

 Advanced Micro Devices

AMD uProf

User Guide

AMD uProf User Guide

© 2019 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Microsoft, Windows, Windows 10 are registered trademarks of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

AMD uProf User Guide

 3

Contents

About this document .. 6

Chapter 1 Introduction .. 9

1.1 Overview .. 9

1.2 Specifications ... 10

1.3 Installing uProf .. 11

1.3.1 Installing Power Profiling driver on Linux .. 11

1.3.2 Installing Remote Agent .. 13

1.3.3 Sample program ... 13

1.4 Support ... 13

Chapter 2 Workflow and Key concepts ... 14

2.1 Workflow ... 14

2.1.1 Collect phase .. 14

2.1.2 Translate phase... 16

2.1.3 Analyze phase .. 16

2.2 Predefined Sampling Configuration .. 17

2.3 Predefined View Configuration ... 18

Chapter 3 Getting started with AMDuProf GUI .. 22

3.1 User Interface ... 22

3.2 Launching GUI .. 23

3.3 Configure a profile ... 24

3.3.1 Select Profile Target .. 24

3.3.2 Select Profile Type ... 26

3.3.3 Start Profile .. 27

3.4 Analyze the profile data ... 28

3.4.1 Hot Spots .. 28

3.4.2 Process and Functions .. 29

3.4.3 Source and Assembly ... 31

3.4.4 Timechart ... 32

3.5 Importing Profile Databases .. 33

AMD uProf User Guide

4

3.6 Analyzing saved Profile Session ... 34

3.7 Using saved Profile Configuration .. 35

3.8 Settings .. 36

Chapter 4 Getting started with AMDuProfCLI ... 37

4.1 How to start CPU profile? ... 37

4.2 How to start Power profile? .. 40

4.3 Collect command... 41

4.4 Report command ... 46

4.5 Timechart command .. 49

4.6 Info command ... 52

Chapter 5 Performance Analysis ... 53

5.1 Analysis with Time-based profiling .. 54

5.2 Analysis with Event based profiling ... 58

5.3 Analysis with Instruction based sampling ... 62

5.4 Analysis with Callstack samples ... 65

5.4.1 Flame graph ... 66

5.4.2 Call graph .. 67

5.5 Thread Concurrency .. 68

5.6 Profiling a Java Application .. 70

5.7 Profiling Linux System Modules .. 71

5.8 Profiling Linux Kernel .. 72

5.9 Limitations .. 72

Chapter 6 System Analysis ... 73

6.1 Metrics ... 73

6.2 Profile using GUI .. 76

6.2.1 Configure ... 76

6.2.2 Analyze .. 78

6.2.3 Settings .. 79

6.3 Profile using CLI ... 79

6.3.1 Examples ... 80

6.4 AMDPowerProfileAPI Library ... 81

6.4.1 How to use the APIs? .. 81

AMD uProf User Guide

 5

6.5 Limitations ... 82

Chapter 7 Energy Analysis .. 83

7.1 Profile using GUI ... 84

7.1.1 Configure and Start profile .. 84

7.1.2 Analyze the profile data ... Error! Bookmark not defined.

7.2 Profile using CLI ... 85

7.3 Limitations ... 86

Chapter 8 Remote Profiling .. 87

8.1 Profile remote targets using GUI ... 87

8.1.1 Adding user-id in the target system ... 87

8.1.2 Launching Remote Agent .. 88

8.1.3 Establishing connection with Remote Agent ... 88

8.2 Profile remote targets using CLI .. 90

8.3 Limitations ... 91

Chapter 9 Profile Control APIs .. 92

9.1 AMDProfileControl APIs .. 92

9.1.1 Profile Control APIs .. 92

9.1.2 How to use the APIs? ... 93

9.1.3 Compiling instrumented target application .. 94

9.1.4 Profiling instrumented target application... 94

Chapter 10 Reference .. 95

10.1 Preparing an application for profiling .. 95

10.1.1 Generate debug information on Windows: .. 95

10.1.2 Generate debug information on Linux: .. 96

10.2 CPU Profiling .. 97

10.2.1 Hardware Sources .. 97

10.2.2 Profiling Concepts ... 98

10.2.3 Profile Types .. 99

10.2.4 CPU PMC Events .. 100

10.2.5 IBS Derived Events.. 102

10.3 Useful links .. 108

AMD uProf User Guide

6

About this document

This document describes how to use AMD uProf to perform CPU and Power analysis of applications

running on Windows and Linux operating systems on AMD processors.

The latest version of this document is available at AMD uProf web site at the following URL:

https://developer.amd.com/amd-uprof/

Intended Audience

This document is intended for software developers and performance tuning experts who want to

improve the performance of their application. It assumes prior understanding of CPU architecture,

concepts of threads, processes, load modules and familiarity with performance analysis concepts.

Conventions:-

Following conventions are used in this document:

Convention Description

GUI element A Graphical User Interface element like menu name or button

→ Menu item within a Menu

[] Contents are optional in syntax

… Preceding element can be repeated

| Denotes “or”, like two options are not allowed together

File name Name of a file or path or source code snippet

Command Command name or command phrase

Hyperlink Links to external web sites

Link Links to the section within this document

https://developer.amd.com/amd-uprof/

AMD uProf User Guide

 7

Definitions:-

Following terms may be used in this document.

Term Description

PMC Performance Monitoring Counter

TBP Timer Based Profiling

EBP Event Based Profiling. This uses Core PMC events.

IBS Instruction Based Sampling

NB Northbridge

SMU System Management Unit

RAPL Running Average Power Limit

MSR Model Specific Register

DTLB Data Translation Lookaside Buffer

DC Data Cache

ITLB Instruction Translation Lookaside Buffer

IC Instruction Cache

PTI Per Thousand Instructions

IPC Instruction Per Cycle

CPI Cycles Per Instruction

ASLR Address Space Layout Randomization

GUI Graphical User Interface

CLI Command Line Interface

CSV Comma Separated Values format

Target system System in which the profile data is collected

Host system System in which the AMDuProf client process runs

AMD uProf User Guide

8

Client Instance of AMDuProf or AMDuProfCLI running on a host

system

Agent Instance of AMDRemoteAgent process running on a target

system

AMD uProf Denotes the uProf product name

AMDuProf Denotes the name of the graphical-user-interface tool

AMDuProfCLI Denotes the name of the command-line-interface tool

AMDRemoteAgent Denotes the name of the remote agent tool which runs on target

system

Performance Profiling (or)

CPU Profiling

Identify and analyze the performance bottlenecks. Performance

Profiling and CPU Profiling denotes the same.

System Analysis Refers the system-wide Power profiling

AMD uProf User Guide

 9

Chapter 1 Introduction

1.1 Overview

AMD uProf is a performance analysis tool for applications running on Windows and Linux

operating systems. It allows developers to better understand the runtime performance of their

application and to identify ways to improve its performance.

AMD uProf offers:

• Performance Analysis

▪ CPU Profile - to identify runtime performance bottlenecks of the application

• Power Profiling

▪ System-wide Power Profile - to monitor thermal and power characteristics of the

system

• Energy Analysis

▪ Power Application Analysis - to identify energy hotspots in the application (Windows

only)

AMD uProf has following user interfaces:

• Graphical User Interface - AMDuProf

• Command Line Interface - AMDuProfCLI

• Remote Agent - AMDRemoteAgent

AMD uProf can effectively be used to:

• Analyze the performance of one or more processes/applications

• Track down the performance bottlenecks in the source code

• Identify ways to optimize the source code for better performance and power efficiency

• Examine the behavior of kernel, drivers and system modules

• Observe system-level thermal and power characteristics

• Observe system metrics like IPC, memory bandwidth

AMD uProf User Guide

10

1.2 Specifications

AMD uProf supports the following specifications. For detailed list of supported processors and

operating systems, refer Release Notes.

Processors

• AMD CPU & APU Processors

• Discrete GPUs: Graphics IP 7 GPUs, AMD Radeon 500 Series, FirePro models (Power

Profiling Only)

Operating Systems

AMD uProf supports the 64-bit version of the following Operating Systems:

• Microsoft

▪ Windows 7, Windows 10, Windows Server 2016, Windows Server 2019

• Linux

▪ Ubuntu 16.04 & later, RHEL 7.0 & later, CentOS 7.0 & later

▪ openSUSE Leap 15.0, SLES 12 & 15

Compilers and Application Environment

AMD uProf supports following application environment:

• Languages:

▪ Native languages: - C, C++, Fortran, Assembly

▪ Non-Native languages: - Java, C#

• Programs compiled with

▪ Microsoft compilers, GNU compilers, LLVM

▪ AMD’s AOCC, Intel compilers

• Debug info formats:

▪ PDB, COFF, DWARF, STABS

• Applications compiled with and without optimization or debug information

• Single-process, multi-process, single-thread, multi-threaded applications

• Dynamically linked/loaded libraries

• POSIX development environment on Windows

▪ Cygwin

▪ MinGW

AMD uProf User Guide

 11

1.3 Installing uProf

Installer binaries are available at https://developer.amd.com/amd-uprof/. Install AMD uProf using

one of the following methods.

Windows

Run the AMDuProf-x.y.z.exe installer.

Linux (using .tar.bz2 binary)

Just extract the tar.bz2 binary.

$ tar -xf AMDuProf_Linux_x64_x.y.z.tar.bz2

To manually install the Power Profiler Linux driver, refer this section.

RHEL (using .rpm installer)

Install either using rpm or yum command.

$ sudo rpm --install amduprof-x.y-z.x86_64.rpm

$ sudo yum install amduprof-x.y-z.x86_64.rpm

Ubuntu (using .deb installer)

Install using the dpkg command.

$ sudo dpkg --install amduprof_x.y-z_amd64.deb

1.3.1 Installing Power Profiling driver on Linux

On Linux systems, GCC and MAKE software packages are prerequisites for installing Power

Profiler’s Linux driver. If you don’t have these packages, they can be installed using the following

commands:

On RHEL and CentOS distros:

 $ sudo yum install gcc make

On Debian/Ubuntu distros:

 $ sudo apt install build-essential

https://developer.amd.com/amd-uprof/

AMD uProf User Guide

12

AMD uProf Debian and RPM installers perform the driver installation automatically. However, if

you’ve downloaded the AMD uProf tar.bz2 archive, you have to install the Power Profiler’s Linux

driver manually. This includes a simple step of running AMDPowerProfilerDriver.sh script with

root credentials.

Example:

$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh install

Installer will create a source tree for power profiler driver at /usr/src/AMDPowerProfiler-

<version> directory. All the source files required for module compilation are located in this

directory and are under MIT license.

To uninstall the driver run the following command:

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh uninstall

Linux Power Profiling driver support for DKMS

On Linux machines, Power profiling driver can also be installed with Dynamic Kernel Module

Support (DKMS) framework support. DKMS framework automatically upgrades the power

profiling driver module whenever there is a change in the existing kernel. This saves user from

manually upgrading the power profiling driver module. The DKMS package needs to be installed

on target machines before running the installation steps mentioned in the above section.

AMDPowerProfilerDriver.sh installer script will automatically take care of DKMS related

configuration if DKMS package is installed in the target machine.

Example (for Ubuntu distros):

$ sudo apt-get install dkms

$ tar –xf AMDuProf_Linux_x64_x.y.z.tar.bz2

$ cd AMDuProf_Linux_x64_x.y.z/bin

$ sudo ./AMDPowerProfilerDriver.sh install

If the user upgrades the kernel version frequently it is recommended to use DKMS for installation.

AMD uProf User Guide

 13

1.3.2 Installing Remote Agent

The AMD uProf ‘s remote agent AMDRemoteAgent is shipped with the installer and is installed

by default when installing uProf. You can also choose to install only AMD uProf ‘s remote agent

component while using the Windows installer.

1.3.3 Sample program

A sample matrix multiplication application AMDTClassicMatMul is installed along with the

product to let you use with the tool.

Windows:

C:\Program Files\AMD\AMDuProf\Examples\AMDTClassicMatMul\bin\AMDTClassicMatMul.exe

Linux:

/opt/AMDuProf_X.Y-ZZZ/AMDuProf/Examples/AMDTClassicMat/bin/AMDTClassicMatMul-bin

1.4 Support

Visit the following sites for downloading the latest version, bug reports, support and feature

requests.

AMD uProf product page - https://developer.amd.com/amd-uprof/

AMD Developer Community forum - https://community.amd.com/community/server-gurus

https://developer.amd.com/amd-uprof/
file:///C:/Users/gnanam/AppData/Roaming/Microsoft/Word/AMD%20Developer%20Community
https://community.amd.com/community/server-gurus

AMD uProf User Guide

14

Chapter 2 Workflow and Key concepts

2.1 Workflow

The AMD uProf workflow has the following phases:

Phase Description

Collect Running the application program and collect the profile data

Translate Process the profile data to aggregate and correlate and save them in a DB

Analyze View and analyze the performance data to identify bottlenecks

The profile data can be collected and analyzed using either by the GUI or the command-line-

interface tool.

2.1.1 Collect phase

Important concepts of collect phase are explained in this section.

Profile Target

The profile target is the any of the following for which profile data will be collected.

▪ Application - Launch application and profile that process and its children

▪ System - Profile all the running processes and/or kernel

▪ Process - Attach to an existing application (Native applications only)

Profile Type

The profile type defines the type of profile data collected and how the data should be collected.

Following profile types are supported:

▪ CPU Profile

▪ System-wide Power Profile

▪ Power Application Analysis (Windows only)

How data should be collected is defined by Sampling Configuration.

• Sampling Configuration identifies the set of Sampling Events, and their Sampling Interval

and mode.

• Sampling Event is a resource used to trigger a sampling point at which a sample (profile data)

will be collected.

AMD uProf User Guide

 15

• Sampling Interval defines the number of the occurrences of the sampling event after which

an interrupt will be generated to collect the sample.

• Mode defines when to count the occurrences of the sampling event – in User mode and/or OS

mode.

What type of profile data to collect – Sampled data:

• Sampled data – the profile data that can be collected when the interrupt is generated upon the

expiry of the sampling interval of a sampling event.

