

AMD White Paper

FAST IDENTITY ONLINE(FIDO): PASSWORD-LESS AUTHENTICATION

Summary

Password based security has become less efficient in recent
times due to more sophisticated phishing attacks and
challenges faced by users to create and manage numerous
passwords. Also, the centralized storage of millions of user
credentials (including passwords) in a cloud or a website server
can provide a single point of target for hackers, which can
greatly increase the cost of a single security breach.

Online attacks like Man-in-the-Middle (MitM) and Man-in-the-
Browser (MitB) can pose a substantial threat to online
authentication by secretly modifying the communication
between user and server. Online services are beginning to
initiate stricter password rules, but these can pose challenges
for users.

The FIDO Alliance[1] and other leading firms came together to
enhance cybersecurity by putting together a credential
protocol based on public key cryptography designed to mitigate
security threats like MitM and MitB. FIDO specified a unique
solution by replacing passwords with biometrics to help create
a better user experience by storing the user credentials in the
user devices instead of in centralized storages.

The FIDO Alliance[1] is comprised of more than 250
organizations, including major platform and browser providers
such as Microsoft®, Google, and Firefox®. and aims to provide
an interoperable ecosystem for password-less online
transactions used by various applications and websites.

This paper discusses FIDO’s password-less authentication in the
Windows® platform and examines the capability of the
Windows 10 and Edge browser being used to complete the
FIDO transaction on an AMD processor-based laptop using a
Synaptics fingerprint sensor.

Authors
Maneesh Jhinger
Senior Member Technical Staff
maneesh.jhinger@amd.com

Pooja Kuntal
Senior Software Engineer
pooja.kuntal@amd.com

Contents
Executive Summary .. 1

FIDO Introduction ... 2

FIDO Registration Overview................................ 2

FIDO Protocols .. 3

Universal second factor 3

Universal Authentication Framework 3

Client to Authenticator Protocol......................... 3

FIDO2.0: Standardization of FIDO protocols 3

FIDO WebAuthn Registration 4

FIDO WebAuthn Authentication 5

Microsoft Support for FIDO2.0 6

FIDO Registration in Synapt10 6

FIDO Authentication in Windows 10 7

Web Authentication Demo in Windows 10 7

Conclusion .. 7

Appendix A: Web Authentication APIs
Input/Output paramters..................................... 9

Figure 1: Password Challenges

AMD White Paper Fast Identity Online: Password-less Authentication

Page 2

FIDO Introduction

FIDO specifications define the abstract application programming interfaces (APIs) for the FIDO protocol

implementation, helping to provide interoperability to developers to assist with creating single secure user accounts

operating from different platforms, browsers, and apps running on different hardware. The open source FIDO Alliance

provides generic system management functionality which can help reduce costs associated with the deployment,

application development, testing and debug cycle.

In traditional credential management, a password is created during registration/signup and stored at an online site

server (relying party). In case of authentication/login, user provides the password and relying party (RP) server carries

out the authentication process by matching it against stored password. FIDO is designed to eliminate the concept of

storing user credential at online-site server. It can provide a new mechanism to establish a secure and robust

authentication channel by creating a public-private cryptographic key pair which can bind the user and the local user

device with the relying party. User credential match can be done using either a built-in authenticator (e.g. biometric

sensor) or a plug-in authenticator (e.g. USB/smartcard) or an external/roaming authenticator (e.g. mobile). User

enrollment to an authenticator, for example registering user fingerprints to a biometric authenticator, is outside the

scope of FIDO protocol and is an authenticator specific process.

FIDO Registration Overview

• RP application in user device initiates Registration
of a user’s account at Relying party.

• Relying party discovers the presence of FIDO
authenticators in the device using RP application,
selects the RP compliant authenticators and
communicates back to RP server. Server sends a
“challenge” to kick start the registration.

• User is prompted to choose an available FIDO
authenticator that matches the relying party’s
acceptance policy.

• User unlocks the FIDO authenticator using a
fingerprint sensor, a button on a second–factor
device, securely–entered PIN or other methods.

• User device creates a unique public-private key
pair binding the local device, relying party and
user’s account.

