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Introduction 
 The need for practical security in modern computing systems is greater than ever.  The increase in 

system complexity, growth of the cloud, and advent of new technologies are all contributing to a computing 

environment that is difficult yet critical to protect.  AMD recognizes these serious challenges and has 

developed new memory encryption technologies that are designed to address these needs across a variety of 

systems.   

 Secure Memory Encryption (SME) defines a simple and efficient architectural capability for main 

memory encryption.  While memory encryption technologies have been used previously in various 

specialized products and industries, SME is a general purpose mechanism that is flexible, integrated into the 

CPU architecture, scalable from embedded to high-end server workloads, and requires no application 

software modifications. 

 Main memory encryption can be utilized to protect a system against a variety of attacks.  While data 

is typically encrypted today when stored on disk, it is stored in DRAM in the clear.  This can leave the data 

vulnerable to snooping by unauthorized administrators or software or by hardware probing.  New non-volatile 

memory technology (NVDIMM) exacerbates this problem since an NVDIMM chip can be physically removed 

from a system with the data intact, similar to a hard drive.  Without encryption any stored information such as 

sensitive data, passwords, or secret keys can be easily compromised. 

 Secure Encrypted Virtualization (SEV) integrates main memory encryption capabilities with the 

existing AMD-V virtualization architecture to support encrypted virtual machines.  Encrypting virtual machines 

can help protect them not only from physical threats but also from other virtual machines or even the 

hypervisor itself.  SEV thus represents a new virtualization security paradigm that is particularly applicable to 

cloud computing where virtual machines need not fully trust the hypervisor and administrator of their host 

system.  As with SME, no application software modifications are required to support SEV. 

 This document presents a technical overview of the SME and SEV and describes how they can be 

utilized by operating system (OS), hypervisor (HV), and guest virtual machine (VM) software in a variety of 

different environments to protect data in DRAM.     



 

SME Technical Overview 
 Main memory encryption is performed via dedicated 

hardware in the on-die memory controllers.  Each controller 

includes a high performance Advanced Encryption Standard 

(AES) engine that encrypts data when it is written to DRAM, 

and decrypts it when read as shown in Figure 1: Memory 

Encryption Behavior.  The encryption of data is done with a 

128-bit key in a mode which utilizes an additional physical 

address-based tweak to protect against cipher-text block move 

attacks. 

The encryption key used by the AES engine with SME 

is randomly generated on each system reset and is not visible 

to any software running on the CPU cores.  This key is managed 

entirely by the AMD Secure Processor (AMD-SP), a 32-bit 

microcontroller (ARM® Cortex®-A5) that functions as a 

dedicated security subsystem integrated within the AMD SOC.   The key is generated using the onboard NIST 

SP 800-90 compliant hardware random number generator and is stored in dedicated hardware registers where 

it is never exposed outside the SOC in the clear. Unlike the SEV mode described later, SME does not require 

the software running on the CPU cores to participate in key management.  

 The control over which pages of memory are encrypted is controlled via the OS or HV in the software 

managed page tables.  After memory 

encryption is enabled, physical address bit 47 

(aka the C-bit, as in enCrypted) is utilized to 

mark if a memory page is protected.  The OS 

or HV sets bit 47 of a physical address to 1 in 

the page table entry (PTE) to indicate the 

page should be encrypted, causing accesses 

to that memory to be automatically 

encrypted and decrypted by the AES engine 

in the memory controller. 

 The encryption and decryption of memory 

through the AES engine does incur a small 

amount of additional latency for DRAM memory accesses.  The impact of this latency to software is very 

dependent on the system workload but is estimated to have a very small overall effect on system performance.  

If only a subset of memory is encrypted, the performance impact will be less as unencrypted accesses generally 

incur no additional latency. 

Figure 1: Memory Encryption Behavior 
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SME Use Models 
 This section discusses two different example models by which software can utilize the SME feature.  In 

the first model, all of DRAM is encrypted while in the second, only a select region (corresponding to guest VMs) 

is encrypted. 