Profile Type Type of Profile data collected Sampling Events

CPU Profiling Process ID,

Thread ID,

IP,

Callstack,

ETL tracing (Windows only)

OS Timer,

Core PMC events,

IBS

Application Energy Analysis Process ID, Thread ID,

IP, RAPL

OS Timer

System Power Profiling RAPL Energy values,

Power & Thermal values,

Core Effective Frequency

OS Timer

Sampled data

For CPU Profiling, since there are numerous micro-architecture specific events are available to

monitor, the tool itself groups the related and interesting events to monitor – which is called

Predefined Sampling Configuration. For example, Assess Performance is one such

configuration, which is used to get the overall assessment of performance and to find potential issues

for investigation. Refer this section for all the supported Predefined Sampling Configurations.

A Custom Sampling Configuration is the one in which the user can define a sampling

configuration with events of interest.

Profile Configuration

A profile configuration identifies all the information used to perform a collect measurement. It

contains the information about profile target, sampling configuration and data to sample and profile

scheduling details.

AMD uProf User Guide

16

The GUI saves these profile configuration details with a default name (Ex: AMDuProf-TBP-

Classic> which is also user definable. Since the performance analysis is iterative, this is persistent

(can be deleted), so that the user can reuse the same configuration for future data collection runs.

Profile Session (or Profile Run)

A profile session represents a single performance experiment for a Profile Configuration. The tool

saves all the profile data, translated data (in a DB) under the folder which is named as <profile

config name>-<timestamp>.

Once the profile data is collected, the GUI will process the data to aggregate and attribute the

samples to the respective processes, threads, load modules, functions and instructions. This

aggregated data will be written into an SQLite DB which is used during Analyze phase. This process

of the translating the raw profile data happens in CLI while generating the profile report.

2.1.2 Translate phase

The collected raw profile data will be processed to aggregate and attribute to the respective

processes, threads, load modules, functions and instructions. Debug information for the launched

application generated by the compiler is needed to correlate the samples to functions and source

lines.

This phase is performed automatically in GUI once the profiling is stopped and in the CLI, when

you invoke the report command to generate the report from the raw profile file.

2.1.3 Analyze phase

View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the

GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has

a list of associated predefined views.

For CPU Profiling, since there are numerous micro-architecture specific events data can be

collected, the tool itself groups the related and interesting metrics – which is called Predefined

View. For example, IPC assessment view, lists metrics like CPU Clocks, Retired Instructions, IPC

and CPI. Refer this section for all the supported Predefined View Configurations.

AMD uProf User Guide

 17

2.2 Predefined Sampling Configuration

For CPU Profiling, since there are numerous micro-architecture specific events are available to

monitor, the tool itself groups the related and interesting events to monitor – which is called

Predefined Sampling Configuration. They provide a convenient way to select a useful set of

sampling events for profile analysis.

Here is the list of predefined sampling configurations:

Profile

Type

Predefined Configuration

Name

Abbreviation Description

TBP Time-based profile tbp To identify where programs are

spending time.

EBP

Assess performance assess Provides an overall assessment of

performance.

Assess performance

(Extended)

assess_ext Provides an overall assessment of

performance with additional metrics.

Investigate data access data_access To find data access operations with

poor L1 data cache locality and poor

DTLB behavior.

Investigate instruction access inst_access To find instruction fetches with poor

L1 instruction cache locality and

poor ITLB behavior.

Investigate branching branch To find poorly predicted branches

and near returns.

IBS Instruction based sampling ibs To collect sample data using IBS

Fetch and IBS OP. Precise sample

attribution to instructions.

Energy Power Application Analysis power To identify where the programs are

consuming energy.

Note:

• The AMDuProf GUI uses the name of the predefined configuration in the above table.

• Abbreviation is used with AMDuProfCLI collect command’s --config option.

• The supported predefined configurations and the sampling events used in them, is based on

the processor family and model.

AMD uProf User Guide

18

2.3 Predefined View Configuration

A View is a set of sampled event data and computed performance metrics either displayed in the

GUI pages or in the text report generated by the CLI. Each predefined sampling configuration has

a list of associated predefined views.

List of predefined view configurations for Assess Performance:

View configuration Abbreviation Description

Assess

Performance

triage_assess This view gives the overall picture of performance,

including instructions per clock cycle (IPC), data cache

accesses and misses, mispredicted branches, and

misaligned data access. Use it to find possible issues for

deeper investigation.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Data access

assessment

dc_assess Information about data cache (DC) access including DC

miss rate and DC miss ratio.

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned data.

List of predefined view configurations for Investigate Data Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Data access

assessment

dc_assess Information about data cache (DC) access including

DC miss rate and DC miss ratio.

Data access report dc_focus Use this view to analyze L1 Data Cache (DC) behavior

and compare misses versus refills.

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned data.

DTLB report dtlb_focus Information about L1 DTLB access and miss rates.

AMD uProf User Guide

 19

List of predefined view configurations for Investigate Branch Access:

View configuration Abbreviation Description

Investigate

Branching

Branch Use this view to find code with a high branch density

and poorly predicted branches.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Taken branch

report

taken_focus Use this view to find code with a high number of taken

branches.

Near return report return_focus Use this view to find code with poorly predicted near

returns.

List of predefined view configurations for Assess Performance (Extended):

View configuration Abbreviation Description

Assess

Performance

(Extended)

triage_assess_ext This view gives an overall picture of performance. Use

it to find possible issues for deeper investigation.

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Branch assessment br_assess Use this view to find code with a high branch density

and poorly predicted branches.

Data access

assessment

dc_assess Information about data cache (DC) access including

DC miss rate and DC miss ratio.

Misaligned access

assessment

misalign_assess To identify regions of code that access misaligned

data.

AMD uProf User Guide

20

List of predefined view configurations for Investigate Instruction Access:

View configuration Abbreviation Description

IPC assessment ipc_assess To find hotspots with low instruction level parallelism.

Provides performance indicators – IPC and CPI.

Instruction cache

report

ic_focus Use this view to identify regions of code that miss in

the Instruction Cache (IC).

ITLB report itlb_focus Use this view to analyze and break out ITLB miss rates

by levels L1 and L2.

List of predefined view configurations for Instruction Based Sampling:

View configuration Abbreviation Description

IBS fetch overall ibs_fetch_overall Use this view to show an overall summary of the

IBS fetch sample data.

IBS fetch

instruction cache

ibs_fetch_ic Use this view to show a summary of IBS attempted

fetch Instruction Cache (IC) miss data.

IBS fetch

instruction TLB

ibs_fetch_itlb Use this view to show a summary of IBS attempted

fetch ITLB misses.

IBS fetch page

translations

ibs_fetch_page Use this view to show a summary of the IBS L1

ITLB page translations for attempted fetches.

IBS All ops ibs_op_overall Use this view to show a summary of all IBS Op

samples.

IBS MEM all

load/store

ibs_op_ls Use this view to show a summary of IBS Op

load/store data.

IBS MEM data

cache

ibs_op_ls_dc Use this view to show a summary of DC behavior

derived from IBS Op load/store samples.

IBS MEM data

TLB

ibs_op_ls_dtlb Use this view to show a summary of DTLB behavior

derived from IBS Op load/store data.

IBS MEM locked

ops and access by

type

ibs_op_ls_memacc Use this view to show uncacheable (UC) memory

access, write combining (WC) memory access and

locked load/store operations.

AMD uProf User Guide

 21

IBS MEM

translations by page

size

ibs_op_ls_page Use this view to show a summary of DTLB address

translations broken out by page size.

IBS MEM

forwarding and

bank conflicts

ibs_op_ls_expert Use this view to show memory access bank

conflicts, data forwarding and Missed Address

Buffer (MAB) hits.

IBS BR branch ibs_op_branch Use this view to show IBS retired branch op

measurements including mispredicted and taken

branches.

IBS BR return ibs_op_return Use this view to show IBS return op measurements

including the return misprediction ratio.

IBS NB

local/remote access

ibs_op_nb_access Use this view to show the number and latency of

local and remote accesses.

IBS NB cache state ibs_op_nb_cache Use this view to show cache owned (O) and

modified (M) state for NB cache service requests.

IBS NB request

breakdown

ibs_op_nb_service Use this view to show a breakdown of NB access

requests.

Note:

• The AMDuProf GUI uses the name of the predefined configuration in the above tables.

• Abbreviation is used with AMDuProfCLI report command’s --view option.

• The supported predefined Views and the corresponding metrics are based on the processor

family and model.

AMD uProf User Guide

22

Chapter 3 Getting started with AMDuProf

GUI

3.1 User Interface

AMDuProf GUI provides a visual interface to profile and analyze the performance data. It has

various pages and each page has a number of sub windows. The pages can be navigated through the

top horizontal navigation bar. When a page is selected, its sub windows will be listed in the leftmost

vertical pane.

AMDuProf GUI – user interface

1. The menu names in the horizontal bar like HOME, PROFILE, SUMMARY, ANALYZE are

called pages

2. Each page will have its sub windows listed in the leftmost vertical pane. For example, HOME

page has various windows like Welcome, Recent Profiles, Open Profile etc.,

3. Each window will have various sections. These sections are used to specify various inputs

required for a profile run, display the profile data for analyze, buttons and links to navigate to

AMD uProf User Guide

 23

associated sections. Here in the Welcome window, Quick Links section has two links that lets

you start a profile session with minimal configuration steps.

3.2 Launching GUI

To launch the AMDuProf GUI program:

Windows

Launch GUI from C:\Program Files\AMD\AMDuProf\bin\AMDuProf.exe or

from the Desktop shortcut.

Linux

Launch GUI from /opt/AMDuProf_X.Y-ZZZ/AMDuProf binary.

On launching the GUI, you will be greeted with the Welcome window. This window has many

sections – quick links to start a profile run, help links to configure a new profile and a list of recently

opened profiles.

AMDuProf Welcome window

AMD uProf User Guide

24

1. Start Here section:

• Create a new profile? link lets you generate a new profile with requisite options.

• Open existing profile config? link lets you browse through various saved profile

configurations and choose anyone.

• Connect to Remote Machine? link lets you connect to the remote target system.

2. Recently Opened Profiles section will have the last 5 opened databases. Once a profile session

is complete or a profile database imported, a link to that database will be added in this session.

3. Quick Links section contains two entries which lets you to start profiles with minimal

configuration.

a. Clicking See what’s keeping your System busy will start a system-wide time-based

profiling until stopped by you and then display the collected data.

b. Clicking See what’s guzzling power in your System will take you to a section where

various power and thermal related counters can be selected and will present a live view

of the data through graphs.

4. Help Links section provides links to uProf user guide and power profiler API guide.

5. AMD Developer Blog section provides useful links for the developers.

3.3 Configure a profile

To perform a collect run, first you should configure the profile by specifying the:

1. Profile target

2. Profile type

a. What profile data should be collected (CPU or Power performance data)

b. Monitoring events - how the data should be collected

c. Additional profile data (if needed) - callstack samples, profile scheduling etc.,

This is called profile configuration - which identifies all the information used to perform a collect

measurement. Note: The additional profile data to be collected, depends on the selected profile type.

3.3.1 Select Profile Target

To start a profile, either click the PROFILE page at the top navigation bar or Create a new profile?

link in HOME page’s Welcome window. This will navigate to the Start Profiling window. You

will see Select Profile Target fragment in the Start Profiling window.

AMD uProf User Guide

 25

In this fragment, different types of profile target can be selected from the Select Profile Target drop

down list. Following profile target options are available:

Start Profiling – Select Profile Target

Application: Select this target when you want to launch an application and profile it (or launch and

do a system-wide profile). The only compulsory option is a valid path to the executable. (By default,

the path to the executable becomes the working directory unless you specify a path).

System: Select this if you do not wish to launch any application but perform either a system-wide

profile or profile specific set of cores.

Process(es): Select this if you want to profile an application/process which is already running. This

will bring up a process table which can be refreshed. Selecting any one of the process from the table

is mandatory in order to start profile.

Once profile target is selected and configured with valid data, the Next button will be enabled to go

the next fragment of Start Profiling. Note that specifying any invalid option will disable the Next

button.

AMD uProf User Guide

26

3.3.2 Select Profile Type

Once profile target is selected and configured, clicking Next button will take you to the Select

Profile Type fragment.

Start Profiling – Select Profile Type

This fragment lets you to decide the type of profile data collected and how the data should be

collected. You can select the profile type based on the performance analysis that you intend to

perform. Refer this section for details on profile types. In the above figure:

1. Select Profile Type dropdown lists all the supported profile types

2. Once you select a profile type, the left vertical pane within this window, will list the options

corresponding to the selected profile type. Here, For CPU Profile type, all the available

predefined sampling configurations will be listed.

3. This section lists all the sampling events that are monitored in the selected predefined sampling

configuration. Each entry represents a sampling configuration (Unit mask, Sampling interval,

OS & User mode) for that event. You can modify these event attributes by clicking Modify

Events button and as well add new events and/or remove events

AMD uProf User Guide

 27

4. Clicking Advanced Options button will take you to the Advanced Options fragment to set

other options like the Call Stack Options, Profile Scheduling, Symbols and Sources etc.,

5. This profile configuration details are persistent and saved by the tool with a name – here it is

AMDuProf-EBP-SystemWide. This name is user definable and the same configuration can be

reused later by clinking PROFILE → Saved Configurations and then selecting from the list

of saved configurations.

6. The Next and Previous buttons are available to navigate to various fragments within the Start

Profiling window.

3.3.3 Start Profile

Once all the options are set correctly, the Start Profile button at the bottom will be enabled and you

can click on it to start the profile to collect the profile data. After the profile initialization, for CPU

Profile and Power App Analysis profile types, you will see:

Profile data collection

1. The running timer displaying the number of seconds passed starting from zero.

2. When the profiling is in progress, the user can

AMD uProf User Guide

28

▪ Stop the profiling by clicking Stop button.

▪ Cancel the profiling by clicking Cancel button, which will take you back to Select

Profile Target fragment of PROFILE

▪ Pause the profiling by clicking Pause button. When the profile is paused, the profile data

will not be collected, and the user can resume profiling by clicking Resume button.

