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Matching with Contracts 

By JOHN WILLIAM HATFIELD AND PAUL R. MILGROM* 

We develop a model of matching with contracts which incorporates, as special 
cases, the college admissions problem, the Kelso-Crawford labor market matching 
model, and ascending package auctions. We introduce a new "law of aggregate 
demand" for the case of discrete heterogeneous workers and show that, when 
workers are substitutes, this law is satisfied by profit-maximizing firms. When 
workers are substitutes and the law is satisfied, truthful reporting is a dominant 
strategy for workers in a worker-offering auction/matching algorithm. We also 
parameterize a large class of preferences satisfying the two conditions. (JEL C78, 
D44) 

Since the pioneering U.S. spectrum auctions 
of 1994 and 1995, related ascending multi-item 
auctions have been used with much fanfare on 
six continents for sales of radio spectrum and 
electricity supply contracts.1 Package bidding, 
in which bidders can place bids not just for 
individual lots but also for bundles of lots 
("packages"), has found increasing use in pro- 
curement applications (Milgrom, 2004; Peter 
Cramton et al., 2005). Recent proposals in the 
United States to allow package bidding for 
spectrum licenses and for airport landing rights 
incorporate ideas suggested by Lawrence Aus- 
ubel and Milgrom (2002) and by David Porter et 
al. (2003) (see Ausubel et al., 2005). 

Matching algorithms based on economic the- 
ory also have important practical applications. 
Alvin E. Roth and Elliott Peranson (1999) ex- 
plain how a certain two-sided matching proce- 
dure, which is similar to the college admissions 
algorithm introduced by David Gale and Lloyd 
Shapley (1962), has been adapted to match 
20,000 doctors per year to medical residency 
programs. After Atila Abdulkadiroglu and Tay- 
fun Sonmez (2003) advocated a variation of the 
same algorithm for use by school choice pro- 
grams, a similar centralized match was adopted 
by the New York City schools (Abdulkadiroglu 
et al., 2005b) and another is being evaluated by 
the Boston schools (Abdulkadiroglu et al., 
2005a). 

This paper identifies and explores certain 
similarities among all of these auction and 
matching mechanisms. To illustrate one simi- 
larity, consider the labor market auction model 
of Alexander Kelso and Vincent Crawford 
(1982), in which firms bid for workers in simul- 
taneous ascending auctions. The Kelso-Crawford 
model assumes that workers have preferences 
over firm-wage pairs and that all wage offers are 
drawn from a prespecified finite set. If that set 
includes only one wage, then all that is left for 
the auction to determine is the match of workers 
to firms, so the auction is effectively trans- 
formed into a matching algorithm. The auction 
algorithm begins with each firm proposing em- 
ployment to its most preferred set of workers at 
the one possible wage. When some workers turn 
it down, the firm makes offers to other workers 
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1 For example, a New York Times article about a spec- 
trum auction in the United States was headlined "The Great- 
est Auction Ever" (New York Times, March 16, 1995, p. 
A17). The scientific community has also been enthusiastic. 
In its fiftieth anniversary self-review, the U.S. National 
Science Foundation reported that "from a financial stand- 
point, the big payoff for NSF's longstanding support [of 
auction theory research] came in 1995 ... [when t]he Federal 
Communications Commission established a system for us- 
ing auctions." See Milgrom (2004). 
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to fill its remaining openings. This procedure is 
precisely the hospital-offering version of the 
Gale-Shapley matching algorithm. Hence, the 
Gale-Shapley matching algorithm is a special 
case of the Kelso-Crawford procedure. 

The possibility of extending the National 
Resident Matching Program (the "Match") to 
permit wage competition is an important con- 
sideration in assessing public policy toward the 
Match, particularly because work by Jeremy 
Bulow and Jonathan Levin (2003) lends some 
theoretical support for the position that the 
Match may compress and reduce doctors' 
wages relative to a perfectly competitive stan- 
dard. The practical possibility of such an exten- 
sion depends on many details, including, 
importantly, the form in which doctors and hos- 
pitals would have to report their preferences for 
use in the Match. In its current incarnation, the 
Match can accommodate hospital preferences 
that encompass affirmative action constraints 
and a subtle relationship between internal med- 
icine and its subspecialties, so it will be impor- 
tant for any replacement algorithm to allow 
similar preferences to be expressed. In Section 
IV, we introduce a parameterized family of val- 
uations that accomplishes that. 

A second important similarity is between the 
Gale-Shapley doctor-offering algorithm and the 
Ausubel-Milgrom proxy auction. Explaining 
this relationship requires restating the algorithm 
in a different form from the one used for the 
preceding comparison. We show that if the hos- 
pitals in the Match consider doctors to be sub- 
stitutes, then the doctor-offering algorithm is 
equivalent to a certain cumulative offer process 
in which the hospitals at each round can choose 
from all the offers they have received at any 
round, current or past. In a different environ- 
ment, where there is but a single "hospital" or 
auctioneer with unrestricted preferences and 
general contract terms, this cumulative offer 
process coincides exactly with the Ausubel- 
Milgrom proxy auction. 

Despite the close connections among these 
mechanisms, previous analyses have treated 
them separately. In particular, analyses of auc- 
tions typically assume that bidders' payoffs are 
quasi-linear. No corresponding assumption is 
made in analyzing the medical match or the 
college admissions problem; indeed, the very 

possibility of monetary transfers is excluded 
from those formulations. As discussed below, 
the quasi-linearity assumption combines with 
the substitutes assumption in a subtle and re- 
strictive way. 

This paper presents a new model that sub- 
sumes, unifies, and extends the models cited 
above. The basic unit of analysis in the new 
model is the contract. To reproduce the Gale- 
Shapley college admissions problem, we spec- 
ify that a contract is fully identified by the 
student and college; other terms of the relation- 
ship depend only on the parties' identities. To 
reproduce the Kelso-Crawford model of firms 
bidding for workers, we specify that a contract 
is fully identified by the firm, the worker, and 
the wage. Finally, to reproduce the Ausubel- 
Milgrom model of package bidding, we specify 
that a contract is identified by the bidder, the 
package of items that the bidder will acquire, 
and the price to be paid for that package. Sev- 
eral additional variations can be encompassed 
by the model. For example, Roth (1984, 1985b) 
allows that a contract might specify the partic- 
ular responsibilities that a worker will have 
within the firm. 

Our analysis of matching models emphasizes 
two conditions that restrict the preferences of 
the firms/hospitals/colleges: a substitutes condi- 
tion and an law of aggregate demand condition. 
We find that these two conditions are implied by 
the assumptions of earlier analyses, so our uni- 
fied treatment implies the central results of 
those theories as special cases. 

In the tradition of demand theory, we define 
substitutes by a comparative statics condition. 
In demand theory, the exogenous parameter 
change is a price decrease, so the challenge is to 
extend the definition to models in which there 
may be no price that is allowed to change. In 
our contracts model, a price reduction corre- 
sponds formally to expanding the firm's oppor- 
tunity set, i.e., to making the set of feasible 
contracts larger. Our substitutes condition as- 
serts that when the firm chooses from an ex- 
panded set of contracts, the set of contracts it 
rejects also expands (weakly). As we will show, 
this abstract substitutes condition coincides ex- 
actly with the demand theory condition for stan- 
dard models with prices. It also coincides 
exactly with the "substitutable preferences" 
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condition for the college admissions problem 
(Roth and Marilda Sotomayor, 1990). 

The law of aggregate demand, which is new 
in this paper, is similarly defined by a compar- 
ative static. It is the condition that when a 
college or firm chooses from an expanded set, it 
admits at least as many students or hires at least 
as many workers.2 

The term "law of aggregate demand" is mo- 
tivated by the relation of this condition to the 
law of demand in producer theory. According to 
producer theory, a profit-maximizing firm de- 
mands (weakly) more of any input as its price 
falls. For the matching model with prices, the 
law of aggregate demand requires that when 
any input price falls, the aggregate quantity 
demanded, which includes the quantities de- 
manded of that input and all of its substitutes, 
rises (weakly). Notice that it is tricky even to 
state such a law in producer theory with divis- 
ible inputs, because there is no general aggre- 
gate quantity measure when divisible inputs are 
diverse. In the present model with indivisible 
workers, we measure the aggregate quantity of 
workers demanded or hired by the total number 
of such workers. 

A key step in our analysis is to prove a new 
result in demand theory: if workers are substi- 
tutes, then a profit-maximizing firm's employ- 
ment choices satisfy the law of aggregate 
demand. Since firms are profit maximizers and 
regard workers as substitutes in the Kelso- 
Crawford model, it follows that the law of ag- 
gregate demand holds for that model. Thus, one 
implication of the standard quasi-linearity as- 
sumption of auction theory is that the bidders' 
preferences satisfy the law of aggregate de- 
mand. We find that when preferences are re- 
sponsive as originally and still commonly 
assumed in matching theory analyses, they sat- 
isfy the law of aggregate demand.3 We also 

prove some new results for the class of auction 
and matching models that satisfy this law. 

The paper is organized as follows. Section I 
introduces the matching-with-contracts nota- 
tion, treats an allocation as a set of contracts, 
and characterizes the stable allocations in terms 
of the solution of a certain system of two 
equations. 

Section II introduces the substitutes condition 
and uses it to prove that the set of stable allo- 
cations is a nonempty lattice, and that a certain 
generalization of the Gale-Shapley algorithm 
identifies its maximum and minimum elements. 
These two extreme points are characterized as a 
doctor-optimal/hospital-pessimal point, which 
is a point that is the unanimously most preferred 
stable allocation for the doctors and the unani- 
mously least preferred stable allocation for the 
hospitals; and a hospital-optimal/doctor-pessimal 
point with the reverse attributes. 

Section II also proves several related results. 
First, if there are at least two hospitals and if 
some hospital has preferences that do not satisfy 
the substitutes condition, then even if all other 
hospitals have just a single opening, there exists 
a profile of preferences for the students and 
colleges such that no stable allocation exists. 
This result is important for the construction of 
matching algorithms. It means that any match- 
ing procedure that permits students and colleges 
to report preferences that do not satisfy the 
substitutes condition cannot be guaranteed al- 
ways to select a stable allocation with respect to 
the reported preferences. 

Another result concerns vacancy chain dy- 
namics, which traces the dynamic adjustment of 
the labor market when a worker retires or a new 
worker enters the market and the dynamics are 
represented by the operator we have described. 
The analysis extends the results reported by 
Yosef Blum et al. (1997) and foreshadowed by 
Kelso and Crawford (1982). We find that, start- 
ing from a stable allocation, the vacancy adjust- 
ment process converges to a new stable 
allocation. 

