Figure 8 are reaction coordinates used to perform
the two-dimensional (2D) umbrella window simulations shown
in Figure 9. Figure 9a—c shows 2D PMFs of the EtO
phosphoryl transesterification, and Figure 9d—f shows 2D
PMFs of the PhO phosphoryl transesterification. Figure 9a,d
were performed with AM1/d-PhoT (abbreviated as AM1/d);
Figure 9b,e were performed with DFTB2; and Figure 9b,e were
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performed with PBE0/6-311G**. The EtO simulations
consisted of 134 windows that form a grid from (R,R,) =
(14 A 14 A) to (5.6 A, 22 A) and from (1.4 A, 2.1 A) to (2.4
A, 3.0 A) using a 0.2 A spacing in either direction. The PhO
simulations consisted of 109 windows from (R,,R,) = (1.4 A,
1.4 A) to (5.6 A, 22 A). The umbrella windows had a force
constant of 85 kcal mol™' A™2, and the QM solute was enclosed
within a truncated octahedron containing 4204 (EtO) or 5183
(PhO) TIP4P/Ew waters. The density of the system was
equilibrated with DFTB2 in a NPT simulation in a manner
analogous to the pNPP equilibration protocol described above,
and production was performed in the NVT ensemble at 298 K.
The AMI1/d-PhoT and DFTB2 semiempirial models were
sampled and analyzed for 100 ps/window, whereas the PBE0/
6-311G** simulations were run for 30 ps/window. Analysis of
the first 20 ps changes the PBE0/6-311G** barriers by less
than 0.2 kcal/mol; therefore, sampling was suspended at 30 ps.
The vFEP method was used to generate the 2D PMFs from the
distributions of R, and R, values observed in the simulations.'*’
The circle and X marks appearing in Figure 9 are minima and
transition states of the 2D surfaces, and the colored lines
connecting the stationary points are a nudge elastic band
minimum free energy path.'””'** The 1D PMFs appearing in
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Figure 9 are the free energy profiles along the minimum free
energy path.

Our QM/MM simulations assume that the 2’-O has already
been deprotonated. That is, we explicitly model the reaction
barrier from R* to TS (see Figure 8), whereas the experimental
barrier corresponds to the reaction from R to TS. Therefore,
our calculated free energies are corrected to account for the free
energy difference between R and R*. The rate of the reaction
shown in Figure 8 was experimentally determined to be k =
1.57 X 107 and 7.40 X 10" L mol~'s™" for the EtO and PhO
leaving groups, respectively, at 80 C in a pH 8 buffer
solution.”* The transition state free energies at standard
state concentration are computed from the Eyring equation,
AG* RT In(kh/kgT), where h and kg are Planck’s constant
and Boltmann’s constant, respectively. Thus, the experimental
barriers for EtO and PhO are 28.55 and 22.62 kcal/mol,
respectively. To correct our free energies, we must consider the
pK, of 2’-OH at pH 8. Experimental measurements of the 2'-
OH pK, in small-molecule models of RNA have ranged
between 12.35 and 13.9, depending on the structure and
experimental technique.'”*™"*® Of the available experimental
pK, data, the model most closely resembling those shown in
Figure 8 is the adenosine 3’-ethyl phosphate used in ref 127,
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Figure 7. QM/MM simulation rates are performed using a 72-atom
alanine chain solvated by 5083 TIP4P/Ew waters in a truncated
octahedron simulation cell. The timings were performed with different
QM regions, which correspond to the various cuts in the covalent
bonds shown in the figure. The severed bonds are capped with
hydrogen link atoms, which are included in the count for the number
of QM atoms.

whose 2'-OH pK, was found to be 12.68 + 0.06. Assuming a
pK, of 12.68, the free energy of the deprotonated 2'-O at pH 8
and 298 K is estimated to be AGy_ g+ = —2.303RT(pH — pK,)
= 6.38 kcal/mol. Therefore, 6.38 kcal/mol has been added to all

computed free energies shown in Figure 9.
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3. RESULTS

