

White Paper

AMD MEMORY ENCRYPTION

April 21, 2016
David Kaplan, Jeremy Powell, Tom Woller

DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices,
Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document,
and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for
particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No
license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in
AMD's Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2016 Advanced Micro Devices, Inc. All rights reserved.

Introduction
 The need for practical security in modern computing systems is greater than ever. The increase in

system complexity, growth of the cloud, and advent of new technologies are all contributing to a computing

environment that is difficult yet critical to protect. AMD recognizes these serious challenges and has

developed new memory encryption technologies that are designed to address these needs across a variety of

systems.

 Secure Memory Encryption (SME) defines a simple and efficient architectural capability for main

memory encryption. While memory encryption technologies have been used previously in various

specialized products and industries, SME is a general purpose mechanism that is flexible, integrated into the

CPU architecture, scalable from embedded to high-end server workloads, and requires no application

software modifications.

 Main memory encryption can be utilized to protect a system against a variety of attacks. While data

is typically encrypted today when stored on disk, it is stored in DRAM in the clear. This can leave the data

vulnerable to snooping by unauthorized administrators or software or by hardware probing. New non-volatile

memory technology (NVDIMM) exacerbates this problem since an NVDIMM chip can be physically removed

from a system with the data intact, similar to a hard drive. Without encryption any stored information such as

sensitive data, passwords, or secret keys can be easily compromised.

 Secure Encrypted Virtualization (SEV) integrates main memory encryption capabilities with the

existing AMD-V virtualization architecture to support encrypted virtual machines. Encrypting virtual machines

can help protect them not only from physical threats but also from other virtual machines or even the

hypervisor itself. SEV thus represents a new virtualization security paradigm that is particularly applicable to

cloud computing where virtual machines need not fully trust the hypervisor and administrator of their host

system. As with SME, no application software modifications are required to support SEV.

 This document presents a technical overview of the SME and SEV and describes how they can be

utilized by operating system (OS), hypervisor (HV), and guest virtual machine (VM) software in a variety of

different environments to protect data in DRAM.

SME Technical Overview
 Main memory encryption is performed via dedicated

hardware in the on-die memory controllers. Each controller

includes a high performance Advanced Encryption Standard

(AES) engine that encrypts data when it is written to DRAM,

and decrypts it when read as shown in Figure 1: Memory

Encryption Behavior. The encryption of data is done with a

128-bit key in a mode which utilizes an additional physical

address-based tweak to protect against cipher-text block move

attacks.

The encryption key used by the AES engine with SME

is randomly generated on each system reset and is not visible

to any software running on the CPU cores. This key is managed

entirely by the AMD Secure Processor (AMD-SP), a 32-bit

microcontroller (ARM® Cortex®-A5) that functions as a

dedicated security subsystem integrated within the AMD SOC. The key is generated using the onboard NIST

SP 800-90 compliant hardware random number generator and is stored in dedicated hardware registers where

it is never exposed outside the SOC in the clear. Unlike the SEV mode described later, SME does not require

the software running on the CPU cores to participate in key management.

 The control over which pages of memory are encrypted is controlled via the OS or HV in the software

managed page tables. After memory

encryption is enabled, physical address bit 47

(aka the C-bit, as in enCrypted) is utilized to

mark if a memory page is protected. The OS

or HV sets bit 47 of a physical address to 1 in

the page table entry (PTE) to indicate the

page should be encrypted, causing accesses

to that memory to be automatically

encrypted and decrypted by the AES engine

in the memory controller.

 The encryption and decryption of memory

through the AES engine does incur a small

amount of additional latency for DRAM memory accesses. The impact of this latency to software is very

dependent on the system workload but is estimated to have a very small overall effect on system performance.

If only a subset of memory is encrypted, the performance impact will be less as unencrypted accesses generally

incur no additional latency.

Figure 1: Memory Encryption Behavior

Virtual Address

Physical Address0

Memory

47 0

Unencrypted

Virtual Address

Physical Address1

Memory

47 0

Encrypted

C-bit C-bit

Figure 2: Address Mapping

CPU
AES Decrypt

AES Encrypt

Data

PTE C-bit

Memory Read

CPU
Data

PTE C-bit

DRAM

DRAM

Memory Write

SME Use Models
 This section discusses two different example models by which software can utilize the SME feature. In

the first model, all of DRAM is encrypted while in the second, only a select region (corresponding to guest VMs)

is encrypted.