Full Memory Encryption 
 Full memory encryption is a simple yet compelling model for many computing systems, especially 

when physical attacks on the system are of concern, including government data centers and/or smaller or 

remote enterprise data centers that have more limited physical security.  With full memory encryption, all 

DRAM contents are encrypted utilizing the random key which provides strong protection against cold boot, 

DRAM interface snooping, and similar types of attacks.  For systems with NVDIMM, full memory encryption 

also provides protection against an attacker removing a memory module and attempting to extract its 

contents. 

 Supporting full memory encryption with SME is accomplished by either the OS or HV setting the C-bit 

in all DRAM physical addresses in all the page tables.  This should include both instruction and data pages, as 

well as the pages corresponding to the page tables themselves.  In essence, the OS or HV software may view 

the system as having DRAM that starts at address 0x8000_0000_0000. In the case of a HV setting the C-bit to 

encrypt all physical memory, all the VMs controlled by the HV are encrypted along with the HV and use the 

same encryption key. 

 Note that DMA to memory encrypted via SME is supported.  From a device standpoint, an encrypted 

memory access is just a normal memory access with bit 47 set. 

Partial Memory Encryption  
 The use of the C-bit in the page tables provides the flexibility for the OS or HV to selectively encrypt 

only a subset of memory if it desires.  Doing so still provides physical protection of the encrypted memory, but 

can also be used to improve performance on non-sensitive data.  In addition, the choice of encrypted vs. 

unencrypted memory can be used to provide a layer of isolation for critical workloads.  



 

 One example of this isolation would be a system 

which only marks memory used by guest VMs as 

encrypted.  This can be done without any modification 

to the guest VMs whatsoever.  By setting the C-bit in all 

the nested page table entries corresponding to DRAM 

(as shown in Figure 3: Encrypted VMs), the hypervisor 

enables encryption for the VM memory only. 

 Such a scenario could be used to protect VMs 

against a rogue machine administrator.  While the 

administrator would have access to the hardware and 

host system, they would not be able to inspect guest 

VM data even with memory scanning utilities. 

SME Special Considerations 
 SME provides a straightforward method for software to encrypt some or all memory pages.  There are 

some important special programming considerations however that must be taken into account when working 

with encrypted memory. 

 The primary consideration is that hardware does not manage coherency between encrypted and 

unencrypted copies the same page.  Therefore, software must be careful when modifying the C-bit of pages 

and ensure that if the C-bit of a page needs to be modified, that page must be flushed from the CPU caches 

prior to the page table modification. 

 Worth noting is that it is allowed for devices to issue DMA to encrypted memory but like with CPU 

accesses, they must set bit 47 of the physical address which is not possible on some 32-bit legacy devices.  To 

compensate, software can utilize the IOMMU to re-map device request addresses to addresses with the C-bit 

set. 

 Additional technical details of the SME feature can be found in the latest copy of the AMD 

Programmer’s Manual (APM) volume 2. 

Transparent SME 
 While SME provides a lot of flexibility for managing main memory encryption, it does require support 

in the OS/HV.  For systems that desire only the physical protection of SME but run legacy OS or HV software, 

they may use a mode called Transparent SME (TSME).  In TSME, all memory is encrypted regardless of the 

value of the C-bit on any particular page.  This mode provides a simple method to enable encryption without 

requiring software modifications. 

 TSME can be enabled via a BIOS setting on supported platforms.  When TSME is used, other memory 

encryption features (including SEV) are not available. 
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Figure 3: Encrypted VMs 



 

Intro to SEV: Complexity and Consolidation 
With advances in both hardware and software, computing systems today are more complex than 

ever.  The size and functionality of software, especially the most privileged kernel-level software responsible 

for security in the system, has increased dramatically.  The Linux kernel for instance has grown from less than 

200k lines of code to almost 22 million lines today.  

 This evolution has also led to more 

consolidation than ever before allowing 

systems to perform more tasks and do more 

work on the same hardware.  This 

consolidation has led to many positive results 

such as the cloud, and virtual data centers on 

which anyone can buy affordable compute 

time.  

 Yet both complexity and consolidation 

have a generally negative effect on the security 

of a system.  Complex software is harder to verify and is more likely to have bugs which hackers could exploit.  