3.4 Analyze the profile data

When the profiling stopped, the collected raw profile data will be processed automatically, and you

can analyze the profile data through various UI sections to identify the potential performance

bottlenecks:

• SUMMARY page to look at overview of the hotspots for the profile session

• ANALYZE page to examine the profile data at various granularities

• SOURCES page to examine the data at source line and assembly level

• TIMECHART page to view of thermal, power, frequency and other system metrics

The sections available depends on the profile type. The CPU Profile and Power Application

Analysis types will have SUMMARY, ANALYZE and SOURCES pages to analyze the data. The

System-wide Power Profile will only have the TIMECHART page.

3.4.1 Hot Spots

Once the translation completes, the SUMMARY page will be populated with the profile data and

Hot Spots window will be presented. This SUMMARY page gives an overview of the hot spots for

the profile session through various windows like Hot Spots and Session Information.

In this Hot Spots window, hotspots will be shown for functions, modules, process and threads.

Process and Threads will only be shown if there are more than one.

In the below Hot Spots window:

1. List of top 5 hot functions for the selected event.

2. The Hot Functions donut chart for functions is interactive in nature - i.e. you can click on any

section and the corresponding function's source will open in a separate tab in SOURCES page

3. The hotspots are shown per event and it can be selected from drop-down in top right corner.

Changing it to any other event will update the hotspot data accordingly.

AMD uProf User Guide

 29

SUMMARY – Hot Spots window

3.4.2 Process and Functions

Click on the ANALYZE button on the top horizontal navigation bar to go Metrics window, which

displays the profile data table at various granularities - Process, Load Modules, Threads and

Functions. The window contains data in two different formats:

1. The upper tree represents counter samples grouped by Process. The tree can be expanded to see

the child entries for each parent (i.e. for a process). The Load Modules and Threads are child

entries for the selected process entry.

2. The lower Functions table contains function-level counter samples. This data depends on what

is selected in the upper tree. For more specific data, you can select a child entry from the upper

tree and the corresponding function data will be updated in the lower tree.

AMD uProf User Guide

30

ANALYZE page - Metrics window

3. The search text box lets you search a function name in the Functions table. Only the selected

function will be displayed in the Functions table. Buttons like Reset to clear the search text box

and Go Back to go back to the Functions table that list all the functions are available

4. Filters and Options pane lets you filter the profile data displayed by various controls.

• The View controls the counters that are displayed. The relevant counters and their derived

metrics are grouped in predefined views. The user can select the views from the View drop-

down. Refer this section for more details on predefined View configurations.

• The Group By drop-down is used to group the data by Process, Module and Thread. By

default, the sample data is grouped-by Process

• The Show Values as option can be used to display the counter values either as absolute

count or percentage.

• The System Modules option can be used to either exclude or include the profile data

attributed to system modules.

Not all entries will be loaded for a profile. To load more than the default number of entries, click

the Load more functions or Load more profile data buttons on the top right corners to fetch more

data. The columns can be sorted as well by clicking on the column headers.

AMD uProf User Guide

 31

3.4.3 Source and Assembly

Double-clicking any entry on the Functions table in Metrics window will make the GUI load the

source tab for that function in SOURCES page. If the GUI can find the path to the source file for

that function, then it will try to open the file, failing which you will be prompted to locate it.

SOURCES – source and assembly window

1. The source lines of the selected function are listed, and the corresponding metrics are populated

in various columns against each source line. If no samples are collected when a source line was

executed, the metrics column will be empty.

2. Each row in the source tab can be expanded to see the assembly instructions generated for the

corresponding source line. The tree will also show the offset for each assembly instruction along

with counter samples.

3. The Function List drop-down lists all the functions in the source file which have profile samples

attributed. Selecting any one of them will take you there. However, the data for the previous one

will be removed.

4. Filters pane lets you filter the profile data by providing the following options.

AMD uProf User Guide

32

• The View controls the counters that are displayed. The relevant counters and their derived

metrics are grouped in predefined views. The user can select it from the View drop-down.

Refer this section for more details on predefined View configurations.

• The PID drop-down lists all the processes on which this selected function is executed and

has samples

• The TID drop-down lists all the threads on which this selected function is executed and has

samples

• The Show Values as option can be used to display the counter values either as absolute

count or percentage.

For multi-threaded or multi-process applications, if a function has been executed from multiple

threads/processes, then each of them will be listed in the PID and TID drop-downs in Filters pane.

Changing them will update the counter sample data for that particular selection. By default, profile

data for the selected function, aggregated across all processes and all threads will be shown.

Note: If the source file cannot be located or opened, only disassembly will be displayed.

3.4.4 Timechart

In System-wide Power Profile(Live) type, once the interesting counters are selected and profiling

started, the TIMECHART page will open and the metrics will be plotted in the timeline graphs.

TIMECHART page – timeline graphs

AMD uProf User Guide

 33

1. In the TIMECHART page the metrics will be plotted in the timeline graphs. Line graphs are

grouped together and plotted based on the category.

2. There is also a corresponding data table adjacent to each graph to display the current value of

the counters.

3. Graph Visibility pane on the left vertical pane will let you choose the graph to display.

4. When plotting is in progress various buttons are available, to let you

▪ Pause the graphs without pausing the data collection by clicking Pause Graphs button,

later graphs can be resumed by clicking Play Graphs button.

▪ Stop the profiling without closing the view by clicking the Stop Profiling button. This

will stop collecting the profile data.

▪ Stop the profiling and close the view by clicking Close View button

3.5 Importing Profile Databases

Profile databases generated through CLI can be imported in the GUI. For this, from HOME page

you can navigate to Open Profile window and you will see the following window.

Open Profile – importing profile database

AMD uProf User Guide

34

This can be used to import a raw profile data file collected using the CLI or the processed data saved

in the DB as well.

• The path should be specified in the Profile Data File input text box.

• Binary Path: If the profile run is performed in a system and the corresponding raw profile data

is imported in another system, then you may need to specify the path(s) in which binary files

can be located.

• Source Path: Specify the source path(s) from where the sources files can be located.

• Symbol Path: Specify the symbol path(s) from where the debug info files (On Windows, PDB

files) can be located.

3.6 Analyzing saved Profile Session

Once you have a created new profile session or opened(imported) profile database, a history is

created, and the last 50 opened profile databases’ records are stored (i.e. where they are located).

Such a list will come up in the HOME → Welcome window’s Recently Opened Profiles as well.

Welcome page - Recently Opened Profile section

AMD uProf User Guide

 35

If there are more than 5 entries, you can open the Recent Profiles in HOME page, and you will see

the list of all profile databases opened. Clicking any of the profile session entry, will load the profile

data for analyzing it.

3.7 Using saved Profile Configuration

When a profile configuration is created (when you set the options and start profiling), if it generates

at least one valid profile session, the profile configuration details will be stored with the options set

and can be loaded again in future. Such a list is available in PROFILE page in Saved

Configurations window.

Saved Configurations

Note that by default the profile configuration name is generated by the application and if you want

to reuse it, you should ideally name it so that it is easy to locate. This can be done by typing a name

in the bottom left corner when setting the profile options.

AMD uProf User Guide

36

3.8 Settings

There are certain application-wide settings to customize the experience. The SETTINGS page is

located in top-right corner and is divided into three sections, each having a short description of what

it contains.

SETTINGS – Data Reporting

• The settings once changed can be applied by clicking the Apply button. There are settings which

are common with profile data filters and hence any change in them when applied through Apply

button will only get applied to such views which do not have local filters set.

• In case you want to override them, you can click on the Apply & Override Local Filters button.

You will lose all local filters applied

• You can always reset the settings by clicking Reset button or Cancel to cancel any changes that

you don't want to apply.

AMD uProf User Guide

 37

Chapter 4 Getting started with

AMDuProfCLI

AMD uProf’s command-line-interface AMDuProfCLI provides options to collect and generate

report for analyzing the profile data.

AMDuProfCLI [--version] [--help] COMMAND [<options>] [<PROGRAM>] [<ARGS>]

Following COMMANDs are supported:

Command Description

Collect Run the given program and collects the profile samples

Report Process the raw profile datafile and generates profile report

Timechart Power Profiling - collects and reports system characteristics like

power, thermal and frequency metrics

Info Displays generic information about system, topology

Refer this section for the workflow. To run the command line interface AMDuProfCLI:

Windows:

Run C:\Program Files\AMD\AMDuProf\bin\AMDuProfCLI.exe binary.

Linux:

Run /opt/AMDuProf_X.Y-ZZZ/AMDuProfCLI binary.

4.1 How to start CPU profile?

To profile and analyze the performance of a native (C/C++) application, you need to follow these

steps:

1. Prepare the application. Refer section on how to prepare an application for profiling

2. Collect the samples for the application using AMDuProfCLI’s collect command

3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is

needed to correlate the samples to functions and source lines.

AMD uProf User Guide

38

The collect command will launch the application (if given) and collect the profile data for the given

profile type and sampling configuration. It will generate raw data file (.PRD on Windows and

.caperf on Linux) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the

respective processes, threads, load modules, functions and instructions and writes them into a DB

and then generate a report in CSV format.

AMDuProfCLI – collect and report command invocations

This above screenshot shows how to run time-based profile and generate a report for the launch

application AMDTClassicMatMul.exe.

Note: On Linux, AMDuProfCLI collect command will generate .caperf file which will be passed

as input file to report command.

List of predefined sampling configurations

To get the list of supported predefined sampling configurations that can be used with collect

command’s --config option run the below command.

C:\> AMDuProfCLI.exe collect –list collect-configs

And the output will look like:

AMD uProf User Guide

 39

AMDuProfCLI - list supported predefined configurations

Profile report

The profile report, which is CSV format, contains the following section:

• EXECUTION – information about the target lunch application

• PROFILE DETAILS – details about this session - profile type, scope, sampling events, etc.,

• 5 HOTTEST Functions – List of top 5 hot functions and the metrics attributed to them

• PROFILE REPORT FOR PROCESS – For the profiled process, the metrics attributed. This

section contains other sub-sections like:

▪ THREAD SUMMARY – list of threads that belongs to this process with metrics

attributed to them

▪ MODULE SUMMARY – list of load modules that belongs to this process with metrics

attributed to them

▪ FUNCTION SUMMARY – list of functions that belongs to this process for which

samples are collected, with metrics attributed to them

▪ Function Detail Data – Source level attribution for the top functions for which samples

are collected

▪ CALLGRAPH – Call graph, if callstack samples are collected

AMD uProf User Guide

40

4.2 How to start Power profile?

System-wide Power Profiling (Live)

To collect power profile counter values, you need to follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart

command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by

specifying the interesting counters with --event option

The timechart run to list the supported counter categories:

AMDuProfCLI timechart --list command’s output

The timechart to collect the profile samples and write into a file:

AMDuProfCLI timechart run

AMD uProf User Guide

 41

The above run will collect the energy and frequency counters on all the devices on which these

counters are supported and writes them in the output file specified with -o option. Before the

profiling begins, the given application will be launched, and the data will be collected till the

application terminates.

4.3 Collect command

This collect command runs the given program and collects the performance profile data and writes

into specified raw profile data file. This file can then be analyzed using AMDuProfCLI’s report

command or AMDuProf GUI.

Synopsis:

AMDuProfCLI collect [--help] [--list <type>] [<options>] [<PROGRAM>]

[<ARGS>]

<PROGRAM> - Denotes a launch application to be profiled

<ARGS> - Denotes the list of arguments for the launch application

Common usages:

AMDuProfCLI collect --list <collect-configs | pmu-events>

AMDuProfCLI collect <PROGRAM> [<ARGS>]

AMDuProfCLI collect [--config <config> | -e <event>] [-a] [-d <duration>]

[<PROGRAM>]

Options:

Option Description

-h | --help Displays this help information on the console/terminal.

--list <type> Lists the supported items for the following types:

collect-configs: Predefined profile configurations that can be used

with --config option.

pmu-events: Raw PMU events that can be used with --event option.

--config <config> Predefined sampling configuration to be used to collect samples.

Use the command collect --list collect-configs to get the list of

supported configs.

AMD uProf User Guide

42

-e | --event <EVENT> Specify a sampling event to monitor in the form of the comma

separated key=value pair. Supported keys are:

event=<timer | ibs-fetch | ibs-op | pmcxNNN> where NNN is

hexadecimal PMC event id.

umask=<unit-mask>

user=<0 | 1>

os=<0 | 1>

interval=<sampling interval>

ibsop-count-control=<0 | 1>

slicemask=<L3 slice mask>

threadmask=<L3 thread mask>

Ex: -e event=pmcx76,interval=250000

Use command collect --list pmu-events for the list of supported

PMU-events.

Details about the arguments:

umask - Applicable to PMU events. It can be in decimal or

hexadecimal. Default is 0.

user, os - Applicable to PMU events. Default is 1;

interval - Applicable to all events. For timer, the interval is in

milliseconds. For PMU event, if the interval is not set or 0, then the

event will be monitored in count mode. For timer, ibs-fetch and ibs-

op events valid sampling interval is required. Default is 0.

ibsop-count-control - Applicable only to ibs-op event. When set to

0, count clock cycles, otherwise count dispatched micro ops.

Default is 0.

slicemask - Applicable only to L3 PMU events. Default is 0xF.

threadmask - Applicable only to L3 PMU events. Default is 0xFF.

Multiple occurrences of --event (-e) are allowed.

AMD uProf User Guide

 43

NOTE: L3 PMU events are supported only on Windows and only on

Family 0x17 processors.

-p | --pid <PID...> Profile existing processes (processes to attach to). Process IDs are

separated by comma.

-a | --system-wide System Wide Profile (SWP). If this flag is not set, then the

command line tool will profile only the launched application, or the

Process IDs attached with -p option.

-c | --cpu <core...> Comma separated list of CPUs to profile. Ranges of CPUs also be

specified with ‘-’, e.g. 0-3. Use info --cpu-topology command to get

list of available core-ids.

NOTE: On Windows, the selected cores should belong to only one

processor group, e.g. 0-63, 64-127 and so on.

--call-graph

<I:D:S:F>
[Windows] Enable callstack Sampling. Specify the Unwind Interval

(I) in milliseconds and Unwind Depth (D) value. Specify the Scope

(S) by choosing one of the following:

user : Collect only for user space code.

kernel : Collect only for kernel space code.

all : Collect for code executed in user and kernel space code.