Section III contains the most novel results of 
the paper. It introduces the law of aggregate 

2 In their study of a model of "schedule matching," 
Ahmet Alkan and Gale (2003) independently introduced a 
similar notion, which they call "size monotonicity." 

3 The original matching formulation of Gale and Shapley 
(1962) assumed that colleges simply have a rank order 
listing of students. Roth (1985a) dubbed this "responsive- 
ness" and sought to relax this condition. Similarly, in a 
model of matching with wages, Crawford and E. M. Knoer 
(1981) assumed that firm preferences over workers were 

separable. That restriction was relaxed by Kelso and Craw- 
ford (1982). 
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demand, verifies that it holds for a profit- 
maximizing firm when inputs are substitutes, 
and explores its consequences. When both the 
substitutes and the law of aggregate demand 
conditions are satisfied, then (a) the set of work- 
ers employed and the set of jobs filled is the 
same at every stable collection of contracts; and 
(b) it is a dominant strategy for doctors (or 
workers or students) to report their preferences 
truthfully in the doctor-offering version of the 
extended Gale-Shapley algorithm. We also 
demonstrate the necessity of a weaker version 
of the law of aggregate demand for these 
conclusions. 

Our conclusion about this dominant strategy 
property substantially extends earlier findings 
about incentives in matching. The first such 
results, due to Lester Dubins and David Freed- 
man (1981) and Roth (1982), established the 
dominant strategy property for the marriage 
problem, which is a one-to-one matching prob- 
lem that is a special case of the college admis- 
sions problem. Similarly, Gabrielle Demange 
and Gale (1985) establish the dominant strategy 
property for the worker-firm matching problem 
in which each firm has singleton preferences. 
These results generalize to the case of respon- 
sive preferences, that is, to the case where each 
hospital (or college or firm) behaves just the 
same as a collection of smaller hospitals with 
one opening each. For the college admissions 
problem, Abdulkadiroglu (2003) has shown that 
the dominant strategy property also holds when 
colleges have responsive preferences with ca- 
pacity constraints, where the constraints limit 
the number of workers of a particular type that 
can be hired. All of these models with a domi- 
nant strategy property satisfy our substitutes 
and law of aggregate demand conditions, so the 
earlier dominant strategy results are all sub- 
sumed by our new result. 

In Section IV, we introduce a new parame- 
terized family of preferences-the endowed as- 
signment preferences-and show that they 
subsume certain previously identified classes 
and satisfy both the substitutes and law of ag- 
gregate demand conditions. 

Section V introduces cumulative offer pro- 
cesses as an alternative auction/matching algo- 
rithm and shows that when contracts are 
substitutes, it coincides with the doctor-offering 

algorithm of the previous sections. Since the 
Ausubel-Milgrom proxy auction is also a cumu- 
lative offer process, our dominant strategy con- 
clusion of Section III implies an extension of 
the Ausubel-Milgrom dominant strategy result. 
When contracts are not substitutes, the cumula- 
tive offer process can converge to an infeasible 
allocation. We show that if there is a single 
hospital/auctioneer, however, the cumulative 
offer process converges to a feasible, stable 
allocation, without restrictions on the hospital's 
preferences. Section VI concludes. All proofs 
are in the Appendix. 

I. Stable Collections of Contracts 

The matching model without transfers has 
many applications, of which the best known 
among economists is the match of doctors to 
hospital residency programs in the United 
States. For the remainder of the paper, we de- 
scribe the match participants as "doctors" and 
"hospitals." These groups play the same respec- 
tive roles as students and colleges in the college 
admissions problem and workers and firms in 
the Kelso-Crawford labor market model. 

A. Notation 

The sets of doctors and hospitals are denoted 
by D and H, respectively, and the set of con- 
tracts is denoted by X. We assume only that 
each contract x E X is bilateral, so that it is 
associated with one "doctor" XD E D and one 
"hospital" xH E H. When all terms of employ- 
ment are fixed and exogenous, the set of con- 
tracts is just the set of doctor-hospital pairs: X -- 
D X H. For the Kelso-Crawford model, a con- 
tract specifies a firm, a worker, and a wage, X 
DX H X W. 

Each doctor d can sign only one contract. Her 
preferences over possible contracts, including 
the null contract 0, are described by the total 
order >d. The null contract represents unem- 
ployment, and contracts are acceptable or un- 
acceptable according to whether they are more 
preferred than 0. When we write preferences as 

Pd >d Y > d z, we mean that Pd names the 
preference order of d and that the listed con- 
tracts (in this case, x, y, and z) are the only 
acceptable ones. 
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Given a set of contracts X' C X offered in the 
market, doctor d's chosen set Cd(X') is either 
the null set, if no acceptable contracts are of- 
fered, or the singleton set consisting of the most 
preferred contract. We formalize this as follows: 

(1) Cd (X') 

0 if {x e 
X'lxD= d,x >d 0}= 0 

{max>d{x E X'IXD = d}} otherwise. 

The choices of a hospital h are more compli- 
cated, because it has preferences >h over sets of 
doctors. Its chosen set is a subset of the con- 
tracts that name it, that is, Ch(X') C {x E 
X' IxH = h }. In addition, a hospital can sign only 
one contract with any given doctor: 

(2) ( V hE H)( V X' C X)( V x, x' E Ch(X'))x 

x' >XD= D.- 

Let CD(X') = UdeD Cd(X') denote the set of 
contracts chosen by some doctor from set X'. 
The remaining offers in X' are in the rejected 
set: RD(X') = X' - CD(X'). Similarly, the hos- 
pitals' chosen and rejected sets are denoted by 
CH(X') = UhEH Ch(X') and RH(X') = X' - 
CH(X'). 

B. Stable Allocations: Stable Sets of 
Contracts 

In our model, an allocation is a collection of 
contracts, as that determines the payoffs to the 
participants. We study allocations such that 
there is no alternative allocation that is strictly 
preferred by some hospital and weakly pre- 
ferred by all of the doctors that it hires, and such 
that no doctor strictly prefers to reject his con- 
tract. It is a standard observation in matching 
theory that such an allocation is a core alloca- 
tion in the sense that no coalition of hospitals 
and doctors can find another allocation, feasible 
for them, that all weakly prefer and some 
strictly prefer. This allocation is also a stable 
allocation in the sense that there is no coalition 
that can deviate profitably, even if the deviating 
coalition assumes that outsiders will remain 
willing to accept the same contracts. 

We formalize the notion of stable allocations 
as follows: 

DEFINITION: A set of contracts X' C X is a 
stable allocation if 

(i) CD(X') = CH(X') = X' and 
(ii) there exists no hospital h and set of con- 

tracts X"' t Ch(X') such that 

X" = Ch(X' U X") C CD(X' U X"). 

If condition (i) fails, then some doctor or 
hospital prefers to reject some contract; that 
doctor or hospital then blocks the allocation. If 
condition (ii) fails, then there is an alternative 
set of contracts that a hospital strictly prefers 
and that its corresponding doctors weakly prefer. 

The first theorem states that a set of contracts 
is stable if any alternative contract would be 
rejected by some doctor or some hospital from 
its suitably defined opportunity set. In the for- 
mulas below, think of the doctors' opportunity 
set as XD and the hospitals' opportunity set as 
XH. If X' is the corresponding stable set, then XD 
must include, in addition to X', all contracts that 
would not be rejected by the hospitals, and XH 
must similarly include X' and all contracts that 
would not be rejected by the doctors. If X' is 
stable, then every alternative contract is rejected 
by somebody, so X = XH U XD. This logic is 
summarized in the first theorem. 

THEOREM 1: If (XD, XH) C X2 is a solution to 
the system of equations 

(3) XD = X - RH(XH) 

and 

XH = X - RD (XD), 

then XH 0 XD is a stable set of contracts and 
XH XD = CD(XD) = CH(XH). Conversely, for 
any stable collection of contracts X', there ex- 
ists some pair (XD, XH) satisfying (3) such that 
x' = XH nXD. 

Theorem 1 is formulated to apply to general 
sets of contracts. It is the basis of our analysis of 
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stable sets of contracts in the entire set of mod- 
els treated in this paper. 

II. Substitutes 

In this section, we introduce our first restric- 
tion on hospital preferences, which is the re- 
striction that contracts are substitutes. We use 
the restriction to prove the existence of a stable 
set of contracts and to study an algorithm that 
identifies those contracts. 

Our substitutes condition generalizes the 
Roth-Sotomayor substitutable preferences con- 
dition to preferences over contracts. In words, 
the substitutable preferences condition states 
that if a contract is chosen by a hospital from 
some set of available contracts, then that con- 
tract will still be chosen from any smaller set 
that includes it. Our substitutes condition is 
similarly defined as follows: 

DEFINITION: Elements of X are substitutes 
for hospital h iffor all subsets X' C 'X" C X we 
have Rh(X') C Rh( X').4 

In the language of lattice theory, which we 
use below, elements of X are substitutes for 
hospital h exactly when the function Rh is 
isotone. 

In demand theory, substitutes is defined by a 
comparative static that uses prices. It says that, 
limiting attention to the domain of wage vectors 
at which there is a unique optimum for the 
hospital, the hospital's demand for any doctor d 
is nondecreasing in the wage of each other 
doctor d'. 

Our next result verifies that for resource al- 
location problems involving prices, our defini- 
tion of substitutes coincides with the standard 
demand theory definition. For simplicity, we 
focus on a single hospital and suppress its iden- 
tifier h from our notation. Thus, imagine that a 
hospital chooses doctors' contracts from a sub- 
set of X = D X W, where D is a finite set of 

doctors and W = {w, 
...., 

)} is a finite set of 
possible wages. Assume that the set of wages W 
is such that the hospitals' preferences are al- 
ways strict. Suppose that w = max W is a 
prohibitively high wage, so that no hospital ever 
hires a doctor at wage w. 

In demand theory, it is standard to represent 
the hospital's market opportunities by a vector 
w E WD that specifies a wage wd at which 
each doctor can be hired. We can extend the 
domain of the choice function C to allow market 
opportunities to be expressed by wage vectors, 
as follows: 

(4) w E WD e C(w) C({(d, wd)Id E D}). 

Formula (4) associates with any wage vector w 
the set of contracts {(d, wd)ld E D} and defines 
C(w) to be the choice from that set. 

With the choice function extended this way, 
we can now describe the traditional demand 
theory substitutes condition. The condition as- 
serts that increasing the wage of doctor d from 
Wd to wd (weakly) increases demand for any 
other doctor d'. 

DEFINITION: C satisfies the demand-theory 
substitutes condition if (i) d 4 d', (ii) (d', 
wd') 

E C(w) and (iii) w' > wd imply that (d', 
wd') E C(w, wd). 

