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Big Idea: Amdahl’s (Heartbreaking) Law

• Speedup due to enhancement E is
Speedup	w/	E	=						----------------------		

Exec	time	w/o	E
Exec	time	w/	E	

• Suppose	that	enhancement	E	accelerates	a	fraction	F			(F	<1)	of	
the	task	by	a	factor	S	(S>1)	and	the	remainder	of	the	task	is	
unaffected

Execution	Time	w/	E		=

Speedup	w/	E		=
 2

Execution	Time	w/o	E		×		[	(1-F)	+	F/S]	

1	/	[	(1-F)	+	F/S	]
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Big Idea: Amdahl’s Law

Speedup  =                       1

 3

	(1	-	F)			+			F
SNon-speed-up	part Speed-up	part

1
0.5	+	0.5

2

1
0.5	+	0.25

= = 1.33

Example:	the	execution	time	of	half	of	the	program	can	
be	accelerated	by	a	factor	of	2.  
What	is	the	program	speed-up	overall?
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Example #1: Amdahl’s Law

• Consider an enhancement which runs 20 times faster but which is only usable 
25% of the time


	 		 Speedup w/ E  =  1/(.75 + .25/20)  =  1.31


• What if its usable only 15% of the time?

	 		 Speedup w/ E  =  1/(.85 + .15/20)  =  1.17


• Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of 
the original computation can be scalar!


• To get a speedup of 90 from 100 processors, the percentage of the original 
program that could be scalar would have to be 0.1% or less


	 		 Speedup w/ E  =  1/(.001 + .999/100)  =  90.99
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Speedup	w/	E	=			1	/	[	(1-F)	+	F/S	]
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Amdahl’s Law
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If	the	portion	of  
the	program	that 
can	be	parallelized  
is	small,	then	the 
speedup	is	limited

The	non-parallel  
portion	limits  
the	performance
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Strong and Weak Scaling

• To get good speedup on a parallel processor while keeping the 
problem size fixed is harder than getting good speedup by 
increasing the size of the problem.

• Strong scaling: when speedup can be achieved on a parallel processor without 

increasing the size of the problem

• Weak scaling: when speedup is achieved on a parallel processor by increasing 

the size of the problem proportionally to the increase in the number of processors


• Load balancing is another important factor: every processor 
doing same amount of work  

• Just one unit with twice the load of others cuts speedup almost in half
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Clickers/Peer Instruction
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Suppose	a	program	spends	80%	of	its	time	in	a	square	root	
routine.	How	much	must	you	speedup	square	root	to	make	the	
program	run	5	times	faster?	

A:	5	
B:	16	
C:	20	
D:	100	
E:	None	of	the	above

Speedup	w/	E	=			1	/	[	(1-F)	+	F/S	]
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Amdahl’s Law In The Real 
World…
• Lets look at the federal budget:

• Price of a single F35: ~$100M

• Air Force alone wants to buy ~ 56 next year

• Line item: “Purchase fighter jets for the Air Force:” ~$6B

• Line item: “Fund Corporation for Public Broadcasting:” ~$500M


• If you want to reduce the cost of the federal government…

• Which line item is more significant?
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Amdahl's Law and 
Premature Optimization...
• The runtime of a new program is really...

• The runtime of the program on all the inputs you ever run it on

• The time it takes you to write the program in the first place!


• So don't prematurely optimize

• Worry about getting things right first, you may never have to optimize it at all


• Likewise, worry about making your code readable and well 
documented:


• Since the runtime of a modified version of the program is the runtime on all 
inputs plus the time it takes you to relearn what you did in order to modify it!
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Simple Multiprocessor
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Multiprocessor Execution Model

• Each processor has its own PC and executes an independent stream of 
instructions (MIMD)


• Different processors can access the same memory space

• Processors can communicate via shared memory by storing/loading to/from common locations


• Two ways to use a multiprocessor:

• Deliver high throughput for independent jobs via job-level parallelism

• E.g. your operating system & different programs


• Improve the run time of a single program that has been specially crafted to run on a 
multiprocessor - a parallel-processing program


• 	Use term core for processor (“Multicore”) because “Multiprocessor 
Microprocessor” too redundant
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Transition to Multicore

Sequential App 
Performance

 12
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Parallelism the Only Path to Higher Performance

• Sequential processor performance not expected to increase much:

• We pretty much hit a brick wall a few years back in our ability to improve single-thread performance


• If want apps with more capability we have to embrace parallel processing 
(SIMD and MIMD)


• In mobile systems, use multiple cores and GPUs

• All iPhones starting with the 4s are multicore

• iPhone 7 CPU is 4 cores!