Specify to collect missing frames due to Frame Pointer Omission

(F) by compiler:

fpo : Collect missing callstack frames.

nofpo : Ignore missing callstack frames.

--call-graph <F:N> [Linux] Enable Callstack sampling. Specify (F) to collect/ignore

missing frames due to omission of frame pointers by compiler:

fpo : Collect missing callstack frames.

nofpo : Ignore missing callstack frames.

When F = fpo, (N) specifies the max stack-size in bytes to collect

per sample collection. Valid range to stack size: 16 - 8192. If (N) is

not multiple of 8, then it is aligned down to the nearest value

multiple of 8. The default value is 1024 bytes.

AMD uProf User Guide

44

NOTE: Passing a large N value will generate a very large raw data

file.

When F = nofpo, the value for N is ignored, hence no need to pass

it.

-g
[Windows] Same as passing --call-graph 1:128:user:nofpo

[Linux] Same as passing --call-graph nofpo

-d | --duration <n> Profile only for the specified duration n in seconds.

--affinity <core...> Set the core affinity of the launched application to be profiled.

Comma separated list of core-ids. Ranges of core-ids also be

specified, e.g. 0-3. Default affinity is all the available cores.

--no-inherit Do not profile the children of the launched application (i.e.

processes launched by the profiled application).

-b | --terminate Terminate the launched application after profile data collection

ends. Only the launched application process will be killed. Its

children, if any, may continue to execute.

--start-delay <n> Start Delay n in seconds. Start profiling after the specified duration.

When n is 0, it has no impact.

--start-paused Profiling paused indefinitely. The target application resumes the

profiling using the profile control APIs. This option is expected to

be used only when the launched application is instrumented to

control the profile data collection using the resume and pause APIs

defined in AMDProfileControl library.

-w | --working-dir

<path>
Specify the working directory. Default will be the directory of the

launch application.

-o | --output <file> Base name of the output file. If this option is skipped, default path

will be used. The default file will be

(Windows) %Temp%\AMDuProf-<timestamp>.prd

(Linux) /tmp/AMDuProf-<timestamp>.caperf

-v | --verbose <n> Specify debug log messaging level. Valid values of (n) are:

1: INFO, 2: DEBUG, 3: EXTENSIVE

AMD uProf User Guide

 45

Examples

Windows:

• Launch application AMDTClassicMatMul.exe and collect Time-based profile (TBP) samples:

C:\> AMDuProfCLI.exe collect -o c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and do ‘Assess Performance’ profile for 10 seconds:

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess -d 10

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect ‘IBS’ samples in SWP mode:

C:\> AMDuProfCLI.exe collect --config ibs -a -o c:\Temp\cpuprof-ibs-swp

AMDTClassicMatMul.exe

• Collect ‘TBP’ samples in SWP mode for 10 seconds:

C:\> AMDuProfCLI.exe collect -a -o c:\Temp\cpuprof-tbp-swp -d 10

• Launch AMDTClassicMatMul.exe and collect ‘TBP’ with Callstack sampling:

C:\> AMDuProfCLI.exe collect --config tbp -g -o c:\Temp\cpuprof-tbp

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect ‘TBP’ with callstack sampling (unwind FPO

optimized stack):

C:\> AMDuProfCLI.exe collect --config tbp --call-graph 1:64:user:fpo -o

c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect samples for PMCx076 and PMCx0C0:

C:\> AMDuProfCLI.exe collect -e event=pmcx76,interval=250000 -e

event=pmcxc0,user=1,os=0,interval=250000 -o c:\Temp\cpuprof-tbp

AMDTClassicMatMul.exe

• Launch AMDTClassicMatMul.exe and collect samples for IBS OP with interval 50000:

C:\> AMDuProfCLI.exe collect -e event=ibs-op,interval=50000 -o

c:\Temp\cpuprof-tbp AMDTClassicMatMul.exe

• Collect L3 samples for event L3PMCx01 in SWP mode:

C:\> AMDuProfCLI.exe collect -e event=timer,interval=1 -e

event=l3pmcx01,umask=0x80,slicemask=0xF,threadmask=0xFF -a -d 10 -o

c:\Temp\cpuprof-l3

AMD uProf User Guide

46

Linux:

• Launch the application AMDTClassicMatMul-bin and collect Time-based profile (TBP)

samples:

$./AMDuProfCLI collect -o /tmp/cpuprof-tbp AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and do ‘Assess Performance’ profile for 10 seconds:

$./AMDuProfCLI collect --config assess -o /tmp/cpuprof-assess -d 10

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect ‘IBS’ samples in SWP mode:

$./AMDuProfCLI collect --config ibs -a -o /tmp/cpuprof-ibs-swp

AMDTClassicMatMul-bin

• Collect ‘TBP’ samples in SWP mode for 10 seconds:

$./AMDuProfCLI collect -a -o /tmp/cpuprof-tbp-swp -d 10

• Launch AMDTClassicMatMul-bin and collect ‘TBP’ with Callstack sampling:

$./AMDuProfCLI collect --config tbp -g -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect ‘TBP’ with callstack sampling (unwind FPO

optimized stack):

$./AMDuProfCLI collect --config tbp --call-graph fpo:512 -o /tmp/uprof-

tbp AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect samples for PMCx076 and PMCx0C0:

$./AMDuProfCLI collect -e event=pmcx76,interval=250000 -e

event=pmcxc0,user=1,os=0,interval=250000 -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

• Launch AMDTClassicMatMul-bin and collect samples for IBS OP with interval 50000:

$./AMDuProfCLI collect -e event=ibs-op,interval=50000 -o /tmp/cpuprof-tbp

AMDTClassicMatMul-bin

4.4 Report command

This report command processes the raw profile data (.prd on Windows or .caperf on Linux) or the

processed file (.db) and generate a profile report. The profile report can also be generated from the

DB file also.

Synopsis:

AMDuProfCLI report [--help] [--list view-configs] [<options>]

AMD uProf User Guide

 47

Common usages:

AMDuProfCLI report --list view-configs

AMDuProfCLI report -i <profile data file>

Options

Option Description

-h | --help Displays this help information on the console/terminal.

--list view-configs List of the supported report view configurations that can be used

with --view option.

-i | --input <file> Input file name. Either the raw profile data file (.prd on Windows and

.caperf on Linux) or the processed data file (.db) can be specified.

-o | --output

<output dir>
Output directory in which the processed data file (.db) and the report

file (.csv) will be created.

The default output dir <base-name-of-input-file>, will be created in

the directory in which the input file resides.

--summary Report only the overview of the profile. This is set by default.

--group-by

<section>
Specify the report to be generated. Supported report options are:

process: Report process details

module: Report module details

thread: Report thread details

Default is set to group-by process.

--cutoff <n> Cutoff to limit the number of process, threads, modules and functions

to be reported. n is the minimum number of entries to be reported in

various report sections. Default value is 10.

--view <config> Report only the events present in the given view file. Use the

command report --list view-configs to get the list of supported view-

configs.

--src Generate detailed function report with source statements.

--src-path

<path1;...>
Source file directories. (Semicolon separated paths.)

AMD uProf User Guide

48

--disasm Generate detailed function report with assembly instructions.

--sort-by <event-

index>
Specify the (0-based) event index on which the reported profile data

will be sorted. This event is also used to generate Callgraph section

and IMIX section. By default, the first event (i.e. event index 0) is

selected.

--imix Generate Instruction MIX report.

--ignore-system-

module
Ignore samples from system modules.

--show-percentage Show percentage of samples, instead of actual samples.

--symbol-path

<path1;...>
Debug Symbol paths. (Semicolon separated paths.)

--symbol-server

<path1;...>
[Windows only] Symbol Server directories. (Semicolon separated

paths.)

--symbol-cache-dir

<path>
[Windows only] Path to store the symbol files downloaded from the

Symbol Servers.

-v | --verbose <n> Specify debug log messaging level. Valid values are:

1 : INFO

2 : DEBUG

3 : EXTENSIVE

Examples

Windows

• Generate report from the raw datafile:

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-tbp.prd -o c:\Temp\tbp-out

• Generate IMIX report from the raw datafile:

C:\> AMDuProfCLI.exe report --imix -i c:\Temp\cpuprof-tbp.prd -o

c:\Temp\cpuprof-tbp-out

• Generate report with Symbol Server paths:

C:\> AMDuProfCLI.exe report --symbol-path C:\Temp\Symbols –symbol-

server http://msdl.microsoft.com/download/symbols --cache-dir C:\symbols -

i c:\Temp\cpuprof-tbp.prd -o c:\Temp\cpuprof-tbp-out

AMD uProf User Guide

 49

Linux

• Generate report from the raw datafile:

$./AMDuProfCLI report -i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-tbp-out

• Generate IMIX report from the raw datafile:

$./AMDuProfCLI report --imix -i /tmp/cpuprof-tbp.caperf -o /tmp/cpuprof-

tbp-out

4.5 Timechart command

This timechart command collects and reports system characteristics like power, thermal and

frequency metrics and generates a text or CSV report.

Synopsis:

AMDuProfCLI timechart [--help] [--list] [<options>] [<PROGRAM>] [<ARGS>]

<PROGRAM> - Denotes the application to be launch before start collecting the power metrics

<ARGS> - Denotes the list of arguments for the launch application

Common usages:

AMDuProfCLI timechart --list

AMDuProfCLI timechart -e <event> -d <duration> [<PROGRAM>] [<ARGS>]

Options:

Option Description

--list Display all the supported devices and categories.

-e | --event

<type...>
Collect counters for specified type or comma separated list of types,

where type can be a device or a category.

Supported device list:

socket: Collect profile data from socket.

die: Collect profile data from die.

core: Collect profile data from core.

thread: Collect profile data from thread.

AMD uProf User Guide

50

Supported category list:

Refer this section for family specific supported categories.

power: Collect all available power counters.

frequency: Collect all available frequency counters.

temperature: Collect all available temperature counters.

voltage: Collect all available voltage counters.

current: Collect all available current counters.

dvfs: Collect all available Dynamic Voltage and Frequency

Scaling (DVFS) counters.

energy: Collect all available energy counters.

correlatedpower: Collect all available correlated power

counters.

cac: Collect all available cac counters.

controllers: Collect all available controllers counters.

Note: Multiple occurrences of -e is allowed.

--histogram Collect histogram counters. Allowed only with occurrence of -

e frequency.

--cumulative Collect cumulative counters. Allowed only with an occurrence of -

e power.

-t | --interval <n> Sampling interval n in milliseconds. The minimum value is 10ms.

-d | --duration <n> Profile duration n in seconds.

--affinity

<core...>
Core affinity. Comma separated list of core-ids. Ranges of core-ids

also be specified, e.g. 0-3. Default affinity is all the available cores.

Affinity is set for the launched application.

-w | --working-dir

<dir>
Set the working directory for the launched target application.

-f | --format <fmt> Output file format. Supported formats are:

AMD uProf User Guide

 51

txt: Text (.txt) format.

csv: Comma Separated Value (.csv) format.

Default file format is CSV.

-o | --output

<file>
Output file path.

-h | --help Displays this help information.

Examples:

Windows

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\output.txt --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency --output

C:\Temp\PowerOutput.txt --interval 500 -duration 10 --format txt

Linux

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3,frequency --output

/tmp/PowerOutput.txt --interval 500 --duration 10 --format txt

AMD uProf User Guide

52

4.6 Info command

This info command helps to get generic information about the system, CPU topology, disassembly

of a binary etc.

Synopsis:

AMDuProfCLI info [--help] [<options>]

Common usages:

AMDuProfCLI info --system

AMDuProfCLI info --cpu-topology

Options:

Option Description

--help Displays the help information.

--system Displays processor information of this system.

--cpu-topology Displays CPU topology information of this system.

--disasm <binary> Disassembles the given binary file.

--show-uid Displays the UID of the user.

Examples:

• Print system details:

C:\> AMDuProfCLI.exe info --system

• Print CPU topology details:

C:\> AMDuProfCLI.exe info --cpu-topology

• To disassemble AMDTClassicMatMul.exe into classic-disasm.txt file:

C:\> AMDuProfCLI.exe info --disasm AMDTClassicMatMul.exe > classic_asm.txt

AMD uProf User Guide

 53

Chapter 5 Performance Analysis

CPU Profiling

AMD uProf profiler follows a statistical sampling-based approach to collect profile data to identify

the performance bottlenecks in the application.

• Profile data is collected using any of the following approaches:

▪ Timer Based Profiling (TBP) - to identify the hotspots in the profiled applications

▪ Event Based Profiling (EBP) - sampling based on Core PMC events to identify micro-

architecture related performance issues in the profiled applications

▪ Instruction based Sampling (IBS) - precise instruction-based sampling

• Call-stack Sampling

• Secondary profile data (Windows only)

▪ Thread concurrency

▪ Thread Names

• Profile scope

▪ Per-Process: Launch an application and profile that process its children

▪ System-wide: Profile all the running processes and/or kernel

▪ Attach to an existing application (Native applications only)

• Profile mode

▪ Profile data is collected when the application is running in User and/or Kernel mode

• Profiles

▪ C, C++, Java, .NET, FORTRAN, Assembly applications

▪ Various software components – Applications, Dynamically linked/loaded modules,

Driver, OS Kernel modules

• Profile data is attributed at various granularities

▪ Process / Thread / Load Module / Function / Source line / Disassembly

▪ To correlate the profile data to Function and Source line, debug information emitted

by the compiler is required

▪ C++ & Java in-lined functions

• Processed profile data is stored in databases, which can be used to generate reports later.

• Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

AMD uProf User Guide

54

• AMDuProfCLI, the command-line-interface can be used to configure a profile run, collect

the profile data and generate the profile report.

