
Computer Science 61C Spring 2018 Wawrzynek and Weaver

Amdahl's Law
Threading, OpenMP

 1

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Big Idea: Amdahl’s (Heartbreaking) Law

• Speedup due to enhancement E is
Speedup	w/	E	=						----------------------		

Exec	time	w/o	E
Exec	time	w/	E	

• Suppose	that	enhancement	E	accelerates	a	fraction	F			(F	<1)	of	
the	task	by	a	factor	S	(S>1)	and	the	remainder	of	the	task	is	
unaffected

Execution	Time	w/	E		=

Speedup	w/	E		=
 2

Execution	Time	w/o	E		×		[(1-F)	+	F/S]	

1	/	[(1-F)	+	F/S]

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Big Idea: Amdahl’s Law

Speedup = 1

 3

	(1	-	F)			+			F
SNon-speed-up	part Speed-up	part

1
0.5	+	0.5

2

1
0.5	+	0.25

= = 1.33

Example:	the	execution	time	of	half	of	the	program	can	
be	accelerated	by	a	factor	of	2.  
What	is	the	program	speed-up	overall?

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Example #1: Amdahl’s Law

• Consider an enhancement which runs 20 times faster but which is only usable
25% of the time

	 		 Speedup w/ E = 1/(.75 + .25/20) = 1.31

• What if its usable only 15% of the time?

	 		 Speedup w/ E = 1/(.85 + .15/20) = 1.17

• Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of
the original computation can be scalar!

• To get a speedup of 90 from 100 processors, the percentage of the original
program that could be scalar would have to be 0.1% or less

	 		 Speedup w/ E = 1/(.001 + .999/100) = 90.99

 4

Speedup	w/	E	=			1	/	[(1-F)	+	F/S]

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Amdahl’s Law

 5

If	the	portion	of  
the	program	that 
can	be	parallelized  
is	small,	then	the 
speedup	is	limited

The	non-parallel  
portion	limits  
the	performance

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Strong and Weak Scaling

• To get good speedup on a parallel processor while keeping the
problem size fixed is harder than getting good speedup by
increasing the size of the problem.

• Strong scaling: when speedup can be achieved on a parallel processor without

increasing the size of the problem

• Weak scaling: when speedup is achieved on a parallel processor by increasing

the size of the problem proportionally to the increase in the number of processors

• Load balancing is another important factor: every processor
doing same amount of work

• Just one unit with twice the load of others cuts speedup almost in half

 6

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Clickers/Peer Instruction

 7

Suppose	a	program	spends	80%	of	its	time	in	a	square	root	
routine.	How	much	must	you	speedup	square	root	to	make	the	
program	run	5	times	faster?	

A:	5	
B:	16	
C:	20	
D:	100	
E:	None	of	the	above

Speedup	w/	E	=			1	/	[(1-F)	+	F/S]

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Amdahl’s Law In The Real 
World…
• Lets look at the federal budget:

• Price of a single F35: ~$100M

• Air Force alone wants to buy ~ 56 next year

• Line item: “Purchase fighter jets for the Air Force:” ~$6B

• Line item: “Fund Corporation for Public Broadcasting:” ~$500M

• If you want to reduce the cost of the federal government…

• Which line item is more significant?

 8

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Amdahl's Law and 
Premature Optimization...
• The runtime of a new program is really...

• The runtime of the program on all the inputs you ever run it on

• The time it takes you to write the program in the first place!

• So don't prematurely optimize

• Worry about getting things right first, you may never have to optimize it at all

• Likewise, worry about making your code readable and well
documented:

• Since the runtime of a modified version of the program is the runtime on all
inputs plus the time it takes you to relearn what you did in order to modify it!