3.1. Comparison of Electrostatic Protocols. Energy
Conservation. The drift in total energy observed within NVE
simulations of pNPP are shown in Figure 1. The E, , and

MMEw 14w0 Methods produce strong energy drifts because their
potential energy surfaces contain discontinuities. The E_, 14
energy drift is larger than Eypg,, 14,0 because the E_, 1, method
excludes the long-range interactions entirely. The Eypey 1404
and Ecg, 14 methods conserve the total energy. Both models
have continuous potential energies and model the long-range
interactions, albeit in different manners. The Eg,, electrostatic
method first developed by Nam et al.”” is not shown in Figure 1
because the QM solute “implodes” after 100 steps. The
instability of Eg, trajectories will be discussed in detail below.
In brief, the Eg,, simulations do conserve the total energy for
the length of time that they can be run.

The conservation of total energy is important for maintaining
a stable simulation temperature.'”” Although the temperature
can be corrected through velocity rescaling, the lack of total
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Table 1. Simulation Rates (ps/day; 1 fs/step) Using Ecg,, 14 and Eygy 1444 as a Function of CPU Core-Count (N,,,.) and QM
Region Size (Nqy, the Number of QM Atoms) for the Solvated Alanine Chain Shown in Figure 7

NQM! Ecgw 14 NQM’ EniMEw 1404
Neore 12 22 32 42 52 62 72 12 22 32 42 52 62 72
1 7.4 1.6 0.66 0.36 0.23 0.16 0.12 8.3 1.7 0.71 0.38 0.24 0.17 0.12
2 14.4 3.0 1.3 0.71 0.45 0.30 0.22 16.5 33 1.4 0.76 0.48 0.31 0.23
4 27.3 5.7 24 13 0.84 0.56 041 31.1 6.2 2.6 1.4 0.88 0.60 0.42
8 512 10.6 4.3 2.4 1S 0.99 0.72 59.6 11.6 4.6 2.5 1.6 1.0 0.75
16 92.4 19.8 8.1 4.5 2.8 1.9 1.3 110.3 21.8 8.6 4.7 3.0 2.0 1.4
32 157.3 35.3 14.6 7.8 49 33 24 187.9 38.0 15.3 8.2 S.1 3.5 2.5
64 237.4 59.4 24.4 13.3 8.3 5.5 39 289.0 64.0 254 13.8 8.6 5.7 4.1
128 337.5 90.4 37.3 19.9 12.6 83 5.8 4185 97.7 39.1 20.8 13.0 8.6 6.0
256 4284 122.7 519 28.1 17.0 11.0 7.9 536.4 135.1 54.5 28.5 174 114 8.1
S12 493.0 152.4 622 34.5 20.8 134 9.4 622.5 167.1 66.0 34.7 21.1 13.7 9.6
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Figure 8. Schematic of the phosphoryl transfer (model RNA transesterification) reactions with ethoxide and phenoxide leaving groups.

energy conservation can, over time, manifest itself by
dampening high-frequency motion and transforming it to
low-frequency motions."** Furthermore, the treatment of long-
range forces has also been shown to dramatically affect the
structural stability of proteins’ even when switching functions
are introduced.'*" The simulations performed in the remainder
of this manuscript are not performed on a time scale that is
long enough to directly observe these previously observed
artifacts.

pNPP Free Energy Profiles. Simulations of reactions
involving charged species are ubiquitous in biology. Among
the most important are phosphoryl transfer reactions, which are
vital for many cellular processes, for example, gene regulation,
cell signaling, and energy conversion.'**”"** Phosphoryl
transfer reactions have been studied extensively by computa-
tional methods,"** and mechanistic insights have been gained
by studying model systems that provide an interpretation of
linear free-energy relations'* and kinetic isotope effects."*” In
this section, we examine how various electrostatic protocols
affect the phosphoryl transfer reaction barrier of pNPP (see
Figure 2).