▪ collect option to configure and collect the profile data

▪ report option to process the profile data and to generate the profile report

• AMDuProf GUI can be used to:

▪ Configure a profile run

▪ Start the profile run to collect the performance data

▪ Analyze the performance data to identify potential bottlenecks

• AMDuProf GUI has various UIs to analyze and view the profile data at various granularities

▪ Hot spots summary

▪ Thread concurrency graph (Windows only and requires admin privileges)

▪ Process and function analysis

▪ Source and disassembly analysis

▪ Flame Graph - a stack visualizer based on collected call-stack samples

▪ Call Graph - butterfly view of callgraph based on call-stack samples

• Profile Control API to selectively enable and disable profiling from the target application by

instrumenting it, to limit the scope of the profiling

5.1 Analysis with Time-based profiling

In this analysis, the profile data is periodically collected based on the specified OS timer interval. It

is used to identify the hotspots of the profiled applications that are consuming the most time. These

hotspots are good candidates for further investigation and optimization. Follow these steps:

To configure and start profile:

1. Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

2. In Start Profiling window, you will see Select Profile Target fragment. After selecting the

appropriate profile target, clicking Next button will take you to Select Profile Type fragment.

3. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

4. Select Time-based Sampling in the left vertical pane as shown in the below screenshot.

AMD uProf User Guide

 55

Time based profile – configure

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. The hotspots are shown for Timer samples.

Refer this section for more information on this window.

AMD uProf User Guide

56

SUMMARY – Hot Spots window of TBP profile

7. Click on the ANALYZE button on the top horizontal navigation bar to go Metrics window,

which displays the profile data table at various granularities - Process, Load Modules, Threads

and Functions. Refer this section for more information on this window.

AMD uProf User Guide

 57

ANALYZE page - Metrics window

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

AMD uProf User Guide

58

SOURCES – source and assembly window

5.2 Analysis with Event based profiling

In this profile, the uProf uses the PMCs to monitor the various micro-architectural events supported

by the AMD x86-based processor. It helps to identify the CPU and memory related performance

issues in profiled applications. Steps to follow:

To configure and start profile:

1. Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

2. In Start Profiling window, you will see Select Profile Target fragment. After selecting the

appropriate profile target, clicking Next button will take you to Select Profile Type fragment.

3. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

4. Select Assess Performance in the left vertical pane as shown in the below screenshot. Refer

this section for EBP based predefined sampling configurations.

AMD uProf User Guide

 59

Event based profile - configure

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

AMD uProf User Guide

60

SUMMARY – Hot Spots window

7. Click on the ANALYZE button on the top horizontal navigation bar to go Metrics window,

which displays the profile data table at various granularities - Process, Load Modules, Threads

and Functions. Refer this section for more information on this window.

AMD uProf User Guide

 61

ANALYZE page - Metrics window

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

AMD uProf User Guide

62

SOURCES – source and assembly window

5.3 Analysis with Instruction based sampling

In this profile, the uProf uses the IBS supported by the AMD x86-based processor to diagnose the

performance issues in hot spots. It collects data on how instructions behave on the processor and in

the memory subsystem.

To configure and start profile:

1. Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

2. In Start Profiling window, you will see Select Profile Target fragment. After selecting the

appropriate profile target, clicking Next button will take you to Select Profile Type fragment.

3. In Select Profile Type fragment, selecting CPU Profile from the drop-down list, will take you

to the below screenshot.

4. Select Instruction-Based Sampling in the left vertical pane. Refer this section for predefined

sampling configurations.

AMD uProf User Guide

 63

5. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

To Analyze the profile data

6. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of Summary page. Refer this section for more information on

this window.

SUMMARY – Hot Spots window

7. Click on the ANALYZE button on the top horizontal navigation bar to go Metrics window,

which displays the profile data table at various granularities - Process, Load Modules, Threads

and Functions. Refer this section for more information on this window.

AMD uProf User Guide

64

ANALYZE page - Metrics window for IBS profile run

8. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window.

AMD uProf User Guide

 65

SOURCES – source and assembly window

5.4 Analysis with Callstack samples

The callstack samples too can be collected for native C & C++ applications with all the CPU profile

types. These samples will be used to provide Flame Graph and Call Graph window.

To enable call-stack sampling, after selecting profile target and profile type, click on Advanced

Options button to turn on the Enable CSS option in Call Stack Options pane, as seen in the below

screen.

AMD uProf User Guide

66

Start Profiling – Advanced Options

5.4.1 Flame graph

Flame Graph provides a stack visualizer based on call-stack samples. The Flame Graph window

will be available in ANALYZE page to analyze the call-stack samples to identify hot call-paths. It

can be navigated by clicking ANALYZE → Flame Graph in the left vertical pane.

AMD uProf User Guide

 67

ANALYZE – Flame graph window

The Flamegraph can be displayed based on Process IDs and Counters drop-downs. It also has the

function search box to search and highlight the given function name.

5.4.2 Call graph

Call Graph provides a butterfly view of callgraph based on call-stack samples The Call Graph

window will be available in ANALYZE page to analyze the call-stack samples to identify hot call-

paths. It can be navigated by clicking ANALYZE → Call Graph in the left vertical pane.

AMD uProf User Guide

68

ANALYZE – Call graph window

The data can be browsed based on Process IDs and Counters drop-downs. The top central table

displays call-stack samples for each function. Clicking on any function updates the bottom two

Caller(s) and Callee(s) tables. These tables display the callers and callees respectively of the

selected function.

5.5 Thread Concurrency

Thread concurrency graph shows the number of threads of a process, running concurrently for the

time elapsed (in seconds). It uses Windows ETL records to generate this graph. It is:

• A Windows OS only feature that requires Admin privileges

• Available only with CPU Profile types

To enable this, after selecting profile target and profile type, click on Advanced Options button to

turn on the Enable Thread Concurrency option in Enable Thread Concurrency Option pane, as

seen in the below screen.

AMD uProf User Guide

 69

Start Profiling – Advanced Options

After the profile completion, clicking SUMMARY → Thread Concurrency will take you to the

following window to analyze the thread concurrency of the application.

AMD uProf User Guide

70

SUMMARY – Thread Concurrency

5.6 Profiling a Java Application

AMD uProf supports Java application profiling running on JVM. To support this, it uses JVM Tool

Interface (JVMTI).

AMDuProf provides JVMTI Agent libraries: AMDJvmtiAgent.dll on Windows and

libAMDJvmtiAgent.so on Linux. This JvmtiAgent library needs to be loaded during start-up

of the target JVM process.

Launching a Java application

If the Java application is launched by uProf, then the tool would take care of passing the

AMDJvmtiAgent library to JVM using Java’s -agentpath option. AMDuProf would be able to

collect the profile data and attribute the samples to interpreted Java functions.

To profile a Java application, you may use command similar to the following sample command:

$./AMDuProfCLI collect --config tbp -w <java-app-dir> <path-to-java.exe>

<java-app-main>

To generate report, you may need to pass source file path:

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

AMD uProf User Guide

 71

$./AMDuProfCLI report --src-path <path-to-java-app-source-dir> -i <raw-

data-file>

Attaching a Java process to profile

AMD uProf can’t attach JvmtiAgent dynamically to an already running JVM. Hence any JVM

process profiled by attach-process mechanism, uProf can’t capture any class information, unless the

JvmtiAgent library is loaded during JVM process start-up.

If you want to profile an already running Java process, then you must pass -agentpath <path to agent

lib> option while launching Java application. So that, later uProf can attach to the Java PID to collect

profile data.

For a 64-bit JVM on Linux:

$ java

-agentpath:<AMDuProf-install-dir/bin/ProfileAgents/x64/libAMDJvmtiAgent.so>

<java-app-launch-options>

For a 64-bit JVM on Windows:

C:\> java -agentpath:

<C:\ProgramFiles\AMD\AMDuProf\bin\ProfileAgents\x64\AMDJvmtiAgent.dll>

<java-app-launch-options>

Keep a note of the process id (PID) of the above JVM instance. Then launch AMDuProf GUI or

AMDuProfCLI to attach to this process and profile.

5.7 Profiling Linux System Modules

To attribute the samples to system modules (e.g. glibc, libm, etc.), uProf uses the corresponding

debug info files. Usually the Linux distros does not come with the debug info files, but most of the

popular distros provide options to download the debug info files.

Refer the below links to understand how to download the debug info files.

• Ubuntu: https://wiki.ubuntu.com/Debug%20Symbol%20Packages

• SLES/OpenSUSE: https://www.suse.com/support/kb/doc/?id=3074997

• RHEL/CentOS: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

Make sure to download the debug info files for the required system modules for the required Linux

distros before starting the profiling.

https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://www.suse.com/support/kb/doc/?id=3074997
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

AMD uProf User Guide

72

5.8 Profiling Linux Kernel

To attribute the kernel samples to appropriate kernel functions, uProf extracts required information

from /proc/kallsyms file. Access and view of non-zero addresses from /proc/kallsyms file need to

be provided by setting the appropriate value to /proc/sys/kernel/kptr_restrict file.

To attribute the kernel samples to kernel functions, before profiling, you need to:

• Set kptr_restrict file to 0, or

• Set kptr_restrict file to 1, if the current user has a CAP_SYSLOG capability

Note:

• The address shown in /proc/kallsyms changes every time the system gets booted due to ASLR.

To get the accurate attribution, make sure the profiling and the report generation are done in

the same system powerup session.

• The settings in the /proc/sys/kernel/kptr_restrict file enable uProf to resolve kernel symbols

and attribute samples to kernel functions. It does not enable the assembly/source level analysis,

call-graph analysis.

Linux Kernel Module profiling

To profile a Linux kernel module, enable the settings mentioned in Linux Kernel profiling.

Recompile the Linux kernel with the compiler option: "-g"

5.9 Limitations

• CPU Profiling expects the profiled application executable binaries must not be compressed

or obfuscated by any software protector tools, e.g. VMProtect.

• Thread concurrency graph is Windows only feature and requires admin privileges.

• In case of Zeppelin B1 parts, only one PMC register is used at a time for Core PMC event-

based profiling (EBP).

AMD uProf User Guide

 73

Chapter 6 System Analysis

System-wide Power Profile

AMD uProf profiler offers live power profiling to monitor the behavior of the systems based on

AMD CPUs, APUs and dGPUs. It provides various counters to monitor power and thermal

characteristics.

These counters are collected from various resources like RAPL, SMU and MSRs. These are

periodically collected at regular timer interval and either reported as text file or plotted as line graphs

and can also be saved into DB for future analysis.

Features

• AMDuProf GUI can be used to configure and monitor the supported energy metrics

• AMDuProf GUI’s TIMECHART page helps to monitor and analyze:

▪ Logical Core level metrics - Core Effective Frequency, P-State

▪ Physical Core level metrics – RAPL based Core Energy, Temperature

▪ Package level metrics – RAPL based Package Energy

▪ GPU metrics – power, temperature, frequency

▪ SMU based APU metrics – CPU Core power, package power

• AMDuProfCLI’s timechart command to collect the system metrics and write into a text file

or comma-separated-value (CSV) file

• AMDPowerProfileApi library provides APIs to configure and collect the supported system

level performance, thermal and energy metrics of AMD CPU/APUs and dGPUs.

• Collected live profile data can be stored in database for future analysis

6.1 Metrics

The metrics that are supported depends on the processor family and model and they are broadly

grouped under various categories. Following are supported counter categories for various processor

families:

AMD uProf User Guide

74

Family 17h Model 00h – 0Fh (Ryzen, ThreadRipper, EPIC 7001)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for Socket and VDDCR_SOC

Frequency Core Effective Frequency for the sampling period, reported in MHz

Temperature Average estimated temperature for the sampling period, reported in

Celsius. Calculated based socket activity levels, normalized and

scaled, relative to the specific processor's maximum operating

temperature. Available for Die

P-State CPU Core P-State at the time when sampling was performed

Energy RAPL MSRs based Package and Core energy

Controllers Socket PPT Limit and Power

CorrelatedPower Correlated Average Power for the sampling period, reported in

Watts. This is an estimated consumption value based on platform

activity levels. Available for Socket, VDDR_SOC

Family 17h Model 10h – 2Fh (Ryzen APU, Ryzen PRO APU)

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for APU and VDDCR_SOC

Frequency Core Effective Frequency for the sampling period, reported in MHz

Temperature Average estimated temperature for the sampling period, reported in

Celsius. Calculated based socket activity levels, normalized and

scaled, relative to the specific processor's maximum operating

temperature. Available for VDDCR Soc

P-State CPU Core P-State at the time when sampling was performed

Energy RAPL MSRs based Package and Core energy

Controllers Socket PPT Limit, STAPM Limit and Power

AMD uProf User Guide

 75

Family 17h Model 70h – 7Fh (3rd Gen Ryzen)

Power Counter Category Description

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed

Energy RAPL MSRs based Package and Core energy

Family 17h Model 30h – 3Fh (EPIC 7002)

Power Counter Category Description

Frequency Core Effective Frequency for the sampling period, reported in MHz

P-State CPU Core P-State at the time when sampling was performed

Energy RAPL MSRs based Package and Core energy

Supported Counter categories for older APU families

Power Counter Category Description

Power Average Power for the sampling period, reported in Watts. This is

an estimated consumption value based on platform activity levels.

Available for APU, ComputeUnit, iGPU, PCIe Controller, Memory

Controller, Display Controller and VDDCR_SOC

Frequency Effective Frequency for the sampling period, reported in MHz

Available for Core and iGPU

Temperature Average estimated temperature for the sampling period, reported in

Celsius. Calculated based socket activity levels, normalized and

scaled, relative to the specific processor's maximum operating

temperature. Available for CPU ComputeUnit and iGPU

P-State CPU Core P-State at the time when sampling was performed

Controllers Socket PPT Limit and Power

AMD uProf User Guide

76

CorrelatedPower Correlated Average Power for the sampling period, reported in

Watts. This is an estimated consumption value based on platform

activity levels. Available for APU, CPU ComputeUnit, VDDGFX,

VDDIO, VDDNB, VDDP, UVD, VCE, ACP, UNB, SMU, RoC

Supported Counter categories for dGPUs

Power Counter Category Description

Power Average estimated dGPU power for the sampling period, reported

in Watts. Calculated based on dGPU activity levels.

Frequency Average dGPU frequency for the sampling period, reported in MHz

Temperature Average estimated dGPU temperature for the sampling period,

reported in Celsius.