 9

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Simple Multiprocessor

 10

Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Multiprocessor Execution Model

• Each processor has its own PC and executes an independent stream of
instructions (MIMD)

• Different processors can access the same memory space

• Processors can communicate via shared memory by storing/loading to/from common locations

• Two ways to use a multiprocessor:

• Deliver high throughput for independent jobs via job-level parallelism

• E.g. your operating system & different programs

• Improve the run time of a single program that has been specially crafted to run on a
multiprocessor - a parallel-processing program

• 	Use term core for processor (“Multicore”) because “Multiprocessor
Microprocessor” too redundant

 11

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Transition to Multicore

Sequential App
Performance

 12

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Parallelism the Only Path to Higher Performance

• Sequential processor performance not expected to increase much:

• We pretty much hit a brick wall a few years back in our ability to improve single-thread performance

• If want apps with more capability we have to embrace parallel processing
(SIMD and MIMD)

• In mobile systems, use multiple cores and GPUs

• All iPhones starting with the 4s are multicore

• iPhone 7 CPU is 4 cores!

• Two cores very fast: Burn lots of power but very good sequential performance

• Two cores power efficient: Lower sequential performance but better ops/joule

• Plus a 6 core GPU

• In warehouse-scale computers, use multiple nodes, and all the MIMD/SIMD
capability of each node

 13

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Fall 2013 -- Lecture #15

Comparing Types of Parallelism…

• SIMD-type parallelism (Data Parallel)

• A SIMD-favorable problem can map easily to a MIMD-type fabric

• SIMD-type fabrics generally offer a much higher throughput per $

• Much simpler control logic

• Classic example: Graphics cards are massive supercomputers compared to the CPU:

TeraFLOPS rather than gigaflops

• MIMD-type parallelism (data-dependent Branches!)

• A MIMD-favorable problem will not map easily to a SIMD-type fabric

4/1/16
 14

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Multiprocessors and You

• Only path to performance is parallelism

• Clock rates flat or declining

• CPI generally flat

• SIMD now ~4-8 words wide on the CPU

• SIMD accelerators even more

• Nvidia GP100 GPU: 5 TFLOPs of 64b Floating Point, 10 for 32b FP 

1792 CUDA cores for 64b Floating Point (3584 for 32b)

• MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …

• Key challenge is to craft parallel programs that have high performance on
multiprocessors as the number of processors increase – i.e., that scale

• Scheduling, load balancing, time for synchronization, overhead for communication

• If you can scale up you can then scale down
 15

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Potential Parallel Performance (assuming SW can
use it)
• It was my birthday a couple weeks back…

• And nobody got me the present I wanted!

• A Dell PoweEdge R940 rack server configured my way

• With 4x Intel Xeon Platinum 8180 (28 core processors): 112 total cores in a 3u

space!

• But to take advantage of this, need to have a workload that
can take advantage of the parallelism

 16

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Threads

• Thread: a sequential flow of instructions that performs some task

• Each thread has a PC + processor registers and accesses the

shared memory of the process

• Each core provides one or more hardware threads that actively

execute instructions

• Common Intel chips support 2 threads/core

• So a 4 core Intel processor can support 8 hardware threads

• The RPi3 has only 1 thread per core -> 4 cores -> 4 hardware threads

• Operating system multiplexes multiple software threads onto the
available hardware threads

 17

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Operating System Threads

• Give the illusion of many active threads by time-multiplexing
software threads onto hardware threads

• Remove a software thread from a hardware thread by
interrupting its execution and saving its registers and PC into
memory

• Also if one thread is blocked waiting for network access or user input can switch

to another thread

• Can make a different software thread active by loading its
registers into a hardware thread’s registers and jumping to its
saved PC

 18

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Hardware Multithreading

• Basic idea: Processor resources are expensive and should not be left idle

• Long memory latency to memory on cache miss is the biggest one

• Hardware switches threads to bring in other useful work while waiting for
cache miss

• Cost of thread context switch must be much less than cache miss latency

• Put in redundant hardware so don’t have to save context on every thread
switch:

• PC, Registers

• Attractive for apps with abundant TLP

• Commercial multi-user workloads

• Intel calls this HyperThreading

• Will actually issue from two threads at the same time!