To compare the two conditions, we need to 
be able to assign a vector of wages to each set 
of contracts X'. It is possible that, in X', some 
doctor is unavailable at any wage or is available at 
several different wages. For a profit-maximizing 
hospital, the doctor's relevant wage is the low- 
est wage, if any, at which she is available. 
Moreover, such a hospital does not distinguish 
between a doctor who is unavailable and one 
who is available only at a prohibitively high 
wage. Thus, from the perspective of a profit- 
maximizing hospital, having contracts X' avail- 
able is equivalent to facing a wage vector W(X') 
specified as follows: 

(5) Wd(X') = min{sls = w or (d, s) E X'}. 

In view of the preceding discussion, a profit- 
maximizing hospital's choices must obey the 
following identity: 

4 This condition is identical in form to the "condition 
alpha" used in the study of social choice, for example by 
Amartya Sen (1970), but the meanings of the choice sets are 
different. In Sen's model, the choice set is a collection of 
mutually exclusive choices, whereas in the matching prob- 
lems, the set describes the choice itself. 
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(6) C(X') = C(WV(X')). 

THEOREM 2: Suppose that X = D X W is a 
finite set of doctor-wage pairs and that (6) 
holds. Then C satisfies the demand theory sub- 
stitutes condition if and only if its contracts are 
substitutes. 

In particular, this shows that the Kelso- 
Crawford "gross substitutes" condition is sub- 
sumed by our substitutes condition. 

A. A Generalized Gale-Shapley Algorithm 

We now introduce a monotonic algorithm 
that will be shown to coincide with the Gale- 
Shapley algorithm on its original domain. To 
describe the monotonicity that is found in the 
algorithm, let us define an order on X X X as 
follows: 

(7) ((XD, XH) ? (X', X')) 

<* (XD XD and XH C X/). 

With this definition, (X x X, ?) is a finite 
lattice. 

The generalized Gale-Shapley algorithm is 
defined as the iterated applications of a certain 
function F : X X X -- X X X, as defined below. 

(8) F, (X') = X - RH(X') 

F2(X') = X - RD(X') 

F(XD, XH) = (F, (XH), F2(F, (XH))). 

As we have previously observed, since the doc- 
tors' choices are singletons, a revealed prefer- 
ence argument establishes that the function RD: 
X -> X is isotone. If the contracts are substitutes 
for the hospitals, then the function RH: X -> X 
is isotone as well. When both are isotone, the 
function F: (X X X, ?) - (X X X, >) is 
also isotone, that is, it satisfies ((XD, XH) > 
(Xl, XLH)) > (F(XD, XH) F(X, X)). 

Thus, F : X X -- X X X is an isotone 
function from a finite lattice into itself. Using 
fixed point theory for finite lattices, the set of 
fixed points is a nonempty lattice, and iterated 

applications of F, starting from the minimum 
and maximum points of X X X, converge mono- 
tonically to a fixed point of F.5 We summarize 
the particular application here with the follow- 
ing theorem.6 

THEOREM 3: Suppose contracts are substi- 
tutes for the hospitals. Then: 

(a) The set of fixed points of F on X X X is a 
nonempty finite lattice, and in particular 
includes a smallest element (XD, XH) and a 
largest element (XD, XH); 

(b) Starting at (XD, XH) = (X, 0), the general- 
ized Gale-Shapley algorithm converges 
monotonically to the highest fixed point 

(XD, XH) 

= sup{(X', X")IF(X', X") ? (X', X")}; and 

(c) Starting at (XD, XH) = (0, X), the general- 
ized Gale-Shapley algorithm converges 
monotonically to the lowest fixed point 

(XD, XD H) 

= inf{(X', x")IF(X', X") ? (X', X")}. 

The facts that (XD, XH) is the highest fixed 
point of F and that (XD, XH) is the lowest in the 
specified order mean that for any other fixed 
point (XD, X) XD 

C XD C XD' and XH C XH C 
XH. Because doctors are better off when they 
can choose from a larger set of contracts, it 

5 This special case of Tarski's fixed point theorem can be 
simply proved as follows: Let Z be a finite lattice with 
maximum point ,. 

Let zo = -, zl = F(zo),..., z, = 
F(zn 1). 

Plainly, z, - zo and, since F is isotone, z2 = F(zl) 5 
F(zo) = z, and similarly zn+ 

1 z, for all n. So, the 
decreasing sequence { zn converges in a finite number of 
steps to a point Z with F(j) = ^. Moreover, for any fixed 
point f since f ? -, f = F"(z-) -< F(Z) = Z^ for n large, so 
^ is the maximum fixed point. A similar argument applies 
for the minimum fixed point. 

6 Hiroyuki Adachi (2000) and Federico Echenique and 
Jorge Oviedo (2004) have also characterized the Gale- 
Shapley algorithm for the marriage problem and the college 
admissions problem, respectively, as iterated applications of 
a certain operator on a lattice. See also Tamfis Fleiner 
(2003). 
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follows that the doctors unanimously weakly 
prefer CD(XD) to CD(XD) to CD(XD) and simi- 
larly that the hospitals unanimously prefer 
CH(XH) to CH(XH) to CH(XH). Notice, by 
Theorem 1, that CD(XD) = CH(XH) = XD n 

XH and CD(XD) = C(XH) = XD XH, so 
we have the following welfare conclusion. 

THEOREM 4: Suppose contracts are substi- 
tutes for the hospitals. Then, the stable set of 
contracts XD A XH is the unanimously most 
preferred stable set for the doctors and the 
unanimously least preferred stable set for the 
hospitals. Similarly, the stable set XD n XH is 
the unanimously most preferred stable set for 
the hospitals and the unanimously least pre- 
ferred stable set for the doctors. 

Theorems 3 and 4 duplicate and extend fa- 
miliar conclusions about stable matches in the 
Gale-Shapley matching problem and a similar 
conclusion about equilibrium prices in the 
Kelso-Crawford labor market model. These 
new theorems encompass both these older mod- 
els, and additional ones with general contract 
terms. 

To see how the Gale-Shapley algorithm is 
encompassed, consider the doctor-offering al- 
gorithm. As in the original formulation, we sup- 
pose that hospitals have a ranking of doctors 
that is independent of the other doctors they will 
hire, so hospital h just chooses its nh most 
preferred doctors (from among those who are 
acceptable and have proposed to hospital h). 

Let XH(t) be the cumulative set of contracts 
offered by the doctors to the hospitals through 
iteration t, and let XD(t) be the set of contracts 
that have not yet been rejected by the hospitals 
through iteration t. Then, the contracts "held" at 
the end of the iteration are precisely those that 
have been offered but not rejected, which are 
those in XD(t) n XH(t). The process initiates 
with no offers having been made or rejected, so 
XD(O) = X and XO(0) = 0. 

Iterated applications of the operator F de- 
scribed above define a monotonic process, in 
which the set of doctors makes an ever-larger 
(accumulated) set of offers and the set of unre- 
jected offers grows smaller round by round. 
Using the specification of F and starting from 
the extreme point (X, 0), we have 

(9) XD(t) = X - RH(XH(t - )) 

XH(t) = x - RD(XD(t)). 

After offers have been made in iteration t - 1, 
the hospital's cumulative set of offers is XH(t - 
1). Each hospital h holds onto the nh best offers 
it has received at any iteration, provided that 
many acceptable offers have been made; other- 
wise, it holds all acceptable offers that have 
been made. Thus, the accumulated set of re- 
jected offers is RH(XH(t - 1)) and the unre- 
jected offers are those in X - R(X(t - 1)) = 

XD(t). At round t, if a doctor's contract is being 
held, then the last offer the doctor made was its 
best contract in XD(t). If a doctor's last offer 
was rejected, then its new offer is its best con- 
tract in XD(t). The contracts that doctors have 
not offered at this round or any earlier one are 
therefore those in RD(XD(t)). So, the accumu- 
lated set of offers doctors have made are those 
in X - RD(XD(t)) = XH(t). Once a fixed point of 
this process is found, we have, by Theorem 1, a 
stable set of contracts XH(t) n XD(t). 

To illustrate the algorithm, consider a simple 
example with two doctors and two hospitals, 
where X D X H and agents have the follow- 
ing preferences: 

(10) Pd, 
: hi 

> h2 

Phi : Idi} > {d2} > 0 

Pd2 : hi > h2 

Ph2 : {dl, d2} l {dl} 
> {d2} >l 0. 

The algorithm is initialized with XD(O) = 

X = 
{(dl, hi), (dl, 

h2), (d2, hi), (d2, h2) } and 

XH(0) = 0. Table 1 applies the operator given 
in (9) to illustrate the algorithm. 

For t = 1, starting from XD(1) = X, both 
doctors choose to work for the hospital h1, so 
they reject their contracts with hospital h2: thus, 
RD(XD(1)) = { (d, h2), (d2, h2) }. Next, XH(1) is 
calculated as the complement of RD(XD(1)), so 
XH(1) = {(dI, hI), (d2, h ) }. From XH(1), the 
hospitals choose 

(dl, hi) and reject (d2, hi), 
completing the row for t = 1. 
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TABLE 1-ILLUSTRATION OF THE ALGORITHM 

XD(t) RD(XD(t)) X( t) 
RI(XH(t)) t = 0 X {(d1, h2), (d2, h2)} 0 0 

t = 1 X 
{(dl, 

h2), (d2, h2)} {(dj, hl), (d2, h))} {(d2, h,)} 
t = 2 {(d1, hi), (d1, h2), (d2, h2)} {(d1, h2)} {(dl, hl), (d2, hl), (d2, h2)} {(d2, h1)J 
t = 3 {(dl, hi), 

(dl, 
h2), (d2, h2)} {(dj, h2)} 

{(dl, 
hl), (d2, hi), (d2, h2)} {(d2, hi)} 

For t = 2, we first compute XD(2) as the 
complement of RH(XH(1)). The doctors choose 
{ (d, h1), (d2, h2)), so they reject {(d1, h2)}. The 
hospitals must then choose from the comple- 
ment XH(2) = X - { (d, h2) }. The hospitals 
choose (di, hl) and (d2, h2) and reject (d2, hi). In 
the third round, XD(3) = XD(2) and the process 
has reached a fixed point. 

The example illustrates the monotonicity of 
the algorithm: XH(t) grows larger step by step, 
while XD(t) grows smaller. At termination of the 
algorithm, the intersection of the choice sets is 
the stable set of contracts XH(3) n XD(3) = 
{(d1, hi), (d2, h2)). Moreover, when XD(t) and 
XH(t) are interpreted as suggested above, the 
process {XD(t), XH(t) } described by (9) with the 
initial conditions XD(O) = X and XH(O) = 0 
coincides with the doctor-offering Gale- 
Shapley algorithm. 