• Public key along with signed “challenge” is sent
back to the relying party, whereas private key and
biometric credentials are stored in the user device.

FIDO Authentication Overview

• User initiates authentication by requesting relying
party.

• RP server responds by sending a “challenge” back
to the user device.

• User is prompted to select an authenticator based
on RP policy.

• User unlocks the FIDO authenticator using the
same method as it has used while registration.

• User device uses the “user’s account identifier”
provided by the relying party to select the correct
private key stored securely in the device and then
signs the “challenge” sent by RP server using
private key.

• User device sends the signed challenge back to the
RP server, which verifies the signature of the
“challenge” with the stored public key
corresponding to user and device.

• RP server then allows the user to proceed with the
transaction.

 Figure 3 : FIDO Authentication OverviewFigure 2: FIDO Registration Overview

AMD White Paper Fast Identity Online: Password-less Authentication

Page 3

FIDO Protocols

The FIDO Alliance[1] defines three sets of technology agnostic specifications: Universal Authentication Framework

(UAF), Universal Second Factor (U2F) and Client to Authenticator Protocol (CTAP). U2F protocol is designed to

strengthen the existing password-based authentication mechanism by introducing second factor authentication using

plug-in or out-of-device (roaming) authenticator, UAF protocol is designed to provide password-less experience with

devices using built-in or plug-in authenticators, and CTAP is designed to extend the UAF and U2F functionality by

providing the password-less authentication using out-of-device (roaming) authenticator.

Universal Second Factor (U2F)

U2F specification has an upper layer with

cryptographic core protocol and a lower layer

specifying user to U2F device communication for an

allowed transport protocol (e.g. USB, NFC, BLE etc.).

The registration involves the traditional user-

name/password, but the service can prompt the user

to present a second factor device. An online-site

specific key pair will be generated to bind the U2F

device with the site. Second factor authentication will

be done by either pressing a button on a USB device or

using NFC device (U2F) to allow site-specific key pair to

be used to complete the authentication by signing the

challenge sent by RP.

Figure 4: U2F Architecture

Universal Authentication Framework (UAF)

The non-normative UAF architecture proposes a

generic FIDO client which may be embedded in a

browser or app. FIDO client is designed to

communicate with “Authenticator Specific Module”

(ASM) which may be platform-specific (e.g. for

Windows or Android) but is authenticator-vendor

agnostic. ASM in turn can connect the client to vendors

specific authenticators using generic API’s. UAF can

also allow experiences that combine multiple

authentication mechanisms, such as fingerprint + PIN.

In case of plug-in authenticators, the user device and

authenticator can establish connection using USB

protocol.

Figure 5: UAF Architectue

Client to Authenticator Protocol (CTAP)

CTAP can provide a way to establish communication
between platform/client with roaming authenticator.
CTAP is designed to enable external devices such as
mobile handsets or FIDO Security Keys to serve as
authenticators. The protocol defines an “Authenticator
API”, as a message encoding method to handle the
encoded message sent-to or received-from roaming
authenticator over the chosen transport protocol and
a “Transport-Specific Binding” to describe message
bindings with the chosen transport protocol (e.g. NFC,
BLE, USB).

Figure 6: Client to Authenticator Protocol

AMD White Paper Fast Identity Online: Password-less Authentication

Page 4

FIDO2.0: Standardization of FIDO protocols

The FIDO Alliance[1] collaborated with “World Wide Web Consortium” (W3C)[2,3], which is an international community
for developing open standards for web, to standardize FIDO2 implementation as a set of “Web Authentication API’s”.
The “Web Authentication API’s”, also called as WebAuthn[2,3], is supported by all major existing browsers. It provides
an interface for cryptographic public-key authentication of users for web-based applications and services. To support
FIDO2, WebAuthn[2,3] implements an extension of existing “Credential Management API” that store username-
password combinations. The existing “Credential Management API”[4] define a framework for handling the credentials
of two types, namely PasswordCredential and FederatedCredential. The PasswordCredintial is password based and FederatedCredential
is provided by a federated identity which is trusted by website to authenticate a user. The WebAuthn[2,3] defines a
third credential type, PublicKeyCredential, which uses cryptographically attested credentials for strong user authentication.