 19

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Hardware Multithreading

 20

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

• Two copies of PC and Registers
inside processor hardware
• Looks like two processors to
software (hardware thread 0,
hardware thread 1)
• Control logic decides which
instructions to issue next
•Can even mix from dif threads

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Multithreading vs. Multicore

• Multithreading => Better Utilization

• ≈1% more hardware, 1.10X better performance?

• Share integer adders, floating-point units, all caches (L1 I$, L1 D$, L2$, L3$),

Memory Controller

• Multicore => Duplicate Processors

• ≈50% more hardware, ≈2X better performance?

• Share outer caches (L2$ or just L3$), Memory Controller

• Modern machines do both

• Multiple cores with multiple threads per core

 21

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Nick’s MacBook Pro  
MacBookPro11,1 (Early 2015)
• /usr/sbin/sysctl -a | grep hw\.

…

hw.physicalcpu: 2

hw.logicalcpu: 4

…

hw.cpufrequency =  

2,700,000,000

hw.memsize = 8,589,934,592

hw.cachelinesize = 64
hw.l1icachesize: 32,768
hw.l1dcachesize: 32,768
hw.l2cachesize: 262,144
hw.l3cachesize:

3,145,728

 22

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Nick's $35  
Raspberry Pi 3…
Quad-Core processor

	 1 thread/core

	 2-issue superscalar,  

8 stage pipeline

	 64/128b SIMD instructions

512 KB shared L2 cache

	 L1 iCache is probably 32 KB

1/2 GB RAM

100 Mbps Ethernet, 802.11, Bluetooth

 23

• Even the smallest and
cheapest systems are
now heavily parallel
– OK full kit cost $75… 

With HDMI cable, power
supply, case, 32 GB SD-
card

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Administrivia

• MT2 Regrade window is open!

 24

Computer Science 61C Spring 2018 Wawrzynek and Weaver

100s of (Mostly Dead)  
Parallel Programming Languages

 25

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultiLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL
Concurrent C Janus occam-π XC

Computer Science 61C Spring 2018 Wawrzynek and Weaver

OpenMP

• OpenMP is a language extension used for multi-threaded,
shared-memory parallelism

• Compiler Directives (inserted into source code)

• Runtime Library Routines (called from your code)

• Environment Variables (set in your shell)

• Portable

• Standardized

• But beyond the C language itself

• Easy to compile: cc –fopenmp name.c
 26

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Shared Memory Model with  
Explicit Thread-based Parallelism
• Multiple threads in a shared memory environment, explicit

programming model with full programmer control over
parallelization

• Pros:

• Takes advantage of shared memory, programmer need not worry (that much) about

data placement

• Compiler directives are simple and easy to use

• Legacy serial code does not need to be rewritten

• Cons:

• Code can only be run in shared memory environments

• Compiler must support OpenMP (e.g. gcc 4.2)

 27

Computer Science 61C Spring 2018 Wawrzynek and Weaver

OpenMP in CS61C

• OpenMP is built on top of C, so you don’t have to learn a
whole new programming language

• Make sure to add #include <omp.h>
• Compile with flag: gcc -fopenmp

• Mostly just a few lines of code to learn

• You will NOT become experts at OpenMP

• Use slides as reference, will learn to use in lab

• Key ideas:

• Shared vs. Private variables

• OpenMP directives for parallelization, work sharing, synchronization

 28

Computer Science 61C Spring 2018 Wawrzynek and Weaver

OpenMP Programming Model

• Fork - Join Model:

• OpenMP programs begin as single process (master thread) and executes
sequentially until the first parallel region construct is encountered