In the vicinity of Rop ~1.7 A, the metaphosphate is
covalently bound to nitrophenyl such that it is a single
molecule with a —2 charge. At a separation of Rop 24 A, the
solute is better described as two polyatomic monoanions. One
can gain insight into the role of solvation in these two situations
by referring to a Born ion model which, for water,
approximately translates to AG,,, & —Q>/R, where R is the
radius of the ion. In other words, there is a greater degree of
solvent stabilization near the PMF minimum than there is near
the transition state. Although various electrostatic methods

2626

appear to increase the barrier, the differences are related to the
solvent stabilization near the PMF minimum, which has been
chosen to define the zero of free energy in all cases. Had the
system consisted of a pair of counterions, such as the NH,*--
Cl™ or NH,"--PO;~ systems examined in ref 63, then the
solvent stability of the QM region would be enhanced as the
ions were separated, because the separation of ions produces an
increasing dipole moment.

The series of E, profiles shown in Figure 2a differ strikingly
from the other electrostatic protocols. The PMFs continually
increase as the metaphosphate dissociates. The truncated
electrostatic forces cause the waters to become structured at
the QM/MM electrostatic cutoff (see Figure 3), which acts to
create an artificial solvation shell. As one decreases the
electrostatic cutoff from 18 to 10 A, the artificial solvation
shell forms closer to the solute and thus increases the stability
of the PMF minimum. The profiles do not contain a transition
state below Rop < 6 A for two reasons:

1. The length of the electrostatic cutoff prevents the
solvation shells of each fragement from dissociating
from each other in this range.

2. The water around phosphorus continues to display an
artifically structured RDF even when the metaphosphate
is separated (see Figure 3c,d), so the radius of the
“effective Born ion” increases as the metaphosphate
dissociates.

The Eypyg,, method’s treatment of the long-range QM/MM
electrostatics is fundamentally different from E_, and this
difference causes the Eyqg,, PMFs to exhibit transition states
(see Figure 2b). As the width of the switching region is
reduced, the dissociation barrier increases. This observation
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Figure 9. Free energy profiles of the transesterification reactions shown in Figure 8. (a—c) Ethoxide leaving group. (d—f) Phenoxide leaving group.
Inset: one-dimensional plots of the free energies along the nudge elastic band path connecting the minimum to the rate-limiting transition state. The

horizontal line in the inset plots mark the experimental barrier.

appears to be related to how the switching width affects the
solvent structure in the vicinity of the switching region. Figure
3, panels ab and cd illustrate the solvent structures of
Envinvigw 14w EnMEw 1463 a0d Eyiviey 1404 3t Rop = 1.70 A and Rop
=4.00 A, respectively. As the switching width becomes smaller,
the transition between the QM/MM and MM-analogue/MM
interactions occurs more abruptly, and the waters experience a
greater force in the switching region. The degree of water
structure at the switching region is greater at Rop = 1.70 A
because the solute more closely resembles a dianion. Unlike the
E_. method, the artificial solvation shell dissipates as the
metaphosphate dissociates. The series of Eypyg,, profiles shown
in Figure 2c use a switching width of zero. Thus, the width is
too small for the waters to experience a force associated with
the transition, and the difference between MM-analogue/MM
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and QM/MM interactions is too subtle to cause a dramatic
difference in the transition state barrier. Increasing the real-
space Ewald cutoff from 10 to 18 A lowers the barrier from 32.4
(EvuEw 10w0) t0 30.2 (Epivigw 18w0) keal/mol. Relative to Figure
2a,b, the Eypye, rwo Profiles shown in Figure 2c¢ are relatively
stable and agree with experiment much more closely; however,
the reader should take note that the electrostatic protocols
shown in Figure 2c do not conserve the total energy in NVE
simulations.

The series of Ecg,, profiles shown in Figure 2d exhibit the
greatest degree of similarity as a function of nonbond cutoff.
The barriers are 32.2 kcal/mol (Ecg, 10), 31.8 kcal/mol
(Ecpy 14), 312 kcal/mol (Ecg, 15)- Unlike the other electro-
static protocols appearing in Figure 2a—c, the Ecg, method
allows the QM Hamiltonian to explicitly polarize to both the
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short- and long-range electrostatics. As a consequence, Ecg,, 14
does not induce an artificially structured solvation shell, as can
be seen in Figure 3.