Voltage CPU Core P-State at the time when sampling was performed

Current Socket PPT Limit and Power

6.2 Profile using GUI

System-wide Power Profile (Live): This profile type is used to perform the system analysis where

the metrics are plotted in a live timeline graph and/or saved in a DB. Here are the steps to configure

and start the profile:

6.2.1 Configure

• Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

• You will see Select Profile Target fragment in the Start Profiling window. After selecting

the appropriate profile target, clicking Next button will take you to Select Profile Type

fragment.

• In Select Profile Type fragment selecting System-wide Power Profile (Live) from the drop-

down list, will take you to the below screenshot.

You can also navigate to this page by clicking See what’s guzzling power in your System link in

the Welcome page.

AMD uProf User Guide

 77

Once this type is selected, on the left pane, various supported counter categories and the components

for which that category is available will be listed. The user can select the interesting counters to

monitor.

Start Profiling – Select Profile Type (Live Power Profile)

1. Select profile type as System-wide Power Profile (Live) from the drop-down list. This will list

all the supported counter categories.

2. Clicking on an interesting counter category, will list the components for which this counter is

selected as a tree selection.

3. Enable the interesting counters from this counter tree. Multiple counter categories can be

configured

4. Show live graphs while profile is running? option lets you render the graphs live during profiling

or save the data in database(.db file) during profiling and render the graphs after the profile data

collection completed.

Once all the options are set correctly and clicking the Start Profile button will start the profile data

collection. In this profile type, the profile data will be reported as line graphs in the TIMECHART

page for further analysis.

AMD uProf User Guide

78

6.2.2 Analyze

Once the interesting counters are selected and the profile data collection started, the TIMECHART

page will open and the metrics will be plotted in the live timeline graphs.

TIMECHART page – timeline graphs

1. In the TIMECHART page the metrics will be plotted in the live timeline graphs. Line graphs

are grouped together and plotted based on the category.

2. There is also a corresponding data table adjacent to each graph to display the current value of

the counters.

3. Graph Visibility pane on the left vertical pane will let you choose the graph to display.

4. When plotting is in progress various buttons are available, to let you

▪ Pause the graphs without pausing the data collection by clicking Pause Graphs button,

later graphs can be resumed by clicking Play Graphs button.

▪ Stop the profiling without closing the view by clicking the Stop Profiling button. This

will stop collecting the profile data.

▪ Stop the profiling and close the view by clicking Close View button

AMD uProf User Guide

 79

6.2.3 Settings

The SETTINGS → Live Data window lets you to select whether you want to save to DB and

specify the path in which the profile data DB can be stored. Also, the sampling interval too can be

modified.

Note: This settings changes should be done before you start the profiling.

SETTINGS – Live Data

6.3 Profile using CLI

AMDuProfCLI’s timechart command lets you collect the system metrics and write them into a text

file or comma-separated-value (CSV) file. To collect power profile counter values, you need to

follow these steps:

1. Get the list of supported counter categories by running AMDuProfCLI’s timechart

command with --list option

2. Collect and the report the required counters using AMDuProfCLI’s timechart command by

specifying the interesting counters with -e or --event option

AMD uProf User Guide

80

The timechart run to list the supported counter categories:

AMDuProfCLI timechart --list command’s output

The timechart run to collect the profile samples and write into a file:

AMDuProfCLI timechart run

The above run will collect the energy and frequency counters on all the devices on which these

counters are supported and writes them in the output file specified with -o option. Before the

profiling begins, the given application will be launched, and the data will be collected till the

application terminates.

6.3.1 Examples

Windows

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

C:\> AMDuProfCLI.exe timechart --event power --interval 100 --duration 10

AMD uProf User Guide

 81

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

C:\> AMDuProfCLI.exe timechart --event frequency -o C:\Temp\Poweroutput --

interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency –output

C:\Temp\Poweroutput.txt --interval 500 -duration 10 --format txt

Linux

• Collect all the power counter values for the duration of 10 seconds with sampling interval of

100 milliseconds:

$./AMDuProfCLI timechart --event power --interval 100 --duration 10

• Collect all frequency counter values for 10 seconds, sampling them every 500 milliseconds and

dumping the results to a csv file:

$./AMDuProfCLI timechart --event frequency -o /tmp/PowerOutput.csv

--interval 500 --duration 10

• Collect all frequency counter values at core 0 to 3 for 10 seconds, sampling them every 500

milliseconds and dumping the results to a text file:

$./AMDuProfCLI timechart --event core=0-3,frequency

--output /tmp/PowerOutput.txt --interval 500 --duration 10 --format txt

6.4 AMDPowerProfileAPI Library

AMDPowerProfileApi library provides APIs to configure and collect the supported power profiling

counters on various AMD platforms. The AMDPowerProfileAPI library is used to analyze the

energy efficiency of systems based on AMD CPUs, APUs and dGPUs (Discrete GPU).

These APIs provide interface to read the power, thermal and frequency characteristics of AMD APU

& dGPU and their subcomponents. These APIs are targeted for software developers who want to

write their own application to sample the power counters based on their specific use case.

For detailed information on these APIs refer AMDPowerProfilerAPI.pdf

6.4.1 How to use the APIs?

Refer the example program CollectAllCounters.cpp on how to use these APIs. The program must

be linked with AMDPowerProfileAPI library while compiling. The power profiling driver must be

installed and running.

AMD uProf User Guide

82

A sample program CollectAllCounters.cpp that uses these APIs, is available at <AMDuProf-

install-dir>/Examples/CollectAllCounters/ dir. To build and execute the example

application, following steps should be performed:

Windows

• A Visual Studio 2015 solution file CollectAllCounters.sln is available at /C:/Program

Files/AMD/AMDuProf/Examples/CollectAllCounters/ folder to build the example

program.

Linux

• To build

$ cd <AMDuProf-install-dir>/Examples/CollectAllCounters

$ g++ -O -std=c++11 CollectAllCounters.cpp -I<AMDuProf-install-

dir>/include -l AMDPowerProfileAPI -L<AMDuProf-install-dir>/bin -Wl,-rpath

<AMDuProf-install-dir>/bin -o CollectAllCounters

• To execute

$ export LD_LIBRARY_PATH=<AMDuProf-install-dir>/bin

$./CollectAllCounters

6.5 Limitations

• Only one Power profile session can run at a time.

• Minimum supported sampling period in CLI is 100ms. It is recommended to use large

sampling period to reduce the sampling and rendering overhead.

• Make sure latest Radeon driver is installed before running power profiler. Newer version of

dGPU may go to sleep (low power) state frequently if there is no activity in dGPU. In that

case, power profiler may emit a warning AMDT_WARN_SMU_DISABLED. Counters may

not be accessible in this state. Before running the power profiler, it is advisable to bring the

dGPU to active state.

• ICELAND dGPU (Topaz-XT, Topaz PRO, Topaz XTL, Topaz LE) series is not supported.

• If SMU becomes in-accessible while profiling is in progress, the behavior will be undefined.

AMD uProf User Guide

 83

Chapter 7 Energy Analysis

Power Application Analysis

AMD uProf profiler offers Power Application Analysis to identify energy hotspots in the

application. This is Windows OS only functionality. This profile type is used to analyze the energy

consumption of an application or processes running in the system.

Features

• Profile data

▪ Periodically RAPL core energy values are sampled using OS timer as sampling event

• Profile mode

▪ Profile data is collected when the application is running in user and kernel mode

• Profiles

▪ C, C++, FORTRAN, Assembly applications

▪ Various software components – Applications, Dynamically linked/loaded modules and

OS kernel modules

• Profile data is attributed at various granularities

▪ Process / Thread / Load Module / Function / Source line

▪ To correlate the profile data to Function and Source line, debug information emitted

by the compiler is required

• Processed profile data is stored in databases, which can be used to generate reports later.

• Profile reports are available in comma-separated-value (CSV) format to use with spreadsheets.

• AMDuProf GUI has various UIs to analyze and view the profile data at various granularities

▪ Hot spots summary

▪ Process and function analysis

▪ Source and disassembly analysis

AMD uProf User Guide

84

7.1 Profile using GUI

Here are the steps to configure and analyze the profile data:

7.1.1 Configure and Start profile

1. Either click the PROFILE page at the top navigation bar or Create a new profile? link in

HOME page’s Welcome window. This will navigate to the Start Profiling window.

2. You will see Select Profile Target fragment in the Start Profiling window. After selecting the

appropriate profile target, clicking Next button will take you to Select Profile Type fragment.

3. In Select Profile Type fragment selecting Power App Analysis from the drop-down list, will

take you to the below screenshot.

Power App Analysis - Configure

4. Once all the options are set, the Start Profile button at the bottom will be enabled and you can

click on it to start the profile. After the profile initialization you will see this profile data

collection screen.

AMD uProf User Guide

 85

To Analyze the profile data

5. When the profiling stopped, the collected raw profile data will be processed automatically, and

you will the Hot spots window of SUMMARY page. Refer this section for more information

on this window.

6. Click on the ANALYZE button on the top horizontal navigation bar to go Metrics window,

which displays the profile data table at various granularities - Process, Load Modules, Threads

and Functions. Refer this section for more information on this window.

7. Double-clicking any entry on the Functions table in Metrics window will make the GUI load

the source tab for that function in SOURCES page. Refer this section for more information on

this window

7.2 Profile using CLI

To profile and analyze the performance of a native (C/C++) application, you need to follow these

steps:

1. Prepare the application. Refer section on how to prepare an application for profiling

2. Collect the samples for the application using AMDuProfCLI’s collect command

3. Generate the report using AMDuProfCLI’s report command, in readable format for analysis

Preparing the application is to build the launch application with debug information as debug info is

needed to correlate the samples to functions and source lines.

The collect command will launch the application (if given) and collect the profile data and will

generate raw data file (.pdata on Windows) and other miscellaneous files.

The report command translates the collected raw profile data to aggregate and attribute to the

respective processes, threads, load modules, functions and instructions and writes them into a DB

and then generate a report in CSV format.

Example

• Launch classic.exe and collect energy samples for that launch application:

C:\> AMDuProfCLI.exe collect --config power -o c:\Temp\pwrprof classic.exe

• Generate report from the raw .pdata datafile:

C:\> AMDuProfCLI.exe report -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

AMD uProf User Guide

86

• Generate report from raw .pdata file and use Symbol Server paths to resolve symbols:

C:\> AMDuProfCLI.exe report --symbol-path C:\AppSymbols;C:\DriverSymbols

--symbol-server http://msdl.microsoft.com/download/symbols
--cache-dir C:\symbols -i c:\Temp\pwrprof.pdata -o c:\Temp\pwrprof-out

7.3 Limitations

• Only one energy analysis profile session can run at a time.

• This is Windows OS only feature

http://msdl.microsoft.com/download/symbols

AMD uProf User Guide

 87

Chapter 8 Remote Profiling

AMD uProf provides remote profiling capabilities to profile of applications running on a remote

target system. This is useful for working with headless server units. It is supported for all the profile

types. The data collection will be triggered from the AMDuProf/AMDuProfCLI and the data will

be collected and processed by the AMDRemoteAgent running in the target system. The AMDuProf

GUI running on a host system will be used to view and analyze the profile data.

Supported configurations:-

▪ Host OS: Windows, Linux

▪ Target OS: Windows, Linux

8.1 Profile remote targets using GUI

8.1.1 Adding user-id in the target system

• Before establishing a connection with the remote agent, the user has to add the unique UID

generated in the host client system. The uid can be generated either by using AMDuProfCLI or

AMDuProf GUI.

To generate unique uid using AMDuProfCLI
C:\> AMDuProfCLI.exe info --show-uid

UID : 10976441267198678299

To generate unique uid using AMDuProf GUI, clicking Connect to Remote Machine? link in

the Welcome window, will take you to Remote Profile window. In that window, Client ID will

be displayed on top right corner. This value can be copy and pasted by selecting it right clicking.

• Add this uid to remote agent running on the remote target system

C:\> AMDRemoteAgent.exe –add-user 10976441267198678299

AMD uProf User Guide

88

Unique Client ID

8.1.2 Launching Remote Agent

The uProf remote agent AMDRemoteAgent runs on the remote target system allows AMD uProf

clients installed on other machines to connect to that remote system and execute Performance and

Power profiling sessions of applications running on that remote system.

When remote agent AMDRemoteAgent.exe is launched, it will output to the console a message in

the following format:

c:\Program Files\AMD\AMDuProf\bin> AMDRemoteAgent.exe --ip 127.0.0.1 --port

20716

Local connection: IP: 127.0.0.1, port 27016

Waiting for a remote connection...

8.1.3 Establishing connection with Remote Agent

AMDuProf GUI can be configured to connect to a remote system by clicking Connect to a Remote

Machine? link in the Welcome window. This will take you to the Remote Profile configuration

page. The IP address and port needs to be configured. The port in which the remote agent is listening

AMD uProf User Guide

 89

on the remote system should be specified. Clicking Connect button will initiate the connection to

the remote platform.

Establishing remote connection

Once the connection is established:

• The title bar of AMDuProf GUI will show the remote system's IP address.

• All the settings, history and saved configurations are with respect to the remote system.

• Any profile type can be configured to profile on remote system.

User can switch back to the local profiling after disconnecting the remote connection. To disconnect,

you need to navigate to Remote Profile window of PROFILE page and click Disconnect button

as shown in the below screenshot.

AMD uProf User Guide

90

Disconnecting remote connection

8.2 Profile remote targets using CLI

Following steps are to be followed to collect profile data from a remote target system

1. Generate user-id in the host system.

Before establishing a connection with the remote agent, the user has to add the unique UID

generated in the host client system. To generate unique uid, run the following command on client

system

C:\> AMDuProfCLI.exe info --show-uid

UID : 10976441267198678299

2. Add this uid to remote agent running on the remote target system, by running

C:\> AMDRemoteAgent.exe –add-user 10976441267198678299

3. Launch remote agent binary AMDRemoteAgent on the remote target system - which allows

AMD uProf clients installed on other machines to connect to that remote system and collect

profile data.

AMD uProf User Guide

 91

c:\Program Files\AMD\AMDuProf\bin>AMDRemoteAgent.exe --ip 127.0.0.1 --port

20716

Local connection: IP: 127.0.0.1, port 27016

Waiting for a remote connection...