• FORK: Master thread then creates a team of parallel threads

• Statements in program that are enclosed by the parallel region construct are executed in parallel among the

various threads

• JOIN: When the team threads complete the statements in the parallel region construct, they

synchronize and terminate, leaving only the master thread
 29

Computer Science 61C Spring 2018 Wawrzynek and Weaver

OpenMP Extends C with Pragmas

• Pragmas are a preprocessor mechanism C provides for
language extensions

• Commonly implemented pragmas:  
structure packing, symbol aliasing, floating point exception
modes (not covered in 61C)

• Good mechanism for OpenMP because compilers that
don't recognize a pragma are supposed to ignore them

• Runs on sequential computer even with embedded pragmas

 30

Computer Science 61C Spring 2018 Wawrzynek and Weaver

parallel Pragma and Scope

• Basic OpenMP construct for parallelization: 
#pragma omp parallel  
 { 
 /* code goes here */  
 }

• Each thread runs a copy of code within the block

• Thread scheduling is non-deterministic

• OpenMP default is shared variables

• To make private, need to declare with pragma:

• #pragma omp parallel private (x)

 31

This is annoying, but curly brace MUST go on
separate line from #pragma

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Thread Creation

• How many threads will OpenMP create?

• Defined by OMP_NUM_THREADS environment variable (or

code procedure call)

• Set this variable to the maximum number of threads you want OpenMP to

use

• Usually equals the number of physical cores * number of threads/core in the

underlying hardware on which the program is run

• EG, RPi 3 has 4 threads by default

 32

Computer Science 61C Spring 2018 Wawrzynek and Weaver

What Kind of Threads?

• OpenMP threads are operating system (software) threads.

• OS will multiplex requested OpenMP threads onto available

hardware threads.

• Hopefully each gets a real hardware thread to run on, so no

OS-level time-multiplexing.

• But other tasks on machine can also use hardware threads!

• And you may want more threads than hardware if you have a lot of I/O 

so that while waiting for I/O other threads can run

• Be careful when timing results!
 33

Computer Science 61C Spring 2018 Wawrzynek and Weaver

OMP_NUM_THREADS

• OpenMP intrinsic to set number of threads: 
omp_set_num_threads(x);

• OpenMP intrinsic to get number of threads: 
num_th = omp_get_num_threads();

• OpenMP intrinsic to get Thread ID number: 
th_ID = omp_get_thread_num();

 34

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Parallel Hello World

#include <stdio.h>
#include <omp.h>
int main () {
 int nthreads, tid;

 /* Fork team of threads with private var tid */
 #pragma omp parallel private(tid)
 {
 tid = omp_get_thread_num(); /* get thread id */
 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 } /* All threads join master and terminate */
}

 35

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Data Races and Synchronization

• Two memory accesses form a data race if different threads
attempts to access the same location, and at least one is a write,
and they occur one after another

• If there is a data race, result of program can vary depending on
chance (which thread first?)

• Avoid data races by synchronizing writing and reading to get
deterministic behavior

• Synchronization done by user-level routines that rely on hardware
synchronization instructions

• (more later)

 36

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Analogy: Buying Milk

• Your fridge has no milk. You and your roommate will return
from classes at some point and check the fridge

• Whoever gets home first will check the fridge, go and buy
milk, and return

• What if the other person gets back while the first person is
buying milk?

• You’ve just bought twice as much milk as you need!

• It would’ve helped to have left a note…

 37

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Lock Synchronization (1/2)

• Use a “Lock” to grant access to a region (critical section)
so that only one thread can operate at a time

• Need all processors to be able to access the lock, so use a location in shared
memory as the lock

• Processors read lock and either wait (if locked) or set lock
and go into critical section

• 0 means lock is free / open / unlocked / lock off

• 1 means lock is set / closed / locked / lock on

 38

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Lock Synchronization (2/2)

• Pseudocode:

 Check lock
 Set the lock
 Critical section
 (e.g. change shared variables)
 Unset the lock

 39

Can loop/idle here  
 if locked

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Possible Lock Implementation

• Lock (a.k.a. busy wait)