For the hospital-offering algorithm, a similar 
analysis applies, but with a different interpreta- 
tion of the sets and a different initial condition. 
Let XD(t) be the cumulative set of contracts 
offered by the hospitals to the doctors before 
iteration t, and let XH(t) be the set of contracts 
that have not yet been rejected by the hospitals 
up to and including iteration t. Then, the con- 
tracts "held" at the end of iteration t are pre- 
cisely those that have been offered but not 
rejected, which are those in XD(t + 1) n XH(t). 
With this interpretation, the analysis is identical 
to the one above. The Gale-Shapley hospital 
offering algorithm is characterized by (9) and 
the initial conditions XD(O) = 0 and XO(0) = X. 

The same logic applies to the Kelso-Crawford 
model, provided one extends their original treat- 
ment to include a version in which the workers 
make offers in addition to the treatment in 
which firms make offers. The words of the 
preceding paragraphs apply exactly, but a con- 
tract offer now includes a wage, so, for exam- 
ple, a hospital whose contract offer is rejected 

by a doctor may find that its next most preferred 
contract to the same doctor is at a higher wage. 

B. When Contracts Are Not Substitutes 

It is clear from the preceding analysis that 
that definition of substitutes is just sufficient to 
allow our mathematical tools to be applied. In 
this section, we establish more. We show that 
unless contracts are substitutes for every hospi- 
tal, the very existence of a stable set of contracts 
cannot be guaranteed.7 

THEOREM 5: Suppose H contains at least two 
hospitals, which we denote by h and h'. Further 
suppose that Rh is not isotone, that is, contracts 
are not substitutes for h. Then there exist pref- 
erence orderings for the doctors in set D, a 
preference ordering for a hospital h' with a 
single job opening such that, regardless of the 
preferences of the other hospitals, no stable set 
of contracts exists. 

Together, Theorems 3 and 5 characterize the 
set of preferences that can be allowed as inputs 
into a matching algorithm if we wish to guar- 
antee that the outcome of the algorithm is a 
stable set of contracts with respect to the re- 
ported preferences. According to Theorem 3, 
we can allow all preferences that satisfy substi- 
tutes and still reach an outcome that is a stable 
collection of contracts. According to Theorem 
5, if we allow any preference that does not 
satisfy the substitutes condition, then there is 
some profile of singleton preferences for the 
other parties such that no stable collection of 
contracts exists. 

7 Kelso and Crawford (1982) provide a particular exam- 
ple in which preferences do not satisfy substitutes and there 
does not exist a stable allocation. 
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This theory also reaffirms and extends the 
close connection between the substitutes condi- 
tion and other concepts that has been estab- 
lished in the recent auctions literature with 
quasi-linear preferences. Milgrom (2000) stud- 
ies an auction model with discrete goods in 
which the set of possible bidder values is re- 
quired to include all the additive functions.8 He 
shows that if goods are substitutes, then a com- 
petitive equilibrium exists. If, however, there 
are at least three bidders and if there is any 
allowed value such that the goods are not all 
substitutes, then there is some profile of values 
such that no competitive equilibrium exists. 
Faruk Gul and Ennio Stacchetti (1999) establish 
the same positive existence result. They also 
show that if preferences include all values in 
which a bidder wants only one particular good 
as well as any one for which goods are not all 
substitutes, and if the number of bidders is 
sufficiently large, then there is some profile of 
preferences for which no competitive equilib- 
rium exists. Ausubel and Milgrom (2002) estab- 
lish that if (a) there is some bidder for whom 
preferences are not demand theory substitutes, 
(b) values may be any additive function, and (c) 
there are at least three bidders in total, then 
there is some profile of preferences such that the 
Vickrey outcome is not stable and the core 
imputations do not form a lattice. Conversely, if 
all bidders have preferences that are demand 
theory substitutes, then the Vickrey outcome is 
in the core and the core imputations do form a 
lattice. Taken together, these results establish a 
close connection between the substitutes condi- 
tion, the cooperative concept of the core, the 
noncooperative concepts of Vickrey outcomes, 
and competitive equilibrium. 

C. "Vacancy Chain" Dynamics 

Suppose that a labor market has reached equi- 
librium, with all interested doctors placed 

at hospitals in a stable match. Then suppose one 
doctor retires. Imagine a process in which a 
hospital seeks to replace its retired doctor by 
raiding other hospitals to hire additional doc- 
tors. If the hospital makes an offer that would 
succeed in hiring a doctor away from another 
hospital, the affected hospital has three options: 
it may make an offer to another doctor (or 
several), improve the terms for its current doc- 
tor, or leave the position vacant. Suppose it 
makes whatever contract offer would best serve 
its purposes. 

In models with a fixed number of positions 
and no contracts, this process in which doctors 
and vacancies move from one hospital to an- 
other has been called vacancy chain dynamics 
(Blum et al., 1997). Kelso and Crawford (1982) 
consider similar dynamics in the context of their 
model. 

The formal results for our extended model are 
similar to those of the older theories. Starting 
with a stable collection of contracts X', let X? 
be the set of contracts that some doctor weakly 
prefers to her current contract in X', and let 
XD = X' U (X - 

X/). 
As in the proof of 

Theorem 1, we have F(XD, X') = (X', X') and 

x' = x' n x1. 
To study the dynamic adjustment that results 

from the retirement of doctor d, we suppose the 
process starts from the initial state (XD(O), 
XAO)) = (Xx, Xi). This means that the employ- 
ees start by considering only offers that are at 
least as good as their current positions and that 
hospitals remember which employees have re- 
jected them in the past. The doctors' rejection 
function is changed by the retirement of doctor 
d to RD), where RD(X") = RD(X") U {x E 

X"lxD = d}; that is, in addition to the old rejec- 
tions, all contract offers addressed to the retired 
doctor are rejected. 

To synchronize the timing with our earlier 
notation, let us imagine that hospitals make 
offers at round t - 1 and doctors accept or reject 
them at round t. Hospitals consider as poten- 
tially available the doctors in 

Xi(t 
- 1) = X - 

RD(XD(t - 1)) and the doctors then reject all but 
the best offers, so the cumulative set of offers 
received is XD(t) = X - R-X/t - 1)). Define 

(11) F(XD, X ) 
= (X- RH(XH), X - 

RD(X)D) 

8 A valuation function is additive if the value of any set 
of items is the sum of the separate values of the elements. 
Such a function v is also described as "modular." Additivity 
is equivalent to the requirement that for all sets A and B, 
v(A U B) + v(A n B) = v(A) + v(B). 
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If contracts are substitutes for the hospitals, 
then P is isotone and, since F(X', X') = (X', 

X/), 
it follows that P(X', X') 

- 
(Xj, X,). 

Then, since (XD(O), XH(O)) = 
(XD, 

XI), we have 
(XD(1), XH(1)) = F(XD(O), XAO)) 

_ (XD(O), 
XH(O)). Iterating, (XD(n), 

Xi(n)) 
= F(XD(n - 

1), XA(n - 1)) 
- 

(XD(n - 1), XHn - 1)): the 
doctors accumulate offers and the contracts that 
are potentially available to the hospitals shrink. 
A fixed point is reached and, by Theorem 1, it 
corresponds to a stable collection of contracts. 

THEOREM 6: Suppose that contracts are sub- 
stitutes and that 

(XD, X_) 
is a stable set of 

contracts. Suppose that a doctor retires and that 
the ensuing adjustment process is described by 
(XD(O), XA(O)) = 

(XD, XI) 
and (XD(t), 

Xi(t)) F(XD(t - 1), XA(t - 1)). Then, the sequence 
{ (XD(t), XAt)) } converges to a stable collection 
of contracts at which all the unretired doctors 
are weakly better off and all the hospitals are 
weakly worse off than at the initial state 

(XD, 

The sequence of contract offers and job 
moves described by iterated applications of F 
includes possibly complex adjustments. Hospi- 
tals that lose a doctor may seek several replace- 
ments. Hospitals whose doctors receive contract 
offers may retain those doctors by offering bet- 
ter terms or may hire a different doctor and later 
rehire the original doctor at a new contract. All 
along the way, the doctors find themselves 
choosing from more and better options, and the 
hospitals find themselves marching down their 
preference lists by offering costlier terms, pay- 
ing higher wages, or making offers to other 
doctors whom they had earlier rejected. 

III. Law of Aggregate Demand 

We now introduce a second restriction on 
preferences that allows us to prove the next two 
results about the structure of the set of stable 
matches. We call this restriction the law of 
aggregate demand. Roughly, this law states that 

as the price falls, agents should demand more of 
a good. Here, price falls correspond to more 
contracts being available, and more demand 
corresponds to taking on (weakly) more con- 
tracts. We formalize this intuition with the fol- 
lowing definition. 

DEFINITION: The preferences of hospital h E 
H satisfy the law of aggregate demand if for all 
X' C X", Ch(X') ICh(X")I. 

According to this definition, if the set of 
possible contracts expands (analogous to a de- 
crease in some doctors' wages), then the total 
number of contracts chosen by hospital h either 
rises or stays the same. The corresponding prop- 
erty for doctor preferences is implied by re- 
vealed preference, because each doctor chooses 
at most one contract. Just as for the substitutes 
condition, when wages are endogenous, we in- 
terpret the definition as applying to the domain 
of wage vectors for which the hospital's opti- 
mum is unique. 

The next theorem shows the important rela- 
tionship between profit maximization, substi- 
tutes, and the law of aggregate demand. 

THEOREM 7: If hospital h's preferences are 
quasi-linear and satisfy the substitutes condi- 
tion, then they satisfy the law of aggregate 
demand. 

Below, we use the law of aggregate demand 
to characterize both necessary and sufficient 
conditions for the rural hospitals' property and 
ensure that truthful revelation is a dominant 
strategy for the doctors. Previously, in matching 
models without money, the dominant strategy 
result was known only for responsive prefer- 
ences with capacity constraints (Abdulkadiro- 
glu, 2003). We subsume that result with our 
theorem. 

A. Rural Hospitals Theorem 

In the match between doctors and hospitals, 
certain rural hospitals often had trouble filling 
all their positions, raising the question of 
whether there are other core matches at which 
the rural hospitals might do better. Roth (1986) 
analyzed this question for the case of X = D X 

9 The theorem does not claim, and it is not generally true, 
that this new point must be the new doctor-best stable set of 
contracts. 
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H and responsive preferences, and found that 
the answer is no: every hospital that has unfilled 
positions at some stable match is assigned ex- 
actly the same doctors at every stable match. In 
particular, every hospital hires the same number 
of doctors at every stable match. 

In this section, we show by an example that 
this last conclusion does not generalize to the 
full set of environments in which contracts are 
substitutes.10 We then prove that if preferences 
satisfy the law of aggregate demand and substi- 
tutes, then the last conclusion of Roth's theorem 
holds: every hospital signs exactly the same 
number of contracts at every point in the core, 
although the doctors assigned and the terms of 
employment can vary. Finally, we show that 
any violation of the law of aggregate demand 
implies that preferences exist such that the 
above conclusion does not hold. 