• Two cores very fast:  Burn lots of power but very good sequential performance

• Two cores power efficient: Lower sequential performance but better ops/joule

• Plus a 6 core GPU


• In warehouse-scale computers, use multiple nodes, and all the MIMD/SIMD 
capability of each node

 13
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Fall 2013 -- Lecture #15

Comparing Types of Parallelism…

• SIMD-type parallelism (Data Parallel)

• A SIMD-favorable problem can map easily to a MIMD-type fabric

• SIMD-type fabrics generally offer a much higher throughput per $

• Much simpler control logic

• Classic example: Graphics cards are massive supercomputers compared to the CPU: 

TeraFLOPS rather than gigaflops


• MIMD-type parallelism (data-dependent Branches!)

• A MIMD-favorable problem will not map easily to a SIMD-type fabric

4/1/16
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Multiprocessors and You

• Only path to performance is parallelism

• Clock rates flat or declining

• CPI generally flat

• SIMD now ~4-8 words wide on the CPU

• SIMD accelerators even more

• Nvidia GP100 GPU: 5 TFLOPs of 64b Floating Point, 10 for 32b FP 

1792 CUDA cores for 64b Floating Point (3584 for 32b)

• MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …


• Key challenge is to craft parallel programs that have high performance on 
multiprocessors as the number of processors increase – i.e., that scale

• Scheduling, load balancing, time for synchronization, overhead for communication


• If you can scale up you can then scale down
 15
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Potential Parallel Performance (assuming SW can 
use it)
• It was my birthday a couple weeks back…

• And nobody got me the present I wanted!


• A Dell PoweEdge R940 rack server configured my way

• With 4x Intel Xeon Platinum 8180 (28 core processors): 112 total cores in a 3u 

space!


• But to take advantage of this, need to have a workload that 
can take advantage of the parallelism

 16
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Threads

• Thread: a sequential flow of instructions that performs some task

• Each thread has a PC + processor registers and accesses the 

shared memory of the process

• Each core provides one or more hardware threads that actively 

execute instructions

• Common Intel chips support 2 threads/core

• So a 4 core Intel processor can support 8 hardware threads


• The RPi3 has only 1 thread per core -> 4 cores -> 4 hardware threads


• Operating system multiplexes multiple software threads onto the 
available hardware threads

 17
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Operating System Threads

• Give the illusion of many active threads by time-multiplexing 
software threads onto hardware threads


• Remove a software thread from a hardware thread by 
interrupting its execution and saving its registers and PC into 
memory

• Also if one thread is blocked waiting for network access or user input can switch 

to another thread


• Can make a different software thread active by loading its 
registers into a hardware thread’s registers and jumping to its 
saved PC

 18
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Hardware Multithreading

• Basic idea: Processor resources are expensive and should not be left idle

• Long memory latency to memory on cache miss is the biggest one


• Hardware switches threads to bring in other useful work while waiting for 
cache miss

• Cost of thread context switch must be much less than cache miss latency


• Put in redundant hardware so don’t have to save context on every thread 
switch:

• PC, Registers


• Attractive for apps with abundant TLP

• Commercial multi-user workloads


• Intel calls this HyperThreading

• Will actually issue from two threads at the same time!

 19
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Hardware Multithreading
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Multithreading vs. Multicore

• Multithreading => Better Utilization 

• ≈1% more hardware, 1.10X better performance?

• Share integer adders, floating-point units, all caches (L1 I$, L1 D$, L2$, L3$), 

Memory Controller


• Multicore => Duplicate Processors

• ≈50% more hardware, ≈2X better performance?

• Share outer caches (L2$ or just L3$), Memory Controller


• Modern machines do both

• Multiple cores with multiple threads per core

 21



Computer Science 61C Spring 2018 Wawrzynek and Weaver

Nick’s MacBook Pro  
MacBookPro11,1 (Early 2015)
• /usr/sbin/sysctl -a | grep hw\. 

…

hw.physicalcpu: 2

hw.logicalcpu: 4

…

hw.cpufrequency =  

2,700,000,000

hw.memsize = 8,589,934,592

hw.cachelinesize = 64 
hw.l1icachesize: 32,768 
hw.l1dcachesize: 32,768 
hw.l2cachesize: 262,144 
hw.l3cachesize: 

3,145,728
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Nick's $35  
Raspberry Pi 3…
Quad-Core processor

	 1 thread/core

	 2-issue superscalar,  

8 stage pipeline

	 64/128b SIMD instructions

512 KB shared L2 cache

	 L1 iCache is probably 32 KB

1/2 GB RAM

100 Mbps Ethernet, 802.11, Bluetooth

 23

• Even the smallest and 
cheapest systems are 
now heavily parallel 
– OK full kit cost $75… 

With HDMI cable, power 
supply, case, 32 GB SD-
card
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Administrivia

• MT2 Regrade window is open!