Full Memory Encryption
 Full memory encryption is a simple yet compelling model for many computing systems, especially

when physical attacks on the system are of concern, including government data centers and/or smaller or

remote enterprise data centers that have more limited physical security. With full memory encryption, all

DRAM contents are encrypted utilizing the random key which provides strong protection against cold boot,

DRAM interface snooping, and similar types of attacks. For systems with NVDIMM, full memory encryption

also provides protection against an attacker removing a memory module and attempting to extract its

contents.

 Supporting full memory encryption with SME is accomplished by either the OS or HV setting the C-bit

in all DRAM physical addresses in all the page tables. This should include both instruction and data pages, as

well as the pages corresponding to the page tables themselves. In essence, the OS or HV software may view

the system as having DRAM that starts at address 0x8000_0000_0000. In the case of a HV setting the C-bit to

encrypt all physical memory, all the VMs controlled by the HV are encrypted along with the HV and use the

same encryption key.

 Note that DMA to memory encrypted via SME is supported. From a device standpoint, an encrypted

memory access is just a normal memory access with bit 47 set.

Partial Memory Encryption
 The use of the C-bit in the page tables provides the flexibility for the OS or HV to selectively encrypt

only a subset of memory if it desires. Doing so still provides physical protection of the encrypted memory, but

can also be used to improve performance on non-sensitive data. In addition, the choice of encrypted vs.

unencrypted memory can be used to provide a layer of isolation for critical workloads.

 One example of this isolation would be a system

which only marks memory used by guest VMs as

encrypted. This can be done without any modification

to the guest VMs whatsoever. By setting the C-bit in all

the nested page table entries corresponding to DRAM

(as shown in Figure 3: Encrypted VMs), the hypervisor

enables encryption for the VM memory only.

 Such a scenario could be used to protect VMs

against a rogue machine administrator. While the

administrator would have access to the hardware and

host system, they would not be able to inspect guest

VM data even with memory scanning utilities.

SME Special Considerations
 SME provides a straightforward method for software to encrypt some or all memory pages. There are

some important special programming considerations however that must be taken into account when working

with encrypted memory.

 The primary consideration is that hardware does not manage coherency between encrypted and

unencrypted copies the same page. Therefore, software must be careful when modifying the C-bit of pages

and ensure that if the C-bit of a page needs to be modified, that page must be flushed from the CPU caches

prior to the page table modification.

 Worth noting is that it is allowed for devices to issue DMA to encrypted memory but like with CPU

accesses, they must set bit 47 of the physical address which is not possible on some 32-bit legacy devices. To

compensate, software can utilize the IOMMU to re-map device request addresses to addresses with the C-bit

set.

 Additional technical details of the SME feature can be found in the latest copy of the AMD

Programmer’s Manual (APM) volume 2.

Transparent SME
 While SME provides a lot of flexibility for managing main memory encryption, it does require support

in the OS/HV. For systems that desire only the physical protection of SME but run legacy OS or HV software,

they may use a mode called Transparent SME (TSME). In TSME, all memory is encrypted regardless of the

value of the C-bit on any particular page. This mode provides a simple method to enable encryption without

requiring software modifications.

 TSME can be enabled via a BIOS setting on supported platforms. When TSME is used, other memory

encryption features (including SEV) are not available.

DRAM

Encrypted DRAM

Host Virtual AddressGuest Virtual Address

Host Physical Address

Guest Physical Address

Host Physical Address0

C-bit

1

C-bit

Figure 3: Encrypted VMs

Intro to SEV: Complexity and Consolidation
With advances in both hardware and software, computing systems today are more complex than

ever. The size and functionality of software, especially the most privileged kernel-level software responsible

for security in the system, has increased dramatically. The Linux kernel for instance has grown from less than

200k lines of code to almost 22 million lines today.

 This evolution has also led to more

consolidation than ever before allowing

systems to perform more tasks and do more

work on the same hardware. This

consolidation has led to many positive results

such as the cloud, and virtual data centers on

which anyone can buy affordable compute

time.

 Yet both complexity and consolidation

have a generally negative effect on the security

of a system. Complex software is harder to verify and is more likely to have bugs which hackers could exploit.