Suppose that H = {h1, h2} and D = 
{(d, d2, 

d3 }. For hospital h,, suppose its choices maxi- 
mize >, where {d3} > 

{dl, 
d2} > {dl} > 

{d2 } > 0 > {d,, d3 } > {d2, d3 }. This prefer- 
ence satisfies substitutes." Suppose h2 has one 
position, with its preferences given by {d, } > 
{d2} > {d3} > 0. Finally, suppose d, and d2 
prefer hI to h2 while d3 has the reverse prefer- 
ence. Then, the matches X' = { 

(hi, 
d3), (h2, 

dl)} and X" = {(h,, 
dl), 

(hi, d2), (h2, d3)} are both 
stable but hospital h, employs a different num- 
ber of doctors and the set of doctors assigned 
differs between the two matches. 

This example involves a failure of the law of 
aggregate demand, because as the set of con- 
tracts available to h, expands by the addition of 

(hi, d3) to the set 
{(hI, 

d,), (h,, d2) }, the number 
of doctors demanded declines from two to one. 
When the law of aggregate demand holds, how- 
ever, we have the following result. 

THEOREM 8: If hospital preferences satisfy 
substitutes and the law of aggregate demand, 
then for every stable allocation (XD, XH) and 
every d E D and h E H, ICd(XD)I = ICd(XD)1 

and ICh(XH) = ICh(XH)|. That is, every doctor 
and hospital signs the same number of contracts 
at every stable collection of contracts. 

The next theorem verifies that the counterex- 
amples developed above can always be gener- 
alized whenever any hospital's preferences 
violate the law of aggregate demand. 

THEOREM 9: If there exists a hospital h, sets 
X' C X' C X such that ICh(X')I > ICh(X")I, and 
at least one other hospital, then there exist 
singleton preferences for the other hospitals 
and doctors such that the number of doctors 
employed by h is different for two stable 
matches. 

Theorem 9 establishes that the law of aggre- 
gate demand is not only a sufficient condition 
for the rural hospitals result of Theorem 8 but, 
in a particular sense, a necessary one as well. 

B. Truthful Revelation as a Dominant 
Strategy 

The main result of this section concerns doc- 
tors' incentives to report their preferences truth- 
fully. For the doctor-offering algorithm, if 
hospital preferences satisfy the law of aggregate 
demand and the substitutes condition, then it is 
dominant strategy for doctors to reveal truth- 
fully their preferences over contracts.12 We fur- 
ther show that both preference conditions play 
essential roles in the conclusion. 

We will show the positive incentive result for 
the doctor-offering algorithm in two steps 
which highlight the different roles of the two 
preference assumptions. First, we show that the 
substitutes condition, by itself, guarantees that 
doctors cannot benefit by exaggerating the rank- 
ing of an unattainable contract. More precisely, 
if there exists a preferences list for a doctor d 
such that d obtains contract x by submitting this 
list, then d can also obtain x by submitting a 
preference list that includes only contract x. 
Second, we will show that adding the law of 

0o A similar example appears in Ruth Martinez et al. 
(2000). 

1 These preferences, however, do not display the "single 
improvement property" that Gul and Stacchetti (1999) in- 
troduce and show is characteristic of substitutes preferences 
in models with quasi-linear utility. 

12 It is, of course, not a dominant strategy for hospitals to 
truthfully reveal; nor would it be so even if we considered 
the hospital-offering algorithm. For further discussion of 
this point, see Roth and Sotomayor (1990). 
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aggregate demand guarantees that a doctor does 
at least as well as reporting truthfully as by 
reporting any singleton. Together, these are the 
dominant strategy result. 

To understand why submitting unattained 
contracts cannot help a doctor d, consider the 
following. Let x be the most-preferred contract 
that d can obtain by submitting any preference 
list (holding all other submitted preferences 
fixed). Note that all that d accomplishes when 
reporting that certain contracts are preferred to x 
is to make it easier for some coalition to block 
outcomes involving x. Thus, if x is attainable 
with any report, it is attainable with the report 
Pd: x that ranks x as the only acceptable con- 
tract. This intuition is captured in the following 
theorem. 

THEOREM 10: Let hospitals' preferences sat- 
isfy the substitutes condition and let the match- 
ing algorithm produce the doctor-optimal 
match. Fixing the preferences of hospitals and 
of doctors besides d, let x be the outcome that d 
obtains by reporting preferences Pd: z1 >d 

Z2 >d 
' 

>d Zn >d x. Then, the outcome that d 
obtains by reporting preferences P' : x is also x. 

Some other doctors may be strictly better off 
when d submits her shorter preference list; there 
are fewer collections of contracts that d now 
objects to, so the core may become larger, and 
the doctor-optimal point of the enlarged core 
makes all doctors weakly better off and may 
make some strictly better off. 

Without the law of aggregate demand, how- 
ever, it may still be in a doctor's interest to 
conceal her preferences for unattainable posi- 
tions. To see this, consider the case with two 
hospitals and three doctors, where contracts are 
simply elements of D X H, and let preferences be: 

(12) Pdi : hi 
> h2 

Phi : {d3} > {dl, d2} > {dI} > {d2} 

Pd2 :h2 > h, 

Ph2 : {d} > {d2} > 
{d3} 

Pd3 : h2 > hi. 

With these preferences, the only stable match 
is { (d, h2), (d3, h1)}, which leaves d2 unem- 
ployed. However, if d2 were to reverse her 
ranking of the two hospitals, then { (dl, hl), (d2, 
hi), (d3, h2) would be chosen by the doctor- 
offering algorithm, leaving d2 better off. Essen- 
tially, by offering a contract to h2, d2 has 
changed the number of positions available. 
When the preferences of the hospitals satisfy 
the law of aggregate demand, however, mak- 
ing more offers to the hospitals (weakly) in- 
creases the number of contracts the hospitals 
accept. 

THEOREM 11: Let hospitals' preferences sat- 
isfy substitutes and the law of aggregate de- 
mand, and let the matching algorithm produce 
the doctor-optimal match. Then, fixing the pref- 
erences of the other doctors and of all the 
hospitals, let x be the contract that d obtains by 
submitting the set of preferences Pd: Z1 >d 

Z2 >d - >d Zn >d x. Then the preferences P" : 
Y1 > y2 ... nn+1 > ... YN 
obtain a contract that is Pa-preferred or indif- 
ferent to x. 

According to this theorem, when a doctor's 
true preferences are P", the doctor can never do 
better according to these true preferences than 
by reporting the preferences truthfully. 

In fact, the law of aggregate demand is "al- 
most" a necessary condition as well. The excep- 
tions can arise because certain violations of the 
law of aggregate demand are unobservable from 
the choice data of the algorithm, and these can- 
not affect incentives. Thus, consider an example 
where terms t are included in the contract, and 
where a hospital h has preferences { (d, h, 
t1)} > {(d1, h, t1), (d2, h, t2)} > {(d1, h, t1)} > 

{ (d2, h, t2) }. Although these preferences violate 
the law of aggregate demand, the algorithm will 
never "see" the violation, as either (dl, h, t1) >dl 
(d1, h, ti) or (d,, h, tl) 

>dl 

(d1, h, t1). Thus, 
whichever terms that d1 first offers will deter- 
mine a conditional set of preferences for the 
hospital that does satisfy the law of aggregate 
demand. (The hospital will never reject an offer 
of either (d1, h, t.) or (d., h, t1).) 

The next theorem says that if some hospital's 
preferences violate the law of aggregate demand 
in a way that can even potentially be observed 
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from the hospital's choices, then there exist 
preferences for the other agents such that it is 
not a dominant strategy for doctors to report 
truthfully, even when the other assumptions we 
have used are satisfied. 

THEOREM 12: Let hospital h have prefer- 
ences such that ICh(X) > ICh(X U {x})l and let 
there exist two contracts y, z such that YD : 
ZD = XD = YD and y, z E Rh(X U { x}) - Rh(X). 
Then if another hospital h' exists, there exist 
singleton preferences for the hospitals besides h 
and preferences for the doctors such that it is 
not a dominant strategy for all doctors to reveal 
their preferences truthfully. 

Thus, to the extent that the law of aggregate 
demand for hospital preferences has observable 
consequences for the progress of the doctor- 
offering algorithm, it is an indispensable condi- 
tion to ensure the dominant strategy property for 
doctors. 

IV. Classes of Conforming Preferences 

Although the class of substitutes valuations is 
quite limited,13 it is broader than the set of 
responsive preferences in useful ways. The 
substitutes valuations accommodate all the af- 
firmative action and subspecialty constraints de- 
scribed above and allow a doctor's marginal 
product to depend on which other doctors the 
hospital attracts. 

In this section, we introduce a parameterized 
class of quasi-linear substitutes valuations for 
hospitals evaluating sets of new hires. The val- 
uations are based on an endowed assignment 
model, according to which hospitals have a set 

of jobs to fill and an existing endowment of 
doctors, while doctors' productivities vary 
among jobs. A hospital values new doctors ac- 
cording to the their incremental value in the 
assignment problem. 

From a general job assignment perspective, 
the key restrictions of endowed assignment val- 
uations are that each doctor can do one and only 
one job and that the hospital's output is the sum 
of outputs of its various jobs. A hospital cannot 
use one doctor for two jobs, nor can it combine 
the skills of two doctors in the same job. Also, 
there is no interaction in the productivity of 
doctors in different jobs. Given this mathemat- 
ical structure, if a doctor is lost, it will always be 
optimal for the hospital to retain all of its other 
doctors, although it may choose to reassign 
some of the retained doctors to fill vacated 
positions. 

Another way to describe the set of endowed 
assignment valuations, VEA, is to build it up 
from three properties, as follows. First, a sin- 
gleton valuation is one of the form v(S) = 

maxdEsad for some nonnegative vector a. Sin- 
gleton valuations represent the possible valua- 
tions by a hospital with just one opening, and 
VEA includes all singleton valuations. Second, if 
a hospital is composed of two units, j = 1, 2, 
each of which has a valuation vj E VEA, then the 
hospital's maximum value from assigning 
workers between its units, denoted by (vI V 
v2)(S) = maxR CSvl(R) + v2(S - R), is also in 
the set. We call this property closure under 
aggregation. Third, if a hospital's value is de- 
rived from a value in VEA by endowing the 
hospital with a set of doctors T, then the hospi- 
tal's incremental value for extra doctors 
v(SIT) v(S U T) - v(T) is also in the set VEA- We call this property closure under endowment. 
Finally, two valuations v, and v2 are called 
equivalent if they differ by an additive con- 
stant. For example, for any fixed set of doctors 
T, v(. IT) is equivalent to v( 

. 
U T). 