 24
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100s of (Mostly Dead)  
Parallel Programming Languages
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ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultiLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL
Concurrent C Janus occam-π XC
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OpenMP

• OpenMP is a language extension used for multi-threaded, 
shared-memory parallelism


• Compiler Directives (inserted into source code)

• Runtime Library Routines (called from your code)

• Environment Variables (set in your shell)


• Portable

• Standardized

• But beyond the C language itself


• Easy to compile: cc –fopenmp name.c
 26
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Shared Memory Model with  
Explicit Thread-based Parallelism
• Multiple threads in a shared memory environment, explicit 

programming model with full programmer control over 
parallelization


• Pros:

• Takes advantage of shared memory, programmer need not worry (that much) about 

data placement

• Compiler directives are simple and easy to use

• Legacy serial code does not need to be rewritten


• Cons:

• Code can only be run in shared memory environments

• Compiler must support OpenMP (e.g. gcc 4.2)

 27
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OpenMP in CS61C

• OpenMP is built on top of C, so you don’t have to learn a 
whole new programming language

• Make sure to add  #include <omp.h> 
• Compile with flag:  gcc -fopenmp

• Mostly just a few lines of code to learn


• You will NOT become experts at OpenMP

• Use slides as reference, will learn to use in lab


• Key ideas:

• Shared vs. Private variables

• OpenMP directives for parallelization, work sharing, synchronization

 28
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OpenMP Programming Model

• Fork - Join Model:


• OpenMP programs begin as single process (master thread) and executes 
sequentially until the first parallel region construct is encountered

• FORK:  Master thread then creates a team of parallel threads

• Statements in program that are enclosed by the parallel region construct are executed in parallel among the 

various threads

• JOIN:  When the team threads complete the statements in the parallel region construct, they 

synchronize and terminate, leaving only the master thread
 29
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OpenMP Extends C with Pragmas 

• Pragmas are a preprocessor mechanism C provides for 
language extensions


• Commonly implemented pragmas:  
structure packing, symbol aliasing, floating point exception 
modes (not covered in 61C)


• Good mechanism for OpenMP because compilers that 
don't recognize a pragma are supposed to ignore them


• Runs on sequential computer even with embedded pragmas

 30
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parallel Pragma and Scope

• Basic OpenMP construct for parallelization: 
#pragma omp parallel  
  { 
   /* code goes here */  
  }

• Each thread runs a copy of code within the block

• Thread scheduling is non-deterministic


• OpenMP default is shared variables

• To make private, need to declare with pragma:

•  #pragma omp parallel private (x)

 31

This is annoying, but curly brace MUST go on 
separate line from #pragma
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Thread Creation

• How many threads will OpenMP create?

• Defined by OMP_NUM_THREADS environment variable (or 

code procedure call)

• Set this variable to the maximum number of threads you want OpenMP to 

use

• Usually equals the number of physical cores * number of threads/core in the 

underlying hardware  on which the program is run

• EG, RPi 3 has 4 threads by default

 32
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What Kind of Threads?

• OpenMP threads are operating system (software) threads.

• OS will multiplex requested OpenMP threads onto available 

hardware threads.

• Hopefully each gets a real hardware thread to run on, so no 

OS-level time-multiplexing.

• But other tasks on machine can also use hardware threads!

• And you may want more threads than hardware if you have a lot of I/O 

so that while waiting for I/O other threads can run


• Be careful when timing results!
 33
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OMP_NUM_THREADS

• OpenMP intrinsic to set number of threads: 
omp_set_num_threads(x);


• OpenMP intrinsic to get number of threads: 
num_th = omp_get_num_threads();


• OpenMP intrinsic to get Thread ID number: 
th_ID = omp_get_thread_num();

 34
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Parallel Hello World

#include <stdio.h> 
#include <omp.h> 
int main () { 
  int nthreads, tid; 

  /* Fork team of threads with private var tid */ 
  #pragma omp parallel private(tid) 
  { 
    tid = omp_get_thread_num(); /* get thread id */ 
    printf("Hello World from thread = %d\n", tid); 

    /* Only master thread does this */ 
    if (tid == 0) { 
      nthreads = omp_get_num_threads(); 
      printf("Number of threads = %d\n", nthreads); 
    } 
  }  /* All threads join master and terminate */ 
}

 35
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Data Races and Synchronization

• Two memory accesses form a data race if different threads 
attempts to access the same location, and at least one is a write, 
and they occur one after another


• If there is a data race, result of program can vary depending on 
chance (which thread first?)


• Avoid data races by synchronizing writing and reading to get 
deterministic behavior


• Synchronization done by user-level routines that rely on hardware 
synchronization instructions

• (more later)

 36
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Analogy: Buying Milk

• Your fridge has no milk. You and your roommate will return 
from classes at some point and check the fridge


• Whoever gets home first will check the fridge, go and buy 
milk, and return


• What if the other person gets back while the first person is 
buying milk?