A typical Linux system loads close to 5.5MB of kernel code into memory which must be bug-free to avoid

compromising the system.

Consolidated systems can also negatively impact security by increasing the attack surface, allowing

many different pieces of software to use the same hardware and share resources like memory. This

combination yields a security model which relies on a large amount

of privileged bug-free code, which coupled with a large attack

surface provides an increased possibility for intrusions.

To counter these forces, Secure Encrypted Virtualization is a

new feature being added to the AMD architecture which is designed

to better deal with the complexity and isolation needs of modern

systems. SEV enhances isolation through the use of cryptography,

encrypting code and data and enables an entirely new security

model where code can be cryptographically protected from higher

privileged code such as a hypervisor.

SEV Security Model
 Traditional computing systems have operated using a ring-based security model. In this model, high

privilege code has full access to the resources at its level and of all lower privileged levels.

Figure 4: Kernel Code Size

Program
code/data

SEV security
layer

Existing CPU
security
layer

Figure 5: Security Layers

0

5

10

15

20

Li
n

es
 o

f
co

d
e

(M
ill

io
n

is
)

Version

Linux Kernel lines of code

In the SEV model, code executing at different levels (namely

hypervisor vs guest) is isolated so neither has access to the

resources of the other. Even though the hypervisor level is

traditionally “more privileged” than the guest level, SEV

separates these levels through cryptographic isolation. This

provides additional security for lower privileged code,

without requiring trust in the high privileged code on which

the less privileged code is dependent upon for startup and

execution. Communication between hypervisor and guest is

still possible, but those communication paths are tightly controlled.

Consequently, SEV technology is built around a threat model where an attacker is assumed to have

access to not only execute user level privileged code on the target machine, but can potentially execute

malware at the higher privileged hypervisor level as well. The attacker may also have physical access to the

machine including to the DRAM chips themselves. In all these cases, SEV provides additional assurances to

help protect the guest virtual machine code and data from the attacker. Note that SEV does not protect

against denial-of-service attacks against the guest.

SEV Use Cases
 Built around the concept of hardware VMs, SEV can be used to enhance security in a variety of use

cases. Due to its use of main memory encryption, SEV provides the all of the same security benefits as SME

for physical attack protection described earlier. In addition, SEV can be used to protect environments such as

the following.

Cloud
 The growth of the cloud and in particular Infrastructure as a Service (IaaS)

data centers has made computational power both cheap and affordable. This

growth does not come without security challenges however, as cloud

infrastructure/personnel may not always be trustworthy. This can be

particularly true when dealing with sensitive data, such as health records or

trade secrets. Furthermore, the sharing of hardware amongst multiple

customers can raise security concerns for owners of many types of workloads.

Despite the best efforts of software designers, there have been many

examples of cases where this isolation has failed, leading to the compromise of

sensitive code or data.

 SEV can be used to increase the level of security in these IaaS clouds by providing better security

isolation, rooted in the hardware itself. While existing security technologies like Microsoft’s BitLocker® and

LUKS can protect data-at-rest in hard drives, SEV protects data-in-use enabling customer workloads to be

protected cryptographically from each other as well as protected from the hosting software. Even an

Hypervisor

Guest GuestHypervisor

Traditional
Model

AMD SEV
Model

Cloud

Encrypted
VM

Encrypted
VM

Hosting
Software

Figure 6: SEV Security Model

Figure 7: Encrypted VMs in the
Cloud

administrator with malicious intentions at a cloud data center would not be able to access the data in a

hosted VM.

Sandboxing
 Through the use of the hardware VM constructs, SEV is

built around an idea of secure sandbox environments where

software can execute and is protected from all other software on

the system. These sandboxes can be as big as a full VM with its

own disk and OS, but they can also be small and used for more fine-

grained isolation. For example, SEV hardware could be used to

cryptographically isolate Docker containers from the host system to

better protect confidential data.

SEV Architecture

Technical Overview
 SEV is an extension to the AMD-V architecture which supports running

multiple VMs under the control of a hypervisor. When enabled, SEV hardware tags

all code and data with its VM ASID which indicates which VM the data originated

from or is intended for. This tag is kept with the data at all times when inside the

SOC, and prevents that data from being used by anyone other than the owner.