THEOREM 13: Let VEA denote the smallest 
family of valuations of sets of doctors that in- 
cludes all the singleton valuations and is closed 
under aggregation and endowment. Then, for 
each v E VEA, there exists a set of jobs, J, a set 
of doctors T, and a (IDI + 1T1) X IJl-matrix [a1i], 
such that v is equivalent to the following: 

13 Hans Reijnierse et al. (2002) (see also Yuan-Chuan 
Lien and Jun Yan, 2003) have characterized the valuation 
functions that satisfy the substitutes condition as follows. 
Let v(S) be the hospital's value of doctor set S and let 

vs(T) = v(S U T) - v(S) denote the incremental value of the 
set of doctors T. Then, doctors are substitutes if for every set 
S and three other doctors d1, d2 and d3, there is no unique 
maximum in { vs(dj) + vs(d2, d3), vs(d2) + vs(d1, d3), 

vs(d3) + vs(dj, d2)}. 
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(13) v(SIJ, a, T) - max adjZdj subject to 
z dES 

SZdj < 1 for j E J 
dES 

SZd 
ford E S U T 

jZdj 
10 for 

all dSUTj. 

ZdjE-{0, 1}1for all d,ij. 

Conversely, for every such J, T, and a, v( JJ, 
a, T) E VEA. 

We dub this family of valuations the endowed 
assignment valuations because of the form of 
optimization (13). The family VEA is an exten- 
sion of the assignment valuations derived by 
Lloyd Shapley (1962), used by Roth (1984, 
1985b) in models of matching with wages and 
explicit job assignments, and emphasized in a 
study of package bidding by Lehmann et al. 
(2001). The endowed assignment valuations are 
quite useful for applications. They also fit nicely 
with the theory reported in previous sections for 
the following reason. 

THEOREM 14: Every endowed assignment 
valuation v( IJ, a, T) E VEA is a substitutes 
valuation. 

To the best of our knowledge, all of the 
substitutes valuations that have been used or 
proposed for practical applications are included 
among the endowed assignment valuations. In- 
deed, the question of whether all substitutes 
valuations are endowed assignment valuations 
is an open one. Here, we review some of the 
most popular valuations to show how they fit 
into the class. 

The most commonly studied class of prefer- 
ences for matching problems like the Match, for 
which employment terms are exogenously 
fixed, are the responsive preferences. These 
specify that each hospital h has a fixed number 
of openings nh, a set of acceptable doctors 

D'h 
C 

D, and a strict ordering >h of the acceptable 
doctors. When a doctor is unacceptable, that 
means that hiring the doctor is always worse 
than leaving her position unfilled. Given any set 
of available doctors, the hospital hires its nh 

most preferred acceptable doctors, if that many 
are available, and otherwise hires all of the 
acceptable doctors. 

To map responsive preferences into the as- 
signment problem framework, define a utility 
function uh : D -- R to represent >h and set the 
minimum acceptable utility to zero. Formally, 
(1) if d, d' E Dh, then d >h d' < uh(d) > Uh(d') 
and (2) d e D?h ? uh(d) > 0. Using this utility, 
we specify an assignment problem as follows: 
J = {1, ..., nh}, and adj = uh(d) + 1, and fix the 
wage at 1. Using a positive wage is a device to 
ensure that the hospital strictly prefers not to 
hire a doctor it plans not to assign to any job. It 
is evident that with this valuation preference, 
the hospital most prefers to hire the set of avail- 
able, acceptable doctors with the highest rank- 
ing according to >h. 

Among the extensions of responsive prefer- 
ences that have been most important in practice 
are ones to accommodate quotas of various 
kinds. For example, one use of quotas is to 
manage subspecialties of internal medicine, in 
which a certain number of positions are to be 
filled by doctors planning that subspecialty if 
enough acceptable doctors are available. One 
can reserve ms jobs for subspecialty s by pro- 
viding that there are 

ms jobs in which doctors in 
that subspecialty have their productivity in- 
creased by a large constant M. Then, if 

ms doctors in subspecialty s are available, at least 
that many will be demanded at the optimal 
solution to (13). If that many qualified doctors 
are not available, the jobs will be filled by other 
doctors, according to their productivities. 

Another use of quotas is for an affirmative 
action policy that absolutely reserves jobs for 
members of certain target groups. For each af- 
firmative action group G, define a correspond- 
ing set of jobs JG and let J = UG JG. Specify 
that for any doctor d E G and jobj E JG, adj = 

uh(d) and otherwise adj = 0. One can also 
introduce an unrestricted category of jobsj' that 
any doctor can fill with productivity adj 

= 

uh(d). This obviously ensures that a certain 
number of jobs are reserved for each target 
group. 

A recent treatment of affirmative action by 
Roth (1991), extended by Abdulkadiroglu 
(2003), uses the class of responsive preferences 
with capacity constraints. This class requires 
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that the set of doctors be partitioned into a finite 
number of affirmative action groups and that for 
each group G the hospital has a capacity mG that 
limits the number of doctors who can be hired 
from that group. In addition, at most nh doctors 
in total can be hired. 

To represent such preferences using endowed 
assignment valuations, let us specify that there 
are mG jobs of type G and IG mG jobs in total. 
The hospital is endowed with nh - >G mG 
doctors. The endowed doctors have productivity 
aij = M in every job, where M is a large 
number. This ensures that at most nh new doc- 
tors will be hired at any optimum. For the 
nonendowed doctors, we calculate productivi- 
ties uh(d) in the same fashion as for the respon- 
sive preferences and set adj = Uh(d) for jobs j of 
type G, and adj = 0 for all other jobs. This 
ensures that at most mG doctors will be hired 
from group G. By inspection, this specification 
represents Abdulkadiroglu's affirmative action 
preferences. 

Unlike the specifications used for the current 
National Resident Matching Program algo- 
rithm, the endowed assignment valuations per- 
mit overlapping affirmative action categories. 
For example, suppose that a small hospital has a 
target of hiring one female and one minority 
doctor. In the endowed assignment structure, 
the hospital may assign a minority female doc- 
tor to fill either a minority slot or a female slot, 
but not both. This is necessary to retain the 
substitutes demand structure, for otherwise 
making a minority female doctor available 
could lead the hospital to hire a nonminority 
male doctor whom it would otherwise reject. 

Endowed assignment valuations thus provide 
a flexible, parameterized way for hospitals to 
represent their preferences for matching with or 
without wages using a class of quasi-linear pref- 
erences that satisfies the substitutes condition 
and the law of aggregate demand. 

V. Cumulative Offer Processes and Auctions 

The algorithms described by the system (9) 
with different starting points have the property 
that they can terminate only at a stable set of 
contracts. Nevertheless, unless preferences sat- 
isfy the substitutes condition, the system is not 
guaranteed to converge at all, even when a fixed 

point exists. In this section, we offer a different 
characterization of the Gale-Shapley doctor- 
offering algorithm that will prove especially 
well suited to situations in which contracts may 
not be substitutes, but in which there is just one 
"hospital": the auctioneer. For now, we allow 
the possibility that there are several hospitals. 

The alternative representation is constructed 
by replacing the system of equations (9) by the 
following system: 

(14) XD(t) = X - RH(XH(t - )) 

XH(t) = XH(t - 1) U CD(XD(t)). 

We call the algorithm that begins with XD(O) = 

X and XH(O) = 0 and obeys (14) a cumulative 
offer process, because the formalism captures 
the idea that hospitals accumulate offers from 
doctors in the set 

Xt(t) 
and hold their best 

choices 
CH(XI(t)) 

from the accumulated set. 
There is no assumption of consistency imposed 
on the algorithm, so it is possible that several 
hospitals are "holding" contract offers from the 
same doctor. The corresponding allocation is, of 
course, infeasible, since each doctor can ulti- 
mately accept just one contract. 

At each round t of the cumulative offer pro- 
cess, all doctors make their best offers from the 
set of not-yet-rejected choices XD(t), but any 
doctor d for whom a contract is being held 
simply repeats one of its earlier offers. Thus, 
new offers are made only by doctors who have 
been rejected. 

To see why this is so, let x E 
C(XI_(t)) 

be a 
contract that is being held, and consider the 
corresponding doctor XD = d. By revealed pref- 
erence, doctor d strictly prefers x to any contract 
that she has not yet offered, since those con- 
tracts were available to offer at the time that x 
was offered. Since d's most preferred contract 
in Xd(t) at the current time must be weakly 
preferred to x, it must be coincide with one of 
d's earlier offers. 

The second equation of system (14) is the one 
that distinguishes the cumulative offer process 
from the system in (9). In the cumulative offer 
process, without any assumptions about hospi- 
tals' preferences, X,(t) grows monotonically 
from round to round, so the sequence of sets 
converges. In contrast, the earlier process was 
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guaranteed to converge only when contracts are 
substitutes for the hospitals. 

When contracts are substitutes, the two sys- 
tems of equations are equivalent. 

THEOREM 15: Suppose that contracts are 
substitutes for the hospitals and that XD(O) = X 
and XH(O) = 0. Then, the sequences of pairs 
{(XD(t), XH(t)) } generated by the two laws of 
motion (9) and (14) are identical. 

Even with the initial condition XD(O) = X and 
XH(O) = 0, the algorithms described by (9) and 
(14) may differ when contracts are not substi- 
tutes. In that case, by inspection of the system 
(14), the cumulative offer process still con- 
verges, because XH(t) is bounded by the finite 
set X and grows monotonically from round to 
round. What is at issue is whether the hospital's 
choice from its final search set in the cumulative 
offer process is a feasible and stable set of 
contracts. 

We will find below that when there is a single 
hospital, the outcome is indeed a feasible and 
stable set of contracts. In that case, the cumu- 
lative offer process coincides with the general- 
ized proxy auction of Ausubel and Milgrom 
(2002). Those authors analyze in detail the case 
when a bid consists of a price and a subset of the 
set of goods that the bidder wishes to buy. At 
each round, the seller "holds" the collection of 
bids that maximizes its total revenues, subject to 
the constraint that each good can be sold only 
once. The generalized proxy auction, however, 
is not limited to the sale of goods and, in fact, is 
identical in scope to our present model of 
matching with contracts. In particular, the auc- 
tioneer may impose a variety of constraints on 
the feasible collections of bids and may weigh 
nonprice factors, either exclusively or in com- 
bination with prices, to decide which collection 
of bids to hold. Bidders, for their part, may 
make bids that include factors besides price, and 
may not include price at all. 