Get_lock: # s0 -> addr of lock
 addi t1,x0,1 # t1 = Locked value
Loop: lw t0,0(s0) # load lock
 bne t0,x0,Loop # loop if locked
Lock: sw t1,0(s0) # Unlocked, so lock

• Unlock

Unlock:

 sw x0,0(s0)

• Any problems with this?
 40

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Possible Lock Problem

• Thread 1

 addi t1,x0,1
Loop: lw t0,0(s0)

 bne t0,x0,Loop

Lock: sw t1,0(s0)

• Thread 2

 addi t1,x0,1
Loop: lw t0,0(s0)

 bne t0,x0,Loop

Lock: sw t1,0(s0)

 41

Time

Both threads think they have set the lock!
Exclusive access not guaranteed!

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Hardware Synchronization

• Hardware support required to prevent an interloper (another
thread) from changing the value

• Atomic read/write memory operation

• No other access to the location allowed between the read and write

• How best to implement in software?

• Single instr? Atomic swap of register ↔ memory

• Pair of instr? One for read, one for write

 42

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Synchronization in RISC-V option one: 
Read/Write Pairs
• Load reserved:		 lr rd, rs

• Load the word pointed to by rs into rd, and add a reservation

• Store conditional: sc rd, rs1, rs2

• Store the value in rs2 into the memory location pointed to by rs1, if the

reservation is still valid and wit the status in rd

• Returns 0 (success) if location has not changed since the lr

• Returns nonzero (failure) if location has changed

 43

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Synchronization in RISC-V Example

• Atomic swap (to test/set lock variable)

	 Exchange contents of register and memory:  

s4 ↔ Mem(s1)

try:
 lr t1, s1 #load reserved
 sc t0, s1, s4 #store conditional
 bne t0,x0,try #loop if sc fails
 add s4,x0,t1 #load value in s4

 44

sc would fail if another threads executes sc here

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Test-and-Set

• In a single atomic operation:

• Test to see if a memory location is set (contains a 1)

• Set it (to 1) if it isn’t (it contained a zero when tested)

• Otherwise indicate that the Set failed, so the program can try again

• While accessing, no other instruction can  

modify the memory location,  
including other Test-and-Set instructions

• Useful for implementing lock operations

 45

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Test-and-Set in MIPS

• Example: MIPS sequence for implementing a T&S at (s1)

 li t2, 1
Try: lr t1, s1
 bne t1, x0, Try
 sc t0, s1, t2
 bne t0, x0, Try
Locked:
 # critical section
Unlock:
 sw x0,0(s1)

 46

Idea is that not for programmers
to use this directly, but as a tool
for enabling implementation of
parallel libraries

Computer Science 61C Spring 2018 Wawrzynek and Weaver

 47

Clickers: Consider the following code when
executed concurrently by two threads.

What possible values can result in *(s0)?
 # *(s0) = 100
 lw t0,0(s0)
 addi t0,t0,1
 sw t0,0(s0)

A: 101 or 102
B: 100, 101, or 102
C: 100 or 101
D: 102

Computer Science 61C Spring 2018 Wawrzynek and Weaver

RISC-V Alternative: 
Atomic Memory Operations
• Three instruction rtype instructions

• Swap, and, add, or, xor, max, min

• Take the value pointed to by rs1

• Load it into rd

• Apply the operation to that value with rs2

• store the result back to where rs1 is pointed to

• This allow atomic swap as a primitive

• It also allows "reduction operations" that are common to be efficiently

implemented

 48

Computer Science 61C Spring 2018 Wawrzynek and Weaver

And in Conclusion, …

• Sequential software is slow software

• SIMD and MIMD only path to higher performance

• Multithreading increases utilization, Multicore more

processors (MIMD)

• OpenMP as simple parallel extension to C

• Threads, Parallel for, private, critical sections, …

• ≈ C: small so easy to learn, but not very high level and it’s easy to

get into trouble

 49