4. Run AMDuProfCLI commands from the client system using --ip and --port option to profile on

that remote target system

C:\> AMDuProfCLI.exe collect --config assess -o c:\Temp\cpuprof-assess --

ip 127.0.0.1 –port 27016 AMDTClassicMatMul.exe

C:\> AMDuProfCLI.exe report -i c:\Temp\cpuprof-assess -o c:\Temp\cpuprof-

assess\ --ip 127.0.0.1 –port 27016

C:\> AMDuProfCLI.exe timechart --event core=0-3,frequency --output

C:\Temp\power_output.txt --duration 10 --format txt --ip 127.0.0.1 –port

27016

8.3 Limitations

• Only one instance of GUI or CLI client process for a user (having unique client id) can

establish connection with AMDRemoteAgent process running on the target system.

• Multiple GUI or CLI client processes with different unique client ids (from same or different

host client systems), can establish connection with the AMDRemoteAgent process running on

the target system.

• The AMDRemoteAgent process can entertain either CPU or Power profile session at a time

from a client process.

• The AMDRemoteAgent process can entertain CPU profile request from one client process and

Power profile request from another client process simultaneously.

AMD uProf User Guide

92

Chapter 9 Profile Control APIs

9.1 AMDProfileControl APIs

The AMDProfileControl APIs allow you to limit the profiling scope to a specific portion of the code

within the target application.

Usually while profiling an application, samples for the entire control flow of the application

execution will be collected - i.e. from the start of execution till end of the application execution.

The control APIs can be used to enable the profiler to collect data only for a specific part of

application, e.g. a CPU intensive loop, a hot function, etc.

The target application needs to be recompiled after instrumenting the application to enable/disable

profiling of the interesting code regions only.

Header files

The application should include the header file AMDProfileController.h which declares the

required APIs. This file is available at include directory under AMD uProf’s install path.

Static Library

The instrumented application should link with the AMDProfileController static library. This

is available at:

Windows:

<AMDuProf-install-dir>\lib\x86\AMDProfileController.lib

<AMDuProf-install-dir>\lib\x64\AMDProfileController.lib

Linux:

<AMDuProf-install-dir>/lib/x64\libAMDProfileController.a

9.1.1 Profile Control APIs

These profile control APIs are available to pause and resume the profile data collection.

amdProfileResume

When the instrumented target application is launched through AMDuProf / AMDuProfCLI, the

profiling will be in the paused state and no profile data will be collected till the application calls this

resume API

bool amdProfileResume (AMD_PRPOFILE_CPU);

AMD uProf User Guide

 93

amdProfilePause

When the instrumented target application wants to pause the profile data collection, this API has to

be called:

These APIs can be called multiple times within the application. Nested Resume - Pause calls are not

supported. AMD uProf profiles the code within each Resume-Pause APIs pair. After adding these

APIs, the target application should be compiled before initiating a profile session.

9.1.2 How to use the APIs?

Include the header file AMDProfileController.h and call the resume and pause APIs within the code.

The code encapsulated within resume-pause API pair will be profiled by CPU Profiler.

• These APIs can be called multiple times to profile different parts of the code.

• These API calls can be spread across multiple functions - i.e. resume called from one function

and stop called from another function.

• These APIs can be spread across threads, i.e. resume called from one thread and stop called from

another thread of the same target application.

In the below code snippet, the CPU Profiling data collection is restricted to the execution of

multiply_matrices() function.

#include <AMDProfileController.h>

int main (int argc, char* argv[])

{

 // Initialize the matrices

 initialize_matrices ();

 // Resume the CPU profile data collection

 amdProfileResume (AMD_PROFILE_CPU);

 // Multiply the matrices

 multiply_matrices ();

 // Stop the CPU Profile data collection

 amdProfilePause (AMD_PROFILE_CPU);

 return 0;

}

bool amdProfilePause (AMD_PRPOFILE_CPU);

AMD uProf User Guide

94

9.1.3 Compiling instrumented target application

Windows

To compile the application on Microsoft Visual Studio, update the configuration properties to

include the path of header file and link with AMDProfileController.lib library.

Linux

To compile a C++ application on Linux using g++, use the following command:

$ g++ -std=c++11 <sourcefile.cpp> -I <AMDuProf-install-dir>/include

-L<AMDuProf-install-dir>/lib/x64/ -lAMDProfileController -lrt -pthread

Note:

• Do not use -static option while compiling with g++.

9.1.4 Profiling instrumented target application

AMDuProf GUI

After compiling the target application, create a profile configuration in AMDuProf using it, set the

desired CPU profile session options. While setting the CPU profile session options, in the Profile

Scheduling section, select Are you using Profile Instrumentation API?.

Once all the settings done, start the CPU profiling. The profiling will begin in the paused state and

the target application execution begins. When the resume API gets called from target application,

CPU Profile starts profiling till pause API gets called from target application or the application gets

terminated. As soon as pause API is called in target application, profiler stops profiling and waits

for next control API call.

AMDuProfCLI

To profile from CLI, option --start-paused should be used to start the profiler in pause state.

Windows:

C:\> AMDuProfCLI.exe collect --config tbp --start-paused -o C:\Temp\prof-tbp

ClassicCpuProfileCtrl.exe

Linux:

$./AMDuProfCLI collect --config tbp --start-paused -o /tmp/cpuprof-tbp

/tmp/AMDuProf/Examples/ClassicCpuProfileCtrl/ClassicCpuProfileCtrl

AMD uProf User Guide

 95

Chapter 10 Reference

10.1 Preparing an application for profiling

The AMD uProf uses the debug information generated by the compiler to show the correct function

names in various analysis views and to correlate the collected samples to source statements in Source

page. Otherwise, the results of the CPU Profiler would be less descriptive, displaying only the

assembly code.

10.1.1 Generate debug information on Windows:

When using Microsoft Visual C++ to compile the application in release mode, set the following

options before compiling the application to ensure that the debug information is generated and saved

in a program database file (with a .pdb extension). To set the compiler option to generate the debug

information for a x64 application in release mode:

1. Right click on the project and select Properties menu item.

AMD uProf User Guide

96

2. In the Configuration list, select Active(Release).

3. In the Platform list, select Active(Win32) or Active(x64).

4. In the project pane, expand the Configuration Properties item, then expand the C/C++

item and select General.

5. In the work pane, select Debug Information Format, and from the drop-down list select

Program Database (/Zi) or Program Database for Edit & Continue (/ZI).

6. In the project pane, expand the ‘Linker’ item; then select the ‘Debugging’ item.

7. In the ‘Generate Debug Info’ list, select (/DEBUG).

10.1.2 Generate debug information on Linux:

The application must be compiled with the -g option to enable the compiler to generate debug

information. Modify either the Makefile or the respective build scripts accordingly.

AMD uProf User Guide

 97

10.2 CPU Profiling

The AMD uProf CPU Performance Profiling follows a sampling-based approach to gather the

profile data periodically. It uses a variety of SW and HW resources available in AMD x86 based

processor families. CPU Profiling uses the OS timer, HW Performance Monitor Counters (PMC),

and HW IBS feature.

This section explains various key concepts related to CPU Profiling.

10.2.1 Hardware Sources

Performance Monitor Counters (PMC)

AMD’s x86-based processors have Performance Monitor Counters (PMC) that let them monitor

various micro-architectural events in a CPU core. The PMC counters are used in two modes:

▪ In counting mode, these counters are used to count the specific events that occur in a CPU

core.

▪ In sampling mode, these counters are programmed to count a specific number of events.

Once the count is reached the appropriate number of times (called sampling interval), an

interrupt is triggered. During the interrupt handling, the CPU Profiler collects profile data.

The number of hardware performance event counters available in each processor is implementation-

dependent (see the BIOS and Kernel Developer’s Guide [BKDG] of the specific processor for the

exact number of hardware performance counters). The operating system and/or BIOS can reserve

one or more counters for internal use. Thus, the actual number of available hardware counters may

be less than the number of hardware counters. The CPU Profiler uses all available counters for

profiling.

Instruction-Based Sampling (IBS)

IBS is a code profiling mechanism that enables the processor to select a random instruction fetch or

micro-Op after a programmed time interval has expired and record specific performance information

about the operation. An interrupt is generated when the operation is complete as specified by IBS

Control MSR. An interrupt handler can then read the performance information that was logged for

the operation.

The IBS mechanism is split into two parts:

▪ Instruction Fetch performance

▪ Instruction Execution Performance

Instruction fetch sampling provides information about instruction TLB and instruction cache

behavior for fetched instructions.

Instruction execution sampling provides information about micro-Op execution behavior.

AMD uProf User Guide

98

The data collected for instruction fetch performance is independent from the data collected for

instruction execution performance. Support for the IBS feature is indicated by the

Core::X86::Cpuid::FeatureExtIdEcx[IBS].

Instruction execution performance is profiled by tagging one micro-Op associated with an

instruction. Instructions that decode to more than one micro-Op return different performance data

depending upon which micro-Op associated with the instruction is tagged. These micro-Ops are

associated with the RIP of the next instruction.

In this mode, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to

observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events

are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler

to derive various metrics, such as data cache latency.

IBS is supported starting from the AMD processor family 10h.

L3 Cache Performance Monitor Counters (L3PMC)

A Core Complex (CCX) is a group of CPU cores which share L3 cache resources. All the cores in

a CCX share a single L3 cache. In family 17, 8MB of L3 cache shared across all cores within the

CCX. Family 17 processors support L3PMCs to monitor the performance of L3 resources. Refer

family 17 PPR for more details.

Data Fabric Performance Monitor Counters (DFPMC)

Family 17 processors support DFPMCs to monitor the performance of Data Fabric resources. Refer

family 17 PPR for more details.

10.2.2 Profiling Concepts

Sampling

Sampling profilers works based on the logic that the part of a program that consumes most of the

time (or that triggers the most occurrence of the sampling event) have a larger number of samples.

This is because they have a higher probability of being executed while samples are being taken by

the CPU Profiler.

Sampling Interval

The time between the collection of every two samples is the Sampling Interval. For example, in

TBP, if the time interval is 1 millisecond, then roughly 1,000 TBP samples are being collected every

second for each processor core.

The meaning of sampling interval depends on the resource used as the sampling event.

AMD uProf User Guide

 99

▪ OS timer - the sampling interval is in milliseconds.

▪ PMC events - the sampling interval is the number of occurrences of that sampling event

▪ IBS - the number of processed instructions after which it will be tagged.

Smaller sampling interval increases the number of samples collected and as well the data collection

overhead. Since profile data is collected on the same system in which the workload is running, more

frequent sampling increases the intrusiveness of profiling. Very small sampling interval also can

cause system instability.

Sampling point: When a sampling-point occurs upon the expiry of the sampling-interval for a

sampling-event, various profile data like Instruction Pointer, Process Id, Thread Id, Call-stack will

be collected by the interrupt handler.

Event-Counter Multiplexing

If the number of monitored PMC events is less than, or equal to, the number of available

performance counters, then each event can be assigned to a counter, and each event can be monitored

100% of the time. In a single-profile measurement, if the number of monitored events is larger than

the number of available counters, the CPU Profiler time-shares the available HW PMC counters.

(This is called event counter multiplexing.) It helps monitor more events and decreases the actual

number of samples for each event, thus reducing data accuracy. The CPU Profiler auto-scales the

sample counts to compensate for this event counter multiplexing. For example, if an event is

monitored 50% of the time, the CPU Profiler scales the number of event samples by factor of 2.

10.2.3 Profile Types

Profile types are classified based on the HW or SW sampling events used to collect the profile data.

Time-Based Profile (TBP)

In this profile, the profile data is periodically collected based on the specified OS timer interval. It

is used to identify the hotspots of the profiled applications.

Event-Based Profile (EBP)

In this profile, the CPU Profiler uses the PMCs to monitor the various micro-architectural events

supported by the AMD x86-based processor. It helps to identify the CPU and memory related

performance issues in profiled applications. The CPU Profiler provides several predefined EBP

profile configurations. To analyze a particular aspect of the profiled application (or system), a

specific set of relevant events are grouped and monitored together. The CPU Profiler provides a list

of predefined event configurations, such as Assess Performance and Investigate Branching, etc. You

can select any of these predefined configurations to profile and analyze the runtime characteristics

of your application. You also can create their custom configurations of events to profile.

AMD uProf User Guide

100

In this profile mode, a delay called skid occurs between the time at which the sampling interrupt

occurs and the time at which the sampled instruction address is collected. This skid distributes the

samples in the neighborhood near the actual instruction that triggered a sampling interrupt. This

produces an inaccurate distribution of samples and events are often attributed to the wrong

instructions.

Instruction-Based Sampling (IBS)

In this profile, the CPU Profiler uses the IBS HW supported by the AMD x86-based processor to

observe the effect of instructions on the processor and on the memory subsystem. In IBS, HW events

are linked with the instruction that caused them. Also, HW events are being used by the CPU Profiler

to derive various metrics, such as data cache latency.

Custom Profile

This profile allows a combination of HW PMC events, OS timer, and IBS sampling events.

10.2.4 CPU PMC Events

Some of the interesting Core Performance events of AMD Processor family 17h are listed here.

Core PMC Events

PMC Event Description

[PMCx076] CPU clock

cycles not halted

The number of core clocks that the CPU is not in a halted state.

[PMCx0C0] Retired

Instructions

The number of instructions retired

[PMCx0C1] Retired uops The number of micro-ops retired. This includes all processor

activity (instructions, exceptions, interrupts, microcode assists,

etc.). The number of events logged per cycle can vary from 0 to

4

[PMCx0C2] Retired Branch

Instructions

The number of branch instructions retired. This includes all

types of architectural control flow changes, including exceptions

and interrupts.

[PMCx0C3] Retired Branch

Instructions Mispredicted

The number of branch instructions retired, of any type, that were

not correctly predicted in either target or direction. This includes

those for which prediction is not attempted (far control transfers,

exceptions and interrupts).

AMD uProf User Guide

 101

[PMCx0C4] Retired Taken

Branch Instructions

The number of taken branches that were retired. This includes

all types of architectural control flow changes, including

exceptions and interrupts.