A typical Linux system loads close to 5.5MB of kernel code into memory which must be bug-free to avoid 

compromising the system. 

Consolidated systems can also negatively impact security by increasing the attack surface, allowing 

many different pieces of software to use the same hardware and share resources like memory.  This 

combination yields a security model which relies on a large amount 

of privileged bug-free code, which coupled with a large attack 

surface provides an increased possibility for intrusions. 

To counter these forces, Secure Encrypted Virtualization is a 

new feature being added to the AMD architecture which is designed 

to better deal with the complexity and isolation needs of modern 

systems.  SEV enhances isolation through the use of cryptography, 

encrypting code and data and enables an entirely new security 

model where code can be cryptographically protected from higher 

privileged code such as a hypervisor. 

SEV Security Model 
 Traditional computing systems have operated using a ring-based security model.  In this model, high 

privilege code has full access to the resources at its level and of all lower privileged levels.   

Figure 4: Kernel Code Size 
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In the SEV model, code executing at different levels (namely 

hypervisor vs guest) is isolated so neither has access to the 

resources of the other.  Even though the hypervisor level is 

traditionally “more privileged” than the guest level, SEV 

separates these levels through cryptographic isolation.  This 

provides additional security for lower privileged code, 

without requiring trust in the high privileged code on which 

the less privileged code is dependent upon for startup and 

execution.  Communication between hypervisor and guest is 

still possible, but those communication paths are tightly controlled. 

Consequently, SEV technology is built around a threat model where an attacker is assumed to have 

access to not only execute user level privileged code on the target machine, but can potentially execute 

malware at the higher privileged hypervisor level as well.  The attacker may also have physical access to the 

machine including to the DRAM chips themselves.  In all these cases, SEV provides additional assurances to 

help protect the guest virtual machine code and data from the attacker.  Note that SEV does not protect 

against denial-of-service attacks against the guest. 

SEV Use Cases 
 Built around the concept of hardware VMs, SEV can be used to enhance security in a variety of use 

cases.  Due to its use of main memory encryption, SEV provides the all of the same security benefits as SME 

for physical attack protection described earlier.  In addition, SEV can be used to protect environments such as 

the following. 

Cloud 
 The growth of the cloud and in particular Infrastructure as a Service (IaaS) 

data centers has made computational power both cheap and affordable.  This 

growth does not come without security challenges however, as cloud 

infrastructure/personnel may not always be trustworthy.  This can be 

particularly true when dealing with sensitive data, such as health records or 

trade secrets.  Furthermore, the sharing of hardware amongst multiple 

customers can raise security concerns for owners of many types of workloads.  

Despite the best efforts of software designers, there have been many 

examples of cases where this isolation has failed, leading to the compromise of 

sensitive code or data.  

 SEV can be used to increase the level of security in these IaaS clouds by providing better security 

isolation, rooted in the hardware itself.  While existing security technologies like Microsoft’s BitLocker® and 

LUKS can protect data-at-rest in hard drives, SEV protects data-in-use enabling customer workloads to be 

protected cryptographically from each other as well as protected from the hosting software.  Even an 
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administrator with malicious intentions at a cloud data center would not be able to access the data in a 

hosted VM. 

Sandboxing 
 Through the use of the hardware VM constructs, SEV is 

built around an idea of secure sandbox environments where 

software can execute and is protected from all other software on 

the system.  These sandboxes can be as big as a full VM with its 

own disk and OS, but they can also be small and used for more fine-

grained isolation.  For example, SEV hardware could be used to 

cryptographically isolate Docker containers from the host system to 

better protect confidential data.  

SEV Architecture 

Technical Overview 
 SEV is an extension to the AMD-V architecture which supports running 

multiple VMs under the control of a hypervisor.  When enabled, SEV hardware tags 

all code and data with its VM ASID which indicates which VM the data originated 

from or is intended for.  This tag is kept with the data at all times when inside the 

SOC, and prevents that data from being used by anyone other than the owner. 

 While the tag protects VM data inside the SOC, AES with 128 bit encryption 

protects data outside the SOC.  When data leaves or enters the SOC, it is 

encrypted/decrypted respectively by hardware with a key based on the associated 

tag. 