To illustrate the role of general contracts in 
this auction setting, consider the auction design 
suggested by Paul Brewer and Charles Plott 
(1996), in which bidders seek to buy access to a 
railroad track. In that application, a bid specifies 
a train's direction of travel, departure and ar- 
rival times, and price offered. It is assumed that 

trains travel at a uniform speed along the track. 
In this setting, the contract terms must include 
the direction and the two times, and the seller is 
constrained to hold only combinations of bids 
such that trains maintain safe distances from 
one another at all times. 

A second example of the generalized proxy 
process is a procurement auction in which the 
buyer scores suppliers on the basis of such 
factors as quality, excess capacity, credit rating, 
and historical reliability, as well as price, and in 
which the buyer prefers to set aside some 
amount of its purchase for minority contractors 
or to maintain geographic diversity of supply to 
reduce the chance of supply disruptions. In an 
asset sale, the seller may weigh the probability 
that the sale will be completed, for example due 
to financing contingencies or because a union or 
antitrust regulators must approve the sale. 

The cumulative offer process model with 
general contracts accommodates all of these 
possibilities. The auctioneer in the model cor- 
responds to a single "hospital"- hereafter the 
auctioneer-with a choice function, CH, that 
selects her most preferred collection of contract 
proposals. We have the following result (which 
is first stated using different notation than in the 
Ausubel-Milgrom paper): 

THEOREM 16: When the doctor-offering cu- 
mulative offer process with a single hospital 
terminates at time t with outcome (XD(t), XH(t)), 
the hospital's choice CH(XH(t)) is a stable col- 
lection of contracts. 

Cumulative offer processes connect the the- 
ory of matching with contracts to the emerging 
theory of package auctions and auctions with 
complex constraints. 

VI. Conclusion 

We have introduced a general model of 
matching with bilateral contracts that encom- 
passes and extends two-sided matching models 
with and without money and certain auction 
models. The new formulation allows some con- 
tract terms to be exogenously fixed and others to 
be endogenous, in any combinations. In this 
very general framework, we characterize stable 
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collections of contracts in terms of the solution 
to a certain system of equations. 

The key to the analysis is to extend two 
concepts of demand theory to models with or 
without prices. The first concept to be extended 
is the notion of substitutes. Our definition ap- 
plies essentially the Roth-Sotomayor substitut- 
able preferences condition to a more general 
class of contracts: contracts are substitutes if, 
whenever the set of feasible bilateral contracts 
expands, the set of contracts that the firm rejects 
also expands. We show that (a) our definition 
coincides with the usual demand theory condi- 
tion when both apply, (b) when contracts are 
substitutes, a stable collection of contracts ex- 
ists, and (c) if any hospital or firm has prefer- 
ences that are not substitutes, then there are 
preferences with single openings for each other 
firm such that no stable allocation exists. We 
further show that when the substitute condition 
applies, (a) both the doctor-offering and hospi- 
tal-offering Gale-Shapley algorithms can be 
represented as iterated operations of the same 
operator (starting from different initial condi- 
tions), and (b) starting at a stable allocation 
from which a doctor retires, a natural market 
dynamic mimics the Gale-Shapley process to 
find a new stable allocation. 

The second relevant demand theory concept 
is the law of demand, which we extend both to 
include heterogeneous inputs and to encompass 
models with or without prices. The law of ag- 
gregate demand condition holds that when the 
set of feasible contracts expands, the number of 
contracts that the firm chooses to sign weakly 
increases. In terms of traditional demand theory, 
this means that, for example, when the wages of 
some of a heterogeneous group of workers falls, 
if the workers are substitutes, then the total 
number of workers employed rises. We show 
that (a) when inputs are substitutes, the choices 
of a profit-maximizing firm/hospital satisfy the 
law of aggregate demand. Moreover, when the 
choices of every hospital/firm satisfy the law of 
aggregate demand and the substitutes condition, 
then (b) the set of workers/doctors employed is 
the same at every stable allocation, (c) the num- 
ber employed by each firm/hospital is also the 
same, and (d) truthful reporting is a dominant 
strategy for doctors in the doctor-offering algo- 
rithm. Moreover, we prove (e) that if the law of 

aggregate demand fails in any potentially ob- 
servable way, then the preceding dominant 
strategy property does not hold. 

For these results to be useful for practical 
mechanism design, one needs to account for 
how preferences, especially hospital prefer- 
ences, are to be reported to the mechanism. 
There needs to be a convenient way for hospi- 
tals to express a rich array of preferences, and 
one needs to know whether the preferences be- 
ing reported actually satisfy the conditions of 
the various theorems. Toward that end, we in- 
troduce a parametric form that we call extended 
assignment valuations, which strictly general- 
izes several existing specifications and which 
always satisfies both the substitutes and law of 
aggregate demand conditions. 

Finally, we introduce an alternative treatment 
of the doctor-offering algorithm: the cumulative 
offer process. We show that when contracts are 
substitutes, the previously characterized doctor- 
offering algorithm coincides exactly with a cu- 
mulative offer process. When contracts are not 
substitutes, but there is just one hospital (the 
"auctioneer"), the cumulative offer process co- 
incides with the Ausubel-Milgrom ascending 
proxy auction. This identity clarifies the con- 
nection between these algorithms and, com- 
bined with the dominant strategy theorem 
reported above, generalizes the Ausubel-Milgrom 
dominant strategy theorem for the proxy 
auctions. 

Our new approach reveals deep similarities 
among several of the most successful auction 
and matching designs in current use and among 
the environmental conditions in which, theoret- 
ically, the mechanisms should perform at their 
best. Understanding these similarities can help 
us to understand the limitations of these mech- 
anisms, paving the way for new designs. 

APPENDIX 

PROOF OF THEOREM 1: 
Let (XD, XH) C X2 be a solution to (3). Then, 

XD n XH = XD - RD(XD) = CD(XD) and 
similarly XH, XD = XH - RHXH) = CHXH), 
so XH n = cX xH) = CD(XD). 

Next, we show that X' XH n XD is a stable 
set of contracts. Since X' = CAXH) = CD(XD), 
it follows by revealed preference that X' = 
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CA(X') = CD(X'), so condition (i) of the defi- 
nition of stability is satisfied. 

Consider any hospital h and set of contracts 
X"' C CD(X' U X") naming hospital h. Since X' 
= CD(XD), revealed preference of the doctors 
implies that X" n XD C CD(XD) and hence that 
K' n RD(XD) = ' n XD, n RD(XD) C CD(XD) 
l RD(XD) = 0. Thus, X' C X - RD(XD) = XH 

by (3). So if X" : Ch(X'), then by the revealed 
preference of hospital h, X" <h Ch(XH) = 

Ch(X'). Hence, X"' Ch(X' U K'), so condition 
(ii) is satisfied. So, the set of contracts X' is 
unblocked. 

For the converse, suppose that X' is a stable 
collection of contracts. Then, CD(X') = X'. Let 
XH be the set of contracts that the doctors 
weakly prefer to X' and XD the set of contracts 
that doctors weakly disprefer. By construction, 
{X', XH - X', 

- X', X- X'} is a partition of X. 
To obtain (3), observe first that if there is 

some h such that Ch(XH) : X'h, then X"' = 
Ch(XH) violates stability condition (ii). So, 
Ch(XH) = Xh for all h, that is, CXH) = X'. It 
follows that X - RH(XH) = X - (XH - X') = 
X - (X - XD) = XD and that X - RD(XD) = 
X - (XD - CD(XD)) = X - (XD - X') = XH. 

Hence, (XD, XH) satisfies (3) and XH n 
XD = X'. 

PROOF OF THEOREM 2: 
Let i = j, (j, wJ) E C(w) and w' > wi. Define 

Z(w) {(j, vqj)Ij ! w }. Then, Z(w',, w 
_i) 

C 
Z(w). If contracts are substitutes, then R(Z(w', 
w-i)) C R(Z(w)). By (6), since (j, wj) E C(w), 
it follows that (j, wj) E C(Z(w)), so (j, wj) 
R(Z(w)). Hence, (j, wj) V R(Z(w', wi)). So, (j, 
wj) E Z(w', w-i) - R(Z(w;, w-i)) = C(Z(w:, 
wi)) and thus (j, wj) E C(w', wi) by assumption 
(6). Thus, C satisfies demand theory substitutes. 

Conversely, suppose contracts are not substi- 
tutes. Then, there exists a set X', an element (i, 
Wi) ? X', and (j, wj) E R(X') such that (j, wj) 
R(X"), where X"' = X' U {(i, wi) }. Using (6), 
wi < Wi(X'). Let w" = FV(X") and w' = ^i(X'). 
Then, w; > w'"and (j, wj) E C(w"), but (j, wj) ? 

C(w"_i, 
w'), so C does not satisfy the demand 

theory substitutes condition. 

PROOF OF THEOREM 5: 
We may limit attention to the case with 

exactly two hospitals by specifying that 

the doctors find the other hospitals to be 
unacceptable. 

Suppose Rh is not isotone. Then, there exists 
some x, y E X and X' C X such that for all x E 
X', xH = h and such that x E Rh(X') - Rh(X' U 

{y}). By construction, since x, y E Ch(X' U 
{ y }), contracts x and y specify different doctors, 
say, d= XD 4 fD == d2. Let x' and y' denote the 
corresponding contracts for doctors 

dl 
and d2 in 

which hospital h' is substituted for h. 
We specify preferences as follows: first, for 

hospital h', we take { x'} >h, {/Y'} >h' 0 and all 
other contracts are unacceptable. Second, doc- 
tors in xD(CH(X') U CH(X' U {y})) - {dl, d2} 
prefer their elements of CH(X') U CH(X' U { y }) 
to any other contract. Third, d1 has { x} >d, 
{x' } and ranks all other contracts lower. Fourth, 
d2 has { y' } >d2 { y} and ranks all other con- 
tracts lower. Finally, the remaining doctors find 
all contracts from hospitals h and h' to be 
unacceptable. 

Consider a feasible, acceptable allocation X" 
such that y' E X". Since h' and d2 can have only 
one contract in X", x', y g X". Then, h's con- 
tracts in X" form a subset of X', so x is not 
included and d1 has a contract less preferred 
than x'. Then, the deviation by (d1, h') to x' 
blocks X". 

Consider a feasible, acceptable allocation X" 
such that y' 

f 
X". Then, either x, y E X" or X" 

is blocked by a coalition including h, d1 and d2 
using the contracts x and y. However, if x, y E 
X", then a deviation by (d2, h') to contract y' 
blocks X". 

Since all feasible allocations are blocked, 
there exists no stable set of contracts. 