• You’ve just bought twice as much milk as you need!

• It would’ve helped to have left a note…

 37
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Lock Synchronization (1/2)

• Use a “Lock” to grant access to a region (critical section) 
so that only one thread can operate at a time


• Need all processors to be able to access the lock, so use a location in shared 
memory as the lock


• Processors read lock and either wait (if locked) or set lock 
and go into critical section


• 0 means lock is free / open / unlocked / lock off

• 1 means lock is set / closed / locked / lock on

 38
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Lock Synchronization (2/2)

• Pseudocode: 

  Check lock 
  Set the lock 
  Critical section 
  (e.g. change shared variables) 
  Unset the lock

 39

Can loop/idle here  
  if locked



Computer Science 61C Spring 2018 Wawrzynek and Weaver

Possible Lock Implementation

• Lock (a.k.a. busy wait)

Get_lock:                  # s0 -> addr of lock 
       addi t1,x0,1        # t1 = Locked value  
Loop:  lw t0,0(s0)         # load lock 
       bne t0,x0,Loop      # loop if locked 
Lock:  sw t1,0(s0)         # Unlocked, so lock 

• Unlock

Unlock: 

      sw x0,0(s0) 

• Any problems with this?
 40
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Possible Lock Problem

• Thread 1

      addi t1,x0,1 
Loop: lw t0,0(s0) 

      bne t0,x0,Loop 

Lock: sw t1,0(s0)

• Thread 2 

      addi t1,x0,1 
Loop: lw t0,0(s0) 

      bne t0,x0,Loop 

Lock: sw t1,0(s0)

 41

Time

Both threads think they have set the lock!  
Exclusive access not guaranteed!
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Hardware Synchronization

• Hardware support required to prevent an interloper (another 
thread) from changing the value 


• Atomic read/write memory operation

• No other access to the location allowed between the read and write


• How best to implement in software?

• Single instr?  Atomic swap of register ↔ memory


• Pair of instr?  One for read, one for write

 42
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Synchronization in RISC-V option one: 
Read/Write Pairs
• Load reserved:		     lr rd, rs

• Load the word pointed to by rs into rd, and add a reservation


• Store conditional:    sc rd, rs1, rs2

• Store the value in rs2 into the memory location pointed to by rs1, if the 

reservation is still valid and wit the status in rd

• Returns 0 (success) if location has not changed since the lr

• Returns nonzero (failure) if location has changed

 43
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Synchronization in RISC-V Example

• Atomic swap (to test/set lock variable)

	 Exchange contents of register and memory:  

s4 ↔ Mem(s1)


try:  
     lr  t1, s1        #load reserved 
     sc  t0, s1, s4    #store conditional 
     bne t0,x0,try     #loop if sc fails 
     add s4,x0,t1      #load value in s4

 44

sc would fail if another threads executes sc here
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Test-and-Set

• In a single atomic operation:

• Test to see if a memory location is set (contains a 1)

• Set it (to 1) if it isn’t (it contained a zero when tested)

• Otherwise indicate that the Set failed, so the program can try again

• While accessing, no other instruction can  

modify the memory location,  
including other Test-and-Set instructions


• Useful for implementing lock operations

 45
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Test-and-Set in MIPS 

• Example: MIPS sequence for implementing a T&S at (s1)

     li t2, 1  
Try: lr  t1, s1 
     bne t1, x0, Try 
     sc  t0, s1, t2 
     bne t0, x0, Try 
Locked: 
     # critical section 
Unlock: 
     sw x0,0(s1)

 46

Idea is that not for programmers 
to use this directly, but as a tool 
for enabling implementation of 
parallel libraries
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Clickers:  Consider the following code when 
executed concurrently by two threads.

What possible values can result in *(s0)?
  # *(s0) = 100 
  lw   t0,0(s0) 
  addi t0,t0,1 
  sw   t0,0(s0)

A: 101 or 102
B: 100, 101, or 102
C: 100 or 101
D: 102
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RISC-V Alternative: 
Atomic Memory Operations
• Three instruction rtype instructions

• Swap, and, add, or, xor, max, min


• Take the value pointed to by rs1

• Load it into rd

• Apply the operation to that value with rs2

• store the result back to where rs1 is pointed to


• This allow atomic swap as a primitive

• It also allows "reduction operations" that are common to be efficiently 

implemented

 48
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And in Conclusion, …

• Sequential software is slow software

• SIMD and MIMD only path to higher performance

• Multithreading increases utilization, Multicore more 

processors (MIMD)

• OpenMP as simple parallel extension to C

• Threads, Parallel for, private, critical sections, … 

• ≈ C: small so easy to learn, but not very high level and it’s easy to 

get into trouble
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