Electronic Polarization. Figures 4—6 are used to discuss the
symptoms which arise when attempting to use the semi-
empirical-style QM/MM-Ewald method® with an ab initio
Hamiltonian. To analyze the behavior of Eg,,q 14 and Ecg,, 14 we
construct NVE trajectories of each (Figure 4a and 4b,
respectively), starting from the same initial conditions. The
Eg,q 14 total energy is conserved until step 106, at which point
the atom velocities are too large to adequately propagate with a
1 fs time step. Furthermore, we are unable to SCF converge the
Egyq 14 QM region after step 108. The solute exhibits unusual
changes in the hydrogen covalent angles after the first 75 steps,
a dramatic deformation of the phenyl ring after the first 90
steps, and wildly nonphysical bond lengths in the last few
steps—at which point the solute can only be described as
having undergone an “implosion”. The Ecg, 4 trajectory
(Figure 4b) does not encounter any of these symptoms. To
demonstrate that the Eg,, 4 implosion is not a fluke, we
restarted the Ep,,, simulation from the coordinates taken
from step 108 of the Ecg, 14 trajectory. The Eg,q 14 trajectory
again implodes after an additional 80 steps.

The instability of Eg,, trajectories has previously been
described by Holden et al,””’® which motivated them to
concoct a point-charge representation of the QM charge
density using a ChEIPG charge-fitting procedure.”’ The Ecg,
method described in the present work interacts the QM region
with its surroundings without resorting to an auxiliary
representation. Nevertheless, we agree with Holden et al. that
the underlying reason for the instability of Eg,, trajectories
arises from the manner in which the Mulliken potentials
contribute to the Fock matrix. In other words, the Eg,q14
trajectory in Figure 4a becomes nonphysical because the
electrostatic protocol spuriously polarizes the density matrix to
the environment.

Figures 5 and 6 compare how the Eg, 4 and Ecg, 14
protocols affect the polarization of the QM electron density
by monitoring the Mulliken charges and Wiberg bond orders at
each step of the trajectories. Figure Sa shows the Eg, 14, carbon
Mulliken charges evaluated using the first 108 steps of the
Eg,q 14 trajectory. The carbon charges diverge as the trajectory
reaches the first implosion. At first glance, a reader might be
tempted to flippantly dismiss Figure Sa because Mulliken
charges are known to exhibit a sensitivity to basis set.'”*"*’
However, the Ecg,, 14 carbon Mulliken charges shown in Figure
Se are evaluated at the same coordinates as those used in Figure
Sa, and yet the Ecg,, 4 charges are remarkably stable—even as
the solute implodes. The carbon charges are recomputed along
the Ecg, 14 trajectory in Figure Sm,i. Again, the Eg, 4 charges
(Figure Si) are more sensitive, but they do not diverge because
the Ecg, 14 trajectory does not implode. The Eg, 4, Mulliken
charges of the other atoms (O,N,P,H) are relatively stable in
comparison to carbon. We conclude the following from Figure
S:

1. The Eg,q 14 Mulliken charges of carbon are particularly
sensitive to geometry, and
the Eg,q 14 electrostatics must be polarizing the under-
lying density matrix in a suspicious manner, because the

2.

Ecgy 14 Mulliken charges are stable when evaluated with
the same coordinates.
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The C—C, C-0O, C-N, and C—H Wiberg bond indices
shown in Figure 6 are a second means for analyzing the
electron polarization. The C—C bond orders in Figure 6a,e,im
should be about 1.5 because of the conjugation within the
phenyl ring. However, some of the C—C bonds in Figure 6a
show strong antibonding behavior. The spurious Eg,, 14 C—C
bonding pattern significantly alters carbon’s bonding to the
other atoms as one approaches the implosion.

The Eg,,, method’s polarization is sensitive because

1. there is a large amount of C—C AO overlap, and

2. the Mulliken potentials produce multiple, inconsistent
views of the external environment’s electronic chemical
potential.