 Each VM as well as the hypervisor is associated with a tag, and consequently 

an associated encryption key.  Because of the tag and memory encryption, data is 

restricted to only the VM using that tag.  If that data is accessed by anyone else, including the hypervisor, 

they will only be able to see the data in its encrypted form.  This provides strong cryptographic isolation 

between the VMs, as well as between the VMs and the hypervisor.   

Encrypted Memory 
 SEV uses the same high performance memory encryption engine as the SME feature described 

earlier.  It also uses the same C-bit in the page tables to mark pages as encrypted, although with some 

additional restrictions. 

 One of the key features of SEV is that guest VMs are able to choose which data memory pages they 

would like to be private.  This choice is done using the standard CPU page tables, and is fully controlled by the 

guest.  Private memory is encrypted with the guest-specific key, while shared memory may be encrypted with 

the hypervisor key.  This feature allows VMs to mark selected pages of memory data they want to keep 
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confidential (private), and others to be used for communication with other VMs 

or the hypervisor.  In a typical arrangement, the guest would map all of its code 

and data as private, except for specific shared pages that it chooses to expose.  

For security, SEV hardware does require certain types of memory (including 

instruction pages and page tables) to always be private to protect the VM.   

 An example communication configuration is shown in Figure 10.  In this 

example, the SEV-enabled guest and hypervisor communicate through memory 

that both entities mark as shared.  All other guest memory is encrypted with 

the guest’s key (which the HV cannot use).  Any memory the HV does not use 

for direct guest communication is encrypted using the SME feature described 

earlier. 

Key Management 
 The security of SEV is highly dependent on the security of the memory 

encryption keys. Exposure to malicious entities, such as a malicious or buggy 

hypervisor, can endanger the SEV protected guest. While the hypervisor must 

manage the guest and its resources, the hypervisor must never gain knowledge of the memory encryption 

keys themselves. The SEV firmware that runs within the AMD-SP provides a secure key management 

interface to accomplish this. The hypervisor uses this interface to enable SEV for secure guests and perform 

common hypervisor activities such as launching, running, snapshotting, migrating, and debugging a guest.  

To protect SEV enabled guests, the firmware assists in the enforcement of three main security 

properties: authenticity of the platform, attestation of a launched guest, and the confidentiality of the guest’s 

data. 

Authenticating the platform prevents malicious software or a 

rogue device from masquerading as a legitimate platform. The authenticity 

of the platform is proven with its identity key. This key is signed by AMD to 

demonstrate that the platform is an authentic AMD platform with SEV 

capabilities. It is also signed by the owner of the platform to show who 

administers and owns the machine to the owners of guests or to other 

instances of the firmware on remote platforms.  

Attestation of the guest launch proves to guest owners that their 

guests securely launched with SEV enabled. A signature of various components of the SEV related guest 

state—including initial contents of memory—is provided by the firmware to the guest owner to verify that 

the guest is in the expected state. With this attestation, a guest owner can ensure that the hypervisor did not 

interfere with the initialization of SEV before transmitting confidential information to the guest. 

An example of this process is shown in Figure 12.  Initially, the guest owner provides the guest image 

to the cloud system.  The SEV firmware assists in launching the guest and provides a measurement back to 
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the guest owner.  If the guest owner deems this 

measurement correct, they in turn provide additional secrets 

(such as a disk decryption key) to the running guest allowing 

it to proceed with start-up. 

Confidentiality of the guest is accomplished by 

encrypting memory with a memory encryption key that only 

the SEV firmware knows. The SEV management interface 

does not allow the memory encryption key—or any other 

secret SEV state—to be exported outside of the firmware without properly authenticating the recipient. This 

prevents the hypervisor from gaining access to the keys and consequently the guest’s data. 

The interface also provides a mechanism to migrate the guest data to another SEV capable platform. 

During this operation, the guest’s memory contents remains encrypted during transmission. Once the remote 

platform is authenticated, the SEV firmware sends the guest’s memory encryption keys securely so the 

remote platform can run the guest itself. This transport mechanism allows a hypervisor to implement 

migration and snapshot functions securely with SEV enabled. 