[PMCx0CA] Retired Indirect

Branch Instructions

Mispredicted

Retired Indirect Branch Instructions Mispredicted

[PMCx08A] L1 BTB

Correction

L1 BTB Correction

[PMCx08B] L2 BTB

Correction

L2 BTB Correction

[PMCx040] Data Cache

Accesses

The number of accesses to the data cache for load and store

references. This may include certain microcode scratchpad

accesses, although these are generally rare. Each increment

represents an eight-byte access, although the instruction may

only be accessing a portion of that. This event is a speculative

event.

[PMCx041] MAB Allocation

by Pipe

MAB allocation by pipe

[PMCx043] Data Cache

Refills from System

Demand Data Cache Fills by Data Source

[PMCx045] L1 DTLB Miss L1 DTLB Miss

[PMCx047] Misaligned

loads

Misaligned loads (accesses).

[PMCx080] 32 Byte

Instruction Cache Fetches

The number of 32B fetch windows transferred from IC pipe to

DE instruction decoder (includes non-cacheable and cacheable

fill responses)

[PMCx081] 32 Byte

Instruction Cache Misses

The number of 32B fetch windows tried to read the L1 IC and

missed in the full tag.

[PMCx084] L1 ITLB Miss,

L2 ITLB Hit

The number of instruction-fetches that miss in the L1 ITLB but

hit in the L2 ITLB

[PMCx085] L1 ITLB Miss,

L2 ITLB Miss

The number of instruction-fetches that miss in both the L1 and

L2 TLBs.

AMD uProf User Guide

102

CPU Performance Metrics

CPU Metric Description

Core Effective Frequency Core Effective Frequency (without halted cycles) over the

sampling period, reported in GHz. The metric is based on APERF

and MPERF MSRs. MPERF is incremented by the core at the P0

state frequency while the core is in C0 state. APERF is

incremented in proportion to the actual number of core cycles

while the core is in C0 state.

IPC Instruction Retired Per Cycle (IPC) is the average number of

instructions retired per cycle. This is measured using Core PMC

events PMCx0C0 [Retired Instructions] and PMCx076 [CPU

Clocks not Halted]. These PMC events are counted in both OS

and User mode.

CPI Cycles Per Instruction Retired (CPI) is the multiplicative inverse

of IPC metric. This is one of the basic performance metrics

indicating how cache misses, branch mis-predictions, memory

latencies and other bottlenecks are affecting the execution of an

application. Lower CPI value is better.

10.2.5 IBS Derived Events

AMD uProf translates the IBS information produced by the hardware into derived event sample

counts that resemble EBP sample counts. All IBS-derived events have “IBS” in the event name and

abbreviation. Although IBS-derived events and sample counts look similar to EBP events and

sample counts, the source and sampling basis for the IBS event information are different.

Arithmetic should never be performed between IBS derived event sample counts and EBP event

sample counts. It is not meaningful to directly compare the number of samples taken for events that

represent the same hardware condition. For example, fewer IBS DC miss samples is not necessarily

better than a larger quantity of EBP DC miss samples.

IBS Fetch events

IBS Fetch Event Description

All IBS fetch samples The number of all IBS fetch samples. This derived event counts the

number of all IBS fetch samples that were collected including IBS-

killed fetch samples

IBS fetch killed The number of IBS sampled fetches that were killed fetches. A fetch

operation is killed if the fetch did not reach ITLB or IC access. The

AMD uProf User Guide

 103

number of killed fetch samples is not generally useful for analysis and

are filtered out in other derived IBS fetch events (except Event Select

0xF000 which counts all IBS fetch samples including IBS killed fetch

samples.)

IBS fetch attempted The number of IBS sampled fetches that were not killed fetch

attempts. This derived event measures the number of useful fetch

attempts and does not include the number of IBS killed fetch samples.

This event should be used to compute ratios such as the ratio of IBS

fetch IC misses to attempted fetches. The number of attempted fetches

should equal the sum of the number of completed fetches and the

number of aborted fetches.

IBS fetch completed The number of IBS sampled fetches that completed. A fetch is

completed if the attempted fetch delivers instruction data to the

instruction decoder. Although the instruction data was delivered, it

may still not be used (e.g., the instruction data may have been on the

“wrong path” of an incorrectly predicted branch.)

IBS fetch aborted The number of IBS sampled fetches that aborted. An attempted fetch

is aborted if it did not complete and deliver instruction data to the

decoder. An attempted fetch may abort at any point in the process of

fetching instruction data. An abort may be due to a branch redirection

as the result of a mispredicted branch. The number of IBS aborted

fetch samples is a lower bound on the amount of unsuccessful,

speculative fetch activity. It is a lower bound since the instruction data

delivered by completed fetches may not be used.

IBS ITLB hit The number of IBS attempted fetch samples where the fetch operation

initially hit in the L1 ITLB (Instruction Translation Lookaside

Buffer).

IBS L1 ITLB misses

(and L2 ITLB hits)

The number of IBS attempted fetch samples where the fetch operation

initially missed in the L1 ITLB and hit in the L2 ITLB.

IBS L1 L2 ITLB miss The number of IBS attempted fetch samples where the fetch operation

initially missed in both the L1 ITLB and the L2 ITLB.

IBS instruction cache

misses

The number of IBS attempted fetch samples where the fetch operation

initially missed in the IC (instruction cache).

IBS instruction cache

hit

The number of IBS attempted fetch samples where the fetch operation

initially hit in the IC.

AMD uProf User Guide

104

IBS 4K page

translation

The number of IBS attempted fetch samples where the fetch operation

produced a valid physical address (i.e., address translation completed

successfully) and used a 4-KByte page entry in the L1 ITLB.

IBS 2M page

translation

The number of IBS attempted fetch samples where the fetch operation

produced a valid physical address(i.e., address translation completed

successfully) and used a 2-MByte page entry in the L1 ITLB.

IBS fetch latency The total latency of all IBS attempted fetch samples. Divide the total

IBS fetch latency by the number of IBS attempted fetch samples to

obtain the average latency of the attempted fetches that were sampled.

IBS fetch L2 cache

miss

The instruction fetch missed in the L2 Cache.

IBS ITLB refill

latency

The number of cycles when the fetch engine is stalled for an ITLB

reload for the sampled fetch. If there is no reload, the latency will be

0.

IBS Op events

IBS Op Event Description

All IBS op samples The number of all IBS op samples that were collected. These op

samples may be branch ops, resync ops, ops that perform load/store

operations, or undifferentiated ops (e.g., those ops that perform

arithmetic operations, logical operations, etc.). IBS collects data for

retired ops. No data is collected for ops that are aborted due to

pipeline flushes, etc. Thus, all sampled ops are architecturally

significant and contribute to the successful forward progress of

executing programs.

IBS tag-to-retire cycles The total number of tag-to-retire cycles across all IBS op samples.

The tag-to-retire time of an op is the number of cycles from when the

op was tagged (selected for sampling) to when the op retired.

IBS completion-to-

retire cycles

The total number of completion-to-retire cycles across all IBS op

samples. The completion-to-retire time of an op is the number of

cycles from when the op completed to when the op retired.

IBS branch op The number of IBS retired branch op samples. A branch operation is

a change in program control flow and includes unconditional and

conditional branches, subroutine calls and subroutine returns. Branch

ops are used to implement AMD64 branch semantics.

AMD uProf User Guide

 105

IBS mispredicted

branch op

The number of IBS samples for retired branch operations that were

mispredicted. This event should be used to compute the ratio of

mispredicted branch operations to all branch operations.

IBS taken branch op The number of IBS samples for retired branch operations that were

taken branches.

IBS mispredicted

taken branch op

The number of IBS samples for retired branch operations that were

mispredicted taken branches.

IBS return op The number of IBS retired branch op samples where the operation

was a subroutine return. These samples are a subset of all IBS retired

branch op samples.

IBS mispredicted

return op

The number of IBS retired branch op samples where the operation

was a mispredicted subroutine return. This event should be used to

compute the ratio of mispredicted returns to all subroutine returns.

IBS resync op The number of IBS resync op samples. A resync op is only found in

certain micro-coded AMD64 instructions and causes a complete

pipeline flush.

IBS all load store ops The number of IBS op samples for ops that perform either a load

and/or store operation. An AMD64 instruction may be translated into

one (“single fast path”), two (“double fast path”), or several (“vector

path”) ops. Each op may perform a load operation, a store operation

or both a load and store operation (each to the same address). Some

op samples attributed to an AMD64 instruction may perform a

load/store operation while other op samples attributed to the same

instruction may not. Further, some branch instructions perform

load/store operations. Thus, a mix of op sample types may be

attributed to a single AMD64 instruction depending upon the ops that

are issued from the AMD64 instruction and the op types.

IBS load ops The number of IBS op samples for ops that perform a load operation.

IBS store ops The number of IBS op samples for ops that perform a store

operation.

IBS L1 DTLB hit The number of IBS op samples where either a load or store operation

initially hit in the L1 DTLB (data translation lookaside buffer).

IBS L1 DTLB misses

L2 hits

The number of IBS op samples where either a load or store operation

initially missed in the L1 DTLB and hit in the L2 DTLB.

AMD uProf User Guide

106

IBS L1 and L2 DTLB

misses

The number of IBS op samples where either a load or store operation

initially missed in both the L1 DTLB and the L2 DTLB.

IBS data cache misses The number of IBS op samples where either a load or store operation

initially missed in the data cache (DC).

IBS data cache hits The number of IBS op samples where either a load or store operation

initially hit in the data cache (DC).

IBS misaligned data

access

The number of IBS op samples where either a load or store operation

caused a misaligned access (i.e., the load or store operation crossed a

128-bit boundary).

IBS bank conflict on

load op

The number of IBS op samples where either a load or store operation

caused a bank conflict with a load operation.

IBS bank conflict on

store op

The number of IBS op samples where either a load or store operation

caused a bank conflict with a store operation.

IBS store-to-load

forwarded

The number of IBS op samples where data for a load operation was

forwarded from a store operation.

IBS store-to-load

cancelled

The number of IBS op samples where data forwarding to a load

operation from a store was cancelled.

IBS UC memory

access

The number of IBS op samples where a load or store operation

accessed uncacheable (UC) memory.

IBS WC memory

access

The number of IBS op samples where a load or store operation

accessed write combining (WC) memory.

IBS locked operation The number of IBS op samples where a load or store operation was a

locked operation.

IBS MAB hit The number of IBS op samples where a load or store operation hit an

already allocated entry in the Miss Address Buffer (MAB).

IBS L1 DTLB 4K page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 4-KByte page entry in

the L1 DTLB was used for address translation.

IBS L1 DTLB 2M page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 2-MByte page entry in

the L1 DTLB was used for address translation.

AMD uProf User Guide

 107

IBS L1 DTLB 1G page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address and a 1-GByte page entry in

the L1 DTLB was used for address translation.

IBS L2 DTLB 4K page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 4 KB page entry for address translation.

IBS L2 DTLB 2M page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 2-MByte page entry for address translation.

IBS L2 DTLB 1G page The number of IBS op samples where a load or store operation

produced a valid linear (virtual) address, hit the L2 DTLB, and used

a 1-GByte page entry for address translation.

IBS data cache miss

load latency

The total DC miss load latency (in processor cycles) across all IBS

op samples that performed a load operation and missed in the data

cache. The miss latency is the number of clock cycles from when the

data cache miss was detected to when data was delivered to the core.

Divide the total DC miss load latency by the number of data cache

misses to obtain the average DC miss load latency.

IBS load resync Load Resync.

IBS Northbridge local The number of IBS op samples where a load operation was serviced

from the local processor. Northbridge IBS data is only valid for load

operations that miss in both the L1 data cache and the L2 data cache.

If a load operation crosses a cache line boundary, then the IBS data

reflects the access to the lower cache line.

IBS Northbridge

remote

The number of IBS op samples where a load operation was serviced

from a remote processor.

IBS Northbridge local

L3

The number of IBS op samples where a load operation was serviced

by the local L3 cache.

IBS Northbridge local

core L1 or L2 cache

The number of IBS op samples where a load operation was serviced

by a cache (L1 data cache or L2 cache) belonging to a local core

which is a sibling of the core making the memory request.

IBS Northbridge local

core L1, L2, L3 cache

The number of IBS op samples where a load operation was serviced

by a remote L1 data cache, L2 cache or L3 cache after traversing one

or more coherent HyperTransport links.

AMD uProf User Guide

108

IBS Northbridge local

DRAM

The number of IBS op samples where a load operation was serviced

by local system memory (local DRAM via the memory controller).

IBS Northbridge

remote DRAM

The number of IBS op samples where a load operation was serviced

by remote system memory (after traversing one or more coherent

HyperTransport links and through a remote memory controller).

IBS Northbridge local

APIC MMIO Config

PCI

The number of IBS op samples where a load operation was serviced

from local MMIO, configuration or PCI space, or from the local

APIC.

IBS Northbridge

remote APIC MMIO

Config PCI

The number of IBS op samples where a load operation was serviced

from remote MMIO, configuration or PCI space.

IBS Northbridge cache

modified state

The number of IBS op samples where a load operation was serviced

from local or remote cache, and the cache hit state was the Modified

(M) state.

IBS Northbridge cache

owned state

The number of IBS op samples where a load operation was serviced

from local or remote cache, and the cache hit state was the Owned

(O) state.

IBS Northbridge local

cache latency

The total data cache miss latency (in processor cycles) for load

operations that were serviced by the local processor.

IBS Northbridge

remote cache latency

The total data cache miss latency (in processor cycles) for load

operations that were serviced by a remote processor.

10.3 Useful links

For the processor specific PMC events and their descriptions, refer:

AMD Developer Documents: https://developer.amd.com/resources/developer-guides-manuals/

Open Source Register Reference (OSRR) for AMD Family 17h Processors:

https://developer.amd.com/wp-content/resources/56255_3_03.PDF

Processor Programming Reference (PPR) for AMD Family 17h Model 00h-0Fh Processors:

http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf

Software Optimization Guide for AMD Family 17h Processors:

https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/wp-content/resources/56255_3_03.PDF
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_3_00.ZIP