 While the tag protects VM data inside the SOC, AES with 128 bit encryption

protects data outside the SOC. When data leaves or enters the SOC, it is

encrypted/decrypted respectively by hardware with a key based on the associated

tag.

 Each VM as well as the hypervisor is associated with a tag, and consequently

an associated encryption key. Because of the tag and memory encryption, data is

restricted to only the VM using that tag. If that data is accessed by anyone else, including the hypervisor,

they will only be able to see the data in its encrypted form. This provides strong cryptographic isolation

between the VMs, as well as between the VMs and the hypervisor.

Encrypted Memory
 SEV uses the same high performance memory encryption engine as the SME feature described

earlier. It also uses the same C-bit in the page tables to mark pages as encrypted, although with some

additional restrictions.

 One of the key features of SEV is that guest VMs are able to choose which data memory pages they

would like to be private. This choice is done using the standard CPU page tables, and is fully controlled by the

guest. Private memory is encrypted with the guest-specific key, while shared memory may be encrypted with

the hypervisor key. This feature allows VMs to mark selected pages of memory data they want to keep

AMD SEV Sandboxing

Operating System

App A App CApp B

Figure 8: Sandboxing

Figure 9: SEV Architecture

confidential (private), and others to be used for communication with other VMs

or the hypervisor. In a typical arrangement, the guest would map all of its code

and data as private, except for specific shared pages that it chooses to expose.

For security, SEV hardware does require certain types of memory (including

instruction pages and page tables) to always be private to protect the VM.

 An example communication configuration is shown in Figure 10. In this

example, the SEV-enabled guest and hypervisor communicate through memory

that both entities mark as shared. All other guest memory is encrypted with

the guest’s key (which the HV cannot use). Any memory the HV does not use

for direct guest communication is encrypted using the SME feature described

earlier.

Key Management
 The security of SEV is highly dependent on the security of the memory

encryption keys. Exposure to malicious entities, such as a malicious or buggy

hypervisor, can endanger the SEV protected guest. While the hypervisor must

manage the guest and its resources, the hypervisor must never gain knowledge of the memory encryption

keys themselves. The SEV firmware that runs within the AMD-SP provides a secure key management

interface to accomplish this. The hypervisor uses this interface to enable SEV for secure guests and perform

common hypervisor activities such as launching, running, snapshotting, migrating, and debugging a guest.

To protect SEV enabled guests, the firmware assists in the enforcement of three main security

properties: authenticity of the platform, attestation of a launched guest, and the confidentiality of the guest’s

data.

Authenticating the platform prevents malicious software or a

rogue device from masquerading as a legitimate platform. The authenticity

of the platform is proven with its identity key. This key is signed by AMD to

demonstrate that the platform is an authentic AMD platform with SEV

capabilities. It is also signed by the owner of the platform to show who

administers and owns the machine to the owners of guests or to other

instances of the firmware on remote platforms.

Attestation of the guest launch proves to guest owners that their

guests securely launched with SEV enabled. A signature of various components of the SEV related guest

state—including initial contents of memory—is provided by the firmware to the guest owner to verify that

the guest is in the expected state. With this attestation, a guest owner can ensure that the hypervisor did not

interfere with the initialization of SEV before transmitting confidential information to the guest.

An example of this process is shown in Figure 12. Initially, the guest owner provides the guest image

to the cloud system. The SEV firmware assists in launching the guest and provides a measurement back to

Guest

Instruction
Memory
(Private)

Page Tables
(Private)

Data Memory
(Private)

Data Memory
(Shared)

HV

Memory
(SME Encrypted)

Memory
(Shared)

Figure 10: Guest/HV
Communication Example

Figure 11: Authenticating the Firmware

SEV Firmware

Identity
Key

AMD

Platform
Owner

the guest owner. If the guest owner deems this

measurement correct, they in turn provide additional secrets

(such as a disk decryption key) to the running guest allowing

it to proceed with start-up.

Confidentiality of the guest is accomplished by

encrypting memory with a memory encryption key that only

the SEV firmware knows. The SEV management interface

does not allow the memory encryption key—or any other

secret SEV state—to be exported outside of the firmware without properly authenticating the recipient. This

prevents the hypervisor from gaining access to the keys and consequently the guest’s data.

The interface also provides a mechanism to migrate the guest data to another SEV capable platform.