There is a large amount of C—C AO overlap because the “C3s”
function—that is, the primitive s-function in 6-31G*—has a
small Gaussian exponent (0.1687144 a;*) and there are 6
carbons in close proximity to each other. To be more precise,
there is a large amount of C3s—C3s AO overlap. The strong
C3s AO overlap produces a near-linear dependence and a
correspondingly small AO overlap matrix eigenvalue. Con-
sequently, the first column (assuming the eigenvalues are
sorted) of X (eq 31) is a series of numbers that are large in
magnitude, oscillate in sign, and are dominated by C3s
character. Alternatively stated, the C3s AOs are transformed
in the OAO basis (eq 35) to become oscillatory and delocalized
across the phenyl ring. The near-linear dependence that we
have just described is expected and routine. Most applications
of ab initio methods with small molecules encounter far smaller
AO overlap eigenvalues than what is found here. The degree of
near-linear dependence in the present example only becomes a
problem once the chemical potential is inconsistently viewed.
The electronic chemical potential produced by the external
environment (the MM atoms and long-range electrostatics) is

5Eext
p(r)

and it polarizes the electron density through its contribution to
the Fock matrix,

8Ff, = [, (6,0, (1) &

By performing the interaction through Mulliken charges, the
Eg,q method produces different chemical potentials for each
AO product:

() = (114)

(115)

1 OE Ewq

2

®) ®) P
Moo (6) = Mg, (6) = ——=
* Bra aqbau

Qasp (116)

Each of these chemical potentials is a constant throughout
space, but every AO pair experiences a different constant. When
eq 115 is transformed into the OAOQO basis, the spatial
inconsistencies of g, (r) and the multicenter delocalization
of eq 35 malform the chemical potential relative to the other
OAO basis functions to produce irregularities in the electron
polarization. The E,, method presented in this work does not
produce errant polarizations because it uses a single, consistent
view of the external environment’s chemical potential.
Computational Efficiency. The Ecg, method is more
expensive than Eyyg, because Ecg, polarizes the QM region
to both the short- and long-range interactions. Specifically, Ecg,,
integrates the Ewald Gaussian potential via molecular
quadrature, and the Eg,, gradients (eq 100) require a forward
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Fourier transform of the QM charge density from the molecular
quadrature grid. As shown in Table 1, this additional layer of
computation slows the Ecg, simulations by only a small
amount because the dominant effort continues to involve the
calculation of standard Gaussian integrals required by the
underlying ab initio Hamiltonian. For a 52-atom QM region,
the difference in timings between Ecg, and Eyyg, is 1—4%,
depending on how many CPU cores are used.

The choice of real-space Ewald cutoff affects the relative cost
between the real- and reciprocal-space evaluations, and it thus
could be tuned to optimize the overall cost. Specifically,
reducing the size of the real-space Ewald cutoff necessitates the
use of larger Ewald coeflicients which in turn requires a larger
number of plane waves to resolve. The optimal choice is
obtained from empirical observation. The strategy used in
Amber, which we have adopted in this work, is to use a 1 point/
A® FFT grid density, and then choose the Ewald coefficient
such that erf(SR,) = €R, where ¢ is a “direct sum tolerance”.
One could argue that larger values of R, may be necessary
when using ab initio methods because the electron density
extends several angstroms beyond the nucleus. By employing a
14 A real-space Ewald cutoff, we are attempting to pre-
emptively diffuse that argument. Having said that, we have not
yet encountered a scenerio where a 10 A real-space Ewald
cutoft produces a questionable result. In practice, the pNPP
simulations employing a 14 A real-space Ewald cutoff slowed
the calculation by 7—8% relative to the 10 A real-space Ewald
cutofl.