SEV Software Implications 

Hypervisor 
As with traditional virtualization, SEV continues to rely on the hypervisor for many VM functions such 

as device emulation and scheduling, but reduces the reliance on the hypervisor for security.  A guest running 

with SEV enabled still uses the hypervisor as needed, but is able to protect itself by marking memory pages as 

private when they are not intended to be shared outside the VM. 

 During runtime the hypervisor communicates with the AMD-SP in order to coordinate the 

management of memory encryption keys.  This communication is done via the AMD-SP driver and involves 

tasks such as informing the AMD-SP when a VM is about to be run, thus allowing the AMD-SP to load the 

appropriate encryption key into the AES-128 encryption engine.  The hypervisor also communicates with the 

AMD-SP to establish a secure mechanism to perform guest attestation, perform migration, etc. 

 Although the hypervisor has control over the ASID used to run a VM and select the encryption key, 

this is not considered a security concern since a loaded encryption key is meaningless unless the guest was 

already encrypted with that key.  If the incorrect key is ever loaded or the wrong ASID is used for a guest, the 

first instruction fetch of that guest will fail as memory will be decrypted with the wrong key, causing junk 

data to be executed (and very likely causing a fault). 

Guest 
 The OS in an SEV-enabled guest must be aware of this new hardware feature and configure its page 

tables appropriately.  This may be done in a similar method as the SME full memory encryption mode where 

most DRAM addresses are configured to have the C-bit (bit 47) set to 1. 

Figure 12: Guest Attestation Example 
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 One important consideration for an SEV-enabled guest is that DMA into guest encrypted memory is 

not allowed by the SEV hardware for security reasons.  All DMA, whether from a real hardware or a HV 

emulated device, must occur to shared guest memory.  The guest OS can therefore choose to allocate 

memory pages for DMA as shared (C-bit clear), or may copy data to/from a special buffer (aka “bounce 

buffer”) for DMA purposes.  Some operating systems have existing support for bounce buffers which may be 

used for this purpose, such as the swiotlb Linux functionality. 

 Finally, it should be noted that multi-core guests are supported with SEV and data can be shared 

amongst those cores with no additional performance penalty.  The hypervisor must simply use the same ASID 

for all virtual CPU instances for a particular guest. 

SEV Special Considerations 
 Many of the special considerations listed earlier regarding SME functionality also apply to SEV.  In 

particular, as with SME, a page must be flushed from the cache prior to accessing it with a different C-bit.  

Also, prior to replacing a hardware memory encryption key, the hypervisor software must perform a full 

cache flush to ensure any modified data using that key has been written back to DRAM. 

 Finally, since the C-bit is only controllable by the guest OS when operating in 64-bit or 32-bit PAE 

mode, in all other modes the SEV hardware forces the C-bit to a 1.  This allows a guest OS to start running 

encrypted code immediately and then transition into its final mode securely. 

Conclusion 
 The two memory encryption features presented in this document represent major steps forward in 

general purpose computer security that may be utilized in a variety of environments. 

The Secure Memory Encryption technology is a flexible yet powerful architectural feature which allows 

for main memory encryption for an operating system or hypervisor.  This document has explained a few specific 

use models for memory encryption, including full memory encryption, selective encryption, and transparent 

encryption.  All models provide new protections against physical hardware attacks, and can in some cases be 

used to help protect systems from rogue administrators.  Other use models are likely possible as well and can 

provide additional options and performance/security tradeoffs.  No application software changes are required 

for SME, and with the appropriate operating system or hypervisor modifications, all applications in a system 

can be protected. 

Additionally, VM security can be enhanced with Secure Encrypted Virtualization, which supports 

running encrypted guests that a hypervisor cannot directly access.  This provides new protections not only for 

cloud users but also for cloud hosters who wish to limit their visibility into customer data.  Based on AMD-V 

technology, SEV can be used in both cloud and Docker-type models and provides a new security model for 

virtualized environments.  Like the SME technology, no application software changes are required to guest VMs 

and VMs encryption is performed quickly and transparently with dedicated hardware engines. 