To accommodate PublicKeyCredential, the WebAuthn[2,3] extends the existing JavaScript methods of
navigator.credentials.create() and navigator.credentials.get(), to accept a publicKey parameter. During registration, the
navigator.credentials.create() method generates public-private key pair and binds them with the user account, user device
and relying party. During transaction, navigator.credentials.get() method is used for obtaining an authentication result.

FIDO WebAuthn Registration

navigator.credentials.create(), creates new credentials,
either for registering a new account or for associating
a new asymmetric key pair credentials with an existing
account.
1. RP script embedded in web page or RP app sends

the request to RP server for registration.
2. Server sends back the user info, RP info and an array

of bytes as challenge. The parameters received from
the server will be passed on to the
navigator.credentials.create() as arguments which
synchronously returns a “Promise” to be resolved to

a PublicKeyCredential structure on completion of
registration process.

3. navigator.credentials.create() implemented in “Web Auth
client” module creates client data by determining
rpid, challenge, tokenBinding. and generates the

clientDataHash . It then calls the authenticator’s
authenticatorMakeCredential() with the received
parameters as arguments along with the
clientDataHash.

4. Authenticator creates asymmetric key pair and
perform attestation:

a. Authenticator or its user agent prompts for
obtaining user consent. The prompt displays user
name and RP name, user then verify itself using
PIN or Biometrics.

b. Authenticator creates new asymmetric key pair.
The privateKey along with rpid, userHandle and
credential.id (a probabilistically-unique byte
sequence generated by authenticator) becomes
a “Public Key Credential Source” which binds key
pair with RP and User. The public key portion of

this is called credentialPublicKey.

c. A “attestation object” is created containing
authenticator data which includes credential.id
and credentialPublicKey, and an attestation
statement (in authenticator chosen format).

5. Authenticator returns “attestation object” and

clientData to the “Web Auth client”.
6. The navigator.credentials.create() “Promise” (step 2)

resolves to an PublicKeyCredential structure, which has
a PublicKeyCredential.rawId that is the globally unique
credential id and AuthenticatorAttestationResponse

structure containing clientDataJSON and the
“attestation object” received from authenticator.

The PublicKeyCredential is sent back to the server by RP
scripts.

7. Server carries out verification of client data and
“attestation object”.

Figure 7 : FIDO WebAuthn Registration

AMD White Paper Fast Identity Online: Password-less Authentication

Page 5

FIDO WebAuthn Authentication

navigator.credentials.get(), uses an existing set of credentials

to authenticate to a service, either logging a user in or

as a form of second-factor authentication.

Authentication process will execute following

operation:

1. Web page requests to server for authentication.

2. Server sends a challenge to “Relying Party

JavaScript”. Script invokes navigator.creation.get() with

the parameters received from server which

returns a “Promise” to be resolved to a

PublicKeyCredential structure containing an

AuthenticatorAssertionResponse on completion of

authentication process.

3. navigator.credentials.get() implemented in “Web Auth

client” module calls authenticatorGetCredential() on

Authenticator:

a. It validates input parameters and fill in origin

and relying party id.

b. Parameters of navigator.credentials.get() are

passed to authenticator, along with

clientDataHash (hash of client data).

4. Authenticator creates an Assertion:

a. The authenticator finds a credential for this

service that matches the Relying Party ID.

b. Authenticator or its user agent prompts for

obtaining user consent. The prompt displays

user name and RP name, user can verify itself

using PIN or Biometrics.

5. The authenticator creates a new assertion by

signing over the clientDataHash and authenticatorData

with the privateKey generated for the account

during the registration call.

6. The authenticator returns the authenticatorData and

assertion signature back to the client.

7. The client resolves the “Promise” (step 2) to a

PublicKeyCredential structure containing

AuthenticatorAssertionResponse, which include signature

obtained using privateKey. RP script sends the

response to the server

8. Server verifies the signature using public key and

authenticates the transaction.

Figure 8: FIDO WebAuthn Authentication

AMD White Paper Fast Identity Online: Password-less Authentication

Page 6

Microsoft Support for FIDO

Microsoft supports FIDO in Windows 10[9] by enabling security features like Windows Hello, Microsoft Passport and
providing web authentication APIs support in Microsoft Edge. Windows Hello and Microsoft passport are designed to
map to the “Authenticator” and “Authenticator Specific Module” (ASM) of the FIDO architecture respectively.