3.2. Comparison between ab Initio and Semiempirical
Free Energy Profiles. Semiempirical theory has seen
widespread use for generating PMF free energy profiles from
QM/MM simulations. Considering that semiempirical models
are approximately 100 times faster than many ab initio methods,
one may verily question whether the accuracy of ab initio
approaches is worth their added effort. Figure 9 compares the
AM1/d-PhoT and DFTB2 semiempirical model PMFs with
those produced by PBE0/6-311G** for the transesterification
reaction shown in Figure 8. The most striking difference occurs
with the EtO leaving group (Figure 9a—c). The semiempirical
models predict a single, late transition state, whereas PBEO
produces two transition states (the late transition state is rate
controlling) and an intermediate. In other words, the AM1/d-
PhoT and DFTB2 semiempirical models predict a “concerted”
mechanism, and PBEO predicts a “stepwise” mechanism. The
experimental rates of this reaction do not provide insight into
whether or not an intermediate exists; however, we have used
the Gaussian program140 to perform geometry optimizations
and transition state searches using PBE0/6-31G*, PBE0/6-
311G**, B3LYP/6-31G*, and B3LYP/6-311G** with polar-
ized continuum model (PCM) implicit solvent.'*' All of the
PCM calculations that we performed predict the existence of an
intermediate and two transition states, in agreement with our
PBEO explicit solvent QM/MM PMEF. Previous studies of
transesterification reactions with various leaving groups have
found that poor (EtO) and enhanced (PhO) leaving groups
generally follow a stepwise and concerted mechanisms,
respectively.'*° Indeed, the transesterification reaction PMFs
involving the PhO leaving group (Figure 9d—f) are predicted to
undergo a concerted mechanism for all 3 methods.

The PBE0/6-311G** reaction barriers agree more closely to
experiment than either AM1/d-PhoT or DFTB2. The semi-
empirical methods predict EtO barriers that are 10 kcal/mol
larger than experiment, whereas PBEO is only 3.6 kcal/mol
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larger. Similarly, the semiempirical models produce PhO
barriers that are 8 kcal/mol larger than experiment, and
PBEO differs from experiment by only 0.8 kcal/mol.

4. CONCLUSION

In this work, we presented a new, composite Ewald method
(CEw) for QM/MM simulations. Unlike the semiempirical-
QM/MM Ewald method introduced by Nam,63 the new
method produces stable MD trajectories when evaluated with
non-minimal Gaussian AO basis sets. The CEw method differs
from the recently described QM/MM-LREC approach®® by
polarizing the QM region to the long-range electrostatics using
an Ewald summation. It further differs from the approach
described by Holden et al.”>”° by interacting the QM region
with the external environment directly through the QM charge
density, as opposed to resorting to a point-charge auxiliary
representation.

We compared how various electrostatic protocols affect the
PMEF of the p-nitrophenyl phosphate dissociation reaction. It
was shown that the CEw PMFs are less sensitive to the division
of short- and long-range interactions than the other methods
that we compared. For example, the difference in free energy
barriers between using a real-space Ewald cutoff of 10 and 18 A
was found to be 1 kcal/mol when using the CEw method. We
compared CEw to a subtractive Ewald scheme (MMEw) and
found that CEw avoided the structural artifacts associated with
switching the QM/MM interaction between electrostatic and
mechanical embedding.

We examined the computational cost of the new method and
found that the incorporation of Ewald sums into the QM
calculation only slowed the simulation rate by 1—4% for a 52-
atom QM region.

We confirmed Holden’s explanation®”’® for the instability
encountered with Mulliken charge-based QM/MM Ewald
methods.”> The use of Mulliken charges produces inconsistent
representations of the electronic chemical potential which, in
the orthogonalized atomic orbital representation of the Fock
matrix, become deformed and thus errantly polarizes the QM
electron density. The new CEw method polarizes the QM
density to a globally consistent representation of the chemical
potential.

We performed two-dimensional PMFs of phosphoryl
transesterification reactions with ethoxide and phenoxide
leaving groups to compare PBE0/6-311G** with the AM1/d-
PhoT and DFTB2 semiempirical models. We found that the
semiempirical models produced concerted reaction mecha-
nisms for the ethoxide leaving group, whereas PBEO
simulations produced a stepwise mechanism, in agreement
with implicit solvation calculations and previous work."**"*”
Furthermore, the PBE0/6-311G** reaction barriers were found
to more closely match experiment than the semiempirical
methods by 6—7 kcal/mol for both leaving groups.
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