During this operation, the guest’s memory contents remains encrypted during transmission. Once the remote

platform is authenticated, the SEV firmware sends the guest’s memory encryption keys securely so the

remote platform can run the guest itself. This transport mechanism allows a hypervisor to implement

migration and snapshot functions securely with SEV enabled.

SEV Software Implications

Hypervisor
As with traditional virtualization, SEV continues to rely on the hypervisor for many VM functions such

as device emulation and scheduling, but reduces the reliance on the hypervisor for security. A guest running

with SEV enabled still uses the hypervisor as needed, but is able to protect itself by marking memory pages as

private when they are not intended to be shared outside the VM.

 During runtime the hypervisor communicates with the AMD-SP in order to coordinate the

management of memory encryption keys. This communication is done via the AMD-SP driver and involves

tasks such as informing the AMD-SP when a VM is about to be run, thus allowing the AMD-SP to load the

appropriate encryption key into the AES-128 encryption engine. The hypervisor also communicates with the

AMD-SP to establish a secure mechanism to perform guest attestation, perform migration, etc.

 Although the hypervisor has control over the ASID used to run a VM and select the encryption key,

this is not considered a security concern since a loaded encryption key is meaningless unless the guest was

already encrypted with that key. If the incorrect key is ever loaded or the wrong ASID is used for a guest, the

first instruction fetch of that guest will fail as memory will be decrypted with the wrong key, causing junk

data to be executed (and very likely causing a fault).

Guest
 The OS in an SEV-enabled guest must be aware of this new hardware feature and configure its page

tables appropriately. This may be done in a similar method as the SME full memory encryption mode where

most DRAM addresses are configured to have the C-bit (bit 47) set to 1.

Figure 12: Guest Attestation Example

3. Measurement

Guest
Owner

Guest
4. Disk Decryption Key

SEV
Firmware

1. Guest Image

2. Launch

 One important consideration for an SEV-enabled guest is that DMA into guest encrypted memory is

not allowed by the SEV hardware for security reasons. All DMA, whether from a real hardware or a HV

emulated device, must occur to shared guest memory. The guest OS can therefore choose to allocate

memory pages for DMA as shared (C-bit clear), or may copy data to/from a special buffer (aka “bounce

buffer”) for DMA purposes. Some operating systems have existing support for bounce buffers which may be

used for this purpose, such as the swiotlb Linux functionality.

 Finally, it should be noted that multi-core guests are supported with SEV and data can be shared

amongst those cores with no additional performance penalty. The hypervisor must simply use the same ASID

for all virtual CPU instances for a particular guest.

SEV Special Considerations
 Many of the special considerations listed earlier regarding SME functionality also apply to SEV. In

particular, as with SME, a page must be flushed from the cache prior to accessing it with a different C-bit.

Also, prior to replacing a hardware memory encryption key, the hypervisor software must perform a full

cache flush to ensure any modified data using that key has been written back to DRAM.

 Finally, since the C-bit is only controllable by the guest OS when operating in 64-bit or 32-bit PAE

mode, in all other modes the SEV hardware forces the C-bit to a 1. This allows a guest OS to start running

encrypted code immediately and then transition into its final mode securely.

Conclusion
 The two memory encryption features presented in this document represent major steps forward in

general purpose computer security that may be utilized in a variety of environments.

The Secure Memory Encryption technology is a flexible yet powerful architectural feature which allows

for main memory encryption for an operating system or hypervisor. This document has explained a few specific

use models for memory encryption, including full memory encryption, selective encryption, and transparent

encryption. All models provide new protections against physical hardware attacks, and can in some cases be

used to help protect systems from rogue administrators. Other use models are likely possible as well and can

provide additional options and performance/security tradeoffs. No application software changes are required

for SME, and with the appropriate operating system or hypervisor modifications, all applications in a system

can be protected.

Additionally, VM security can be enhanced with Secure Encrypted Virtualization, which supports

running encrypted guests that a hypervisor cannot directly access. This provides new protections not only for

cloud users but also for cloud hosters who wish to limit their visibility into customer data. Based on AMD-V

technology, SEV can be used in both cloud and Docker-type models and provides a new security model for

virtualized environments. Like the SME technology, no application software changes are required to guest VMs

and VMs encryption is performed quickly and transparently with dedicated hardware engines.