Microsoft Passport

Microsoft has revamped Passport for new PKI
credential based multi factor authentication to provide
full support for FIDO transactions. Microsoft Passport
is designed to work with Trusted Platform Module
(TPM2.0) for enhanced security solution.

When a Windows user registers with relying party, MS
passport generates a public/private key pair. The
private key is stored in the TPM and can be accessed
only with the help of Windows Hello, which performs
the user verification by matching user’s biometrics,
PIN, etc. The keys are encrypted and protected by the
TPM. Key pair will be associated with the user account
and local device. User needs to enroll each device used
to access relying party’s services.

Microsoft Passport is designed to function like a virtual
smart card. A smart card must be registered with a
service and has a private key locked within it which is

used to sign the challenge in case of any transaction
with that service. The Microsoft Passport credential
essentially works in a similar manner.

Windows Hello

Windows Hello is designed to enhance security by
facilitating multi-factor authentication using
biometrics, PIN, etc. that is used to unlock a private
key stored in the secure TPM chip. Windows Hello is
Microsoft software, or middleware in Windows 10,
that is used to support biometrics for authentication.
Previously, OEMs used to provide their own solution to
support biometric authentication. FIDO transactions
are designed to carry out user verification before
creating/unlocking key-pair. Windows Hello looks for
registered biometrics or PIN for user verification during
FIDO transaction, but if built-in biometrics device is not
available, it prompts to insert security key into the USB
port to complete user verification.

Figure 9 : FIDO2.0 in Windows 10

AMD White Paper Fast Identity Online: Password-less Authentication

Page 7

FIDO Registration in Windows10

In Microsoft Edge, when web authentication API
navigator.credential.create() is invoked by relying party
script, the browser connects to Microsoft Passport
which uses Trusted Platform Module (TPM) for key pair
creation and prompts Windows Hello for user
verification.

1. Relying Party server sends registration challenge
and CredentialCreateOption to RP JavaSscript running
on user device.

2. RP JavaScript executes navigator.credential.create()
using params passed by server.

3. Browser/Webauth Client invokes Microsoft

Passport’s RequestCreateAsync().

4. RequestCreateAsync() API does following :

a. Prompts a Window Hello dialog to request the
user’s PIN or biometric.

b. Requests the TPM chip to create the private
and public key, store the result and returns
Public key to server.

FIDO Authentication in Windows 10

In Microsoft Edge, when web authentication API
navigator.credential.get() is invoked by relying party script,
the browser connects to Microsoft Passport which
prompts Windows Hello for user verification before
unlocking private key. It connects to TPM to sign RP
server challenge using private key after user
verification.

1. Relying Party server sends authentication
challenge and CredentialRequestOption to script.

2. Relying party scripts executes navigator.credential.get()
using params passed by server.

3. Client invokes Microsoft Passport’s

RequestSignAsync() API to sign the challenge sent
from server. It triggers the OS to request the
user’s PIN or biometrics through Windows Hello.
After successful user identification, challenge gets
signed in TPM.

4. Client sends signed challenge back to server.

Web Authentication Demo – HP EliteBook (with AMD RyzenTM processor) with Windows 10

In the following project we demonstrate the capability of Microsoft Passport and Windows Hello to support Web
Authentication API and provide a standard implementation for FIDO2 architecture. By mimicking and hardcoding the

RP script to communicate to “locally hosted relying party”, we are able to demonstrate the user registration and

authentication. Below are the setup and demo details:

Setup Configuration

1. Platform: Windows 10 RS5 (v_43.17713.1000.0)

2. Browser: Microsoft Edge

3. Enabled Web Authentication API in Edge.

4. Configured Microsoft Account and registered it
with Windows Hello biometrics.

Demo Development

1. Hosted a html page on localhost and embedded
relying party script which invokes
navigator.credential.create() API to register the user

and navigator.credential.get() to authenticate
registered user.