PROOF OF THEOREM 7: 
Suppose X = D x H X W and let Z(w) { (j, 

j)l0j? 
- 

wj}. Then, the law of aggregate de- 
mand is the statement that for any wage vectors 
w, W satisfying w 

- 
iA such that the choices sets 

are singletons, IC(Z(w))l - 
IC(Z( *))I. The proof 

is by contradiction. Suppose the law of aggre- 
gate demand does not hold. Then there exists a 
wage vector w and a doctor d such that for some 
(and hence all) e > 0, IC(Z(Wd + E, W-d))I > 
IC(Z(wd - e, W-d))l. Since h's preferences are 
quasi-linear, changing doctor d's wage can af- 
fect the hiring of other doctors only if it affects 
the hiring of doctor d. It follows that there are 
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exactly two optimal choices for the hospital at 
wage vector w; these are C(Z(wd - E, W-d)) at 
which doctor d is hired and C(Z(wd + e, w-d)) 
at which d is not hired but such that two other 
doctors are hired, that is, there exist doctors d', 
d" E C(Z(wd + E, W-d)) - C(Z(wd - , W-d)). 
Let the corresponding payoff for the hospital 
(when faced with wage vector w) be 7r. 

Consider the wage vector w' = (wd - e, 
Wd, 

- 2e, W- {d,d'). For e positive and suffi- 
ciently small, the hospital's payoff at wage vec- 
tor w' is wr + 2e if it chooses C(Z(wd + E, W-d)) 
and it is 7T + e if it chooses C(Z(wd - e, W-d)), 
and one of these choices must be optimal. So, 
C(w') = C(Z(wd + E, W-d)). But then, raising 
the wage of doctor d' from wd, - 2e to wd, while 
holding the other wages at wd', reduces the de- 
mand for doctor d' from one to zero, in violation 
of the demand theory substitutes condition. 

PROOF OF THEOREM 8: 
By definition, XD C XD, so by revealed pref- 

erence, ICd(XD )l d(XD)I. Also, XH C XH, so 
by the law of aggregate demand, ICh(XH)| I 
|Ch(XH)I. By Theorem 1, CD(XD) = CH(XH) 
and CD(XD) = CH(XH), so dD dIC(XD) = 

hEH ICh(XH)I and dED Cd(XD)1 = EH Ch (XH)I. 
Combining these leads to EdED ICd(X,)l I 
LdED Cd!XD)I = hEH ICh(XH)I AhEH Ch(XH)I = 

1dED Cd(XD)I, which begins and ends with the same 
sum. Hence, none of the inequalities can be 
strict. 

PROOF OF THEOREM 9: 
Since ICh(X')I > |Ch(X")|, there exists some 

set Y, X' C Y C X" and contract x such that 

ICh(rl > ICh(Y U {fx})|. Sincex E Ch(Y U { x}) 
(as otherwise Ch(Y) = Ch(Y U ({x) for the 
preferences to be rationalizable) there must ex- 
ist two contracts y, z E Rh(Y U {x}) - Rh(Y), 
such that y 4 x 0 z 0 y. Moreover, since y, z E 
Ch(Y), YD t ZD. 

Denoting by h' the second hospital whose exis- 
tence is hypothesized by the theorem, we specify 
preferences as follows. Let all the doctors with con- 
tracts in Yhave those contracts be their most favored, 
and let all other doctors find any contract with h 
unacceptable. Let all doctors find any contract not 
involving hospital h or h' to be unacceptable. 

In principle, there are three cases. 
If xD = YD, then let PX :y > x and 

Pz 
: z. 

Then, there exist two stable matches, Ch(Y U 
{x}) and Ch(Y), with ZD employed in the first 
match but not in the second. 

The case xD = D is symmetric. 
Finally, if YD : XD : ZD, then let x', y', z' 

denote contracts with hospital h' where the doc- 
tors (and any other terms) are the same as in x, 
y, z, respectively. Specify the remaining prefer- 
ences byPX 

=x'D>x,Py 

y > y', P z> 
z', and Ph' = {y'l > {x' > 0 > { z'f. Then, 
there exist two different stable matches, { x' } U 
Ch(Y) and { y'} U Ch(Y U { x}), with ZD em- 
ployed in the first match but not in the second. 

PROOF OF THEOREM 10: 
Let X' denote the collection of contracts cho- 

sen by the algorithm when doctor d submits 
preference Pd. If this collection, which is stable 
under the reported preferences, is not stable 
under P), then there exists a blocking coalition. 
This blocking coalition must contain d, as no 
other doctor's preferences have changed, but 
that is impossible, since x is d's favorite con- 
tract according to the preferences P'. Since X' is 
stable under P), the doctor-optimal stable match 
under P' (the existence of which is guaranteed 
by Theorem 2) must make every doctor 
(weakly) better off than at X'. In particular, 
doctor d must obtain x. 

PROOF OF THEOREM 11: 
From Theorem 10, P' : x also obtains x. 

Hence, by the rural hospitals theorem, d is em- 
ployed at every point in the core when P : x is 
submitted. So, every allocation X' at which d is 
unemployed is blocked by some coalition and 
set of contracts when d submits P'. Conse- 
quently, if d submits the preferences P' 

: YI > 

Y2 > ... > y, > x, then every allocation at which 
d is unemployed is still blocked, by the same 
coalition and set of contracts. Since the doctor- 
best stable allocation is one at which d gets a 

Pd-acceptable 
contract, that allocation is weakly 

Ps-preferred to x. Finally, the doctor-optimal 
match when P* is submitted is still the doctor- 
optimal match when P" is submitted, as d's 
preferences over contracts less preferred than x 
cannot be used to block a match where she 
receives a contract weakly preferred to x. 
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PROOF OF THEOREM 12: 
Consider contracts x', y', and z' such that 

xD = D, YD = YD, Z = zh, and 
x/ 

= y = 
z/ 

= 
h'. Let the preferences of the three identified be 
PX : x' > x, P, 

: y > y', and P :z' > z, and 
let those of h' be Ph': { y'} > {z} > { x'}. For 
the other contracts E Y Ch(X), let X be 

Do'S most favored contract. For the remaining doctors, 
let any contract with h or h' be unacceptable. 

With the preceding preferences, the only sta- 
ble allocation includes contracts x and y', leav- 
ing doctor ZD unemployed. If, however, ZD 

misrepresents her preferences and reports P'D: 
z > z', then the doctor-optimal stable match 

includes z, leaving doctor zD better off. 

PROOF OF THEOREM 13: 
Setting ]JI = 1 and T = 0, it is clear by 

inspection that this family includes all singleton 
valuations. 

The family is closed under endowment, be- 
cause given any such valuation v( . J, a, T), 
endowing a set of doctors T' simply creates the 
valuation v(. J, a, T U T')). 

To verify that the family is closed under 
aggregation, consider any two valuations 

v(. 
J, 

a, T) and 
v(. 

J', a', T'). Since J and T are just 
index sets, we may assume without loss of 
generality that T n T' = J n J' = 0. Define 
T' = T U T' and ' = J U J'. Let 

foa, 
if iEDUT,jEJ 

(15) a' a ifiEDU T',jE J' 
0 otherwise. 

By inspection of the optimization problems, v( - 
J, a, T) V v( IJ', a', T') = v( J1", a", T'). 

For the converse, consider the valuation v( ? 
IJ, a, T) given by (13). We derive it construc- 
tively from the singleton valuations, aggrega- 
tion, and endowment, as follows. Let vj be the 
singleton valuation associated with row j in 
matrix [aij] for j = 1,..., JJ. Since VEA is 
closed under aggregation, v1 V .. V vlj = 

v(. 
J, a, 0) E VEA. Since VEA is also closed under 
endowment, we may endow the doctors in T to 
obtain v( - J, a, T) E VEA. 

PROOF OF THEOREM 14: 
L. Shapley (1962) (see also Lehmann et al., 

2001) had already proved that every assignment 

valuation without endowments v( - 'J, a, 0) is a 
substitutes valuation. Ausubel and Milgrom 
(2002) prove that a valuation v is a substitutes 
valuation if and only if the corresponding indi- 
rect profit function (rr(p) = v(S) - LdES Pd) is 
submodular. Let ir be the indirect profit func- 
tion corresponding to v( . IJ, a, 0). Then the 
indirect profit function corresponding to v( - J, 
a, 7) is r(p1, ... , PN) = r(Pl, ... , PN, 0, ... , 0). 
Since 7^r is the profit function of the substitutes 
valuation vih, it is submodular, and hence rr is 
submodular as well. 

PROOF OF THEOREM 15: 
Suppose that contracts are substitutes for the 

hospitals. We proceed by induction. The initial 
condition specifies that the sequences are iden- 
tical through time t = 0. Denote the sequence 
corresponding to the cumulative offer process 
by a superscript C and denote the alternative 
process defined by (9) with no superscript. As- 
sume the inductive hypothesis that the se- 
quences are the same up to round t - 1 and 
suppress the corresponding superscripts for the 
values at that round. Then, XD(t) = X - 

RH(XI(t 
- 1)) = X(t). This also implies that 

(16) X = XH(t - 1) U XD(t). 

To complete the proof, we must show that 
XC(t) = XH(t) or, equivalently, that XH(t - 1) U 
CD(XD(t)) = X - RD(XD(t)). 

For t > 2, XH(t - 2) C 
XC/(t 

- 1) by con- 
struction, so by the inductive hypothesis XH(t - 
2) C XH(t - 1). Since contracts are substitutes, 
RH is isotone, so X - RH(XH(t - 1)) C X - 
RH(XH(t - 2)) and hence XD(t) C XD(t - 1). 
For t = 1, the inclusion XD(t) C XD(t - 1) is 
implied by the initial condition XD(O) = X. 

Recall that, by revealed preference, RD is 
isotone. It follows that RD(XD(t)) C RD(XD(t - 
1)) and hence, using (9), that XHt - 1) = X - 
RD(XD(t - 1)) C X - RD(XD(t)) = XHt). Thus, 
xH(t - 1) = XH(t - 1) n (X - RD(XD(t))) = 
XH(t - 1) - RD(XD(t)). So, XH(t - 1) U 

CD,(XD(t)) = XH(t- 1) U (XD(t) - 
RD(XD(t))) = (XH(t - 1) - RD(XD(t))) U 

(XD(t) - RD(XD(t))) = (XH(t - 1) U XD(t)) - 
RD(XD(t)) = X - RD(XD(t)), where the last step 
equality follows from (16). 
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PROOF OF THEOREM 16: 
By construction, any contract not in 

X-(t) 
is 

less preferred by some doctor d than every 
corresponding contract in X/(t) (because doctor 
d offers her most preferred contracts in se- 
quence). So, any collection of contracts that 
includes some not in 

Xi(t) 
must be strictly less 

preferred by one of the doctors. Any profitable 
coalitional deviation must use only contracts in 
XAt). 

By construction, the one hospital/auctioneer 
must be part of any deviating coalition, and 

C(/XH(t)) is its strictly most preferred collection 
of contracts in X1/t), so there is no profitable 
coalitional deviation using just contracts in 

Xl(t). 
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