2. When navigator.credential.create() executes in Edge, It
prompts user verification using Windows Hello UI

to use PIN/Biometrics verify that the user is the
same user as the one logged into the Windows
account.

3. After successful verification, Microsoft Passport
will generate a public/private key pair and store
the private key in the Trusted Platform Module
(TPM), the dedicated crypto processor hardware
used to store credentials

4. When navigator.credential.get() is executed, user
verification happens using Windows Hello and
later the challenge will be signed within the TPM
and the promise will return with an assertion
object that contains the signature and other
metadata.

Conclusion

Microsoft supports the FIDO2 specification and FIDO based secured transactions can be done on the Windows 10
platform. Biometric sensor along with TPM acts as platform authenticator. Microsoft Passport, along with Windows
Hello, can help connect the dots from browser to platform authenticator. In this paper, we successfully demonstrated
FIDO support in Windows 10 platform using Synaptics Fingerprint (FP) sensor for biometric user verification.

AMD White Paper Fast Identity Online: Password-less Authentication

Page 8

References

1. https://fidoalliance.org/
2. https://www.w3.org/TR/webauthn/
3. https://github.com/w3c/webauthn/
4. https://www.w3.org/TR/credential-management-1/
5. https://docs.microsoft.com/en-

us/windows/security/identity-protection/hello-for-
business/hello-identity-verification

6. https://blogs.windows.com/business/2015/02/13/micr
osoft-announces-fido-support-coming-to-windows-10

7. https://docs.microsoft.com/en-us/microsoft-edge/dev-
guide/device/web-authentication

8. https://www.slideshare.net/SanjeevVermaPhD/fidoalli
ance

9. http://docs.microsoft.com/en-us/microsoft-edge/dev-
guide/windows-integration/web-authentication

https://fidoalliance.org/
https://www.w3.org/TR/webauthn/
https://github.com/w3c/webauthn/
https://www.w3.org/TR/credential-management-1/
https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://blogs.windows.com/business/2015/02/13/microsoft-announces-fido-support-coming-to-windows-10/
https://blogs.windows.com/business/2015/02/13/microsoft-announces-fido-support-coming-to-windows-10/
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/device/web-authentication
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/device/web-authentication
https://www.slideshare.net/SanjeevVermaPhD/fidoalliance
https://www.slideshare.net/SanjeevVermaPhD/fidoalliance

AMD White Paper Fast Identity Online: Password-less Authentication

Page 9

Appendix A: Web Authentication APIs Input/Output parameters
navigator.credential.create()

Input: It takes dictionary ‘PublicKeyCredentialCreationOptions’ as Input parameter:

dictionary PublicKeyCredentialCreationOptions

{
required PublicKeyCredentialRpEntity rp;
required PublicKeyCredentialUserEntity user;
required BufferSource challenge;
required sequence<PublicKeyCredentialParameters> pubKeyCredParams;
unsigned long timeout;
sequence<PublicKeyCredentialDescriptor> excludeCredentials = [];
AuthenticatorSelectionCriteria authenticatorSelection;
AttestationConveyancePreference attestation = "none";
AuthenticationExtensionsClientInputs extensions;

};

Output : It returns a Promise of type interface ‘PublicKeyCredential’ which is derived from ‘Credential’ Interface:

interface PublicKeyCredential : Credential

{
readonly attribute ArrayBuffer rawId;
readonly attribute AuthenticatorResponse response;
AuthenticationExtensionsClientOutputs getClientExtensionResults();

};

interface Credential

 {
readonly attribute USVString id;
readonly attribute DOMString type;

};

AuthenticatorResponse will contain ‘AuthenticatorAttestationResponse’ in response of create call which is derived from

AuthenticatorResponse interface:

interface AuthenticatorAttestationResponse : AuthenticatorResponse

{
readonly attribute ArrayBuffer attestationObject;

};

interface AuthenticatorResponse

{
readonly attribute ArrayBuffer clientDataJson;

};

ClientDataJson is JSON serialization of the CollectedClientData passed to the authenticator by the client in its call to either
navigator.credential.create() or navigator.credential.get().

dictionary CollectedClientData

 {
required DOMString type;
required DOMString challenge;
required DOMString origin;
TokenBinding tokenBinding;

};

https://www.w3.org/TR/webauthn/#authenticatorresponse
https://www.w3.org/TR/webauthn/#authenticatorattestationresponse

AMD White Paper Fast Identity Online: Password-less Authentication

Page 10

Attestation object contains authenticator data and attestation statement as shown in below figure:

navigator.credential.get()

Input : It takes dictionary ‘PublicKeyCredentialRequestOptions’ as Input parameter:

dictionary PublicKeyCredentialRequestOptions

{
required BufferSource challenge;
unsigned long timeout;
USVString rpId;
sequence<PublicKeyCredentialDescriptor> allowCredentials = [];
UserVerificationRequirement userVerification = "preferred";
AuthenticationExtensionsClientInputs extensions;

};

Output : It returns a Promise of type interface ‘PublicKeyCredential’ which is derived from ‘Credential’ Interface:

interface PublicKeyCredential : Credential

{
readonly attribute ArrayBuffer rawId;
readonly attribute AuthenticatorResponse response;
AuthenticationExtensionsClientOutputs getClientExtensionResults();

};

interface Credential {
readonly attribute USVString id;
readonly attribute DOMString type;

};

AMD White Paper Fast Identity Online: Password-less Authentication

Page 11

AuthenticatorResponse will contain ‘AuthenticatorAssertionResponse’ in response of create call which is derived from

AuthenticatorResponse interface.

interface AuthenticatorAssertionResponse : AuthenticatorResponse

{
readonly attribute ArrayBuffer authenticatorData;
readonly attribute ArrayBuffer signature;
readonly attribute ArrayBuffer userHandle;

};

interface AuthenticatorResponse {
readonly attribute ArrayBuffer clientDataJson;

};

The authenticatorData structure encodes contextual bindings made by the authenticator. These bindings are controlled
by the authenticator itself and derive their trust from the Relying Party's assessment of the security properties of the
authenticator. The authenticator data structure is a byte array of 37 bytes or more, as follows:

The signature is the assertion signature of the concatenation of authenticatorData and hash using the privateKey of

selectedCredential as shown in figure below:

https://www.w3.org/TR/webauthn/#authenticatorresponse
https://www.w3.org/TR/webauthn/#authenticatorattestationresponse
https://www.w3.org/TR/webauthn/#dom-authenticatorattestationresponse-attestationobject

AMD White Paper Fast Identity Online: Password-less Authentication

Page 12

DISCLAIMER:

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.
The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.
AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE
TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright holders.

© 2018 Advanced Micro Devices, Inc. All rights reserved.
© 2015 W3C® (MIT, ERCIM, Keio, Beihang). This software or document includes material copied from or derived from “Web Authentication: An API for accessing
Public Key Credentials Level 1 “[https://www.w3.org/TR/webauthn/]

AMD, the AMD Arrow logo, the AMD Ryzen and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other
jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.
Windows, Microsoft and combinations of thereof are trademarks of Microsoft Corporation, Inc. in the United States and/or other jurisdictions.
HP is a trademark of Hewlett-Packard Company, Inc. in the United States and/or other jurisdictions.
Synaptics is a trademark of Synaptics, Inc. in the United States and/or other jurisdictions.
Firefox® is a trademark of Mozilla, Inc. in the United States and/or other jurisdictions.
Other names and brands may be claimed as the property of others.

	FAST IDENTITY ONLINE(FIDO): PASSWORD-LESS AUTHENTICATION
	Summary
	FIDO Introduction
	FIDO Registration Overview
	FIDO Authentication Overview
	Universal Second Factor (U2F)
	Universal Authentication Framework (UAF)
	Figure 5: UAF Architectue
	Client to Authenticator Protocol (CTAP)
	FIDO2.0: Standardization of FIDO protocols
	FIDO WebAuthn Registration
	FIDO WebAuthn Authentication
	Microsoft Support for FIDO
	FIDO Registration in Windows10
	FIDO Authentication in Windows 10
	Web Authentication Demo – HP EliteBook (with AMD RyzenTM processor) with Windows 10
	Appendix A: Web Authentication APIs Input/Output parameters
	navigator.credential.create()
	navigator.credential.get()

